WO2011048343A1 - Method for producing a magnetophotonic crystal, magnetophotonic crystal and component including such a crystal - Google Patents

Method for producing a magnetophotonic crystal, magnetophotonic crystal and component including such a crystal Download PDF

Info

Publication number
WO2011048343A1
WO2011048343A1 PCT/FR2010/052263 FR2010052263W WO2011048343A1 WO 2011048343 A1 WO2011048343 A1 WO 2011048343A1 FR 2010052263 W FR2010052263 W FR 2010052263W WO 2011048343 A1 WO2011048343 A1 WO 2011048343A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
crystal
magneto
photonic crystal
optical
Prior art date
Application number
PCT/FR2010/052263
Other languages
French (fr)
Inventor
Béatrice Dagens
Liubov Magdenko
Mathias Vanwolleghem
Franck Nicolas Fortuna
Original Assignee
Universite Paris Sud 11
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Paris Sud 11, Centre National De La Recherche Scientifique filed Critical Universite Paris Sud 11
Publication of WO2011048343A1 publication Critical patent/WO2011048343A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
    • H01F41/34Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film in patterns, e.g. by lithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • G02F1/0955Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure used as non-reciprocal devices, e.g. optical isolators, circulators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/06Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/09Materials and properties inorganic glass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals

Definitions

  • the present invention relates to a method for producing a magneto-photonic crystal. It also relates to a magneto-photonic crystal and a component comprising such a crystal.
  • the field of the invention is the field of designing and producing planar optical components, in particular magneto-photonic crystals, guided optics.
  • magneto-photonic crystal components More particularly, magneto-photonic crystal waveguides are the subject of much research because of their possible use for non-reciprocal optical transmissions, which is the basic principle of the isolation or circulation functions. optical.
  • the magneto-photonic crystal waveguide is based on the principle of the transverse magneto-optical Kerr effect and uses a combination of two properties, namely:
  • magneto-optical Kerr effect provided by a network of interfaces between anisotropic materials (magneto-optical material) and isotropic (air holes)
  • the magneto-photonic crystal-based components are obtained by etching the magneto-photonic crystal in a layer of magneto-optic material by optoelectronic techniques using etching masks.
  • Materials with the highest magneto-optical coefficients include Yttrium garnets or bismuth. These materials also have the characteristic of not having a loss in the infrared range or at least very little.
  • magneto-optical materials have the disadvantage of being among the most difficult to engrave by the techniques of optoelectronics because of their greater hardness than that of the conventional masks of engraving used which are most often made of dielectric or metallic material.
  • the realization of nano-photonic crystals in a garnet film becomes a real challenge, particularly in the case of the use of scaling techniques on large scale substrates for a large scale. low cost manufacturing.
  • An object of the present invention is therefore to overcome the aforementioned drawbacks.
  • Another object of the invention is to provide a method for producing a simpler magneto-photonic crystal.
  • Another object of the invention is to provide a method for producing a low-cost magneto-photonic crystal.
  • Yet another object of the invention is to propose a method for producing a magneto-photonic crystal that is more effective than the currently known magneto- photonic crystals.
  • an object of the invention is to provide a method for producing a magneto-optical crystal with the standard techniques for producing planar optical components.
  • the invention proposes to achieve the aforementioned objects by a method for producing a magneto-photonic crystal, characterized in that it comprises the following steps:
  • the invention makes it possible to avoid the step of etching in a layer of magneto-optical material while producing a magneto-photonic crystal with the standard techniques for producing planar optical components.
  • the method according to the invention proposes to separate the two functions mentioned above, namely the optical function and the magneto-optical Kerr effect provided, in two layers separated from each other.
  • the photonic crystal is not made in the same layer as the magneto-optical crystal; which avoids a step of guring of a layer of renal or magical oxide used to make the magneto-optic crystal.
  • the method according to the invention makes possible a low-cost manufacture of magneto-photonic crystals on the scale of large substrates.
  • the real isation of the photonic crystal in a layer separated from the layer in which the magneto-optical crystal is made makes it possible to produce a photonic crystal of better quality, in particular because the photonic crystal can then be produced with interfaces having less roughness, the air holes being easier to achieve.
  • the production of the photonic crystal in a layer separated from the layer in which the provisionto-optic mag crystal is made allows to enjoy more freedom of design of a component integrating a photonic crystal because the air holes composing the crystal photon iq ue may have a greater depth compared to the crystals of the state of the art.
  • the photonic crystal can be produced by making holes in said first layer.
  • the network of air holes providing mode guidance in the magneto-optical crystal can be achieved by known etching techniques, for example using an etching mask also called periodic crystal mask.
  • the air holes are made over the entire thickness of the first layer. This configuration is optimal for a stronger influence of the photonic crystal, and a more accurate alignment with the magneto-optical crystal.
  • the magneto-optic crystal can be made by locally destroying the magnetic properties of the second layer by ion implantation, without destroying the garnet or mag- netic oxide layer. Ion implantation may be accomplished using a periodic crystal mask.
  • the magnetic properties of the second layer are dewatered to a greater extent. This configuration makes it possible to increase the efficiency of the crystal obtained.
  • the same periodic crystal mask can be used for producing said photonic crystal and said magneto-optical crystal.
  • the use of a same periodic crystal mask for producing the photonic crystal and the magneto-optical crystal makes it possible to facilitate the alignment of the photonic and magneto-optical crystals, and in particular allows a self-alignment of the crystals. This further facilitates the manufacture of magneto-photonic crystal.
  • the alignment of the photonic crystal and the magneto-optical crystal is essential for the realization of the magneto-photonic crystal consisting of two separate crystals. Without alleviation, the desired effect is diminished and eventually lost.
  • the self-alignment of the two crystals is all the more advantageous given the size scale of the crystals.
  • the periodic crystal mask may be a thick metal mask.
  • the first layer may be a layer of dielectric material, for example a layer of SiO 2 or Si 3 N 4 .
  • the magneto-photonic crystal may be made in a multilayer structure in which the second layer is disposed between the first layer and a substrate layer.
  • Such a configuration of the magneto-photonic crystal makes it possible to position the crystal magneto-optical, that is to say the second layer, between two layers of similar optical indices, namely the first dielectric layer in which is formed the photonic crystal and the substrate layer.
  • the multilayer structure thus obtained has a symmetry leading to a very low or even non-existent mode guiding cutoff threshold.
  • a magneto-photonic crystal produced according to the method according to the invention.
  • a magneto-photonic crystal comprising the photonic crystal separated from the magneto-optical crystal.
  • the thickness of the layer in which the magneto-optical crystal is formed is between 200 nm and 500 nm.
  • the thickness of the layer in which the photonic crystal is produced is between 100 nm and 500 nm.
  • the photonic crystal may be a dielectric layer having an array of holes.
