WO2011046553A1 - Method and apparatus for multilayer shear band reinforcement - Google Patents

Method and apparatus for multilayer shear band reinforcement Download PDF

Info

Publication number
WO2011046553A1
WO2011046553A1 PCT/US2009/060746 US2009060746W WO2011046553A1 WO 2011046553 A1 WO2011046553 A1 WO 2011046553A1 US 2009060746 W US2009060746 W US 2009060746W WO 2011046553 A1 WO2011046553 A1 WO 2011046553A1
Authority
WO
WIPO (PCT)
Prior art keywords
ref
shear band
thickness
reinforcement layers
reinforcement
Prior art date
Application number
PCT/US2009/060746
Other languages
French (fr)
Inventor
Steve Cron
Timothy B. Rhyne
Original Assignee
Michelin Recherche Et Technique, S.A.
Societe De Technologie Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020127008931A priority Critical patent/KR101493303B1/en
Priority to JP2012534149A priority patent/JP5628329B2/en
Priority to PCT/US2009/060746 priority patent/WO2011046553A1/en
Priority to EP15163101.7A priority patent/EP2910388B1/en
Application filed by Michelin Recherche Et Technique, S.A., Societe De Technologie Michelin filed Critical Michelin Recherche Et Technique, S.A.
Priority to MX2012004176A priority patent/MX2012004176A/en
Priority to CA2774927A priority patent/CA2774927C/en
Priority to CN200980161895.4A priority patent/CN102574347B/en
Priority to BR112012008836-0A priority patent/BR112012008836B1/en
Priority to KR1020147027075A priority patent/KR20140133886A/en
Priority to US13/497,618 priority patent/US8960248B2/en
Priority to RU2012119754/04A priority patent/RU2497677C1/en
Priority to EP09850468.1A priority patent/EP2488355B1/en
Publication of WO2011046553A1 publication Critical patent/WO2011046553A1/en
Priority to ZA2012/02051A priority patent/ZA201202051B/en
Priority to US14/596,306 priority patent/US9493045B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C99/00Subject matter not provided for in other groups of this subclass
    • B60C99/006Computer aided tyre design or simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C7/00Non-inflatable or solid tyres
    • B60C7/10Non-inflatable or solid tyres characterised by means for increasing resiliency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C7/00Non-inflatable or solid tyres
    • B60C7/10Non-inflatable or solid tyres characterised by means for increasing resiliency
    • B60C7/14Non-inflatable or solid tyres characterised by means for increasing resiliency using springs
    • B60C7/16Non-inflatable or solid tyres characterised by means for increasing resiliency using springs of helical or flat coil form
    • B60C7/18Non-inflatable or solid tyres characterised by means for increasing resiliency using springs of helical or flat coil form disposed radially relative to wheel axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C7/00Non-inflatable or solid tyres
    • B60C7/22Non-inflatable or solid tyres having inlays other than for increasing resiliency, e.g. for armouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0057Reinforcements comprising preshaped elements, e.g. undulated or zig-zag filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10279Cushion
    • Y10T152/10378Casing enclosed core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Definitions

