WO2011048728A1 - Near field communication apparatus, and semiconductor integrated circuit for near field communication - Google Patents

Near field communication apparatus, and semiconductor integrated circuit for near field communication Download PDF

Info

Publication number
WO2011048728A1
WO2011048728A1 PCT/JP2010/004389 JP2010004389W WO2011048728A1 WO 2011048728 A1 WO2011048728 A1 WO 2011048728A1 JP 2010004389 W JP2010004389 W JP 2010004389W WO 2011048728 A1 WO2011048728 A1 WO 2011048728A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
function unit
resonance
antenna
reader
Prior art date
Application number
PCT/JP2010/004389
Other languages
French (fr)
Japanese (ja)
Inventor
定行英一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011048728A1 publication Critical patent/WO2011048728A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H04B5/26

Definitions

  • the present invention relates to a short-range wireless communication device including a reader / writer function unit and a non-contact IC card function unit, and in particular, when adjusting resonance characteristics such as a resonance frequency,
  • the present invention relates to a technique for enabling adjustment to be completed only by the short-range wireless communication device without requiring another device (such as a reader / writer device or a reference card for a non-contact IC card).
  • the present invention also relates to a semiconductor integrated circuit for short-range wireless communication having the same purpose.
  • a non-contact IC card usually includes a coiled antenna, and performs non-contact communication by electromagnetic induction between the antenna and a reader / writer device having another similar coil antenna.
  • the resonance frequencies of the antennas of both the contactless IC card and the reader / writer device are appropriately adjusted. If the resonance frequency is not appropriate, a sufficient communication distance cannot be ensured, resulting in trouble in use.
  • Patent Documents 1 and 2 include conventional techniques for adjusting the resonance frequency of an antenna.
  • FIG. 19 is a block diagram of the non-contact IC card described in Patent Document 1.
  • the non-contact IC card 10 includes a resonance circuit 11 including an antenna L and an IC chip 17.
  • the IC chip 17 includes a tuning capacitor C1, a correction capacitor C2, a rectifier circuit 12, a shunt regulator 13, a CPU 14, a nonvolatile memory 15, and a general-purpose register 16.
  • the reception voltage detected by the shunt regulator 13 is measured while switching the capacitance value of the correction capacitor C2, and the capacitance value of the correction capacitor C2 is determined by the CPU 14 so that the reception voltage becomes maximum. .
  • Patent Document 2 describes another method for adjusting the resonance frequency of a non-contact IC card.
  • the resonant frequency adjustment method not only the detection of the reception voltage but also the frame error rate of the reception data received from the reader / writer device (the result of checking the data consistency by the parity added to the reception data), Adjust the resonance frequency.
  • Patent Document 3 describes a resonance frequency adjustment method for a reader / writer device.
  • the reference card of the non-contact IC card is placed at a fixed position (for example, the maximum stable communication distance), and the reader / writer device is set to the adjustment mode.
  • the reader / writer device communicates with the reference card while switching the resonance frequency, determines the setting of the resonance frequency at which communication can be performed most stably, and stores the setting content.
  • NFC Near Field Communication
  • a device that supports the NFC standard has both a non-contact IC card side function and a reader / writer side function, and a plurality of communication modes such as a reader mode, a card emulation mode, and a peer-to-peer mode (communication between NFC devices).
  • Non-contact communication is performed by electromagnetic induction between antennas with a non-contact IC card, a reader / writer device or another NFC device.
  • a reader / writer device or a measuring device is required outside the short-range wireless communication device to be adjusted.
  • another device for adjustment such as a reference card for a non-contact IC card is required.
  • the conventional technique has a problem that it takes a lot of cost and labor.
  • the present invention was created in view of such circumstances, and in a short-range wireless communication device including a reader / writer function unit and a non-contact IC card function unit, another device (a reader / writer device or a non-writer) is externally provided.
  • An object of the present invention is to automatically adjust the resonance characteristics of the resonance circuit without preparing a contact IC card reference card or the like, and without performing preparatory work such as adjustment and calibration.
  • the present invention solves the above problems by taking the following measures.
  • the short-range wireless communication device includes a reader / writer function unit and a non-contact IC card function unit.
  • a first resonance circuit is connected to the reader / writer function unit, and a second resonance circuit is connected to the non-contact IC card function unit. That is, the reader / writer function unit and the non-contact IC card function unit each have a separate resonance circuit.
  • the first antenna is included in the first resonance circuit.
  • the second antenna is included in the second resonance circuit.
  • the resonant circuit is separated from the reader / writer function unit by non-tuning the first resonant circuit and the second resonant circuit via electromagnetic induction between the first antenna and the second antenna. This is to connect the contact IC card function unit.
  • the reader / writer function unit generates an AC signal having a predetermined output in response to a predetermined activation signal, and supplies the generated AC signal to the first resonance circuit.
  • the non-contact IC card function unit generates predetermined electrical information by tuning the first resonance circuit and the second resonance circuit.
  • the electrical information may be analog or digital.
  • a resonance circuit adjustment unit is further provided.
  • the resonant circuit adjustment unit is configured to perform the first resonant circuit and the second resonant circuit based on electrical information generated in the non-contact IC card function unit as a result of tuning between the first resonant circuit and the second resonant circuit.
  • the circuit is configured to adjust the resonance characteristics of at least one of the circuits.
  • the technical feature is that the reader / writer function unit and the non-contact IC card function unit in the short-range wireless communication device operate simultaneously. Further, a technique in which the short-range wireless communication device receives electromagnetic waves generated in the first resonance circuit on the reader / writer function unit side by the second resonance circuit on the non-contact IC card function unit side of the same short-range wireless communication device. Characteristic. The electromagnetic wave generation source and the electromagnetic wave receiving unit are provided in the same short-range wireless communication device.
  • a reader / writer device and a measuring device are not required externally as in the prior art. This is because the short-range wireless communication device itself has a reader / writer function unit.
  • a reference card for a non-contact IC card is not required externally as in the prior art. This is because the short-range wireless communication device itself has a non-contact IC card function unit.
  • the electromagnetic wave emitted by itself is received by itself, and as a result, predetermined electrical information obtained by the non-contact IC card function unit is given to the resonance circuit adjustment unit.
  • the resonance circuit adjusting unit adjusts the resonance characteristics of the first resonance circuit and / or the second resonance circuit based on the given electrical information.
  • the short-range wireless communication device of the present invention is A first resonant circuit including a first antenna; A reader / writer function unit that generates an AC signal having a predetermined output in response to a predetermined activation signal and supplies the AC signal to the first resonance circuit; A second resonant circuit including a second antenna and tuned to the first resonant circuit via electromagnetic induction between the first antenna and the second antenna; A non-contact IC card function unit that generates predetermined electrical information by tuning the second resonant circuit; A resonance circuit adjustment unit that adjusts resonance characteristics of the first resonance circuit or the second resonance circuit based on predetermined electrical information generated in the non-contact IC card function unit; It is equipped with.
  • the predetermined electrical information obtained by receiving the electromagnetic wave generated by the device itself Is provided to the resonance circuit adjustment unit to adjust the resonance characteristics, so that equipment other than the short-range wireless communication device (reader / writer device, non-contact IC card reference card, etc.) is prepared, and adjustment / calibration, etc. Thus, it is possible to automatically adjust the resonance characteristics of the resonance circuit without requiring any preparation work.
  • the short-range wireless communication semiconductor integrated circuit of the present invention is configured by integrating the short-range wireless communication apparatus on a semiconductor.
  • the resonance characteristics of the resonance circuit can be automatically adjusted without requiring preparation work such as adjustment and calibration, and the cost of the short-range wireless communication apparatus can be reduced.
  • FIG. 1 is a block diagram showing the configuration of the short-range wireless communication apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram (No. 1) showing the configuration of the short-range wireless communication apparatus according to the first embodiment.
  • FIG. 3 is a block diagram (part 2) illustrating the configuration of the short-range wireless communication device according to the first embodiment.
  • FIG. 4 is a block diagram (part 3) illustrating the configuration of the short-range wireless communication device according to the first embodiment.
  • FIG. 5 is a block diagram (part 4) illustrating the configuration of the short-range wireless communication device according to the first embodiment.
  • FIG. 6 is a block diagram (No. 5) showing the configuration of the short-range wireless communication apparatus according to the first embodiment.
  • FIG. 7 is a diagram showing an example of a configuration of a mobile phone (19th to 23rd embodiments of the present invention) to which the short-range wireless communication apparatus of the present invention can be applied.
  • FIG. 8 is a block diagram showing a configuration of a short-range wireless communication apparatus according to the nineteenth embodiment of the present invention.
  • FIG. 9 is a pattern diagram showing the positional relationship between the first antenna and the second antenna of the short-range wireless communication apparatus according to the nineteenth embodiment of the present invention.
  • FIG. 10 is a flowchart showing the operation of automatic resonance frequency adjustment according to the nineteenth embodiment of the present invention.
  • FIG. 11 is a table showing the relationship between switch setting variables and switches according to the nineteenth embodiment of the present invention.
  • FIG. 12 is a graph showing the difference in the state of the received voltage when adjusting the resonance frequency according to the antenna design of the present invention.
  • FIG. 13 is a flowchart showing the operation of automatic resonance frequency adjustment in the present invention.
  • FIG. 14 is a block diagram showing a configuration of a short-range wireless communication apparatus according to the twentieth embodiment of the present invention.
  • FIG. 15 is a block diagram showing a configuration of a short-range wireless communication apparatus according to the twenty-first embodiment of the present invention.
  • FIG. 16 is a flowchart showing the operation of automatic resonance frequency adjustment according to the twenty-first embodiment of the present invention.
  • FIG. 17 is a table showing examples of data correct / incorrect results and determination results according to the twenty-first embodiment of the present invention.
  • FIG. 18 is a block diagram showing a configuration of a short-range wireless communication apparatus according to the twenty-second embodiment of the present invention.
  • FIG. 19 is a block diagram showing the configuration of a non-contact IC card in the prior art.
  • FIG. 1 is a block diagram showing the configuration of the short-range wireless communication apparatus according to the first embodiment of the present invention.
  • E1 is a reader / writer function unit whose main function is a function as a reader / writer
  • E2 is a non-contact IC card function unit whose function is a non-contact IC card
  • R1 is a reader / writer function unit.
  • a first resonance circuit associated with E1, and R2 is a second resonance circuit associated with the non-contact IC card function unit E2.
  • the first resonance circuit R1 includes a first antenna A1.
  • the second resonance circuit R2 includes a second antenna A2.
  • the reader / writer function unit E1 is configured to generate an AC signal Sac having a predetermined output when a predetermined activation signal Son is input, and to supply the generated AC signal Sac to the first resonance circuit R1.
  • the first antenna A1 may be configured so as to be freely connected to and separated from the first resonance circuit R1.
  • the second antenna A2 may be configured so as to be freely connected to and separated from the second resonance circuit R2.
  • the first resonance circuit R1 and the second resonance circuit R2 are configured to be tuned via electromagnetic induction between the first antenna A1 and the second antenna A2.
  • the non-contact IC card function unit E2 is configured to generate predetermined electrical information Si through tuning of the second resonance circuit R2.
  • the predetermined electrical information Si is an analog predetermined electric quantity such as a reception level generated inside or outside the second resonance circuit R2, or digital predetermined data such as reception data.
  • a carrier AC signal modulated with transmission data in the reader / writer function unit E1 is supplied to the first resonance circuit R1.
  • a carrier AC signal modulated by the transmission data received by the second resonance circuit R2 is used as the electrical information Si.
  • the resonance circuit adjustment unit E3 is a resonance circuit adjustment unit.
  • the resonance circuit adjustment unit E3 resonates with the first resonance circuit R1 or the second resonance circuit R2 based on the electrical information Si (analog electric quantity or digital data) generated in the non-contact IC card function unit E2. It is configured to adjust the characteristics.
  • the resonance characteristics are adjusted in accordance with a determination result accompanied by a determination of whether the received data is correct (determining a mismatch with the original transmission data).
  • a block 50 surrounded by a broken line in FIG. 1 represents a region of a semiconductor integrated circuit described later (the same applies to FIGS. 2 to 6).
  • the reader / writer function unit E1 and the non-contact IC card function unit E2 in the short-range wireless communication device are simultaneously set to the operating state.
  • the reader / writer function unit E1 When the activation signal Son is input to the reader / writer function unit E1, the reader / writer function unit E1 generates an AC signal Sac having a predetermined output and supplies it to the first resonance circuit R1.
  • the first resonance circuit R1 operates in accordance with the input AC signal Sac, and generates an AC magnetic field from the first antenna A1.
  • the second antenna A2 is electromagnetically coupled with the alternating magnetic field, and the second resonance circuit R2 is tuned.
  • the second resonance circuit R2 on the non-contact IC card function unit E2 side of the same short-range wireless communication device receives the electromagnetic wave generated in the first resonance circuit R1 on the reader / writer function unit E1 side. It has become.
  • the non-contact IC card function unit E2 generates electrical information Si, and the electrical information Si is given to the resonance circuit adjustment unit E3.
  • the resonance circuit adjustment unit E3 Based on the received electrical information Si, the resonance circuit adjustment unit E3 performs the first resonance circuit R1 and the second resonance circuit R2 via electromagnetic induction between the first antenna A1 and the second antenna A2.
  • the resonance characteristics of the first resonance circuit R1 or the second resonance circuit R2 are adjusted so that the resonance operation between the first resonance circuit R1 and the second resonance circuit R2 is optimized.
  • the technical feature of this short-range wireless communication device is that it receives the AC magnetic field transmitted by itself in the process of optimizing the resonance characteristics.
  • a first resonance circuit R1 including a first antenna A1 and a second resonance circuit R2 including a second antenna A2 are provided.
  • the first resonance circuit R1 including the first antenna A1 is a side that transmits an alternating magnetic field, and is connected to the reader / writer function unit E1.
  • the reader / writer function unit E1 functions to transmit an alternating magnetic field from the first antenna A1 to the second antenna A2 in the process of optimizing the resonance characteristics.
  • the second resonance circuit R2 including the second antenna A2 receives the AC magnetic field, and is connected to the non-contact IC card function unit E2.
  • the non-contact IC card function unit E2 functions to obtain electrical information Si from the second resonance circuit R2 in the process of optimizing the resonance characteristics. Further, the non-contact IC card function unit E2 is connected to the resonance circuit adjustment unit E3, and the resonance circuit adjustment unit E3 controls the first resonance circuit R1 and / or the second resonance circuit R2 to optimize the resonance characteristics.
  • the short-range wireless communication device receives information on its own internal state transmitted by itself and uses it for optimization of resonance characteristics.
  • the information transmission path utilized in this case is not the inside of the apparatus, but an external space (electromagnetic field) from the first antenna A1 to the second antenna A2.
  • the external space is, of course, a space in which the short-range wireless communication device communicates wirelessly with another short-range wireless communication device, a contactless IC card, or a reader / writer device.
  • the resonance characteristics are adjusted according to the situation.
  • the resonance circuit and one antenna there is only one resonance circuit and one antenna.
  • the device When the device is regarded as a non-contact IC card, an alternating magnetic field transmitted from an external reader / writer device is captured by the antenna. The resonance characteristics of the resonance circuit are adjusted based on the electrical information.
  • the resonance circuit of the reader / writer device When the device is regarded as a reader / writer device, the resonance circuit of the reader / writer device is oscillated, the AC magnetic field transmitted from the antenna is received by an external non-contact IC card, and responds with load modulation. The incoming information is received by the reader / writer device, and the resonance characteristics of the resonance circuit are adjusted based on the received electrical information.
  • the non-contact IC card function unit E2 when the non-contact IC card function unit E2 is considered as a center, no external reader / writer device is required. This is because the short-range wireless communication device itself has the reader / writer function unit E1 and the first resonance circuit R1. Further, when the reader / writer function unit E1 is considered as the center, a non-contact IC card reference card is not required outside. This is because the short-range wireless communication device itself has the non-contact IC card function unit E2 and the second resonance circuit R2.
  • Adjustment of resonance characteristics means adjustment of resonance frequency, adjustment of quality factor (Q value: sharpness of resonance), or both.
  • the adjustment of the resonance frequency may be performed through a change in resonance capacitance or through a change in inductance.
  • the quality factor (Q value) is adjusted by changing the resistance value.
  • the circuit factor of the first resonance circuit R1 is ⁇ 11
  • the circuit factor of the second resonance circuit R2 is ⁇ 21.
  • ⁇ 11 and ⁇ 21 are resonance frequency and / or quality factor (Q value).
  • the resonance circuit adjusting unit E3 adjusts the first resonance circuit R1 based on the predetermined electrical information Si
  • the circuit factor is adjusted as ⁇ 11 ⁇ ⁇ 12.
  • the resonance circuit adjustment unit E3 adjusts the second resonance circuit R2 based on the predetermined electrical information Si ⁇
  • the circuit factor is adjusted as ⁇ 21 ⁇ ⁇ 22.
  • the short-range wireless communication device of the present embodiment is A first resonant circuit R1 including a first antenna A1, A reader / writer function unit E1 that generates an AC signal Sac having a predetermined output in response to a predetermined activation signal Son and supplies the AC signal Sac to the first resonance circuit R1; A second resonant circuit R2 including a second antenna A2 and tuned to the first resonant circuit R1 via electromagnetic induction between the first antenna A1 and the second antenna A2, A non-contact IC card function unit E2 that generates predetermined electrical information Si by tuning of the second resonance circuit R2, A resonance circuit adjusting unit E3 for adjusting the resonance characteristics of the first resonance circuit R1 or the second resonance circuit R2 based on predetermined electrical information Si generated in the non-contact IC card function unit E2, It is equipped with.
  • the short-range wireless communication device provided with the reader / writer function unit E1 and the non-contact IC card function unit E2, it receives the electromagnetic waves generated by itself and obtains the predetermined electrical Since the information Si is given to the resonance circuit adjustment unit E3 to adjust the resonance characteristics, other equipment (reader / writer device, non-contact IC card reference card, etc.) is prepared outside, and preparation work such as adjustment / calibration is performed.
  • the resonance characteristics of the resonance circuit can be automatically adjusted without the need for cost reduction of the short-range wireless communication device.
  • the resonance characteristic automatic adjustment for the short-range wireless communication device may be performed at the manufacturing stage or at the time of actual use by the user. In that case, it is preferable to be configured to start with a startup signal at the time of power-on accompanying the start of use of the apparatus.
  • the transmission data is transmitted to the modulation circuit e11 (see FIG. 2) of the reader / writer function unit E1, and the AC signal Sac modulated by the modulation circuit e11 is the first. Is supplied to the first antenna A1 of the resonance circuit R1, and an electromagnetic wave accompanied by transmission data is emitted.
  • an external non-contact IC card on the communication partner side current flows due to electromagnetic waves received by the loop antenna.
  • the rectifier obtains a DC voltage and supplies power to each part. Further, the reception data superimposed is demodulated by a demodulation circuit.
  • the impedance of the loop antenna is switched by load modulation, and is received by the first antenna A1 of the short-range wireless communication device by electromagnetic coupling, and the first resonance circuit R1 Is demodulated by the demodulation circuit e12.
  • the short-range wireless communication apparatus operates in the card emulation mode and performs wireless communication with an external reader / writer apparatus
  • the non-contact IC card function unit E2 operates, but the reader / writer function unit E1 does not operate.
  • the electromagnetic wave from the external reader / writer device is received by the second antenna A2, and the received voltage is applied to the rectifier e21 of the non-contact IC card function unit E2 via the second resonance circuit R2. Occurs.
  • the received voltage covers the power of each part.
  • the demodulating circuit e22 demodulates data included in the received signal.
  • the load modulation unit e23 is driven with the transmission data, and the transmission data is transmitted to the external reader / writer device via the second antenna A2 of the second resonance circuit R2.
  • a peer-to-peer mode which is a communication mode between short-range wireless communication devices.
  • a short-range wireless communication device that first transmits data (command) is called an initiator
  • a short-range wireless communication device that is a destination of the data is called a target.
  • the peer-to-peer mode there are two types of modes, a passive communication mode and an active communication mode.
  • the initiator when transmitting data from the initiator to the target, the initiator operates in the same manner as the reader mode described above, and the target operates in the same manner as the card emulation mode described above.
  • the target When responding from the target to the initiator, the target operates in the same manner as in the card emulation mode, and the initiator operates in the same manner as in the reader mode. That is, the target responds to the initiator by load modulation.
  • the active communication mode when data is transmitted from the initiator to the target, it is the same as the passive communication mode, the initiator operates the same as the reader mode, and the target operates the same as the card emulation mode.
  • the difference is when a response is made from the target to the initiator.
  • the target performs the same operation as the reader mode, and the initiator performs the same operation as the card emulation mode. That is, the target does not use load modulation, and responds to the initiator by sending out electromagnetic waves modulated with response data in the reader mode.
  • the initiator or target In either the active communication mode or the passive communication mode, the initiator or target, the initiator data transmission or the target data response, the reader / writer function unit E1 or the non-contact IC in the short-range wireless communication device Only one of the card function units E2 operates, and there is no state in which both function units operate simultaneously.
  • the short-range wireless communication apparatus having the configuration of the first embodiment described above is the basic configuration of the present invention, and can be further advantageously developed in the following embodiment.
  • the resonance circuit adjustment unit E3 is further configured based on predetermined electrical information Si generated in the non-contact IC card function unit E2.
  • the resonance characteristics of both the resonance circuit R1 and the second resonance circuit R2 are adjusted.
  • the keyword here is “adjusting the resonance characteristics of both the first resonance circuit and the second resonance circuit”. That is, the circuit factor of the first resonance circuit R1 is adjusted as ⁇ 11 ⁇ ⁇ 12, and the circuit factor of the second resonance circuit R2 is adjusted as ⁇ 21 ⁇ ⁇ 22.
  • the resonance circuit adjustment unit E3 adjusts the resonance characteristics of both the first resonance circuit R1 and the second resonance circuit R2, so that the first resonance circuit R1 and the second resonance circuit R2 are connected. Optimize the resonant operation of As a result, it is possible to optimize by eliminating the excess and deficiency of the transmission capability in the reader / writer function unit E1, and at the same time to eliminate and optimize the excess and deficiency of the reception capability in the non-contact IC card function unit E2.
  • the reader / writer function unit E1 further generates an unmodulated constant-current AC signal Sac as an AC signal Sac having a predetermined output.
  • the non-contact IC card function unit E2 includes an AD converter e24 connected to a rectifier e21 connected to the second resonance circuit R2, and has predetermined electrical information.
  • a voltage obtained by digitally converting the voltage appearing on the output side of the rectifier e21 by the AD converter e24 is used.
  • AD converter is a keyword.
  • the carrier voltage signal obtained by tuning the second resonance circuit R2 is rectified by the rectifier e21 and a rectified voltage is output. This is the received voltage.
  • the received voltage is digitally converted by the AD converter e24, and the digital data is supplied to the resonance circuit adjusting unit E3 as electrical information SiS.
  • the resonance circuit adjustment unit E3 adjusts the resonance characteristics of the second resonance circuit R2 or the first resonance circuit R1 so that the reception voltage corresponds to the maximum value.
  • e11 is a modulation circuit generally provided in the reader / writer function unit E1
  • e12 is a demodulation circuit
  • e22 is a demodulation circuit generally provided in the non-contact IC card function unit E2
  • e23 is Similarly, a load modulation unit, e25, is a shunt circuit.
  • the reader / writer function unit E1 further applies a signal obtained by amplitude modulation of a carrier wave by a built-in modulation circuit e11 with a certain modulation factor.
  • the non-contact IC card function unit E2 is configured to generate an AC signal Sac of the output of the rectifier e21 connected to the output side of the second resonance circuit R2, and the AD converter e24 connected to the rectifier e21.
  • the predetermined electrical information S i the voltage fluctuation difference that appears on the output side of the rectifier e21 is digitally converted by the AD converter e24.
  • AD converter and “amplitude modulation of the carrier wave with a constant modulation degree” and “difference in voltage fluctuation” are the keywords.
  • the difference between the reception voltage at the time of non-modulation and the reception voltage at the time of modulation is measured, and the resonance characteristics are adjusted so that the difference becomes the largest.
  • the reader / writer function unit E1 further generates an unmodulated constant-current AC signal Sac as an AC signal Sac having a predetermined output.
  • the non-contact IC card function unit E2 is configured to generate a shunt circuit e25 and an AD converter e24 connected to a rectifier e21 connected to the second resonance circuit R2, and as predetermined electrical information Si, A shunt current flowing in the shunt circuit e25 is digitally converted by the AD converter e24.
  • shunt circuit is a keyword along with “AD converter”.
  • the shunt circuit e25 suppresses an excessive voltage rise by causing a current to flow to the ground when the received voltage becomes a predetermined voltage or higher under a strong magnetic field.
  • the reception voltage of the output of the rectifier e21 is used for the determination of the reception level.
  • the current flowing through the shunt circuit e25 is used for the determination of the reception level.
  • the carrier voltage signal obtained by tuning the second resonance circuit R2 is rectified by the rectifier e21, and a shunt current corresponding to the received voltage flows to the shunt circuit e25.
  • the shunt current is digitally converted by the AD converter e24, and the digital data is supplied to the resonance circuit adjustment unit E3 as electrical information Si.
  • the resonance circuit adjustment unit E3 adjusts the resonance characteristics of the second resonance circuit R2 or the first resonance circuit R1 so that the shunt current corresponds to the maximum value.
  • the reader / writer function unit E1 uses a built-in modulation circuit e11 to transmit a carrier wave to predetermined transmission data.
  • the non-contact IC card function unit E2 generates received data corresponding to the transmission data appearing in the built-in demodulation circuit e22 as predetermined electrical information.
  • transmission data and “reception data corresponding to the transmission data appearing in the demodulation circuit” are keywords.
  • the determination is performed using the received data demodulated by the demodulation circuit e22 inherently included in the non-contact IC card function unit E2, the output of the rectifier e21 of the third to fifth embodiments described above is used.
  • the AD converter e24 required for determination by voltage measurement is not required, resonance characteristic adjustment can be realized with a smaller circuit configuration, and costs can be further suppressed.
  • the resonance circuit adjustment unit E3 further determines whether the received data in the non-contact IC card function unit E2 matches or does not match the transmission data.
  • the resonance characteristic adjustment process is executed through the control unit.
  • the resonance circuit adjustment unit E3 optimizes the resonance characteristics by performing a process for adjusting the resonance characteristics through a determination as to whether or not the received data of the demodulation result matches the original transmission data. In determining whether the resonance characteristics are optimal, it is based on whether the received data and the transmitted data match or not, so if you want to make a determination based on a check code such as parity or CRC (Cyclic Redundancy Check) or request command The determination can be performed more accurately than in the case where the determination is made based on whether or not a response to the transmission is received.
  • a check code such as parity or CRC (Cyclic Redundancy Check) or request command
  • the reader / writer function unit E1 further adjusts the intensity of the AC signal Sac having a predetermined output.
  • an output adjuster e13 that determines the setting of the output adjuster e13 based on predetermined electrical information Si.
  • output adjuster and “determination unit” are keywords.
  • the factor is switched to a plurality of stages, and it is determined at which stage the reception level is maximized among the plurality of stages.
  • the reception level rises due to the sequential switching of factors, and then begins to fall.
  • the optimal point is near the peak of the reception level.
  • the change in the reception level is large to some extent.
  • the amplitude of the AC signal Sac emitted from the reader / writer function unit E1 is too large, the reception level is saturated and the change is limited.
  • the amplitude of the AC signal Sac generated from the reader / writer function unit E1 is too small, the amount of change in the reception level is too small and the change is limited. This makes it difficult to accurately adjust the resonance characteristics.
  • an output adjuster e13 that adjusts the intensity of the AC signal Sac having a predetermined output and a determiner e14 that determines the setting of the output adjuster e13 based on the predetermined electrical information Si are provided.
  • the determiner e14 determines the reception state based on the electrical information Si, and determines the setting of the output adjuster e13 according to the determination result.
  • the output adjuster e13 adjusts the intensity of the AC signal Sac according to the setting.
  • the reception state is too strong, the strength of the AC signal Sac is lowered.
  • the reception state is too weak, the strength of the AC signal Sac is increased.
  • the specifications of the first antenna A1 and the second antenna A2 change variously. As a result, even if the reception state fluctuates, the resonance characteristics are always stable regardless of that. Can be adjusted accurately.
  • non-contact IC card function unit E2 may use the output of the AD converter e24 as shown in FIG. 2 instead of the output of the demodulation circuit e22 in order to obtain the electrical information Si.
  • the reader / writer function unit E1 further modulates the modulation degree of the AC signal Sac having a predetermined output.
  • a modulation factor adjuster e15 that adjusts the modulation factor of the AC signal Sac having a predetermined output and a determiner e14 that determines the setting of the modulation factor adjuster e15 based on the predetermined electrical information SiS.
  • the determiner e14 determines the reception state based on the electrical information Si, and determines the setting of the modulation factor adjuster e15 according to the determination result.
  • the modulation degree adjuster e15 adjusts the modulation degree of the AC signal Sac according to the setting. When the reception state is too strong, the modulation degree of the AC signal Sac is lowered. Conversely, when the reception state is too weak, the modulation degree of the AC signal Sac is increased.
  • the specifications of the first antenna A1 and the second antenna A2 change variously. As a result, even if the reception state fluctuates, the resonance characteristics are always stable regardless of that. Can be adjusted accurately.
  • the non-contact IC card function unit E2 may use the output of the AD converter e24 as shown in FIG. 2 instead of the output of the demodulation circuit e22 in order to obtain the electrical information SiS. .
  • the non-contact IC card function unit E2 further adjusts the demodulation sensitivity of the demodulation circuit e22.
  • a demodulation sensitivity adjuster e26 and a determination device e27 that determines the setting of the demodulation sensitivity adjuster e26 based on predetermined electrical information Si.
  • a demodulation sensitivity adjuster e26 that adjusts the demodulation sensitivity of the demodulation circuit e22 and a determination device e27 that determines the setting of the demodulation sensitivity adjuster e26 based on predetermined electrical information SiS are provided. .
  • the determiner e27 determines the reception state based on the electrical information Si, and determines the setting of the demodulation sensitivity adjuster e26 according to the determination result.
  • the demodulation sensitivity adjuster e26 adjusts the demodulation sensitivity of the demodulation circuit e22 according to the setting. If the reception state is too strong, the demodulation sensitivity is lowered. Conversely, when the reception state is too weak, the demodulation sensitivity is increased.
  • the specifications of the first antenna A1 and the second antenna A2 change variously. As a result, even if the reception state fluctuates, the tuning is always stable regardless of this. It can be carried out.
  • the non-contact IC card function unit E2 may use the output of the AD converter e24 as shown in FIG. 2 instead of the output of the demodulation circuit e22 in order to obtain the electrical information SiS. .
  • a combination of the ninth embodiment and the tenth embodiment is also preferable.
  • the reader / writer function unit E1 uses a startup signal of the short-range wireless communication device as the predetermined activation signal Son.
  • the resonance characteristics When using the short-range wireless communication apparatus of this embodiment, when the power is turned on, a startup signal is generated and output.
  • the reader / writer function unit E1 is activated by this startup signal.
  • the automatic adjustment of the resonance characteristics is generally performed at the time of manufacturing the mounted product. However, even after the shipment, the resonance characteristics may be automatically adjusted every time, for example, at the start-up when the power switch is turned on. . In this case, since the resonance characteristics can be optimized in accordance with the usage environment, including the temperature condition, etc. every time use is started, the communication distance of the short-range wireless communication device can be further optimized.
  • the resonance characteristics to be adjusted are resonance frequency, quality factor (Q value), or resonance frequency and quality factor ( Q value).
  • the present invention is applied to a short-range wireless communication device.
  • the present invention is replaced with a semiconductor integrated circuit for short-range wireless communication. It is developed as a circuit. 1 to 6, a block 50 surrounded by a broken line represents a region of a semiconductor integrated circuit to be described later (the present invention is not limited to this form).
  • the semiconductor integrated circuit for near field communication In the semiconductor integrated circuit for near field communication according to the present embodiment, at least the reader / writer function unit E1, the non-contact IC card function unit E2, and the resonance circuit adjustment in the near field communication devices of the first to twelfth embodiments.
  • the part E3 is integrated on the semiconductor. This is because the constituent elements mounted on the semiconductor integrated circuit only need to have at least a reader / writer function unit E1, a non-contact IC card function unit E2, and a resonance circuit adjustment unit E3.
  • the resonance circuit R1 and the second resonance circuit R2 are not particularly required to be mounted.
  • the reader / writer function unit E1 further has a connection terminal of the first resonance circuit R1
  • the non-contact IC card function unit E2 has the second resonance. It has a connection terminal for the circuit R2. This is because the semiconductor integrated circuit in which the first resonant circuit R1 including the first antenna A1 and the second resonant circuit R2 including the second antenna A2 are connected to the outside of the semiconductor integrated circuit. It is intended for.
  • the first resonance circuit R1 and the second resonance circuit R2 in the short-range wireless communication devices of the first to twelfth embodiments The main part or the whole is provided on the semiconductor.
  • the semiconductor integrated circuit includes a first resonance circuit R1 and a second resonance circuit R2, and each of the first resonance circuit R1 and the second resonance circuit R2 is at least one of an antenna and a resonance capacitor.
  • the first resonance circuit R1 further includes a first antenna A1
  • the second resonance circuit R2 includes a second antenna A2.
  • the first resonance circuit R1 further includes a resonance capacitor
  • the second resonance circuit R2 includes a resonance capacitor. This is because the first resonance circuit R1 and the second resonance circuit R2 each have a resonance capacitance, but the first antenna A1 and the second antenna A2 are not essential constituent elements themselves. It is.
  • the first resonance circuit R1 further includes the first antenna A1 and the resonance capacitor
  • the second resonance circuit R2 includes the second antenna A2 and the second antenna A2.
  • each of the first resonance circuit R1 and the second resonance circuit R2 includes a resonance capacitor and an antenna. This also includes the case where parasitic capacitance is used as the resonance capacitance.
  • each component of the reader / writer function unit, the non-contact IC card function unit, the resonance circuit adjustment unit, the output adjustment unit, the modulation degree adjustment unit, and the determination unit is configured by hardware or software. It may consist of individual steps or routines. Or you may comprise by the combination of hardware and software.
  • FIG. 7 is a diagram showing an example of the configuration of the mobile phone according to the 19th to 23rd embodiments to which the short-range wireless communication device of the present invention is applied.
  • the mobile phone 1 shown in FIG. 1 includes an NFC-LSI (Large Scale Integration) 50, a first antenna A1, a resonance capacitor 31, a second antenna A2, a resonance capacitor 41, and a UICC (Universal Integrated Circuit Circuit Card). 60 and an application processor 70.
  • NFC-LSI Large Scale Integration
  • the mobile phone 1 equipped with the NFC-LSI 50 can communicate with another mobile phone 1 equipped with the same function, the reader / writer device 2 for the non-contact IC card, and the non-contact IC card 3.
  • the mobile phone 1 communicates in peer-to-peer mode when communicating with another mobile phone 1, communicates in card emulation mode when the reader / writer device 2 is used, and communicates in reader mode when the contactless IC card 3 is used. .
  • the NFC-LSI 50, the UICC 60, and the application processor 70 are connected to each other via a serial interface or the like.
  • the NFC-LSI 50 executes a front-end process of a non-contact communication interface corresponding to the NFC standard.
  • the UICC 60 performs secure processing such as authentication processing using encryption and card application processing in contactless communication processing using the NFC-LSI 50. Do. For example, when the mobile phone 1 executes a so-called electronic money payment processing application, the NFC-LSI 50 performs only the processing of the contactless communication interface, and the authentication, management information reading, and writing required for the payment processing are performed. Processing is executed in the UICC 60.
  • the application processor 70 can perform various application processes in the non-contact communication process using the NFC-LSI 50 as well as the UICC 60 in addition to the application process of the entire mobile phone.
  • the NFC-LSI 50 is set to the peer-to-peer mode, the process of exchanging information in the phone book with the external mobile phone 1, the process of setting the reader mode to read the information of the contactless IC card 3, and the display on the display Processing can be performed.
  • FIG. 8 is a block diagram showing a configuration of the short-range wireless communication apparatus according to the present embodiment.
  • the embodiment shown in FIG. 8 corresponds to the first, third, eleventh, thirteenth, and fourteenth embodiments described above.
  • the resonance circuit adjustment unit E3 in FIG. 1 corresponds to the resonance frequency adjustment circuit 102.
  • the activation signal Son corresponds to the signal CAON
  • the AC signal Sac corresponds to the transmission signal TX
  • the electrical information Si ⁇ corresponds to the reception voltage V1 or the V1 voltage value VLV.
  • This embodiment corresponds to a type in which the resonance circuit adjustment unit E3 adjusts the resonance characteristics of the second resonance circuit R2.
  • the modulation circuit e11 in FIG. 2 corresponds to the modulation circuit 82
  • the demodulation circuit e12 corresponds to the demodulation circuit 84
  • the rectifier e21 corresponds to the rectifier 91.
  • the demodulating circuit e22 corresponds to the demodulating circuit 92
  • the load modulating unit e23 corresponds to the load switch 94
  • the AD converter e24 corresponds to the AD converter 95
  • the shunt circuit e25 corresponds to the shunt circuit 93.
  • the resonance frequency adjusting circuit 102 is inserted between the second resonance circuit R2 and the non-contact IC card function unit E2.
  • the NFC-LSI 50 is configured as a semiconductor integrated circuit, and includes a reader / writer function unit E1, a non-contact IC card function unit E2, a resonance frequency adjusting circuit 102, a CPU 51, an I / F (Interface) 52, and a ROM (Read It includes only memory (RAM) 53, random access memory (RAM) 54, and non-volatile memory (NVM) 55.
  • the reader / writer function unit E1 is a block that realizes a reader / writer function in the NFC (Near Field Communication) standard
  • the non-contact IC card function unit E2 is a block that realizes a non-contact IC card function in the NFC standard.
  • the CPU 51 controls the reader / writer function unit E1 and the non-contact IC card function unit E2, controls the I / F 52, executes the software stored in the ROM 53, and reads / writes the RAM 54 and nonvolatile memory (NVM) 55. And control.
  • the I / F 52 includes interfaces connected to the UICC 60 and the application processor 70 in FIG.
  • the ROM 53 stores software related to automatic resonance frequency adjustment described later and various software for realizing the NFC function.
  • the RAM 54 is a temporary storage memory necessary for the operation of the CPU 51
  • the nonvolatile memory (NVM) 55 stores a resonance frequency adjustment result (to be described later) and various setting data related to the NFC function.
  • the reader / writer function unit E1 includes a carrier wave generation circuit 81, a modulation circuit 82, a driver 83, and a demodulation circuit 84.
  • the carrier wave generation circuit 81 is a circuit that generates a 13.56 MHz carrier wave, and is controlled to be turned on and off by a signal CAON input from the CPU 51.
  • the modulation circuit 82 is a circuit that performs ASK (Amplitude Shift ⁇ ⁇ Keying) modulation, and modulates the carrier wave signal S0 input from the carrier wave generation circuit 81 with a predetermined modulation degree based on the data of the transmission data signal TXRD to generate a modulated wave signal. S1 is generated. The degree of modulation differs depending on the protocol used.
  • the modulation is performed with ASK 100% in the case of ISO / IEC 14443 Type A, and with ASK 10% in the case of ISO / IEC 14443 Type B.
  • the driver 83 drives the modulated wave signal S1 to the first antenna A1 as the transmission signal TX.
  • an output setting signal AJPW [l: 0] is input from the CPU 51 to the driver 83 (“l” in [l: 0] is the letter L).
  • the driver 83 is configured such that its driver size is adjusted by the output setting signal AJPW [l: 0].
  • the demodulating circuit 84 demodulates the data that the external non-contact IC card, for example, responds by load modulation into a digital received data signal RXRD.
  • the non-contact IC card function unit E2 includes a rectifier 91, a demodulation circuit 92, a shunt circuit 93, a load switch 94, and an AD converter (ADC: Analog-to-Digital Converter) 95.
  • the rectifier 91 rectifies the carrier wave received by the second antenna A2, and generates a reception voltage V1.
  • the demodulation circuit 92 demodulates the ASK modulation data from the reception voltage V1 to a digital reception data signal RXCD.
  • the shunt circuit 93 causes a current to flow from the reception voltage V1 to the ground when the reception voltage V1 is equal to or higher than a predetermined voltage, so that the reception voltage V1 does not increase excessively even under a strong magnetic field.
  • the load switch 94 performs load modulation based on the data of the transmission data signal TXCD, and transmits the data to the external non-contact IC card reader / writer device 2.
  • the AD converter 95 converts the voltage value of the reception voltage V1 into a V1 voltage value VLV of digital data and outputs it to the CPU 51.
  • the resonance frequency adjusting circuit 102 includes a plurality of capacitors CC0 to CCn and a plurality of switches SC0 to SCn. Each pair of the capacitor CCn and the switch SCn is connected in series between the antenna terminals VA and VB of the second antenna A2 so that the capacitor CCn is in parallel with the resonance capacitor 41.
  • the resonance frequency adjusting circuit 102 is connected to the input side of the rectifier 91 and is connected to the output side of the load switch 94. ON / OFF of the switches SC0 to SCn is controlled by a control signal SCON [n: 0] output from the CPU 51. The minimum value of n is 0. In this case, only CC0 and SC0 are obtained.
  • the reader / writer function unit E1 and the non-contact IC card function unit E2 are simultaneously set to the operating state, and the first The antenna A1 and the second antenna A2 are electromagnetically coupled, and at the same time, the resonance frequency adjusting circuit 102 can be brought into an operating state.
  • the short-range wireless communication device receives the electromagnetic wave transmitted by its reader / writer function unit E1 by its non-contact IC card function unit E2, and receives the electrical information obtained by reception, that is, the reception voltage generated by the rectifier 91 Information derived from V1 is sent to the resonance frequency adjusting circuit 102 to optimize the resonance frequency.
  • one terminal of the first antenna A1 is grounded, but there is a configuration in which a resonant capacitor is connected in series on both sides of the first antenna A1 and input to the NFC-LSI 50.
  • a capacitor is connected in parallel to the first antenna A1.
  • An LC filter may be added to remove a high-frequency component from the waveform of the driver output TX of the NFC-LSI 50, but these are omitted in this description.
  • both terminals are connected to the NFC-LSI 50, but there is a method in which one terminal is grounded. Further, although a resistor may be added for Q value adjustment, they are omitted in this description. Further, the NFC-LSI 50 which is a semiconductor integrated circuit may be configured to incorporate the resonance capacitors 31 and 41.
  • FIG. 9 is a pattern diagram showing an arrangement relationship between the first antenna A1 and the second antenna A2.
  • a first antenna A ⁇ b> 1 and a second antenna A ⁇ b> 2 are disposed on a substrate 36.
  • the second antenna A2 is formed on the outer peripheral side of the substrate 36, and the first antenna A1 is formed inside the second antenna A2.
  • a carrier wave is output from the first antenna A1, and at the same time, the second antenna A2 can receive the same carrier wave.
  • the arrangement relationship between the first antenna A1 and the second antenna A2 may be opposite to the case of FIG. 9, and the first antenna A1 may be arranged outside.
  • two antennas may be arranged next to each other, not on the same center, and it is only necessary that the carrier wave output from the first antenna A1 can be simultaneously received by the second antenna A2 in other arrangements.
  • FIG. 10 is a flowchart showing the operation of automatic resonance frequency adjustment. This operation is executed by the cooperation of the CPU 51 built in the NFC-LSI 50, the program stored in the ROM 53, and the RAM 54 as a work memory.
  • step S11 when automatic resonance frequency adjustment is started by a command indicating activation of resonance frequency automatic adjustment input to the I / F 52 from the outside of the NFC-LSI 50 or a trigger stored by the software itself stored in the ROM 53,
  • the transmission data TXRD of the reader / writer function unit E1 is set to zero, and the modulation circuit 82 outputs an unmodulated (same as the carrier wave S0) modulated signal S1 to the driver 83, and from the first antenna A1 has a constant intensity with no modulation. Output magnetic field.
  • the AC magnetic field output from the first antenna A1 can be simultaneously received by the second antenna A2 by electromagnetic induction between the antennas.
  • One of the technical points of Example 1 is here.
  • the AC magnetic field received by the second antenna A2 is rectified by the rectifier 91, and a certain voltage is output to the reception voltage V1.
  • variable values related to resonance frequency adjustment are initialized.
  • variables there are a switch setting variable x and a V1 measurement result V1D (x).
  • the switch setting variable x is associated with the value of the switch setting variable x and the on / off relationship of the switches SC0 to SC2.
  • the switches SC0 to SC2 are controlled by a control signal SCON [2: 0] output from the CPU 51.
  • the optimum resonance frequency value best_adj is given as the control signal SCON [2: 0] from the CPU 51 to the resonance frequency adjusting circuit 102, and the resonance frequency of the second resonance circuit R2 is optimized.
  • the capacitance value of the resonance frequency adjusting circuit 102 is set to 0 pF by incrementing the switch setting variable x. From 1 to 7 pF, 1 pF is added. By sequentially adding the capacitance values, the resonance frequency of the second resonance circuit R2 is sequentially reduced. When the resonance frequency is sequentially lowered from a frequency higher than the carrier frequency of 13.56 MHz, the reception voltage V1 rises until the resonance frequency reaches 13.56 MHz, and reaches the peak at the resonance frequency of 13.56 MHz.
  • the adjustment may be completed when the reception voltage V1 starts to decrease as shown in the flowchart of FIG. Note that the V1 voltage may be measured for all the switch setting variables x, and the switch setting variable x that maximizes the V1 voltage may be set as the optimum value.
  • the reception voltage becomes maximum when the resonance frequency f0 of the antenna resonance circuit is 13.56 MHz.
  • the reader / writer function unit E1 and the non-contact IC card function unit E2 when the resonance frequency is automatically adjusted, the reader / writer function unit E1 and the non-contact IC card function unit E2 are provided.
  • the first antenna A1 and the second antenna A2 are electromagnetically coupled and the resonance frequency adjustment circuit 102 is also in the operation state, so that the external reader / writer device and measurement are performed. It is possible to automatically optimize the resonance frequency of the second antenna A2 without preparing a device and preparation work such as adjustment / calibration, and to reduce the cost of the short-range wireless communication device. Can do.
  • the output adjuster e13 corresponds to the driver 83, and the determiner e14 corresponds to the processing functions of steps S28 to S29 by the CPU 51. is doing.
  • FIG. 12 is a graph showing a difference in the state of the reception voltage V1 when adjusting the resonance frequency depending on the design (antenna size, number of turns, etc.) of the first antenna A1 and the second antenna A2.
  • the horizontal axis is the switch setting variable x, and the vertical axis is the reception voltage V1.
  • the state C the coupling between the first antenna A1 and the second antenna A2 is weak, the reception voltage V1 is weak, the voltage difference due to the switch setting variable x is very small, and the peak voltage of V1 cannot be detected. is there.
  • the shape and parameters of the first antenna A1 and the second antenna A2 may vary greatly depending on the space restrictions of the terminal to be mounted, the reader / writer output, and the required specifications of the card reception performance.
  • the resonance frequency There is a possibility that a state B or a state C may be entered during adjustment.
  • the NFC-LSI 50 of FIG. 8 includes an output setting signal AJPW [1: 0] for changing the driver size in the driver 83.
  • an output setting signal AJPW [1: 0] for changing the driver size in the driver 83.
  • l (el) 2
  • eight types of driver output sizes can be set by the output setting signal AJPW [2: 0].
  • the output setting signal AJPW [2: 0] is replaced with a numerical value (0 to 7) as the driver output setting y, for example, the driver size of the driver 83 is increased in proportion to the value of the driver output size y.
  • the driver 83 corresponds to the output adjuster e13 of (8) described above.
  • a part of the function of the CPU 51 corresponds to the determination device e14.
  • FIG. 13 is a flowchart of a resonance frequency adjusting method that can satisfactorily cope with the case where the specifications of the first antenna A1 and the second antenna A2 change variously and the reception state fluctuates as a result.
  • the operation will be described with reference to FIG.
  • driver output setting y is initialized in step S22.
  • step S25 the switch setting variable x is incremented by 1, and the resonance frequency of the second resonance circuit R2 is set via the resonance frequency adjustment circuit 102.
  • step S26 the generated voltage of the reception voltage V1 is set. Measurement is performed by the AD converter 95. The V1 voltage value VLV is stored in the V1 measurement result V1D (x).
  • the upper limit value is a V1 upper limit value V1max that is a fixed voltage below the clamp reception voltage V1clamp
  • the lower limit value is a V1 lower limit value V1min that enables peak discrimination.
  • step S29 determine whether the lower limit error is lower than the V1 lower limit value V1min or the upper limit error is higher than the V1 upper limit value V1max.
  • step S30 the driver output setting y is incremented by 1, and the process proceeds to step S24.
  • V1 measurement results V1D (x) for all switch setting variables x are obtained again, and V1D maximum The range of the value V1D_max is confirmed.
  • step S29 If the upper limit error is determined in step S29, the process proceeds to step S31, the driver output setting y is decremented by 1, and the process proceeds to step S24. Similarly, the V1 measurement results V1D (for all switch setting variables x are again obtained. x) is acquired and the range of the V1D maximum value V1D_max is confirmed.
  • step S28 if it is determined in step S28 that the V1D maximum value V1D_max is within the range from the V1 lower limit value V1min to the V1 upper limit value V1max, the process proceeds to step S32 to set the switch that maximizes the V1 measurement result V1D (x).
  • the variable x is stored in the resonance frequency optimum value best_adj, and the resonance frequency adjustment is finished.
  • step S28 When the received voltage V1 is not within the proper range, the loop of step S28 ⁇ S29 ⁇ S30 or S31 ⁇ S24 ⁇ S25 ⁇ S26 ⁇ S27 ⁇ S28 is repeated.
  • the reception voltage V1 changes from rising to falling, the process exits the loop and proceeds from step S28 to step S32.
  • the V1 measurement result V1D (x) in which the V1D maximum value V1D_max falls within the range from the V1 lower limit value V1min to the V1 upper limit value V1max can be acquired by any setting of the driver output setting y.
  • the optimum switch setting variable x can be stored in the optimum resonance frequency value best_adj.
  • the specifications of the first antenna A1 and the second antenna A2 change variously, and as a result, reception is performed. Even if the state fluctuates, the resonance frequency of the second antenna A2 can be adjusted reliably.
  • the DC voltage of the reception voltage V1 output from the rectifier 91 is used as a criterion for determining the resonance frequency, but the current flowing through the shunt circuit 93 is used instead. It may also be possible (corresponding to the fifth embodiment).
  • the modulation circuit 82 outputs an unmodulated carrier wave.
  • predetermined data for giving a certain degree of modulation is transmitted from the transmission signal TXRD to the modulation circuit 82. Is output, and a carrier wave modulated with a certain modulation degree is output, and a difference in fluctuation between the maximum value (no modulation) and the minimum value (during modulation) of the V1 voltage value VLV output from the AD converter 95 is measured. Then, the resonance frequency at which the variation difference of the reception voltage V1 is the largest may be adjusted as an optimum value (corresponding to the fourth embodiment).
  • the driver output setting y is the maximum settable value (maximum output setting of the driver 83), and all of the V1 measurement results V1D (1) to V1D (m) at that time If the lower limit error is less than V1min, it is determined that the antenna connection is defective or the NFC-LSI 50 is faulty, and the adjustment failure result is output to the external I / F, or the adjustment error to the nonvolatile memory (NVM) 55 A flag or the like may be written and used for defect screening in the manufacturing process of the short-range wireless communication device.
  • the resonance frequency of the first resonance circuit R1 on the reader / writer function unit E1 side is automatically adjusted instead of the second resonance circuit R2 on the non-contact IC card function unit E2 side.
  • the predetermined electrical information Si uses the reception voltage V1 at the non-contact IC card function unit E2.
  • FIG. 14 is a block diagram showing a configuration of the short-range wireless communication apparatus according to the present embodiment.
  • the present embodiment corresponds to the first, third, eighth, eleventh, thirteenth, and fourteenth embodiments.
  • the present embodiment does not include the resonance frequency adjustment circuit 102 on the non-contact IC card function unit E2 side, but instead includes the resonance frequency adjustment circuit 101 on the reader / writer function unit E1 side. This is different from the short-range wireless communication apparatus of the embodiment.
  • the resonance frequency adjustment circuit 101 is inserted between the first resonance circuit R1 and the reader / writer function unit E1.
  • a signal for the CPU 51 to control the resonance frequency adjusting circuit 101 is SRON [n: 0]. Circuits other than the resonant frequency adjustment circuit 101 are the same as those in the nineteenth embodiment, and thus description thereof is omitted.
  • the resonance frequency adjusting circuit 101 includes a plurality of capacitors CR0 to CRn and a plurality of switches SR0 to SRn. Each pair of the capacitor CRn and the switch SRn is connected in series between the output signal TX and the reception signal RX so that the capacitor CRn is in parallel with the resonance capacitor 31. ON / OFF of the switches SR0 to SRn is controlled by a control signal SRON [n: 0] output from the CPU 51. The minimum value of n is 0. In this case, only CR0 and SR0 are obtained.
  • the operation of the automatic resonance frequency adjustment of the present embodiment corresponds to the switch setting variable x and the switch SCn in FIG. 11 and is the same as the flowchart in FIGS. 10 and 13 if the switch SCn is replaced with the switch SRn.
  • the resonance frequency adjustment circuit 101 adjusts the resonance frequency of the first resonance circuit R1 to maximize the output of the first antenna A1, and as a result, the reception voltage V1 of the non-contact IC card function unit E2 is maximized. Control to become.
  • the reader / writer function unit E1 and the non-contact IC card function unit E2 when the resonance frequency is automatically adjusted, the reader / writer function unit E1 and the non-contact IC card function unit E2 are provided.
  • the first antenna A1 and the second antenna A2 are electromagnetically coupled together and the resonance frequency adjustment circuit 101 is also in the operation state, so that an external non-contact IC card or
  • the resonance frequency of the first antenna A1 can be automatically optimized without preparing a measurement device and preparation work such as adjustment / calibration, thereby reducing the cost of the short-range wireless communication device. be able to.
  • the NFC-LSI 50 in FIG. 14 does not include the resonance frequency adjustment circuit 102 for the second resonance circuit R2 in FIG. 8, but the NFC-LSI 50 in FIG. You may comprise so that the resonant frequency of both 1 resonance circuit R1 and 2nd resonance circuit R2 can be optimized. In this case, it is possible to optimize by eliminating the excess or deficiency of the transmission capability in the reader / writer function unit E1, and at the same time, it can eliminate and optimize the deficiency of the reception capability in the non-contact IC card function unit E2. Corresponding to the embodiment).
  • the configuration is made so that the resonance frequency is adjusted through the right / wrong judgment of the transmitted / received data, so that the AD converter need not be mounted specially in the non-contact IC card function unit E2. .
  • the resonance frequency of the second resonance circuit R2 on the non-contact IC card function unit E2 side is automatically adjusted.
  • the predetermined electrical information Si information utilizing the correctness determination of received data in the non-contact IC card function unit E2 is used. This embodiment corresponds to the sixth embodiment (see FIG. 3).
  • FIG. 15 is a block diagram showing the configuration of the short-range wireless communication apparatus of the present embodiment.
  • the present embodiment corresponds to the first, sixth, seventh, eighth, eleventh, thirteenth, and fourteenth embodiments.
  • the short-range wireless communication apparatus transmits data from the first antenna A1 on the reader / writer function unit E1 side toward the second antenna A2 on the non-contact IC card function unit E2 side. And the point that the non-contact IC card function unit E2 is not provided with the AD converter 95 is different from the short-range wireless communication apparatus of the nineteenth embodiment.
  • the short-range wireless communication apparatus according to the present embodiment transmits data from the reader / writer function unit E1 instead of using the reception voltage V1 of the non-contact IC card function unit E2 as in the nineteenth embodiment.
  • the non-contact IC card function unit E2 receives the data, and automatically adjusts the optimum value of the resonance frequency through whether or not the transmitted data matches the received data, that is, whether the received data is correct or incorrect. Since other configurations are the same as those in the nineteenth embodiment, description thereof is omitted.
  • FIG. 16 is a flowchart showing the operation of automatic resonance frequency adjustment.
  • FIG. 17 is a table showing examples of correct / incorrect results of received data.
  • the switch setting variable x is incremented by 1 in step S45, and predetermined check data is output from the reader / writer function unit E1 in step S46.
  • the CPU 51 outputs predetermined check data to the TXRD, outputs a modulation signal S1 ASK-modulated by the modulation circuit 82 with a predetermined modulation degree, and the driver 83 transmits the transmission signal TX to the first antenna A1. Send.
  • step S47 the transmitted check data is received by the non-contact IC card function unit E2 by electromagnetic induction of the first antenna A1 and the second antenna A2.
  • the ASK-modulated carrier wave is rectified by the rectifier 91, and the voltage fluctuation of the rectified reception voltage V ⁇ b> 1 is demodulated into a digital reception data signal RXCD by the demodulation circuit 92 and input to the CPU 51.
  • the feature of the third embodiment is that the demodulation circuit 92 is utilized.
  • the CPU 51 checks whether or not the predetermined check data transmitted from the reader / writer function unit E1 matches the data received by the non-contact IC card function unit E2, and determines whether the data is OK (match) or NG (not match). Store in correct / wrong result D (x).
  • step S50 the process proceeds to step S50, and the received voltage V1 is insufficient, so the process further proceeds to step S51 to increment the driver output setting y by 1,
  • step S44 data correct / incorrect results D (x) for all switch setting variables x are acquired again, and the results of data correct / incorrect results D (1) to D (m) are confirmed.
  • step S50 If all the data correct / incorrect results D (1) to D (m) are OK, the process proceeds to step S50, and the received voltage V1 is sufficient for all the switch setting variables x. y is decremented by 1, and the process proceeds to step S44. The data correct / incorrect results D (x) for all the switch setting variables x are obtained again, and the results of the data correct / incorrect results D (1) to D (m) are confirmed. .
  • step S49 ⁇ S50 ⁇ S51 or S52 ⁇ S44 ⁇ S45 ⁇ S46 ⁇ S47 ⁇ S48 ⁇
  • the loop of S49 is repeated. Repeat one or more times.
  • the process goes out of the loop and proceeds from step S49 to step S53.
  • the data correct / incorrect result D corresponding to the state transition
  • the number of (i) varies variously.
  • the median is adopted as the intermediate value.
  • the number is three, the second one is adopted, when the number is five, the third one is adopted, and when the number is seven, the fifth one is adopted.
  • the number is even, either one of the two located in the center is adopted.
  • the data correct / incorrect result D (x) including both OK and NG results can be acquired with any setting of the driver output setting y, and the optimum switch setting variable x is set.
  • the resonance frequency optimum value best_adj can be stored.
  • the second antenna A2 can be automatically and only the own device without using an external reader / writer device or measurement device. It is possible to optimize the resonance frequency. Moreover, even if the specifications of the first antenna A1 and the second antenna A2 change variously and the reception state fluctuates as a result, the resonance frequency of the second antenna A2 can be reliably adjusted.
  • the short-range wireless communication apparatus of the present embodiment uses the demodulation circuit 92 inherently possessed by the non-contact IC card function unit E2, and receives the received data signal RXCD as a result of demodulation by the demodulation circuit 92. It is characterized in that it is used as predetermined electrical information SiS. As a result, the AD converter 95 required in the case of the first embodiment determined by measuring the output voltage V1 of the rectifier 91 becomes unnecessary. That is, resonance characteristic adjustment can be realized with a smaller circuit configuration, and the cost can be further suppressed.
  • the present invention can include the case of checking using parity or CRC instead of matching comparison when determining the correctness of check data.
  • the reader / writer function unit E1 transmits, for example, a request command REQB of ISO / IEC14443TypeB, and it is determined based on the presence / absence of a response ATQB from the non-contact IC card function unit E2 (command transmission and response reception), it is assumed that NFC -Even if another non-contact IC card exists in the vicinity of the LSI 50, the second antenna A2 of the NFC-LSI 50 itself is surely set in order to discriminate by the received data of the non-contact IC card function unit E2 of the same NFC-LSI 50. Can be adjusted.
  • the present invention may include a case of checking using command transmission and presence / absence of response instead of matching comparison when determining whether the check data is correct or incorrect.
  • the modulation degree of the ASK modulation of the modulation circuit 82 and the protocol to be used at the time of automatically adjusting the resonance frequency are not specified.
  • ISO is not an ASK100% system such as ISO / IEC14443TypeA, but ISO A protocol of about 10% ASK such as / IEC14443TypeB or JISX6319-4 is suitable for the resonance frequency adjustment method of the third embodiment because the signal strength of the reception voltage V1 is weaker and the conditions are severer with respect to the demodulation circuit 92. .
  • the modulation circuit 82 may further include a mechanism capable of finely adjusting the modulation degree of ASK, and a modulation degree different from that during normal use may be used during automatic adjustment of the resonance frequency.
  • a modulation degree different from that during normal use may be used during automatic adjustment of the resonance frequency.
  • the resonance frequency is automatically adjusted, even if ISO / IEC14443 Type B is used as a protocol, the resonance frequency is set to a severe condition such as ASK 5% instead of ASK 10% of the typical condition used in the reader mode of the normal NFC. Automatic adjustment may be performed. This corresponds to the above-described modulation degree adjuster e15 of (9) (see FIG. 5).
  • the demodulation sensitivity of the demodulation circuit 92 may be finely adjusted (corresponding to the above tenth embodiment, see FIG. 6), and further the modulation circuit Both the modulation degree 82 and the demodulation sensitivity of the demodulation circuit 92 may be finely adjusted.
  • the driver output setting y is the maximum settable value (maximum output setting of the driver 83), and all the data correct / incorrect results D (1) to D (m) at that time are If it becomes NG, it is determined that the antenna connection is defective or the NFC-LSI 1 is defective, and the adjustment failure result is output to the external I / F, or the adjustment failure flag is written in the nonvolatile memory (NVM) 55, You may use for the defect screening of the manufacturing process of a near field communication apparatus.
  • NVM nonvolatile memory
  • the short-range wireless communication apparatus relates to automatic adjustment of the resonance frequency of the resonance circuit of the first antenna (reader / writer antenna) of the NFC-LSI 50.
  • the resonance frequency is adjusted by determining whether the received data of the non-contact IC card function unit is correct or incorrect.
  • FIG. 18 is a block diagram showing a configuration of the short-range wireless communication apparatus according to the present embodiment.
  • the present embodiment also corresponds to the first, sixth, seventh, eighth, eleventh, thirteenth, fourteenth, and fifteenth embodiments, as in the twenty-first embodiment.
  • the short-range wireless communication apparatus of this embodiment is different from the short-range wireless communication apparatus of the twentieth embodiment in that the AD converter 95 is not provided.
  • the short-range wireless communication apparatus according to the present embodiment does not include the resonance frequency adjustment circuit 102 of the non-contact IC card function unit E2, but instead includes the resonance frequency adjustment circuit 101 in the reader / writer function unit E1. This is different from the short-range wireless communication apparatus of the nineteenth embodiment.
  • the configuration of the resonance frequency adjustment circuit 101 is the same as that of the short-range wireless communication apparatus according to the twentieth embodiment shown in FIG.
  • the resonance frequency automatic adjustment operation of the present embodiment corresponds to the switch setting variable x in FIG. 11 and the switch SCn, and is the same as the flowchart in FIG. 16 if the switch SCn is replaced with the switch SRn. Adjusts the resonance frequency of the first resonance circuit R1 to maximize the output of the first antenna A1, and as a result, the intermediate value of the switch setting variable x for which the data correct / incorrect result D (x) is OK. That is, control is performed so that the reception voltage V1 is maximized.
  • the resonance frequency of the first antenna A1 can be adjusted reliably.
  • the NFC-LSI 50 of FIG. 18 does not include the resonance frequency adjustment circuit 102 of the second antenna A2 of FIG. 15. However, the NFC-LSI 50 of FIG.
  • the antenna A1 and the second antenna A2 may be configured to be optimized.
  • the resonance frequency of the antenna is adjusted by increasing / decreasing the capacity of the resonance circuit.
  • the resonance frequency may be adjusted by increasing / decreasing the inductance.
  • the quality factor (Q value) may be adjusted by increasing or decreasing the resistance of the resonance circuit.
  • this resonance frequency automatic adjustment is performed only at the time of product manufacture, and the adjustment results obtained at the time of manufacture (states of switches SC0 to SCn, SR0 to SRn) are nonvolatile.
  • the data stored in the memory (NVM) 55 may be configured to read and set data stored in the nonvolatile memory (NVM) 55 during normal operation.
  • this automatic resonance frequency automatic adjustment may be configured such that the resonance frequency automatic adjustment is performed every time, for example, at the start-up after the power switch is turned on, even after the mounted product (for example, a mobile phone) is shipped. In this case, each time the use is started, the resonance frequency can be optimized in accordance with the use environment including the temperature condition and the like, so that the communication distance of the short-range wireless communication device can be further optimized.
  • the NFC-LSI 50 has a configuration in which a CPU 51, a ROM 53, and a RAM 54 are mounted, and a program for automatic resonance frequency adjustment is stored in the ROM 53. You may comprise all with a logic circuit, without using. Therefore, the NFC-LSI 50 may be configured without a CPU, ROM, or RAM.
  • the short-range wireless communication device of the present invention is not limited to the mobile phone shown in FIG. 7, but a wide variety of devices such as reader / writer devices, personal computers, various AV (Audio and Visual) devices, various portable devices, card media, and the like. Can be applied to products.
  • the present invention provides a device (reader) different from a short-range wireless communication device when adjusting resonance characteristics such as a resonance frequency in a short-range wireless communication device including a reader / writer function unit and a non-contact IC card function unit. It is an excellent technology that enables the adjustment to be completed only by the short-range wireless communication device without the need for a writer device or a contactless IC card reference card, and in particular, corresponds to the NFC standard. It is useful as a non-contact communication device.