  • the magneto-optical crystal may be a layer consisting of an isotropic-anisotropic interface network.
  • the isotropic-anisotropic interface network consists of a layer of garnet or magnetic oxide whose magnetic properties have been destroyed locally, for example over the entire thickness of the layer. .
  • the magneto-optical crystal may be arranged between the photonic crystal and a substrate layer. Such an arrangement provides symmetry at the optical indexes allowing a very low or nonexistent mode guiding cutoff threshold.
  • an optical component comprising at least one magneto-photonic crystal according to the invention. The magneto-photonic crystal can be integrated into the component.
  • the magneto-photonic crystal may be arranged to provide an optical isolator, an optical circulator or a non-reciprocal mirror.
  • the invention is particularly useful in the field of complex photonic circuits (PIC). It allows to increase their degree of integration.
  • One of the applications concerns the multiwavelength Tx / Rx receivers used in the routing nodes of the telecommunication networks.
  • FIG. 1 is a schematic representation in section of the principle of the magneto-photonic crystal according to the invention.
  • FIG. 2 is a schematic representation of a non-reciprocal mirror comprising a magneto-photonic crystal
  • FIG. 3 is a diagrammatic sectional representation of the magneto-photonic crystal implemented in the non-reciprocal mirror of FIG. 2;
  • FIG. 4 is a schematic representation of an optical circulator comprising a magneto-photonic crystal
  • FIG. 5 is a detailed schematic representation of a portion of the optical circulator of FIG. 4; and - Figure 6 is a schematic sectional representation of the magneto-photonic crystal implemented in the optical circulator of Figure 4.
  • Figure 1 is a schematic representation, in section, of the principle of a magneto-photonic crystal 100 according to the invention.
  • the magneto-photonic crystal 100 has a first layer
  • the first layer may be a layer of Si0 2 or Si 3 N 4 .
  • the magneto-photonic crystal 100 comprises a second layer 104 in which a magneto-optical crystal providing the magneto-optical Kerr effect is produced.
  • the second layer 104 is composed of an anisotropic material and may be for example a layer of garnet or magnetic oxide. This second layer may for example be a layer of BIG: Bi 3 Fe 5 O 12 or YIG: Y 3 Fe 5 O 12 .
  • the second layer 104 is disposed between the first layer 102 and a substrate layer 106.
  • the magneto-optical crystal is disposed between the photonic crystal and a substrate layer having optical indices of the same order.
  • the photonic crystal is obtained by producing a network of optical indices.
  • Such a network is obtained by producing a periodic network of holes 108 in the first layer 102.
  • the network of holes can be made by known etching techniques using a periodic crystal mask or dielectric etching, for example a metal mask. thick.
  • the dielectric zones are denoted 110
  • the holes 108 are made in the present example over the entire thickness of the first layer.
  • the crista l mag requirementto-optic is obtained by performing a network of interfaces between anisotropic material and isotropic material in the second layer 104. Such a network is obtained by destroying locally, and su r all the shoulder of the second neck 104, the magnetic properties of the material constituting the second layer 104. Such an interface network can be achieved by ion implantation in the second layer 104 periodically, this ion depletion of destroying ions. locally, the magnetic properties of the magnetic material in which the second layer 104 is made.
  • the magneto-optical crystal can be produced according to the same periodic diagram used for producing the holes in the first layer 102. It is possible to use the periodic mask used for producing the holes in the first layer 102. After implantation, a perimeter network is thus obtained. odique of implanted magnetic material 112. Areas of non-implanted materials are noted 114
  • the realization of the nano-optical crista l mag according to the invention can use methods known to perform the following steps, and for example in this order:
  • the process according to the invention makes it possible to simplify the manufacture of a nano-photonic crystal crystal by avoiding a complex and difficult operation of etching a magnetic material layer such as a layer of resin, especially at the scale of large size substrates.
  • the photonic crystal is obtained by making holes in a layer of dielectric, that is to say the first layer, which is easier to achieve and allows a greater freedom on the depth of the holes to be achieved.
  • a layer of dielectric that is to say the first layer
  • Such an omerty makes it possible to increase the design freedoms of components comprising at least one magneto-photonic crystal.
  • the realisation of the holes in a dielectric layer makes it possible to reduce the roughness of the interfaces obtained, and therefore a photonic crystal of better quality.
  • the invention facilitates the design of a magneto-photonic crystal-based component by guiding the mode in the second layer 104 surrounded by the first layer 102 and the substrate layer 106 which have indicia. similar optics.
  • the structure of the magneto-photonic crystal 100 obtained has a vertical symmetry which leads to a very low or nonexistent mode guiding cutoff threshold.
  • the layer of substrate has an optical efficiency of 1.97 at the wavelength 1.3 ⁇ m.
  • the optical index of this first layer is 1.5 to 1.3 pm.
  • the optical index of this first layer is 1.7 to 1.3 pm.
  • FIG. 2 is a schematic representation of a component comprising a magneto-photonic crystal according to the invention.
  • the component 200 shown in Figure 2 in an isometric view is a non-reciprocal mirror.
  • the first layer 102 is a layer of Si0 2
  • the second layer 104 is a layer of garnet.
  • the zone of the nano-photonic crystal mag is referenced 202 in FIG. 2.
  • the holes 108 made to obtain the photonic crystal have a clover shape.
  • ions are implanted in the thickness of the garnet to suppress the magnetic properties of the garnet.
  • the profile of the g uide mode is referenced 204.
  • the making of the holes 108 and the ion implantation is carried out using the same periodic crystal mask.
  • FIG. 3 gives a sectional representation of the magneto-photonic crystal zone implemented in the non-reciprocal mirror 200 of FIG.
  • the hole array 108 performs a filter function.
  • the non-reciprocal mirror is made with a network of holes on a surface of about 50 ⁇ 50 ⁇ m 2 .
  • the thickness of the different layers is listed below:
  • FIG. 4 is a schematic representation of another component comprising a magneto-photonic crystal according to the invention.
  • the component 400 shown in FIG. 4 according to an isometric view is a magneto-photonic crystal optical circulator.
  • the first layer 102 of the magnetophotonic crystal is a layer of Si0 2
  • the second layer 104 is a layer of garnet.
  • the circulator 400 has three input-outputs 402, 404 and 406.
  • the area of the magneto-photonic crystal is referenced 408 in FIG. 4.
  • the holes 108 made to obtain the photonic crystal have a circular shape.
  • 10% are implanted in the thickness of the garnet to suppress the magnetic properties of the garnet.
  • the hole areas 108 in the first layer 102 and the non-implanted areas 114 in the second layer are of different diameter according to their positioning in the structure. The widest part in the center being a hole 108.
  • FIG. 5 gives a detailed schematic representation of the area referenced 410 of the optical circulator 400 of FIG. 4.
  • Fig ure 6 is a sectional representation of the magneto-photonic crystal implemented in the optical circulator 400 of Figure 2.
  • the central part of the circulator is approximately 10 ⁇ m in diameter and the total (with the three access guides) is 100 to 200 ⁇ m on the side.
  • the thickness of the different layers is listed below:

Abstract

The invention relates to a method for producing a magnetophotonic crystal (100) characterised in that said method includes the following steps: producing a photonic crystal in a first layer (102); producing a magneto-optical crystal in a second layer (104) separate from said first layer (102). The invention also relates to a magnetophotonic crystal produced using to the method according to the invention, in which the photonic crystal is separate from the magneto-optical crystal. The method enables self-alignment of the photonic crystal and the magneto-optical crystal.

