WO2011046339A2 - Unitary repeater for cancelling feedback interference signals and cascade relay system using same - Google Patents

Unitary repeater for cancelling feedback interference signals and cascade relay system using same Download PDF

Info

Publication number
WO2011046339A2
WO2011046339A2 PCT/KR2010/006957 KR2010006957W WO2011046339A2 WO 2011046339 A2 WO2011046339 A2 WO 2011046339A2 KR 2010006957 W KR2010006957 W KR 2010006957W WO 2011046339 A2 WO2011046339 A2 WO 2011046339A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
repeater
feedback
antenna
interference signal
Prior art date
Application number
PCT/KR2010/006957
Other languages
French (fr)
Korean (ko)
Other versions
WO2011046339A9 (en
WO2011046339A3 (en
Inventor
허재용
Original Assignee
주식회사 이알에이와이어리스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이알에이와이어리스 filed Critical 주식회사 이알에이와이어리스
Publication of WO2011046339A2 publication Critical patent/WO2011046339A2/en
Publication of WO2011046339A9 publication Critical patent/WO2011046339A9/en
Publication of WO2011046339A3 publication Critical patent/WO2011046339A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15564Relay station antennae loop interference reduction
    • H04B7/15585Relay station antennae loop interference reduction by interference cancellation

Definitions

  • the present invention relates to an integrated repeater for removing a feedback interference signal and a multi-stage relay system using the same. More particularly, the present invention provides an isolation between antennas by using different polarization characteristics of a donor antenna and a service antenna, and provides a feedback interference signal.
  • the present invention relates to a multi-stage relay system using an integrated repeater for eliminating feedback interference signals capable of providing optimal communication quality in a radio wave shading area by configuring an integrated repeater to remove and a plurality of the integrated repeaters in multiple stages.
  • the wireless repeater is installed in a radio shade area where it is difficult to install a base station to relay a signal between the base station and the mobile terminal, so that the mobile terminal can make a call even in the radio shadow area.
  • Wireless repeaters are used to eliminate radio shadow areas in buildings, basements, tunnels, etc. in service areas. In order to solve the relatively small propagation shadow area, it is better to install the repeater than the base station in terms of cost and performance.
  • 1 is a block diagram schematically illustrating a general repeater circuit.
  • the general repeater is received from two receiving duplexers (10, 20) having a transmitting end (Tx) and a receiving end (Rx) provided on both sides of the antenna (ANT), the receiving end (Rx) of one of the duplexers (10) After converting the RF signal from the low noise amplifier 11 and the low noise amplifier 11 which amplify the received signal while suppressing the noise in the signal to the intermediate frequency IF to improve the skirt characteristic, up-convert the original RF signal.
  • the down-and-up converter unit DUC1 includes a first RF SAW filter 14, an oscillation signal from the local oscillator LO, and a filter (1), which primarily improve the skirt characteristic of the RF signal input from the low noise amplifier 11.
  • a first mixer 15 for downmixing the signal passing through 14 to generate an intermediate frequency
  • a line amplifier 16 for amplifying the signal from the first mixer 15 and an intermediate from the line amplifier 16
  • Line amplifier 16a for amplifying the intermediate frequency signal from the down converter unit 18 and the second RF SAW filter 14a, which are composed of the second RF SAW filter 14a for improving the skirt characteristic of the frequency signal, and the amplified frequency.
  • a third RF SAW filter 17 for improving the skirt frequency characteristic of the signal, an oscillation signal from the local oscillator (LO) and the signal from the third RF SAW filter 17 are upmixed to generate an RF signal of an original size. Skirt of the RF mixer upmixed by the second mixer 15a and the second mixer 15a An up-converter section 19, which is composed of a fourth RF SAW filter 17a for improving the characteristics again, is provided.
