WO2011048247A1 - Procedimiento de obtención de catalizadores híbridos compuestos por complejos de metales de transición encapsulados en nanopartículas porosas de sílice, titania o circonia - Google Patents

Procedimiento de obtención de catalizadores híbridos compuestos por complejos de metales de transición encapsulados en nanopartículas porosas de sílice, titania o circonia Download PDF

Info

Publication number
WO2011048247A1
WO2011048247A1 PCT/ES2010/070663 ES2010070663W WO2011048247A1 WO 2011048247 A1 WO2011048247 A1 WO 2011048247A1 ES 2010070663 W ES2010070663 W ES 2010070663W WO 2011048247 A1 WO2011048247 A1 WO 2011048247A1
Authority
WO
WIPO (PCT)
Prior art keywords
titania
nanoparticles
silica
organometallic complex
transition
Prior art date
Application number
PCT/ES2010/070663
Other languages
English (en)
French (fr)
Inventor
Alberto COELHO COTÓN
Eddy SOTELO PÉREZ
Francisco GUITIÁN RIVERA
Alvaro GIL GONZÁLEZ
Original Assignee
Universidade De Santiago De Compostela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Santiago De Compostela filed Critical Universidade De Santiago De Compostela
Publication of WO2011048247A1 publication Critical patent/WO2011048247A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4255Stille-type, i.e. RY + R'3SnR'', in which R is alkenyl, aryl, R' is alkyl and R'' is alkenyl or aryl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4261Heck-type, i.e. RY + C=C, in which R is aryl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4266Sonogashira-type, i.e. RY + HC-CR' triple bonds, in which R=aryl, alkenyl, alkyl and R'=H, alkyl or aryl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/828Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel

Definitions

  • the present invention relates to the development of hybrid catalyst systems.
  • These 5 systems comprise nanoparticles of silica, titania or zirconia in which transition metal catalytic complexes are encapsulated by direct interaction with a non-functionalized inorganic matrix.
  • These new materials facilitate the implementation of environmentally friendly processes (Green chemistry). It also refers to preparation procedures.
  • Transitions catalyzed by transition metals and especially those that employ catalytic systems containing Palladium, occupy a prominent place among the synthetic methodologies of modern Organic Chemistry. These transformations allow efficient access to highly complex structures, using experimental conditions5 that are soft and respectful of the environment. Much of the progress made in this area is a consequence of the development of the catalytic systems available today, homogeneous or heterogeneous, which have different advantages and disadvantages.
  • the catalyst In homogeneous catalysis, the catalyst is dispersed in the reaction medium, which usually results in greater efficiency of the catalytic process and high selectivity.
  • heterogeneous catalysis is preferred on an industrial scale, mainly because of the possibility of recovering and reusing the catalyst.
  • hybrid catalytic systems guarantees an efficient catalysis by offering the homogeneous catalyst an environment of a heterogeneous nature that supports it and which, depending on the structure of the latter, chemically stabilizes it. Additionally, 0 this type of materials allows a treatment similar to heterogeneous catalysts, facilitating the processes of purification, recovery and reuse of the catalyst.
  • a representative example of this type of materials has been recently described (ChemFiles Aldrich, 2004, Vol. 4, No. 7 and references cited there), using a highly crosslinked polyurea matrix as support.
  • titania or zirconia In order to evaluate the novelty and inventive activity of the new materials described in the present invention, the most significant structural characteristics of the catalytic systems, which make up the current state of the subject, especially those formed by silica nanoparticles, are listed below. titania or zirconia:
  • the established catalytic materials are formed by a functionalized polymer matrix, that is, in addition to the inorganic polymer structure that supports them, these materials incorporate a spacer or linker grouping.
  • This linker is incorporated into the matrix during the polymerization step, usually combining a non-functionalized teratraalkoxide [typically Si (OEt) 4 ] and a functionalized tetraalkoxide [eg Si (OEt) 3 R].
  • a non-functionalized teratraalkoxide typically Si (OEt) 4
  • a functionalized tetraalkoxide eg Si (OEt) 3 R
  • the spacer group (or linker) is formed by carbon chains (typically: alkyl, alkylaryl, aminoalkyl, aminoacidic, etc.) that covalently bind to the polymer matrix. These groupings usually contain a functional group whose function is to allow the fixation of the metallic species to the functionalized solid support (by chelation or ionic interaction).
  • this invention describes new materials with catalytic activity that provide novelties related to the structure of the polymer matrix of the nanoparticle, as well as the way in which the catalytic species are fixed to it. Additionally, the procedure claimed in this application constitutes a simple, economical, robust and efficient synthesis method.
  • the present invention provides a hybrid catalytic system, formed by a non-functionalized polymer matrix that incorporates an organometallic complex, whose preparation process involves a single robust, efficient and economical synthetic step.
  • the new materials developed have two key elements that distinguish them from other catalytic systems: the polymer matrix does not contain spacer groups and / or Linkers (not functionalized), the way in which the catalytic species are fixed to the solid support (when they are trapped in the matrix during the polymerization / encapsulation process).
  • the matrix can be nanoparticles of different materials (Si0 2, Ti0 2 Zr0 or 2). Porosity and nanometric dimensions provide a large specific surface area, which increases the distribution of the catalyst in the nanoparticles as a whole and therefore the catalytic efficiency of the system. These systems are stable and reusable, they also have the advantage that they prevent the contamination of the reaction products by the catalyst, which makes them suitable for use among others, in the pharmaceutical industry, in addition to being used in environmentally friendly synthesis methodologies.
  • the invention is directed to a chemically stable hybrid catalytic system comprising non-functionalized silica, titania or zirconia nanoparticles (and therefore do not contain spacers and / or functional groups) that support an organometallic complex of a transition metal
  • a chemically stable hybrid catalytic system comprising non-functionalized silica, titania or zirconia nanoparticles (and therefore do not contain spacers and / or functional groups) that support an organometallic complex of a transition metal
  • Another novel aspect of the invention relates to the way in which the organometallic species are fixed (encapsulated) to the polymer matrix, by direct interaction with the solid support during the formation of the nanoparticles.
  • the invention is directed to a process for the preparation of said system, which comprises the addition of an organometallic complex on a reaction mixture composed of a non-functionalized silicon tetra-alkyloxide, titanium or zirconium in a solution, while hydrolysis / condensation occurs according to a sol-gel process.
  • the invention is directed to the use of said system in organic synthesis reactions, in the pharmaceutical, chemical or agrochemical industry, and in environmentally friendly chemical processes characteristic of Green Chemistry.
  • Figure 1 Image obtained by electron microscopy (SEM) of a sample of non-functionalized Si0 2 nanoparticles in which Pd (PPh 3 ) 4 is encapsulated.
  • hybrid catalyst system means a system in which a homogeneous component with catalytic properties is fixed to a non-functionalized polymer matrix.
  • the homogeneous component is an organometallic complex of a transition metal and the polymeric matrix consists of silica, titania or zirconia nanoparticles. Fixing the homogeneous component to the polymer matrix produces a heterogenization effect, which prevents the complex Organometallic diffusion to the reaction medium, although its catalytic efficiency does not diminish. Said fixation is carried out by capturing the homogeneous component in the matrix without mediation of functional groups or Linkers during the stage of particle formation.
  • This type of fixation avoids the use of functionalized supports, provides stability to the new material and additionally guarantees levels of crosslinking of the polymer (encapsulation) that prevent the release of the organometallic complex to the reaction medium and the consequent contamination of the reaction products with traces of metals Simultaneously, the porous nature of the solid support facilitates the migration of the reactants into the nanoparticles, where they are transformed into products to later return to the solvent.
  • polymer matrix nonfunctionalized means a solid support of a polymeric nature which does not contain spacer chains and / or functional groups (for example Si0 2, Ti0 2 Zr0 or 2).
  • nanoparticles refers to stable structures with homogeneous, reproducible and modulable characteristics, in size and shape, which constitute a cross-linking matrix, whose average size is less than 1 micrometer, that is, between 1 and 999 nm, preferably between 50 and 600 nm.
  • average size means the average diameter of the nanoparticle population, which comprises the matrix structure.
  • the average size of these systems is measured by image analysis using SEM (scanning electron microscopy).