Description

« Procédé de réalisation d'un cristal magnéto-photonique, cristal magnéto- photonique et composant comprenant un tel cristal »  "Process for producing a magneto-photonic crystal, magneto-photonic crystal and component comprising such a crystal"
La présente invention concerne un procédé de réalisation d'un cristal magnéto-photonique. Elle concerne également un cristal magnéto- photonique et un composant comprenant un tel cristal. The present invention relates to a method for producing a magneto-photonic crystal. It also relates to a magneto-photonic crystal and a component comprising such a crystal.
Le domaine de l'invention est le domaine de la conception et la réalisation de composants optiques planaires, notamment d'optique guidée, à cristaux magnéto-photoniques. The field of the invention is the field of designing and producing planar optical components, in particular magneto-photonic crystals, guided optics.
De nos jours, on assiste à un développement de composants à base de cristal magnéto-photonique. Plus particulièrement, les guides d'ondes à base de cristal magnéto-photonique font l'objet de nombreuses recherches du fait de leur utilisation possible pour les transmissions optiques non- réciproques, qui est le principe de base des fonctions d'isolation ou de circulation optique. Nowadays, there is a development of magneto-photonic crystal components. More particularly, magneto-photonic crystal waveguides are the subject of much research because of their possible use for non-reciprocal optical transmissions, which is the basic principle of the isolation or circulation functions. optical.
Le guide d'onde à base de cristal magnéto-photonique est basé sur le principe de l'effet Kerr magnéto-optique transverse et utilise une combinaison de deux propriétés, à savoir :  The magneto-photonic crystal waveguide is based on the principle of the transverse magneto-optical Kerr effect and uses a combination of two properties, namely:
une fonction optique assuré par un réseau d'indice optique généré par un réseau de trous d'air réalisé dans un grenat ou dans un oxyde magnétique, et  an optical function provided by an optical index grating generated by a network of air holes made in a garnet or a magnetic oxide, and
- un effet Kerr magnéto-optique assuré par un réseau d'interfaces entre matériaux anisotrope (matériau magnéto-optique)-isotrope (trous d'air)  a magneto-optical Kerr effect provided by a network of interfaces between anisotropic materials (magneto-optical material) and isotropic (air holes)
Actuellement, les composants à base de cristal magnéto-photonique sont obtenus par gravure du cristal magnéto-photonique dans une couche de matériau magnéto-optique par des techniques de l'optoélectronique utilisant des masques de gravures. Les matériaux présentant les plus forts coefficients magnéto-optiques comprennent les grenats d'Yttrium ou de bismuth. Ces matériaux ont également pour caractéristiq ue de ne pas présenter de perte dans le domaine de l'infrarouge ou en tout cas très peu. Currently, the magneto-photonic crystal-based components are obtained by etching the magneto-photonic crystal in a layer of magneto-optic material by optoelectronic techniques using etching masks. Materials with the highest magneto-optical coefficients include Yttrium garnets or bismuth. These materials also have the characteristic of not having a loss in the infrared range or at least very little.
N é a n m o i n s , ces m a té ri a u x magnéto-optiques présentent l'inconvénient d'être parmi les plus difficiles à graver par les techniques de l'optoélectronique du fait de leur dureté supérieure à celle des masques de gravu re ha bituel lement util isés q u i sont le pl us souvent en matéria u diélectrique ou métallique. Ainsi , la réa l isation de crista ux mag néto- photonique dans un film de grenat devient un véritable défi, en particulier dans le cas de l'utilisation de techniques de g ravu res à l 'échel le des substrats de grande dimension pour une fabrication à bas coût.  Nevertheless, these magneto-optical materials have the disadvantage of being among the most difficult to engrave by the techniques of optoelectronics because of their greater hardness than that of the conventional masks of engraving used which are most often made of dielectric or metallic material. Thus, the realization of nano-photonic crystals in a garnet film becomes a real challenge, particularly in the case of the use of scaling techniques on large scale substrates for a large scale. low cost manufacturing.
Un but de la présente invention est donc de remédier aux inconvénients précités. An object of the present invention is therefore to overcome the aforementioned drawbacks.
Un autre but de l'invention est de proposer un procédé de réalisation d'un cristal magnéto-photonique plus simple.  Another object of the invention is to provide a method for producing a simpler magneto-photonic crystal.
Un autre but de l'invention est de proposer un procédé de réalisation d'un cristal magnéto-photonique à bas coût.  Another object of the invention is to provide a method for producing a low-cost magneto-photonic crystal.
Encore un autre but de l'invention est de proposer un procédé de réalisation d'un cristal magnéto-photonique plus efficace que les cristaux magnéto-photoniques actuellement connus.  Yet another object of the invention is to propose a method for producing a magneto-photonic crystal that is more effective than the currently known magneto- photonic crystals.
Enfin, un but de l'invention est de proposer un procédé de réalisation d'un cristal magnéto-optique avec les techniques standard de réalisation de composants optiques planaires. L'invention propose d'atteindre les buts précités par un procédé de réalisation d'un cristal magnéto photonique caractérisé en ce qu'il comprend les étapes suivantes :  Finally, an object of the invention is to provide a method for producing a magneto-optical crystal with the standard techniques for producing planar optical components. The invention proposes to achieve the aforementioned objects by a method for producing a magneto-photonic crystal, characterized in that it comprises the following steps:
réalisation d'un cristal photonique dans une première couche, et réalisation d'un cristal magnéto-optiq ue d ans u ne deuxième couche distincte de ladite première couche.  producing a photonic crystal in a first layer, and producing a magneto-optical crystal in a second layer distinct from said first layer.
L'invention permet d'éviter l'étape de gravure dans une couche de matériau magnéto-optique tout en réalisant un cristal magnéto-photonique avec les techniques standard de réalisation de composants optiques planaires. En effet, le procédé selon l'invention propose de séparer les deux fonctions citées pl us haut, à savoir la fonction optique et l'effet Kerr magnéto-optique assurés, dans deux couches séparées l'une de l'autre. The invention makes it possible to avoid the step of etching in a layer of magneto-optical material while producing a magneto-photonic crystal with the standard techniques for producing planar optical components. Indeed, the method according to the invention proposes to separate the two functions mentioned above, namely the optical function and the magneto-optical Kerr effect provided, in two layers separated from each other.
Contrairement aux cristaux magnéto-photoniques de l'état d e l a technique dans lesquels le cristal photonique et le cristal magnéto-optique sont réalisés en une seule couche, le cristal photonique n'est pas réalisé dans la même couche que le cristal magnéto-optique, ce qui évite une étape de g ravure d 'u ne couche de g renat ou d 'oxyde mag nétiq ue servant à réaliser le cristal magnéto-optique.  Unlike the magneto-photonic crystals of the state of the art in which the photonic crystal and the magneto-optical crystal are made in a single layer, the photonic crystal is not made in the same layer as the magneto-optical crystal; which avoids a step of guring of a layer of renal or magical oxide used to make the magneto-optic crystal.
Le fait de ne pas avoir à graver une couche de grenat ou d'oxyde magnétique pou r réal iser le crista l photon iq ue permet de facil iter la réalisation du cristal photonique et donc du cristal magnéto-photonique.  The fact of not having to engrave a layer of garnet or magnetic oxide in order to achieve the photonic crista makes it possible to facilitate the production of the photonic crystal and therefore of the magneto-photonic crystal.
De pl us, en évitant une telle étape de g ravure, le procédé selon l'invention rend possible une fabrication à bas coûts de cristaux magnéto- photonique à l'échelle des substrats de grande dimension.  Therefore, by avoiding such a step of guring, the method according to the invention makes possible a low-cost manufacture of magneto-photonic crystals on the scale of large substrates.
Par ailleurs, la réal isation d u cristal photonique dans une couche séparée de la couche dans laquelle est réalisé le cristal magnéto-optique permet de réaliser un cristal photonique de meilleure qualité, notamment parce que le cristal photonique peut alors être réalisé avec des interfaces présentant moins de rugosité, les trous d'air étant plus facile à réaliser.  Moreover, the real isation of the photonic crystal in a layer separated from the layer in which the magneto-optical crystal is made makes it possible to produce a photonic crystal of better quality, in particular because the photonic crystal can then be produced with interfaces having less roughness, the air holes being easier to achieve.