  • the specific RF signal input to the receiving end Rx of one duplexer 10 passes through the low noise amplifier 11 and the down-and-up converter DUC1, and the skirt characteristic is improved, and the driving amplifier 12 And it is restored to the original RF signal size via the high power amplifier 13, input to the transmitting terminal (Tx) of the other duplexer 20 and radiated to the outside through the antenna (ANT).
  • the RF signal received from the receiving end (Rx) of the duplexer 20 is a low noise amplifier 21 for amplifying the received signal while suppressing noise in the signal and the RF signal from the low noise amplifier 21 to the intermediate frequency (IF)
  • a second down-and-converter (DUC2) which down-converts to improve the skirt characteristic and then up-converts to restore the original RF signal; driving to amplify the RF signal from this down-and-up converter It is input to the transmitting terminal Tx of the duplexer 10 via an amplifier 22 and a high power amplifier 23 and then radiated to the outside through the antenna ANT.
  • the second down-and-up converter unit DUC2 like the converter DUC1 described above, has a first RF SAW filter 24 and a local oscillator that primarily improve the skirt characteristic of the frequency signal from the low noise amplifier 21.
  • a first mixer 25 for downmixing the oscillation signal from LO and the signal passing through the filter 24 to generate an intermediate frequency
  • a line amplifier 26 for amplifying the signal from the first mixer 25.
  • amplifying the intermediate frequency signal from the down converter section 28 comprising the second RF SAW filter 24a and the second RF SAW filter 24a for improving the skirt characteristic of the intermediate frequency signal from the line amplifier 26.
  • a second mixer 25a for mixing and generating an RF signal of an original size; 2 consists of a mixer (25a) up-converter portion 29 consisting of the 4 RF SAW filter (27a) to improve the skirt characteristics in the up mixer from the RF signal.
  • the noise drawn in the reverse direction has also increased, and there is a problem that oscillation occurs according to the installation place or environment of the wireless repeaters.
  • the radio repeater if the RF stage of the receiver and the RF stage of the transmitter are above a certain level, the signal of the service antenna is fed back into the donor antenna, and thus the repeater quality of the radio repeater is drastically degraded. In other words, it is necessary to secure the isolation between the donor antenna and the service antenna.
  • the present invention has been made to solve the above problems, an integrated repeater and a plurality of the feedback interference signal to remove the feedback interference signal to ensure the isolation between the antenna using different polarization characteristics of the donor antenna and the service antenna It is an object of the present invention to provide a multi-stage relay system using an integrated repeater for eliminating feedback interference signals that can provide an optimum communication quality in a radio-shaded area by configuring an integrated repeater for removing the multi-stage.
  • the integrated repeater for removing the feedback interference signal of the present invention for realizing the above object is a down converter unit for converting a high frequency signal received from a base station through a donor antenna into an intermediate frequency signal, and converts an intermediate frequency signal into a high frequency signal.
  • the donor antenna has four corresponding first, second, third and fourth radiating elements, one end of which is connected to the left and right sides of each of the first, second, third and fourth radiating elements, and the other end of the donor antenna
  • a donor antenna comprising a microstrip type feed line connected to the duplexer and attached to one inner surface of the housing around the main body of the repeater to generate horizontal polarization, and the service antennas correspond to four corresponding fifth, sixth, and seventh antennas.
  • the eighth radiating element one end of which is connected to the top and bottom surfaces of the fifth, sixth, seventh, and eighth radiating elements, and the other end includes a feed line of a microstrip type connected to a mobile station duplexer.
  • a service antenna which is attached to the other inner surface of the housing and generates vertical polarization, and connects to the extension antenna through an RF switch located between the donor antenna and the service antenna and each duplexer.
  • Input level and isolation to adjust the antenna's directing direction according to the propagation direction of the high frequency signal when it is connected to the digital signal processing unit having an external expansion donor antenna port and service antenna port and a means for canceling the feedback interference signal.
