WO2011047528A1 - Bi-microporous-mesoporous composite molecular sieve y-beta/ mcm-41 and preparing method thereof - Google Patents

Bi-microporous-mesoporous composite molecular sieve y-beta/ mcm-41 and preparing method thereof Download PDF

Info

Publication number
WO2011047528A1
WO2011047528A1 PCT/CN2010/001369 CN2010001369W WO2011047528A1 WO 2011047528 A1 WO2011047528 A1 WO 2011047528A1 CN 2010001369 W CN2010001369 W CN 2010001369W WO 2011047528 A1 WO2011047528 A1 WO 2011047528A1
Authority
WO
WIPO (PCT)
Prior art keywords
beta
microporous
mcm
molecular sieve
mesoporous
Prior art date
Application number
PCT/CN2010/001369
Other languages
French (fr)
Chinese (zh)
Inventor
王东青
李全芝
张志华
田然
孙发民
李旭光
于春梅
戴宝琴
赵野
王甫村
黄耀
吕倩
郭淑芝
李海岩
张庆武
马守涛
丛丽茹
张全国
邴淑秋
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Publication of WO2011047528A1 publication Critical patent/WO2011047528A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound

Abstract

A bi-microporous-mesoporous composite molecular sieve Y-Beta/MCM-41 and preparing method thereof are provided. The molecular sieve is compounded with bi-microporous zeolites Y and Beta and molecular sieve MCM-41. The Y and Beta microporous phases are tightly wrapped by MCM-41 hexagonal mesoporous phase. The method includes: using hexadecyl trimethyl ammonium bromide cationic surfactant and polyethylene glycol octylphenyl ether nonionic surfactant as templates, respectively introducing pretreated bi-microprous phase and synthesized mesoporous inorganic silicon source into the system, adjusting the pH value of the system with inorganic acid, then treating with hydrothermal crystallization to obtain bi-microporous-mesoporous composite molecular sieve Y-Beta/MCM-41. The ratio of silica to alumina and the microporous phase content in the molecular sieve can be adjusted, and the molecular sieve can be used without ion exchange.