  • the present invention relates to reinforcement of a multiple layer shear band as may be used in a non-pneumatic tire and to a method of designing such a shear band. More particularly, the present invention relates to a method of improving the performance characteristics (such as e.g., increasing the bending stiffness) of a shear band without increasing its thickness or to reducing the thickness of a shear band while maintaining its performance characteristics and to shear bands constructed according to such method.
  • the performance characteristics such as e.g., increasing the bending stiffness
  • non-pneumatic tire constructions are described e.g., in U.S. Pat. Nos. 6,769,465; 6,994,134; 7,013,939; and 7,201,194.
  • Certain non-pneumatic tire constructions propose incorporating a shear band, embodiments of which have also been described in e.g., U.S. 7,201,194, which is incorporated herein by reference.
  • Such non- pneumatic tires provide advantages in tire performance without relying upon a gas inflation pressure for support of the loads applied to the tire.
  • Tire 100 also includes a plurality of tension transmitting elements, illustrated as web spokes 150, extending transversely across and inward from shear band 110.
  • a mounting band 160 is disposed at the radially inner end of the web spokes. The mounting band 160 anchors the tire 100 to a hub 10.
  • a tread portion 105 is formed at the outer periphery of the shear band 110 and may include e.g., grooves or ribs thereon.
  • the reinforced shear band 110 comprises a shear layer 120, an innermost reinforcement layer 130 adhered to the radially innermost extent of the shear layer 120, and an outermost reinforcement layer 140 adhered to the radially outermost extent of the shear layer 120.
  • the reinforcement layers 130 and 140 have a tensile stiffness that is greater than the shear stiffness of the shear layer 120 so that the shear band 110 undergoes shear deformation under vertical load.
  • the annular shear band 110 acts in a manner similar to an arch and provides circumferential compression stiffness and a longitudinal bending stiffness in the tire equatorial plane sufficiently high to act as a load-supporting member. Under load, shear band 110 deforms in contact area C with the ground surface through a mechanism including shear deformation of the shear band 110. The ability to deform with shear provides a compliant ground contact area C that acts similar to that of a pneumatic tire, with similar advantageous results.
  • the shear layer 120 may be constructed e.g., from a layer of material having a shear modulus of about 3 MPa to about 20 MPa.
  • Materials believed to be suitable for use in the shear layer 120 include natural and synthetic rubbers, polyurethanes, foamed rubbers and polyurethanes, segmented copolyesters, and block co-polymers of nylon.
  • the first 130 and second 140 reinforcement layers comprise essentially inextensible cord reinforcements embedded in an elastomeric coating. For a tire constructed of elastomeric materials, reinforcement layers 130 and 140 are adhered to the shear layer 120 by the cured elastomeric materials.
  • a shear band such as band 110 provides a longitudinal bending stiffness during operation of the tire 100.
  • a designer may seek to maintain the overall diameter of non-pneumatic tire 100 and the shear beam thickness while increasing the bending stiffness of the shear band 110 in order to change the performance characteristics of tire 100.
  • a method for the design of such shear bands and shear bands constructed from such method would be particularly useful. More particularly, a method that allows the designer of a non-pneumatic tire to improve certain mechanical properties of a reference shear band such as e.g., bending stiffness while maintaining the overall dimensions of the non-pneumatic tire would be particularly useful. A method that also allows a designer to decrease the radial thickness of a shear band while maintaining or improving upon certain mechanical properties would also be useful.
  • a method for modifying a shear band having a thickness of H REF and a total number of reinforcement layers of N REF .
  • the method includes determining the vertical stiffness and (G eff * A) REF using a thickness of H REF for the shear band and a total of N REF reinforcement layers for the shear band; selecting a target value H TARGET for the thickness of the shear band; increasing by 1 the total number of reinforcement layers in the shear band; calculating (G eff * A) CALC using a thickness of H TARGET for the shear band and using the number of reinforcement layers for the shear band provided by the increasing step; comparing (G eff *A)cALC from the calculating step with (G e ff*A)REF from the determining step and, if (G e ff*A)cALc is less than (G e ff*A)REF, then repeating the increasing step and the calculating step until (Ge f
  • the method includes moving at least one of the reinforcement layers between an outermost reinforcement layer and an innermost reinforcement layer to a new position in the shear band that is closer to either the outermost reinforcement layer or the innermost reinforcement layer, and repeating the computing and referring steps until the vertical stiffness from the computing step is greater than or about equal to the vertical stiffness from the determining step.
  • a method for modifying a shear band having a radially innermost reinforcement layer and a radially outermost reinforcement layer.
  • the method includes the steps of increasing or maintaining the vertical stiffness of a non-pneumatic tire incorporating the shear band by adding at least one additional reinforcement layer that is positioned between, but spaced apart from, the radially outermost reinforcement layer and the radially innermost reinforcement layer; and decreasing the value of ⁇ ⁇ / ⁇ for the shear band.
  • the present invention also includes a shear band constructed according to this exemplary method and to a non-pneumatic tire incorporating such a shear band.
  • the present invention includes a shear band having a shear layer, an inner reinforcement layer positioned along one side of said shear layer, and an outer reinforcement layer positioned along the other side of said shear layer such that said shear layer is positioned between said inner and outer reinforcement layers. At least two or more additional reinforcement layers are positioned between and spaced apart from each other and from said outer and inner remforcement layers such that the shear band has a total of N reinforcement layers and N > 4.
  • FIG. 1 is a schematic view in the equatorial plane of a non-pneumatic tire under load.
  • FIG. 2 is a schematic view in the meridian plane of a loaded shear band as used in the tion-pneumatic tire of FIG. 1. The tread portion of the non-pneumatic tire is not shown in FIG. 2.
  • FIG. 3 is a schematic view in the meridian plane of an exemplary embodiment of a shear band of the present invention.
  • the shear band has five reinforcement layers i.e., three reinforcement layers are added between the innermost and outermost reinforcement layers.
  • the present invention relates to reinforcement of a multiple layer shear band as may be used in a non-pneumatic tire and to a method of designing such a shear band. More particularly, the present invention relates to a method of improving the performance characteristics (such as e.g., increasing the bending stiffness) of a shear band without increasing its thickness or to reducing the thickness of a shear band while maintaining its performance characteristics and to shear bands constructed according to such method.
  • performance characteristics such as e.g., increasing the bending stiffness
  • Equatorial Plane means a plane that passes perpendicular to the tire axis of rotation and bisects the tire structure.
  • “Meridian Plane” means a plane that passes through and includes the axis of rotation of the tire.
  • “Vertical stiffness” is a mathematical relationship between deflection and load for a tire. As described in U.S. Pat. No. 7,201,194, when a non-pneumatic tire containing a shear band is placed under a load L, it deflects a certain amount f and the portion in ground contact conforms to the ground surface to form a ground contact area C. Because the shear band provides a resilient tire, vertical deflection f is proportional to the load L, from which the vertical stiffness of the resilient tire may be derived. There are numerous ways that one of ordinary skill in the art can provide or define a mathematical relationship between deflection and load for a tire. Two such examples, secant vertical stiffness and tangent vertical stiffness, are defined below.
  • “Secant vertical stiffness” is an example of a mathematical relationship defining vertical stiffness as the quotient of L/f or the load L placed on the non-pneumatic tire divided by the deflection f of the tire as discussed for vertical stiffness above. For a given tire, a plot can be created by measuring deflection for multiple loads L.
  • Tangent vertical stiffness is another example of a mathematical relationship defining vertical stiffness as the slope of a line tangent to a curve created by plotting load L as a function of deflection f for a given non-pneumatic tire containing a shear band at a target load or deflection.
  • Contact Pressure means the average contact pressure for contact area C created by a non-pneumatic tire loaded against the ground or other supporting surface and can be calculated as the quotient of load L divided by the contact area C.
  • !VP is a measurement of the peak-to-peak radial displacement of a shear band under load as incorporated into a non-pneumatic tire. As described in U.S. Pat. No.
  • ⁇ ⁇ / ⁇ is a measurement of the buckling or radial displacement that a band can exhibit (which can result in uneven rolling of the tire containing such shear band) when compression forces exceed the ability of the band to shorten.
  • the peak to peak radial displacement, ⁇ ⁇ / ⁇ can be calculated as follows for a shear band comprising multiple reinforcement layers connected by spokes to a hub such as shown in FIGS. 1 and 2:
  • v is the Poisson's ratio of the shear band
  • Emembrane is the modulus of elasticity of a reinforcement layer (N/mm );
  • I m is the area moment of inertia of the reinforcement layers (mm 4 );
  • T is the spoke tension (N);
  • r 0 is the nominal radius of the shear band (mm).
  • n is the number of spokes.
  • Emembrane is the homogenized circumferential modulus of elasticity of a reinforcement layer expressed in units of N/mm 2 .
  • Emembrane f° r the reinforcement layer may be determined experimentally by ASTM Test Method D 3039, "Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials,"
  • ASTM Test Method D 3039 "Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials”
  • nem brane may be calculated from the following equation:
  • t is the thickness of the reinforcement layer (mm)
  • Ematrix is the modulus of the matrix or the material making up the non-cable portion of the reinforcement layer (N/mm )
  • Vfin is the matrix volume fraction
  • Ecabie is the cable tensile modulus (N/mm 2 )
  • V f c is the cable volume fraction
  • non-pneumatic tire 100 of FIGS. 1 and 2 as a reference, having a shear band 110 thickness H REF of 18 mm in thickness, a tread layer 105 of 3.5 mm in thickness, a total tire thickness of 21.5 mm, and a total number of reinforcement layers N REF of two.
  • This reference tire 100 also has an outside diameter D 0 of 630 mm and has 50 spokes with a nominal thickness of 3.8mm.
  • reinforcement layers 130 and 140 each have a nominal E membrane of 2000 daN/mm 2 and a thickness of 1 mm. Note that for the sake of clarity in the quantitative values described herebelow, the units of Newtons have been replaced by decaNewtons wherein IdaN is equal to IO N.
  • non-pneumatic tire 100 as a reference can be evaluated by considering four performance characteristics; Tangent Vertical Stiffness, Secant Vertical Stiffness, Contact Pressure, and ⁇ ⁇ / ⁇ .
  • Tangent Vertical Stiffness Tangent Vertical Stiffness
  • Secant Vertical Stiffness Secant Vertical Stiffness
  • Contact Pressure ⁇ ⁇ / ⁇ .
  • shear band 110 For purposes of describing the present invention, assume these reference values provide acceptable performance for the intended application of shear band 110. However, for this intended application, assume also that for tire 100 a tread thickness of 6.5 mm is desired instead of the 3.5 mm thick tread portion 105 specified above - i.e., a assume a 3 mm increase in thickness for tread portion 105 is needed while all other features of tire 100 such as e.g., hub 10, spokes 150, tire size, and the materials of construction are acceptable without changes. Therefore, in order to maintain the outside diameter D 0 of tire 100 at 630 mm, shear band 110 might be reduced by 3 mm to a target shear band thickness HTARGET of 15 mm in order to accommodate the desired increase in thickness of tread portion 105. Again, using finite element analysis of a model of tire 100, the performance characteristics for tire 100 with a reduction in thickness of 3 mm for shear band 110 were determined and are set forth in Table 2.
  • reducing the thickness of the shear band 110 adversely impacts the performance of non-pneumatic tire 100 and does not meet the four acceptable (i.e., target) performance characteristics for the reference tire 100 that are set forth in Table 1 (i.e., the performance characteristics of tire 100 before reducing the thickness of the shear band 110). More specifically, reducing the thickness of shear band 1 10 has the adverse impact of decreasing the band's stiffness and increasing the potential for peak to peak radial displacement ⁇ ⁇ / ⁇ during operation. Therefore, in order to reach the desired design targets set forth in Table 1, certain modifications must be undertaken for shear band 110 if its thickness is to be reduced. Similarly, modifications would also be needed if the designer decided to maintain the reference thickness for shear band 1 10, H REF , while increasing its vertical stiffness.
  • the present invention provides a method for adding reinforcement to a shear band.
  • the present invention does not propose adding reinforcement by increasing the existing reinforcement layers 130 and 140 or adding reinforcement contiguous thereto.
  • the inventors have made the unexpected discovery that by adding reinforcement layers into the shear layer 120 at radial locations that are between, but spaced apart from, the existing reinforcement layers 130 and 140, not only can the desired vertical stiffness characteristics be achieved but an unexpected improvement (i.e., reduction) in radial displacement of the shear band, as measured by ⁇ ⁇ / ⁇ > can also be accomplished.
  • the added reinforcement layers can be uniformly spaced between the existing reinforcement layers 130 and 140 or, if desired, such additional layers can be spaced in a manner that is not uniform. Flexibility is also provided in that the present invention may be used to reduce H REF (the thickness of the reference shear band 110) while maintaining or improving upon certain performance characteristics such as e.g., its bending stiffness. Alternatively, the present invention may be used to improve its performance characteristics (e.g., increasing vertical stiffness) without changing H REF .
  • G e ff is the effective shear modulus of shear band 1 10 including the reinforcement layers 130, 140;
  • A is the total cross sectional area of the shear band 1 10 (not including the tread layer);
  • E membrane is the circumferential modulus of the reinforcement layers 130 and 140;
  • I m is the contribution to the area moment of inertia of the
  • a m is the total cross-sectional area of the reinforcement layers.
  • Geff the effective shear modulus of shear band 110
  • G m is the shear modulus of the reinforcement layers
  • G s i is the shear modulus of the elastomer used for the shear layer
  • H is the total thickness of the shear band including reinforcement the layers
  • N is the total number of reinforcement layers
  • t is the thickness of the reinforcement layers
  • w is the width of a reinforcement layer
  • t is the thickness of a reinforcement layer along radial direction R
  • h N is the distance, along the radial direction R, from the center of one reinforcement layer to the center of the next reinforcement layer
  • lo is the area moment of inertia of an individual reinforcement layer about its own axial centerline; heeven is calculated
  • 2 k is a spacing bias parameter, where a value of 1 is used for relatively equal spacing between the reinforcement layers whereas a value of 0 gives a minimum spacing of the outer reinforcement layers.
  • H REF the original value of the shear band 110 thickness
  • H T A R GET any value for the desired thickness shear band 110 may be targeted (H T A R GET), provided such value is at least four times the thickness of a reinforcement layer (t).
  • the methods of the present invention also allow for the original value of the shear band thickness H REF to remain constant while the values for Secant Vertical Stiffness and Tangent Vertical Stiffness are increased or ⁇ ⁇ / ⁇ is decreased.
  • a value for H T A R G ET is specified for the new construction of shear band 1 10, where H T A R G ET may be the same or smaller than H REF .
  • reference shear band 1 10 is shown as having two reinforcement layers 130 and 140, or an N REF value equal to 2. Accordingly, a new G e ff*A is calculated, (G e ff*A)cALCj for the shear band now having three reinforcement layers and a thickness of H T A RGET , but otherwise constructed in a manner similar to shear band 110 (It should be noted that, as used herein, N can be any positive integer greater than 1. For example, the reference shear band for which modification is desired could already have three reinforcement layers, an N REF value equal to 3).
  • (G e ff*A)cALC is greater than or about equal to the original value of (G e ff* A) REF for the reference shear band 1 10 with only two reinforcement layers 130 and 140, or N REF ⁇ 2.
  • N TOTAL represents the total number of reinforcement layers when (G e ff* A) CALC becomes greater than or about equal to the original value of (G e ff* A) REF - [0051]
  • the process of increasing the number of remforcement layers N until the new value (G e rr*A)cALC is more than the reference value for (G e ff*A) REF can be repeated until the following limit is reached:
  • Emembrane* A m will always exceed the reference values of E membrane * A m because this structural section property is directly affected by the number of reinforcement layers and because at least one reinforcement layer has been added to the original shear band 1 10 at this point in the process. However, the computed value for E membrane *I m rnay not meet or exceed the reference value for E membrane *V
  • the three rows that follow are performed with the target thickness of H T A ROET of 15 mm with the goal of reducing the thickness of the shear band 1 10 while maintaining or improving certain performance characteristics such as vertical stiffness and U p/P .
  • certain performance characteristics such as vertical stiffness and U p/P .
  • Table 4 also provides an unexpected result in that ⁇ ⁇ / ⁇ has actually decreased by reducing the thickness H of shear band 1 10 and doubling the number of reinforcement layers. More specifically, the targeted modification of shear band 1 10 will not only allow for an increase in the tread portion 105 by 3 mm but will also result in less radial displacement of the shear band 110 and, therefore, smoother operation of tire 100.
  • shear layer 120 may be constructed from any material that provides the desired mechanical properties described herein. While elastomeric materials may be used, the present invention is not limited to such.
  • materials that may be used for shear layer 120 include those previously described (natural and synthetic rubbers, polyurethanes, foamed rubbers and polyurethanes, segmented copolyesters, and block co-polymers of nylon) as well non-elastomeric materials such as, for example, fiber- reinforced composites or meta-materials. Accordingly, the shear band 110 of the present invention is not necessarily limited to a particular material identity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Tires In General (AREA)
  • Tyre Moulding (AREA)