  • the digital signal processor having a means for removing the feedback interference signal
  • the initial tap coefficient is set using the delay time and amplitude of the feedback signal obtained by using the correlation between the output signal of the A / D converter and the input signal of the D / A converter, and the convergence state of the initial tap coefficient is determined.
  • Feedback signal delay time and isolation detection unit for detecting a signal and delay time of each feedback signal detected by the feedback signal delay time and isolation detection unit are generated and output to the adaptive filter sub-block calculation unit
  • An adaptive filter for setting the initial tap coefficient of the output signal delay unit for allocating the sub-block of the adaptive filter only for the delay time, the feedback signal delay time, and the isolation detector as the tap coefficient of the sub-block, and then updating the adaptive filter coefficient.
  • An adaptive filter subblock calculator for generating a feedback signal for each allocated subblock, a feedback signal generator for generating a final feedback signal by adding the feedback signals generated for each subblock in the adaptive filter subblock calculator, and the And an original signal detector configured to subtract the final feedback signal generated by the feedback signal generator and the output signal of the A / D converter to detect the original signal.
  • the integral repeater for removing the second feedback interference signal installed to intersect, the integral repeater for removing the first feedback interference signal, and the integral repeater for removing the second feedback interference signal are repeatedly installed so that horizontal or vertical crosses. Secure isolation between donor antenna and service antenna It is characterized by.
  • the integrated repeater for eliminating the feedback interference signal and the multi-stage relay system using the same it is possible to secure isolation by using different polarizations between the donor antenna and the service antenna, and improve the relay quality by removing the feedback signal. Even when constructing a multi-stage relay system that connects the integrated repeaters to remove the interference signal, it is possible to secure optimal propagation characteristics when installing the radio repeater by installing them in the vertical direction or the horizontal direction according to the characteristics of the antenna radiating different polarizations. There is an advantage.
  • 1 is a block diagram schematically showing a general repeater circuit
  • FIG. 2 is a block diagram of an integrated repeater for removing the feedback interference signal according to the present invention
  • FIG. 4 is a diagram illustrating a service antenna according to the present invention.
  • FIG. 5 is a block diagram of a digital signal processing unit of an integrated repeater for removing a feedback interference signal using digital signal processing for allocating or canceling an adaptive filter subblock according to the present invention.
  • FIG. 6 is an external view of an integrated repeater for removing a feedback interference signal having a first bracket and a second bracket according to the present invention
  • FIG. 7 is a block diagram of a multi-stage relay system using an integrated repeater for removing the feedback interference signal according to the present invention
  • FIG. 8 is a schematic diagram of a multi-stage relay system using an integrated repeater for removing a feedback interference signal using an external extension antenna port according to the present invention
  • FIG. 9 is a schematic diagram of input level and isolation indicators in accordance with the present invention.
  • FIG. 2 is a block diagram of an integrated repeater for removing the feedback interference signal according to the present invention.
  • the integrated repeater for removing the feedback interference signal of the present invention is composed of four radiating elements in the form of microstrip, and a donor antenna 100 generating horizontal polarization, and four radiating elements in the form of microstrip to generate vertical polarization.
  • the base station RF switch 190 located between the donor antenna and the base station duplexer, and the mobile station RF switch 290 located between the service antenna and the mobile station duplexer.
  • the expansion donor antenna port 180 and the service antenna port 280, and the input level and isolation indicator 900 for adjusting the directing direction of the antenna in accordance with the propagation direction of the high frequency signal.
  • FIG. 3 is a diagram illustrating a donor antenna according to the present invention.
  • the donor antenna 100 of the present invention includes four circular first, second, third, and fourth radiating elements 110, 120, 130, and 140, and the first, second, third, and third agents.
  • Feed lines (111, 112, 121, 122, 131, 132, 141, 142) for feeding the four radiating elements (110, 120, 130, 140) and the first feed unit 150 is connected to the duplexer of the base station. Since the shapes of the second, third, and fourth radiating elements 120, 130, and 140 correspond to the shapes of the first radiating element 110, only the first radiating element will be described in detail here.