Description

一种 Y-Beta/MCM-41双微孔-介孔复合分子筛及制备方法  Y-Beta/MCM-41 double microporous-mesoporous composite molecular sieve and preparation method thereof
技术领域 Technical field
本发明涉及一种含 Y型和 Beta型沸石的双微孔相和 MCM-41介孔 相的新型催化材料及酸性体系中的制备方法。  The invention relates to a novel catalytic material containing a double microporous phase of Y-type and Beta-type zeolite and a mesoporous phase of MCM-41 and a preparation method in an acidic system.
背景技术 Background technique
以分子筛材料为载体开发的加氢裂化催化剂是当今加氢裂化技术 研发的主流和方向, 目前应用的分子筛主要以 Y型和 Beta型等微孔沸石 分子筛为主, 微孔分子筛在提升催化剂的性能方面发挥了重要作用。 但 是随着油品的重质化, 微孔分子筛狭窄的孔径限制了它的应用, 虽然经 超稳化二次处理可以扩孔, 但是孔径不均匀。 1992年, 出现了介孔分子 筛, 它的大比表面积及均匀的介孔孔径, 给重质油和大分子反应带来了 曙光。 但是其孔壁无序性导致的弱酸性和低的水热稳定性, 阻碍了它的 推广和应用。 微孔-介孔复合分子筛材料的出现, 既改善了微孔材料的有 效孔径分布, 又解决了介孔材料酸强度低的难题, 使加氢处理催化剂的 催化性能的跨越式进步成为可能。  The hydrocracking catalyst developed with molecular sieve materials as the carrier is the mainstream and direction of the development of hydrocracking technology. The molecular sieves currently used are mainly micro-porous zeolite molecular sieves such as Y-type and Beta-type, and the performance of micro-porous molecular sieves is improved. The aspect played an important role. However, as the oil is heavier, the narrow pore size of the microporous molecular sieve limits its application. Although the secondary treatment can be reamed by the ultra-stable secondary treatment, the pore diameter is not uniform. In 1992, a mesoporous molecular sieve appeared, its large specific surface area and uniform mesoporous pore size, which brought light to heavy oil and macromolecular reactions. However, the weak acidity and low hydrothermal stability caused by the disorder of the pore wall hinder its promotion and application. The appearance of microporous-mesoporous composite molecular sieve materials not only improves the effective pore size distribution of microporous materials, but also solves the problem of low acid strength of mesoporous materials, and makes the leap-forward progress of the catalytic performance of hydrotreating catalysts possible.
因此, 近年来关于复合分子筛的研究较多。 科学家们用各种方法来 合成复合分子筛。 但这些复合分子筛绝大多数是在碱性条件下合成, 我 们拟采用水热附晶生长的方法, 在酸性体系中合成 Y-Beta/MCM-41双微 孔 -介孔复合分子筛, 为加氢处理催化剂提供可供选择的新载体材料, 以 满足生产不同油品的需要。  Therefore, research on composite molecular sieves has been conducted in recent years. Scientists use a variety of methods to synthesize composite molecular sieves. However, most of these composite molecular sieves are synthesized under alkaline conditions. We intend to synthesize Y-Beta/MCM-41 double microporous mesoporous composite molecular sieves in an acidic system by hydrothermal epitaxial growth. The treatment catalyst provides an alternative new carrier material to meet the needs of producing different oils.
本发明的关键是酸性体系中如何使介孔分子筛在微孔分子筛上附晶 生长,其涉及到酸性体系中 Y-Beta/MCM-41双微孔-介孔中的六方介孔相 的合成。 酸性体系不同于碱性体系采用阳离子表面活性剂 S+与无机物种The key of the invention is how to make the mesoporous molecular sieve epitaxial growth on the microporous molecular sieve in the acidic system, which involves the hexagonal mesoporous phase in the Y-Beta/MCM-41 double microporous mesoporous in the acidic system. Synthesis. Acidic system is different from alkaline system using cationic surfactant S+ and inorganic species
Γ通过的 s+r的组装路线, 此处采用的是 s+s^xf的组装路线。 酸性体系 六方介孔分子筛的合成大多采用单一阳离子表面活性剂十六烷基三甲基 季铵盐和昂贵的有机硅源正硅酸乙酯 (无机化学学报, 2001, 17 (2): 249〜255)。 Qi limin等虽采用二元混合表面活性剂 CTAB和脂肪醇聚氧 乙烯醚 C16E01Q作为模板, 但仍然用昂贵的正硅酸乙酯为硅源 ( Chem Mater, 1998 , 10: 1623〜1626)。 这些已报道的工作不仅采用了昂贵的 硅源, 而且合成的六方介孔分子筛的有序性差。 所以酸性体系中合成六 方介孔分子筛有一定的难度,合成 Y-Beta/MCM-41双微孔-介孔复合分子 筛难度更大。 我们利用二元混合表面活性剂, 采用 s+s°x_r路线, 使介 孔相与微孔相组装, 即以阳离子表面活性剂 CTAB和非离子表面活性剂 OP-10为模板剂,向合成体系分别引入预处理过的双微孔相和合成介孔相 的无机硅源、 铝源, 用含有 X· (N03-5C1-,S04 2-) 的无机酸调节体系的 pH 值至所需酸性。 然后通过水热晶化处理得到双微孔相硅铝比和含量可调 以及微孔和介孔含量亦可调的 Y-Beta/MCM-41双微孔 -介孔复合分子筛。 本发明是对复合分子筛催化材料的进一步开拓, 合成的双微孔-介孔复合 分子筛催化材料及其制备方法, 未见报道。 酸性体系中合成微孔-介孔复 合分子筛的研究路线, 不仅可以提高产品中的酸强度, 以提高催化反应 活性, 而且可以直接获得氢型产品, 无须进行质子交换便可直接使用, 简化了生产程序, 方便了工业生产, 而且采用二元混合模板剂还可降低 成本, 更具开发价值。 本发明操作简便, 重现性好, 经济、 环保。 合成 的 Y-Beta/MCM-41 双微孔-介孔复合分子筛材料能充分发挥介孔材料孔 径大而均一以及 Y型和 Beta型沸石各自优势,可作为加氢裂化催化剂的 新型载体, 制成具有自主知识产权的新型加氢裂化催化剂, 而且在石油 化工等其他领域亦具有潜在的应用价值。 组装 The assembly route of s+r, here is the assembly route of s+s^xf. The synthesis of hexagonal mesoporous molecular sieves in the acidic system mostly uses a single cationic surfactant cetyltrimethyl quaternary ammonium salt and an expensive organosilicon source of tetraethyl orthosilicate. Journal of Inorganic Chemistry, 2001, 17 (2): 249~ 255). Qi limin et al. used the binary mixed surfactant CTAB and the fatty alcohol polyoxyethylene ether C 16 E0 1Q as a template, but still used expensive tetraethyl orthosilicate as the silicon source (Chem Mater, 1998, 10: 1623~1626). ). These reported work not only employ expensive silicon sources, but the synthetic hexagonal mesoporous molecular sieves are poorly ordered. Therefore, it is difficult to synthesize hexagonal mesoporous molecular sieves in acidic systems. It is more difficult to synthesize Y-Beta/MCM-41 double microporous mesoporous composite molecular sieves. We used a binary mixed surfactant to assemble the mesoporous phase and the microporous phase using the s+s°x_r route, ie, the cationic surfactant CTAB and the nonionic surfactant OP-10 were used as template to the synthesis system. Introducing the pretreated double microporous phase and the inorganic silicon source and aluminum source for synthesizing the mesoporous phase, respectively, and adjusting the pH of the system with a mineral acid containing X·(N0 3 - 5 C1-, S0 4 2 -) Acidity is required. Then, the Y-Beta/MCM-41 double microporous mesoporous composite molecular sieve with double microporous phase silicon-aluminum ratio and adjustable microporous and mesoporous content can be obtained by hydrothermal crystallization treatment. The invention is a further development of a composite molecular sieve catalytic material, and the synthesized double microporous-mesoporous composite molecular sieve catalytic material and a preparation method thereof have not been reported. The research route of synthesizing microporous-mesoporous composite molecular sieve in acidic system can not only improve the acid strength in the product, but also improve the catalytic reaction activity, and can directly obtain the hydrogen type product, and can be directly used without proton exchange, which simplifies production. The program facilitates industrial production, and the use of binary mixed templating agents can also reduce costs and develop value. The invention has the advantages of simple operation, good reproducibility, economy and environmental protection. Synthetic Y-Beta/MCM-41 double microporous-mesoporous composite molecular sieve material can fully utilize mesoporous material pores Large and uniform diameter and the advantages of Y-type and Beta-type zeolites can be used as a new carrier for hydrocracking catalysts, and can be used as a new type of hydrocracking catalyst with independent intellectual property rights. It also has potential application value in other fields such as petrochemical industry. .