Enfin, la réalisation du cristal photonique dans une couche séparée de la couche dans laquelle est réalisé le cristal mag néto-optique permet de jouir de plus de liberté de conception d'un composant intégrant un cristal photonique car les trous d 'air composant le cristal photon iq ue peuvent présenter une profondeur plus importante comparée aux cristaux de l'état de la technique.  Finally, the production of the photonic crystal in a layer separated from the layer in which the néto-optic mag crystal is made allows to enjoy more freedom of design of a component integrating a photonic crystal because the air holes composing the crystal photon iq ue may have a greater depth compared to the crystals of the state of the art.
Selon l'invention, le cristal photonique peut être réalisé par réalisation de trous dans ladite première couche. Le réseau de trous d'air assurant le guidage du mode dans le cristal magnéto-optique, peut être réalisé par les techniques de gravure connues, par exemple en utilisant un masque de gravure aussi appelé masque de cristal périodique. According to the invention, the photonic crystal can be produced by making holes in said first layer. The network of air holes providing mode guidance in the magneto-optical crystal, can be achieved by known etching techniques, for example using an etching mask also called periodic crystal mask.
Dans un mode de réalisation préféré, les trous d'air sont réalisés sur toute l'épaisseur de la première couche. Cette configuration est optimale pour une influence plus forte du cristal photonique, et un alignement plus précis avec le cristal magnéto-optique. In a preferred embodiment, the air holes are made over the entire thickness of the first layer. This configuration is optimal for a stronger influence of the photonic crystal, and a more accurate alignment with the magneto-optical crystal.
Le cristal magnéto-optique peut être réalisé en détruisant localement les propriétés magnétiques de la deuxième couche par implantation d'ions, sans g raver la couche de grenat ou d'oxyde mag nétique. L'implantation d'ions peut être réalisée en utilisant un masque de cristal périodique. The magneto-optic crystal can be made by locally destroying the magnetic properties of the second layer by ion implantation, without destroying the garnet or mag- netic oxide layer. Ion implantation may be accomplished using a periodic crystal mask.
Dans un mode de réalisation préféré, les propriétés magnétiques de l a de uxième co u che so nt d étru ites su r to ute so n épa isse u r. Cette configuration permet d'augmenter l'efficacité du cristal obtenu.  In a preferred embodiment, the magnetic properties of the second layer are dewatered to a greater extent. This configuration makes it possible to increase the efficiency of the crystal obtained.
Avantageusement, un même masque de cristal périodique peut être utilisé pour la réalisation dudit cristal photonique et dudit cristal magnéto- optique. L'util isation d 'u n même masq ue de cristal périodique pour la réalisation du cristal photonique et du cristal magnéto-optique permet de faciliter l'alignement des cristaux photonique et magnéto-optique, et permet en particulier un auto-alignement des cristaux. Ce qui facilite encore plus la fabrication du cristal magnéto-photonique. En effet, l'alignement du cristal photonique et du cristal magnéto-optique est indispensable à la réalisation du cristal magnéto-photonique constitué des deux cristaux séparés. Sans l 'al ig nement l 'effet visé est amoind ri et éventuellement perdu . L'auto alignement des deux cristaux est d'autant plus avantageux vu l'échelle de grandeur des cristaux. Le masque de crista l périod i q ue uti l isé peut être u n m asq ue métallique épais. Advantageously, the same periodic crystal mask can be used for producing said photonic crystal and said magneto-optical crystal. The use of a same periodic crystal mask for producing the photonic crystal and the magneto-optical crystal makes it possible to facilitate the alignment of the photonic and magneto-optical crystals, and in particular allows a self-alignment of the crystals. This further facilitates the manufacture of magneto-photonic crystal. Indeed, the alignment of the photonic crystal and the magneto-optical crystal is essential for the realization of the magneto-photonic crystal consisting of two separate crystals. Without alleviation, the desired effect is diminished and eventually lost. The self-alignment of the two crystals is all the more advantageous given the size scale of the crystals. The periodic crystal mask may be a thick metal mask.
La première couche peut être une couche de matière diélectrique, par exemple une couche de Si02 ou du Si3N4. The first layer may be a layer of dielectric material, for example a layer of SiO 2 or Si 3 N 4 .
Avantageusement, le cristal magnéto-photonique peut être réalisé dans une structure multicouche dans laquelle la deuxième couche est disposée entre la première couche et une couche de substrat. Une telle configuration du cristal magnéto-photonique permet de positionner le cristal magnéto-optique, c'est-à-dire la deuxième couche, entre deux couches d'indices optiques semblables, à savoir la première couche de diélectrique dans laquelle est réalisée le cristal photonique et la couche de substrat. La structure multicouche ainsi obtenue présente une symétrie conduisant à un seuil de coupure de guidage des modes très faible, voire inexistant. Advantageously, the magneto-photonic crystal may be made in a multilayer structure in which the second layer is disposed between the first layer and a substrate layer. Such a configuration of the magneto-photonic crystal makes it possible to position the crystal magneto-optical, that is to say the second layer, between two layers of similar optical indices, namely the first dielectric layer in which is formed the photonic crystal and the substrate layer. The multilayer structure thus obtained has a symmetry leading to a very low or even non-existent mode guiding cutoff threshold.
Selon un deuxième aspect de l'invention, il est proposé un cristal magnéto-photonique réalisé selon le procédé selon l'invention. Selon un troisième aspect de l'invention il est proposé un cristal magnéto-photoniq ue comprenant le cristal photoniq ue séparé d u cristal magnéto-optique. According to a second aspect of the invention, there is provided a magneto-photonic crystal produced according to the method according to the invention. According to a third aspect of the invention there is provided a magneto-photonic crystal comprising the photonic crystal separated from the magneto-optical crystal.
Avantageusement, l'épaisseur de la couche dans laquelle est réalisé le cristal magnéto-optique est comprise entre 200nm et 500nm. Advantageously, the thickness of the layer in which the magneto-optical crystal is formed is between 200 nm and 500 nm.
Avantageusement, l'épaisseur de la couche dans laquelle est réalisé le cristal photonique est comprise entre lOOnm et 500nm.  Advantageously, the thickness of the layer in which the photonic crystal is produced is between 100 nm and 500 nm.
Dans un mode de réalisation particulier, le cristal photonique peut être une couche de diélectrique comportant un réseau de trous. In a particular embodiment, the photonic crystal may be a dielectric layer having an array of holes.
Le cristal magnéto-optique peut être une couche consistant en un réseau d'interfaces isotrope-anisotrope. Selon un exemple de réalisation particulier, le réseau d'interfaces isotrope-anisotrope consiste en une couche de grenat ou d'oxyde magnétique dont les propriétés magnétiques ont été détru ites loca lement, pa r exemple su r toute l 'épaisseu r de la couche. The magneto-optical crystal may be a layer consisting of an isotropic-anisotropic interface network. According to a particular embodiment, the isotropic-anisotropic interface network consists of a layer of garnet or magnetic oxide whose magnetic properties have been destroyed locally, for example over the entire thickness of the layer. .
Selon un mode de réalisation particulier du cristal magnéto- photonique selon l'invention, le cristal magnéto-optique peut être disposé entre le cristal photonique et une couche de substrat. Une telle disposition apporte une symétrie au niveau des indices optiques permettant un seuil de coupure de guidage des modes très faible voire inexistant. Selon un quatrième aspect de l'invention, il est proposé un composant optique comprenant au moins un cristal magnéto-photonique selon l'invention. Le cristal magnéto-photonique peut être intégré dans le composant. According to a particular embodiment of the magnetophotonic crystal according to the invention, the magneto-optical crystal may be arranged between the photonic crystal and a substrate layer. Such an arrangement provides symmetry at the optical indexes allowing a very low or nonexistent mode guiding cutoff threshold. According to a fourth aspect of the invention, there is provided an optical component comprising at least one magneto-photonic crystal according to the invention. The magneto-photonic crystal can be integrated into the component.