  • the first radiating element 110 has a first feed line 111 is connected to the left side of the first radiating element 110, the second feed line 112 is connected to the right side. Therefore, the propagation characteristics radiated by the first, second, third, and fourth radiating elements have a horizontal polarization characteristic.
  • the first divider 160 branches to the first and second radiating elements 110 and 120 and the third and fourth radiating elements 130 and 140.
  • the first radiating element 110 and the second radiating element 120 branch from the second divider 161, and finally, the first feed line 111 and the second feed line 112 are separated from the third divider 162. Branched to the power supply to the first radiating element (110).
  • the lengths of the first feed line 111 and the second feed line 112 that are connected to the first radiating element 110 from the third distributor 162 are different (that is, the length of the second feed line is ⁇ / 4),
  • the length of the feeder wire is 3 ⁇ / 4) to achieve a 180 degree phase shift to fabricate a dual polarized antenna. Therefore, by improving the mutual separation of the dual polarization antenna, and having an array structure consisting of four radiating elements can improve the directivity and antenna efficiency.
  • FIG. 4 is a configuration diagram of a service antenna according to the present invention.
  • the service antenna 200 has four circular fifth, sixth, seventh, and eighth radiating elements 210, 220, 230, and 240, and the fifth, sixth, seventh, and fifth agents.
  • a fourth feed line 212 is connected to an upper surface of the fifth radiating element 210, and a third feed line 211 is connected to a lower surface of the fifth radiating element 210. Therefore, the propagation characteristics radiated by the fifth, sixth, seventh, and eighth radiating elements have vertical polarization characteristics.
  • first branching from the fourth distributor 260 to the fifth and sixth radiating elements 210 and 220 and the seventh and eighth radiating elements 230 and 240 is performed.
  • the first radiating element 110 and the second radiating element 120 are branched at the fifth distributor 261, and finally, the third feeder 211 and the fourth feeder line 212 are disposed at the sixth distributor 262. Branched to and is fed to the fifth radiating element (210).
  • the lengths of the third feed line 211 and the fourth feed line 212 connected to the fifth radiating element 210 from the sixth distributor 262 are different (that is, the length of the fourth feed line is ⁇ / 4),
  • the length of the feeder wire is 3 ⁇ / 4) to achieve a 180 degree phase shift to fabricate a dual polarized antenna. Therefore, by improving the mutual separation of the dual polarization antenna, and having an array structure consisting of four radiating elements can improve the directivity and antenna efficiency.
  • the donor antenna 100 and the service antenna 200 are attached to one inner surface and the other surface of the housing centering on an integrated repeater body substrate for removing the feedback interference signal.
  • FIG. 5 is a block diagram of a digital signal processing unit of an integrated repeater for removing a feedback interference signal using digital signal processing for allocating or canceling an adaptive filter subblock according to the present invention.
  • the A / D converter functions to sample the analog signal input to the donor antenna at a specific sampling frequency and output a digital signal.
  • the feedback signal delay time and isolation detector 510 feeds back through the correlation between the output signal X in (t) of the A / D converter and the output signal X out (t) of the original signal detector 560. Detect the delay and amplitude of the signal.
  • Equation 1 shows the correlation between X in (t) and X out (t).
  • n is the number of multipaths
  • a i is the amplitude of the received impulse of the i th path
  • T i is the delay time of the i th arriving impulse.
  • Equation (1) the delay time (T i) determined in the amplitude (a i) the use of the feedback signal delay time, and isolated the initial tap coefficient and the delay of the initial adaptive filter (but not shown) included in the detector 510 Set the time. Thereafter, the initial adaptive filter performs an operation so that the correlation of Equation 1 is minimized so that the filter tap coefficient value converges to a specific value.
  • the feedback signal delay time and isolation detector 510 detects an isolation of the system from the converged filter coefficient values, and compares and determines the detected isolation with a reference value.