Abstract

Disclosed is a near field communication apparatus which includes: a first resonant circuit including a first antenna; a reader/writer functional section, which generates alternating current signals of predetermined output by means of predetermined start-up signals, and supplies the alternating current signals to the first resonant circuit; and a second antenna. Furthermore, the near field communication apparatus is provided with: a second resonant circuit which is synchronized with the first resonant circuit with electromagnetic induction between the first antenna and the second antenna; a non-contact IC card functional section which generates predetermined electric information by means of the synchronization of the second resonant circuit; and a resonant circuit adjusting section, which adjusts the resonance characteristics of the first resonant circuit or those of the second resonant circuit, based on predetermined electric information generated in the non-contact IC card functional section.

Description

近距離無線通信装置および近距離無線通信用の半導体集積回路Near field communication device and semiconductor integrated circuit for near field communication
 本発明は、リーダライタ機能部と非接触ICカード機能部とを備えた近距離無線通信装置に関わり、特には、共振周波数等の共振特性を調整するに際して、当該の近距離無線通信装置とは別の機器(リーダライタ装置や非接触ICカードの基準カードなど)を必要とせず、当該の近距離無線通信装置だけで調整を完結できるようにするための技術に関する。また、本発明は、同様の趣旨の近距離無線通信用の半導体集積回路に関する。 The present invention relates to a short-range wireless communication device including a reader / writer function unit and a non-contact IC card function unit, and in particular, when adjusting resonance characteristics such as a resonance frequency, The present invention relates to a technique for enabling adjustment to be completed only by the short-range wireless communication device without requiring another device (such as a reader / writer device or a reference card for a non-contact IC card). The present invention also relates to a semiconductor integrated circuit for short-range wireless communication having the same purpose.
 非接触ICカードの分野では、標準規格としてISO/IEC14443、JISX6319-4といった規格が存在する。非接触ICカードは、通常コイル状のアンテナを備え、もう一方の同様のコイルアンテナを備えたリーダライタ装置とのアンテナ間の電磁誘導により非接触通信を行う。非接触通信が適切に行われるためには、非接触ICカードとリーダライタ装置の双方のアンテナの共振周波数等が適切に調整されていることが必要である。共振周波数が適切でない場合には、通信距離を十分に確保することができず、使用に支障が生じる。 In the field of non-contact IC cards, standards such as ISO / IEC14443 and JISX6319-4 exist as standards. A non-contact IC card usually includes a coiled antenna, and performs non-contact communication by electromagnetic induction between the antenna and a reader / writer device having another similar coil antenna. In order for contactless communication to be performed appropriately, it is necessary that the resonance frequencies of the antennas of both the contactless IC card and the reader / writer device are appropriately adjusted. If the resonance frequency is not appropriate, a sufficient communication distance cannot be ensured, resulting in trouble in use.
 通常、共振周波数はアンテナ設計の段階で適切な値に設定されるが、製造段階において、共振容量やアンテナのインダクタンスのばらつきにより共振周波数のずれが発生し、所望の通信距離性能を確保できない場合が生ずる。アンテナの共振周波数の調整機構の従来技術として、特許文献1、2に挙げられるものがある。 Normally, the resonance frequency is set to an appropriate value at the stage of antenna design. However, there may be a case in which the desired communication distance performance cannot be ensured at the manufacturing stage due to variations in the resonance frequency due to variations in resonance capacitance or antenna inductance. Arise. Patent Documents 1 and 2 include conventional techniques for adjusting the resonance frequency of an antenna.
 図19は、特許文献1に記載の非接触ICカードのブロック図である。非接触ICカード10は、アンテナLを含む共振回路11とICチップ17とを備えている。ICチップ17は、同調容量C1と、補正容量C2と、整流回路12と、シャントレギュレータ13と、CPU14と、不揮発性メモリ15と、汎用レジスタ16とを備えている。この非接触ICカード10では、補正容量C2の容量値を切り替えながら、シャントレギュレータ13により検出される受信電圧を測定し、受信電圧が最大になるようにCPU14で補正容量C2の容量値を決定する。 FIG. 19 is a block diagram of the non-contact IC card described in Patent Document 1. The non-contact IC card 10 includes a resonance circuit 11 including an antenna L and an IC chip 17. The IC chip 17 includes a tuning capacitor C1, a correction capacitor C2, a rectifier circuit 12, a shunt regulator 13, a CPU 14, a nonvolatile memory 15, and a general-purpose register 16. In the non-contact IC card 10, the reception voltage detected by the shunt regulator 13 is measured while switching the capacitance value of the correction capacitor C2, and the capacitance value of the correction capacitor C2 is determined by the CPU 14 so that the reception voltage becomes maximum. .
 特許文献2では、非接触ICカードの別の共振周波数調整方法について述べられている。その共振周波数調整方法では、受信電圧の検出だけでなく、リーダライタ装置から受信した受信データのフレームエラーレート(受信データに付加されるパリティなどによりデータの整合性をチェックした結果)も用いて、共振周波数を調整する。 Patent Document 2 describes another method for adjusting the resonance frequency of a non-contact IC card. In the resonant frequency adjustment method, not only the detection of the reception voltage but also the frame error rate of the reception data received from the reader / writer device (the result of checking the data consistency by the parity added to the reception data), Adjust the resonance frequency.
 また、特許文献3では、リーダライタ装置の共振周波数調整方法について述べられている。その共振周波数調整方法では、非接触ICカードの基準カードを固定位置(例えば最大安定通信距離)に配置して、リーダライタ装置を調整モードに設定する。リーダライタ装置は、共振周波数を切り替えながら基準カードとの通信を行い、最も安定して通信のできた共振周波数の設定を判別し、その設定内容を記憶する。 Patent Document 3 describes a resonance frequency adjustment method for a reader / writer device. In the resonance frequency adjustment method, the reference card of the non-contact IC card is placed at a fixed position (for example, the maximum stable communication distance), and the reader / writer device is set to the adjustment mode. The reader / writer device communicates with the reference card while switching the resonance frequency, determines the setting of the resonance frequency at which communication can be performed most stably, and stores the setting content.
 さて、近年では、前述の規格と互換性を持つNFC(Near Field Communication:近距離無線通信)規格が標準規格ISO/IEC18092として制定されている。NFC規格に対応したデバイスは、非接触ICカード側の機能とリーダライタ側の機能の両方を備え、リーダモード、カードエミュレーションモード、ピアツーピアモード(NFCデバイス間の通信)といった複数の通信モードを備え、非接触ICカード、リーダライタ装置または別のNFCデバイスとのアンテナ間の電磁誘導により非接触通信を行う。 In recent years, the NFC (Near Field Communication) standard compatible with the above-mentioned standard has been established as the standard ISO / IEC18092. A device that supports the NFC standard has both a non-contact IC card side function and a reader / writer side function, and a plurality of communication modes such as a reader mode, a card emulation mode, and a peer-to-peer mode (communication between NFC devices). Non-contact communication is performed by electromagnetic induction between antennas with a non-contact IC card, a reader / writer device or another NFC device.
特開2003-67693号公報JP 2003-67693 A 特開2002-334310号公報JP 2002-334310 A 特開2007-60526号公報JP 2007-60526 A
 しかし、リーダライタ機能部と非接触ICカード機能部とを備えた近距離無線通信装置において、非接触ICカード機能部側の共振回路の共振周波数の調整を行う際や、リーダライタ機能部側の共振回路の共振周波数の調整を行う際において、上記従来の共振周波数調整機構を適用することについては、以下のような課題がある。 However, in the short-range wireless communication device including the reader / writer function unit and the non-contact IC card function unit, when adjusting the resonance frequency of the resonance circuit on the non-contact IC card function unit side, When adjusting the resonance frequency of the resonance circuit, there are the following problems in applying the conventional resonance frequency adjustment mechanism.
 非接触ICカード機能部側の共振回路の共振周波数の調整を行うに際しては、その調整対象の近距離無線通信装置の外部に、リーダライタ装置または測定装置が必要となる。一方、リーダライタ機能部側の共振回路の共振周波数の調整を行うに際しては、非接触ICカードの基準カードといった調整用の別の機器が必要となる。 When adjusting the resonance frequency of the resonance circuit on the non-contact IC card function unit side, a reader / writer device or a measuring device is required outside the short-range wireless communication device to be adjusted. On the other hand, when adjusting the resonance frequency of the resonance circuit on the reader / writer function unit side, another device for adjustment such as a reference card for a non-contact IC card is required.
 すなわち、共振周波数調整を行うためには、これら調整用の別の機器(リーダライタ装置や非接触ICカードの基準カードなど)を製造工程に導入する必要がある。さらに、別の機器がリーダライタ装置の場合は出力パワーが適切に設定される必要があり、基準カードの場合は受信性能等が適切に設定される必要があって、使用時に調整、校正等の作業が必要となる。これらのことから、従来の技術では、多くの費用と手間がかかるという課題がある。 That is, in order to adjust the resonance frequency, it is necessary to introduce another device for adjustment (a reader / writer device, a reference card for a non-contact IC card, etc.) into the manufacturing process. Furthermore, if the other device is a reader / writer device, the output power needs to be set appropriately, and if it is a reference card, the reception performance needs to be set appropriately. Work is required. For these reasons, the conventional technique has a problem that it takes a lot of cost and labor.
 本発明は、このような事情に鑑みて創作したものであり、リーダライタ機能部と非接触ICカード機能部とを備えた近距離無線通信装置において、外部に別の機器(リーダライタ装置や非接触ICカードの基準カードなど)を用意すること及び調整・校正などの準備作業を要することなく、共振回路の共振特性を自動的に調整できるようにすることを目的としている。 The present invention was created in view of such circumstances, and in a short-range wireless communication device including a reader / writer function unit and a non-contact IC card function unit, another device (a reader / writer device or a non-writer) is externally provided. An object of the present invention is to automatically adjust the resonance characteristics of the resonance circuit without preparing a contact IC card reference card or the like, and without performing preparatory work such as adjustment and calibration.
 本発明は、次のような手段を講じることにより上記の課題を解決する。 The present invention solves the above problems by taking the following measures.
 本発明による近距離無線通信装置は、リーダライタ機能部と非接触ICカード機能部とを備えている。リーダライタ機能部には第1の共振回路が接続され、非接触ICカード機能部には第2の共振回路が接続されている。すなわち、リーダライタ機能部と非接触ICカード機能部とはそれぞれ別個の共振回路を伴っている。第1のアンテナは、第1の共振回路に含まれている。第2のアンテナは、第2の共振回路に含まれている。共振回路を別個とするのは、第1のアンテナと第2のアンテナとの間の電磁誘導を介して、第1の共振回路と第2の共振回路を同調させて、リーダライタ機能部と非接触ICカード機能部とを結びつけるためである。リーダライタ機能部は、所定の起動信号によって所定の出力の交流信号を発生し、発生した交流信号を第1の共振回路に供給するようになっている。第1の共振回路と第2の共振回路との同調により、非接触ICカード機能部は所定の電気的情報を発生する。電気的情報としては、アナログ的なものでもよいしデジタル的なものでもよい。本発明ではさらに、共振回路調整部を設ける。この共振回路調整部は、第1の共振回路と第2の共振回路との同調の結果として非接触ICカード機能部に発生する電気的情報を基に、第1の共振回路と第2の共振回路のうち少なくともいずれか一方の共振特性を調整するものとして構成されている。 The short-range wireless communication device according to the present invention includes a reader / writer function unit and a non-contact IC card function unit. A first resonance circuit is connected to the reader / writer function unit, and a second resonance circuit is connected to the non-contact IC card function unit. That is, the reader / writer function unit and the non-contact IC card function unit each have a separate resonance circuit. The first antenna is included in the first resonance circuit. The second antenna is included in the second resonance circuit. The resonant circuit is separated from the reader / writer function unit by non-tuning the first resonant circuit and the second resonant circuit via electromagnetic induction between the first antenna and the second antenna. This is to connect the contact IC card function unit. The reader / writer function unit generates an AC signal having a predetermined output in response to a predetermined activation signal, and supplies the generated AC signal to the first resonance circuit. The non-contact IC card function unit generates predetermined electrical information by tuning the first resonance circuit and the second resonance circuit. The electrical information may be analog or digital. In the present invention, a resonance circuit adjustment unit is further provided. The resonant circuit adjustment unit is configured to perform the first resonant circuit and the second resonant circuit based on electrical information generated in the non-contact IC card function unit as a result of tuning between the first resonant circuit and the second resonant circuit. The circuit is configured to adjust the resonance characteristics of at least one of the circuits.
 近距離無線通信装置におけるリーダライタ機能部と非接触ICカード機能部とが同時に動作することが技術的特徴となっている。また、近距離無線通信装置がそのリーダライタ機能部側の第1の共振回路において発する電磁波を、同じ近距離無線通信装置の非接触ICカード機能部側の第2の共振回路で受け取ることが技術的特徴である。電磁波発生源と電磁波受信部とが同じ近距離無線通信装置に備えられているのである。これで、非接触ICカード機能部を中心に考えた場合に、従来技術のように外部にリーダライタ装置や測定装置は不要となる。近距離無線通信装置自身がリーダライタ機能部を有しているからである。また、リーダライタ機能部を中心に考えた場合に、従来技術のように外部に非接触ICカードの基準カードは不要となる。近距離無線通信装置自身が非接触ICカード機能部を有しているからである。 The technical feature is that the reader / writer function unit and the non-contact IC card function unit in the short-range wireless communication device operate simultaneously. Further, a technique in which the short-range wireless communication device receives electromagnetic waves generated in the first resonance circuit on the reader / writer function unit side by the second resonance circuit on the non-contact IC card function unit side of the same short-range wireless communication device. Characteristic. The electromagnetic wave generation source and the electromagnetic wave receiving unit are provided in the same short-range wireless communication device. Thus, when the non-contact IC card function unit is mainly considered, a reader / writer device and a measuring device are not required externally as in the prior art. This is because the short-range wireless communication device itself has a reader / writer function unit. Further, when the reader / writer function unit is mainly considered, a reference card for a non-contact IC card is not required externally as in the prior art. This is because the short-range wireless communication device itself has a non-contact IC card function unit.
 自らが発した電磁波を自らが受信し、その結果、非接触ICカード機能部に得られた所定の電気的情報が共振回路調整部に与えられる。共振回路調整部は、与えられた電気的情報に基づいて第1の共振回路または第2の共振回路またはその両方の共振回路の共振特性を調整する。 The electromagnetic wave emitted by itself is received by itself, and as a result, predetermined electrical information obtained by the non-contact IC card function unit is given to the resonance circuit adjustment unit. The resonance circuit adjusting unit adjusts the resonance characteristics of the first resonance circuit and / or the second resonance circuit based on the given electrical information.
 以上を要するに、本発明の近距離無線通信装置は、
 第1のアンテナを含む第1の共振回路と、
 所定の起動信号によって所定の出力の交流信号を発生し前記第1の共振回路に供給するリーダライタ機能部と、
 第2のアンテナを含み、前記第1のアンテナと前記第2のアンテナとの間の電磁誘導を介して前記第1の共振回路に同調する第2の共振回路と、
 前記第2の共振回路の同調によって所定の電気的情報を発生する非接触ICカード機能部と、
 前記非接触ICカード機能部に発生する所定の電気的情報を基に、前記第1の共振回路または前記第2の共振回路の共振特性を調整する共振回路調整部と、
 を備えたものである。
In short, the short-range wireless communication device of the present invention is
A first resonant circuit including a first antenna;
A reader / writer function unit that generates an AC signal having a predetermined output in response to a predetermined activation signal and supplies the AC signal to the first resonance circuit;
A second resonant circuit including a second antenna and tuned to the first resonant circuit via electromagnetic induction between the first antenna and the second antenna;
A non-contact IC card function unit that generates predetermined electrical information by tuning the second resonant circuit;
A resonance circuit adjustment unit that adjusts resonance characteristics of the first resonance circuit or the second resonance circuit based on predetermined electrical information generated in the non-contact IC card function unit;
It is equipped with.
 本発明の上記構成によれば、リーダライタ機能部と非接触ICカード機能部とを備えた近距離無線通信装置において、自らが発した電磁波を自らが受信し、得られた所定の電気的情報を共振回路調整部に与えて共振特性を調整するので、当該の近距離無線通信装置とは別の機器(リーダライタ装置や非接触ICカードの基準カードなど)を用意すること及び調整・校正などの準備作業を要することなく、共振回路の共振特性を自動的に調整することが可能となる。 According to the above configuration of the present invention, in the short-range wireless communication device including the reader / writer function unit and the non-contact IC card function unit, the predetermined electrical information obtained by receiving the electromagnetic wave generated by the device itself. Is provided to the resonance circuit adjustment unit to adjust the resonance characteristics, so that equipment other than the short-range wireless communication device (reader / writer device, non-contact IC card reference card, etc.) is prepared, and adjustment / calibration, etc. Thus, it is possible to automatically adjust the resonance characteristics of the resonance circuit without requiring any preparation work.
 上記の本発明の近距離無線通信装置に関連して、本発明の近距離無線通信用の半導体集積回路は、前記近距離無線通信装置が半導体上に集積して構成されているものである。 In connection with the short-range wireless communication apparatus of the present invention described above, the short-range wireless communication semiconductor integrated circuit of the present invention is configured by integrating the short-range wireless communication apparatus on a semiconductor.
 本発明によれば、リーダライタ機能部と非接触ICカード機能部とを備えた近距離無線通信装置において、外部に別の機器(リーダライタ装置や非接触ICカードの基準カードなど)を用意すること及び調整・校正などの準備作業を要することなく、共振回路の共振特性を自動的に調整することができ、近距離無線通信装置にかかる費用の抑制を図ることができる。 According to the present invention, in the short-range wireless communication device including the reader / writer function unit and the non-contact IC card function unit, another device (a reader / writer device, a reference card for the non-contact IC card, etc.) is prepared outside. In addition, the resonance characteristics of the resonance circuit can be automatically adjusted without requiring preparation work such as adjustment and calibration, and the cost of the short-range wireless communication apparatus can be reduced.
図1は本発明の第1の実施の形態における近距離無線通信装置の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of the short-range wireless communication apparatus according to the first embodiment of the present invention. 図2は第1の実施の形態における近距離無線通信装置の構成を示すブロック図(その1)である。FIG. 2 is a block diagram (No. 1) showing the configuration of the short-range wireless communication apparatus according to the first embodiment. 図3は第1の実施の形態における近距離無線通信装置の構成を示すブロック図(その2)である。FIG. 3 is a block diagram (part 2) illustrating the configuration of the short-range wireless communication device according to the first embodiment. 図4は第1の実施の形態における近距離無線通信装置の構成を示すブロック図(その3)である。FIG. 4 is a block diagram (part 3) illustrating the configuration of the short-range wireless communication device according to the first embodiment. 図5は第1の実施の形態における近距離無線通信装置の構成を示すブロック図(その4)である。FIG. 5 is a block diagram (part 4) illustrating the configuration of the short-range wireless communication device according to the first embodiment. 図6は第1の実施の形態における近距離無線通信装置の構成を示すブロック図(その5)である。FIG. 6 is a block diagram (No. 5) showing the configuration of the short-range wireless communication apparatus according to the first embodiment. 図7は本発明の近距離無線通信装置が適用できる携帯電話の構成(本発明の第19~第23の実施の形態)の一例を示す図である。FIG. 7 is a diagram showing an example of a configuration of a mobile phone (19th to 23rd embodiments of the present invention) to which the short-range wireless communication apparatus of the present invention can be applied. 図8は本発明の第19の実施の形態の近距離無線通信装置の構成を示すブロック図である。FIG. 8 is a block diagram showing a configuration of a short-range wireless communication apparatus according to the nineteenth embodiment of the present invention. 図9は本発明の第19の実施の形態の近距離無線通信装置の第1のアンテナと第2のアンテナの配置関係を示すパターン図である。FIG. 9 is a pattern diagram showing the positional relationship between the first antenna and the second antenna of the short-range wireless communication apparatus according to the nineteenth embodiment of the present invention. 図10は本発明の第19の実施の形態の共振周波数自動調整の動作を示すフローチャートである。FIG. 10 is a flowchart showing the operation of automatic resonance frequency adjustment according to the nineteenth embodiment of the present invention. 図11は本発明の第19の実施の形態のスイッチ設定変数とスイッチとの関係を示す表である。FIG. 11 is a table showing the relationship between switch setting variables and switches according to the nineteenth embodiment of the present invention. 図12は本発明におけるアンテナの設計による共振周波数調整時の受信電圧の状態の差異を示すグラフである。FIG. 12 is a graph showing the difference in the state of the received voltage when adjusting the resonance frequency according to the antenna design of the present invention. 図13は本発明における共振周波数自動調整の動作を示すフローチャートである。FIG. 13 is a flowchart showing the operation of automatic resonance frequency adjustment in the present invention. 図14は本発明の第20の実施の形態の近距離無線通信装置の構成を示すブロック図である。FIG. 14 is a block diagram showing a configuration of a short-range wireless communication apparatus according to the twentieth embodiment of the present invention. 図15は本発明の第21の実施の形態の近距離無線通信装置の構成を示すブロック図である。FIG. 15 is a block diagram showing a configuration of a short-range wireless communication apparatus according to the twenty-first embodiment of the present invention. 図16は本発明の第21の実施の形態の共振周波数自動調整の動作を示すフローチャートである。FIG. 16 is a flowchart showing the operation of automatic resonance frequency adjustment according to the twenty-first embodiment of the present invention. 図17は本発明の第21の実施の形態のデータ正誤結果と判定結果の例を示す表である。FIG. 17 is a table showing examples of data correct / incorrect results and determination results according to the twenty-first embodiment of the present invention. 図18は本発明の第22の実施の形態の近距離無線通信装置の構成を示すブロック図である。FIG. 18 is a block diagram showing a configuration of a short-range wireless communication apparatus according to the twenty-second embodiment of the present invention. 図19は従来技術における非接触ICカードの構成を示すブロック図である。FIG. 19 is a block diagram showing the configuration of a non-contact IC card in the prior art.
 上記の〔課題を解決するための手段〕の項で述べた近距離無線通信装置について、その実施の形態を説明する。 Embodiments of the short-range wireless communication apparatus described in the above section [Means for Solving the Problems] will be described.
 (第1の実施の形態)
 まず、本発明に関わる近距離無線通信装置の基本となる第1の実施の形態を図面を用いて説明する。図1は本発明の第1の実施の形態における近距離無線通信装置の構成を示すブロック図である。図1において、符号のE1はリーダライタとしての機能を主機能とするリーダライタ機能部、E2は非接触ICカードとしての機能を主機能とする非接触ICカード機能部、R1はリーダライタ機能部E1に付随する第1の共振回路、R2は非接触ICカード機能部E2に付随する第2の共振回路である。第1の共振回路R1は、第1のアンテナA1を含んでいる。第2の共振回路R2は、第2のアンテナA2を含んでいる。リーダライタ機能部E1は、所定の起動信号Sonを入力すると所定の出力の交流信号Sacを発生し、発生した交流信号Sacを第1の共振回路R1に供給するように構成されている。なお、第1のアンテナA1については、第1の共振回路R1に対して接続分離自在に構成されたものであってもよい。また、第2のアンテナA2については、第2の共振回路R2に対して接続分離自在に構成されたものであってもよい。第1の共振回路R1と第2の共振回路R2とは、第1のアンテナA1と第2のアンテナA2との間の電磁誘導を介して同調するように構成されている。
(First embodiment)
First, a first embodiment as a basis of a short-range wireless communication apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the short-range wireless communication apparatus according to the first embodiment of the present invention. In FIG. 1, E1 is a reader / writer function unit whose main function is a function as a reader / writer, E2 is a non-contact IC card function unit whose function is a non-contact IC card, and R1 is a reader / writer function unit. A first resonance circuit associated with E1, and R2 is a second resonance circuit associated with the non-contact IC card function unit E2. The first resonance circuit R1 includes a first antenna A1. The second resonance circuit R2 includes a second antenna A2. The reader / writer function unit E1 is configured to generate an AC signal Sac having a predetermined output when a predetermined activation signal Son is input, and to supply the generated AC signal Sac to the first resonance circuit R1. Note that the first antenna A1 may be configured so as to be freely connected to and separated from the first resonance circuit R1. Further, the second antenna A2 may be configured so as to be freely connected to and separated from the second resonance circuit R2. The first resonance circuit R1 and the second resonance circuit R2 are configured to be tuned via electromagnetic induction between the first antenna A1 and the second antenna A2.
 非接触ICカード機能部E2は、第2の共振回路R2の同調を通じて所定の電気的情報Si を発生するものとして構成されている。所定の電気的情報Si としては、第2の共振回路R2の内部または外部に生起される受信レベルなどのアナログの所定の電気量であったり、あるいは受信データなどのデジタルの所定のデータであったりする。受信データとする場合は、リーダライタ機能部E1において送信データで変調した搬送波交流信号を第1の共振回路R1に供給するものとする。その送信データで変調された搬送波交流信号を第2の共振回路R2で受信したものを電気的情報Si として利用する。 The non-contact IC card function unit E2 is configured to generate predetermined electrical information Si through tuning of the second resonance circuit R2. The predetermined electrical information Si is an analog predetermined electric quantity such as a reception level generated inside or outside the second resonance circuit R2, or digital predetermined data such as reception data. To do. In the case of receiving data, a carrier AC signal modulated with transmission data in the reader / writer function unit E1 is supplied to the first resonance circuit R1. A carrier AC signal modulated by the transmission data received by the second resonance circuit R2 is used as the electrical information Si.
 E3は共振回路調整部である。この共振回路調整部E3は、非接触ICカード機能部E2に生成される電気的情報Si (アナログ電気量またはデジタルデータ)を基に、第1の共振回路R1または第2の共振回路R2の共振特性を調整するものとして構成されている。電気的情報Si が受信データの場合は、受信データの正誤判定(元の送信データとの不一致を判定)を伴う判定結果に応じて共振特性を調整するように構成する。なお、図1において破線で囲んだブロック50は後述する半導体集積回路の領域を代表的に表すものである(図2~図6においても同様である)。 E3 is a resonance circuit adjustment unit. The resonance circuit adjustment unit E3 resonates with the first resonance circuit R1 or the second resonance circuit R2 based on the electrical information Si (analog electric quantity or digital data) generated in the non-contact IC card function unit E2. It is configured to adjust the characteristics. When the electrical information Si is received data, the resonance characteristics are adjusted in accordance with a determination result accompanied by a determination of whether the received data is correct (determining a mismatch with the original transmission data). Note that a block 50 surrounded by a broken line in FIG. 1 represents a region of a semiconductor integrated circuit described later (the same applies to FIGS. 2 to 6).
 次に、本実施の形態の近距離無線通信装置の動作を説明する。近距離無線通信装置におけるリーダライタ機能部E1と非接触ICカード機能部E2とが同時的に動作状態に設定される。リーダライタ機能部E1に起動信号Sonが入力されると、リーダライタ機能部E1は所定の出力の交流信号Sacを発生し、第1の共振回路R1に供給する。第1の共振回路R1は、入力した交流信号Sacによって動作し、第1のアンテナA1から交流磁界を発生する。第2のアンテナA2は、この交流磁界と電磁結合し、第2の共振回路R2が同調する。このように、リーダライタ機能部E1側の第1の共振回路R1において発する電磁波を、同じ近距離無線通信装置の非接触ICカード機能部E2側の第2の共振回路R2で受け取ることが技術ポイントとなっている。第2の共振回路R2の同調によって、非接触ICカード機能部E2は電気的情報Si を発生し、その電気的情報Si が共振回路調整部E3に与えられる。共振回路調整部E3は、受け取った電気的情報Si に基づいて、第1のアンテナA1と第2のアンテナA2との間の電磁誘導を介した第1の共振回路R1と第2の共振回路R2との間の共振動作が最適化されるように、第1の共振回路R1または第2の共振回路R2の共振特性を調整する。 Next, the operation of the short-range wireless communication apparatus of this embodiment will be described. The reader / writer function unit E1 and the non-contact IC card function unit E2 in the short-range wireless communication device are simultaneously set to the operating state. When the activation signal Son is input to the reader / writer function unit E1, the reader / writer function unit E1 generates an AC signal Sac having a predetermined output and supplies it to the first resonance circuit R1. The first resonance circuit R1 operates in accordance with the input AC signal Sac, and generates an AC magnetic field from the first antenna A1. The second antenna A2 is electromagnetically coupled with the alternating magnetic field, and the second resonance circuit R2 is tuned. As described above, the technical point is that the second resonance circuit R2 on the non-contact IC card function unit E2 side of the same short-range wireless communication device receives the electromagnetic wave generated in the first resonance circuit R1 on the reader / writer function unit E1 side. It has become. By the tuning of the second resonance circuit R2, the non-contact IC card function unit E2 generates electrical information Si, and the electrical information Si is given to the resonance circuit adjustment unit E3. Based on the received electrical information Si, the resonance circuit adjustment unit E3 performs the first resonance circuit R1 and the second resonance circuit R2 via electromagnetic induction between the first antenna A1 and the second antenna A2. The resonance characteristics of the first resonance circuit R1 or the second resonance circuit R2 are adjusted so that the resonance operation between the first resonance circuit R1 and the second resonance circuit R2 is optimized.
 この近距離無線通信装置の技術的特徴は、共振特性を最適化する処理において、自らが発信した交流磁界を自らが受け取ることにある。そのために、第1のアンテナA1を含む第1の共振回路R1と第2のアンテナA2を含む第2の共振回路R2とを設けてある。第1のアンテナA1を含む第1の共振回路R1は交流磁界を発信する側で、これはリーダライタ機能部E1とつながっている。リーダライタ機能部E1は、共振特性の最適化の処理に際して、第1のアンテナA1から第2のアンテナA2に向けて交流磁界を発信するために機能する。第2のアンテナA2を含む第2の共振回路R2は交流磁界を受け取る側で、これは非接触ICカード機能部E2とつながっている。非接触ICカード機能部E2は、共振特性の最適化の処理に際して、第2の共振回路R2から電気的情報Si を得るために機能する。さらに非接触ICカード機能部E2は共振回路調整部E3とつながっており、共振回路調整部E3は第1の共振回路R1または第2の共振回路R2またはその両者を制御して共振特性を最適化する。つまり、当該の近距離無線通信装置は、自ら発信した自らの内部状態の情報を自ら受信して、それを共振特性の最適化に利用している。この場合に活用する情報の伝送路は、装置の内部ではなく、第1のアンテナA1から第2のアンテナA2に至る外部空間(電磁場)としている。その外部空間というのは、とりもなおさず、当該の近距離無線通信装置が別の近距離無線通信装置または非接触ICカードまたはリーダライタ装置と無線通信する空間であり、その使用現場の空間の状況に合わせた共振特性調整となっている。 The technical feature of this short-range wireless communication device is that it receives the AC magnetic field transmitted by itself in the process of optimizing the resonance characteristics. For this purpose, a first resonance circuit R1 including a first antenna A1 and a second resonance circuit R2 including a second antenna A2 are provided. The first resonance circuit R1 including the first antenna A1 is a side that transmits an alternating magnetic field, and is connected to the reader / writer function unit E1. The reader / writer function unit E1 functions to transmit an alternating magnetic field from the first antenna A1 to the second antenna A2 in the process of optimizing the resonance characteristics. The second resonance circuit R2 including the second antenna A2 receives the AC magnetic field, and is connected to the non-contact IC card function unit E2. The non-contact IC card function unit E2 functions to obtain electrical information Si from the second resonance circuit R2 in the process of optimizing the resonance characteristics. Further, the non-contact IC card function unit E2 is connected to the resonance circuit adjustment unit E3, and the resonance circuit adjustment unit E3 controls the first resonance circuit R1 and / or the second resonance circuit R2 to optimize the resonance characteristics. To do. That is, the short-range wireless communication device receives information on its own internal state transmitted by itself and uses it for optimization of resonance characteristics. The information transmission path utilized in this case is not the inside of the apparatus, but an external space (electromagnetic field) from the first antenna A1 to the second antenna A2. The external space is, of course, a space in which the short-range wireless communication device communicates wirelessly with another short-range wireless communication device, a contactless IC card, or a reader / writer device. The resonance characteristics are adjusted according to the situation.