Abstract

A method is provided for reinforcement of a multiple layer shear band as may be used in a non-pneumatic tire More particularly, an iterative method of improving the performance characteristics (such as e g, increasing the bending stiffness) of a shear band without increasing its thickness or of reducing the thickness of a shear band while maintaining its performance characteristics is presented Shear bands constructed according to this method are also provided

Description

PATENT
Attorney Docket No.: MIC-328-PCT Michelin Reference No.: P50-0328-WO-PCT
METHOD AND APPARATUS FOR MULTILAYER SHEAR BAND REINFORCEMENT
FIELD OF THE INVENTION
[0001] The present invention relates to reinforcement of a multiple layer shear band as may be used in a non-pneumatic tire and to a method of designing such a shear band. More particularly, the present invention relates to a method of improving the performance characteristics (such as e.g., increasing the bending stiffness) of a shear band without increasing its thickness or to reducing the thickness of a shear band while maintaining its performance characteristics and to shear bands constructed according to such method.
BACKGROUND OF THE INVENTION
[0002] The details and benefits of non-pneumatic tire constructions are described e.g., in U.S. Pat. Nos. 6,769,465; 6,994,134; 7,013,939; and 7,201,194. Certain non-pneumatic tire constructions propose incorporating a shear band, embodiments of which have also been described in e.g., U.S. 7,201,194, which is incorporated herein by reference. Such non- pneumatic tires provide advantages in tire performance without relying upon a gas inflation pressure for support of the loads applied to the tire.
[0003] An example of a tire 100 having a ring-shaped shear band 110 is shown in FIG. 1. Tire 100 also includes a plurality of tension transmitting elements, illustrated as web spokes 150, extending transversely across and inward from shear band 110. A mounting band 160 is disposed at the radially inner end of the web spokes. The mounting band 160 anchors the tire 100 to a hub 10. A tread portion 105 is formed at the outer periphery of the shear band 110 and may include e.g., grooves or ribs thereon.
[0004] Referring to FIG. 2, which shows the tire 100 in section view in the meridian plane (but without tread portion 105), the reinforced shear band 110 comprises a shear layer 120, an innermost reinforcement layer 130 adhered to the radially innermost extent of the shear layer 120, and an outermost reinforcement layer 140 adhered to the radially outermost extent of the shear layer 120. The reinforcement layers 130 and 140 have a tensile stiffness that is greater than the shear stiffness of the shear layer 120 so that the shear band 110 undergoes shear deformation under vertical load.
[0005] More specifically, as set forth in U.S. Pat. No. 7,201 ,194, when the ratio of the elastic modulus of the reinforcement layer to the shear modulus of the shear layer
(E'membrane/G), as expressed in U.S. Pat No. 7,201,194, is relatively low, deformation of shear band 110 under load approximates that of a homogenous band and produces a non-uniform ground contact pressure. Alternatively, when this ratio is sufficiently high, deformation of the shear band 110 under load is essentially by shear deformation of the shear layer with little longitudinal extension or compression of the reinforcement layers 130 and 140. As indicated in FIG. 1 , a load L placed on the tire axis of rotation X is transmitted by tension in the web spokes 150 to the annular band 110. The annular shear band 110 acts in a manner similar to an arch and provides circumferential compression stiffness and a longitudinal bending stiffness in the tire equatorial plane sufficiently high to act as a load-supporting member. Under load, shear band 110 deforms in contact area C with the ground surface through a mechanism including shear deformation of the shear band 110. The ability to deform with shear provides a compliant ground contact area C that acts similar to that of a pneumatic tire, with similar advantageous results.
[0006] The shear layer 120 may be constructed e.g., from a layer of material having a shear modulus of about 3 MPa to about 20 MPa. Materials believed to be suitable for use in the shear layer 120 include natural and synthetic rubbers, polyurethanes, foamed rubbers and polyurethanes, segmented copolyesters, and block co-polymers of nylon. The first 130 and second 140 reinforcement layers comprise essentially inextensible cord reinforcements embedded in an elastomeric coating. For a tire constructed of elastomeric materials, reinforcement layers 130 and 140 are adhered to the shear layer 120 by the cured elastomeric materials.
[0007] As stated above, a shear band such as band 110 provides a longitudinal bending stiffness during operation of the tire 100. For certain applications, it is desirable to maintain the overall thickness— along the radial direction R - of shear band 110 while simultaneously increasing its bending stiffness. For example, a designer may seek to maintain the overall diameter of non-pneumatic tire 100 and the shear beam thickness while increasing the bending stiffness of the shear band 110 in order to change the performance characteristics of tire 100. Conversely, for certain other applications, it is desirable to decrease the thickness of shear band 110 while maintaining the bending stiffness of tire 100 and thus reduce mass.
[0008] Accordingly, a method for the design of such shear bands and shear bands constructed from such method would be particularly useful. More particularly, a method that allows the designer of a non-pneumatic tire to improve certain mechanical properties of a reference shear band such as e.g., bending stiffness while maintaining the overall dimensions of the non-pneumatic tire would be particularly useful. A method that also allows a designer to decrease the radial thickness of a shear band while maintaining or improving upon certain mechanical properties would also be useful. These and other advantageous aspects of the present invention will be apparent from the description that follows.
SUMMARY OF THE INVENTION
[0009] Objects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
[0010] In one exemplary aspect of the present invention, a method is provided for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF. The method includes determining the vertical stiffness and (Geff* A)REF using a thickness of HREF for the shear band and a total of NREF reinforcement layers for the shear band; selecting a target value HTARGET for the thickness of the shear band; increasing by 1 the total number of reinforcement layers in the shear band; calculating (Geff* A)CALC using a thickness of HTARGET for the shear band and using the number of reinforcement layers for the shear band provided by the increasing step; comparing (Geff*A)cALC from the calculating step with (Geff*A)REF from the determining step and, if (Geff*A)cALc is less than (Geff*A)REF, then repeating the increasing step and the calculating step until (Geff* A)CALC is greater than or about equal to (Geff*A)REF and the total number of reinforcement layers becomes NTOTAL; and computing the vertical stiffness using a thickness of HTARGET for the shear band and the number of reinforcement layers NTOTAL for the shear band provided by the comparing step. If the vertical stiffness from the computing step is less than the vertical stiffness from the determining step, then the method includes moving at least one of the reinforcement layers between an outermost reinforcement layer and an innermost reinforcement layer to a new position in the shear band that is closer to either the outermost reinforcement layer or the innermost reinforcement layer, and repeating the computing and referring steps until the vertical stiffness from the computing step is greater than or about equal to the vertical stiffness from the determining step.
[0011] In another exemplary embodiment of the present invention, a method is provided for modifying a shear band having a radially innermost reinforcement layer and a radially outermost reinforcement layer. The method includes the steps of increasing or maintaining the vertical stiffness of a non-pneumatic tire incorporating the shear band by adding at least one additional reinforcement layer that is positioned between, but spaced apart from, the radially outermost reinforcement layer and the radially innermost reinforcement layer; and decreasing the value of μρ/ρ for the shear band.
[0012] Variations to this exemplary method of the present invention are further described in the detailed description the follows. The present invention also includes a shear band constructed according to this exemplary method and to a non-pneumatic tire incorporating such a shear band.
[0013] For example, in one exemplary embodiment, the present invention includes a shear band having a shear layer, an inner reinforcement layer positioned along one side of said shear layer, and an outer reinforcement layer positioned along the other side of said shear layer such that said shear layer is positioned between said inner and outer reinforcement layers. At least two or more additional reinforcement layers are positioned between and spaced apart from each other and from said outer and inner remforcement layers such that the shear band has a total of N reinforcement layers and N > 4.
[0014] These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015] A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which: [0016] FIG. 1 is a schematic view in the equatorial plane of a non-pneumatic tire under load.
[0017] FIG. 2 is a schematic view in the meridian plane of a loaded shear band as used in the tion-pneumatic tire of FIG. 1. The tread portion of the non-pneumatic tire is not shown in FIG. 2.
[0018] FIG. 3 is a schematic view in the meridian plane of an exemplary embodiment of a shear band of the present invention. The shear band has five reinforcement layers i.e., three reinforcement layers are added between the innermost and outermost reinforcement layers.
DETAILED DESCRIPTION OF THE INVENTION
[0019] The present invention relates to reinforcement of a multiple layer shear band as may be used in a non-pneumatic tire and to a method of designing such a shear band. More particularly, the present invention relates to a method of improving the performance characteristics (such as e.g., increasing the bending stiffness) of a shear band without increasing its thickness or to reducing the thickness of a shear band while maintaining its performance characteristics and to shear bands constructed according to such method. For purposes of describing the invention, reference now will be made in detail to embodiments and methods of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment, can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
[0020] The following terms are defined as follows for this description:
[0021] "Equatorial Plane" means a plane that passes perpendicular to the tire axis of rotation and bisects the tire structure.
[0022] "Meridian Plane" means a plane that passes through and includes the axis of rotation of the tire.