  • the delay time distribution of several feedback signals coming into the receiving antenna through the multipath is measured (scanned) by sequentially changing the initial delay time of the output time delay unit 550 to the maximum delay time allowed by the system. .
  • the isolation is not good, it is determined whether to allocate a sub block of the adaptive filter unit 540 by operating each output time delay unit 550 according to the measured delay time distribution of each feedback signal.
  • the output signal delay unit 550 receives various inputs to the reception antenna through the multi-path output from the feedback signal delay time and the isolation detector 510 to the output signal X out (t) of the original signal detector 560.
  • Each reference signal X (n) having a respective delay time of the signal is generated and output to each subblock of the adaptive filter subblock calculator 520.
  • the adaptive filter unit 540 includes an adaptive filter subblock updater 530 and an adaptive filter subblock calculator 520, and the allocated adaptive filter subblocks include a feedback signal delay time and an isolation detector. Information about the initial filter tap coefficient detected at 510 is received.
  • the adaptive filter unit 540 is instructed by the feedback signal delay time and isolation detector 510 to transmit the output value of each sub-block allocated by the adaptive filter unit to the feedback signal generator 570.
  • the adaptive filter subblock updater 530 has a structure for controlling the convergence speed according to the environment change rate of the feedback signal and the size of the service signal, and updates the coefficient of the adaptive filter. That is, a result obtained by subtracting a signal obtained by multiplying the filter tap coefficient by the output signal X out (t) of the original signal detector 560 from the output signal delay unit 550 to the reference signal X (n). It consists of an algorithm for updating the filter coefficient value by using.
  • the algorithm applied to the adaptive filter subblock updater 530 for updating the coefficients of the adaptive filter may use various types of algorithms such as a Least Mean Square (LMS) algorithm and a Minimun Mean Square Error (MNSE) algorithm. .
  • LMS Least Mean Square
  • MNSE Minimun Mean Square Error
  • the adaptive filter subblock calculator 520 is a filter generated by the adaptive signal subblock updater 530 and the reference signal X (n) output from the output signal delay unit 520 for each subblock.
  • a feedback signal is generated for each subblock by an internal algorithm multiplying the coefficient W.
  • the feedback signal generator 570 generates the entire feedback signal by adding the feedback signals generated for each subblock by the adaptive filter subblock calculator 520.
  • the original signal detector 560 detects the original signal by subtracting the entire feedback signal generated by the feedback signal generator 570 and the output signal in which the feedback signal is interfered with the original signal of the A / D converter.
  • the original signal output from the original signal detector 560 generates noise components in an unwanted frequency band due to an instantaneous error component or a minute error of a service band. Accordingly, the noise component may be removed by adding a digital channel filter (not shown) after the original signal detector 560.
  • the sub block is defined as one block having 8 or less taps of the adaptive filter, and the feedback signal is removed by sub-block units to remove the feedback signal.
  • one tap of the adaptive filter consists of eight taps based on an acceptable propagation delay of 20 nano-seconds, so that the ability to accommodate movement of the moving object is 160 nanoseconds in time.
  • the feedback signal can be removed within a range of about 50 meters.
  • the present invention does not limit the number of taps of the adaptive filter, but the number of taps constituting the subblock of the adaptive filter is preferably 8.
  • the tap coefficient corresponding to the part where no feedback signal is weak or weak is very small. It does not affect system performance.
  • the present invention allocates the sub-blocks of the adaptive filter only to the delay time of the feedback signal to form a more efficient structure in the overall system configuration and eliminates unnecessary noise that may be generated by using continuous filter taps.
  • FIG. 6 is an external view of an integrated repeater for removing a feedback interference signal having a first bracket and a second bracket according to the present invention.
  • the first bracket 610 is connected to the repeater so as to fix the repeater horizontally to a structure (not shown) to which the repeater is to be installed.