发明内容 Summary of the invention
本发明的目的在于提出一种在酸性体系中, 合成由双微孔相 Y型和 Beta型沸石和 MCM-41介孔相复合而成的新型催化剂载体材料及操作简 便、 重现性好, 经济、 环保的制备方法。  The object of the present invention is to provide a novel catalyst carrier material which is synthesized from a double microporous phase Y-type and Beta-type zeolite and MCM-41 mesoporous phase in an acidic system, and has simple operation, good reproducibility and economy. , environmentally friendly preparation methods.
本发明制备的新型 Y-Beta/MCM-41 双微孔 -介孔复合分子筛是在酸 性体系中将预处理过的微孔相、 硅源和铝源作为无机前驱体(1+), 在阳 离子(s+) -非离子(sQ)混合表面活性剂的作用下, 通过 s+s°x' 路线进 行超分子自组装, 实现介孔相在微孔相上附晶生长。 其制备步骤如下:The novel Y-Beta/MCM-41 double microporous-mesoporous composite molecular sieve prepared by the invention adopts a pretreated microporous phase, a silicon source and an aluminum source as an inorganic precursor (1+) in an acidic system, in a cation (s+) - Under the action of a non-ionic (s Q ) mixed surfactant, supramolecular self-assembly is carried out through the s + s°x' route to achieve epitaxial phase epitaxial growth on the microporous phase. The preparation steps are as follows:
( 1 )微孔相预处理: 取一定量的 Y型和 Beta型沸石, 按一定比例 混合均匀后加入到去离子水中, 在特定温度下搅拌均匀, 记为溶液 A待 用。 (1) Microporous phase pretreatment: Take a certain amount of Y-type and Beta-type zeolite, mix them in a certain proportion, add them to deionized water, stir evenly at a certain temperature, and record them as solution A for use.
(2)取一定量的表面活性剂十六垸基三甲基溴化铵(CTAB)、聚乙 二醇辛基苯基醚(OP-10)和少量无机酸混合后加入到去离子水中, 于室 温下匀速搅拌一段时间, 待溶液澄清后, 记为溶液 B待用。  (2) taking a certain amount of surfactant, hexadecanyltrimethylammonium bromide (CTAB), polyethylene glycol octyl phenyl ether (OP-10) and a small amount of inorganic acid, and adding it to deionized water. Stir at room temperature for a period of time. After the solution is clarified, it is recorded as solution B for use.
(3 )将得到的溶液 A加入到溶液 B中, 于室温下搅拌均匀, 然后 向混合液中缓慢滴加硅源, 继续在室温下搅拌, 待混合液中各组分均匀 稳定后, 用无机酸或碱调节体系的 pH值, 再匀速搅拌, 待体系稳定后将 得到的胶液装入带有内衬的不锈钢反应釜中, 于特定温度下进行水热晶 化处理。 (4)将 (3 )得到的晶化产物进行抽滤、 洗涤、 烘干处理得到白色 固体粉末。 将此固体粉末先在氮气流中与特定温度下焙烧一段时间, 然 后移到马弗炉中在空气气氛中与特定温度下继续焙烧一段时间后得到的 产物便是 Y-Beta/MCM-41双微孔 -介孔复合分子筛。 (3) Adding the obtained solution A to the solution B, stirring uniformly at room temperature, then slowly adding a silicon source to the mixed solution, and continuing to stir at room temperature, after the components in the mixed solution are uniformly stabilized, using inorganic The acid or base adjusts the pH of the system, and then stirs at a constant speed. After the system is stabilized, the obtained glue is charged into a stainless steel reaction vessel with a liner, and hydrothermally crystallized at a specific temperature. (4) The crystallized product obtained in (3) is subjected to suction filtration, washing, and drying to obtain a white solid powder. The solid powder is first calcined in a nitrogen stream at a specific temperature for a certain period of time, and then transferred to a muffle furnace and further calcined at a specific temperature for a while in an air atmosphere to obtain a Y-Beta/MCM-41 pair. Microporous-mesoporous composite molecular sieves.
原料配比按摩尔比: CTAB/SiO2=0.25〜0.30、 CTAB/OP-10=6〜8、 SiO2/H2O=160〜170、 HT/S^l.98; 按质量比(Y+Beta) /Si02为 0.30〜 0.80, 微孔相 Y型和 Beta型沸石用量可以进行任意比例的调节; Raw material ratio molar ratio: CTAB/SiO 2 = 0.25~0.30, CTAB/OP-10=6~8, SiO 2 /H 2 O=160~170, HT/S^l.98; by mass ratio (Y +Beta) /Si0 2 is 0.30~0.80, and the amount of microporous phase Y type and Beta type zeolite can be adjusted at any ratio;
微孔相的预处理温度为 30°C〜50°C、 处理时间为 25mii!〜 45min; 合成体系的 pH值在 1.0〜2.0的范围内;  The microporous phase has a pretreatment temperature of 30 ° C to 50 ° C and a treatment time of 25 mii! ~ 45min; the pH of the synthetic system is in the range of 1.0~2.0;
晶化温度 100°C、 晶化时间为 48h〜72h;  The crystallization temperature is 100 ° C, and the crystallization time is 48 h to 72 h;
晶化产物在氮气流中焙烧, 其焙烧温度为 500°C〜550°C、 焙烧时间 lh〜2h; 空气中焙烧的温度为 500°C〜600°C、 焙烧时间为 5h〜6h。  The crystallization product is calcined in a nitrogen stream at a calcination temperature of 500 ° C to 550 ° C and a calcination time of 1 h to 2 h; the calcination temperature in the air is 500 ° C to 600 ° C, and the calcination time is 5 h to 6 h.
本发明使用的硅源可以为硅酸钠、 白碳黑、 正硅酸乙酯中任意一种 或两种的混合物。  The silicon source used in the present invention may be any one or a mixture of two of sodium silicate, white carbon black, and tetraethyl orthosilicate.
本发明使用的无机酸可以为盐酸、 硫酸、 硝酸中任意一种或两种的 混合物; 无机碱为氢氧化钠或氢氧化钾的任意一种。  The inorganic acid used in the present invention may be any one or a mixture of two of hydrochloric acid, sulfuric acid and nitric acid; and the inorganic base is any one of sodium hydroxide or potassium hydroxide.
本发明中, 表面活性剂溶液搅拌 5min〜10min后加入无机酸为宜, 调节体系 pH值之前的搅拌时间为 lh〜2h,调节 pH值之后的搅拌时间为 0.5h〜1.5h。  In the present invention, the surfactant solution is stirred for 5 minutes to 10 minutes, and then the inorganic acid is preferably added. The stirring time before adjusting the pH value of the system is lh~2h, and the stirring time after adjusting the pH value is 0.5h~1.5h.
本发明提出的 Y-Beta/MCM-41 双微孔-介孔复合分子筛制备的特点 是采用无机硅源, 利用混合表面活性剂 CTAB和 OP-10的超分子自组装 作用, 通过 S+SGX'I+路线水热晶化得到。 本发明合成的新型 Y-Beta/MCM-41双微孔 -介孔复合分子筛,具有以 下特点: The Y-Beta/MCM-41 double microporous-mesoporous composite molecular sieve prepared by the invention is characterized by using an inorganic silicon source, using supramolecular self-assembly of mixed surfactants CTAB and OP-10, through S + S G The X'I+ route is obtained by hydrothermal crystallization. The novel Y-Beta/MCM-41 double microporous-mesoporous composite molecular sieve synthesized by the invention has the following characteristics:
( 1 )从微观形态来看,该复合分子筛呈现出微孔相被介孔相紧密覆 盖的包裹体结构, 这与机械混合物有着明显的不同。  (1) From the microscopic morphology, the composite molecular sieve exhibits an inclusion structure in which the microporous phase is closely covered by the mesoporous phase, which is significantly different from the mechanical mixture.
(2)酸性体系中合成的 Y-Beta/MCM-41双微孔 -介孔复合分子筛比 表面积可达 935.66 m2/g, 孔体积 0.877 cm3/g (其中微孔体积为 0.131 cm3/g), 平均孔径 3.75 nm (其中介孔 MCM-41的孔径为 2.66 nm), 孔壁 厚度 1.59 nm, 微孔与介孔比例 7%〜35%, 微孔相 Y型和 Beta型沸石投 料比例可以任意调节, 两者的硅铝比分别为 4.0〜6.0和 13.0〜90.0。 (2) The Y-Beta/MCM-41 double microporous mesoporous composite molecular sieve synthesized in the acidic system has a specific surface area of 935.66 m 2 /g and a pore volume of 0.877 cm 3 /g (where the micropore volume is 0.131 cm 3 / g), the average pore diameter is 3.75 nm (where the pore size of mesoporous MCM-41 is 2.66 nm), the pore wall thickness is 1.59 nm, the ratio of micropores to mesopores is 7% to 35%, and the proportion of microporous phase Y and Beta zeolites is It can be adjusted arbitrarily, and the silicon to aluminum ratios of the two are 4.0 to 6.0 and 13.0 to 90.0, respectively.