[0023] "Vertical stiffness" is a mathematical relationship between deflection and load for a tire. As described in U.S. Pat. No. 7,201,194, when a non-pneumatic tire containing a shear band is placed under a load L, it deflects a certain amount f and the portion in ground contact conforms to the ground surface to form a ground contact area C. Because the shear band provides a resilient tire, vertical deflection f is proportional to the load L, from which the vertical stiffness of the resilient tire may be derived. There are numerous ways that one of ordinary skill in the art can provide or define a mathematical relationship between deflection and load for a tire. Two such examples, secant vertical stiffness and tangent vertical stiffness, are defined below.
[0024] "Secant vertical stiffness" is an example of a mathematical relationship defining vertical stiffness as the quotient of L/f or the load L placed on the non-pneumatic tire divided by the deflection f of the tire as discussed for vertical stiffness above. For a given tire, a plot can be created by measuring deflection for multiple loads L.
[0025] "Tangent vertical stiffness" is another example of a mathematical relationship defining vertical stiffness as the slope of a line tangent to a curve created by plotting load L as a function of deflection f for a given non-pneumatic tire containing a shear band at a target load or deflection.
[0026] "Contact Pressure" means the average contact pressure for contact area C created by a non-pneumatic tire loaded against the ground or other supporting surface and can be calculated as the quotient of load L divided by the contact area C.
[0027] "!VP" is a measurement of the peak-to-peak radial displacement of a shear band under load as incorporated into a non-pneumatic tire. As described in U.S. Pat. No.
7,013,939, which is incorporated herein by reference, μρ/ρ is a measurement of the buckling or radial displacement that a band can exhibit (which can result in uneven rolling of the tire containing such shear band) when compression forces exceed the ability of the band to shorten. As will be used herein, the peak to peak radial displacement, μρ/ρ, can be calculated as follows for a shear band comprising multiple reinforcement layers connected by spokes to a hub such as shown in FIGS. 1 and 2:
[0028]
(1)
Figure imgf000008_0001
where μρ/ρ is the peak to peak radial displacement (mm);
v is the Poisson's ratio of the shear band;
Emembrane is the modulus of elasticity of a reinforcement layer (N/mm );
Im is the area moment of inertia of the reinforcement layers (mm4);
T is the spoke tension (N);
r0 is the nominal radius of the shear band (mm); and
n is the number of spokes.
[0029] Emembrane is the homogenized circumferential modulus of elasticity of a reinforcement layer expressed in units of N/mm2. Emembrane f°r the reinforcement layer may be determined experimentally by ASTM Test Method D 3039, "Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials," For the specific example of a reinforcement layer having cords or cable reinforcements at zero degrees (i.e. perpendicular to the equatorial plane) E,nembrane may be calculated from the following equation:
(2)
E
Figure imgf000009_0001
where,
t is the thickness of the reinforcement layer (mm)
Ematrix is the modulus of the matrix or the material making up the non-cable portion of the reinforcement layer (N/mm )
Vfin is the matrix volume fraction
Ecabie is the cable tensile modulus (N/mm2)
Vfc is the cable volume fraction
[0030] For purposes of describing the present invention, consider non-pneumatic tire 100 of FIGS. 1 and 2 as a reference, having a shear band 110 thickness HREF of 18 mm in thickness, a tread layer 105 of 3.5 mm in thickness, a total tire thickness of 21.5 mm, and a total number of reinforcement layers NREF of two. This reference tire 100 also has an outside diameter D0 of 630 mm and has 50 spokes with a nominal thickness of 3.8mm. Also, reinforcement layers 130 and 140 each have a nominal Emembrane of 2000 daN/mm2 and a thickness of 1 mm. Note that for the sake of clarity in the quantitative values described herebelow, the units of Newtons have been replaced by decaNewtons wherein IdaN is equal to IO N.
[0031] The performance of non-pneumatic tire 100 as a reference can be evaluated by considering four performance characteristics; Tangent Vertical Stiffness, Secant Vertical Stiffness, Contact Pressure, and μρ/ρ. Using finite element analysis of a model of non- pneumatic tire 100, the values for these performance characteristics were determined at a vertical load of 400 daN and are set forth in Table 1.
[0032] Table 1
Figure imgf000010_0001
[0033] For purposes of describing the present invention, assume these reference values provide acceptable performance for the intended application of shear band 110. However, for this intended application, assume also that for tire 100 a tread thickness of 6.5 mm is desired instead of the 3.5 mm thick tread portion 105 specified above - i.e., a assume a 3 mm increase in thickness for tread portion 105 is needed while all other features of tire 100 such as e.g., hub 10, spokes 150, tire size, and the materials of construction are acceptable without changes. Therefore, in order to maintain the outside diameter D0 of tire 100 at 630 mm, shear band 110 might be reduced by 3 mm to a target shear band thickness HTARGET of 15 mm in order to accommodate the desired increase in thickness of tread portion 105. Again, using finite element analysis of a model of tire 100, the performance characteristics for tire 100 with a reduction in thickness of 3 mm for shear band 110 were determined and are set forth in Table 2.
[0034] Table 2
Figure imgf000010_0002
[0035] Unfortunately, as demonstrated by the results in Table 2, reducing the thickness of the shear band 110 adversely impacts the performance of non-pneumatic tire 100 and does not meet the four acceptable (i.e., target) performance characteristics for the reference tire 100 that are set forth in Table 1 (i.e., the performance characteristics of tire 100 before reducing the thickness of the shear band 110). More specifically, reducing the thickness of shear band 1 10 has the adverse impact of decreasing the band's stiffness and increasing the potential for peak to peak radial displacement μρ/ρ during operation. Therefore, in order to reach the desired design targets set forth in Table 1, certain modifications must be undertaken for shear band 110 if its thickness is to be reduced. Similarly, modifications would also be needed if the designer decided to maintain the reference thickness for shear band 1 10, HREF, while increasing its vertical stiffness.
[0036] Therefore, in one exemplary aspect, the present invention provides a method for adding reinforcement to a shear band. However, the present invention does not propose adding reinforcement by increasing the existing reinforcement layers 130 and 140 or adding reinforcement contiguous thereto. Instead, using the methods disclosed herein, the inventors have made the unexpected discovery that by adding reinforcement layers into the shear layer 120 at radial locations that are between, but spaced apart from, the existing reinforcement layers 130 and 140, not only can the desired vertical stiffness characteristics be achieved but an unexpected improvement (i.e., reduction) in radial displacement of the shear band, as measured by μρ/ρ> can also be accomplished.
[0037] In addition, flexibility is provided in that the added reinforcement layers can be uniformly spaced between the existing reinforcement layers 130 and 140 or, if desired, such additional layers can be spaced in a manner that is not uniform. Flexibility is also provided in that the present invention may be used to reduce HREF (the thickness of the reference shear band 110) while maintaining or improving upon certain performance characteristics such as e.g., its bending stiffness. Alternatively, the present invention may be used to improve its performance characteristics (e.g., increasing vertical stiffness) without changing HREF.
Accordingly, using the reference values of Table 1 as the target values, an exemplary application of the method of the present invention in order to reduce the thickness of reference shear band 1 10 by 3 mm now follows.
[0038] The inventors have determined that the four performance characteristics set forth in Table 1 for the reference shear band 1 10 are controlled by three products set forth in equations (3), (4), and (5) below, which can be thought of as three structural section properties of shear band 110. Before addressing these equations, it should be noted that the following equations (3) through (8) are based on the assumption that the reinforcement layers are uniform relative to each other. However, as will be understood by one of skill in the art using the teachings disclosed herein, the method described herein may also be applied to a shear band having reinforcement layers that are not uniform. For example, reinforcement layers of different thicknesses may also be applied using the present invention. Accordingly, for uniform reinforcement layers, the three products - i.e., three structural section properties - can be expressed as follows:
[0039]
(3)
[0040]
(4)
[00411
(5)
Figure imgf000012_0002
where
Geff is the effective shear modulus of shear band 1 10 including the reinforcement layers 130, 140;
A is the total cross sectional area of the shear band 1 10 (not including the tread layer);
Emembrane is the circumferential modulus of the reinforcement layers 130 and 140;
Im is the contribution to the area moment of inertia of the
reinforcement layers; and
Am is the total cross-sectional area of the reinforcement layers.
[0042] Geff, the effective shear modulus of shear band 110, is calculated as follows:
[0043]
(6)
Figure imgf000012_0001
where
Gm is the shear modulus of the reinforcement layers;
Gsi is the shear modulus of the elastomer used for the shear layer; H is the total thickness of the shear band including reinforcement the layers;
N is the total number of reinforcement layers; and
t is the thickness of the reinforcement layers;
Figure imgf000013_0002
where
w is the width of a reinforcement layer;
t is the thickness of a reinforcement layer along radial direction R; hN is the distance, along the radial direction R, from the center of one reinforcement layer to the center of the next reinforcement layer;
lo is the area moment of inertia of an individual reinforcement layer about its own axial centerline; heeven is calculated
Figure imgf000013_0003
2
Figure imgf000013_0001
2 k is a spacing bias parameter, where a value of 1 is used for relatively equal spacing between the reinforcement layers whereas a value of 0 gives a minimum spacing of the outer reinforcement layers.
[0046] For an odd number of reinforcement layers as shown in Fig. 3, the area moment of inertia Im will be expressed as INodd, and the following equation provides for the calculation of
INodd:
[0047]
(8)
Figure imgf000014_0002
[0048] Calculated as shown above, the three structural section properties Geff*A,
be used to reconstruct shear band 110 as needed while still
Figure imgf000014_0001