Dans un tel composant, le cristal magnéto-photonique peut être agencé pour réaliser un isolateur optique, un circulateur optique ou un miroir non réciproque. L'invention est particulièrement utile dans le domaine des circuits photoniques (PIC) complexes. Elle permet d'augmenter leur degré d'intégration. In such a component, the magneto-photonic crystal may be arranged to provide an optical isolator, an optical circulator or a non-reciprocal mirror. The invention is particularly useful in the field of complex photonic circuits (PIC). It allows to increase their degree of integration.
Une des applications concerne les récepteurs Tx/Rx multi-longueurs d'onde utilisés dans les nœuds de routage des réseaux de télécommunication.  One of the applications concerns the multiwavelength Tx / Rx receivers used in the routing nodes of the telecommunication networks.
De nombreuses autres applications pourraient tirer profit des circuits photoniques avec laser intégrés comprenant au moins un cristal magnéto- photonique, telles que la bio photonique, par exemple dans un but de miniaturisation.  Many other applications could take advantage of integrated photonic laser circuits comprising at least one magneto-photonic crystal, such as bio-photonics, for example for purposes of miniaturization.
D'autres avantages et caractéristiques apparaîtront à l'examen de la description détaillée d'un mode de réalisation nullement limitatif, et des dessins annexés sur lesquels : Other advantages and characteristics will appear on examining the detailed description of a non-limiting embodiment, and the appended drawings in which:
- la figure 1 est une représentation schématique en coupe du principe du cristal magnéto-photonique selon l'invention ;  FIG. 1 is a schematic representation in section of the principle of the magneto-photonic crystal according to the invention;
- la figure 2 est une représentation schématique d'un miroir non réciproque comprenant un cristal magnéto-photonique ;  FIG. 2 is a schematic representation of a non-reciprocal mirror comprising a magneto-photonic crystal;
- la figure 3 est une représentation schématique en coupe du cristal magnéto-photonique mis en œuvre dans le miroir non réciproque de la figure 2 ;  FIG. 3 is a diagrammatic sectional representation of the magneto-photonic crystal implemented in the non-reciprocal mirror of FIG. 2;
- la figure 4 est une représentation schématique d'un circulateur optique comprenant un cristal magnéto-photonique ;  FIG. 4 is a schematic representation of an optical circulator comprising a magneto-photonic crystal;
- la figure 5 est une représentation schématique détaillée d'une partie du circulateur optique de la figure 4 ; et - la figure 6 est une représentation schématique en coupe du cristal magnéto-photonique mis en œuvre dans le circulateur optique de la figure 4. Sur les figures et dans la suite de la description, les éléments communs à plusieurs figures conservent la même référence. FIG. 5 is a detailed schematic representation of a portion of the optical circulator of FIG. 4; and - Figure 6 is a schematic sectional representation of the magneto-photonic crystal implemented in the optical circulator of Figure 4. In the figures and in the following description, the elements common to several figures retain the same reference.
La figure 1 est une représentation schématique, en coupe, du principe d'un cristal magnéto-photonique 100 selon l'invention. Figure 1 is a schematic representation, in section, of the principle of a magneto-photonic crystal 100 according to the invention.
Le cristal magnéto-photonique 100 comporte une première couche The magneto-photonic crystal 100 has a first layer
102 de matière diélectrique dans laquelle est réalisé un cristal photonique assurant la fonction optique. La première couche peut être une couche de Si02 ou Si3N4. 102 of dielectric material in which is formed a photonic crystal providing the optical function. The first layer may be a layer of Si0 2 or Si 3 N 4 .
Le cristal magnéto-photonique 100 comporte une deuxième couche 104 dans laquelle est réalisé un cristal magnéto-optique assurant l'effet Kerr magnéto-optique. La deuxième couche 104 est composée d'un matériau anisotrope et peut être par exemple une couche de grenat ou d'oxyde magnétique. Cette deuxième couche peut par exemple être une couche de BIG: Bi3Fe50i2 ou de YIG: Y3Fe50i2. The magneto-photonic crystal 100 comprises a second layer 104 in which a magneto-optical crystal providing the magneto-optical Kerr effect is produced. The second layer 104 is composed of an anisotropic material and may be for example a layer of garnet or magnetic oxide. This second layer may for example be a layer of BIG: Bi 3 Fe 5 O 12 or YIG: Y 3 Fe 5 O 12 .
La deuxième couche 104 est disposée entre la première couche 102 et une couche de substrat 106. Ainsi, le cristal magnéto-optique est disposé entre le cristal photonique et une couche de substrat ayant des indices optiques du même ordre. Le cristal photonique est obtenu en réalisant un réseau d'indices optiques. Un tel réseau est obtenu en réalisant un réseau de trous 108 périodique dans la première couche 102. Le réseau de trous peut être réalisé par les techniques de gravures connues en utilisant un masque de cristal périodique ou de gravure de diélectrique, par exemple un masque métallique épais. Les zones de diélectriques sont notées 110  The second layer 104 is disposed between the first layer 102 and a substrate layer 106. Thus, the magneto-optical crystal is disposed between the photonic crystal and a substrate layer having optical indices of the same order. The photonic crystal is obtained by producing a network of optical indices. Such a network is obtained by producing a periodic network of holes 108 in the first layer 102. The network of holes can be made by known etching techniques using a periodic crystal mask or dielectric etching, for example a metal mask. thick. The dielectric zones are denoted 110
Les trous 108 sont réalisés, dans le présent exemple, sur toute l'épaisseur de la première couche. Le crista l mag néto-optique est obtenu en réalisant un réseau d'interfaces entre matériau anisotrope et matériau isotrope dans la deuxième couche 104. Un tel réseau est obtenu en détruisant localement, et su r toute l 'épa isseu r de l a deuxième cou che 104, les pro priétés magnétiques d u matériau constituant la deuxième couche 104. U n tel résea u d'interfaces peut être réalisé par implantation d'ions dans la deuxième couche 104 de façon périod iq ue, cette im pla ntation d 'ions détruisant localement les propriétés magnétiques du matériau magnétique dans lequel est réalisée la deuxième couche 104. Le cristal magnéto-optique peut être réalisé selon le même schéma périodique utilisé pour la réalisation des trous dans la première couche 102. Ainsi, pour l'implantation des ions il est possible d'utiliser le masque périodique utilisé pour la réalisation des trous dans la première couche 102. Après implantation on obtient donc un réseau périodique de matériau magnétique implanté 112. Les zones de matériaux non implantées sont notées 114 The holes 108 are made in the present example over the entire thickness of the first layer. The crista l mag néto-optic is obtained by performing a network of interfaces between anisotropic material and isotropic material in the second layer 104. Such a network is obtained by destroying locally, and su r all the shoulder of the second neck 104, the magnetic properties of the material constituting the second layer 104. Such an interface network can be achieved by ion implantation in the second layer 104 periodically, this ion depletion of destroying ions. locally, the magnetic properties of the magnetic material in which the second layer 104 is made. The magneto-optical crystal can be produced according to the same periodic diagram used for producing the holes in the first layer 102. It is possible to use the periodic mask used for producing the holes in the first layer 102. After implantation, a perimeter network is thus obtained. odique of implanted magnetic material 112. Areas of non-implanted materials are noted 114
La réa l isation d u crista l mag néto-optique selon l'invention peut utiliser des procédés conn us pour réaliser les étapes suivantes, et par exemple dans cet ordre : The realization of the nano-optical crista l mag according to the invention can use methods known to perform the following steps, and for example in this order:
- une croissance de la deuxième couche 104 sur un substrat 106 ; puisa growth of the second layer 104 on a substrate 106; then
- une croissance de la première couche 102 au dessus de la deuxième couche 104 ; puis a growth of the first layer 102 above the second layer 104; then
- réalisation d'une couche de masque de cristal au dessus de la première couche 102  - Making a crystal mask layer above the first layer 102
- une gravure du réseau de trous 108 dans la première couche 102 à l'aide du masque de cristal, puis ; an etching of the network of holes 108 in the first layer 102 using the crystal mask, then;