(3 )合成的 Y-Beta/MCM-41双微孔 -介孔复合分子筛, 不需通过离 子交换, 即具有较强酸性, 可作为酸性分子筛材料直接使用。  (3) The synthesized Y-Beta/MCM-41 double microporous mesoporous composite molecular sieve can be directly used as an acidic molecular sieve material without ion exchange.
本发明提出的 Y-Beta/MCM-41 双微孔-介孔复合分子筛是一种新型 催化材料, 其结构与机械混合物有着本质的不同。 复合物中微孔相与微 孔相之间、 微孔相与介孔相之间产生协同作用, 使其具有很好的催化反 应性能。 对探针分子 a-甲基萘的催化反应结果表明, a-甲基萘的转化率 明显高于¥、 Beta和 MCM-41三者的机械混合物, 且开环能力、 脱烷基 能力和异构化能力均优于机械混合物, 所以此种新型双微孔 -介孔复合分 子筛具有较大的潜在工业应用价值。  The Y-Beta/MCM-41 double microporous-mesoporous composite molecular sieve proposed by the invention is a novel catalytic material, and its structure and mechanical mixture are substantially different. The microporous phase and the microporous phase in the composite have a synergistic effect between the microporous phase and the mesoporous phase, so that it has good catalytic reaction performance. The catalytic reaction of the probe molecule a-methylnaphthalene showed that the conversion of a-methylnaphthalene was significantly higher than that of the mechanical mixtures of ¥, Beta and MCM-41, and the ring-opening ability, dealkylation ability and The compositional ability is better than that of the mechanical mixture, so the new double microporous-mesoporous composite molecular sieve has great potential industrial application value.
附图说明 DRAWINGS
图 la ΜΥβ-l的 XRD谱图 Figure la ΜΥβ-l XRD spectrum
图 lb ΜΥβ-l的 XRD谱图 X RD spectrum of Figure lb ΜΥβ-l
图 2 ΜΥβ-l的低温 Ν2吸附 -脱附等温线以及按 BJH脱附得到的孔体积 与孔大小关系图 (插图) Figure 2 Νβ-l low temperature Ν 2 adsorption-desorption isotherm and pore volume obtained by BJH desorption Relationship with hole size (inset)
图 3a ΜΥβ-l的扫描电镜照片 Figure 3a Scanning electron micrograph of ΜΥβ-l
图 3b ΜΥβ-l的扫描电镜照片 Figure 3b Scanning electron micrograph of ΜΥβ-l
图 4a ΜΥβ-l及 Y、 Beta和 MCM-41三种材料的和机械混合物对探针分 子 a-甲基萘的催化裂解性能的比较 Figure 4a Comparison of catalytic cracking properties of probe molecules a-methylnaphthalene with mechanical mixtures of ΜΥβ-l and Y, Beta and MCM-41
图 4b ΜΥβ-l及 Y、 Beta和 MCM-41三种材料的和机械混合物对探针分 子 α-甲基萘的催化裂解性能的比较 Figure 4b Comparison of the catalytic cracking properties of probe molecules α-methylnaphthalene by a mixture of ΜΥβ-l and Y, Beta and MCM-41 and mechanical mixtures
具体实施方式 detailed description
下面通过实施例进一步描述本发明的实施方式, 但本发明并不局限 于这些实施例。  The embodiments of the present invention are further described below by way of examples, but the invention is not limited to the embodiments.
实施例 1 Example 1
将各 0.36g Y型和 0.36g Beta型沸石粉末混合预处理后加入到含 CTAB、 OP-10和 HCl的混合溶液中, 于室温搅拌 30min, 然后向混合液 中缓慢滴加硅酸钠溶液。 原料摩尔组成为 lSi02: 0.28CTAB: 0.04OP-10: (Y+Beta): 1.98HC1: 165H20, 其中 (Y+Beta) /Si02 (质量比) =0.594。 搅拌 lh后调节体系 pH 1.0, 再继续搅拌 30min后将胶液装入带内衬的 反应釜中, 于 100°C晶化 48h, 产物经抽滤、 洗涤、 烘干、 焙烧, 即得酸 性体系合成投料微孔相比为 1 : 1、 相对含量为 59.4%的 Y-Beta/MCM-41 双微孔 -介孔复合分子筛。 此样品命名为 ΜΥβ-1。 Each of 0.36 g of Y type and 0.36 g of Beta type zeolite powder was mixed and pretreated, and then added to a mixed solution containing CTAB, OP-10 and HCl, stirred at room temperature for 30 minutes, and then a sodium silicate solution was slowly added dropwise to the mixture. The molar composition of the starting material was lSi0 2 : 0.28 CTAB: 0.04OP-10: (Y+Beta): 1.98HC1: 165H 2 0, where (Y+Beta) /Si0 2 (mass ratio) = 0.594. After stirring for 1 h, the pH of the system was adjusted to 1.0, and after stirring for 30 min, the glue was placed in a lined reactor and crystallized at 100 ° C for 48 h. The product was filtered, washed, dried and calcined to obtain an acidic system. The synthetic micropores were compared with a 1:1, relative content of 59.4% Y-Beta/MCM-41 double microporous mesoporous composite molecular sieve. This sample was named ΜΥβ-1.
实施例 2 Example 2
将 0.48g Y 型和 0.24g Beta 型沸石粉末混合预处理后加入到含 CTAB、 OP-10和 HCl的混合溶液中, 于室温搅拌 30min, 然后向混合液 中缓慢滴加硅酸钠溶液。 原料摩尔组成为 lSi02: 0.28CTAB: 0.04OP-10: (Y+Beta): 1.98HC1: 165H20, 其中 Y+Beta) /Si02 (质量比) =0.794。搅 拌 lh后调节体系 pH 1.8, 再继续搅拌 30min后将胶液装入带内衬的反 应釜中, 于 100°C晶化 48h, 产物经抽滤、 洗涤、 烘干、 焙烧, 即得酸性 体系合成的投料微孔相比为 2: 1、 相对含量为 79.4%的 Y-Beta/MCM-41 双微孔 -介孔复合分子筛, 此样品命名为 ΜΥβ-2。 0.48g of Y type and 0.24g of Beta zeolite powder were mixed and pretreated, added to a mixed solution containing CTAB, OP-10 and HCl, stirred at room temperature for 30 min, and then mixed to the mixture. The sodium silicate solution was slowly added dropwise. The molar composition of the starting material was lSi0 2 : 0.28 CTAB: 0.04OP-10: (Y+Beta): 1.98HC1: 165H 2 0, where Y+Beta) /Si0 2 (mass ratio) = 0.794. After stirring for 1 h, the pH of the system was adjusted to 1.8, and after stirring for 30 min, the glue was placed in a lined reactor and crystallized at 100 ° C for 48 h. The product was filtered, washed, dried and calcined to obtain an acidic system. The synthesized feed micropores were compared with Y:Beta/MCM-41 double microporous mesoporous composite molecular sieves with a relative content of 29.4 and a relative content of 79.4%. This sample was named as ΜΥβ-2.
由图 1 ΜΥβ-2的 XRD谱图可以看出, 在低角衍射区(图 1左), 呈 现出较强的与六方介孔相相应的 [100]衍射峰, 亦能观察到代表介孔相内 部精细结构的 [110]和 [200]衍射峰。 在高角衍射区 (图 1右) 可明显观察 到 Υ和 Beta型微孔相的衍射峰, 说明微孔相在体系中没有完全被破坏。  It can be seen from the XRD spectrum of ΜΥβ-2 in Fig. 1. In the low-angle diffraction region (left of Fig. 1), a strong [100] diffraction peak corresponding to the hexagonal mesoporous phase is observed, and mesopores can also be observed. The [110] and [200] diffraction peaks of the internal fine structure. The diffraction peaks of the Υ and Beta microporous phases were clearly observed in the high-angle diffraction region (Fig. 1 right), indicating that the microporous phase was not completely destroyed in the system.
由图 2 ΜΥβ-2的低温 Ν2吸附 -脱附等温线以及按 BJH脱附得到的孔 体积与孔大小关系图 (插图) 可以看出, 由于介孔相的引入, 使 ΜΥβ-1 的>½吸附脱附等温线在相对压力 P/PQ为 0.3〜0.4区域呈现出一个明显的 突跃。 经测定, ΜΥβ-l比表面积 935.66 m2/g, 孔体积 0.877 cm3/g (其中 微孔体积为 0.131 cm3/g), 平均孔径 3.75 nm (其中介孔 MCM-41的孔径 为 2.66 nm), 孔壁厚度 1.59 nm左右。 From Fig. 2, the low temperature Ν 2 adsorption-desorption isotherm of ΜΥβ-2 and the relationship between pore volume and pore size obtained by desorption of BJH (inset), it can be seen that due to the introduction of mesoporous phase, ΜΥβ-1 is > The 1⁄2 adsorption desorption isotherm showed a significant jump in the region of relative pressure P/P Q of 0.3~0.4. It has been determined that the ΜΥβ-l specific surface area is 935.66 m 2 /g, the pore volume is 0.877 cm 3 /g (the pore volume is 0.131 cm 3 /g), and the average pore diameter is 3.75 nm (where the pore diameter of mesoporous MCM-41 is 2.66 nm). ), the wall thickness is about 1.59 nm.
图 3为放大倍数不同的 ΜΥβ-2的扫描电镜照片。可以看出, ΜΥβ-1 呈现出小的 MCM-41颗粒包裹两种微孔沸石颗粒聚集体的形态。  Figure 3 is a scanning electron micrograph of ΜΥβ-2 with different magnifications. It can be seen that ΜΥβ-1 exhibits a morphology in which small MCM-41 particles envelop two aggregates of microporous zeolite particles.