meeting (or improving upon) the target performance characteristics of reference tire 100 set forth in Table 1. For the example introduced above, it is desired to reduce the overall thickness H of the reference shear band 110 by 3 mm while still meeting or improving upon the performance characteristics of Table 1. However, other changes to shear band 110 can also be accomplished using the methods of the present invention as well. For example, the original value of the shear band 110 thickness (HREF) could be targeted for reduction by as much as 50 percent. In fact, any value for the desired thickness shear band 110 may be targeted (HTARGET), provided such value is at least four times the thickness of a reinforcement layer (t). Alternatively, the methods of the present invention also allow for the original value of the shear band thickness HREF to remain constant while the values for Secant Vertical Stiffness and Tangent Vertical Stiffness are increased or μρ/ρ is decreased. Regardless, as part of an exemplary method of the present invention, a value for HTARGET is specified for the new construction of shear band 1 10, where HTARGET may be the same or smaller than HREF.
[0049] Using the selected target value for thickness HTARGET, the structural section property Geff*A is then calculated for a shear band having at least one additional
reinforcement layer as compared to the reference shear band 110. For example, reference shear band 1 10 is shown as having two reinforcement layers 130 and 140, or an NREF value equal to 2. Accordingly, a new Geff*A is calculated, (Geff*A)cALCj for the shear band now having three reinforcement layers and a thickness of HTARGET, but otherwise constructed in a manner similar to shear band 110 (It should be noted that, as used herein, N can be any positive integer greater than 1. For example, the reference shear band for which modification is desired could already have three reinforcement layers, an NREF value equal to 3).
[0050] The new (Geff*A)cALC as determined using three remforcement layers (N=3) is then compared to (Geff*A)REF for the reference shear band 110. If the newly calculated (Geff*A)cALC is less than the reference value of (Geff*A)REF for reference shear band 1 10, then the number of reinforcement layers is again increased by one (N=4) and the value for (Geff*A)cALC is again recalculated. This process is repeated until the new value for
(Geff*A)cALC is greater than or about equal to the original value of (Geff* A)REF for the reference shear band 1 10 with only two reinforcement layers 130 and 140, or NREF ~2. As used herein, NTOTAL represents the total number of reinforcement layers when (Geff* A)CALC becomes greater than or about equal to the original value of (Geff* A)REF- [0051] The process of increasing the number of remforcement layers N until the new value (Gerr*A)cALC is more than the reference value for (Geff*A)REF can be repeated until the following limit is reached:
(9)
Figure imgf000015_0001
This limit ensures that there will be a distance of at least one-half the thickness of a single reinforcement layer between adjacent reinforcement layers (assuming equal spacing). For equally spaced reinforcement layers, it should be noted that an addition that creates an odd number of remforcement layers will proportionally increase Geff* A and Emembrane*Ain but will have a much more limited impact on Emembrane because at least one reinforcement layer will be positioned about the middle or "neutral fiber" of the shear layer. If the limit of equation (9) is reached before the value of (Geff*A)cALC becomes greater than the reference value (Geff*A)REFS then the value for thickness HTARGET must be increased and the process repeated - i.e., starting again with a total of NREF + 1 reinforcement layers - until the new (Geff*A)cALC is at or above the reference value of (Geff*A)REF-
[0052] Upon adding an additional reinforcement layer that provides a (Geff*A)cALC close to or above the reference value of (Geff* A)REF, the values for Emembrane* Am are Emembrane*Im at the new number of reinforcement layers can also be calculated. The new value for
Emembrane* Am will always exceed the reference values of Emembrane* Am because this structural section property is directly affected by the number of reinforcement layers and because at least one reinforcement layer has been added to the original shear band 1 10 at this point in the process. However, the computed value for Emembrane*Imrnay not meet or exceed the reference value for Emembrane*V
[0053] Using HTARGET and NTOTAL (the number of reinforcement layers at which
(Geff*A)cALC exceeded the reference
Figure imgf000016_0001
the values of the four performance characteristics - i.e., the Tangent Vertical Stiffness, Secant Vertical Stiffness, Contact Pressure, and uyp - are determined using e.g., finite element analysis and a model of the tire with the shear band now having NTOTAL reinforcement layers. The new values for the Tangent Vertical Stiffness, Secant Vertical Stiffness, Contact Pressure and Up/P are then compared to the original reference values (e.g., the values in Table 1 ). If the new values meet or exceed the original reference values, then the process can be stopped as the design goal has been reached.
[0054] If, however, the new values for Tangent Vertical Stiffness or Secant Vertical Stiffness are lower than the reference values for Tangent and Secant Vertical Stiffness, then Emembrane* Im must be increased. Alternatively, even if the new values for Tangent Vertical Stiffness, Secant Vertical Stiffness, Contact Pressure are acceptable, the new value for μρ/ρ may be unacceptable or further reduction maybe desired and, therefore, Emembrane* Im must be increased. To increase Emembrane*Im5 the value for spacing bias parameter k set forth with equations (7) and (8) above must be decreased incrementally. As the bias parameter k is decreased, the reinforcement layers added to the shear band that are not located on the neutral fiber will be pushed out toward the outermost and innermost reinforcement layers 130 and 140 and this will cause Emembrane*Im to increase without impacting the value of thickness HTARGET, (Getr*A)cALC, or ( Emembrane*Am)CALC- [0055] Accordingly, for each new value of parameter k selected, another model of the tire with the shear band construction using the new value for parameter k is constructed and e.g., finite element analysis is used to compute the four performance characteristics - i.e., the Tangent Vertical Stiffness, Secant Vertical Stiffness, Contact Pressure, and Up/P. These new values are again compared to the reference values. If the Vertical Stiffness (Tangent, Secant, or both) are less than the values of Vertical Stiffness for the reference shear band, then the process of decreasing parameter k is continued until the new values exceed or are about equal to the reference values for Vertical Stiffness. Even if the new Vertical Stiffness values are acceptable, the process of decreasing parameter k can also be repeated if the value for Up/P is unacceptable— i.e., too large or higher than the value of μρ/ρ for the reference shear band 110.
[0056] If parameter k reaches zero before the new values of Tangent Vertical Stiffness, Secant Vertical Stiffness, and μρ/ρ reach acceptable or target values, then the value of HTARGET must be increased and the process must be repeated again starting with one more
reinforcement layer than the reference shear band 110 i.e., NREF + 1. More specifically, for shear band 110 having NREF = 2, the value of HTARGET is increased and a new value for (Geff*A)cALC is calculated restarting with a value of N=3 reinforcement layers. This
(Geff*A)cALC is then compared to (Gefr*A)REF, and if (Geff* A)CALC is not greater than or about equal to (Gefr*A)REF, the process is then repeated by increasing the number of reinforcement layers N again as previously described,
[0057] The method described above was applied to the reference shear band 110 having only two reinforcement layers 130 and 140. The results are set forth in Table 3:
[0058]
Figure imgf000017_0001
[0059] The first row of data indicates the reference shear band 110 having a shear layer thickness HRBF of 18 mm, a width W of 230 mm, and two (N=2) reinforcement layers. The three rows that follow are performed with the target thickness of HTAROET of 15 mm with the goal of reducing the thickness of the shear band 1 10 while maintaining or improving certain performance characteristics such as vertical stiffness and Up/P. Although it is perhaps not possible to match the performance characteristics exactly, as shown in Table 3, a
(Geff*A)cALC that exceeded the value (Gefr*A)REF for the reference shear band 1 10 is obtained when four reinforcement layers (N=4) are used. It is again noted that the above-described method assumes that the construction of tire 100 otherwise remains the same - i.e., the same materials (e.g., elastomers) are used for the shear layer 120, the same number of web spokes 150 are used, the same hub is used, etc.
[0060] Using the value of four reinforcement layers (NTOTALT^), tire 100 was modeled again and, using finite element analysis, the four performance characteristics used in Table 1 (Tangent Vertical Stiffness, Secant Vertical Stiffness, Contact Pressure, and μρ/ρ) were recalculated. The results are set forth in Table 4.
[0061]
Figure imgf000018_0001
[0062] A comparison of Table 4 and Table 1 shows that the thickness of the shear band 1 10 can be reduced by 3 mm while maintaining its vertical stiffness characteristics.
However, Table 4 also provides an unexpected result in that μρ/ρ has actually decreased by reducing the thickness H of shear band 1 10 and doubling the number of reinforcement layers. More specifically, the targeted modification of shear band 1 10 will not only allow for an increase in the tread portion 105 by 3 mm but will also result in less radial displacement of the shear band 110 and, therefore, smoother operation of tire 100.
[0063J It should be understood that shear layer 120 may be constructed from any material that provides the desired mechanical properties described herein. While elastomeric materials may be used, the present invention is not limited to such. For example, materials that may be used for shear layer 120 include those previously described (natural and synthetic rubbers, polyurethanes, foamed rubbers and polyurethanes, segmented copolyesters, and block co-polymers of nylon) as well non-elastomeric materials such as, for example, fiber- reinforced composites or meta-materials. Accordingly, the shear band 110 of the present invention is not necessarily limited to a particular material identity.
[0064] While the present subject matter has been described in detail with respect to specific exemplary embodiments and methods thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing may readily produce alterations to, variations of, and equivalents to such embodiments. Accordingly, the scope of the present disclosure is by way of example rather than by way of limitation, and the subject disclosure does not preclude inclusion of such modifications, variations and/or additions to the present subject matter as would be readily apparent to one of ordinary skill in the art using the teachings disclosed herein.