  • organometallic complex means a homogeneous catalyst of an organometallic nature that contains in its structure a transition metal.
  • the transition metal of the organometallic complex is selected from Palladium, Platinum, Cobalt, Nickel.
  • the organometallic complex is preferably selected from (PdC; -. ( ⁇ ⁇ ) Pd (PPh 3) 4, ⁇ 5 ⁇ (i ⁇ PPh K Pt (PPh 3), i, ⁇ ⁇ .. PPh>) ⁇ ( ' ! ⁇ . [Ni (acac) 2 ] 3 .
  • the organometallic complex is in a proportion between 0.05 and 5% by weight.
  • the process of preparing the catalyst systems of the present invention comprises a single step of adding an organometallic complex onto a reaction mixture.
  • Said reaction mixture is composed of a silicon, titanium or zirconium tetraalkylalkoxide in a solution in which a hydrolysis / condensation process is taking place according to a sol-gel process.
  • the sol-gel process is widely known in the state of the art (J. Colloid Interface Sci., 26, p62, 1968. Langmuir 14, p5396, 1998. J. Amer. Chem. Soc. 128, p 968, 2006. Colloids Surf. 1997, p7, 2002. Biomaterials, 25, p723, 2004).
  • the sol-gel process involves the hydrolysis and condensation of metalorganic precursors that results in a gel consisting of a network of interconnected metal-oxygen-metal bonds in three dimensions. For example, if the precursor were tetraethoxysilane [Si (OEt) 4 ], a gel with Si-O-Si bonds would be obtained.
  • the reaction mixture in which hydrolysis / condensation is occurring comprises ammonia, water and an alkyl alcohol.
  • these procedures have been modified, by including a stage in the synthesis of the nanoparticles, which consists in adding the homogeneous catalyst to the reaction mixture in which the synthesis is taking place, seeking that the inclusion of the catalyst in the Silica nanoparticle, titania or zirconia, can be performed in the same synthesis operation of said nanoparticle, which simplifies and economizes its obtaining.
  • the synthesis of silica nanoparticles is carried out by hydrolysis / condensation of Si tetraethylalkoxide, by reaction with NH 4 OH and H 2 0 in Ethanol.
  • the reaction is started by adding Si tetra-ethyl alkoxide to the mixture.
  • the final concentration in the mixture of each of the reagents determines the size of the nanoparticles.
  • the concentration of the reagents in the reaction mixture was: NH 4 OH 1 M, H 2 0 1.3 M and 0.17 M for the tetraethylalkoxide of Si .
  • the reaction medium After approximately 15 minutes of adding the alkoxide, the reaction medium begins to become cloudy, with a whitish color that increases its intensity with the passage of weather. At that time the organometallic compound (homogeneous catalyst), Pd (PPh 3 ) 4 is added to the mixture.
  • the reaction medium is kept under continuous stirring at an approximate temperature of 22 ° C for approximately 12 hours. Once this time has elapsed, the reaction product is separated and washed. The mixture is centrifuged, the supernatant is removed and the nanoparticles are redispersed in ethanol. This process is repeated three times. Next, three more redispersed washings of the nanoparticles in water are performed.
  • the final sample is allowed to dry at room temperature and the final product, Si0 2 -Pd (PPh 3 ) 4, is obtained as a fine powder.
  • the final product Si0 2 -Pd (PPh 3 ) 4
  • concentrations of NH 4 OH and H 2 average particle sizes of 133 nm were obtained.
  • concentrations 105 and 220 nm particles were also obtained.
  • Figure 1 shows the non-functionalized S1O 2 nanoparticles in which Pd (PPh 3 ) 4 is encapsulated.
  • the image obtained by electron microscopy (SEM), shows particles with an average size of 133 nm.
  • SEM electron microscopy
  • Figure 2 the presence of Palladium in the particles of the sample of the Figure is confirmed by an elementary chemical analysis by X-ray dispersive energy (EDS).
  • the ability of the metal that is encapsulated in the nanoparticles to pass into the reaction medium has also been evaluated.
  • the three-phase method was used, using another reagent supported on a silica matrix as an auxiliary: mercaptopropi ⁇ -si ⁇ ice ((Si () 2 ) -CH 2 -CH 2 -CH 2 -SH) (Paris, M., Valette, D., Fagnou,., J.
  • the experiments carried out involve the initial incubation of mercaptopropyl silica with the catalyst (2% mol, Pd (PPh 3 ) 4 for the reaction of Suzuki and Pd (PPh 3 ) 2 Cl 2 for Sonogashira, Heck and Stille) for 1 hour and subsequently adding the remaining reactants to the reaction vial. After 24 hours have elapsed under the same experimental conditions described for the type experiment, the absence of coupling products is checked, by comparison with a previously obtained authentic sample (TLC and HPLC), and that the starting products remain unchanged.
  • the catalyst 20% mol, Pd (PPh 3 ) 4 for the reaction of Suzuki and Pd (PPh 3 ) 2 Cl 2 for Sonogashira, Heck and Stille
  • the hybrid catalysts were prepared [Si0 2 -
  • the hybrid catalyst is recovered by filtration, washed 3 times (10 mL) with the solvent used therein and subsequently with water (10 mL) and dried under vacuum.
  • This same catalyst has been used in at least 5 experiments without appreciating a significant decrease in its catalytic capacity, evaluated according to the percentages of yield of the products obtained in each transformation. As an example it follows yields obtained during reaction of 4-bromobenzonitrile with phenylboronic acid using recycled catalyst: 2nd experiment: 74%, 3rd experiment: 75%, 4th experiment: 70%, 4 or experiment: 70 %.
  • the catalyst is recovered by filtration, washed 3 times (10 mL) with the solvent used therein and subsequently with water (10 mL) and dried under vacuum.
  • This same catalyst has been used in at least 5 experiments without appreciating a significant decrease in its catalytic capacity, evaluated according to the percentages of yield of the products obtained in each transformation.
  • the yields obtained during the reaction of iodobenzene with phenylacetylene are indicated below using the recycled catalyst: 2nd experiment: 80%, 3rd experiment: 79%, 4th experiment: 78%, 4th experiment: 80%>.
  • the catalyst is recovered by filtration, washed 3 times (10 mL) with the solvent used therein and subsequently with water (10 mL) and dried under vacuum.
  • This same catalyst has been used in at least 5 experiments without appreciating a significant decrease in its catalytic capacity, evaluated according to the percentages of yield of the products obtained in each transformation. As an example it follows yields obtained during reaction of 4-bromobenzonitrile with propargyl alcohol using the recycled catalyst 2 or experiment: 73%, 3rd experiment: 75%, 4th experiment: 73%, 4th experiment: 75 %.
  • the catalyst is recovered by filtration, washed 3 times (10 mL) with the solvent used therein and subsequently with water (10 mL) and dried under vacuum.
  • This same catalyst has been used in at least 5 experiments without appreciating a significant decrease in its catalytic capacity, evaluated according to the percentages of yield of the products obtained in each transformation. For example it follows yields obtained during reaction of 4-iodobenzonitrilo with acrylate using the recycled catalyst: 2 or experiment: 95%, 3rd experiment: 95%, 4th experiment: 92%, 4th experiment: 93%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La presente invención describe un sistema catalítico híbrido químicamente estable que comprende nanopartículas de sílice, titania o circonia no funcionalizadas y un complejo organometálico de un metal de transición. En los nuevos materiales descritos las especies catalíticas son encapsuladas en la matriz polimérica por interacción directa con la misma, sin necesidad de incorporar Liniers o grupos funcionales. También se describe un método de obtención en una sola etapa mediante el procedimiento de sol-gel, por medio de reacciones de hidrólisis y condensación de alcóxidos de Si, Ti o Zr en un medio, al que se añaden los complejos organometálicos de metales de transición mientras se produce la hidrólisis/condensación del alcóxido. Estos sistemas catalíticos se usan en la síntesis de compuestos orgánicos, industria química y farmacéutica.