图 4为 ΜΥβ-2和 Y、 Beta和 MCM-41三种材料的机械混合物对探 针分子 α-甲基萘催化裂解性能的比较。 可以看出, α-甲基萘的转化率明 显高于 Y、 Beta和 MCM-41三者的机械混合物, 且开环能力、 脱垸基能 力和异构化能力均优于机械混合物。 实施例 3 Figure 4 is a comparison of the catalytic cracking performance of the probe molecule α-methylnaphthalene by a mechanical mixture of ΜΥβ-2 and Y, Beta and MCM-41. It can be seen that the conversion of α-methylnaphthalene is significantly higher than that of Y, Beta and MCM-41, and the ring opening ability, depurination ability and isomerization ability are superior to those of the mechanical mixture. Example 3
将 0.54 g的 Y型和 0.18g Beta型沸石粉末混合预处理后加入到含 CTAB、 OP-10和 HC1的混合溶液中, 于室温搅拌 30min, 然后向混合液 中缓慢滴加硅酸钠溶液。 原料摩尔组成为 lSi02: 0.28CTAB: 0.04OP-10: (Y+Beta): 1.98HC1: 165H20, 其中 Y+Beta) /Si02 (质量比) =0.794。搅 拌 lh后调节体系 pH 2.0, 再继续搅泮 30min后将胶液装入带内衬的反 应釜中, 于 100°C晶化 72h, 产物经抽滤、 洗涤、 烘干、 焙烧, 即得酸性 体系合成的投料微孔相比为 3: 1、 相对含量为 79.4%的 Y-Beta/MCM-41 双微孔 -介孔复合分子筛。 此样品命名为 ΜΥβ-3。 0.54 g of the Y form and 0.18 g of the Beta type zeolite powder were mixed and pretreated, added to a mixed solution containing CTAB, OP-10 and HCl, stirred at room temperature for 30 min, and then a sodium silicate solution was slowly added dropwise to the mixed solution. The molar composition of the starting material was lSi0 2 : 0.28 CTAB: 0.04OP-10: (Y+Beta): 1.98HC1: 165H 2 0, where Y+Beta) /Si0 2 (mass ratio) = 0.794. After stirring for 1 h, the pH of the system was adjusted to 2.0, and then the mixture was further stirred for 30 min. The glue was placed in a lined reactor and crystallized at 100 ° C for 72 h. The product was filtered, washed, dried, and calcined to obtain acidity. Compared with the feed micropores of the system synthesis, the Y-Beta/MCM-41 double microporous mesoporous composite molecular sieves with a relative content of 3:1 and a relative content of 79.4%. This sample was named ΜΥβ-3.
实施例 4 Example 4
将各 0.45g Y型和 0.09g Beta型沸石粉末混合预处理后加入到含 CTAB、 OP-10和 HC1的混合溶液中, 于室温搅拌 30min, 然后向混合液 中缓慢滴加硅酸钠溶液。 原料摩尔组成为 lSi02: 0.28CTAB: 0.04OP-10: (Y+Beta): 1.98HC1: 165H20, 其中 (Y+Beta) /Si02 (质量比) =0.594。 搅拌 lh后调节体系 pH 1.5, 再继续搅拌 30min后将胶液装入带内衬的 反应釜中, 于 100Ό晶化 48h, 产物经抽滤、 洗涤、 烘干、 焙烧, 即得酸 性体系合成投料微孔相比为 5: 1、 相对含量为 59.4%的 Y-Beta/MCM-41 双微孔 -介孔复合分子筛。 此样品命名为 ΜΥβ-4。 Each of 0.45 g of Y type and 0.09 g of Beta type zeolite powder was mixed and pretreated, and then added to a mixed solution containing CTAB, OP-10 and HCl, and stirred at room temperature for 30 minutes, and then a sodium silicate solution was slowly added dropwise to the mixture. The molar composition of the starting material was lSi0 2 : 0.28 CTAB: 0.04OP-10: (Y+Beta): 1.98HC1: 165H 2 0, where (Y+Beta) /Si0 2 (mass ratio) = 0.594. After stirring for lh, the pH of the system was adjusted to 1.5, and after stirring for another 30 minutes, the glue was placed in a lined reactor and crystallized at 100 ° for 48 hours. The product was filtered, washed, dried and calcined to obtain an acidic system. The microporous ratio is 5:1, and the relative content of 59.4% is Y-Beta/MCM-41 double microporous mesoporous composite molecular sieve. This sample was named ΜΥβ-4.
工业实用性 Industrial applicability
由表 4 ΜΥβ- ΜΥβ-2、 ΜΥβ-3及 ΜΥβ-4的酸性数据可以看出, 酸性体系合成的 Y-Beta/MCM-41双微孔-介孔复合分子筛酸性较强, 150 °C脱附时总酸量均大于 0.3mmol/g, 300 °C脱附时总酸量均大于 0.2mmol/g, 这对该类复合分子筛对 α-甲基萘具有较强的催化裂解性能作 出了解释。 表 1 ΜΥβ-1、 ΜΥβ-2、 ΜΥβ-3及 ΜΥβ-4的酸性数据 From the acid data of Table 4 ΜΥβ- ΜΥβ-2, ΜΥβ-3 and ΜΥβ-4, it can be seen that the Y-Beta/MCM-41 double microporous-mesoporous composite molecular sieve synthesized by the acidic system is more acidic, 150 °C off The total acid amount in the time is greater than 0.3mmol/g, and the total acid amount at 300 °C is greater than that at 300 °C. 0.2mmol/g, which explains the strong catalytic cracking performance of α-methylnaphthalene on this kind of composite molecular sieve. Table 1 Acidic data of ΜΥβ-1, ΜΥβ-2, ΜΥβ-3 and ΜΥβ-4
150°C , mmol/g 300 °C , mmol/g 样品 150 ° C, mmol / g 300 ° C, mmol / g sample
Β 酸 L酸 总酸 B酸 L酸 总酸 Niobic acid L acid Total acid B acid L acid Total acid
ΜΥβ-1 0.112 0.225 0.337 0.072 0.142 0214 ΜΥβ-1 0.112 0.225 0.337 0.072 0.142 0214
ΜΥβ-2 0.147 0.252 0.399 0.104 0.182 0.286 ΜΥβ-2 0.147 0.252 0.399 0.104 0.182 0.286
ΜΥβ-3 0.152 0.230 0.382 0.113 0.160 0.273 ΜΥβ-3 0.152 0.230 0.382 0.113 0.160 0.273
ΜΥβ-4 0.161 0.219 0.380 0.124 0.140 0.264 本发明合成的新型 Y-Beta/MCM-41双微孔 -介孔复合分子筛,具有以 下特点: ΜΥβ-4 0.161 0.219 0.380 0.124 0.140 0.264 The novel Y-Beta/MCM-41 double microporous mesoporous composite molecular sieve synthesized by the invention has the following characteristics:
( 1 )从微观形态来看, 该复合分子筛呈现出微孔相被介孔相紧密覆 盖的包裹体结构, 这与机械混合物有着明显的不同。 (1) From the microscopic morphology, the composite molecular sieve exhibits an inclusion structure in which the microporous phase is tightly covered by the mesoporous phase, which is significantly different from the mechanical mixture.
(2) 酸性体系中合成的 Y-Beta/MCM-41双微孔 -介孔复合分子筛比 表面积可达 935.66 m2/g, 孔体积 0.877 cm3/g (其中微孔体积为 0.131 cm3/g), 平均孔径 3.75 nm (其中介孔 MCM-41的孔径为 2.66 nm), 孔壁 厚度 1.59 nm, 微孔与介孔比例 7%〜35%, 微孔相 Y型和 Beta型沸石投 料比例可以任意调节, 两者的硅铝比分别为 4.0〜6.0和 13.0〜90.0。 (2) The Y-Beta/MCM-41 double microporous mesoporous composite molecular sieve synthesized in the acidic system has a specific surface area of 935.66 m 2 /g and a pore volume of 0.877 cm 3 /g (where the micropore volume is 0.131 cm 3 / g), the average pore diameter is 3.75 nm (where the pore size of mesoporous MCM-41 is 2.66 nm), the pore wall thickness is 1.59 nm, the ratio of micropores to mesopores is 7% to 35%, and the proportion of microporous phase Y and Beta zeolites is It can be adjusted arbitrarily, and the silicon to aluminum ratios of the two are 4.0 to 6.0 and 13.0 to 90.0, respectively.
(3 ) 合成的 Y-Beta/MCM-41双微孔 -介孔复合分子筛, 不需通过离 子交换, 即具有较强酸性, 可作为酸性分子筛材料直接使用。 本发明提出的 Y-Beta/MCM-41 双微孔-介孔复合分子筛是一种新型 催化材料, 其结构与机械混合物有着本质的不同。 复合物中微孔相与微 孔相之间、 微孔相与介孔相之间产生协同作用, 使其具有很好的催化反 应性能。 对探针分子 a-甲基萘的催化反应结果表明, α-甲基萘的转化率 明显高于¥、 Beta和 MCM-41三者的机械混合物, 且开环能力、 脱垸基 能力和异构化能力均优于机械混合物, 所以此种新型双微孔 -介孔复合分 子筛具有较大的潜在工业应用价值。 (3) The synthesized Y-Beta/MCM-41 double microporous-mesoporous composite molecular sieve can be directly used as an acidic molecular sieve material without ion exchange. The Y-Beta/MCM-41 double microporous-mesoporous composite molecular sieve proposed by the invention is a novel catalytic material, and its structure and the mechanical mixture are substantially different. Microporous phase and micro in composite A synergistic effect occurs between the pore phases, the microporous phase and the mesoporous phase, so that it has a good catalytic reaction performance. The catalytic reaction of the probe molecule a-methylnaphthalene showed that the conversion of α-methylnaphthalene was significantly higher than that of the mechanical mixtures of ¥, Beta and MCM-41, and the ring-opening ability, the debonding ability and the difference The compositional ability is better than that of the mechanical mixture, so the new double microporous-mesoporous composite molecular sieve has great potential industrial application value.