Claims

WHAT IS CLAIMED IS:
1. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF; the method comprising the steps of:
determining the vertical stiffness and (Geff*A)REF using a thickness of HREF and a total of NREF reinforcement layers for the shear band;
selecting a target value HTARGET as the thickness of the shear band;
increasing by 1 the total number of reinforcement layers in the shear band;
calculating (Geff*A)cALc using a thickness of HTARGET for the shear band and using the number of reinforcement layers provided by said increasing step for the shear band;
comparing (Gefr*A)cALC from said calculating step with (Geff* A)REF from said determining step and, if (Geff*A)cALC is less than (Geff*A)REF, then repeating said increasing step and said calculating step until (Geff*A)CALC is greater than or about equal to (Geff* A) REF and the total number of reinforcement layers becomes NTOTAL;
computing the vertical stiffness using a thickness of HTARGET for the shear band and the number of reinforcement layers NTOTAL for the shear band as provided by said comparing step; and
referring to the vertical stiffness from said computing step and the vertical stiffness from said determining step and, if the vertical stiffness from said computing step is less than the vertical stiffness from said determining step, then
moving at least one of the reinforcement layers between an outermost reinforcement layer and an innermost reinforcement layer to a new position in the shear band that is closer to either the outermost reinforcement layer or the innermost reinforcement layer, and
repeating said computing and referring steps until the vertical stiffness from said computing step is greater than or about equal to the vertical stiffness from said determining step.
2. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 1, further comprising the step of increasing the target thickness HTARGET of the shear band if the distance between any adjacent reinforcement layers in the shear band becomes less than one-half the thickness of a single reinforcement layer.
3. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 2, further comprising repeating said steps of increasing, calculating, comparing, computing and referring beginning with a total of NREF reinforcement layers in the shear band.
4. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 1, further comprising the step of increasing the target thickness HTARGET of the shear band if said step of comparing does not provide a (Geff*A)cALc that is greater than or about equal to (Geff*A)REF-
5. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 4, further comprising repeating said increasing, calculating, comparing, computing and referring steps beginning with a total of NREF reinforcement layers in the shear band.
6. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 1 , further comprising the step of increasing the target thickness of the shear band HTARGET-
7. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 1, further comprising the steps of:
calculating the value of Up/P REF using a thickness of HREF for the shear band and a total of NREF reinforcement layers for the shear band;
calculating the value of μρ/ρ TARGET using a thickness of HTARGET for the shear band and using the number of reinforcement layers NTOTAL for the shear band provided by said comparing step; and
comparing the value of μρ/ρ TARGET to Up/p REF and, if Up/P TARGET is not less than or about equal to uyP REF, then moving at least one of the reinforcement layers between an outermost reinforcement layer and an innermost reinforcement layer to a new position in the shear band that is closer to either the outermost reinforcement layer or the innermost reinforcement layer.
8. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 1 , further comprising the step of changing the design of the shear band having a thickness of HREF and a total of NREF reinforcement layers using the results of said computing and said referring steps.
9. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 1 , wherein HTARGET as first used in said selecting step is about one-half of HREF-
10. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 1 , further comprising the step of manufacturing a shear band having a thickness of HTARGET as used in said selecting step and having the number of reinforcement layers NTOTAL provided by said comparing step.
1 1. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 10, wherein the total number of reinforcement layers NTOTAL is four.
12. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 1, further comprising increasing the thickness t of the reinforcement layers if said comparing step does not result in a (Geff* A)CALC that is greater than or about equal to (Geff* A)REF-
13. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 12, further comprising repeating said steps of increasing, calculating, comparing, computing and referring beginning with a total of NREF reinforcement layers in the shear band.
14. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 1, further comprising the step of increasing the circumferential shear modulus Gm of the reinforcement layers if said comparing step does not result in a (Geff*A)cALC that is greater than or about equal to
(Geff*A)REF.
15. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 14, further comprising repeating said steps of increasing, calculating, comparing, computing and referring beginning with a total of NREF reinforcement layers in the shear band.
16. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 1, further comprising the step of increasing the circumferential modulus Emembrane of the reinforcement layers if said comparing step does not result in a vertical stiffness that is greater than or equal to the vertical stiffness from said determining step.
17. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 16, further comprising repeating said steps of increasing, calculating, comparing, computing and referring beginning with a total of NREF reinforcement layers in the shear band.
18. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 1, further comprising the step of increasing the circumferential modulus Emembrane of the reinforcement layers if said comparing step does not result in a value of Up/P that is greater than the value of μρ/ρ using a thickness of HREF for the shear band and using the number of reinforcement layers NREF for the shear band.
19. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 18, further comprising repeating said steps of increasing, calculating, comparing, computing and referring beginning with a total of NREF reinforcement layers in the shear band.
20. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 1, wherein the vertical stiffness of said step of determining is the secant vertical stiffness.
21. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 1 , wherein said moving step further comprises increasing the value of parameter k for a non-pneumatic tire incorporating the shear band.
22. A method for modifying a shear band having a thickness of HREF and a total number of reinforcement layers of NREF as in claim 21 further comprising the step of increasing the target thickness HTARGET of the shear band if the value of parameter k is reduced to about zero.
23. A shear band designed using the method of claim 1.
24. A non-pneumatic tire incorporating a shear band designed using the method of claim 1.
25. A method for modifying a shear band having a radially innermost
reinforcement layer and a radially outermost reinforcement layer, the method comprising the steps of:
increasing or maintaining the vertical stiffness for a non-pneumatic tire incorporating the shear band by adding at least one additional reinforcement layer that is positioned between, but spaced apart from, the radially outermost reinforcement layer and the radially innermost reinforcement layer; and
decreasing the value of μρ/ρ for the shear band.
26. A method for modifying a shear band having a radially innermost
reinforcement layer and a radially outermost reinforcement layer as in claim 25, further comprising the step of decreasing the thickness, along the radial direction, of the shear band.
27. A method for modifying a shear band having a radially innermost
reinforcement layer and a radially outermost reinforcement layer as in claim 25, wherein said decreasing step further comprises modifying the radial position of at least one reinforcement layer that is positioned between the radially innermost reinforcement layer and the radially outermost reinforcement layer.
28. A method for modifying a shear band having a radially innermost
reinforcement layer and a radially outermost reinforcement layer as in claim 25, further comprising the step of maintaining a constant thickness for the shear band during said steps of increasing and decreasing.
29. A method for modifying a shear band having a radially innermost
reinforcement layer and a radially outermost reinforcement layer as in claim 25, further comprising the step of manufacturing a shear band based on information obtained from said steps of increasing and decreasing.
30. A shear band, comprising:
a shear layer;
an inner reinforcement layer positioned along one side of said shear layer;
an outer reinforcement layer positioned along the other side of said shear layer such that said shear layer is positioned between said inner and outer reinforcement layers; and at least two or more additional reinforcement layers positioned between and spaced apart from each other and from said outer and inner reinforcement layers such that the shear band has a total of N reinforcement layers and N > 4.
31. A shear band as in claim 30, wherein said at least two or more additional reinforcement layers are positioned between said inner and outer reinforcement layers at locations that decrease the value of the peak-to-peak radial displacement of the shear band.
32. A shear band as in claim 31 , wherein said at least two additional reinforcement layers are uniformly spaced between said inner and outer reinforcement layers.
33. A shear band as in claim 32, wherein said additional reinforcement layers and said inner and outer reinforcement layers are all of uniform thickness.
PCT/US2009/060746 2009-10-15 2009-10-15 Method and apparatus for multilayer shear band reinforcement WO2011046553A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
CA2774927A CA2774927C (en) 2009-10-15 2009-10-15 Method and apparatus for multilayer shear band reinforcement
PCT/US2009/060746 WO2011046553A1 (en) 2009-10-15 2009-10-15 Method and apparatus for multilayer shear band reinforcement
EP15163101.7A EP2910388B1 (en) 2009-10-15 2009-10-15 Apparatus for multilayer shear band reinforcement
BR112012008836-0A BR112012008836B1 (en) 2009-10-15 2009-10-15 method for modifying a shear band and shear band
MX2012004176A MX2012004176A (en) 2009-10-15 2009-10-15 Method and apparatus for multilayer shear band reinforcement.
JP2012534149A JP5628329B2 (en) 2009-10-15 2009-10-15 Method and apparatus for strengthening multilayer shear bands
CN200980161895.4A CN102574347B (en) 2009-10-15 2009-10-15 For the method and apparatus that multilayer shear band is strengthened
KR1020127008931A KR101493303B1 (en) 2009-10-15 2009-10-15 Method and apparatus for multilayer shear band reinforcement
KR1020147027075A KR20140133886A (en) 2009-10-15 2009-10-15 An annular shear band for a tire
US13/497,618 US8960248B2 (en) 2009-10-15 2009-10-15 Method and apparatus for multilayer shear band reinforcement
RU2012119754/04A RU2497677C1 (en) 2009-10-15 2009-10-15 Method and device for multilayer shear strip reinforcement
EP09850468.1A EP2488355B1 (en) 2009-10-15 2009-10-15 Method for multilayer shear band reinforcement
ZA2012/02051A ZA201202051B (en) 2009-10-15 2012-03-20 Method and apparatus for multilayer shear band reinforcement
US14/596,306 US9493045B2 (en) 2009-10-15 2015-01-14 Method and apparatus for multilayer shear band reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2009/060746 WO2011046553A1 (en) 2009-10-15 2009-10-15 Method and apparatus for multilayer shear band reinforcement