 従来の技術であれば、共振回路もアンテナも1つであり、当該の装置を非接触ICカードとして捉えた場合、外部にあるリーダライタ装置から発信されてくる交流磁界をアンテナで捉え、そのときの電気的情報に基づいて共振回路の共振特性を調整するものである。また、当該の装置をリーダライタ装置として捉えた場合、そのリーダライタ装置の共振回路を発振し、そのアンテナから発信した交流磁界を外部にある非接触ICカードで受信させ、負荷変調で応答してくる情報をリーダライタ装置で受け取り、受け取った電気的情報に基づいて共振回路の共振特性を調整するものである。前者の場合は外部にリーダライタ装置を必要とし、後者の場合は外部に非接触ICカードを必要とする。しかも、用意したリーダライタ装置では出力パワーを適切に設定する作業が求められていた。基準カードでは、受信性能等が適切に設定する作業が求められていた。結局、多くの費用と手間がかかるという課題があった。そのような従来技術に認められる課題が本実施の形態においては解消されている。 In the case of conventional technology, there is only one resonance circuit and one antenna. When the device is regarded as a non-contact IC card, an alternating magnetic field transmitted from an external reader / writer device is captured by the antenna. The resonance characteristics of the resonance circuit are adjusted based on the electrical information. When the device is regarded as a reader / writer device, the resonance circuit of the reader / writer device is oscillated, the AC magnetic field transmitted from the antenna is received by an external non-contact IC card, and responds with load modulation. The incoming information is received by the reader / writer device, and the resonance characteristics of the resonance circuit are adjusted based on the received electrical information. In the former case, a reader / writer device is required outside, and in the latter case, a non-contact IC card is required outside. Moreover, the prepared reader / writer device is required to appropriately set the output power. In the reference card, work for appropriately setting reception performance and the like has been demanded. After all, there was a problem that it took a lot of costs and labor. Such a problem recognized in the prior art is solved in the present embodiment.
 この実施の形態の構成によれば、非接触ICカード機能部E2を中心に考えた場合に、外部にリーダライタ装置は不要である。近距離無線通信装置自身がリーダライタ機能部E1と第1の共振回路R1とを有しているからである。また、リーダライタ機能部E1を中心に考えた場合に、外部に非接触ICカードの基準カードは不要である。近距離無線通信装置自身が非接触ICカード機能部E2と第2の共振回路R2とを有しているからである。 According to the configuration of this embodiment, when the non-contact IC card function unit E2 is considered as a center, no external reader / writer device is required. This is because the short-range wireless communication device itself has the reader / writer function unit E1 and the first resonance circuit R1. Further, when the reader / writer function unit E1 is considered as the center, a non-contact IC card reference card is not required outside. This is because the short-range wireless communication device itself has the non-contact IC card function unit E2 and the second resonance circuit R2.
 自らが発した電磁波を自らが受信し、その結果、非接触ICカード機能部E2に得られた所定の電気的情報Si (アナログ電気量またはデジタルデータ)が共振回路調整部E3に与えられ、共振回路調整部E3が電気的情報Si に基づいて第1の共振回路R1または第2の共振回路R2の共振特性を調整する。共振特性の調整というのは、共振周波数の調整、またはクオリティファクタ(Q値:共振の鋭さ)の調整、あるいはその両方の調整を意味する。共振周波数の調整は、共振容量の変更を通じて行ってもよいし、インダクタンスの変更を通じて行ってもよい。クオリティファクタ(Q値)の調整は抵抗値の変更によって行われる。 Receiving the electromagnetic wave emitted by itself, as a result, predetermined electrical information SiS (analog electric quantity or digital data) obtained by the non-contact IC card function unit E2 is given to the resonance circuit adjustment unit E3, and the resonance The circuit adjustment unit E3 adjusts the resonance characteristics of the first resonance circuit R1 or the second resonance circuit R2 based on the electrical information Si. Adjustment of resonance characteristics means adjustment of resonance frequency, adjustment of quality factor (Q value: sharpness of resonance), or both. The adjustment of the resonance frequency may be performed through a change in resonance capacitance or through a change in inductance. The quality factor (Q value) is adjusted by changing the resistance value.
 この共振特性の調整のための要素を回路ファクタとして、説明する。調整前において、第1の共振回路R1の回路ファクタをα11とし、第2の共振回路R2の回路ファクタをα21とする。α11,α21は、共振周波数またはクオリティファクタ(Q値)あるいはその両方である。共振回路調整部E3が所定の電気的情報Si に基づいて第1の共振回路R1を調整する態様では、その回路ファクタをα11→α12のように調整する。また、共振回路調整部E3が所定の電気的情報Si に基づいて第2の共振回路R2を調整する態様では、その回路ファクタをα21→α22のように調整する。 The following explains the factors for adjusting the resonance characteristics as circuit factors. Before adjustment, the circuit factor of the first resonance circuit R1 is α11, and the circuit factor of the second resonance circuit R2 is α21. α11 and α21 are resonance frequency and / or quality factor (Q value). In the aspect in which the resonance circuit adjusting unit E3 adjusts the first resonance circuit R1 based on the predetermined electrical information Si, the circuit factor is adjusted as α11 → α12. In the aspect in which the resonance circuit adjustment unit E3 adjusts the second resonance circuit R2 based on the predetermined electrical information Si 情報, the circuit factor is adjusted as α21 → α22.
 以上のように本実施の形態の近距離無線通信装置は、
 第1のアンテナA1を含む第1の共振回路R1と、
 所定の起動信号Sonによって所定の出力の交流信号Sacを発生し第1の共振回路R1に供給するリーダライタ機能部E1と、
 第2のアンテナA2を含み、第1のアンテナA1と第2のアンテナA2との間の電磁誘導を介して第1の共振回路R1に同調する第2の共振回路R2と、
 第2の共振回路R2の同調によって所定の電気的情報Si を発生する非接触ICカード機能部E2と、
 非接触ICカード機能部E2に発生する所定の電気的情報Si を基に、第1の共振回路R1または第2の共振回路R2の共振特性を調整する共振回路調整部E3と、
を備えたものである。
As described above, the short-range wireless communication device of the present embodiment is
A first resonant circuit R1 including a first antenna A1,
A reader / writer function unit E1 that generates an AC signal Sac having a predetermined output in response to a predetermined activation signal Son and supplies the AC signal Sac to the first resonance circuit R1;
A second resonant circuit R2 including a second antenna A2 and tuned to the first resonant circuit R1 via electromagnetic induction between the first antenna A1 and the second antenna A2,
A non-contact IC card function unit E2 that generates predetermined electrical information Si by tuning of the second resonance circuit R2,
A resonance circuit adjusting unit E3 for adjusting the resonance characteristics of the first resonance circuit R1 or the second resonance circuit R2 based on predetermined electrical information Si generated in the non-contact IC card function unit E2,
It is equipped with.
 本実施の形態によれば、リーダライタ機能部E1と非接触ICカード機能部E2とを備えた近距離無線通信装置において、自らが発した電磁波を自らが受信し、得られた所定の電気的情報Si を共振回路調整部E3に与えて共振特性を調整するので、外部に別の機器(リーダライタ装置や非接触ICカードの基準カードなど)を用意すること及び調整・校正などの準備作業を要することなく、共振回路の共振特性を自動的に調整することができ、近距離無線通信装置にかかる費用の抑制を図ることができる。 According to the present embodiment, in the short-range wireless communication device provided with the reader / writer function unit E1 and the non-contact IC card function unit E2, it receives the electromagnetic waves generated by itself and obtains the predetermined electrical Since the information Si is given to the resonance circuit adjustment unit E3 to adjust the resonance characteristics, other equipment (reader / writer device, non-contact IC card reference card, etc.) is prepared outside, and preparation work such as adjustment / calibration is performed. The resonance characteristics of the resonance circuit can be automatically adjusted without the need for cost reduction of the short-range wireless communication device.
 近距離無線通信装置についての共振特性自動調整は、製造段階で行われるほか、ユーザによる実使用時に行ってもよい。そのときは、装置使用開始に伴う電源オン時のスタートアップ信号で起動するように構成するのが好ましい。 The resonance characteristic automatic adjustment for the short-range wireless communication device may be performed at the manufacturing stage or at the time of actual use by the user. In that case, it is preferable to be configured to start with a startup signal at the time of power-on accompanying the start of use of the apparatus.
 上記は、近距離無線通信装置についての共振特性自動調整の動作説明であった。次に、近距離無線通信装置の実使用での通常動作の説明を行う。まず、当該の近距離無線通信装置がリーダモードで動作し、外部の非接触ICカードとの間で無線通信を行うときの動作について説明する。このとき、当該の近距離無線通信装置からは、デジタルデータによって変調された電磁波が発信され、外部の非接触ICカードはその電磁波を受信する。リーダモードの場合、当該の近距離無線通信装置においては、リーダライタ機能部E1が動作するが、非接触ICカード機能部E2は動作しない。リーダモードによるデータ送信時には、当該の近距離無線通信装置において、送信データがリーダライタ機能部E1の変調回路e11(図2参照)に送出され、変調回路e11で変調された交流信号Sacが第1の共振回路R1の第1のアンテナA1に供給され、送信データを伴う電磁波が放出される。通信相手側の外部の非接触ICカードでは、ループアンテナに受信した電磁波によって電流が流れる。その整流器で直流電圧を得て、各部に電力を供給する。また重畳している受信データを復調回路で復調する。外部の非接触ICカードが応答するときは、負荷変調でループアンテナのインピーダンスが切り換えられ、電磁結合により、当該の近距離無線通信装置の第1のアンテナA1で受信し、第1の共振回路R1から入力した応答データを復調回路e12で復調する。 The above is an explanation of the operation of automatic adjustment of resonance characteristics for a short-range wireless communication device. Next, normal operation in actual use of the short-range wireless communication device will be described. First, an operation when the short-range wireless communication apparatus operates in the reader mode and performs wireless communication with an external non-contact IC card will be described. At this time, an electromagnetic wave modulated by digital data is transmitted from the short-range wireless communication apparatus, and the external non-contact IC card receives the electromagnetic wave. In the reader mode, the reader / writer function unit E1 operates in the short-range wireless communication device, but the non-contact IC card function unit E2 does not operate. At the time of data transmission in the reader mode, in the short-range wireless communication device, the transmission data is transmitted to the modulation circuit e11 (see FIG. 2) of the reader / writer function unit E1, and the AC signal Sac modulated by the modulation circuit e11 is the first. Is supplied to the first antenna A1 of the resonance circuit R1, and an electromagnetic wave accompanied by transmission data is emitted. In an external non-contact IC card on the communication partner side, current flows due to electromagnetic waves received by the loop antenna. The rectifier obtains a DC voltage and supplies power to each part. Further, the reception data superimposed is demodulated by a demodulation circuit. When an external non-contact IC card responds, the impedance of the loop antenna is switched by load modulation, and is received by the first antenna A1 of the short-range wireless communication device by electromagnetic coupling, and the first resonance circuit R1 Is demodulated by the demodulation circuit e12.
 次に、当該の近距離無線通信装置がカードエミュレーションモードで動作し、外部のリーダライタ装置との間で無線通信を行うときの動作について説明する。このとき、当該の近距離無線通信装置では、非接触ICカード機能部E2が動作するが、リーダライタ機能部E1は動作しない。カードエミュレーションモードでのデータ受信時には、外部のリーダライタ装置からの電磁波が第2のアンテナA2で受信され、第2の共振回路R2を介して、非接触ICカード機能部E2の整流器e21に受信電圧が発生する。この受信電圧で各部の電力を賄う。また、受信信号に含まれるデータを復調回路e22で復調する。応答するに際しては、送信データで負荷変調部e23を駆動し、第2の共振回路R2の第2のアンテナA2を介して外部のリーダライタ装置に送信データを送信する。 Next, the operation when the short-range wireless communication apparatus operates in the card emulation mode and performs wireless communication with an external reader / writer apparatus will be described. At this time, in the short-range wireless communication device, the non-contact IC card function unit E2 operates, but the reader / writer function unit E1 does not operate. When receiving data in the card emulation mode, the electromagnetic wave from the external reader / writer device is received by the second antenna A2, and the received voltage is applied to the rectifier e21 of the non-contact IC card function unit E2 via the second resonance circuit R2. Occurs. The received voltage covers the power of each part. Further, the demodulating circuit e22 demodulates data included in the received signal. When responding, the load modulation unit e23 is driven with the transmission data, and the transmission data is transmitted to the external reader / writer device via the second antenna A2 of the second resonance circuit R2.
 次に、近距離無線通信装置間の通信モードである、ピアツーピアモードについて説明する。ピアツーピアモードにおいては、最初にデータ(コマンド)を送出する近距離無線通信装置をイニシエータ、そのデータの送信先の近距離無線通信装置をターゲットと呼ぶ。また、ピアツーピアモードにおいては、さらにパッシブ通信モードとアクティブ通信モードの2種類がある。 Next, a peer-to-peer mode, which is a communication mode between short-range wireless communication devices, will be described. In the peer-to-peer mode, a short-range wireless communication device that first transmits data (command) is called an initiator, and a short-range wireless communication device that is a destination of the data is called a target. In the peer-to-peer mode, there are two types of modes, a passive communication mode and an active communication mode.
 パッシブ通信モードでは、イニシエータからターゲットにデータを送信するときは、イニシエータは前述のリーダモードと同じ動作、ターゲットは前述のカードエミュレーションモードと同じ動作をする。また、ターゲットからイニシエータに応答するときは、ターゲットはカードエミュレーションモードと同じ動作、イニシエータはリーダモードと同じ動作をする。つまり、ターゲットは負荷変調によって、イニシエータに応答する。 In the passive communication mode, when transmitting data from the initiator to the target, the initiator operates in the same manner as the reader mode described above, and the target operates in the same manner as the card emulation mode described above. When responding from the target to the initiator, the target operates in the same manner as in the card emulation mode, and the initiator operates in the same manner as in the reader mode. That is, the target responds to the initiator by load modulation.
 次にアクティブ通信モードでは、イニシエータからターゲットにデータを送信するときは、パッシブ通信モードと同じで、イニシエータはリーダモードと同じ動作、ターゲットはカードエミュレーションモードと同じ動作をする。異なるのは、ターゲットからイニシエータに応答するときで、このとき、ターゲットはリーダモードと同じ動作、イニシエータはカードエミュレーションモードと同じ動作をする。つまり、ターゲットは負荷変調を使用せず、リーダモードによる応答データで変調した電磁波送出によって、イニシエータに応答する。 Next, in the active communication mode, when data is transmitted from the initiator to the target, it is the same as the passive communication mode, the initiator operates the same as the reader mode, and the target operates the same as the card emulation mode. The difference is when a response is made from the target to the initiator. At this time, the target performs the same operation as the reader mode, and the initiator performs the same operation as the card emulation mode. That is, the target does not use load modulation, and responds to the initiator by sending out electromagnetic waves modulated with response data in the reader mode.
 ピアツーピアモードにおいては、アクティブ通信モードまたはパッシブ通信モード、イニシエータまたはターゲット、イニシエータデータ送信時またはターゲットデータ応答時、いずれの状態においても、近距離無線通信装置でのリーダライタ機能部E1、または非接触ICカード機能部E2のどちらかのみが動作し、両方の機能部が同時に動作する状態は存在しない。 In the peer-to-peer mode, in either the active communication mode or the passive communication mode, the initiator or target, the initiator data transmission or the target data response, the reader / writer function unit E1 or the non-contact IC in the short-range wireless communication device Only one of the card function units E2 operates, and there is no state in which both function units operate simultaneously.
 以上で、第1の実施の形態の説明を終わる。上記した第1の実施の形態の構成の近距離無線通信装置は本発明の基本構成であって、次のような実施の形態においてさらに有利に展開することが可能である。 This completes the description of the first embodiment. The short-range wireless communication apparatus having the configuration of the first embodiment described above is the basic configuration of the present invention, and can be further advantageously developed in the following embodiment.
 (第2の実施の形態)
 本実施の形態では、第1の実施の形態の近距離無線通信装置において、さらに共振回路調整部E3は、非接触ICカード機能部E2に発生する所定の電気的情報Siを基に、第1の共振回路R1と第2の共振回路R2との両方の共振特性を調整するように構成されている。ここでのキーワードは「第1の共振回路と第2の共振回路の両方の共振特性を調整する」である。すなわち、第1の共振回路R1の回路ファクタをα11→α12のように調整するとともに、第2の共振回路R2の回路ファクタをα21→α22のように調整する。この場合、共振回路調整部E3は、第1の共振回路R1と第2の共振回路R2の両方の共振特性を調整することにより、第1の共振回路R1と第2の共振回路R2との間の共振動作を最適化する。その結果として、リーダライタ機能部E1における送信能力の過不足を解消して最適化すると同時に、非接触ICカード機能部E2における受信能力の過不足を解消して最適化することができる。
(Second Embodiment)
In the present embodiment, in the short-range wireless communication device of the first embodiment, the resonance circuit adjustment unit E3 is further configured based on predetermined electrical information Si generated in the non-contact IC card function unit E2. The resonance characteristics of both the resonance circuit R1 and the second resonance circuit R2 are adjusted. The keyword here is “adjusting the resonance characteristics of both the first resonance circuit and the second resonance circuit”. That is, the circuit factor of the first resonance circuit R1 is adjusted as α11 → α12, and the circuit factor of the second resonance circuit R2 is adjusted as α21 → α22. In this case, the resonance circuit adjustment unit E3 adjusts the resonance characteristics of both the first resonance circuit R1 and the second resonance circuit R2, so that the first resonance circuit R1 and the second resonance circuit R2 are connected. Optimize the resonant operation of As a result, it is possible to optimize by eliminating the excess and deficiency of the transmission capability in the reader / writer function unit E1, and at the same time to eliminate and optimize the excess and deficiency of the reception capability in the non-contact IC card function unit E2.
 (第3の実施の形態)
 本実施の形態では、第1、第2の実施の形態の近距離無線通信装置において、さらにリーダライタ機能部E1は、所定の出力の交流信号Sacとして無変調の一定の強度の交流信号Sacを発生するように構成され、非接触ICカード機能部E2は、図2に示すように、第2の共振回路R2に接続の整流器e21に接続されたAD変換器e24を備え、所定の電気的情報Si として、整流器e21の出力側に現れる電圧をAD変換器e24でデジタル変換したものが用いられる。ここでは、「AD変換器」がキーワードとなる。
(Third embodiment)
In the present embodiment, in the short-range wireless communication devices of the first and second embodiments, the reader / writer function unit E1 further generates an unmodulated constant-current AC signal Sac as an AC signal Sac having a predetermined output. As shown in FIG. 2, the non-contact IC card function unit E2 includes an AD converter e24 connected to a rectifier e21 connected to the second resonance circuit R2, and has predetermined electrical information. As Si, a voltage obtained by digitally converting the voltage appearing on the output side of the rectifier e21 by the AD converter e24 is used. Here, “AD converter” is a keyword.
 第2の共振回路R2の同調によって得られた搬送波電圧信号が整流器e21によって整流され、整流電圧が出力される。これが受信電圧である。この受信電圧をAD変換器e24でデジタル変換し、そのデジタルデータを電気的情報Si として共振回路調整部E3に与える。共振回路調整部E3は、受信電圧が最大値相当となるように第2の共振回路R2または第1の共振回路R1の共振特性を調整する。 The carrier voltage signal obtained by tuning the second resonance circuit R2 is rectified by the rectifier e21 and a rectified voltage is output. This is the received voltage. The received voltage is digitally converted by the AD converter e24, and the digital data is supplied to the resonance circuit adjusting unit E3 as electrical information SiS. The resonance circuit adjustment unit E3 adjusts the resonance characteristics of the second resonance circuit R2 or the first resonance circuit R1 so that the reception voltage corresponds to the maximum value.
 なお、図2において、e11はリーダライタ機能部E1が一般的に備えている変調回路、e12は同じく復調回路、e22は非接触ICカード機能部E2が一般的に備えている復調回路、e23は同じく負荷変調部、e25はシャント回路である。 In FIG. 2, e11 is a modulation circuit generally provided in the reader / writer function unit E1, e12 is a demodulation circuit, e22 is a demodulation circuit generally provided in the non-contact IC card function unit E2, and e23 is Similarly, a load modulation unit, e25, is a shunt circuit.
 (第4の実施の形態)
 本実施の形態では、第1、第2の実施の形態の近距離無線通信装置においてさらに、リーダライタ機能部E1は、内蔵の変調回路e11が搬送波を一定の変調度で振幅変調した信号を所定の出力の交流信号Sacとして発生するように構成され、非接触ICカード機能部E2は、第2の共振回路R2の出力側に接続された整流器e21と、整流器e21に接続されたAD変換器e24とを備え、所定の電気的情報Si として、整流器e21の出力側に現れる電圧の変動の差分をAD変換器e24でデジタル変換したものが用いられる。ここでは、「AD変換器」とともに「搬送波を一定の変調度で振幅変調」と「電圧の変動の差分」がキーワードとなる。この構成においては、無変調時の受信電圧と変調時の受信電圧との差分を測定し、その差分が最も大きくなるように共振特性を調整する。
(Fourth embodiment)
In the present embodiment, in the short-range wireless communication devices of the first and second embodiments, the reader / writer function unit E1 further applies a signal obtained by amplitude modulation of a carrier wave by a built-in modulation circuit e11 with a certain modulation factor. The non-contact IC card function unit E2 is configured to generate an AC signal Sac of the output of the rectifier e21 connected to the output side of the second resonance circuit R2, and the AD converter e24 connected to the rectifier e21. As the predetermined electrical information S i, the voltage fluctuation difference that appears on the output side of the rectifier e21 is digitally converted by the AD converter e24. Here, “AD converter” and “amplitude modulation of the carrier wave with a constant modulation degree” and “difference in voltage fluctuation” are the keywords. In this configuration, the difference between the reception voltage at the time of non-modulation and the reception voltage at the time of modulation is measured, and the resonance characteristics are adjusted so that the difference becomes the largest.
 (第5の実施の形態)
 本実施の形態では、第1、第2の実施の形態の近距離無線通信装置において、さらにリーダライタ機能部E1は、所定の出力の交流信号Sacとして無変調の一定の強度の交流信号Sacを発生するように構成され、非接触ICカード機能部E2は、第2の共振回路R2に接続の整流器e21に接続されたシャント回路e25およびAD変換器e24を備え、所定の電気的情報Si として、シャント回路e25に流れるシャント電流をAD変換器e24でデジタル変換したものが用いられる。ここでは、「AD変換器」とともに「シャント回路」がキーワードとなる。
(Fifth embodiment)
In the present embodiment, in the short-range wireless communication devices of the first and second embodiments, the reader / writer function unit E1 further generates an unmodulated constant-current AC signal Sac as an AC signal Sac having a predetermined output. The non-contact IC card function unit E2 is configured to generate a shunt circuit e25 and an AD converter e24 connected to a rectifier e21 connected to the second resonance circuit R2, and as predetermined electrical information Si, A shunt current flowing in the shunt circuit e25 is digitally converted by the AD converter e24. Here, “shunt circuit” is a keyword along with “AD converter”.
 シャント回路e25は、強磁界下で受信電圧が所定電圧以上になれば電流をグランドに流すことにより電圧過上昇を抑制する。受信レベルの判断に、上記第3実施の形態では整流器e21の出力の受信電圧を用いているが、それに代えてシャント回路e25に流れる電流を受信レベルの判断に用いる。第2の共振回路R2の同調によって得られた搬送波電圧信号が整流器e21によって整流され、その受信電圧に応じたシャント電流がシャント回路e25に流れる。このシャント電流をAD変換器e24でデジタル変換し、そのデジタルデータを電気的情報Si として共振回路調整部E3に与える。共振回路調整部E3は、シャント電流が最大値相当となるように第2の共振回路R2または第1の共振回路R1の共振特性を調整する。 The shunt circuit e25 suppresses an excessive voltage rise by causing a current to flow to the ground when the received voltage becomes a predetermined voltage or higher under a strong magnetic field. In the third embodiment, the reception voltage of the output of the rectifier e21 is used for the determination of the reception level. Instead, the current flowing through the shunt circuit e25 is used for the determination of the reception level. The carrier voltage signal obtained by tuning the second resonance circuit R2 is rectified by the rectifier e21, and a shunt current corresponding to the received voltage flows to the shunt circuit e25. The shunt current is digitally converted by the AD converter e24, and the digital data is supplied to the resonance circuit adjustment unit E3 as electrical information Si. The resonance circuit adjustment unit E3 adjusts the resonance characteristics of the second resonance circuit R2 or the first resonance circuit R1 so that the shunt current corresponds to the maximum value.
 (第6の実施の形態)
 本実施の形態では、第1、第2の実施の形態の近距離無線通信装置において、さらに図3に示すように、リーダライタ機能部E1は、内蔵の変調回路e11が搬送波を所定の送信データで変調した信号を所定の出力の交流信号Sacとして発生するように構成され、非接触ICカード機能部E2は、内蔵の復調回路e22に現れる前記送信データに対応する受信データを所定の電気的情報Si として用いられる。ここでは、「送信データ」、「復調回路に現れる前記送信データに対応する受信データ」がキーワードとなる。
(Sixth embodiment)
In the present embodiment, in the short-range wireless communication devices of the first and second embodiments, as shown in FIG. 3, the reader / writer function unit E1 uses a built-in modulation circuit e11 to transmit a carrier wave to predetermined transmission data. The non-contact IC card function unit E2 generates received data corresponding to the transmission data appearing in the built-in demodulation circuit e22 as predetermined electrical information. Used as Si. Here, “transmission data” and “reception data corresponding to the transmission data appearing in the demodulation circuit” are keywords.
 非接触ICカード機能部E2に本来的に含まれている復調回路e22で復調した結果の受信データを利用して判定を行うので、上記の第3~第5の実施の形態の整流器e21の出力電圧の測定で判定する場合に必要としたAD変換器e24が不要となり、より小規模な回路構成で共振特性調整を実現することができ、費用をさらに抑制できる。 Since the determination is performed using the received data demodulated by the demodulation circuit e22 inherently included in the non-contact IC card function unit E2, the output of the rectifier e21 of the third to fifth embodiments described above is used. The AD converter e24 required for determination by voltage measurement is not required, resonance characteristic adjustment can be realized with a smaller circuit configuration, and costs can be further suppressed.
 (第7の実施の形態)
 本実施の形態では、第6の実施の形態の近距離無線通信装置において、さらに共振回路調整部E3は、非接触ICカード機能部E2における前記受信データについて前記送信データとの一致・不一致の判定を通じて前記共振特性の調整の処理を実行するように構成されている。
(Seventh embodiment)
In the present embodiment, in the short-range wireless communication device of the sixth embodiment, the resonance circuit adjustment unit E3 further determines whether the received data in the non-contact IC card function unit E2 matches or does not match the transmission data. The resonance characteristic adjustment process is executed through the control unit.
 共振回路調整部E3は復調結果の受信データが元の送信データと一致しているか否かの判定を通じて共振特性の調整の処理を行い、共振特性を最適化する。共振特性が最適か否かの判定において、受信データと送信データとの一致・不一致の判定を基準としているので、パリティやCRC(Cyclic Redundancy Check)などのチェックコードによって判別を行う場合や、リクエストコマンドの送信に対するレスポンスの受信の有無によって判別を行う場合に比べて、判定をより正確に行うことができる。 The resonance circuit adjustment unit E3 optimizes the resonance characteristics by performing a process for adjusting the resonance characteristics through a determination as to whether or not the received data of the demodulation result matches the original transmission data. In determining whether the resonance characteristics are optimal, it is based on whether the received data and the transmitted data match or not, so if you want to make a determination based on a check code such as parity or CRC (Cyclic Redundancy Check) or request command The determination can be performed more accurately than in the case where the determination is made based on whether or not a response to the transmission is received.
 (第8の実施の形態)
 本実施の形態では、第1~第7の実施の形態の近距離無線通信装置において、さらに図4に示すように、リーダライタ機能部E1は、さらに所定の出力の交流信号Sacの強度を調整する出力調整器e13と、所定の電気的情報Si を基に出力調整器e13の設定を決定する判定器e14とを備えている。ここでは、「出力調整器」、「判定器」がキーワードとなる。
(Eighth embodiment)
In the present embodiment, in the short-range wireless communication devices of the first to seventh embodiments, as shown in FIG. 4, the reader / writer function unit E1 further adjusts the intensity of the AC signal Sac having a predetermined output. And an output adjuster e13 that determines the setting of the output adjuster e13 based on predetermined electrical information Si. Here, “output adjuster” and “determination unit” are keywords.
 共振特性の最適化の処理では、ファクタを複数段階に切り替え、受信レベルが複数段階のうちどの段階のときに最大化されるかを判断する。ファクタの順次的な切り替えにより受信レベルは上昇し、さらに下降に転じる。受信レベルの頂点の付近が最適ポイントになる。頂点を判別するには、受信レベルの変化がある程度大きくなっていることが条件となる。しかし、リーダライタ機能部E1から発せられる交流信号Sacの振幅が大きすぎるときは、受信レベルが飽和してその変化が制限されてしまう。また、リーダライタ機能部E1から発せられる交流信号Sacの振幅が小さすぎるときは、受信レベルの変化量が小さすぎその変化が制限されてしまう。これでは、共振特性の正確な調整はむずかしい。 In the process of optimizing the resonance characteristics, the factor is switched to a plurality of stages, and it is determined at which stage the reception level is maximized among the plurality of stages. The reception level rises due to the sequential switching of factors, and then begins to fall. The optimal point is near the peak of the reception level. In order to discriminate the vertex, it is a condition that the change in the reception level is large to some extent. However, when the amplitude of the AC signal Sac emitted from the reader / writer function unit E1 is too large, the reception level is saturated and the change is limited. When the amplitude of the AC signal Sac generated from the reader / writer function unit E1 is too small, the amount of change in the reception level is too small and the change is limited. This makes it difficult to accurately adjust the resonance characteristics.
 そこで、所定の出力の交流信号Sacの強度を調整する出力調整器e13と、所定の電気的情報Si を基に出力調整器e13の設定を決定する判定器e14とを設ける。判定器e14は電気的情報Si に基づいて受信の状態を判断し、その判断結果に従って出力調整器e13の設定を決定する。出力調整器e13は、その設定に従って交流信号Sacの強度を調整する。受信状態が強すぎるときは交流信号Sacの強度を下げる。逆に、受信状態が弱すぎるときは交流信号Sacの強度を上げる。このようなフィードバック制御により、例えば、第1のアンテナA1や第2のアンテナA2の仕様が様々に変わり、その結果として受信状態が変動しても、そのことには関わりなく常に安定して共振特性の調整を正確に行うことができる。 Therefore, an output adjuster e13 that adjusts the intensity of the AC signal Sac having a predetermined output and a determiner e14 that determines the setting of the output adjuster e13 based on the predetermined electrical information Si are provided. The determiner e14 determines the reception state based on the electrical information Si, and determines the setting of the output adjuster e13 according to the determination result. The output adjuster e13 adjusts the intensity of the AC signal Sac according to the setting. When the reception state is too strong, the strength of the AC signal Sac is lowered. Conversely, when the reception state is too weak, the strength of the AC signal Sac is increased. By such feedback control, for example, the specifications of the first antenna A1 and the second antenna A2 change variously. As a result, even if the reception state fluctuates, the resonance characteristics are always stable regardless of that. Can be adjusted accurately.