- à travers le même masque, une implantation de la deuxième couche 104. Dans le cristal magnéto-photonique 100 obtenu l'onde 117 est guidée dans le sens de l a flèche 116, la flèche 118 indiquant l'orientation de l'aimantation dans le matériau. Ainsi, le procédé selon l'invention permet une simplification de la fabrication d 'un cristal mag néto-photonique en évitant une opération complexe et difficile de gravure d'une couche matériau magnétique telle q u 'u ne couche de g renat, su rtout à l 'échel le des su bstrats de g rande dimension. through the same mask, an implantation of the second layer 104. In the magneto-photonic crystal 100 obtained, the wave 117 is guided in the direction of the arrow 116, the arrow 118 indicating the orientation of the magnetization in the material. Thus, the process according to the invention makes it possible to simplify the manufacture of a nano-photonic crystal crystal by avoiding a complex and difficult operation of etching a magnetic material layer such as a layer of resin, especially at the scale of large size substrates.
Par ailleurs, selon l'invention, le cristal photonique est obtenu par réa l isation de trous d ans u ne couche de d iélectriq ue, c'est-à-dire la première couche, ce qui est plus facile à réaliser et permet une plus grande l iberté su r la profondeur des trous à réal iser. U ne tel le l iberté permet d 'aug menter les libertés de conception des composants comportant au moins un cristal magnéto-photonique.  Furthermore, according to the invention, the photonic crystal is obtained by making holes in a layer of dielectric, that is to say the first layer, which is easier to achieve and allows a greater freedom on the depth of the holes to be achieved. Such an omerty makes it possible to increase the design freedoms of components comprising at least one magneto-photonic crystal.
De plus, la réal isation des trous dans une couche de d iélectriq ue permet de diminuer la rugosité des interfaces obtenus, et donc un cristal photonique de meilleure qualité.  In addition, the realisation of the holes in a dielectric layer makes it possible to reduce the roughness of the interfaces obtained, and therefore a photonic crystal of better quality.
En outre, l'invention permet de faciliter la conception d'un composant à base de cristal magnéto-photonique en assurant le guidage du mode dans la deuxième couche 104 entourée de la première couche 102 et de la couche de substrat 106 qui présentent des indices optiques semblables. En effet, la structure du cristal magnéto-photonique 100 obtenu présente une symétrie verticale qui conduit à un seuil de coupure de guidage des modes très faible voire inexistant.  In addition, the invention facilitates the design of a magneto-photonic crystal-based component by guiding the mode in the second layer 104 surrounded by the first layer 102 and the substrate layer 106 which have indicia. similar optics. Indeed, the structure of the magneto-photonic crystal 100 obtained has a vertical symmetry which leads to a very low or nonexistent mode guiding cutoff threshold.
La couche de su bstrat présente u n ind ice optiq ue de 1,97 à la longueur d'onde l,3pm. Dans le cas particulier où la première couche est en Si02, l'indice optique de cette première couche est de 1,5 à l,3pm. Dans le cas particulier où la première couche est en Si3N4 l'indice optique de cette première couche est de 1,7 à l,3pm. The layer of substrate has an optical efficiency of 1.97 at the wavelength 1.3 μm. In the particular case where the first layer is Si0 2 , the optical index of this first layer is 1.5 to 1.3 pm. In the particular case where the first layer is Si 3 N 4, the optical index of this first layer is 1.7 to 1.3 pm.
La figure 2 est une représentation schématiq ue d'un composant comprenant un cristal magnéto-photonique selon l'invention. Le composant 200 représenté sur la figure 2 selon une vue isométrique est un miroir non réciproque. FIG. 2 is a schematic representation of a component comprising a magneto-photonic crystal according to the invention. The component 200 shown in Figure 2 in an isometric view is a non-reciprocal mirror.
La première couche 102 est une couche de Si02, et la deuxième couche 104 est une couche de grenat. La zone du cristal mag néto-photoniq ue est référencée 202 sur la figure 2. Les trous 108 réalisés pour obtenir le cristal photonique ont une forme de trèfle . Dans le prolongement des trous 108, des ions sont implantés dans l'épaisseur du grenat pour supprimer les propriétés magnétiques du grenat. Le profil d u mode g uidé est référencé 204. La réalisation des trous 108 et l'implantation d'ions est réalisée en utilisant un même masque de cristal périodique. The first layer 102 is a layer of Si0 2 , and the second layer 104 is a layer of garnet. The zone of the nano-photonic crystal mag is referenced 202 in FIG. 2. The holes 108 made to obtain the photonic crystal have a clover shape. In the continuation of the holes 108, ions are implanted in the thickness of the garnet to suppress the magnetic properties of the garnet. The profile of the g uide mode is referenced 204. The making of the holes 108 and the ion implantation is carried out using the same periodic crystal mask.
La figure 3 donne une représentation en coupe de la zone du cristal magnéto-photonique mis en œuvre dans le miroir non réciproque 200 de la figure 2. FIG. 3 gives a sectional representation of the magneto-photonic crystal zone implemented in the non-reciprocal mirror 200 of FIG.
Dans le cas du miroir non réciproque 200, le réseau de trous 108 réalise une fonction de filtre.  In the case of the non-reciprocal mirror 200, the hole array 108 performs a filter function.
Le miroir non réciproque est réalisé avec un réseau de trous sur une surface d'environ 50x50 pm2. L'épaisseur des différentes couches est listée ci-dessous : The non-reciprocal mirror is made with a network of holes on a surface of about 50 × 50 μm 2 . The thickness of the different layers is listed below:
première couche : ~200nm  first layer: ~ 200nm
- deuxième couche : ~300 nm  second layer: ~ 300 nm
- couche de substrat : > = 50pm  - substrate layer:> = 50pm
La figure 4 est une représentation schématique d'un autre composant comprenant un cristal magnéto-photonique selon l'invention. Le composant 400 représenté la figure 4 selon une vue isométrique est un circulateur optique à cristal magnéto-photonique. FIG. 4 is a schematic representation of another component comprising a magneto-photonic crystal according to the invention. The component 400 shown in FIG. 4 according to an isometric view is a magneto-photonic crystal optical circulator.
Dans le composant 400, la première couche 102 du cristal magnéto- photonique est une couche de Si02, et la deuxième couche 104 est une couche de grenat. In component 400, the first layer 102 of the magnetophotonic crystal is a layer of Si0 2 , and the second layer 104 is a layer of garnet.
Le circulateur 400 comporte trois entrées-sorties 402, 404 et 406. The circulator 400 has three input-outputs 402, 404 and 406.
La zone du cristal magnéto-photonique est référencée 408 sur la figure 4. Les trous 108 réalisés pour obtenir le cristal photonique ont une forme circulaire. Da ns le prol o ngement des trous 108, des io ns sont implantés dans l'épaisseur du grenat pour supprimer les propriétés magnétiques du grenat. Da ns le cas d u ci rcu lateu r 400, les zones de trous 108 dans la première couche 102 et les zones non implantées 114 dans la deuxième couche sont de d iamètre d ifférent selon leu r positionnement d ans l a structure. La partie plus large au centre étant un trou 108. The area of the magneto-photonic crystal is referenced 408 in FIG. 4. The holes 108 made to obtain the photonic crystal have a circular shape. In the hole 108, 10% are implanted in the thickness of the garnet to suppress the magnetic properties of the garnet. In the case of lattice 400, the hole areas 108 in the first layer 102 and the non-implanted areas 114 in the second layer are of different diameter according to their positioning in the structure. The widest part in the center being a hole 108.
La figure 5 donne une représentation schématique détaillée de la zone référencée 410 du circulateur optique 400 de la figure 4. FIG. 5 gives a detailed schematic representation of the area referenced 410 of the optical circulator 400 of FIG. 4.
La fig ure 6 est une représentation en coupe du cristal magnéto- photonique mis en œuvre dans le circulateur optique 400 de la figure 2. Fig ure 6 is a sectional representation of the magneto-photonic crystal implemented in the optical circulator 400 of Figure 2.
La partie centrale du circulateur est d'environ lOpm de diamètre et le total (avec les trois guides d'accès) de 100 à 200p m de côté. L'épaisseur des différentes couches est listée ci-dessous : The central part of the circulator is approximately 10 μm in diameter and the total (with the three access guides) is 100 to 200 μm on the side. The thickness of the different layers is listed below:
- première couche : ~200 nm  - first layer: ~ 200 nm
- deuxième couche : ~300 nm  second layer: ~ 300 nm
- couche de substrat : > = 50 pm  - substrate layer:> = 50 pm
Bien entendu l'invention n'est pas limitée aux exemples qui viennent d'être décrits. Naturally, the invention is not limited to the examples which have just been described.