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/497,618 A-371-Of-International US8960248B2 (en) 2009-10-15 2009-10-15 Method and apparatus for multilayer shear band reinforcement
US14/596,306 Division US9493045B2 (en) 2009-10-15 2015-01-14 Method and apparatus for multilayer shear band reinforcement

Publications (1)

Publication Number Publication Date
WO2011046553A1 true WO2011046553A1 (en) 2011-04-21

Family

ID=43876388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/060746 WO2011046553A1 (en) 2009-10-15 2009-10-15 Method and apparatus for multilayer shear band reinforcement

Country Status (11)

Country Link
US (2) US8960248B2 (en)
EP (2) EP2488355B1 (en)
JP (1) JP5628329B2 (en)
KR (2) KR101493303B1 (en)
CN (1) CN102574347B (en)
BR (1) BR112012008836B1 (en)
CA (1) CA2774927C (en)
MX (1) MX2012004176A (en)
RU (1) RU2497677C1 (en)
WO (1) WO2011046553A1 (en)
ZA (1) ZA201202051B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3246178A4 (en) * 2015-01-15 2018-02-28 Bridgestone Corporation Non-pneumatic tire
FR3056444A1 (en) * 2016-09-27 2018-03-30 Compagnie Generale Des Etablissements Michelin NON-PNEUMATIC ELASTIC WHEEL INCORPORATING LAMINATE BASED ON SILICONE RUBBER AND FIBER-RESIN COMPOSITE
US11167593B2 (en) 2015-12-22 2021-11-09 Compagnie Generale Des Establissements Michelin Reinforcement structure for non-pneumatic wheel
US11260695B2 (en) 2016-10-03 2022-03-01 Compagnie Generale Des Etablissements Michelin Reinforced rubber spoke for a tire
US11298920B2 (en) 2016-09-27 2022-04-12 Compagnie Generale Des Etablissements Michelin Silicone rubber and fiber-resin composite-based laminated product
US11571925B2 (en) 2016-12-30 2023-02-07 Compagnie Generale Des Etablissements Michelin Resilient composite structural support

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8813797B2 (en) * 2011-01-30 2014-08-26 Compagnie Generale Des Etablissements Michelin Controlled buckling of a shear band for a tire
KR101607095B1 (en) * 2011-12-22 2016-03-29 미쉐린 러쉐르슈 에 떼크니크 에스.에이. Shear band with interlaced reinforcements
US9266388B2 (en) * 2012-09-27 2016-02-23 Mtd Products Inc Non-pneumatic tire
US9242509B2 (en) * 2013-02-07 2016-01-26 Alice Chang Non pneumatic vehicle tires and pneumatic vehicle tires with tread patterns
KR101356326B1 (en) * 2013-02-28 2014-01-29 한국타이어 주식회사 Non-pneumatic tire having reinforcing material of plate wire structure
JP6159138B2 (en) * 2013-05-07 2017-07-05 住友ゴム工業株式会社 Airless tire
WO2014201368A1 (en) 2013-06-15 2014-12-18 Ronald Thompson Annular ring and non-pneumatic tire
BR112016006422A2 (en) 2013-09-24 2017-08-01 Bridgestone Americas Tire Operations Llc tire with toroidal element
JP6178700B2 (en) * 2013-11-11 2017-08-09 住友ゴム工業株式会社 Tread ring stiffness measuring apparatus and tread ring uniformity measuring method
KR20160088939A (en) 2013-12-24 2016-07-26 브리지스톤 어메리카스 타이어 오퍼레이션스, 엘엘씨 Airless tire construction having variable stiffness
US10406860B2 (en) 2014-12-03 2019-09-10 Bridgestone Americas Tire Operations, Llc Non-pneumatic tire
WO2016126983A1 (en) 2015-02-04 2016-08-11 Advancing Mobility, Llc. Non-pneumatic tire and other annular devices
USD770539S1 (en) * 2015-06-16 2016-11-01 Michelin Recherche Et Technique S.A. Tire
WO2017106723A1 (en) * 2015-12-16 2017-06-22 Thompson Ronald H Wheel comprising a non-pneumatic tire
WO2017106750A1 (en) 2015-12-16 2017-06-22 Thompson Ronald H Track system for traction of a vehicle
WO2017116386A1 (en) * 2015-12-28 2017-07-06 Compagnie Generale Des Etablissements Michelin Method of forming non-pneumatic tire using intermediate section
JP2018083458A (en) * 2016-11-21 2018-05-31 株式会社ブリヂストン Pneumatic tire and two wheel vehicle
US10639934B2 (en) 2016-11-22 2020-05-05 The Goodyear Tire & Rubber Company Shear band for a structurally supported tire
WO2018125195A1 (en) * 2016-12-30 2018-07-05 Compagnie Generale Des Etablissements Michelin Fixture for spoke to shear band attachment for a non-pneumatic tire with spoke pre-compression
WO2018227276A1 (en) 2017-06-15 2018-12-20 Camso Inc. Wheel comprising a non-pneumatic tire
WO2019050549A1 (en) * 2017-09-11 2019-03-14 Compagnie Generale Des Etablissements Michelin Non-pneumatic tire
JP2019107846A (en) * 2017-12-20 2019-07-04 Toyo Tire株式会社 Method for manufacturing tire constituting member
CN111511580B (en) * 2017-12-21 2022-09-16 米其林集团总公司 Reinforced resilient support for non-pneumatic tires
US11027578B2 (en) 2018-02-26 2021-06-08 The Goodyear Tire & Rubber Company Wheel and tire assembly
CN108446485B (en) * 2018-03-16 2021-05-11 河海大学 Strip drawing reinforcement evaluation method
JP7307176B2 (en) * 2019-01-04 2023-07-11 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Tire tread band with shim layer
WO2020142665A1 (en) * 2019-01-04 2020-07-09 Bridgestone Americas Tire Operations, Llc Tire tread with a band layer
US20210170795A1 (en) * 2019-12-10 2021-06-10 The Goodyear Tire & Rubber Company Shear band
CN115916550A (en) * 2020-04-30 2023-04-04 米其林集团总公司 Non-pneumatic tire
CN112373243B (en) * 2020-10-20 2021-08-06 南京航空航天大学 Non-inflatable wheel capable of protecting rim and improving vehicle driving comfort
CN115782458B (en) * 2022-10-27 2024-09-20 吉林大学 Rigid-flexible coupling bionic walking wheel capable of being self-adaptive to soft and hard ground environments

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973613A (en) * 1974-12-12 1976-08-10 Owens-Corning Fiberglas Corporation Tire reinforcement
EP0420033A1 (en) 1989-09-28 1991-04-03 Compagnie Generale Des Etablissements Michelin-Michelin & Cie Non pneumatic-tyre
US5565257A (en) * 1993-03-24 1996-10-15 Tingley; Daniel A. Method of manufacturing wood structural member with synthetic fiber reinforcement
EP0965463A2 (en) 1998-06-19 1999-12-22 The Goodyear Tire & Rubber Company Belt reinforcing structure for a pneumatic tire
US6422279B1 (en) * 1999-06-04 2002-07-23 Hankook Tire Mfg. Co., Ltd Pneumatic run flat tire
US6460586B1 (en) * 2000-03-29 2002-10-08 Bridgestone/Firestone North American Tire, Llc Multi-region band element for run flat tire
US6769465B2 (en) 1999-12-10 2004-08-03 Michelin Recherche Et Technique, S.A. Structurally supported resilient tire
US6994134B2 (en) 2001-10-05 2006-02-07 Michelin Recherche Et Technique S.A. Structurally supported resilient tire and materials
US7013939B2 (en) 2001-08-24 2006-03-21 Michelin Recherche Et Technique S.A. Compliant wheel
US7201194B2 (en) 2001-08-24 2007-04-10 Michelin Recherche Et Technique S.A. Non-pneumatic tire
US7363805B2 (en) * 2005-09-30 2008-04-29 Ford Motor Company System for virtual prediction of road loads
US7418988B2 (en) * 1999-12-10 2008-09-02 Michelin Recherche Et Technique S.A. Non-pneumatic tire
US20080250843A1 (en) * 2004-09-20 2008-10-16 Oliver Albohr Method For Calculating a Friction-Slippage Curve For a Tire
FR2916159A1 (en) 2007-05-14 2008-11-21 Michelin Soc Tech PNEUMATIC FOR HEAVY VEHICLES
WO2009005946A1 (en) 2007-06-29 2009-01-08 Societe De Technologie Michelin Elastic shear band with columnar elements