Description

PROCEDIMIENTO DE OBTENCIÓN DE CATALIZADORES HÍBRIDOS COMPUESTOS POR COMPLEJOS DE METALES DE TRANSICIÓN ENCAPSULADOS EN NANOP ARTICULAS POROSAS DE SÍLICE, TITANIA O CIRCONIA
Sector de la técnica
La presente invención se refiere al desarrollo de sistemas catalíticos híbridos. Estos 5 sistemas comprenden nanopartículas de sílice, titania o circonia en las que se encapsulan complejos catalíticos de metales de transición por interacción directa con una matriz inorgánica no funcionalizada. Estos nuevos materiales facilitan la implementación de procesos respetuosos con el medio ambiente (Química verde). También se refiere a procedimientos de preparación.
0 Antecedentes de la invención
Las reacciones catalizadas por metales de transición, y en especial aquellas que emplean sistemas catalíticos que contienen Paladio, ocupan un lugar prominente entre las metodologías sintéticas de la Química Orgánica moderna. Estas transformaciones permiten acceder de forma eficiente a estructuras de gran complejidad, empleando condiciones5 experimentales suaves y respetuosas con el medio ambiente. Gran parte de los avances alcanzados en este tema son consecuencia del desarrollo de los sistemas catalíticos hoy disponibles, homogéneos o heterogéneos, que presentan diferentes ventajas e inconvenientes. En la catálisis homogénea el catalizador está disperso en el medio de reacción, lo que habitualmente se traduce en una mayor eficiencia del proceso catalítico y0 una alta selectividad. Pese a estas ventajas, la catálisis heterogénea es la preferida a escala industrial, principalmente por la posibilidad de recuperar y reutilizar el catalizador. Sin embargo, y a pesar del enorme potencial de este tipo de transformaciones, su aplicación en áreas como las industrias farmacéutica y agroquímica permanece limitada por la incapacidad de satisfacer, de forma eficiente, los rigurosos controles establecidos por las5 agencias reguladoras en relación con las cantidades de metales presentes en medicamentos y productos fitosanitarios.
El desarrollo de sistemas catalíticos híbridos, garantiza una catálisis eficiente al ofrecer al catalizador homogéneo un entorno de naturaleza heterogénea que le sirve de soporte y que, dependiendo de la estructura de este último, lo estabiliza químicamente. Adicionalmente,0 este tipo de materiales permite un tratamiento similar a los catalizadores heterogéneos, facilitando los procesos de purificación, recuperación y reutilización del catalizador. Un ejemplo representativo de este tipo de materiales ha sido descrita recientemente (ChemFiles Aldrich, 2004, Vol. 4, No. 7 y referencias citadas allí), empleando una matriz de poliurea altamente entrecruzada como soporte.
Una de las estrategias más exitosas en este tema es la heterogenización de catalizadores homogéneos por fijación a materiales poliméricos de naturaleza orgánica (p. e. poliestireno) o inorgánica (p. e. sílice, zeolitas). Actualmente diferentes productores comercializan catalizadores que incorporan metales de transición (ej. Pd, Pt, Ru ó Rh) soportados sobre poliestireno o silicagel para ser empleados en diferentes reacciones de acoplamiento.
Con el objetivo de evaluar la novedad y actividad inventiva de los nuevos materiales descritos en la presente invención se relacionan a continuación las características estructurales más significativas de los sistemas catalíticos, que conforman el estado actual del tema, en especial aquellos formados por nanopartículas de sílice, titania o circonia:
1) En general, los materiales catalíticos establecidos, están formados por una matriz polimérica funcionalizada, o sea, además de la estructura polimérica inorgánica que les sirve de soporte estos materiales incorporan un agrupamiento espaciador o linker.
2) Este linker se incorpora en la matriz durante la etapa de polimerización, habitualmente combinando un teratraalcóxido no funcionalizado [típicamente Si(OEt)4] y un tetraalcóxido funcionalizado [por ejemplo Si(OEt)3R].
3) El grupo espaciador (o linker) está formado por cadenas carbonadas (típicamente: alquílicas, alquilarílicas, aminoalquílicas, aminoácidicas, etc.) que se unen de forma covalente a la matriz polimérica. Estos agrupamientos habitualmente contienen un grupo funcional cuya función es permitir la fijación de las especies metálicas al soporte sólido funcionalizado (por quelación o interacción iónica).
4) Otra característica destacable de los materiales descritos hasta el momento deriva de la forma en que las especies metálicas se fijan al soporte sólido, que se realiza por a través de los grupos funcionales que incorpora el linker.
Ejemplos representativos de este tipo de materiales se describen en los siguientes documentos: US2007184970, EP1559477A1, US2009/0163656A1, ChemComm, 1996, 1497-1498, (http://www.sigrnaaldrich.com/chemistry/ chemistryproducts. html? TablePage= 16278454).
Sin embargo, a pesar de sus ventajas, la utilización de estos nuevos sistemas catalíticos se ve limitada por su precio, así como por la relativamente baja carga neta del catalizador que puede incorporar la matriz polimérica, que a su vez depende en gran medida de los grupos funcionales que se encuentran unidos al soporte sólido. Adicionalmente, su preparación requiere procedimientos experimentales que conllevan varias etapas de síntesis y purificación y, su naturaleza funcionalizada, requiere la obtención de tetraalcóxidos f ncionalizados específicos (que aportarán los Linkers donde serán fijados las especies metálicas) cuya síntesis en muchas ocasiones no es trivial.
A la vista del estado de la técnica, y de los inconvenientes que presentan los sistemas híbridos basados en matrices poliméricas funcionalizadas que se emplean en la actualidad, esta invención describe nuevos materiales con actividad catalítica que aportan novedades relacionadas con la estructura de la matriz polimérica de la nanopartícula, así como en la forma en que las especies catalíticas se fijan a la misma. Adicionalmente, el procedimiento reivindicado en esta solicitud constituye un método de síntesis sencillo, económico, robusto y eficiente.
Breve descripción de la invención
La presente invención proporciona un sistema catalítico híbrido, formado por una matriz polimérica no funcionalizada que incorpora un complejo organometálico, cuyo procedimiento de preparación conlleva un único paso sintético robusto, eficiente y económico. Los nuevos materiales desarrollados poseen dos elementos claves que los distinguen de otros sistemas catalíticos: la matriz polimérica no contiene grupos espaciadores y/o Linkers (no funcionalizada), la forma en que las especies catalíticas son fijadas al soporte sólido (al quedar atrapadas en la matriz durante el proceso de polimerización/encapsulación).
Una ventaja adicional que proporciona la presente invención es que la matriz puede ser de nanopartículas de distintos materiales (Si02, Ti02 o Zr02). La porosidad y las dimensiones nanométricas, proporcionan una gran superficie específica, lo que aumenta la distribución del catalizador en el conjunto de las nanopartículas y por tanto la eficiencia catalítica del sistema. Estos sistemas son estables y reutilizables, además tienen la ventaja de que impiden la contaminación de los productos de reacción por el catalizador, lo que los hace adecuados para su empleo entre otras, en la industria farmacéutica, además de que pueden ser utilizados en metodologías de síntesis respetuosas con el medio ambiente.
Así, en un aspecto la invención se dirige a un sistema catalítico híbrido químicamente estable que comprende nanopartículas de sílice, titania o circonia no funcionalizadas (y por tanto no contienen espaciadores y/o grupos funcionales) que sirven de soporte a un complejo organometálico de un metal de transición. Otro aspecto novedoso de la invención se refiere a la forma en que las especies organometálicas son fijadas (encapsuladas) a la matriz polimérica, por interacción directa con el soporte sólido durante la formación de las nanopartículas.