Claims

REVENDICATIONS
1. Procédé de réalisation d'un cristal magnéto photonique (100) caractérisé en ce qu'il comprend les étapes suivantes : 1. A method for producing a magneto-photonic crystal (100), characterized in that it comprises the following steps:
- réal isation d 'u n crista l photon iq ue dans u ne première couche - Realization of a photonic crista in a first layer
(102), (102)
réalisation d'un cristal magnéto-optique dans une deuxième couche (104) distincte de ladite première couche (102) ; ledit cristal photonique étant réalisé par réalisation de trous (108) dans ladite première couche,  producing a magneto-optic crystal in a second layer (104) separate from said first layer (102); said photonic crystal being made by making holes (108) in said first layer,
ledit cristal magnéto-optique étant réalisé en détruisant localement les propriétés magnétiques de la deuxième couche par implantation d'ions ; ledit procédé étant caractérisé en ce qu'un même masque de cristal est utilisé pour la réalisation dudit cristal photonique et dudit cristal magnéto- optique. said magneto-optical crystal being made by locally destroying the magnetic properties of the second layer by ion implantation; said method being characterized in that a same crystal mask is used for producing said photonic crystal and said magneto-optical crystal.
2. Procédé selon la revendication 1, caractérisé en ce que les trous (108) sont réalisés sur toute l'épaisseur de la première couche. 2. Method according to claim 1, characterized in that the holes (108) are formed over the entire thickness of the first layer.
3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les propriétés magnétiques sont localement détruites sur toute l'épaisseur de la deuxième couche (104). 3. Method according to any one of the preceding claims, characterized in that the magnetic properties are locally destroyed throughout the thickness of the second layer (104).
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le cristal magnéto-photonique (100) est réalisé dans une structure multicouche dans laquelle la deuxième couche (104) est disposée entre la première couche (102) et une couche de substrat (106). 4. Method according to any one of the preceding claims, characterized in that the magneto-photonic crystal (100) is formed in a multilayer structure in which the second layer (104) is disposed between the first layer (102) and a layer substrate (106).
5. Cristal magnéto-photonique (100) réalisé selon l'une quelconque des revendications précédentes. 5. magneto-photonic crystal (100) made according to any one of the preceding claims.
6. Cristal magnéto-photonique (100) selon la revendication 5, caractérisé en ce que le cristal photonique consiste en une couche (102) de diélectrique comportant un réseau de trous (108). The magneto-photonic crystal (100) according to claim 5, characterized in that the photonic crystal consists of a dielectric layer (102) having an array of holes (108).
7. Cristal magnéto-photonique (100) selon l'une quelconque des revendications 5 ou 6, caractérisé en ce que le cristal magnéto-optique consiste en une couche (104) consistant en un réseau d'interfaces isotrope- anisotrope (112,114). Magneto-photonic crystal (100) according to claim 5 or 6, characterized in that the magneto-optical crystal consists of a layer (104) consisting of an isotropic-anisotropic interface network (112, 114).
8. Cristal magnéto-photonique (100) selon la revendication 7, caractérisé en ce q ue le réseau d'interfaces isotrope-anisotrope (112,114) consiste en un grenat ou un oxyde magnétique dont les propriétés magnétiques ont été détruites localement. 8. magneto-photonic crystal (100) according to claim 7, characterized in that the isotropic-anisotropic interface network (112, 114) consists of a garnet or a magnetic oxide whose magnetic properties have been destroyed locally.
9. Cristal magnéto-photonique (100) selon l'une quelconque des revendications 5 à 8, caractérisé en ce que le cristal magnéto-optique est disposé entre le cristal photonique et une couche de substrat (106). 9. magneto-photonic crystal (100) according to any one of claims 5 to 8, characterized in that the magneto-optical crystal is disposed between the photonic crystal and a substrate layer (106).
10. Composant optique (200,400) comprenant au moins un cristal magnétophotonique selon l'une quelconque des revendications 5 à 9. An optical component (200, 400) comprising at least one magnetophotonic crystal according to any one of claims 5 to 9.
11. Composant selon la revendication 10, caractérisé en ce que le cristal magnétophotonique est agencé pour réaliser un isolateur optique. 11. Component according to claim 10, characterized in that the magnetophotonic crystal is arranged to produce an optical isolator.
12. Composant selon la revendication 10, caractérisé en ce que le cristal magnétophotonique est agencé pour réaliser un circulateur optique (400). 12. Component according to claim 10, characterized in that the magnetophotonic crystal is arranged to produce an optical circulator (400).
13. Composant selon la revendication 10, caractérisé en ce que le cristal magnétophotonique est agencé pour réaliser un miroir non réciproque (200). 13. Component according to claim 10, characterized in that the magnetophotonic crystal is arranged to produce a non-reciprocal mirror (200).
PCT/FR2010/052263 2009-10-23 2010-10-22 Method for producing a magnetophotonic crystal, magnetophotonic crystal and component including such a crystal WO2011048343A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0957447A FR2951740B1 (en) 2009-10-23 2009-10-23 PROCESS FOR PRODUCING MAGNETO-PHOTONIC CRYSTAL, MAGNETO-PHOTONIC CRYSTAL, AND COMPONENT COMPRISING SUCH A CRYSTAL
FR0957447 2009-10-23

Publications (1)

Publication Number Publication Date
WO2011048343A1 true WO2011048343A1 (en) 2011-04-28

Family

ID=42173234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052263 WO2011048343A1 (en) 2009-10-23 2010-10-22 Method for producing a magnetophotonic crystal, magnetophotonic crystal and component including such a crystal