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1495083A (en) 1921-02-01 1924-05-20 L A Clark Cushion tire
US1440974A (en) 1922-01-27 1923-01-02 William H Dornburgh Tire
US2388421A (en) 1942-06-23 1945-11-06 Gen Tire & Rubber Co Pneumatic tire
GB1257017A (en) 1968-02-06 1971-12-15
US3779835A (en) 1971-06-03 1973-12-18 Akron Standard Division Of Eag Building drum
CA1046914A (en) 1974-03-14 1979-01-23 Claude H. Allard Tire cord fabrics for belts of belted pneumatic tires
US4024895A (en) 1976-03-24 1977-05-24 E. I. Du Pont De Nemours And Company Product reinforcing fabric and two-component weft yarn useful therein
CA1215242A (en) 1981-08-31 1986-12-16 Dhiraj H. Darjee Stitch-bonded fabrics for reinforcing coated abrasive backings
US4734144A (en) 1985-04-25 1988-03-29 Grumman Aerospace Corporation Banded-tire building method
US4794966A (en) 1987-04-21 1989-01-03 Grumman Aerospace Corporation Run-flat tire incorporating band segment and coil members
US4966212A (en) 1988-08-05 1990-10-30 Giles Hill Wheel and solid rubber tire assembly and method
AU625337B2 (en) 1989-05-31 1992-07-09 Sp Reifenwerke Gmbh Vehicle tyre
US5221382A (en) 1991-05-10 1993-06-22 The Goodyear Tire & Rubber Company Pneumatic tire including gas absorbing cords
US5265659A (en) 1992-03-18 1993-11-30 Uniroyal Goodrich Licensing Services, Inc. Non-pneumatic tire with ride-enhancing insert
US5313994A (en) * 1992-05-15 1994-05-24 Southeast Tire Company Solid rubber wheel and tire assembly with angled cross bars
US5333568A (en) 1992-11-17 1994-08-02 America3 Foundation Material for the fabrication of sails
AU717784B2 (en) * 1995-07-24 2000-03-30 Jalcos Holdings Inc. Filled pneumatic tires and methods of manufacturing thereof
US5837077A (en) 1995-08-18 1998-11-17 The Yokohama Rubber, Co., Ltd. Pneumatic vehicle tire having belt wound from flattened tubular tape
US6109319A (en) 1995-08-24 2000-08-29 Gardetto; William W. Run-flat support for pneumatic tired wheel
US5906836A (en) 1995-11-27 1999-05-25 American Mobility Limited Partnership Spin casting apparatus for manufacturing an item from polyurethane foam
US5879484A (en) 1997-01-13 1999-03-09 Bridgestone/Firestone, Inc. Run flat banded pneumatic tire
US6148885A (en) 1998-07-21 2000-11-21 Bridgestone/Firestone Research, Inc. Pneumatic tire with band element
US6701987B1 (en) 1999-04-12 2004-03-09 The Goodyear Tire & Rubber Company Tread stiffening support ribs for runflat tire
US7650919B2 (en) 1999-12-10 2010-01-26 Michelin Recherche of Technique S.A. Non-pneumatic tire having web spokes
US6470937B1 (en) 2000-10-03 2002-10-29 Bridgestone/Firestone North American Tire, Llc Run flat pneumatic tire and anticlastic band element therefor
US6439288B1 (en) 2000-11-28 2002-08-27 Bridgestone/Firestone North American Tire, Llc Pneumatic tire with variable thickness band element
RU2269425C2 (en) * 2001-08-24 2006-02-10 Сосьете Де Текнолоджи Мишлен Non-pneumatic tire
US6622764B2 (en) 2002-02-01 2003-09-23 The Goodyear Tire & Rubber Company Underlay structure for increased crown stiffening
US7174934B2 (en) * 2003-08-07 2007-02-13 Giles A. Hill, III Solid rubber tire including relatively hard rubber layer and relatively soft rubber layer
US7125083B2 (en) 2004-06-04 2006-10-24 Nhs, Inc. Wheel with dual density
CA2652389C (en) * 2006-10-13 2012-03-20 Michelin Recherche Et Technique S.A. Improved shear band
JP3923073B1 (en) 2006-10-27 2007-05-30 横浜ゴム株式会社 Non-pneumatic tire
WO2008102048A1 (en) 2007-02-21 2008-08-28 Nokian Renkaat Oyj Improved belt structure in automobile tires
US8109308B2 (en) * 2007-03-27 2012-02-07 Resilient Technologies LLC. Tension-based non-pneumatic tire
US20090071584A1 (en) 2007-09-19 2009-03-19 Ping Zhang Tire having tread with an internal closed cellular rubber transition layer
US8544515B2 (en) * 2008-11-10 2013-10-01 Mkp Structural Design Associates, Inc. Ultralightweight runflat tires based upon negative poisson ratio (NPR) auxetic structures
US20110223366A1 (en) 2010-03-12 2011-09-15 Petri Patrick A Reinforced continuous loop matrix member; continuous loop reinforcement assembly; flexible cylindrical reinforcement band; and axially reinforced cylindrical coil

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973613A (en) * 1974-12-12 1976-08-10 Owens-Corning Fiberglas Corporation Tire reinforcement
EP0420033A1 (en) 1989-09-28 1991-04-03 Compagnie Generale Des Etablissements Michelin-Michelin & Cie Non pneumatic-tyre
US5565257A (en) * 1993-03-24 1996-10-15 Tingley; Daniel A. Method of manufacturing wood structural member with synthetic fiber reinforcement
EP0965463A2 (en) 1998-06-19 1999-12-22 The Goodyear Tire & Rubber Company Belt reinforcing structure for a pneumatic tire
US6422279B1 (en) * 1999-06-04 2002-07-23 Hankook Tire Mfg. Co., Ltd Pneumatic run flat tire
US6769465B2 (en) 1999-12-10 2004-08-03 Michelin Recherche Et Technique, S.A. Structurally supported resilient tire
US7418988B2 (en) * 1999-12-10 2008-09-02 Michelin Recherche Et Technique S.A. Non-pneumatic tire
US6460586B1 (en) * 2000-03-29 2002-10-08 Bridgestone/Firestone North American Tire, Llc Multi-region band element for run flat tire
US7013939B2 (en) 2001-08-24 2006-03-21 Michelin Recherche Et Technique S.A. Compliant wheel
US7201194B2 (en) 2001-08-24 2007-04-10 Michelin Recherche Et Technique S.A. Non-pneumatic tire
US6994134B2 (en) 2001-10-05 2006-02-07 Michelin Recherche Et Technique S.A. Structurally supported resilient tire and materials
US20080250843A1 (en) * 2004-09-20 2008-10-16 Oliver Albohr Method For Calculating a Friction-Slippage Curve For a Tire
US7363805B2 (en) * 2005-09-30 2008-04-29 Ford Motor Company System for virtual prediction of road loads
FR2916159A1 (en) 2007-05-14 2008-11-21 Michelin Soc Tech PNEUMATIC FOR HEAVY VEHICLES
WO2009005946A1 (en) 2007-06-29 2009-01-08 Societe De Technologie Michelin Elastic shear band with columnar elements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2488355A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3246178A4 (en) * 2015-01-15 2018-02-28 Bridgestone Corporation Non-pneumatic tire
US10449805B2 (en) 2015-01-15 2019-10-22 Bridgestone Corporation Non-pneumatic tire
US11167593B2 (en) 2015-12-22 2021-11-09 Compagnie Generale Des Establissements Michelin Reinforcement structure for non-pneumatic wheel
FR3056444A1 (en) * 2016-09-27 2018-03-30 Compagnie Generale Des Etablissements Michelin NON-PNEUMATIC ELASTIC WHEEL INCORPORATING LAMINATE BASED ON SILICONE RUBBER AND FIBER-RESIN COMPOSITE
WO2018060578A1 (en) 2016-09-27 2018-04-05 Compagnie Generale Des Etablissements Michelin Non-pneumatic resilient wheel
CN109789732A (en) * 2016-09-27 2019-05-21 米其林集团总公司 On-inflatable elastic wheel
CN109789732B (en) * 2016-09-27 2021-02-05 米其林集团总公司 Non-inflatable elastic wheel
US11267287B2 (en) 2016-09-27 2022-03-08 Compagnie Generale Des Etablissements Michelin Non-pneumatic resilient wheel
US11298920B2 (en) 2016-09-27 2022-04-12 Compagnie Generale Des Etablissements Michelin Silicone rubber and fiber-resin composite-based laminated product
US11260695B2 (en) 2016-10-03 2022-03-01 Compagnie Generale Des Etablissements Michelin Reinforced rubber spoke for a tire
US11571925B2 (en) 2016-12-30 2023-02-07 Compagnie Generale Des Etablissements Michelin Resilient composite structural support

Also Published As

Publication number Publication date
EP2910388B1 (en) 2018-09-19
KR20120049400A (en) 2012-05-16
KR20140133886A (en) 2014-11-20
EP2488355A4 (en) 2013-06-26
EP2488355A1 (en) 2012-08-22
CA2774927C (en) 2015-03-24
BR112012008836A8 (en) 2017-12-05
US20150122385A1 (en) 2015-05-07
CN102574347A (en) 2012-07-11
US8960248B2 (en) 2015-02-24
EP2488355B1 (en) 2015-12-16
US20120216932A1 (en) 2012-08-30
BR112012008836B1 (en) 2019-01-22
JP2013507296A (en) 2013-03-04
EP2910388A1 (en) 2015-08-26
BR112012008836A2 (en) 2016-08-09
CA2774927A1 (en) 2011-04-21
CN102574347B (en) 2016-01-20
KR101493303B1 (en) 2015-02-13
RU2497677C1 (en) 2013-11-10
MX2012004176A (en) 2012-06-28
US9493045B2 (en) 2016-11-15
JP5628329B2 (en) 2014-11-19
ZA201202051B (en) 2013-01-30

Similar Documents

Publication Publication Date Title
US9493045B2 (en) Method and apparatus for multilayer shear band reinforcement
US11400672B2 (en) Annular ring and non-pneumatic tire
JP2013507296A5 (en)
EP2021192B1 (en) Improved shear band
CA2525982C (en) Non-pneumatic tire
EP2386430B1 (en) Tire comprising springs and method of manufacturing a tire
JP4855646B2 (en) Non-pneumatic tire
CN106985601A (en) Non-inflatable tyre
US11858301B2 (en) Non-pneumatic tire
WO2019125466A1 (en) Reinforced resilient support for a non-pneumatic tire
WO2019125468A1 (en) Reinforced resilient support for a non-pneumatic tire
JP5833185B2 (en) Method and apparatus for strengthening multilayer shear bands
RU2269425C2 (en) Non-pneumatic tire

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161895.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850468

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2774927

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13497618

Country of ref document: US

Ref document number: 2009850468

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127008931

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/004176

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2012534149

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4058/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012119754

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012008836

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012008836

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120413