En otro aspecto, la invención se dirige a un procedimiento para la preparación de dicho sistema, que comprende la adición de un complejo organometálico sobre una mezcla de reacción compuesta por un tetra-alquilalcóxido de silicio no funcionalizado, titanio o zirconio en una disolución, mientras se produce una hidrólisis/condensación según un proceso sol-gel.
En otro aspecto, la invención se dirige al uso de dicho sistema en reacciones de síntesis orgánica, en la industria farmacéutica, química o agroquímica, y en procesos químicos respetuosos con el medio ambiente característicos de la Química Verde.
Breve descripción de las figuras:
Figura 1. Imagen obtenida mediante microscopía electrónica (SEM) de una muestra de nanopartículas de Si02 no funcionalizadas en las que se encuentra encapsulado Pd(PPh3)4.
Figura 2. Análisis químico elemental mediante energía dispersiva de Rayos X (EDS) de la muestra de la Figura 1. La presencia de Au se debe al proceso de metalizado superficial de la muestra para su análisis.
Descripción detallada de la invención
En la presente invención, por el término sistema catalítico híbrido se entiende un sistema en donde un componente homogéneo con propiedades catalíticas está fijado a una matriz polimérica no funcionalizada. En concreto, el componente homogéneo es un complejo organometálico de un metal de transición y la matriz polimérica está constituida por nanopartículas de sílice, titania o circonia. La fijación del componente homogéneo a la matriz polimérica produce un efecto de heterogenización, que impide al complejo organometálico su difusión al medio de reacción, aunque su eficacia catalítica no disminuye. Dicha fijación se realiza por captura del componente homogéneo en el seno matricial sin mediación de grupos funcionales o Linkers durante la etapa de formación de las partículas. Este tipo de fijación evita la utilización de soportes funcionalizados, aporta estabilidad al nuevo material y adicionalmente garantiza niveles de entrecruzamiento del polímero (encapsulación) que evitan la liberación del complejo organometálico al medio de reacción y la consiguiente contaminación de los productos de reacción con trazas de metales. Simultáneamente la naturaleza porosa del soporte sólido facilita la migración de los reaccionantes al interior de las nanopartículas, donde se transforman en productos para posteriormente retornar al disolvente.
Por el término "matriz polimérica no funcionalizada" se entiende un soporte sólido de naturaleza polimérica que no contiene cadenas espaciadoras y/o grupos funcionales (por ejemplo Si02, Ti02 o Zr02).
Por el término "nanopartículas" se hace referencia a estructuras estables y de características homogéneas, reproducibles y modulables, en tamaño y forma, que constituyen una matriz de entrecruzamiento, cuyo tamaño medio es inferior a 1 micrómetro, es decir, de entre 1 y 999 nm, preferiblemente de entre 50 y 600 nm.
Por el término "tamaño promedio" se entiende el diámetro promedio de la población de nanopartículas, que comprende la estructura matricial. El tamaño promedio de estos sistemas se mide mediante análisis de imagen mediante SEM (Microscopía electrónica de barrido).
Por el término complejo organometálico se entiende un catalizador homogéneo de naturaleza organometálica que contiene en su estructura un metal de transición. En un aspecto particular, el metal de transición del complejo organometálico se selecciona entre Paladio, Platino, Cobalto, Níquel. En un aspecto más particular, el complejo organometálico se selecciona preferentemente entre ( PdC ;.-( ΡΡΙι <) . Pd(PPh3)4, Ι5·( i í PPh . K Pt(PPh3),i, \ ¡{ PPh > ) ·( '! ·. [Ni(acac)2]3.
En un aspecto particular, el complejo organometálico se encuentra en una proporción entre el 0,05 y el 5% en peso. El procedimiento de preparación de los sistemas catalíticos de la presente invención comprende una única etapa de adición de un complejo organometálico sobre una mezcla de reacción. Dicha mezcla de reacción está compuesta por un tetra-alquilalcóxido de silicio, titanio o zirconio en una disolución en la que se está produciendo un proceso de hidrólisis/condensación según un proceso sol-gel.
El proceso sol-gel es ampliamente conocido en el estado de la técnica (J. Colloid Interface Sci., 26, p62, 1968. Langmuir 14, p5396, 1998. J. Amer. Chem. Soc. 128, p 968, 2006. Colloids Surf.197, p7, 2002. Biomaterials, 25, p723, 2004). El proceso sol-gel implica la hidrólisis y condensación de precursores metalorgánicos que da lugar a un gel que consiste en una red de enlaces metal-oxígeno-metal interconectada en tres dimensiones. Por ejemplo, si el precursor fuese tetraetoxisilano [Si(OEt)4] se obtendría un gel con enlaces Si-O-Si.
En un aspecto particular de la invención, la mezcla de reacción en la que se está produciendo la hidrólisis/condensación comprende amoníaco, agua y un alcohol alquílico. En la presente invención se han modificado estos procedimientos, al incluir una etapa en la síntesis de las nanopartículas, que consiste en adicionar el catalizador homogéneo a la mezcla de reacción en la que se está produciendo la síntesis, buscando que la inclusión del catalizador en la nanopartícula de sílice, titania o circonia, pueda realizarse en la misma operación de síntesis de dicha nanopartícula, lo que simplifica y economiza su obtención. A continuación, para una mayor comprensión de las características y ventajas de la presente invención, se hará referencia a una serie de ejemplos que de forma explicativa completan la descripción anterior, sin suponer en modo alguno que ésta se vea limitada a los mismos.
Ejemplo 1
La síntesis de nanopartículas de sílice se realiza mediante la hidrólisis/condensación del tetra-etilalcóxido de Si, por reacción con NH4OH y H20 en Etanol. La reacción se inicia al añadir a la mezcla tetra-etilalcóxido de Si. La concentración final en la mezcla de cada uno de los reactivos determina el tamaño de las nanopartículas. Para obtener partículas de un tamaño promedio entorno a 150 nm, la concentración de los reactivos en la mezcla de reacción fue de: NH4OH 1 M, H20 1,3 M y 0,17 M para el tetra-etilalcoxido de Si. A los 15 minutos aproximadamente de añadir el alcóxido, el medio de reacción comienza a ponerse turbio, con una coloración blanquecina que aumenta su intensidad con el paso del tiempo. En ese momento se añade a la mezcla el compuesto organometálico (catalizador homogéneo), Pd(PPh 3)4. El medio de reacción se mantiene en agitación continua a una temperatura aproximada de 22 °C durante aproximadamente 12 horas. Una vez transcurrido ese tiempo se procede a la separación y lavado del producto de reacción. Se centrifuga la mezcla, se retira el sobrenadante y se redispersan las nanopartículas en etanol. Este proceso se repite tres veces. A continuación se realizan tres lavados más redíspersa do las nanopartículas en agua. La muestra final se deja secar a temperatura ambiente y se obtiene el producto final, Si02-Pd(PPh3 )4, como un polvo fino. Con las concentraciones indicadas de NH4OH y H20, se obtuvieron tamaños promedio de partícula de 133 nm. Variando estás concentraciones se obtuvieron también partículas de 105 y 220 nm.
En la Figura 1 se muestran las nanopartículas de S1O2 no funcionalizadas en las que se encuentra encapsulado Pd(PPh3)4. La imagen, obtenida mediante microscopía electrónica (SEM), muestra partículas con un tamaño medio de 133 nm. En la Figura 2, se confirma la presencia de Paladio en las partículas de la muestra de la Figura mediante un análisis químico elemental mediante energía dispersiva de Rayos X (EDS).
Ejemplo 2
Siguiendo exactamente el mismo procedimiento del Ejemplo 1, pero añadiendo en este caso como catalizador homogéneo Pd(PPh3)2Cl2 en lugar de Pd(PPh3)4, se obtuvieron nanopartículas de Si02 no funcionalizadas en las que se encuentra encapsulado Pd(PPh3)2Cl2.
Ejemplo 3.