  • the second bracket 620 is connected to the repeater to fix the repeater in the vertical direction. This is to construct a multi-stage relay system using the following integrated repeater.
  • FIG. 7 is a block diagram of a multi-stage relay system using an integrated repeater for removing the feedback interference signal according to the present invention.
  • the first bracket is installed in a horizontal direction in a structure to install an integrated repeater (a) that removes the first feedback interference signal received from the first base station.
  • the service antenna of the integrated repeater (a) which removes the first feedback interference signal basically generates vertical polarization, but is installed in the horizontal direction by using the first bracket and thus the integrated repeater (a) which removes the first feedback interference signal (a). ) Service antenna transmits a horizontal polarization.
  • the structure is to be installed in a vertical direction by using a second bracket to the structure to install the integrated repeater (b) to remove the second feedback interference signal.
  • the donor antenna of the integrated repeater b that eliminates the second feedback interference signal receives horizontal polarization and the service antenna transmits vertical polarization.
  • an integral repeater (c) for removing the third feedback interference signal is installed in the horizontal direction by using the first bracket so as to intersect 90 degrees with the integral repeater (b) for removing the second feedback interference signal at the front end.
  • the donor antenna and the service antenna of the integrated repeater for removing the feedback interference signal generate different polarizations, so when the multi-stage relay system for connecting the integrated repeater for removing the feedback interference signal in multiple stages is isolated between the donor antenna and the service antenna.
  • the integrated relay repeater to remove the first feedback interference signal and the integrated repeater to remove the second feedback interference signal may be repeatedly installed so that the horizontal or vertical cross to implement the optimum propagation environment.
  • FIG. 8 is a schematic diagram of a multi-stage relay system using an integrated repeater that removes a feedback interference signal using an external extension antenna port according to the present invention.
  • the donor antenna port or service antenna port for external extension is used when the line of sight is not secured. It is possible to secure the radio wave visibility.
  • the integrated signal to remove the second feedback interference signal to the service antenna port
  • the service area of the integrated repeater for removing the feedback interference signal can be widened.
  • FIG. 9 is a schematic diagram of input level and isolation indicators in accordance with the present invention.
  • the use of different polarizations between the donor antenna and the service antenna ensures isolation, improves the relay quality by removing the feedback signal, and in constructing a multi-stage relay system that interconnects the repeaters that eliminate the feedback interference signal.

Abstract

The present invention relates to a unitary repeater for cancelling feedback interference signals and to a cascade relay system using the same. More particularly, the present invention relates to a cascade relay system using a unitary repeater for cancelling feedback interference signals, wherein the system ensures isolation between antennas using mutually different polarizing characteristics of a donor antenna and a service antenna, and has unitary repeaters for cancelling feedback interference signals, arranged into a cascade structure to provide a radio wave shadow area with optimum communication quality.

Description

궤환간섭신호를 제거하는 일체형 중계기 및 그것을 이용한 다단 중계시스템Integrated repeater for eliminating feedback interference signal and multi-stage relay system using it
본 발명은 궤환간섭신호를 제거하는 일체형 중계기 및 그것을 이용한 다단 중계시스템에 관한 것으로서, 더욱 상세하게는 도너안테나와 서비스안테나의 서로 다른 편파특성을 이용하여 안테나 상호간의 격리도를 확보하고, 궤환간섭신호를 제거하는 일체형 중계기 및 다수개의 상기 일체형 중계기를 다단으로 구성하여 전파음영지역에 최적의 통신품질을 제공할 수 있는 궤환간섭신호를 제거하는 일체형 중계기를 이용한 다단 중계시스템에 관한 것이다. The present invention relates to an integrated repeater for removing a feedback interference signal and a multi-stage relay system using the same. More particularly, the present invention provides an isolation between antennas by using different polarization characteristics of a donor antenna and a service antenna, and provides a feedback interference signal. The present invention relates to a multi-stage relay system using an integrated repeater for eliminating feedback interference signals capable of providing optimal communication quality in a radio wave shading area by configuring an integrated repeater to remove and a plurality of the integrated repeaters in multiple stages.