 なお、非接触ICカード機能部E2では、電気的情報Si を得るのに、復調回路e22の出力に代えて、図2のようにAD変換器e24の出力を利用するのでもよい。 Note that the non-contact IC card function unit E2 may use the output of the AD converter e24 as shown in FIG. 2 instead of the output of the demodulation circuit e22 in order to obtain the electrical information Si.
 (第9の実施の形態)
 本実施の形態では、第1~第7の実施の形態の近距離無線通信装置において、さらに、図5に示すように、リーダライタ機能部E1は、さらに所定の出力の交流信号Sacの変調度を調整する変調度調整器e15と、所定の電気的情報Si を基に変調度調整器e15の設定を決定する判定器e14とを備えている。
(Ninth embodiment)
In the present embodiment, in the short-range wireless communication devices of the first to seventh embodiments, as shown in FIG. 5, the reader / writer function unit E1 further modulates the modulation degree of the AC signal Sac having a predetermined output. And a determination unit e14 for determining the setting of the modulation degree adjuster e15 based on predetermined electrical information Si.
 本実施の形態では、所定の出力の交流信号Sacの変調度を調整する変調度調整器e15と、所定の電気的情報Si を基に変調度調整器e15の設定を決定する判定器e14とが設けられている。判定器e14は電気的情報Si に基づいて受信の状態を判断し、その判断結果に従って変調度調整器e15の設定を決定する。変調度調整器e15は、その設定に従って交流信号Sacの変調度を調整する。受信状態が強すぎるときは交流信号Sacの変調度を下げる。逆に、受信状態が弱すぎるときは交流信号Sacの変調度を上げる。このようなフィードバック制御により、例えば、第1のアンテナA1や第2のアンテナA2の仕様が様々に変わり、その結果として受信状態が変動しても、そのことには関わりなく常に安定して共振特性の調整を正確に行うことができる。 In the present embodiment, a modulation factor adjuster e15 that adjusts the modulation factor of the AC signal Sac having a predetermined output and a determiner e14 that determines the setting of the modulation factor adjuster e15 based on the predetermined electrical information SiS. Is provided. The determiner e14 determines the reception state based on the electrical information Si, and determines the setting of the modulation factor adjuster e15 according to the determination result. The modulation degree adjuster e15 adjusts the modulation degree of the AC signal Sac according to the setting. When the reception state is too strong, the modulation degree of the AC signal Sac is lowered. Conversely, when the reception state is too weak, the modulation degree of the AC signal Sac is increased. By such feedback control, for example, the specifications of the first antenna A1 and the second antenna A2 change variously. As a result, even if the reception state fluctuates, the resonance characteristics are always stable regardless of that. Can be adjusted accurately.
 なお、この場合も、非接触ICカード機能部E2では、電気的情報Si を得るのに、復調回路e22の出力に代えて、図2のようにAD変換器e24の出力を利用するのでもよい。 Also in this case, the non-contact IC card function unit E2 may use the output of the AD converter e24 as shown in FIG. 2 instead of the output of the demodulation circuit e22 in order to obtain the electrical information SiS. .
 (第10の実施の形態)
 本実施の形態では、第1~第7の実施の形態の近距離無線通信装置において、さらに図6に示すように、非接触ICカード機能部E2は、さらに復調回路e22の復調感度を調整する復調感度調整器e26と、所定の電気的情報Si を基に復調感度調整器e26の設定を決定する判定器e27とを備えている。
(Tenth embodiment)
In the present embodiment, in the short-range wireless communication devices of the first to seventh embodiments, as shown in FIG. 6, the non-contact IC card function unit E2 further adjusts the demodulation sensitivity of the demodulation circuit e22. A demodulation sensitivity adjuster e26 and a determination device e27 that determines the setting of the demodulation sensitivity adjuster e26 based on predetermined electrical information Si.
 本実施の形態では、復調回路e22の復調感度を調整する復調感度調整器e26と、所定の電気的情報Si を基に復調感度調整器e26の設定を決定する判定器e27とを設けられている。判定器e27は電気的情報Si に基づいて受信の状態を判断し、その判断結果に従って復調感度調整器e26の設定を決定する。復調感度調整器e26は、その設定に従って復調回路e22の復調感度を調整する。受信状態が強すぎるときは復調感度を下げる。逆に、受信状態が弱すぎるときは復調感度を上げる。このようなフィードバック制御により、例えば、第1のアンテナA1や第2のアンテナA2の仕様が様々に変わり、その結果として受信状態が変動しても、そのことには関わりなく常に安定して同調を行うことができる。 In the present embodiment, a demodulation sensitivity adjuster e26 that adjusts the demodulation sensitivity of the demodulation circuit e22 and a determination device e27 that determines the setting of the demodulation sensitivity adjuster e26 based on predetermined electrical information SiS are provided. . The determiner e27 determines the reception state based on the electrical information Si, and determines the setting of the demodulation sensitivity adjuster e26 according to the determination result. The demodulation sensitivity adjuster e26 adjusts the demodulation sensitivity of the demodulation circuit e22 according to the setting. If the reception state is too strong, the demodulation sensitivity is lowered. Conversely, when the reception state is too weak, the demodulation sensitivity is increased. By such feedback control, for example, the specifications of the first antenna A1 and the second antenna A2 change variously. As a result, even if the reception state fluctuates, the tuning is always stable regardless of this. It can be carried out.
 なお、この場合も、非接触ICカード機能部E2では、電気的情報Si を得るのに、復調回路e22の出力に代えて、図2のようにAD変換器e24の出力を利用するのでもよい。また、第9の実施の形態と第10の実施の形態の組み合わせも好ましい。 Also in this case, the non-contact IC card function unit E2 may use the output of the AD converter e24 as shown in FIG. 2 instead of the output of the demodulation circuit e22 in order to obtain the electrical information SiS. . A combination of the ninth embodiment and the tenth embodiment is also preferable.
 (第11の実施の形態)
 本実施の形態では、第1~第10の実施の形態の近距離無線通信装置において、さらにリーダライタ機能部E1は、所定の起動信号Sonとして当該近距離無線通信装置のスタートアップ信号を用いる。
(Eleventh embodiment)
In the present embodiment, in the short-range wireless communication devices of the first to tenth embodiments, the reader / writer function unit E1 uses a startup signal of the short-range wireless communication device as the predetermined activation signal Son.
 本実施の形態の近距離無線通信装置を使用するに際して、その電源を投入すると、スタートアップ信号が生成出力される。リーダライタ機能部E1は、このスタートアップ信号によって起動される。共振特性の自動調整は、搭載製品の製造時に行うのが一般的であるが、出荷後でも、電源スイッチオンによるスタートアップ時等において、毎回、共振特性自動調整を実施するように構成してもよい。この場合、使用開始の都度、温度条件等も含めて使用環境に合わせて共振特性を最適化できるため、近距離無線通信装置の通信距離をさらに最適化できる。 When using the short-range wireless communication apparatus of this embodiment, when the power is turned on, a startup signal is generated and output. The reader / writer function unit E1 is activated by this startup signal. The automatic adjustment of the resonance characteristics is generally performed at the time of manufacturing the mounted product. However, even after the shipment, the resonance characteristics may be automatically adjusted every time, for example, at the start-up when the power switch is turned on. . In this case, since the resonance characteristics can be optimized in accordance with the usage environment, including the temperature condition, etc. every time use is started, the communication distance of the short-range wireless communication device can be further optimized.
 (第12の実施の形態)
 本実施の形態では、第1~第11の実施の形態の近距離無線通信装置において、調整対象である前記共振特性は、共振周波数、またはクオリティファクタ(Q値)、または共振周波数とクオリティファクタ(Q値)との両方である。
(Twelfth embodiment)
In the present embodiment, in the short-range wireless communication devices of the first to eleventh embodiments, the resonance characteristics to be adjusted are resonance frequency, quality factor (Q value), or resonance frequency and quality factor ( Q value).
 第1~第11の実施の形態は、本発明を近距離無線通信装置に適用したものであったが、第12の実施の形態では、それに代えて本発明を近距離無線通信用の半導体集積回路として展開している。なお、図1~図6において破線で囲んだブロック50は後述する半導体集積回路の領域を代表的に表すものである(本発明は、この形態に限定されるものではない)。 In the first to eleventh embodiments, the present invention is applied to a short-range wireless communication device. In the twelfth embodiment, the present invention is replaced with a semiconductor integrated circuit for short-range wireless communication. It is developed as a circuit. 1 to 6, a block 50 surrounded by a broken line represents a region of a semiconductor integrated circuit to be described later (the present invention is not limited to this form).
 (第13の実施の形態)
 本実施の形態の近距離無線通信用の半導体集積回路では、第1~第12の実施の形態の近距離無線通信装置における少なくともリーダライタ機能部E1、非接触ICカード機能部E2、共振回路調整部E3が半導体上に集積して構成されている。これは、半導体集積回路に搭載される構成要素について、最低限、リーダライタ機能部E1と非接触ICカード機能部E2と共振回路調整部E3とがありさえすればよしとするもので、第1の共振回路R1や第2の共振回路R2については、その搭載を特には問わないという趣旨である。
(Thirteenth embodiment)
In the semiconductor integrated circuit for near field communication according to the present embodiment, at least the reader / writer function unit E1, the non-contact IC card function unit E2, and the resonance circuit adjustment in the near field communication devices of the first to twelfth embodiments. The part E3 is integrated on the semiconductor. This is because the constituent elements mounted on the semiconductor integrated circuit only need to have at least a reader / writer function unit E1, a non-contact IC card function unit E2, and a resonance circuit adjustment unit E3. The resonance circuit R1 and the second resonance circuit R2 are not particularly required to be mounted.
 (第14の実施の形態)
 本実施の形態では、第13の実施の形態の半導体集積回路において、さらにリーダライタ機能部E1は第1の共振回路R1の接続端子を有し、非接触ICカード機能部E2は第2の共振回路R2の接続端子を有している。これは、第1のアンテナA1を含む第1の共振回路R1と第2のアンテナA2を含む第2の共振回路R2とが、半導体集積回路に対してその外部に接続される場合の半導体集積回路を対象とするものである。
(Fourteenth embodiment)
In the present embodiment, in the semiconductor integrated circuit of the thirteenth embodiment, the reader / writer function unit E1 further has a connection terminal of the first resonance circuit R1, and the non-contact IC card function unit E2 has the second resonance. It has a connection terminal for the circuit R2. This is because the semiconductor integrated circuit in which the first resonant circuit R1 including the first antenna A1 and the second resonant circuit R2 including the second antenna A2 are connected to the outside of the semiconductor integrated circuit. It is intended for.
 (第15の実施の形態)
 本実施の形態では、第13の実施の形態の半導体集積回路において、さらに、第1~第12の実施の形態の近距離無線通信装置における第1の共振回路R1と第2の共振回路R2の主要部または全部を前記半導体上に備えている。これは、半導体集積回路が第1の共振回路R1と第2の共振回路R2とを含むが、第1の共振回路R1および第2の共振回路R2はそれぞれアンテナと共振容量のうち少なくともいずれか一方を備えていればよいという趣旨である。
(Fifteenth embodiment)
In the present embodiment, in the semiconductor integrated circuit of the thirteenth embodiment, the first resonance circuit R1 and the second resonance circuit R2 in the short-range wireless communication devices of the first to twelfth embodiments The main part or the whole is provided on the semiconductor. The semiconductor integrated circuit includes a first resonance circuit R1 and a second resonance circuit R2, and each of the first resonance circuit R1 and the second resonance circuit R2 is at least one of an antenna and a resonance capacitor. The idea is to have
 (第16の実施の形態)
 本実施の形態では、第15の実施の形態の半導体集積回路において、さらに第1の共振回路R1は第1のアンテナA1を含み、第2の共振回路R2は第2のアンテナA2を含んでいる。これは、第1の共振回路R1および第2の共振回路R2はそれぞれアンテナを備えているが、各アンテナに接続されるべき共振容量は、それ自体は必須構成要件とはしないという趣旨である。
(Sixteenth embodiment)
In the present embodiment, in the semiconductor integrated circuit of the fifteenth embodiment, the first resonance circuit R1 further includes a first antenna A1, and the second resonance circuit R2 includes a second antenna A2. . This is to say that although the first resonance circuit R1 and the second resonance circuit R2 are each provided with an antenna, the resonance capacitance to be connected to each antenna is not an essential component per se.
 (第17の実施の形態)
 本実施の形態では、第15の実施の形態の半導体集積回路において、さらに第1の共振回路R1は共振容量を含み、第2の共振回路R2は共振容量を含んでいる。これは、第1の共振回路R1および第2の共振回路R2はそれぞれ共振容量を備えているが、第1のアンテナA1および第2のアンテナA2は、それ自体は必須構成要件とはしないという趣旨である。
(Seventeenth embodiment)
In the present embodiment, in the semiconductor integrated circuit of the fifteenth embodiment, the first resonance circuit R1 further includes a resonance capacitor, and the second resonance circuit R2 includes a resonance capacitor. This is because the first resonance circuit R1 and the second resonance circuit R2 each have a resonance capacitance, but the first antenna A1 and the second antenna A2 are not essential constituent elements themselves. It is.
 (第18の実施の形態)
 本実施の形態では、第15の実施の形態の半導体集積回路において、さらに第1の共振回路R1は第1のアンテナA1および共振容量を含み、第2の共振回路R2は第2のアンテナA2および共振容量を含んでいる。これは、第1の共振回路R1および第2の共振回路R2はそれぞれ共振容量とアンテナを備えているという趣旨である。なお、共振容量として寄生容量を利用するときも、これに含まれる。
(Eighteenth embodiment)
In the present embodiment, in the semiconductor integrated circuit of the fifteenth embodiment, the first resonance circuit R1 further includes the first antenna A1 and the resonance capacitor, and the second resonance circuit R2 includes the second antenna A2 and the second antenna A2. Includes resonant capacitance. This means that each of the first resonance circuit R1 and the second resonance circuit R2 includes a resonance capacitor and an antenna. This also includes the case where parasitic capacitance is used as the resonance capacitance.
 なお、本明細書において、リーダライタ機能部、非接触ICカード機能部、共振回路調整部、出力調整器、変調度調整器および判定器の各構成要素は、ハードウェアで構成するほか、ソフトウェアにおける個々のステップまたはルーチンで構成してもよい。あるいは、ハードウェアとソフトウェアの組み合わせで構成してもよい。 In this specification, each component of the reader / writer function unit, the non-contact IC card function unit, the resonance circuit adjustment unit, the output adjustment unit, the modulation degree adjustment unit, and the determination unit is configured by hardware or software. It may consist of individual steps or routines. Or you may comprise by the combination of hardware and software.
 以下、本発明の詳細を示す各実施の形態について図面を参照しながらさらに説明する。なお、以下で説明する実施の形態はあくまで一例であり、様々な改変を行うことが可能である。 Hereinafter, each embodiment showing details of the present invention will be further described with reference to the drawings. The embodiment described below is merely an example, and various modifications can be made.
 (第19の実施の形態)
 本実施の形態では、本発明の近距離無線通信装置を適用することができる携帯電話の構成が示される。
(Nineteenth embodiment)
In this embodiment, a configuration of a mobile phone to which the short-range wireless communication device of the present invention can be applied is shown.
 図7は、本発明の近距離無線通信装置が適用される第19~第23の実施の形態の携帯電話の構成の一例を示す図である。同図の携帯電話1は、NFC-LSI(Large Scale Integration)50と、第1のアンテナA1と、共振容量31と、第2のアンテナA2と、共振容量41と、UICC(Universal Integrated Circuit Card)60と、アプリケーションプロセッサ70とを備えている。 FIG. 7 is a diagram showing an example of the configuration of the mobile phone according to the 19th to 23rd embodiments to which the short-range wireless communication device of the present invention is applied. The mobile phone 1 shown in FIG. 1 includes an NFC-LSI (Large Scale Integration) 50, a first antenna A1, a resonance capacitor 31, a second antenna A2, a resonance capacitor 41, and a UICC (Universal Integrated Circuit Circuit Card). 60 and an application processor 70.
 NFC-LSI50を搭載した携帯電話1は、同様の機能を搭載した別の携帯電話1や、非接触ICカード用のリーダライタ装置2や、非接触ICカード3と通信することが可能である。なお、携帯電話1は、別の携帯電話1と通信するときはピアツーピアモードで通信し、リーダライタ装置2のときはカードエミュレーションモードで通信し、非接触ICカード3のときはリーダモードで通信する。 The mobile phone 1 equipped with the NFC-LSI 50 can communicate with another mobile phone 1 equipped with the same function, the reader / writer device 2 for the non-contact IC card, and the non-contact IC card 3. The mobile phone 1 communicates in peer-to-peer mode when communicating with another mobile phone 1, communicates in card emulation mode when the reader / writer device 2 is used, and communicates in reader mode when the contactless IC card 3 is used. .
 携帯電話1において、NFC-LSI50とUICC60とアプリケーションプロセッサ70は、相互にシリアルインタフェース等で接続されている。NFC-LSI50は、NFC規格に対応した非接触通信インタフェースのフロントエンドの処理を実行する。 In the mobile phone 1, the NFC-LSI 50, the UICC 60, and the application processor 70 are connected to each other via a serial interface or the like. The NFC-LSI 50 executes a front-end process of a non-contact communication interface corresponding to the NFC standard.
 UICC60は、携帯電話の利用者管理情報や電話帳データ等の格納の機能に加え、NFC-LSI50を用いた非接触通信処理では、暗号を用いた認証処理等のセキュア処理やカードアプリケーション処理などを行う。例えば、携帯電話1がいわゆる電子マネーの支払い処理アプリケーションを実行する場合は、NFC-LSI50は非接触通信インタフェースの処理のみを行い、支払い処理で必要となる認証や管理情報の読み出し、書き込み等のアプリケーション処理はUICC60内で実行される。 In addition to the function of storing mobile phone user management information and phone book data, the UICC 60 performs secure processing such as authentication processing using encryption and card application processing in contactless communication processing using the NFC-LSI 50. Do. For example, when the mobile phone 1 executes a so-called electronic money payment processing application, the NFC-LSI 50 performs only the processing of the contactless communication interface, and the authentication, management information reading, and writing required for the payment processing are performed. Processing is executed in the UICC 60.
 また、アプリケーションプロセッサ70は、携帯電話全体のアプリケーション処理に加え、NFC-LSI50を用いた非接触通信処理において、UICC60と同様に様々なアプリケーション処理を行うことができる。例えば、NFC-LSI50をピアツーピアモードに設定して、外部にある携帯電話1と電話帳の情報を交換する処理、リーダモードに設定して非接触ICカード3の情報を読み取る処理、ディスプレイに表示する処理等を行うことができる。 Further, the application processor 70 can perform various application processes in the non-contact communication process using the NFC-LSI 50 as well as the UICC 60 in addition to the application process of the entire mobile phone. For example, the NFC-LSI 50 is set to the peer-to-peer mode, the process of exchanging information in the phone book with the external mobile phone 1, the process of setting the reader mode to read the information of the contactless IC card 3, and the display on the display Processing can be performed.
 次に、本実施の形態の近距離無線通信装置について説明する。本実施の形態は、非接触ICカード機能部E2側の第2の共振回路R2の共振周波数を自動調整する態様となっている。所定の電気的情報Si は、非接触ICカード機能部E2での受信電圧V1を利用する。図8は本実施の形態の近距離無線通信装置の構成を示すブロック図である。図8に示す実施の形態では、前述した第1、第3、第11、第13、第14の実施の形態に対応する。 Next, the short-range wireless communication device of this embodiment will be described. In the present embodiment, the resonance frequency of the second resonance circuit R2 on the non-contact IC card function unit E2 side is automatically adjusted. The predetermined electrical information Si uses the reception voltage V1 at the non-contact IC card function unit E2. FIG. 8 is a block diagram showing a configuration of the short-range wireless communication apparatus according to the present embodiment. The embodiment shown in FIG. 8 corresponds to the first, third, eleventh, thirteenth, and fourteenth embodiments described above.
 図8での構成要素と図1での構成要素との対応関係をあらかじめ説明すると、図1の共振回路調整部E3は共振周波数調整回路102に対応している。また、起動信号Sonは信号CAONに対応し、交流信号Sacは送信信号TXに対応し、電気的情報Si は受信電圧V1またはV1電圧値VLVに対応している。本実施例は、共振回路調整部E3が第2の共振回路R2の共振特性を調整するタイプに相当している。 8 will be described in advance. The resonance circuit adjustment unit E3 in FIG. 1 corresponds to the resonance frequency adjustment circuit 102. The activation signal Son corresponds to the signal CAON, the AC signal Sac corresponds to the transmission signal TX, and the electrical information Si 情報 corresponds to the reception voltage V1 or the V1 voltage value VLV. This embodiment corresponds to a type in which the resonance circuit adjustment unit E3 adjusts the resonance characteristics of the second resonance circuit R2.
 また、図2での構成要素との対応関係をあらかじめ説明すると、図2の変調回路e11が変調回路82に対応し、復調回路e12が復調回路84に対応し、整流器e21が整流器91に対応し、復調回路e22が復調回路92に対応し、負荷変調部e23がロードスイッチ94に対応し、AD変換器e24がAD変換器95に対応し、シャント回路e25がシャント回路93に対応している。 2 will be described in advance. The modulation circuit e11 in FIG. 2 corresponds to the modulation circuit 82, the demodulation circuit e12 corresponds to the demodulation circuit 84, and the rectifier e21 corresponds to the rectifier 91. The demodulating circuit e22 corresponds to the demodulating circuit 92, the load modulating unit e23 corresponds to the load switch 94, the AD converter e24 corresponds to the AD converter 95, and the shunt circuit e25 corresponds to the shunt circuit 93.
 図8の近距離無線通信装置は、NFC-LSI50と、第1のアンテナ(リーダライタアンテナ)A1と、第1のアンテナA1に直列に接続された共振容量31と、第2のアンテナ(カードアンテナ)A2と、第2のアンテナA2に並列に接続された共振容量41とを備えている。第1のアンテナA1と共振容量31とで第1の共振回路R1が構成され、第2のアンテナA2と共振容量41とで第2の共振回路R2が構成されている。共振周波数調整回路102は、第2の共振回路R2と非接触ICカード機能部E2との間に介挿された状態となっている。 8 includes an NFC-LSI 50, a first antenna (reader / writer antenna) A1, a resonance capacitor 31 connected in series to the first antenna A1, and a second antenna (card antenna). ) A2 and a resonance capacitor 41 connected in parallel to the second antenna A2. The first antenna A1 and the resonance capacitor 31 constitute a first resonance circuit R1, and the second antenna A2 and the resonance capacitor 41 constitute a second resonance circuit R2. The resonance frequency adjusting circuit 102 is inserted between the second resonance circuit R2 and the non-contact IC card function unit E2.
 NFC-LSI50は、半導体集積回路として構成され、リーダライタ機能部E1と、非接触ICカード機能部E2と、共振周波数調整回路102と、CPU51と、I/F(Interface)52と、ROM(Read Only Memory)53と、RAM(Random Access Memory)54と、不揮発性メモリ(NVM:Non Volatile Memory)55とを備えている。 The NFC-LSI 50 is configured as a semiconductor integrated circuit, and includes a reader / writer function unit E1, a non-contact IC card function unit E2, a resonance frequency adjusting circuit 102, a CPU 51, an I / F (Interface) 52, and a ROM (Read It includes only memory (RAM) 53, random access memory (RAM) 54, and non-volatile memory (NVM) 55.
 リーダライタ機能部E1はNFC(Near Field Communication)規格においてリーダライタ機能を実現するブロックであり、非接触ICカード機能部E2はNFC規格において非接触ICカード機能を実現するブロックである。CPU51は、リーダライタ機能部E1および非接触ICカード機能部E2の制御と、I/F52の制御と、ROM53に格納されたソフトウェアの実行と、RAM54、不揮発性メモリ(NVM)55のリードライト動作とを制御する。I/F52は、図7におけるUICC60とアプリケーションプロセッサ70とにそれぞれ接続するインタフェースを備えている。ROM53は、後述する共振周波数自動調整に関わるソフトウェアおよびNFC機能を実現するための各種ソフトウェアを格納している。RAM54は、CPU51の動作に必要な一時格納用のメモリ、不揮発性メモリ(NVM)55は、後述する共振周波数調整結果およびNFC機能に関わる各種設定データを格納する。 The reader / writer function unit E1 is a block that realizes a reader / writer function in the NFC (Near Field Communication) standard, and the non-contact IC card function unit E2 is a block that realizes a non-contact IC card function in the NFC standard. The CPU 51 controls the reader / writer function unit E1 and the non-contact IC card function unit E2, controls the I / F 52, executes the software stored in the ROM 53, and reads / writes the RAM 54 and nonvolatile memory (NVM) 55. And control. The I / F 52 includes interfaces connected to the UICC 60 and the application processor 70 in FIG. The ROM 53 stores software related to automatic resonance frequency adjustment described later and various software for realizing the NFC function. The RAM 54 is a temporary storage memory necessary for the operation of the CPU 51, and the nonvolatile memory (NVM) 55 stores a resonance frequency adjustment result (to be described later) and various setting data related to the NFC function.
 リーダライタ機能部E1は、搬送波生成回路81と、変調回路82と、ドライバ83と、復調回路84とを備えている。搬送波生成回路81は、13.56MHzの搬送波を生成する回路で、CPU51から入力される信号CAONによって生成のオン、オフが制御される。変調回路82は、ASK(Amplitude Shift Keying)変調を行う回路で、搬送波生成回路81から入力される搬送波信号S0を、送信データ信号TXRDのデータに基づいた所定の変調度で変調して変調波信号S1を生成する。なお、変調度は、使用されるプロトコルによって異なり、例えばISO/IEC14443TypeAの場合はASK100%、ISO/IEC14443TypeBの場合はASK10%で変調される。ドライバ83は、変調波信号S1を送信信号TXとして、第1のアンテナA1にドライブする。ドライバ83には、その他に出力設定信号AJPW[l:0]がCPU51から入力される([l:0]の“l”はアルファベットのエル)。ドライバ83は、出力設定信号AJPW[l:0]によって、そのドライバサイズが調整されるように構成されている。復調回路84は、外部の例えば非接触ICカードが負荷変調によって応答したデータをデジタルの受信データ信号RXRDに復調する。 The reader / writer function unit E1 includes a carrier wave generation circuit 81, a modulation circuit 82, a driver 83, and a demodulation circuit 84. The carrier wave generation circuit 81 is a circuit that generates a 13.56 MHz carrier wave, and is controlled to be turned on and off by a signal CAON input from the CPU 51. The modulation circuit 82 is a circuit that performs ASK (Amplitude Shift 変 調 Keying) modulation, and modulates the carrier wave signal S0 input from the carrier wave generation circuit 81 with a predetermined modulation degree based on the data of the transmission data signal TXRD to generate a modulated wave signal. S1 is generated. The degree of modulation differs depending on the protocol used. For example, the modulation is performed with ASK 100% in the case of ISO / IEC 14443 Type A, and with ASK 10% in the case of ISO / IEC 14443 Type B. The driver 83 drives the modulated wave signal S1 to the first antenna A1 as the transmission signal TX. In addition, an output setting signal AJPW [l: 0] is input from the CPU 51 to the driver 83 (“l” in [l: 0] is the letter L). The driver 83 is configured such that its driver size is adjusted by the output setting signal AJPW [l: 0]. The demodulating circuit 84 demodulates the data that the external non-contact IC card, for example, responds by load modulation into a digital received data signal RXRD.
 非接触ICカード機能部E2は、整流器91と、復調回路92と、シャント回路93と、ロードスイッチ94と、AD変換器(ADC:Analog to Digital Converter)95とを備えている。整流器91は、第2のアンテナA2で受信した搬送波を整流し、受信電圧V1を生成する。復調回路92は、ASK変調データを受信電圧V1からデジタルの受信データ信号RXCDに復調する。シャント回路93は、受信電圧V1が所定電圧以上では、受信電圧V1から電流をグランドに流して、強磁界下でも受信電圧V1が過上昇しないようにする。ロードスイッチ94は、送信データ信号TXCDのデータに基づいて負荷変調を行い、外部の非接触ICカード用のリーダライタ装置2にデータを送信する。 The non-contact IC card function unit E2 includes a rectifier 91, a demodulation circuit 92, a shunt circuit 93, a load switch 94, and an AD converter (ADC: Analog-to-Digital Converter) 95. The rectifier 91 rectifies the carrier wave received by the second antenna A2, and generates a reception voltage V1. The demodulation circuit 92 demodulates the ASK modulation data from the reception voltage V1 to a digital reception data signal RXCD. The shunt circuit 93 causes a current to flow from the reception voltage V1 to the ground when the reception voltage V1 is equal to or higher than a predetermined voltage, so that the reception voltage V1 does not increase excessively even under a strong magnetic field. The load switch 94 performs load modulation based on the data of the transmission data signal TXCD, and transmits the data to the external non-contact IC card reader / writer device 2.
 AD変換器95は、受信電圧V1の電圧値をデジタルデータのV1電圧値VLVに変換してCPU51へ出力する。共振周波数調整回路102は、複数の容量CC0~CCnと、複数のスイッチSC0~SCnとを備えている。容量CCnとスイッチSCnのそれぞれの組は、第2のアンテナA2のアンテナ端子VA,VB間に直列に、容量CCnが共振容量41に並列になるように接続されている。共振周波数調整回路102は、整流器91の入力側に接続されているとともに、ロードスイッチ94の出力側に接続されている。スイッチSC0~SCnのオンオフは、CPU51から出力される制御信号SCON[n:0]によって制御される。なお、nの最小値は0で、この場合は、CC0とSC0のみになる。 The AD converter 95 converts the voltage value of the reception voltage V1 into a V1 voltage value VLV of digital data and outputs it to the CPU 51. The resonance frequency adjusting circuit 102 includes a plurality of capacitors CC0 to CCn and a plurality of switches SC0 to SCn. Each pair of the capacitor CCn and the switch SCn is connected in series between the antenna terminals VA and VB of the second antenna A2 so that the capacitor CCn is in parallel with the resonance capacitor 41. The resonance frequency adjusting circuit 102 is connected to the input side of the rectifier 91 and is connected to the output side of the load switch 94. ON / OFF of the switches SC0 to SCn is controlled by a control signal SCON [n: 0] output from the CPU 51. The minimum value of n is 0. In this case, only CC0 and SC0 are obtained.
 本実施の形態の近距離無線通信装置にあっては、共振周波数自動調整に際しては、リーダライタ機能部E1と非接触ICカード機能部E2とを同時的に動作状態に設定して、第1のアンテナA1と第2のアンテナA2とを電磁的に結合し、併せて共振周波数調整回路102も動作状態とすることができるようになっている。近距離無線通信装置は、自身のリーダライタ機能部E1で発信した電磁波を自身の非接触ICカード機能部E2で受信して、受信で得られた電気的情報すなわち整流器91で生成される受信電圧V1から派生する情報を共振周波数調整回路102に送り、共振周波数を最適化する。 In the short-range wireless communication apparatus of the present embodiment, when the resonance frequency is automatically adjusted, the reader / writer function unit E1 and the non-contact IC card function unit E2 are simultaneously set to the operating state, and the first The antenna A1 and the second antenna A2 are electromagnetically coupled, and at the same time, the resonance frequency adjusting circuit 102 can be brought into an operating state. The short-range wireless communication device receives the electromagnetic wave transmitted by its reader / writer function unit E1 by its non-contact IC card function unit E2, and receives the electrical information obtained by reception, that is, the reception voltage generated by the rectifier 91 Information derived from V1 is sent to the resonance frequency adjusting circuit 102 to optimize the resonance frequency.
 なお、図8では、第1のアンテナA1は片側端子が接地されているが、第1のアンテナA1の両側に直列に共振容量を接続して、NFC-LSI50に入力する構成もある。また、第1のアンテナA1、共振容量31の他に、共振の尖鋭度を示すQ値の調整用に抵抗を付加したり、インピーダンスを調整するために、第1のアンテナA1に並列に容量を付加したり、NFC-LSI50のドライバ出力TXの波形から高周波成分を除去するためにLCフィルタを付加する場合があるが、本説明ではそれらは省略する。 In FIG. 8, one terminal of the first antenna A1 is grounded, but there is a configuration in which a resonant capacitor is connected in series on both sides of the first antenna A1 and input to the NFC-LSI 50. In addition to the first antenna A1 and the resonance capacitor 31, in order to add a resistor for adjusting the Q value indicating the sharpness of resonance or to adjust the impedance, a capacitor is connected in parallel to the first antenna A1. An LC filter may be added to remove a high-frequency component from the waveform of the driver output TX of the NFC-LSI 50, but these are omitted in this description.
 また、第2のアンテナA2においても、両側端子がNFC-LSI50に接続されているが、片側端子を接地する方法もある。また、Q値調整用に抵抗を付加する場合もあるが、本説明ではそれらは省略する。また、半導体集積回路であるNFC-LSI50は、共振容量31,41を組み込む構成としてもよい。 Also, in the second antenna A2, both terminals are connected to the NFC-LSI 50, but there is a method in which one terminal is grounded. Further, although a resistor may be added for Q value adjustment, they are omitted in this description. Further, the NFC-LSI 50 which is a semiconductor integrated circuit may be configured to incorporate the resonance capacitors 31 and 41.