Como parte de la caracterización físico-química de las nanopartículas preparadas se ha evaluado también la capacidad del metal que se encuentra encapsulado en las nanopartículas para pasar al medio de reacción. Para ello se empleó el método de las tres fases, utiliza do como auxiliar otro reactivo soportado sobre u a matriz de sílice: la mercaptopropií-siíice ((Si()2)-CH2-CH2-CH2-SH) (Parisién, M., Valette, D., Fagnou, ., J.
Org. Chem., 2005, 70, 7578; Davics, l. W., Matty, L., Hughes, D. L,, Reider, P. 1, J.Am.
Chem, Soc, 2001, 123, 10139; Rebeck, J., Gavina, F., J. Am. Chem. Soc, 1974, 96, 71 12). Está bien documentado que el grupo tiol de este reactivo es capaz de reaccionar con las especies de paladio que se encuentran en solución, ''secuestrándolo" y fijando el
Paladio a la sílice. Inieialmente, y con el objetivo de validar la efectividad de la mercaptopropil-silica, se han estudiado diferentes reacciones (Suzuki, Sonogashira, Heck y Stille) empleando el correspondiente catalizador homogéneo [Pd(PPh3)4, Pd(PPh3)2Cl2] . Todos los experimentos se han realizado en DMF, empleando 150 mg de mercptopropil siiica y manteniendo el iodobenceno corno electrófílo orgánico (0,5 mmol) y utilizando ácido femlhorónieo (0.6 mmol), femlaeetileno (0.55 mmol) acrílato de metilo (0.6 mmol), o tributiifeniiestannano (0,6 mmol) como contraparte para las reacciones de Suzuki, Sonogashira, Heck y Stille. Los experimentos realizado conllevan la incubación inicial de la mercaptopropil sílica con el catalizador (2% mol, Pd(PPh3)4 para la reacción de Suzuki y Pd(PPh3)2Cl2 para Sonogashira, Heck y Stille) durante 1 hora y adicionando posteriormente el resto de reaccionantes al vial de reacción. Una vez transcurridas 24 horas bajo las mismas condiciones experimentales que se describe para el experimento tipo se comprueba la ausencia de productos de acoplamiento, por comparación con una muestra autentica previamente obtenida (TLC y HPLC), y que los productos de partida permanecen inalterados.
Figure imgf000009_0001
De forma análoga se ha procedido con los catalizadores híbridos preparados [Si02-
Pd(PPh3)2Cl2 y Si02-Pd(PPh3)4 ] en las cuatro reacciones modelo empleadas a lo largo del trabajo (Suzuki, Sonogashira, Heck y Stille) para el iodobenceno, comprobándose que en presencia de la mercaptopropil-silica todas ellas conducen a los esperados productos de acoplamiento cruzado.
Estos resultados confirman, de forma inequívoca, que estos complejos organometálicos de paladio se encuentran encapsulados en las nanopartículas y no tienen capacidad de migrar al medio de reacción.
Figure imgf000010_0001
Ejemplo 4. Reacciones de acoplamiento empleando nanopartículas de sílice
Catalizadores híbridos formados por nanopartículas de sílice preparadas según el procedimiento descrito: [Si02-Pd(PPh3)4 y Si02-Pd(PPh3)2Cl2], se han empleado como catalizadores en las reacciones de Suzuki, Heck, Sonogashira y Stille.
Ejemplo 4.1
Procedimiento General para la Reacción de Suzuki: A una mezcla equimolecular (0.1 mmol) de bromobenceno y ácido 4-tolilborónico en dimetoxietano (5 mL) se adiciona Na2C03 (0.3 mmol), H20 (3 mL) y 60 mg del catalizador híbrido (Si02-Pd(PPh3)4). La mezcla se calienta a 90°C durante 4 horas, se deja enfriar a temperatura ambiente, se filtra y el filtrado se evapora a sequedad y purifica por cromatografía de columna para obtener un sólido blanco cuyas características analíticas y espectroscópicas se corresponden con el 4-metilbifenilo.
Figure imgf000011_0001
Figure imgf000011_0002
Una vez finalizada la reacción se recupera el catalizador híbrido por filtración, se lava 3 veces (10 mL) con el disolvente empleado en la misma y posteriormente con agua (10 mL) y se seca a vacío. Este mismo catalizador se ha empleado en al menos 5 experimentos sin que se aprecie una importante disminución en su capacidad catalítica, evaluada en función de los porcentajes de rendimiento de los productos obtenidos en cada transformación. A modo de ejemplo se indica a continuación los rendimientos obtenidos durante la reacción del 4-bromobenzonitrilo con el ácido fenilborónico empleando el catalizador reciclado: 2º experimento: 74%, 3º experimento: 75%, 4º experimento: 70%, 4o experimento: 70%.
Ejemplo 4.2
Procedimiento General para la Reacción de Stille: A una mezcla equimolecular (0.1 mmol) de bromobenceno y tribuil-vinil estannano en dimetilformamida (7 mL) se adicionan 60 mg del catalizador soportado en nanopartículas de sílice (Si02-Pd(PPh3)2Cl2). La mezcla se calienta a 90 °C durante 6 horas, se deja enfriar a temperatura ambiente, se filtra y el filtrado se evapora a sequedad y purifica por cromatografía de columna para obtener un sólido blanco cuyas características analíticas y espectroscópicas se corresponden con el estireno.
Figure imgf000012_0001
Una vez finalizada la reacción se recupera el catalizador por filtración, se lava 3 veces (10 mL) con el disolvente empleado en la misma y posteriormente con agua (10 mL) y se seca a vacío. Este mismo catalizador se ha empleado en al menos 5 experimentos sin que se aprecie una importante disminución en su capacidad catalítica, evaluada en función de los porcentajes de rendimiento de los productos obtenidos en cada transformación. A modo de ejemplo se indica a continuación los rendimientos obtenidos durante la reacción del iodobenceno con el fenilacetileno empleando el catalizador reciclado: 2º experimento: 80 %, 3º experimento: 79%, 4º experimento: 78%, 4º experimento: 80%>.
Ejemplo 4.3
Procedimiento General para la Reacción de Sonogashira: A una mezcla equimolecular (0.1 mmol) de bromobenceno y etinilbenceno en dimetilformamida (7 mL) se adiciona trietilamina (0.2 mmol) y 60 mg del catalizador soportado en nanopartículas de sílice (Si02-Pd(PPh3)2Cl2). La mezcla se calienta a 55 °C durante 6 horas, se deja enfriar a temperatura ambiente, se filtra y el filtrado se evapora a sequedad y purifica por cromatografía de columna para obtener un sólido blanco cuyas características analíticas y espectroscópicas se corresponden con el 1,2-difeniletileno.
Figure imgf000013_0001
Figure imgf000013_0002
Una vez finalizada la reacción se recupera el catalizador por filtración, se lava 3 veces (10 mL) con el disolvente empleado en la misma y posteriormente con agua (10 mL) y se seca a vacío. Este mismo catalizador se ha empleado en al menos 5 experimentos sin que se aprecie una importante disminución en su capacidad catalítica, evaluada en función de los porcentajes de rendimiento de los productos obtenidos en cada transformación. A modo de ejemplo se indica a continuación los rendimientos obtenidos durante la reacción del 4-bromobenzonitrilo con el alcohol propargílico empleando el catalizador reciclado: 2o experimento: 73%, 3º experimento: 75%, 4º experimento: 73%, 4º experimento: 75%. Ejemplo 4.4
Procedimiento General para la Reacción de Heck: A una mezcla equimolecular (0.1 mmol) de bromobenceno y acrilato de etilo en dimetilformamida (7 mL) se adiciona trietilamina (0.2 mmol) y 60 mg del catalizador soportado en nanopartículas de sílice (Si02-Pd(PPh3)2Cl2). La mezcla se calienta a 100 °C durante 6 horas, se deja enfriar a temperatura ambiente, se filtra y el filtrado se evapora a sequedad y purifica por cromatografía de columna para obtener un sólido blanco cuyas características analíticas y espectroscópicas se corresponden con el 3-fenilacrilato de etilo.
Figure imgf000014_0001
TEA
Figure imgf000014_0002
Una vez finalizada la reacción se recupera el catalizador por filtración, se lava 3 veces (10 mL) con el disolvente empleado en la misma y posteriormente con agua (10 mL) y se seca a vacío. Este mismo catalizador se ha empleado en al menos 5 experimentos sin que se aprecie una importante disminución en su capacidad catalítica, evaluada en función de los porcentajes de rendimiento de los productos obtenidos en cada transformación. A modo de ejemplo se indica a continuación los rendimientos obtenidos durante la reacción del 4-iodobenzonitrilo con el acrilato de metilo empleando el catalizador reciclado: 2o experimento: 95%, 3º experimento: 95%, 4º experimento: 92%, 4º experimento: 93%.