Claims

权利要求 Rights request
1. 一种 Y-Beta/MCM-41双微孔 -介孔复合分子筛,其特征在于: 由 Y 型和 Beta型双微孔沸石和 MCM-41分子筛复合而成, MCM-41六方介孔 相紧密包裹 Y型和 Beta型微孔相。 1. A Y-Beta/MCM-41 double microporous-mesoporous composite molecular sieve characterized by: a composite of Y-type and Beta-type double-microporous zeolite and MCM-41 molecular sieve, MCM-41 hexagonal mesoporous phase Closely wrapped Y-type and Beta-type microporous phases.
2根据权利要求 1所述的 Y-Beta/MCM-41双微孔 -介孔复合分子筛, 其特征在于: 该双微孔-介孔复合分子筛比表面积为 935.66 m2/g, 孔体积 0.877 cm3/g, 其中微孔体积为 0.131 cm3/g, 平均孔径 3.75 nm, 其中介孔 MCM-41的孔径为 2.66 nm, 孔壁厚度 1.59 nm, 微孔与介孔比例 7 〜35 %, 微孔相 Y型和 Beta型沸石投料比例可以任意调节, 两者的硅铝比分 别为 4.0〜6.0和 13.0〜90.0。 The Y-Beta/MCM-41 double microporous-mesoporous composite molecular sieve according to claim 1, wherein the double microporous mesoporous composite molecular sieve has a specific surface area of 935.66 m 2 /g and a pore volume of 0.877 cm. 3 / g, wherein the micropore volume is 0.131 cm 3 /g, and the average pore diameter is 3.75 nm. The pore diameter of mesoporous MCM-41 is 2.66 nm, the pore wall thickness is 1.59 nm, and the ratio of micropores to mesopores is 7 to 35 %. The ratio of the pore phase Y type and Beta type zeolite can be arbitrarily adjusted, and the silicon to aluminum ratios of the two are 4.0 to 6.0 and 13.0 to 90.0, respectively.
3.根据权利要求 1所述的 Y-Beta/MCM-41双微孔 -介孔复合分子筛的 制备方法, 其特征在于:  The method for preparing a Y-Beta/MCM-41 double microporous-mesoporous composite molecular sieve according to claim 1, wherein:
( 1 )微孔相预处理: 取一定量的 Y型和 Beta型沸石, 按比例混 合均匀后加入到去离子水中, 在特定温度下搅拌均匀, 记为溶液 A待 用;  (1) Microporous phase pretreatment: Take a certain amount of Y-type and Beta-type zeolite, mix them in proportion and add to deionized water, stir evenly at a specific temperature, and record as solution A for use;
(2)取一定量的表面活性剂十六垸基三甲基溴化铵、聚乙二醇辛 基苯基醚和少量的无机酸混合后加入到去离子水中, 于室温下匀速搅 拌一段时间后, 待溶液澄清后, 记为溶液 B待用;  (2) Take a certain amount of surfactant, hexadecanoyltrimethylammonium bromide, polyethylene glycol octyl phenyl ether, and a small amount of inorganic acid, then add to deionized water and stir at room temperature for a while. After the solution is clarified, it is recorded as solution B for use;
(3 )将得到的溶液 A加入到溶液 B中, 于室温下搅拌均匀, 然 后向混合液中缓慢滴加硅源, 继续在室温下搅拌, 待混合液中各组分 均匀稳定后, 用无机酸或碱调节体系的 pH值, 再匀速搅拌, 待体系 稳定后将得到的胶液装入带有内衬的不锈钢反应釜中进行水热晶化处 理; (3) Adding the obtained solution A to the solution B, stirring uniformly at room temperature, then slowly adding a silicon source to the mixed solution, and continuing to stir at room temperature, after the components in the mixed solution are uniformly stabilized, using inorganic Acid or alkali to adjust the pH of the system, then stir evenly, wait for the system After stabilization, the obtained glue liquid is charged into a stainless steel reaction vessel with a liner for hydrothermal crystallization treatment;
(4)将 (3 )得到的晶化产物进行抽滤、 洗涤、 烘干处理得到白 色固体粉末, 将此固体粉末先在氮气流中焙烧一段时间, 然后移到马 弗炉中, 在空气气氛中继续焙烧一段时间后, 得到 Y-Beta/MCM-41双 微孔 -介孔复合分子筛;  (4) The crystallization product obtained in (3) is subjected to suction filtration, washing, and drying to obtain a white solid powder, which is first calcined in a nitrogen stream for a while, and then transferred to a muffle furnace in an air atmosphere. After continuing to roast for a while, a Y-Beta/MCM-41 double microporous-mesoporous composite molecular sieve is obtained;
原料配比按摩尔比: CTAB/SiO2=0.25〜0.30、 CTAB/OP-10=6〜8、 SiO2/H2O=160〜170、 HVSiOfl.98; 按质量比(Y+Beta) /Si02为 0·30〜 0.80, 微孔相 Υ型和 Beta型沸石用量可以进行任意比例的调节; Raw material ratio molar ratio: CTAB/SiO 2 = 0.25~0.30, CTAB/OP-10=6~8, SiO 2 /H 2 O=160~170, HVSiOfl.98; by mass ratio (Y+Beta) / Si0 2 is 0·30~0.80, and the amount of microporous phase B type and Beta type zeolite can be adjusted at any ratio;
微孔相的预处理温度为 30° ( 〜 50°C、 处理时间为 25min〜45min; 合成体系的 pH值在 1.0〜2.0的范围内;  The pretreatment temperature of the microporous phase is 30° (~ 50 ° C, the treatment time is 25 min to 45 min; the pH of the synthetic system is in the range of 1.0 to 2.0;
晶化温度 100°C、 晶化时间为 48h〜72h; The crystallization temperature is 100 ° C, and the crystallization time is 48 h to 72 h ;
晶化产物在氮气流中焙烧, 其焙烧温度为 500°C〜550°C、 焙烧时间 lh〜2h; 空气中焙烧的温度为 500°C〜600°C、 焙烧时间为 51!〜 6h。  The crystallization product is calcined in a nitrogen stream, and the calcination temperature is 500 ° C to 550 ° C, and the calcination time is lh to 2 h; the calcination temperature in the air is 500 ° C to 600 ° C, and the calcination time is 51! ~ 6h.
4.根据权利要求 3所述的 Y-Beta/MCM-41双微孔 -介孔复合分子筛的 制备方法, 其特征在于: 使用的无机酸可以为盐酸、 硫酸、 硝酸中任意 一种或两种的混合物; 无机碱为氢氧化钠或氢氧化钾中任意一种。  The method for preparing a Y-Beta/MCM-41 double microporous-mesoporous composite molecular sieve according to claim 3, wherein the inorganic acid used may be any one or two of hydrochloric acid, sulfuric acid and nitric acid. a mixture; the inorganic base is any one of sodium hydroxide or potassium hydroxide.
5.根据权利要求 3所述的 Y-Beta/MCM-41双微孔 -介孔复合分子筛的 制备方法, 其特征在于: 硅源可以为硅酸钠、 白碳黑、 正硅酸乙酯中任 意一种或两种的混合物。  The method for preparing a Y-Beta/MCM-41 double microporous-mesoporous composite molecular sieve according to claim 3, wherein the silicon source is sodium silicate, white carbon black or ethyl orthosilicate. Any one or a mixture of two.
6.根据权利要求 3所述的 Y-Beta/MCM-41双微孔 -介孔复合分子筛的 制备方法, 其特征在于: 表面活性剂溶液搅拌 5mir!〜 lOmin后加入无机 酸,调节体系 pH值之前的搅拌时间一般在 11!〜 2h,调节 pH值之后的搅 拌时间在 0.51!〜 1.5h。 The method for preparing a Y-Beta/MCM-41 double microporous-mesoporous composite molecular sieve according to claim 3, wherein: the surfactant solution is stirred at 5 mir! ~ lOmin after adding inorganic Acid, the mixing time before adjusting the pH of the system is generally 11! ~ 2h, the mixing time after adjusting the pH is 0.51! ~ 1.5h.
PCT/CN2010/001369 2009-10-22 2010-09-07 Bi-microporous-mesoporous composite molecular sieve y-beta/ mcm-41 and preparing method thereof WO2011047528A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009102361658A CN102039200B (en) 2009-10-22 2009-10-22 Y-beta/MCM-41 double microporous-mesoporous composite molecular sieve and preparation method thereof
CN200910236165.8 2009-10-22