 図9は、第1のアンテナA1と第2のアンテナA2の配置関係を示すパターン図である。図9において、基板36上に、第1のアンテナA1と第2のアンテナA2が配置されている。第2のアンテナA2は基板36の外周側に形成され、第1のアンテナA1は第2のアンテナA2の内側に形成されている。図9のように配置することで、第1のアンテナA1から搬送波を出力するとともに、同時に同じ搬送波を第2のアンテナA2が受信することができる。なお、第1のアンテナA1と第2のアンテナA2の配置関係は、図9の場合とは逆に、第1のアンテナA1を外側に配置してもよい。また、同一中心上ではなく、2つのアンテナを隣に並べてもよく、その他の配置でも、第1のアンテナA1が出力する搬送波が、同時に第2のアンテナA2で受信することができればよい。 FIG. 9 is a pattern diagram showing an arrangement relationship between the first antenna A1 and the second antenna A2. In FIG. 9, a first antenna A <b> 1 and a second antenna A <b> 2 are disposed on a substrate 36. The second antenna A2 is formed on the outer peripheral side of the substrate 36, and the first antenna A1 is formed inside the second antenna A2. By arranging as shown in FIG. 9, a carrier wave is output from the first antenna A1, and at the same time, the second antenna A2 can receive the same carrier wave. Note that the arrangement relationship between the first antenna A1 and the second antenna A2 may be opposite to the case of FIG. 9, and the first antenna A1 may be arranged outside. In addition, two antennas may be arranged next to each other, not on the same center, and it is only necessary that the carrier wave output from the first antenna A1 can be simultaneously received by the second antenna A2 in other arrangements.
 次に、上記のように構成された本実施の形態の近距離無線通信装置の共振周波数自動調整の動作を説明する。なお、以下の説明では、スイッチSC0~SCnおよび容量CC0~CCnのnをn=2とする(nは0~2の3つ)。 Next, the operation of the resonance frequency automatic adjustment of the short-range wireless communication apparatus of the present embodiment configured as described above will be described. In the following description, n of the switches SC0 to SCn and capacitors CC0 to CCn is assumed to be n = 2 (n is three of 0 to 2).
 図10は、共振周波数自動調整の動作を示すフローチャートである。この動作は、NFC-LSI50に内蔵されているCPU51とROM53に格納のプログラムとワークメモリとしてのRAM54の協働によって実行される。まずステップS11において、NFC-LSI50の外部からI/F52に入力される共振周波数自動調整の起動を示すコマンド、あるいはROM53に格納されているソフトウェア自身によるトリガーによって共振周波数自動調整が開始されると、ステップS12において、CPU51から搬送波生成回路81に出力される搬送波生成信号CAON=Hにして、搬送波生成回路81から搬送波S0を出力させる。リーダライタ機能部E1の送信データTXRDはゼロとし、変調回路82は無変調(搬送波S0と同じ)の変調信号S1をドライバ83に出力して、第1のアンテナA1から無変調の一定の強度の磁界を出力する。 FIG. 10 is a flowchart showing the operation of automatic resonance frequency adjustment. This operation is executed by the cooperation of the CPU 51 built in the NFC-LSI 50, the program stored in the ROM 53, and the RAM 54 as a work memory. First, in step S11, when automatic resonance frequency adjustment is started by a command indicating activation of resonance frequency automatic adjustment input to the I / F 52 from the outside of the NFC-LSI 50 or a trigger stored by the software itself stored in the ROM 53, In step S 12, the carrier wave generation signal CAON = H output from the CPU 51 to the carrier wave generation circuit 81 is set, and the carrier wave generation circuit 81 outputs the carrier wave S 0. The transmission data TXRD of the reader / writer function unit E1 is set to zero, and the modulation circuit 82 outputs an unmodulated (same as the carrier wave S0) modulated signal S1 to the driver 83, and from the first antenna A1 has a constant intensity with no modulation. Output magnetic field.
 アンテナ間の電磁誘導によって、第1のアンテナA1から出力された交流磁界を同時に第2のアンテナA2で受信することができる。実施例1の技術ポイントの1つがここにある。第2のアンテナA2が受信した交流磁界は整流器91によって整流され、ある一定の電圧が受信電圧V1に出力される。 The AC magnetic field output from the first antenna A1 can be simultaneously received by the second antenna A2 by electromagnetic induction between the antennas. One of the technical points of Example 1 is here. The AC magnetic field received by the second antenna A2 is rectified by the rectifier 91, and a certain voltage is output to the reception voltage V1.
 次にステップS13において、共振周波数調整に関わる変数値を初期化する。変数としては、スイッチ設定変数xと、V1測定結果V1D(x)がある。スイッチ設定変数xは、例えば、図11に示すようにスイッチ設定変数xの値と、スイッチSC0~SC2のオンオフの関係が対応づけられている。例えば、容量CC0~CC2の容量値をそれぞれ、1pF、2pF、4pFとした場合、x=1~8で、共振周波数調整回路102の全体の容量値は、x=1~8の推移に伴って、0pF~7pFと推移し、1pF単位で設定できる。初期化では、x=1、V1D(1)~V1D(m)=0Vに設定する。mは最大値で、本例ではm=8である。 Next, in step S13, variable values related to resonance frequency adjustment are initialized. As variables, there are a switch setting variable x and a V1 measurement result V1D (x). For example, as shown in FIG. 11, the switch setting variable x is associated with the value of the switch setting variable x and the on / off relationship of the switches SC0 to SC2. For example, when the capacitance values of the capacitors CC0 to CC2 are 1 pF, 2 pF, and 4 pF, respectively, x = 1 to 8, and the overall capacitance value of the resonance frequency adjusting circuit 102 changes with the transition of x = 1 to 8. 0pF to 7pF, and can be set in units of 1pF. In initialization, x = 1 and V1D (1) to V1D (m) = 0V are set. m is the maximum value, and in this example, m = 8.
 変数初期化後、ステップS14において、スイッチ設定変数xを1インクリメントして(x=x+1)、共振周波数調整回路102のスイッチSC0~SC2を設定する。スイッチSC0~SC2は、CPU51から出力される制御信号SCON[2:0]によって制御される。 After the variable initialization, in step S14, the switch setting variable x is incremented by 1 (x = x + 1), and the switches SC0 to SC2 of the resonance frequency adjusting circuit 102 are set. The switches SC0 to SC2 are controlled by a control signal SCON [2: 0] output from the CPU 51.
 次にステップS15において、受信電圧V1をAD変換器95で測定し、デジタルのV1電圧値VLVをCPU51に入力し、CPU51はV1電圧値VLVをV1測定結果V1D(x)に格納する(V1D(x)=VLV)。 Next, in step S15, the reception voltage V1 is measured by the AD converter 95, the digital V1 voltage value VLV is input to the CPU 51, and the CPU 51 stores the V1 voltage value VLV in the V1 measurement result V1D (x) (V1D ( x) = VLV).
 続いてステップS16において、CPU51はV1測定結果V1D(x)を前回のV1測定結果V1D(x-1)と比較し、今回の測定結果の方が大きい場合は、ステップS17に進んで、スイッチ設定変数xが最大値m(=8)に達していないかどうかを確認し、x=mでない場合は、ステップS14に進んで、スイッチ設定変数xを1インクリメントして(x=x+1)、受信電圧V1を測定する。x=mの場合は、ステップS18に進んで、共振周波数最適値best_adj=xに設定して、共振周波数調整を終了する。 Subsequently, in step S16, the CPU 51 compares the V1 measurement result V1D (x) with the previous V1 measurement result V1D (x-1). If the current measurement result is larger, the process proceeds to step S17 to set the switch. It is confirmed whether or not the variable x has reached the maximum value m (= 8). If x is not m, the process proceeds to step S14, the switch setting variable x is incremented by 1 (x = x + 1), and the received voltage V1 is measured. When x = m, the process proceeds to step S18, the resonance frequency optimum value best_adj = x is set, and the resonance frequency adjustment is finished.
 一方、ステップS16の判断において、前回の測定結果の方が大きい場合は、ステップS19に進んで、共振周波数最適値best_adj=x-1に設定して、共振周波数調整を終了する。 On the other hand, if it is determined in step S16 that the previous measurement result is larger, the process proceeds to step S19, the resonance frequency optimum value best_adj = x−1 is set, and the resonance frequency adjustment is terminated.
 受信電圧V1が上昇中のときは、ステップS16→S17→S14→S15→S16のループを繰り返す。受信電圧V1が上昇から下降に転じると、前記のループを抜け、ステップS16からステップS19へ進む。 When the reception voltage V1 is increasing, the loop of steps S16 → S17 → S14 → S15 → S16 is repeated. When the reception voltage V1 changes from rising to falling, the process exits the loop and proceeds from step S16 to step S19.
 上記の場合に、共振周波数最適値best_adjが制御信号SCON[2:0]としてCPU51から共振周波数調整回路102に与えられ、第2の共振回路R2の共振周波数が最適化される。 In the above case, the optimum resonance frequency value best_adj is given as the control signal SCON [2: 0] from the CPU 51 to the resonance frequency adjusting circuit 102, and the resonance frequency of the second resonance circuit R2 is optimized.
 スイッチ設定変数xとスイッチSC0~SC2のオンオフ対応、また容量CC0~CC2の値の設定を上記のようにした場合、スイッチ設定変数xをインクリメントすることによって、共振周波数調整回路102の容量値は0pFから7pFへ1pFずつ加算されていく。容量値が順次加算されることによって、第2の共振回路R2の共振周波数は順次低下する。共振周波数を搬送波の周波数13.56MHzより高い周波数から順次下げていったとき、受信電圧V1は、共振周波数が13.56MHzに達するまでは上昇し、共振周波数13.56MHzをピークに、以降、受信電圧V1は次第に減少するため、図10のフローチャートのように受信電圧V1は下降に転じた時点で、調整を完了すればよい。なお、すべてのスイッチ設定変数xについて、V1電圧を測定し、V1電圧が最大となるスイッチ設定変数xを最適値としてもよい。 When the switch setting variable x and the switches SC0 to SC2 are turned on and off, and the values of the capacitors CC0 to CC2 are set as described above, the capacitance value of the resonance frequency adjusting circuit 102 is set to 0 pF by incrementing the switch setting variable x. From 1 to 7 pF, 1 pF is added. By sequentially adding the capacitance values, the resonance frequency of the second resonance circuit R2 is sequentially reduced. When the resonance frequency is sequentially lowered from a frequency higher than the carrier frequency of 13.56 MHz, the reception voltage V1 rises until the resonance frequency reaches 13.56 MHz, and reaches the peak at the resonance frequency of 13.56 MHz. Since the voltage V1 gradually decreases, the adjustment may be completed when the reception voltage V1 starts to decrease as shown in the flowchart of FIG. Note that the V1 voltage may be measured for all the switch setting variables x, and the switch setting variable x that maximizes the V1 voltage may be set as the optimum value.
 なお、共振周波数f0は、アンテナコイルのインダクタンスLと共振容量のキャパシタンスCで決まり、f0=1/2π√LCである(根号記号√は(LC)の全体にかかる)。NFC規格では、搬送波の周波数が13.56MHzのため、アンテナの共振回路の共振周波数f0=13.56MHzのときに受信電圧が最大になる。 The resonance frequency f0 is determined by the inductance L of the antenna coil and the capacitance C of the resonance capacitance, and is f0 = 1 / 2π√LC (the root sign √ is applied to the entire (LC)). In the NFC standard, since the frequency of the carrier wave is 13.56 MHz, the reception voltage becomes maximum when the resonance frequency f0 of the antenna resonance circuit is 13.56 MHz.
 以上のようにリーダライタ機能部E1と非接触ICカード機能部E2とを備えた近距離無線通信装置において、共振周波数自動調整に際しては、リーダライタ機能部E1と非接触ICカード機能部E2とを同時的に動作状態に設定して、第1のアンテナA1と第2のアンテナA2とを電磁的に結合し、併せて共振周波数調整回路102も動作状態とするので、外部のリーダライタ装置や測定装置を用意すること及び調整・校正などの準備作業を要することなく、自動的に第2のアンテナA2の共振周波数を最適化することができ、近距離無線通信装置にかかる費用の抑制を図ることができる。 As described above, in the short-range wireless communication apparatus including the reader / writer function unit E1 and the non-contact IC card function unit E2, when the resonance frequency is automatically adjusted, the reader / writer function unit E1 and the non-contact IC card function unit E2 are provided. At the same time, the first antenna A1 and the second antenna A2 are electromagnetically coupled and the resonance frequency adjustment circuit 102 is also in the operation state, so that the external reader / writer device and measurement are performed. It is possible to automatically optimize the resonance frequency of the second antenna A2 without preparing a device and preparation work such as adjustment / calibration, and to reduce the cost of the short-range wireless communication device. Can do.
 (第19の実施の形態の変形例)
 次に、第1のアンテナA1や第2のアンテナA2の仕様が様々に変わり、その結果として受信状態が変動しても、良好に対応することができる共振周波数自動調整方法に関する本実施の形態の変形例について説明する。この変形例は、上述の第8の実施の形態に対応している。
(Modification of the nineteenth embodiment)
Next, the specifications of the present embodiment relating to the resonance frequency automatic adjustment method that can cope with the change even if the specifications of the first antenna A1 and the second antenna A2 change variously and the reception state fluctuates as a result. A modification will be described. This modification corresponds to the above-described eighth embodiment.
 第8の実施の形態の場合の図4との対応関係をあらかじめ説明しておくと、出力調整器e13はドライバ83に対応し、判定器e14はCPU51によるステップS28~ステップS29の処理機能に対応している。 The correspondence relationship with FIG. 4 in the case of the eighth embodiment will be described in advance. The output adjuster e13 corresponds to the driver 83, and the determiner e14 corresponds to the processing functions of steps S28 to S29 by the CPU 51. is doing.
 図12は、第1のアンテナA1、第2のアンテナA2の設計(アンテナの大きさやターン数など)による、共振周波数調整時の受信電圧V1の状態の差異を示すグラフである。横軸はスイッチ設定変数x、縦軸は受信電圧V1である。 FIG. 12 is a graph showing a difference in the state of the reception voltage V1 when adjusting the resonance frequency depending on the design (antenna size, number of turns, etc.) of the first antenna A1 and the second antenna A2. The horizontal axis is the switch setting variable x, and the vertical axis is the reception voltage V1.
 図12において、状態Aは、スイッチ設定変数xによって受信電圧V1が異なり、V1のピーク電圧が明確に検出できる状態である(x=5)。状態Bは、第1のアンテナA1と第2のアンテナA2の結合が強く、受信電圧V1が高くなり、一部のスイッチ設定変数(x=3~6)で、シャント回路93によりクランプ電圧Vclampにクランプされ、V1のピーク電圧が検出できない状態である。状態Cは、逆に第1のアンテナA1と第2のアンテナA2の結合が弱く、受信電圧V1が弱くなり、スイッチ設定変数xによる電圧差が非常に小さく、V1のピーク電圧が検出できない状態である。 In FIG. 12, the state A is a state in which the received voltage V1 differs depending on the switch setting variable x, and the peak voltage of V1 can be clearly detected (x = 5). In the state B, the coupling between the first antenna A1 and the second antenna A2 is strong, the reception voltage V1 becomes high, and some of the switch setting variables (x = 3 to 6) are set to the clamp voltage Vclamp by the shunt circuit 93. It is clamped and the peak voltage of V1 cannot be detected. In the state C, the coupling between the first antenna A1 and the second antenna A2 is weak, the reception voltage V1 is weak, the voltage difference due to the switch setting variable x is very small, and the peak voltage of V1 cannot be detected. is there.
 第1のアンテナA1、第2のアンテナA2のアンテナ設計の結果、共振周波数調整時に状態Aになるのであれば、図10に示した調整方法で問題ない。しかし、搭載する端末のスペースの制約やリーダライタ出力、カード受信性能の要求仕様によって、第1のアンテナA1、第2のアンテナA2の形状、パラメータは大きく異なる可能性があり、その結果、共振周波数調整時に状態Bや状態Cの状態になる可能性がある。 As long as the result of the antenna design of the first antenna A1 and the second antenna A2 is the state A during the resonance frequency adjustment, there is no problem with the adjustment method shown in FIG. However, the shape and parameters of the first antenna A1 and the second antenna A2 may vary greatly depending on the space restrictions of the terminal to be mounted, the reader / writer output, and the required specifications of the card reception performance. As a result, the resonance frequency There is a possibility that a state B or a state C may be entered during adjustment.
 このような調整が困難になる状態に対応するために、図8のNFC-LSI50では、ドライバ83にドライバサイズを変更する出力設定信号AJPW[l:0]を備えている。例えば、l(エル)=2とした場合、出力設定信号AJPW[2:0]によって、ドライバ出力サイズを8通り設定できる。出力設定信号AJPW[2:0]を数値(0~7)に置き換えたものをドライバ出力設定yとすると、例えば、ドライバ83のドライバサイズはドライバ出力サイズyの値に比例して大きくなるように設定する。ドライバ83は、上述の(8)の出力調整器e13に対応している。また、CPU51の機能の一部が判定器e14に対応している。 In order to cope with such a situation where adjustment is difficult, the NFC-LSI 50 of FIG. 8 includes an output setting signal AJPW [1: 0] for changing the driver size in the driver 83. For example, when l (el) = 2, eight types of driver output sizes can be set by the output setting signal AJPW [2: 0]. If the output setting signal AJPW [2: 0] is replaced with a numerical value (0 to 7) as the driver output setting y, for example, the driver size of the driver 83 is increased in proportion to the value of the driver output size y. Set. The driver 83 corresponds to the output adjuster e13 of (8) described above. A part of the function of the CPU 51 corresponds to the determination device e14.
 図13は、第1のアンテナA1や第2のアンテナA2の仕様が様々に変わり、その結果として受信状態が変動しても、良好に対応することができる共振周波数調整方法のフローチャートである。以下、図13を用いて動作について説明する。 FIG. 13 is a flowchart of a resonance frequency adjusting method that can satisfactorily cope with the case where the specifications of the first antenna A1 and the second antenna A2 change variously and the reception state fluctuates as a result. Hereinafter, the operation will be described with reference to FIG.
 まずステップS21において共振周波数調整が開始され、次いでステップS22においてドライバ出力設定yを初期化する。このときドライバ出力設定yは、取り得る設定のうち所定の中間値に設定する。例えば、y=0~7の場合は、y=4に設定する。 First, resonance frequency adjustment is started in step S21, and then driver output setting y is initialized in step S22. At this time, the driver output setting y is set to a predetermined intermediate value among possible settings. For example, when y = 0 to 7, y = 4 is set.
 続いてステップS23において、搬送波生成信号CAON=Hにして、無変調の磁界を第1のアンテナA1から出力する。次にステップS24において、スイッチ設定変数x=1、V1測定結果V1D(1)~V1D(m)=0Vに初期化する。 Subsequently, in step S23, the carrier wave generation signal CAON = H is set, and an unmodulated magnetic field is output from the first antenna A1. Next, in step S24, the switch setting variable x = 1 and the V1 measurement results V1D (1) to V1D (m) = 0V are initialized.
 初期化後、ステップS25において、スイッチ設定変数xを1インクリメントして、共振周波数調整回路102を介して第2の共振回路R2の共振周波数を設定し、ステップS26において、受信電圧V1の発生電圧をAD変換器95で測定する。V1電圧値VLVはV1測定結果V1D(x)に格納する。 After initialization, in step S25, the switch setting variable x is incremented by 1, and the resonance frequency of the second resonance circuit R2 is set via the resonance frequency adjustment circuit 102. In step S26, the generated voltage of the reception voltage V1 is set. Measurement is performed by the AD converter 95. The V1 voltage value VLV is stored in the V1 measurement result V1D (x).
 そしてステップS27を通じて、この受信電圧V1の測定を、スイッチ設定変数x=1からx=m(=8)になるまで共振周波数を変えながら測定する。 Then, through step S27, the reception voltage V1 is measured while changing the resonance frequency until the switch setting variable x = 1 to x = m (= 8).
 スイッチ設定変数x=1からx=mまでのV1測定結果V1D(1)~V1D(m)を取得した後、ステップS28において、これらのV1D(1)~V1D(m)すべての結果のうち最大値をとるものをV1D最大値V1D_maxとし、V1D最大値V1D_maxが所定の電圧範囲内かどうかを確認する。所定の範囲は、図12に示すように、上限値はクランプ受信電圧V1clampより一定電圧下のV1上限値V1max、下限値はピーク判別が可能になるV1下限値V1minとする。 After obtaining the V1 measurement results V1D (1) to V1D (m) from the switch setting variable x = 1 to x = m, in step S28, the maximum of all the results of these V1D (1) to V1D (m) The value taking the value is set as the V1D maximum value V1D_max, and it is confirmed whether the V1D maximum value V1D_max is within a predetermined voltage range. In the predetermined range, as shown in FIG. 12, the upper limit value is a V1 upper limit value V1max that is a fixed voltage below the clamp reception voltage V1clamp, and the lower limit value is a V1 lower limit value V1min that enables peak discrimination.
 V1D_maxが、V1下限値V1minからV1上限値V1maxの範囲に入っていない場合は、ステップS29に進んで、V1下限値V1minを下回る下限エラーか、V1上限値V1maxを上回る上限エラーかを判定する。 If V1D_max is not within the range from the V1 lower limit value V1min to the V1 upper limit value V1max, the process proceeds to step S29 to determine whether the lower limit error is lower than the V1 lower limit value V1min or the upper limit error is higher than the V1 upper limit value V1max.
 下限エラーの場合は、ステップS30に進んで、ドライバ出力設定yを1インクリメントして、ステップS24に進み、再度、すべてのスイッチ設定変数xでのV1測定結果V1D(x)を取得し、V1D最大値V1D_maxの範囲確認を行う。 In the case of a lower limit error, the process proceeds to step S30, the driver output setting y is incremented by 1, and the process proceeds to step S24. V1 measurement results V1D (x) for all switch setting variables x are obtained again, and V1D maximum The range of the value V1D_max is confirmed.
 ステップS29の判定で上限エラーの場合は、ステップS31に進んで、ドライバ出力設定yを1デクリメントして、ステップS24に進み、同様に、再度、すべてのスイッチ設定変数xでのV1測定結果V1D(x)を取得し、V1D最大値V1D_maxの範囲確認を行う。 If the upper limit error is determined in step S29, the process proceeds to step S31, the driver output setting y is decremented by 1, and the process proceeds to step S24. Similarly, the V1 measurement results V1D (for all switch setting variables x are again obtained. x) is acquired and the range of the V1D maximum value V1D_max is confirmed.
 一方、ステップS28の判断でV1D最大値V1D_maxが、V1下限値V1minからV1上限値V1maxの範囲に入っている場合は、ステップS32に進んで、V1測定結果V1D(x)が最大になるスイッチ設定変数xを共振周波数最適値best_adjに格納し、共振周波数調整を終了する。 On the other hand, if it is determined in step S28 that the V1D maximum value V1D_max is within the range from the V1 lower limit value V1min to the V1 upper limit value V1max, the process proceeds to step S32 to set the switch that maximizes the V1 measurement result V1D (x). The variable x is stored in the resonance frequency optimum value best_adj, and the resonance frequency adjustment is finished.
 受信電圧V1が適正範囲にないときは、ステップS28→S29→S30またはS31→S24→S25→S26→S27→S28のループを繰り返す。受信電圧V1が上昇から下降に転じると、前記のループを抜け、ステップS28からステップS32へ進む。 When the received voltage V1 is not within the proper range, the loop of step S28 → S29 → S30 or S31 → S24 → S25 → S26 → S27 → S28 is repeated. When the reception voltage V1 changes from rising to falling, the process exits the loop and proceeds from step S28 to step S32.
 上記のフローを行うことで、ドライバ出力設定yのいずれかの設定で、V1下限値V1minからV1上限値V1maxの範囲にV1D最大値V1D_maxが収まるV1測定結果V1D(x)を取得することができ(図12の状態A)、最適のスイッチ設定変数xを共振周波数最適値best_adjに格納することができる。 By performing the above flow, the V1 measurement result V1D (x) in which the V1D maximum value V1D_max falls within the range from the V1 lower limit value V1min to the V1 upper limit value V1max can be acquired by any setting of the driver output setting y. (State A in FIG. 12), the optimum switch setting variable x can be stored in the optimum resonance frequency value best_adj.
 以上の近距離無線通信装置の構成および共振周波数の調整方法によれば、実施例1の効果に加えて、第1のアンテナA1や第2のアンテナA2の仕様が様々に変わり、その結果として受信状態が変動しても、第2のアンテナA2の共振周波数の調整を確実に実施することができる。 According to the configuration of the short-range wireless communication device and the resonance frequency adjusting method described above, in addition to the effects of the first embodiment, the specifications of the first antenna A1 and the second antenna A2 change variously, and as a result, reception is performed. Even if the state fluctuates, the resonance frequency of the second antenna A2 can be adjusted reliably.
 なお、図8の近距離無線通信装置では、共振周波数最適化の判定の基準として、整流器91の出力の受信電圧V1のDC電圧を使用しているが、代わりにシャント回路93に流れる電流を使用してもよい(第5の実施の形態に対応)。 In the short-range wireless communication device of FIG. 8, the DC voltage of the reception voltage V1 output from the rectifier 91 is used as a criterion for determining the resonance frequency, but the current flowing through the shunt circuit 93 is used instead. It may also be possible (corresponding to the fifth embodiment).
 また、図10、図13のフローチャートによる共振周波数自動調整では、変調回路82は無変調の搬送波を出力していたが、一定の変調度を与えるための所定のデータを送信信号TXRDから変調回路82に入力して、一定の変調度で変調された搬送波を出力し、AD変換器95から出力されるV1電圧値VLVの最大値(無変調時)と最小値(変調時)の変動差を測定し、受信電圧V1の変動差が最も大きくなる共振周波数を最適値として調整を行ってもよい(第4の実施の形態に対応)。 In the resonance frequency automatic adjustment according to the flowcharts of FIGS. 10 and 13, the modulation circuit 82 outputs an unmodulated carrier wave. However, predetermined data for giving a certain degree of modulation is transmitted from the transmission signal TXRD to the modulation circuit 82. Is output, and a carrier wave modulated with a certain modulation degree is output, and a difference in fluctuation between the maximum value (no modulation) and the minimum value (during modulation) of the V1 voltage value VLV output from the AD converter 95 is measured. Then, the resonance frequency at which the variation difference of the reception voltage V1 is the largest may be adjusted as an optimum value (corresponding to the fourth embodiment).
 また、図13のフローチャートでは示していないが、ドライバ出力設定yが設定可能最大値(ドライバ83の最大出力設定)で、かつ、そのときのV1測定結果V1D(1)~V1D(m)のすべてがV1minを下回る下限エラーになった場合は、アンテナ接続不良またはNFC-LSI50の故障と判断して、外部I/Fに調整不良結果を出力するか、または不揮発性メモリ(NVM)55に調整不良フラグ等を書き込み、近距離無線通信装置の製造工程の不良スクリーニングに用いてもよい。 Further, although not shown in the flowchart of FIG. 13, the driver output setting y is the maximum settable value (maximum output setting of the driver 83), and all of the V1 measurement results V1D (1) to V1D (m) at that time If the lower limit error is less than V1min, it is determined that the antenna connection is defective or the NFC-LSI 50 is faulty, and the adjustment failure result is output to the external I / F, or the adjustment error to the nonvolatile memory (NVM) 55 A flag or the like may be written and used for defect screening in the manufacturing process of the short-range wireless communication device.
 (第20の実施の形態)
 本実施の形態では、非接触ICカード機能部E2側の第2の共振回路R2ではなく、リーダライタ機能部E1側の第1の共振回路R1の共振周波数を自動調整する態様となっている。所定の電気的情報Si は非接触ICカード機能部E2での受信電圧V1を利用する。
(20th embodiment)
In this embodiment, the resonance frequency of the first resonance circuit R1 on the reader / writer function unit E1 side is automatically adjusted instead of the second resonance circuit R2 on the non-contact IC card function unit E2 side. The predetermined electrical information Si uses the reception voltage V1 at the non-contact IC card function unit E2.
 図14は、本実施の形態の近距離無線通信装置の構成を示すブロック図である。本実施の形態は、第1、第3、第8、第11、第13、第14の実施の形態に対応する。 FIG. 14 is a block diagram showing a configuration of the short-range wireless communication apparatus according to the present embodiment. The present embodiment corresponds to the first, third, eighth, eleventh, thirteenth, and fourteenth embodiments.
 本実施の形態は、非接触ICカード機能部E2側の共振周波数調整回路102を備えておらず、代わりにリーダライタ機能部E1側に共振周波数調整回路101を備えている点が、第19の実施の形態の近距離無線通信装置と異なっている。共振周波数調整回路101は、第1の共振回路R1とリーダライタ機能部E1との間に介挿された状態となっている。CPU51が共振周波数調整回路101を制御する信号がSRON[n:0]となっている。共振周波数調整回路101以外の回路については、第19の実施の形態と同じのため説明を省略する。 The present embodiment does not include the resonance frequency adjustment circuit 102 on the non-contact IC card function unit E2 side, but instead includes the resonance frequency adjustment circuit 101 on the reader / writer function unit E1 side. This is different from the short-range wireless communication apparatus of the embodiment. The resonance frequency adjustment circuit 101 is inserted between the first resonance circuit R1 and the reader / writer function unit E1. A signal for the CPU 51 to control the resonance frequency adjusting circuit 101 is SRON [n: 0]. Circuits other than the resonant frequency adjustment circuit 101 are the same as those in the nineteenth embodiment, and thus description thereof is omitted.
 共振周波数調整回路101は、複数の容量CR0~CRnと、複数のスイッチSR0~SRnとを備えている。容量CRnとスイッチSRnのそれぞれの組は、出力信号TXと受信信号RX間に直列に、容量CRnが共振容量31に並列になるように接続されている。スイッチSR0~SRnのオンオフは、CPU51から出力される制御信号SRON[n:0]によって制御される。なお、nの最小値は0で、この場合は、CR0とSR0のみになる。 The resonance frequency adjusting circuit 101 includes a plurality of capacitors CR0 to CRn and a plurality of switches SR0 to SRn. Each pair of the capacitor CRn and the switch SRn is connected in series between the output signal TX and the reception signal RX so that the capacitor CRn is in parallel with the resonance capacitor 31. ON / OFF of the switches SR0 to SRn is controlled by a control signal SRON [n: 0] output from the CPU 51. The minimum value of n is 0. In this case, only CR0 and SR0 are obtained.
 本実施の形態の共振周波数自動調整の動作は、図11のスイッチ設定変数xとスイッチSCnの対応で、スイッチSCnをスイッチSRnに置き換えれば、図10および図13のフローチャートと同じである。共振周波数調整回路101は、第1の共振回路R1の共振周波数を調整することで、第1のアンテナA1の出力を最大にし、その結果として、非接触ICカード機能部E2の受信電圧V1が最大になるように制御する。 The operation of the automatic resonance frequency adjustment of the present embodiment corresponds to the switch setting variable x and the switch SCn in FIG. 11 and is the same as the flowchart in FIGS. 10 and 13 if the switch SCn is replaced with the switch SRn. The resonance frequency adjustment circuit 101 adjusts the resonance frequency of the first resonance circuit R1 to maximize the output of the first antenna A1, and as a result, the reception voltage V1 of the non-contact IC card function unit E2 is maximized. Control to become.
 以上のようにリーダライタ機能部E1と非接触ICカード機能部E2とを備えた近距離無線通信装置において、共振周波数自動調整に際しては、リーダライタ機能部E1と非接触ICカード機能部E2とを同時的に動作状態に設定して、第1のアンテナA1と第2のアンテナA2とを電磁的に結合し、併せて共振周波数調整回路101も動作状態とするので、外部の非接触ICカードや測定装置を用意すること及び調整・校正などの準備作業を要することなく、自動的に第1のアンテナA1の共振周波数を最適化することができ、近距離無線通信装置にかかる費用の抑制を図ることができる。 As described above, in the short-range wireless communication apparatus including the reader / writer function unit E1 and the non-contact IC card function unit E2, when the resonance frequency is automatically adjusted, the reader / writer function unit E1 and the non-contact IC card function unit E2 are provided. At the same time, the first antenna A1 and the second antenna A2 are electromagnetically coupled together and the resonance frequency adjustment circuit 101 is also in the operation state, so that an external non-contact IC card or The resonance frequency of the first antenna A1 can be automatically optimized without preparing a measurement device and preparation work such as adjustment / calibration, thereby reducing the cost of the short-range wireless communication device. be able to.
 なお、図14のNFC-LSI50では、図8の第2の共振回路R2に対する共振周波数調整回路102を搭載していないが、図14のNFC-LSI50に共振周波数調整回路102を搭載して、第1の共振回路R1と第2の共振回路R2の両方の共振周波数を最適化できるように構成してもよい。この場合、リーダライタ機能部E1における送信能力の過不足を解消して最適化すると同時に、非接触ICカード機能部E2における受信能力の過不足を解消して最適化することができる(第2の実施の形態に対応)。 The NFC-LSI 50 in FIG. 14 does not include the resonance frequency adjustment circuit 102 for the second resonance circuit R2 in FIG. 8, but the NFC-LSI 50 in FIG. You may comprise so that the resonant frequency of both 1 resonance circuit R1 and 2nd resonance circuit R2 can be optimized. In this case, it is possible to optimize by eliminating the excess or deficiency of the transmission capability in the reader / writer function unit E1, and at the same time, it can eliminate and optimize the deficiency of the reception capability in the non-contact IC card function unit E2. Corresponding to the embodiment).
 (第21の実施の形態)
 本実施の形態では、送受信データの正誤判定を通じて共振周波数調整を行うように構成することにより、非接触ICカード機能部E2において特別にAD変換器を搭載しなくてもよいように工夫している。
(Twenty-first embodiment)
In the present embodiment, the configuration is made so that the resonance frequency is adjusted through the right / wrong judgment of the transmitted / received data, so that the AD converter need not be mounted specially in the non-contact IC card function unit E2. .
 本実施の形態は、非接触ICカード機能部E2側の第2の共振回路R2の共振周波数を自動調整する態様となっている。所定の電気的情報Si は、非接触ICカード機能部E2での受信データの正誤判定を利用したものを用いる。本実施の形態は、第6の実施の形態に対応する(図3参照)。 In the present embodiment, the resonance frequency of the second resonance circuit R2 on the non-contact IC card function unit E2 side is automatically adjusted. As the predetermined electrical information Si, information utilizing the correctness determination of received data in the non-contact IC card function unit E2 is used. This embodiment corresponds to the sixth embodiment (see FIG. 3).
 図15は本実施の形態の近距離無線通信装置の構成を示すブロック図である。本実施の形態は、第1、第6、第7、第8、第11、第13、第14の実施の形態に対応する。 FIG. 15 is a block diagram showing the configuration of the short-range wireless communication apparatus of the present embodiment. The present embodiment corresponds to the first, sixth, seventh, eighth, eleventh, thirteenth, and fourteenth embodiments.