Claims

REIVINDICACIONES
1.- Sistema catalítico híbrido químicamente estable formado por un complejo organometálico de un metal de transición encapsulado en nanopartículas de una matriz polimérica inorgánica no f ncionalizada, por interacción directa con la matriz.
2 - Sistema, según la reivindicación 1, donde el diámetro medio de las nanopartículas de sílice, titania o circonia está comprendido entre 1 y 999 nm, preferiblemente entre 50 y 600 nm.
3.- Sistema, según la reivindicación 1 y 2, donde el metal de transición se selecciona entre Paladio, Platino, Cobalto, o Níquel.
4.- Sistema, según la reivindicación 1, 2 y 3, donde la matriz polimérica inorgánica es de sílice, titania o circonia.
5. - Sistema, según la reivindicación 3, donde el complejo organometálico se encuentra en una proporción entre el 0,05 y el 5% en peso.
6. - Procedimiento para la preparación de un sistema como se define en cualquiera de las reivindicaciones 1 a 5, que comprende la encapsulación, por interacción directa con la matriz de sílice, titania o circonia, de un complejo organometálico de un metal de transición mediante la adición de éste durante la hidrólisis/condensación en una mezcla de reacción que contiene un tetra-alquilalcóxido no funcionalizado de silicio, titanio o zirconio, según un proceso sol-gel.
7.- Procedimiento, según la reivindicación 6, donde el complejo organometálico tiene como metal de transición Paladio, Platino, Cobalto, o Níquel.
8. - Procedimiento según las reivindicaciones 6 y 7, donde la mezcla de reacción disolución comprende amoníaco, agua y un alcohol alquílico.
9. - Uso del sistema definido en las reivindicaciones 1 a 5, en reacciones de síntesis orgánica, en la industria farmacéutica, química o agroquímica, y en procesos químicos respetuosos con el medio ambiente característicos de la Química Verde.
PCT/ES2010/070663 2009-10-19 2010-10-15 Procedimiento de obtención de catalizadores híbridos compuestos por complejos de metales de transición encapsulados en nanopartículas porosas de sílice, titania o circonia WO2011048247A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200902009 2009-10-19
ES200902009A ES2358028B1 (es) 2009-10-19 2009-10-19 Procedimiento de obtención de catalizadores híbridos compuestos por complejos de metales de transición encapsulados en nanopartículas porosas de sílice, titania o circonia.