Publications (1)

Publication Number Publication Date
WO2011047528A1 true WO2011047528A1 (en) 2011-04-28

Family

ID=43899785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001369 WO2011047528A1 (en) 2009-10-22 2010-09-07 Bi-microporous-mesoporous composite molecular sieve y-beta/ mcm-41 and preparing method thereof

Country Status (2)

Country Link
CN (1) CN102039200B (en)
WO (1) WO2011047528A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103101925A (en) * 2011-11-10 2013-05-15 中国石油化工股份有限公司 High efficiency synthetic method for IM-5 molecular sieve
CN104418342A (en) * 2013-08-20 2015-03-18 大连多相触媒有限公司 TS-1 titanium silicalite molecular sieve, and preparation method and application thereof
CN106554432A (en) * 2015-09-25 2017-04-05 中国石油化工股份有限公司 Spherical zeolite mesoporous composite material and loaded catalyst and its preparation method and application and the method for olefinic polymerization
CN107777699A (en) * 2016-08-30 2018-03-09 中国石油化工股份有限公司 The composite molecular sieves of ZSM 11/SSZ 13 and its synthetic method
CN109205636A (en) * 2017-06-29 2019-01-15 中国石油天然气股份有限公司 The preparation method of Y/SAPO-34/ZSM-11/ASA multilevel hole material
US10661260B2 (en) 2017-06-15 2020-05-26 King Fahd University Of Petroleum And Minerals Zeolite composite catalysts for conversion of heavy reformate to xylenes
US10981160B1 (en) 2019-12-19 2021-04-20 Saudi Arabian Oil Company Composite hierarchical zeolite catalyst for heavy reformate conversion to xylenes
US11097262B2 (en) 2017-06-15 2021-08-24 Saudi Arabian Oil Company Composite hierarchical zeolite catalyst for heavy reformate conversion to xylenes
CN113860326A (en) * 2020-06-30 2021-12-31 中国石油化工股份有限公司 Hierarchical porous MCM molecular sieve and preparation method and application thereof
CN115504483A (en) * 2021-06-23 2022-12-23 中国石油化工股份有限公司 Mesoporous Beta-USY type composite molecular sieve and preparation method and application thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104556136B (en) * 2013-10-28 2017-01-11 中国石油化工股份有限公司 MCM-41 molecular sieve containing BEA type zeolite structure unit and preparation method of MCM-41 molecular sieve
CN106669807B (en) * 2015-11-09 2019-09-10 中国石油化工股份有限公司 A kind of method for preparing catalyst improving hydrocracking tail oil viscosity index (VI)
CN107519938B (en) * 2016-06-21 2019-10-11 中国石油天然气股份有限公司 Y/CeO2/ SBA-15/ASA/MOF composite material and preparation method
CN107519933B (en) * 2016-06-21 2019-10-11 中国石油天然气股份有限公司 Y/EU-1/SBA-15/ASA/MOF composite material and preparation method
CN107519922B (en) * 2016-06-21 2019-10-11 中国石油天然气股份有限公司 Y/Gd2O3/ ZSM-23/ZSM-5/ASA composite material and preparation method
CN107519927B (en) * 2016-06-21 2019-10-11 中国石油天然气股份有限公司 Y/ZSM-22/SAPO-34/ASA/MOF composite material and preparation method
CN107519921B (en) * 2016-06-21 2019-10-11 中国石油天然气股份有限公司 Y/Sm2O3/ ZSM-22/ZSM-5/ASA composite material and preparation method
CN107519924B (en) * 2016-06-21 2019-10-11 中国石油天然气股份有限公司 Y/EU-1/ZSM-23/ZSM-5/ASA composite material and preparation method
CN109019626B (en) * 2017-06-12 2020-07-28 中国石油化工股份有限公司 All-silicon mesoporous material, preparation method thereof and application thereof in rearrangement reaction
CN109694081B (en) * 2017-10-20 2020-10-30 中国石油化工股份有限公司 Method for synthesizing GME and CHA intergrowth zeolite molecular sieve
CN109011921B (en) * 2018-09-10 2021-01-15 杭州博大净化设备有限公司 Efficient air filtering membrane for air filter and preparation method thereof
CN109173752B (en) * 2018-09-10 2021-10-01 杭州博大净化设备有限公司 Mixed matrix membrane for gas separation and preparation method thereof
CN111943220A (en) * 2019-05-14 2020-11-17 北京化工大学 MCM-41/SGU-29 composite molecular sieve material and preparation thereof
CN110240177B (en) * 2019-07-02 2022-11-11 华东理工大学 MFI type zeolite molecular sieve with sheet structure and preparation method thereof
CN113683096A (en) * 2020-05-19 2021-11-23 中国石油化工股份有限公司 H beta molecular sieve and preparation method thereof, method for alkylating cycloolefine and preparation method of cyclopentylbenzene