 本実施の形態の近距離無線通信装置は、リーダライタ機能部E1側の第1のアンテナA1から非接触ICカード機能部E2側の第2のアンテナA2に向けてデータを送信するようになっている点と、非接触ICカード機能部E2にAD変換器95を備えていない点で、第19の実施の形態の近距離無線通信装置と異なっている。本実施の形態の近距離無線通信装置は、第19の実施の形態のように非接触ICカード機能部E2の受信電圧V1で判定するのではなく、リーダライタ機能部E1からデータを送信し、非接触ICカード機能部E2でそのデータを受信し、送信したデータと受信したデータが一致するか否か、つまり受信データの正誤を通じて共振周波数の最適値を自動調整する。その他の構成は第19の実施の形態と同じのため、説明を省略する。 The short-range wireless communication apparatus according to the present embodiment transmits data from the first antenna A1 on the reader / writer function unit E1 side toward the second antenna A2 on the non-contact IC card function unit E2 side. And the point that the non-contact IC card function unit E2 is not provided with the AD converter 95 is different from the short-range wireless communication apparatus of the nineteenth embodiment. The short-range wireless communication apparatus according to the present embodiment transmits data from the reader / writer function unit E1 instead of using the reception voltage V1 of the non-contact IC card function unit E2 as in the nineteenth embodiment. The non-contact IC card function unit E2 receives the data, and automatically adjusts the optimum value of the resonance frequency through whether or not the transmitted data matches the received data, that is, whether the received data is correct or incorrect. Since other configurations are the same as those in the nineteenth embodiment, description thereof is omitted.
 図16、図17を用いて、本実施の形態の近距離無線通信装置の共振周波数自動調整の動作を説明する。図16は共振周波数自動調整の動作を示すフローチャートである。また、図17は受信データの正誤結果の例を示す表である。 The operation of the automatic resonance frequency adjustment of the short-range wireless communication device of this embodiment will be described with reference to FIGS. FIG. 16 is a flowchart showing the operation of automatic resonance frequency adjustment. FIG. 17 is a table showing examples of correct / incorrect results of received data.
 図16のフローチャートについて、ドライバ83の出力設定や共振周波数調整回路102の共振周波数設定など、第19の実施の形態の図13のフローチャートと同じ動作を行う部分については、説明を簡略化する。 In the flowchart of FIG. 16, description of parts that perform the same operations as the flowchart of FIG. 13 of the nineteenth embodiment, such as the output setting of the driver 83 and the resonance frequency setting of the resonance frequency adjusting circuit 102, will be simplified.
 まずステップS41において共振周波数調整が開始され、次いでステップS42においてドライバ出力設定yを中間値に初期化し、ステップS43において搬送波生成信号CAON=Hにして、磁界をオンする。次にステップS44において、スイッチ設定変数x=1に初期化し、また、受信したデータの正誤結果を格納する変数、データ正誤結果D(x)のすべて、D(1)~D(m)=NGに初期化する。初期化後、ステップS45において、スイッチ設定変数xを1インクリメントし、ステップS46において、リーダライタ機能部E1から所定のチェックデータを出力する。具体的には、CPU51から所定のチェックデータをTXRDに出力して、変調回路82によって所定の変調度でASK変調された変調信号S1を出力し、ドライバ83で第1のアンテナA1に送信信号TXを送信する。 First, resonance frequency adjustment is started in step S41, then driver output setting y is initialized to an intermediate value in step S42, and the carrier wave generation signal CAON = H is set in step S43 to turn on the magnetic field. Next, in step S44, the switch setting variable x = 1 is initialized, and the variable for storing the correct / incorrect result of the received data, the data correct / incorrect result D (x), D (1) to D (m) = NG Initialize to. After initialization, the switch setting variable x is incremented by 1 in step S45, and predetermined check data is output from the reader / writer function unit E1 in step S46. Specifically, the CPU 51 outputs predetermined check data to the TXRD, outputs a modulation signal S1 ASK-modulated by the modulation circuit 82 with a predetermined modulation degree, and the driver 83 transmits the transmission signal TX to the first antenna A1. Send.
 次いでステップS47において、送信したチェックデータは、第1のアンテナA1と第2のアンテナA2の電磁誘導により、非接触ICカード機能部E2に受信される。具体的には、ASK変調された搬送波を整流器91によって整流し、整流後の受信電圧V1の電圧変動を復調回路92によってデジタルの受信データ信号RXCDに復調してCPU51に入力する。この復調回路92を活用させている点が本実施例3の特徴となっている。 Next, in step S47, the transmitted check data is received by the non-contact IC card function unit E2 by electromagnetic induction of the first antenna A1 and the second antenna A2. Specifically, the ASK-modulated carrier wave is rectified by the rectifier 91, and the voltage fluctuation of the rectified reception voltage V <b> 1 is demodulated into a digital reception data signal RXCD by the demodulation circuit 92 and input to the CPU 51. The feature of the third embodiment is that the demodulation circuit 92 is utilized.
 CPU51は、リーダライタ機能部E1から送信した所定のチェックデータと非接触ICカード機能部E2が受信したデータが一致するか否かをチェックして、OK(一致)かNG(不一致)かをデータ正誤結果D(x)に格納する。 The CPU 51 checks whether or not the predetermined check data transmitted from the reader / writer function unit E1 matches the data received by the non-contact IC card function unit E2, and determines whether the data is OK (match) or NG (not match). Store in correct / wrong result D (x).
 そしてステップS48を通じて、このチェックデータの送受信、正誤判定を、スイッチ設定変数x=1からx=mになるまで共振周波数を変えながら実施する。 Then, through step S48, the transmission / reception of the check data and the correctness / incorrectness determination are performed while changing the resonance frequency until the switch setting variable x = 1 to x = m.
 スイッチ設定変数x=1からx=mまでのデータ正誤結果D(1)~D(m)を取得した後、ステップS49において、これらの結果すべてがNG、またはすべてOKかどうかを確認する。 After acquiring the data correct / incorrect results D (1) to D (m) from the switch setting variable x = 1 to x = m, it is checked in step S49 whether all of these results are NG or all are OK.
 ここで、理解を容易にするために、図17(m=8の場合)を用いて動作の一例を説明する。データ正誤結果D(1)~D(8)のすべてがNGの場合は結果Cとなり、すべてOKの場合は結果Bとなる。 Here, in order to facilitate understanding, an example of the operation will be described with reference to FIG. 17 (in the case of m = 8). If all of the data correct / incorrect results D (1) to D (8) are NG, the result is C, and if all are OK, the result is B.
 すべてがNGの場合の結果Cが検出されたときは、出力を上げる。その結果として、例えば、図17の結果Aに示すように、D(1)、D(5)~D(8)はNGのままで、D(2),D(3),D(4)がOKになったとする。これは、D(1)、D(5)~D(8)では、依然として共振周波数の設定が不十分で、十分な信号強度の受信電圧V1が得られていないが、出力を上げた結果、D(2)~D(4)では、共振周波数の設定が良好になり、復調回路92の復調に必要な信号強度の受信電圧V1が得られたことを意味する。データ正誤結果D(1)~D(8)のすべてがNGの状態からいずれかのデータ正誤結果がOKに転じれば、それは、データ正誤結果D(1)~D(8)のすべてがNGまたはすべてがOKでない状態である。データ正誤結果がOKに転じるのがスイッチ設定変数xがいずれの場合であるかは、様々に変化する。また、データ正誤結果がOKに転じるときのスイッチ設定変数xの個数も様々に変化する。図17に示す結果Aは一例に過ぎない。 When the result C when all are NG is detected, the output is increased. As a result, for example, as shown in the result A of FIG. 17, D (1), D (5) to D (8) remain NG, and D (2), D (3), D (4) Suppose that is OK. In D (1) and D (5) to D (8), the resonance frequency is still insufficiently set and the reception voltage V1 having sufficient signal strength is not obtained. However, as a result of increasing the output, In D (2) to D (4), the setting of the resonance frequency is good, which means that the reception voltage V1 having the signal strength necessary for the demodulation of the demodulation circuit 92 is obtained. If any of the data correct / incorrect results D (1) to D (8) is changed from NG to any OK result, it means that all of the data correct / incorrect results D (1) to D (8) are NG. Or all are not OK. Which of the switch setting variable x causes the data correct / incorrect result to turn into various changes. Further, the number of switch setting variables x when the data correct / incorrect result is changed to OK changes variously. The result A shown in FIG. 17 is only an example.
 逆に、すべてがOKの場合の結果Bが検出されたときは、出力を下げる。その結果として、例えば、図17の結果Aに示すように、D(1)、D(5)~D(8)はNGのままで、D(2),D(3),D(4)がOKになったとする。データ正誤結果D(1)~D(8)のすべてがOKの状態からいずれかのデータ正誤結果がNGに転じれば、それは、データ正誤結果D(1)~D(8)のすべてがNGまたはすべてがOKでない状態である。データ正誤結果がNGに転じるのがスイッチ設定変数xがいずれの場合であるかは、様々に変化する。また、データ正誤結果がNGに転じるときのスイッチ設定変数xの個数も様々に変化する。図17に示す結果Aは一例に過ぎない。 Conversely, when the result B is detected when everything is OK, the output is lowered. As a result, for example, as shown in the result A of FIG. 17, D (1), D (5) to D (8) remain NG, and D (2), D (3), D (4) Suppose that is OK. If any of the data correct / incorrect results D (1) to D (8) is OK from any of the data correct / incorrect results D (1) to D (8), it means that all of the data correct / incorrect results D (1) to D (8) are NG. Or all are not OK. Which of the switch setting variable x causes the data correct / incorrect result to turn to NG varies in various ways. Further, the number of switch setting variables x when the data correct / incorrect result is changed to NG also changes variously. The result A shown in FIG. 17 is only an example.
 いずれにしても、データ正誤結果D(1)~D(8)のすべてがNGの状態またはすべてがOKの状態から、そうでない状態に転じたときは、出力を上げる処理または出力を下げる処理を終える。これで、最適解を求める条件がそろうことになる。なお、最初のステップS49の判断でNoとなれば、それで最適解を求める条件がそろっていることになり、出力を上げる処理または出力を下げる処理は行わないでよい。 In any case, when all of the data correct / incorrect results D (1) to D (8) change from the NG state or the all OK state to the other state, the process of increasing the output or the process of decreasing the output is performed. Finish. With this, the conditions for obtaining the optimal solution are met. If the determination in the first step S49 is No, it means that the conditions for obtaining the optimum solution are complete, and the process for increasing the output or the process for decreasing the output may not be performed.
 動作例の説明を終わり、引き続いて図16のフローチャートの説明を行う。データ正誤結果D(1)~D(m)すべてがNGの場合は、ステップS50に進み受信電圧V1が不十分のため、さらにステップS51に進んで、ドライバ出力設定yを1インクリメントして、ステップS44に進み、再度、すべてのスイッチ設定変数xでのデータ正誤結果D(x)を取得し、データ正誤結果D(1)~D(m)の結果確認を行う。 The explanation of the operation example is completed, and then the flowchart of FIG. 16 is explained. If all the data correct / incorrect results D (1) to D (m) are NG, the process proceeds to step S50, and the received voltage V1 is insufficient, so the process further proceeds to step S51 to increment the driver output setting y by 1, In S44, data correct / incorrect results D (x) for all switch setting variables x are acquired again, and the results of data correct / incorrect results D (1) to D (m) are confirmed.
 また、データ正誤結果D(1)~D(m)すべてがOKの場合は、ステップS50に進みすべてのスイッチ設定変数xにおいて受信電圧V1が十分あるため、さらにステップS52に進んで、ドライバ出力設定yを1デクリメントして、ステップS44に進み、再度、すべてのスイッチ設定変数xでのデータ正誤結果D(x)を取得し、データ正誤結果D(1)~D(m)の結果確認を行う。 If all the data correct / incorrect results D (1) to D (m) are OK, the process proceeds to step S50, and the received voltage V1 is sufficient for all the switch setting variables x. y is decremented by 1, and the process proceeds to step S44. The data correct / incorrect results D (x) for all the switch setting variables x are obtained again, and the results of the data correct / incorrect results D (1) to D (m) are confirmed. .
 ステップS49の判断でデータ正誤結果D(1)~D(m)のすべてがNGまたはすべてがOKではない場合は、ステップS53に進んで、D(x)=OKとなるxの範囲の中間値を共振周波数最適値best_adjに格納して、共振周波数調整を終了する。 If all of the data correct / incorrect results D (1) to D (m) are NG or not all determined in step S49, the process proceeds to step S53, and the intermediate value in the range of x where D (x) = OK. Is stored in the resonance frequency optimum value best_adj, and the resonance frequency adjustment is finished.
 データ正誤結果D(1)~D(m)のすべてがNGまたはすべてがOKであるとき(変化がないとき)は、ステップS49→S50→S51またはS52→S44→S45→S46→S47→S48→S49のループを繰り返す。繰り返しは1回以上である。データ正誤結果D(1)~D(m)のすべてがNGまたはすべてがOKでない状態に転じると(変化に特徴が現れたとき)、前記のループを抜け、ステップS49からステップS53へ進む。 When all of the data correct / incorrect results D (1) to D (m) are NG or all are OK (no change), step S49 → S50 → S51 or S52 → S44 → S45 → S46 → S47 → S48 → The loop of S49 is repeated. Repeat one or more times. When all of the data correct / incorrect results D (1) to D (m) are NG or all are not OK (when a characteristic appears in the change), the process goes out of the loop and proceeds from step S49 to step S53.
 データ正誤結果D(1)~D(m)のすべてがNGまたはすべてがOKではない状態からいずれかがOKでいずれかがNGの状態へと遷移したとき、状態遷移に該当するデータ正誤結果D(i)の個数は様々に変化する。その個数が奇数のときは、中央値を中間値として採用する。個数が3つの場合は2番目のものを採用し、5つの場合は3番目のものを採用し、7つの場合は5番目のものを採用する。その個数が偶数のときは、中央に位置する2つのうちいずれか一方を採用する。 When all of the data correct / incorrect results D (1) to D (m) are NG or all are not OK and one of them is OK and one of them is NG, the data correct / incorrect result D corresponding to the state transition The number of (i) varies variously. When the number is an odd number, the median is adopted as the intermediate value. When the number is three, the second one is adopted, when the number is five, the third one is adopted, and when the number is seven, the fifth one is adopted. When the number is even, either one of the two located in the center is adopted.
 図17の結果Aの例では、x=2の場合のD(2)=OK、x=3の場合のD(3)=OK、x=4の場合のD(4)=OKで、その他がNGであるので、x=2,3,4の中間値をとって、x=3を共振周波数最適値best_adjに格納する。D(x)=OKとなるxの範囲の中間値を設定する理由は、その状態が最も受信電圧V1が大きい状態となるためである。 In the example of the result A in FIG. 17, D (2) = OK when x = 2, D (3) = OK when x = 3, D (4) = OK when x = 4, and others. Is NG, an intermediate value of x = 2, 3, and 4 is taken, and x = 3 is stored in the resonance frequency optimum value best_adj. The reason why the intermediate value in the range of x where D (x) = OK is set is that this state is the state where the reception voltage V1 is the highest.
 他の例として、D(3)=OK、D(4)=OK、D(5)=OKで、その他がNGであれば、x=4をbest_adjに格納する。 As another example, if D (3) = OK, D (4) = OK, D (5) = OK and the others are NG, x = 4 is stored in best_adj.
 また、例えば、D(3)=OK、D(4)=OK、D(5)=OK、D(6)=OK、D(7)=OKで、その他がNGであれば、x=5をbest_adjに格納する。 For example, if D (3) = OK, D (4) = OK, D (5) = OK, D (6) = OK, D (7) = OK, and the others are NG, x = 5 Is stored in best_adj.
 また、例えば、1つだけD(6)=OKで、その他がNGであれば、x=6をbest_adjに格納する。 Also, for example, if only one D (6) = OK and the others are NG, x = 6 is stored in best_adj.
 上記のフローを行うことで、ドライバ出力設定yのいずれかの設定で、OK、NGの両方の結果を含んだデータ正誤結果D(x)を取得することができ、最適のスイッチ設定変数xを共振周波数最適値best_adjに格納することができる。 By performing the above flow, the data correct / incorrect result D (x) including both OK and NG results can be acquired with any setting of the driver output setting y, and the optimum switch setting variable x is set. The resonance frequency optimum value best_adj can be stored.
 本実施の形態の近距離無線通信装置の構成によれば、外部のリーダライタ装置や測定装置を用いることなく近距離無線通信装置自身で、自動かつ自身の装置のみで、第2のアンテナA2の共振周波数を最適化することが可能である。また、第1のアンテナA1や第2のアンテナA2の仕様が様々に変わり、その結果として受信状態が変動しても、第2のアンテナA2の共振周波数の調整を確実に実施することができる。 According to the configuration of the short-range wireless communication device of the present embodiment, the second antenna A2 can be automatically and only the own device without using an external reader / writer device or measurement device. It is possible to optimize the resonance frequency. Moreover, even if the specifications of the first antenna A1 and the second antenna A2 change variously and the reception state fluctuates as a result, the resonance frequency of the second antenna A2 can be reliably adjusted.
 また、本実施の形態の近距離無線通信装置は、非接触ICカード機能部E2が本来的に有している復調回路92を利用し、その復調回路92で復調した結果の受信データ信号RXCDを所定の電気的情報Si として活用するところに特徴がある。その結果、整流器91の出力電圧V1の測定で判定する実施例1の場合に必要としたAD変換器95が不要となる。すなわち、より小規模な回路構成で共振特性調整を実現することができ、費用をさらに抑制できる効果がある。 Further, the short-range wireless communication apparatus of the present embodiment uses the demodulation circuit 92 inherently possessed by the non-contact IC card function unit E2, and receives the received data signal RXCD as a result of demodulation by the demodulation circuit 92. It is characterized in that it is used as predetermined electrical information SiS. As a result, the AD converter 95 required in the case of the first embodiment determined by measuring the output voltage V1 of the rectifier 91 becomes unnecessary. That is, resonance characteristic adjustment can be realized with a smaller circuit configuration, and the cost can be further suppressed.
 上記において、非接触ICカード機能部E2が受信したチェックデータの正誤判定に際して、リーダライタ機能部E1が送信したデータとの一致比較としているため、チェックデータに含まれるパリティやCRC(Cyclic Redundancy Check)を用いたチェックの場合に比べて確実にチェックすることができる。もっとも、本発明は、チェックデータの正誤判定に際して、一致比較に代えて、パリティやCRCを用いたチェックの場合も含み得るものとする。 In the above description, when checking whether the check data received by the non-contact IC card function unit E2 is correct or incorrect, the comparison with the data transmitted by the reader / writer function unit E1 is performed. Therefore, the parity included in the check data and CRC (Cyclic Redundancy Check) It is possible to check more reliably than in the case of checking using. However, the present invention can include the case of checking using parity or CRC instead of matching comparison when determining the correctness of check data.
 また、リーダライタ機能部E1から例えばISO/IEC14443TypeBのリクエストコマンドREQBを送信し、非接触ICカード機能部E2からのレスポンスATQB受信の有無(コマンド送信とレスポンス受信の有無)によって判別する場合、仮にNFC-LSI50の近くに別の非接触ICカードが存在したとしても、同じNFC-LSI50の非接触ICカード機能部E2の受信データで判別するため、確実にNFC-LSI50自身の第2のアンテナA2を調整することができる。もっとも、本発明は、チェックデータの正誤判定に際して、一致比較に代えて、コマンド送信とレスポンス受信の有無を用いたチェックの場合も含み得るものとする。 Further, when the reader / writer function unit E1 transmits, for example, a request command REQB of ISO / IEC14443TypeB, and it is determined based on the presence / absence of a response ATQB from the non-contact IC card function unit E2 (command transmission and response reception), it is assumed that NFC -Even if another non-contact IC card exists in the vicinity of the LSI 50, the second antenna A2 of the NFC-LSI 50 itself is surely set in order to discriminate by the received data of the non-contact IC card function unit E2 of the same NFC-LSI 50. Can be adjusted. However, the present invention may include a case of checking using command transmission and presence / absence of response instead of matching comparison when determining whether the check data is correct or incorrect.
 また、上記の説明では、共振周波数自動調整する際の、変調回路82のASK変調の変調度や、使用するプロトコルについて特定していないが、例えばISO/IEC14443TypeAのようなASK100%方式ではなく、ISO/IEC14443TypeBや、JISX6319-4といったASK10%程度のプロトコルの方が、受信電圧V1の信号強度が弱く、復調回路92に対して厳しい条件であるため、実施例3の共振周波数調整方法に適している。 In the above description, the modulation degree of the ASK modulation of the modulation circuit 82 and the protocol to be used at the time of automatically adjusting the resonance frequency are not specified. However, for example, ISO is not an ASK100% system such as ISO / IEC14443TypeA, but ISO A protocol of about 10% ASK such as / IEC14443TypeB or JISX6319-4 is suitable for the resonance frequency adjustment method of the third embodiment because the signal strength of the reception voltage V1 is weaker and the conditions are severer with respect to the demodulation circuit 92. .
 また、変調回路82において、さらにASKの変調度を微調整できる機構を備え、共振周波数自動調整時は、通常使用時とは異なる変調度を用いてもよい。例えば、共振周波数自動調整する際、プロトコルとしてISO/IEC14443TypeBを使用した場合でも、通常のNFCのリーダモードで使用するようなTypical条件のASK10%ではなく、ASK5%等の厳しい条件にして、共振周波数自動調整を行ってもよい。これは、上述の(9)の変調度調整器e15に対応している(図5参照)。 Further, the modulation circuit 82 may further include a mechanism capable of finely adjusting the modulation degree of ASK, and a modulation degree different from that during normal use may be used during automatic adjustment of the resonance frequency. For example, when the resonance frequency is automatically adjusted, even if ISO / IEC14443 Type B is used as a protocol, the resonance frequency is set to a severe condition such as ASK 5% instead of ASK 10% of the typical condition used in the reader mode of the normal NFC. Automatic adjustment may be performed. This corresponds to the above-described modulation degree adjuster e15 of (9) (see FIG. 5).
 また、変調回路82の変調度を微調整するのではなく、復調回路92の復調感度を微調整してもよいし(上述の第10の実施の形態に対応、図6参照)、さらに変調回路82の変調度と復調回路92の復調感度との両方を微調整してもよい。 Further, instead of finely adjusting the modulation degree of the modulation circuit 82, the demodulation sensitivity of the demodulation circuit 92 may be finely adjusted (corresponding to the above tenth embodiment, see FIG. 6), and further the modulation circuit Both the modulation degree 82 and the demodulation sensitivity of the demodulation circuit 92 may be finely adjusted.
 また、図16のフローチャートでは示していないが、ドライバ出力設定yが設定可能最大値(ドライバ83の最大出力設定)で、かつ、そのときのデータ正誤結果D(1)~D(m)すべてがNGになった場合は、アンテナ接続不良またはNFC-LSI1の故障と判断して、外部I/Fに調整不良結果を出力するか、または不揮発性メモリ(NVM)55に調整不良フラグ等を書き込み、近距離無線通信装置の製造工程の不良スクリーニングに用いてもよい。 Although not shown in the flowchart of FIG. 16, the driver output setting y is the maximum settable value (maximum output setting of the driver 83), and all the data correct / incorrect results D (1) to D (m) at that time are If it becomes NG, it is determined that the antenna connection is defective or the NFC-LSI 1 is defective, and the adjustment failure result is output to the external I / F, or the adjustment failure flag is written in the nonvolatile memory (NVM) 55, You may use for the defect screening of the manufacturing process of a near field communication apparatus.
 (第22の実施の形態)
 本実施の形態の近距離無線通信装置は、NFC-LSI50の第1のアンテナ(リーダライタアンテナ)の共振回路の共振周波数自動調整に関する。共振周波数の調整は非接触ICカード機能部の受信データの正誤判定によって行う。
(Twenty-second embodiment)
The short-range wireless communication apparatus according to the present embodiment relates to automatic adjustment of the resonance frequency of the resonance circuit of the first antenna (reader / writer antenna) of the NFC-LSI 50. The resonance frequency is adjusted by determining whether the received data of the non-contact IC card function unit is correct or incorrect.
 図18は、本実施の形態の近距離無線通信装置の構成を示すブロック図である。本実施の形態も、第21の実施の形態と同様、第1、第6、第7、第8、第11、第13、第14、第15の実施の形態に対応する。 FIG. 18 is a block diagram showing a configuration of the short-range wireless communication apparatus according to the present embodiment. The present embodiment also corresponds to the first, sixth, seventh, eighth, eleventh, thirteenth, fourteenth, and fifteenth embodiments, as in the twenty-first embodiment.
 本実施の形態の近距離無線通信装置は、AD変換器95を備えていない点で、第20の実施の形態の近距離無線通信装置と異なっている。本実施の形態の近距離無線通信装置は、非接触ICカード機能部E2の共振周波数調整回路102を備えておらず、代わりにリーダライタ機能部E1に共振周波数調整回路101を備えている点が、第19の実施の形態の近距離無線通信装置と異なっている。共振周波数調整回路101の構成は、図14に示した第20の実施の形態の近距離無線通信装置と同じであり、説明を省略する。 The short-range wireless communication apparatus of this embodiment is different from the short-range wireless communication apparatus of the twentieth embodiment in that the AD converter 95 is not provided. The short-range wireless communication apparatus according to the present embodiment does not include the resonance frequency adjustment circuit 102 of the non-contact IC card function unit E2, but instead includes the resonance frequency adjustment circuit 101 in the reader / writer function unit E1. This is different from the short-range wireless communication apparatus of the nineteenth embodiment. The configuration of the resonance frequency adjustment circuit 101 is the same as that of the short-range wireless communication apparatus according to the twentieth embodiment shown in FIG.
 本実施の形態の共振周波数自動調整の動作は、図11のスイッチ設定変数xとスイッチSCnの対応で、スイッチSCnをスイッチSRnに置き換えれば、図16のフローチャートと同じであり、共振周波数調整回路101は、第1の共振回路R1の共振周波数を調整することで、第1のアンテナA1の出力を最大にし、その結果として、データ正誤結果D(x)がOKとなるスイッチ設定変数xの中間値、すなわち受信電圧V1が最大になるように制御する。 The resonance frequency automatic adjustment operation of the present embodiment corresponds to the switch setting variable x in FIG. 11 and the switch SCn, and is the same as the flowchart in FIG. 16 if the switch SCn is replaced with the switch SRn. Adjusts the resonance frequency of the first resonance circuit R1 to maximize the output of the first antenna A1, and as a result, the intermediate value of the switch setting variable x for which the data correct / incorrect result D (x) is OK. That is, control is performed so that the reception voltage V1 is maximized.
 以上のような近距離無線通信装置の構成によれば、外部の非接触ICカードや測定装置を用いることなく、自動的に第1のアンテナA1の共振周波数を最適化することが可能である。また、第1のアンテナA1や第2のアンテナA2の仕様が様々に変わり、その結果として受信状態が変動しても、第1のアンテナA1の共振周波数の調整を確実に実施することができる。 According to the configuration of the short-range wireless communication apparatus as described above, it is possible to automatically optimize the resonance frequency of the first antenna A1 without using an external non-contact IC card or a measurement apparatus. Moreover, even if the specifications of the first antenna A1 and the second antenna A2 change variously and the reception state fluctuates as a result, the resonance frequency of the first antenna A1 can be adjusted reliably.
 なお、図18のNFC-LSI50では、図15の第2のアンテナA2の共振周波数調整回路102を搭載していないが、図18のNFC-LSI50に共振周波数調整回路102を搭載して、第1のアンテナA1と第2のアンテナA2両方のアンテナを最適化できるように構成してもよい。 The NFC-LSI 50 of FIG. 18 does not include the resonance frequency adjustment circuit 102 of the second antenna A2 of FIG. 15. However, the NFC-LSI 50 of FIG. The antenna A1 and the second antenna A2 may be configured to be optimized.
 また、第19~第22の実施の形態を通じて、アンテナの共振周波数調整は共振回路の容量の増減によって実施しているが、代わりにインダクタンスの増減によって共振周波数の調整を行ってもよい。また、共振回路の共振周波数調整の代わりに、共振回路の抵抗を増減することによって、クオリティファクタ(Q値)の調整を行ってもよい。 Further, through the nineteenth to twenty-second embodiments, the resonance frequency of the antenna is adjusted by increasing / decreasing the capacity of the resonance circuit. Alternatively, the resonance frequency may be adjusted by increasing / decreasing the inductance. Instead of adjusting the resonance frequency of the resonance circuit, the quality factor (Q value) may be adjusted by increasing or decreasing the resistance of the resonance circuit.
 また、第19~第22の実施の形態を通じて、本共振周波数自動調整は、製品の製造時のみ実施し、製造時に得られた調整結果(スイッチSC0~SCn、SR0~SRnの状態)は不揮発性メモリ(NVM)55に格納し、通常の動作時は、不揮発性メモリ(NVM)55に格納したデータを読み出し設定するように構成してもよい。また、逆に、本共振周波数自動調整は、搭載製品(例えば携帯電話)出荷後でも、例えば電源スイッチオンした後のスタートアップ時に毎回、共振周波数自動調整を実施するように構成してもよい。この場合、使用開始の都度、温度条件等も含めて使用環境に合わせて共振周波数を最適化できるため、近距離無線通信装置の通信距離をさらに最適化できるという効果がある。 Through the nineteenth to twenty-second embodiments, this resonance frequency automatic adjustment is performed only at the time of product manufacture, and the adjustment results obtained at the time of manufacture (states of switches SC0 to SCn, SR0 to SRn) are nonvolatile. The data stored in the memory (NVM) 55 may be configured to read and set data stored in the nonvolatile memory (NVM) 55 during normal operation. Conversely, this automatic resonance frequency automatic adjustment may be configured such that the resonance frequency automatic adjustment is performed every time, for example, at the start-up after the power switch is turned on, even after the mounted product (for example, a mobile phone) is shipped. In this case, each time the use is started, the resonance frequency can be optimized in accordance with the use environment including the temperature condition and the like, so that the communication distance of the short-range wireless communication device can be further optimized.
 また、第19~第22の実施の形態を通じて、NFC-LSI50は、CPU51とROM53、RAM54を搭載し、ROM53に共振周波数自動調整のプログラムを格納する構成であるが、これらCPU、ROM、RAMを使用せず、すべてロジック回路で構成してもよい。したがって、NFC-LSI50は、CPU、ROM、RAMなしの構成であってもよい。 Further, through the nineteenth to twenty-second embodiments, the NFC-LSI 50 has a configuration in which a CPU 51, a ROM 53, and a RAM 54 are mounted, and a program for automatic resonance frequency adjustment is stored in the ROM 53. You may comprise all with a logic circuit, without using. Therefore, the NFC-LSI 50 may be configured without a CPU, ROM, or RAM.
 また、本発明の近距離無線通信装置は、図7で示した携帯電話だけでなく、リーダライタ装置、パーソナルコンピュータ、各種AV(Audio and Visual)機器、各種携帯機器、カード媒体等、多種多様の製品に適用することができる。 The short-range wireless communication device of the present invention is not limited to the mobile phone shown in FIG. 7, but a wide variety of devices such as reader / writer devices, personal computers, various AV (Audio and Visual) devices, various portable devices, card media, and the like. Can be applied to products.
 なお、上記において複数の実施の形態について説明したが、本発明の趣旨を逸脱しない範囲で、複数の実施例における各構成要素を任意に組み合わせてもよい。 In addition, although several embodiment was demonstrated in the above, you may combine each component in a some Example arbitrarily in the range which does not deviate from the meaning of this invention.
 本発明は、リーダライタ機能部と非接触ICカード機能部とを備えた近距離無線通信装置において共振周波数等の共振特性を調整するに際して、当該の近距離無線通信装置とは別の機器(リーダライタ装置や非接触ICカードの基準カードなど)を必要とせず、当該の近距離無線通信装置だけで調整を完結できるようにするための技術としてすぐれたものであり、特にはNFC規格に対応した非接触通信装置として有用である。 The present invention provides a device (reader) different from a short-range wireless communication device when adjusting resonance characteristics such as a resonance frequency in a short-range wireless communication device including a reader / writer function unit and a non-contact IC card function unit. It is an excellent technology that enables the adjustment to be completed only by the short-range wireless communication device without the need for a writer device or a contactless IC card reference card, and in particular, corresponds to the NFC standard. It is useful as a non-contact communication device.
 A1 第1のアンテナ(リーダライタアンテナ)
 A2 第2のアンテナ(カードアンテナ)
 CCn,CRn 容量
 E1 リーダライタ機能部
 E2 非接触ICカード機能部
 E3 共振回路調整部
 R1 第1の共振回路
 R2 第2の共振回路
 SCn,SRn スイッチ
 Son 所定の起動信号
 Sac 交流信号
 Si  所定の電気的情報
 e11 変調回路
 e12 復調回路
 e13 出力調整器
 e14 判定器
 e15 変調度調整器
 e21 整流器
 e22 復調回路
 e23 負荷変調部
 e24 AD変換器
 e25 シャント回路
 e26 復調感度調整器
 e27 判定器
 1 携帯電話
 2 非接触ICカード用のリーダライタ装置
 3 非接触ICカード
 31,41 共振容量
 50 NFC-LSI
 51 CPU
 52 I/F
 53 ROM
 54 RAM
 55 不揮発性メモリ(NVM)
 60 UICC
 70 アプリケーションプロセッサ
 81 搬送波生成回路
 82 変調回路
 83 ドライバ(出力調整器)
 84 復調回路
 91 整流器
 93 シャント回路
 94 ロードスイッチ
 95 AD変換器(ADC)
 101,102 共振周波数調整回路(共振回路調整部の例)
A1 First antenna (reader / writer antenna)
A2 Second antenna (card antenna)
CCn, CRn Capacitance E1 Reader / Writer Function Unit E2 Contactless IC Card Function Unit E3 Resonant Circuit Adjustment Unit R1 First Resonant Circuit R2 Second Resonant Circuit SCn, SRn Switch Son Predetermined Start Signal Sac AC Signal Si Predetermined Electrical Information e11 Modulator circuit e12 Demodulator circuit e13 Output adjuster e14 Judger e15 Modulation degree adjuster e21 Rectifier e22 Demodulator circuit e23 Load modulator e24 AD converter e25 Shunt circuit e26 Demodulation sensitivity adjuster e27 Judger 1 Mobile phone 2 Contactless IC Card reader / writer 3 Non-contact IC card 31, 41 Resonant capacity 50 NFC-LSI
51 CPU
52 I / F
53 ROM
54 RAM
55 Nonvolatile memory (NVM)
60 UICC
70 Application Processor 81 Carrier Wave Generation Circuit 82 Modulation Circuit 83 Driver (Output Regulator)
84 Demodulation circuit 91 Rectifier 93 Shunt circuit 94 Load switch 95 AD converter (ADC)
101, 102 Resonance frequency adjustment circuit (example of resonance circuit adjustment unit)