Publications (1)

Publication Number Publication Date
WO2011048247A1 true WO2011048247A1 (es) 2011-04-28

Family

ID=43875537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070663 WO2011048247A1 (es) 2009-10-19 2010-10-15 Procedimiento de obtención de catalizadores híbridos compuestos por complejos de metales de transición encapsulados en nanopartículas porosas de sílice, titania o circonia

Country Status (2)

Country Link
ES (1) ES2358028B1 (es)
WO (1) WO2011048247A1 (es)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2344734T3 (es) * 2002-09-16 2010-09-06 Johns Hopkins University Activacion de miostatina por metaloproteasa, y metodos para modular la actividad de miostatina.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2344734T3 (es) * 2002-09-16 2010-09-06 Johns Hopkins University Activacion de miostatina por metaloproteasa, y metodos para modular la actividad de miostatina.

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAMZA, K. ET AL.: "Heck Vinylation of Aryl Iodidesby a Silica Sol-Gthe Entrapped Pd(II) Catalyst andlts Combination with a Photocyclization Process", ORGANIC LETTERS, vol. 6, no. 6, 2004, pages 925 - 927 *
POLSHETTIWAR, V. ET AL.: "Silica-supported palladium: Sustainable catalysts for cross-coupling reactions", COORDINATION CHEMISTRY REVIEWS, vol. 253, 13 June 2009 (2009-06-13), pages 2599 - 2626, XP026640913, DOI: doi:10.1016/j.ccr.2009.06.001 *
TALHAMI, A. ET AL.: "Sol-gthe intrapped dichlorobis(triphenylphosphine)palladiumas an efficient recyclable catalyst for the cross-couplingof aryl halides with indium- and rtheated alkylating reagents.", APPLIED CATALYSIS A: GENERAL, vol. 312, 2006, pages 115 - 119 *

Also Published As

Publication number Publication date
ES2358028B1 (es) 2011-11-28
ES2358028A1 (es) 2011-05-05

Similar Documents

Publication Publication Date Title
Mandal et al. Pt and Pd nanoparticles immobilized on amine-functionalized zeolite: excellent catalysts for hydrogenation and heck reactions
Gutov et al. Metal–organic framework (MOF) defects under control: insights into the missing linker sites and their implication in the reactivity of zirconium-based frameworks
Abazari et al. Amine-functionalized Al-MOF#@ yx Sm2O3–ZnO: a visible light-driven nanocomposite with excellent photocatalytic activity for the photo-degradation of amoxicillin
Zhong et al. Fabrication of magnetic Pd/MOF hollow nanospheres with double-shell structure: toward highly efficient and recyclable nanocatalysts for hydrogenation reaction
Polshettiwar et al. Silica-supported Pd catalysts for Heck coupling reactions
Reynhardt et al. Periodic mesoporous silica-supported recyclable rhodium-complexed dendrimer catalysts
Fukuoka et al. Template synthesis of nanoparticle arrays of gold and platinum in mesoporous silica films
Bass et al. Bifunctional surface imprinting of silica: Thermolytic synthesis and characterization of discrete thiol− amine functional group pairs
Bass et al. Thermolytic synthesis of imprinted amines in bulk silica
Yoo et al. Engineering nanospaces: OMS/dendrimer hybrids possessing controllable chemistry and porosity
Zhang et al. Pd-porphyrin functionalized ionic liquid-modified mesoporous SBA-15: An efficient and recyclable catalyst for solvent-free Heck reaction
JP2008541999A (ja) 担持されたナノ触媒の製造方法および担持されたナノ触媒の使用方法
Lunn et al. Peptide Brush Ordered Mesoporous Silica Nanocomposite Materials
Tandukar et al. N-heterocyclic carbene–palladium complex immobilized on silica nanoparticles: Recyclable catalyst for high yield Suzuki and Heck coupling reactions under mild conditions
Pahalagedara et al. Ordered mesoporous mixed metal oxides: remarkable effect of pore size on catalytic activity
Schweyer-Tihay et al. Synthesis and characterization of supported Co2P nanoparticles by grafting of molecular clusters into mesoporous silica matrixes
JP2010522078A (ja) パラジウム触媒
Baran et al. Design of highly robust halloysite nanoclay supported palladium complex as a highly active heterogeneous catalyst for construction of biaryls
Han et al. Cyclodextrin-based porous silica materials as in situ chemical “Nanoreactors” for the preparation of variable Metal− Silica hybrids
Pandey et al. Catalytic C–H Bond Activation and Knoevenagel Condensation Using Pyridine-2, 3-Dicarboxylate-Based Metal–Organic Frameworks
Veisi et al. Catalytic applications of an organosuperbase dendron grafted on mesoporous SBA-15 and a related palladium complex in Henry and Suzuki–Miyaura coupling reactions
WO2007084904A2 (en) Methods for manufacturing functionalized inorganic oxides and polymers incorporating same
Xiao et al. Phenanthroline functionalized polyacrylonitrile fiber with Pd (0) nanoparticles as a highly active catalyst for the Heck reaction
Rabiei et al. Palladium Schiff base complex-modified Cu (BDC-NH 2) metal–organic frameworks for C–N coupling
Lazar et al. A simple, phosphine free, reusable Pd (ii)–2, 2′-dihydroxybenzophenone–SBA-15 catalyst for arylation and hydrogenation reactions of alkenes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10824501

Country of ref document: EP

Kind code of ref document: A1