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042148A1 (en) * 2003-10-22 2005-05-12 Abb Lummus Global Inc. Novel zeolite composite, method for making and catalytic application thereof
CN1667093A (en) * 2005-02-22 2005-09-14 大连理工大学 High performance hydrocracking catalyst and process for preparing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101254472B (en) * 2008-04-17 2011-08-03 中国石油天然气集团公司 Modified molecular screen base precious metal diesel oil deepness hydrogenation dearomatization catalyst and method of preparing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060264318A1 (en) * 1999-09-07 2006-11-23 Abb Lummus Global Inc. Novel zeolite composite, method for making and catalytic application thereof
WO2005042148A1 (en) * 2003-10-22 2005-05-12 Abb Lummus Global Inc. Novel zeolite composite, method for making and catalytic application thereof
CN1667093A (en) * 2005-02-22 2005-09-14 大连理工大学 High performance hydrocracking catalyst and process for preparing same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103101925A (en) * 2011-11-10 2013-05-15 中国石油化工股份有限公司 High efficiency synthetic method for IM-5 molecular sieve
CN104418342A (en) * 2013-08-20 2015-03-18 大连多相触媒有限公司 TS-1 titanium silicalite molecular sieve, and preparation method and application thereof
CN104418342B (en) * 2013-08-20 2016-06-15 中触媒新材料股份有限公司 A kind of TS-1 HTS and its preparation method and application
CN106554432A (en) * 2015-09-25 2017-04-05 中国石油化工股份有限公司 Spherical zeolite mesoporous composite material and loaded catalyst and its preparation method and application and the method for olefinic polymerization
CN106554432B (en) * 2015-09-25 2018-12-28 中国石油化工股份有限公司 Spherical zeolite mesoporous composite material and loaded catalyst and its preparation method and application and the method for olefinic polymerization
CN107777699A (en) * 2016-08-30 2018-03-09 中国石油化工股份有限公司 The composite molecular sieves of ZSM 11/SSZ 13 and its synthetic method
CN107777699B (en) * 2016-08-30 2020-11-03 中国石油化工股份有限公司 ZSM-11/SSZ-13 composite structure molecular sieve and synthetic method thereof
US10661260B2 (en) 2017-06-15 2020-05-26 King Fahd University Of Petroleum And Minerals Zeolite composite catalysts for conversion of heavy reformate to xylenes
US11097262B2 (en) 2017-06-15 2021-08-24 Saudi Arabian Oil Company Composite hierarchical zeolite catalyst for heavy reformate conversion to xylenes
US11351527B2 (en) 2017-06-15 2022-06-07 King Fahd University Of Petroleum And Minerals Zeolite composite catalysts for conversion of heavy reformate to xylenes
CN109205636B (en) * 2017-06-29 2020-02-14 中国石油天然气股份有限公司 Preparation method of Y/SAPO-34/ZSM-11/ASA hierarchical pore material
CN109205636A (en) * 2017-06-29 2019-01-15 中国石油天然气股份有限公司 The preparation method of Y/SAPO-34/ZSM-11/ASA multilevel hole material
US10981160B1 (en) 2019-12-19 2021-04-20 Saudi Arabian Oil Company Composite hierarchical zeolite catalyst for heavy reformate conversion to xylenes
CN113860326A (en) * 2020-06-30 2021-12-31 中国石油化工股份有限公司 Hierarchical porous MCM molecular sieve and preparation method and application thereof
CN113860326B (en) * 2020-06-30 2023-03-14 中国石油化工股份有限公司 Hierarchical porous MCM molecular sieve and preparation method and application thereof
CN115504483A (en) * 2021-06-23 2022-12-23 中国石油化工股份有限公司 Mesoporous Beta-USY type composite molecular sieve and preparation method and application thereof
CN115504483B (en) * 2021-06-23 2024-02-02 中国石油化工股份有限公司 Mesoporous Beta-USY type composite molecular sieve and preparation method and application thereof

Also Published As

Publication number Publication date
CN102039200A (en) 2011-05-04
CN102039200B (en) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2011047528A1 (en) Bi-microporous-mesoporous composite molecular sieve y-beta/ mcm-41 and preparing method thereof
CN104321280B (en) Zeolite beta and manufacture method thereof
JP5689890B2 (en) Method for producing ZSM-5 zeolite using nanocrystalline ZSM-5 core
CN102745708B (en) Synthetic method of mesoporous-microporous molecular sieve by raising hydrothermal stability
CN101239322B (en) Method for preparing montmorillonite/molecular sieve composite material
CN107555446A (en) A kind of preparation method of multi-stage porous Y type molecular sieve
JP2006008510A (en) Material containing silicon and having hierarchical porosities
CN103214006B (en) Preparation method of composite zeolite with core/shell structure
CN102774854A (en) Synthetic method of novel mesoporous-microporous NaY zeolite
WO2011047527A1 (en) Double micro-mesoporous composite molecular sieve and preparation method thereof
CN101239323B (en) Method for preparing bedded clay/molecular sieve composite material
CN108862309A (en) A kind of NaY molecular sieve aggregation and preparation method thereof with nano-micro structure
CN101468801B (en) Method for preparing Y type molecular sieve containing mesoporous
Zhao et al. Fabrication of mesoporous zeolite microspheres by a one-pot dual-functional templating approach
US10287172B2 (en) Preparation method for beta zeolite
CN101514022B (en) ZSM-5/ZSM-23/MCM-22 triphase coexisting molecular sieve and method for synthesizing same
Miao et al. Synthesis of beta nanozeolite aggregates with hierarchical pores via steam-assisted conversion of dry gel and their catalytic properties for Friedel-Crafts acylation
CN109304226B (en) Hydrocracking catalyst for increasing production of heavy naphtha and aviation kerosene, and preparation method and application thereof
CN101239325B (en) Montmorillonite/ZSM-5 molecular sieve composite material and preparation thereof
JP5901817B2 (en) Heterojunction porous crystal for catalytic cracking and hydrocracking of heavy hydrocarbon oils
CN101514004B (en) Coexisting molecular sieve and synthesis method thereof
CN110790283A (en) Synthesis method of mordenite with high silicon-aluminum ratio
CN109694086B (en) Preparation method of nano ZSM-5 zeolite molecular sieve aggregate
CN113135578B (en) Preparation method of silicon-germanium ISV zeolite molecular sieve
CN101514008B (en) Mordenite/Y zeolite coexisting molecular sieve and method for synthesizing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10824369

Country of ref document: EP

Kind code of ref document: A1