Country Status (2)

Country Link
FR (1) FR2951740B1 (en)
WO (1) WO2011048343A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016050183A1 (en) * 2014-09-29 2016-04-07 深圳大学 Compensation-column-introduced three-port optical circulator having high transmission rate and isolation
CN105572920A (en) * 2016-02-15 2016-05-11 欧阳征标 Double-way inverted optical clock signal generator based on photonic crystal cross waveguide
CN105572918A (en) * 2016-02-15 2016-05-11 欧阳征标 Magnetic control alternative optical path switch based on photonic crystal cross waveguide
CN105572917A (en) * 2016-02-15 2016-05-11 欧阳征标 Double-way inverted optical clock signal generator with photonic crystal waveguide
CN105572921A (en) * 2016-02-15 2016-05-11 欧阳征标 Magnetic control alternative right-angled output optical path switch based on photonic crystal T-type waveguide
CN105572919A (en) * 2016-02-15 2016-05-11 欧阳征标 Magneto-optical modulator based on photonic crystal cross waveguide
EP3290977A4 (en) * 2015-04-29 2018-06-20 Universidade Federal Do Pará Fork-shaped, three-port optical circulator based on a two-dimensional photonic crystal with a triangular lattice

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2773632A1 (en) * 1998-01-12 1999-07-16 Centre Nat Rech Scient MAGNETIC ETCHING METHOD, IN PARTICULAR MAGNETIC OR MAGNETO-OPTICAL RECORDING

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2773632A1 (en) * 1998-01-12 1999-07-16 Centre Nat Rech Scient MAGNETIC ETCHING METHOD, IN PARTICULAR MAGNETIC OR MAGNETO-OPTICAL RECORDING

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FENG CHEN ET AL: "Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation", OPTICS LETTERS OPTICAL SOCIETY OF AMERICA USA LNKD- DOI:10.1364/OL.34.000028, vol. 34, no. 1, 1 January 2009 (2009-01-01), pages 28 - 30, XP002584540, ISSN: 0146-9592 *
FUJIKAWA R ET AL: "Fabrication and optical properties of three-dimensional magnetophotonic heterostructures", IEEE TRANSACTIONS ON MAGNETICS IEEE USA LNKD- DOI:10.1109/TMAG.2006.879620, vol. 42, no. 10, October 2006 (2006-10-01), pages 3075 - 3077, XP002584538, ISSN: 0018-9464 *
LEVY MIGUEL ET AL: "Polarization rotation enhancement and scattering mechanisms in waveguide magnetophotonic crystals", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US LNKD- DOI:10.1063/1.2356379, vol. 89, no. 12, 20 September 2006 (2006-09-20), pages 121113 - 121113, XP012085804, ISSN: 0003-6951 *
PARK J H ET AL: "Fabrication of two dimensional magnetophotonic crystal by selective-area sputter epitaxy", INTERMAG ASIA 2005: DIGEST OF THE IEEE INTERNATIONAL MAGNETICS CONFERENCE (IEEE CAT. NO.05CH37655) IEEE PISCATAWAY, NJ, USA, 2005, pages 2089 - 2090, XP002584550, ISBN: 0-7803-9009-1 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016050183A1 (en) * 2014-09-29 2016-04-07 深圳大学 Compensation-column-introduced three-port optical circulator having high transmission rate and isolation
EP3290977A4 (en) * 2015-04-29 2018-06-20 Universidade Federal Do Pará Fork-shaped, three-port optical circulator based on a two-dimensional photonic crystal with a triangular lattice
CN105572920A (en) * 2016-02-15 2016-05-11 欧阳征标 Double-way inverted optical clock signal generator based on photonic crystal cross waveguide
CN105572918A (en) * 2016-02-15 2016-05-11 欧阳征标 Magnetic control alternative optical path switch based on photonic crystal cross waveguide
CN105572917A (en) * 2016-02-15 2016-05-11 欧阳征标 Double-way inverted optical clock signal generator with photonic crystal waveguide
CN105572921A (en) * 2016-02-15 2016-05-11 欧阳征标 Magnetic control alternative right-angled output optical path switch based on photonic crystal T-type waveguide
CN105572919A (en) * 2016-02-15 2016-05-11 欧阳征标 Magneto-optical modulator based on photonic crystal cross waveguide

Also Published As

Publication number Publication date
FR2951740B1 (en) 2012-04-20
FR2951740A1 (en) 2011-04-29

Similar Documents

Publication Publication Date Title
WO2011048343A1 (en) Method for producing a magnetophotonic crystal, magnetophotonic crystal and component including such a crystal
FR2981803A1 (en) INTEGRATED OPTICAL STRUCTURE COMPRISING AN OPTICAL ISOLATOR
EP1936669B1 (en) Method of manufacturing an SOI substrate combining silicon-based areas and GaAs-based areas
CA2290147A1 (en) Semiconductor optical component with a mode adaptor
FR3009893A1 (en) METHOD FOR MANUFACTURING AN AREA PIN CORRUGATED AND SPACED DOPED ZONES, APPLICATION TO THE MANUFACTURE OF ELECTRO-OPTICAL SILICON MODULATORS AND GERMANIUM PHOTO-DETECTORS
FR2894072A1 (en) Integrated circuit, e.g. optical detector, has inner volumes having surfaces on side of photosensitive element and lateral surfaces, respectively, where one of former surfaces has area smaller than area of one of lateral surface
EP3001230B1 (en) Optical coupler integrated on a substrate and comprising three elements
FR2683054A1 (en) INTEGRATED ELECTROOPTIC MODULATOR AND METHOD FOR MANUFACTURING THE MODULATOR
EP0864886B1 (en) Fabrication process of integrated optical circuits to minimise optical coupling losses
EP0665450B1 (en) Waveguide transition device and its process of fabrication
EP0532470A1 (en) Method for coupling an optical fibre to an optical waveguide and micromechanical coupling device obtained therefrom
WO2013057444A1 (en) Magneto-plasmonic element with modified, enhanced or reversed non-reciprocity, component incorporating such elements, and method for producing same
FR2761811A1 (en) ENGRAVING-FREE TECHNOLOGY FOR INTEGRATING COMPONENTS
FR3040499A1 (en) INTEGRATED CIRCUIT COMPRISING AN ACTIVE DEVICE FOR CONTAINING A LUMINOUS FLOW
EP0902306B1 (en) Fabrication process of an optical integrated componant comprising a thick waveguide coupled with a thin waveguide
EP0437385A1 (en) Semiconductor structure for optoelectronic devices
EP0310184A1 (en) Optical switching element enclosing two parallel lightguides and switching Matrix constituted with such elements
EP0728318B1 (en) Manufacture of a waveguide embedded at several depths
WO2017140804A1 (en) Method for manufacturing at least one semiconducting structure comprising a stack of one or more aluminium gallium arsenide layers
EP2677549B1 (en) Semiconductor optical receiver with PIN structure
FR2971344A1 (en) PHOTONIC CRYSTAL DEVICE.
WO2002017453A1 (en) Semiconductor optical amplifier
FR3127049A1 (en) method for manufacturing an optoelectronic system in photonics on silicon comprising an optical device coupled to an integrated photonic circuit
WO2002017454A1 (en) Semiconductor optical amplifier
FR2854469A1 (en) Semiconductor optical device e.g. semiconductor optical amplifier, manufacturing method, involves forming semiconductor layer comprising uniform thickness in one zone and varying thickness in another zone, above protection layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10787832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10787832

Country of ref document: EP

Kind code of ref document: A1