Claims (18)

  1.  第1のアンテナを含む第1の共振回路と、
     所定の起動信号によって所定の出力の交流信号を発生し前記第1の共振回路に供給するリーダライタ機能部と、
     第2のアンテナを含み、前記第1のアンテナと前記第2のアンテナとの間の電磁誘導を介して前記第1の共振回路に同調する第2の共振回路と、
     前記第2の共振回路の同調によって所定の電気的情報を発生する非接触ICカード機能部と、
     前記非接触ICカード機能部に発生する所定の電気的情報を基に、前記第1の共振回路または前記第2の共振回路の共振特性を調整する共振回路調整部と、
     を備えた近距離無線通信装置。
    A first resonant circuit including a first antenna;
    A reader / writer function unit that generates an AC signal having a predetermined output in response to a predetermined activation signal and supplies the AC signal to the first resonance circuit;
    A second resonant circuit including a second antenna and tuned to the first resonant circuit via electromagnetic induction between the first antenna and the second antenna;
    A non-contact IC card function unit that generates predetermined electrical information by tuning the second resonant circuit;
    A resonance circuit adjustment unit that adjusts resonance characteristics of the first resonance circuit or the second resonance circuit based on predetermined electrical information generated in the non-contact IC card function unit;
    A short-range wireless communication device.
  2.  前記共振回路調整部は、前記非接触ICカード機能部に発生する所定の電気的情報を基に、前記第1の共振回路と前記第2の共振回路の両方の共振特性を調整するように構成されている、
     請求項1の近距離無線通信装置。
    The resonance circuit adjustment unit is configured to adjust resonance characteristics of both the first resonance circuit and the second resonance circuit based on predetermined electrical information generated in the non-contact IC card function unit. Being
    The near field communication apparatus according to claim 1.
  3.  前記リーダライタ機能部は、前記所定の出力の交流信号として無変調の一定の強度の交流信号を発生するように構成され、
     前記非接触ICカード機能部は、前記第2の共振回路に接続の整流器に接続されたAD変換器を備え、前記所定の電気的情報として、前記整流器の出力側に現れる電圧を前記AD変換器でデジタル変換したものを用いる、
     請求項1の近距離無線通信装置。
    The reader / writer function unit is configured to generate an unmodulated constant-current AC signal as the predetermined output AC signal,
    The non-contact IC card function unit includes an AD converter connected to a rectifier connected to the second resonance circuit, and a voltage appearing on an output side of the rectifier is used as the predetermined electrical information as the AD converter. Use the digitally converted
    The near field communication apparatus according to claim 1.
  4.  前記リーダライタ機能部は、内蔵の変調回路が搬送波を一定の変調度で振幅変調した信号を前記所定の出力の交流信号として発生するように構成され、
     前記非接触ICカード機能部は、前記第2の共振回路に接続の整流器に接続されたAD変換器を備え、前記所定の電気的情報として、前記整流器の出力側に現れる電圧の変動の差分を前記AD変換器でデジタル変換したものを用いる、
     請求項1の近距離無線通信装置。
    The reader / writer function unit is configured such that a built-in modulation circuit generates a signal obtained by amplitude-modulating a carrier wave with a constant modulation degree as an AC signal of the predetermined output,
    The non-contact IC card function unit includes an AD converter connected to a rectifier connected to the second resonance circuit, and the difference between voltage fluctuations appearing on the output side of the rectifier as the predetermined electrical information. Use what was digitally converted by the AD converter,
    The near field communication apparatus according to claim 1.
  5.  前記リーダライタ機能部は、前記所定の出力の交流信号として無変調の一定の強度の交流信号を発生するように構成され、
     前記非接触ICカード機能部は、前記第2の共振回路に接続の整流器に接続されたシャント回路およびAD変換器を備え、前記所定の電気的情報として、前記シャント回路に流れるシャント電流を前記AD変換器でデジタル変換したものを用いる、
     請求項1の近距離無線通信装置。
    The reader / writer function unit is configured to generate an unmodulated constant-current AC signal as the predetermined output AC signal,
    The non-contact IC card function unit includes a shunt circuit and an AD converter connected to a rectifier connected to the second resonance circuit, and a shunt current flowing through the shunt circuit as the predetermined electrical information is the AD Use what was digitally converted by a converter,
    The near field communication apparatus according to claim 1.
  6.  前記リーダライタ機能部は、内蔵の変調回路が搬送波を所定の送信データで変調した信号を前記所定の出力の交流信号として発生するように構成され、
     前記非接触ICカード機能部は、内蔵の復調回路に現れる前記送信データに対応する受信データを前記所定の電気的情報として用いる、
     請求項1の近距離無線通信装置。
    The reader / writer function unit is configured so that a built-in modulation circuit generates a signal obtained by modulating a carrier wave with predetermined transmission data as an AC signal of the predetermined output,
    The non-contact IC card function unit uses reception data corresponding to the transmission data appearing in a built-in demodulation circuit as the predetermined electrical information.
    The near field communication apparatus according to claim 1.
  7.  前記共振回路調整部は、前記非接触ICカード機能部における前記受信データについて前記送信データとの一致・不一致の判定を通じて前記共振特性の調整の処理を実行するように構成されている、
     請求項6の近距離無線通信装置。
    The resonance circuit adjustment unit is configured to execute the adjustment process of the resonance characteristic through determination of coincidence / mismatch with the transmission data for the reception data in the non-contact IC card function unit.
    The short-range wireless communication apparatus according to claim 6.
  8.  前記リーダライタ機能部は、
     前記所定の出力の交流信号の強度を調整する出力調整器と、
     前記所定の電気的情報を基に前記出力調整器の設定を決定する判定器と、
     をさらに備えている、
     請求項1の近距離無線通信装置。
    The reader / writer function unit
    An output adjuster for adjusting the intensity of the AC signal of the predetermined output;
    A determiner that determines a setting of the output regulator based on the predetermined electrical information;
    Further equipped with,
    The near field communication apparatus according to claim 1.
  9.  前記リーダライタ機能部は、
     前記所定の出力の交流信号の変調度を調整する変調度調整器と、
     前記所定の電気的情報を基に前記変調度調整器の設定を決定する判定器と、
     をさらに備えている、
     請求項1の近距離無線通信装置。
    The reader / writer function unit
    A modulation degree adjuster that adjusts the modulation degree of the AC signal of the predetermined output;
    A determiner that determines a setting of the modulation factor adjuster based on the predetermined electrical information;
    Further equipped with,
    The near field communication apparatus according to claim 1.
  10.  前記非接触ICカード機能部は、
     前記復調回路の復調感度を調整する復調感度調整器と、
     前記所定の電気的情報を基に前記復調感度調整器の設定を決定する判定器と、
     をさらに備えている、
     請求項1の近距離無線通信装置。
    The non-contact IC card function unit is:
    A demodulation sensitivity adjuster for adjusting the demodulation sensitivity of the demodulation circuit;
    A determiner that determines a setting of the demodulation sensitivity adjuster based on the predetermined electrical information;
    Further equipped with,
    The near field communication apparatus according to claim 1.
  11.  前記リーダライタ機能部は、前記所定の起動信号として当該近距離無線通信装置のスタートアップ信号を用いる、
     請求項1の近距離無線通信装置。
    The reader / writer function unit uses a startup signal of the short-range wireless communication device as the predetermined startup signal.
    The near field communication apparatus according to claim 1.
  12.  調整対象である前記共振特性が共振周波数、またはクオリティファクタ(Q値)、または共振周波数とクオリティファクタ(Q値)との両方である、
     請求項1の近距離無線通信装置。
    The resonance characteristic to be adjusted is a resonance frequency, a quality factor (Q value), or both a resonance frequency and a quality factor (Q value).
    The near field communication apparatus according to claim 1.
  13.  請求項1の近距離無線通信装置を備え、
     前記近距離無線通信装置は、少なくとも前記リーダライタ機能部、前記非接触ICカード機能部および前記共振回路調整部が半導体上に集積して構成されている、
     近距離無線通信用の半導体集積回路。
    The short-range wireless communication apparatus according to claim 1,
    The short-range wireless communication device is configured such that at least the reader / writer function unit, the contactless IC card function unit, and the resonance circuit adjustment unit are integrated on a semiconductor.
    Semiconductor integrated circuit for near field communication.
  14.  前記リーダライタ機能部は前記第1の共振回路の接続端子を有し、前記非接触ICカード機能部は前記第2の共振回路の接続端子を有している、
     請求項13の近距離無線通信用の半導体集積回路。
    The reader / writer function unit has a connection terminal of the first resonance circuit, and the non-contact IC card function unit has a connection terminal of the second resonance circuit,
    14. The semiconductor integrated circuit for near field communication according to claim 13.
  15.  前記第1の共振回路と前記第2の共振回路との主要部または全部を前記半導体上に備えている、
     請求項13の近距離無線通信用の半導体集積回路。
    The main part or all of the first resonance circuit and the second resonance circuit are provided on the semiconductor.
    14. The semiconductor integrated circuit for near field communication according to claim 13.
  16.  前記第1の共振回路は前記第1のアンテナを含み、
     前記第2の共振回路は前記第2のアンテナを含んでいる、
     請求項15の近距離無線通信用の半導体集積回路。
    The first resonant circuit includes the first antenna;
    The second resonant circuit includes the second antenna;
    16. The semiconductor integrated circuit for near field communication according to claim 15.
  17.  前記第1の共振回路は共振容量を含み、
     前記第2の共振回路は共振容量を含んでいる、
     請求項15の近距離無線通信用の半導体集積回路。
    The first resonant circuit includes a resonant capacitor;
    The second resonant circuit includes a resonant capacitance;
    16. The semiconductor integrated circuit for near field communication according to claim 15.
  18.  前記第1の共振回路は前記第1のアンテナおよび共振容量を含み、
     前記第2の共振回路は前記第2のアンテナおよび共振容量を含んでいる、
     請求項15の近距離無線通信用の半導体集積回路。
    The first resonant circuit includes the first antenna and a resonant capacitor;
    The second resonant circuit includes the second antenna and a resonant capacitor;
    16. The semiconductor integrated circuit for near field communication according to claim 15.
PCT/JP2010/004389 2009-10-19 2010-07-05 Near field communication apparatus, and semiconductor integrated circuit for near field communication WO2011048728A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-240334 2009-10-19
JP2009240334A JP2011087229A (en) 2009-10-19 2009-10-19 Near field radio communication apparatus, and semiconductor integrated circuit for near field radio communication

Publications (1)

Publication Number Publication Date
WO2011048728A1 true WO2011048728A1 (en) 2011-04-28

Family

ID=43899973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004389 WO2011048728A1 (en) 2009-10-19 2010-07-05 Near field communication apparatus, and semiconductor integrated circuit for near field communication

Country Status (2)

Country Link
JP (1) JP2011087229A (en)
WO (1) WO2011048728A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5860631B2 (en) * 2011-08-12 2016-02-16 フェリカネットワークス株式会社 Communication device, control method, and program
JP2013084045A (en) * 2011-10-06 2013-05-09 Toppan Printing Co Ltd Information communication device of nfc card
CN102594892B (en) * 2012-02-22 2018-08-24 南京中兴新软件有限责任公司 Data access method and device
KR101349264B1 (en) 2012-08-01 2014-01-16 (주) 파루 A method for NFC-QR code.
JP7108508B2 (en) * 2018-02-14 2022-07-28 株式会社ワコム Electronic circuit of electronic pen and electronic pen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527679A (en) * 1998-03-18 2001-12-25 イノバトロン エレクトロニーク(ソシエテアノニム) A system for non-contact communication by a guidance method between a terminal and a portable object, comprising means for testing the operation of the terminal
JP2009205625A (en) * 2008-02-29 2009-09-10 Omron Corp Reader/writer for rfid and management method of definition information of same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527679A (en) * 1998-03-18 2001-12-25 イノバトロン エレクトロニーク(ソシエテアノニム) A system for non-contact communication by a guidance method between a terminal and a portable object, comprising means for testing the operation of the terminal
JP2009205625A (en) * 2008-02-29 2009-09-10 Omron Corp Reader/writer for rfid and management method of definition information of same

Also Published As

Publication number Publication date
JP2011087229A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP4561796B2 (en) Power receiving device and power transmission system
JP5640655B2 (en) Portable communication device, reader / writer device, and resonance frequency adjusting method
US9473208B2 (en) Recovering data in a near field communication apparatus
US7922092B2 (en) Integrated circuit, non-contact IC card, reader/writer, wireless communications method, and computer program
JP5839629B1 (en) Non-contact communication device, antenna circuit, antenna drive device, non-contact power supply device, tuning method, discovery method, and program for realizing these methods
US9246521B2 (en) Transmission device, transmission/reception device, integrated circuit, and communication state monitoring method
US8085130B2 (en) Radio frequency identification tag
US20190068248A1 (en) Transmission Apparatus, Antenna Drive Apparatus, Tuning Method, and Program for Realizing Tuning Method
TW201401800A (en) Automatic gain control for an NFC reader demodulator
CN101930530B (en) The certification to terminal of being undertaken by electromagnetic transponder
WO2011048728A1 (en) Near field communication apparatus, and semiconductor integrated circuit for near field communication
US20110287714A1 (en) Reducing emissions in a near field communications (nfc) capable device
US20160329638A1 (en) Non-contact communication device and antenna resonance frequency control method
CN105393466A (en) Variable-capacitance circuit, variable-capacitance device, and resonance circuit and communication device utilizing same
JP6476096B2 (en) Receiving apparatus and control method thereof
JP5996753B2 (en) Discovery method and program thereof
JP2009118071A (en) Communication device and communication method
JP6535510B2 (en) Noncontact communication device, signal generation circuit, and noncontact communication method
JP5808849B1 (en) Control method, contactless communication device, contactless power supply device, program, and drive circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824583

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10824583

Country of ref document: EP

Kind code of ref document: A1