무선중계기는 기지국을 설치하기 어려운 전파 음영 지역에 설치되어 기지국과 이동 단말기 사이의 신호를 중계해서, 전파 음영지역에서도 이동 단말기의 통화를 가능하게 한다. 무선중계기는 운용시 서비스영역내의 건물, 지하, 터널등에서 전파음영지역을 해소 시키기 위해서 사용되고 있다. 상대적으로 작은 전파 음영지역을 해결하기 위해서는 기지국보다 중계기를 설치하는 것이 비용 및 성능 측면에서 우수하다. The wireless repeater is installed in a radio shade area where it is difficult to install a base station to relay a signal between the base station and the mobile terminal, so that the mobile terminal can make a call even in the radio shadow area. Wireless repeaters are used to eliminate radio shadow areas in buildings, basements, tunnels, etc. in service areas. In order to solve the relatively small propagation shadow area, it is better to install the repeater than the base station in terms of cost and performance.
도 1은 일반적인 중계기 회로를 개략적으로 나타낸 블록도이다. 1 is a block diagram schematically illustrating a general repeater circuit.
일반적인 중계기는 안테나(ANT)를 중심으로 양쪽에 구비되는 송신단(Tx)과 수신단(Rx)이 구비되는 2개의 듀플렉서(10,20), 이 듀플렉서 중 하나(10)의 수신단(Rx)으로부터 수신된 신호 중의 잡음을 억제하면서 수신 신호를 증폭하는 저잡음 증폭기(11), 저잡음 증폭기(11)로부터의 RF 신호를 중간 주파수(IF)로 다운 컨버트하여 스커트 특성을 개선한 후, 업 컨버트하여 본래의 RF신호로 복구하는 다운 앤드 업 컨버터부 (DUC1:down and up converter), 이 다운 앤드 업 컨버터부로부터의 RF신호를 증폭하는 구동 증폭기(12:drive amp) 및 고전력 증폭기(13:high power amp)를 구비하여 구성된다. The general repeater is received from two receiving duplexers (10, 20) having a transmitting end (Tx) and a receiving end (Rx) provided on both sides of the antenna (ANT), the receiving end (Rx) of one of the duplexers (10) After converting the RF signal from the low noise amplifier 11 and the low noise amplifier 11 which amplify the received signal while suppressing the noise in the signal to the intermediate frequency IF to improve the skirt characteristic, up-convert the original RF signal. Down and up converter (DUC1), a drive amplifier (12) for amplifying the RF signal from the down and up converter unit, and a high power amplifier (13) It is configured by.
여기서, 다운 앤드 업 컨버터부(DUC1)는 저잡음 증폭기(11)로부터 입력된 RF신호의 스커트 특성을 일차적으로 개선하는 제1 RF SAW필터(14), 국부 발진기(LO)로부터의 발진 신호와 필터(14)를 통과한 신호를 다운 믹싱하여 중간 주파수를 생성하는 제1믹서(15), 이 제1믹서(15)로부터의 신호를 증폭하는 라인 증폭기(16)와 이 라인 증폭기(16)로부터의 중간주파수 신호의 스커트 특성을 개선하는 제2 RF SAW필터(14a)로 이루어지는 다운컨버터부(18) 및 제2 RF SAW필터(14a)로부터의 중간주파수 신호를 증폭하는 라인 증폭기(16a), 증폭된 주파수 신호의 스커트주파수 특성을 개선하는 제3 RF SAW필터(17), 국부 발진기(LO)로부터의 발진 신호와 제3 RF SAW필터(17)로부터의 신호를 업 믹싱하여 본래 크기의 RF신호를 생성하는 제2믹서(15a)와 이 제2믹서(15a)에서 업 믹싱된 RF신호의 스커트 특성을 다시 개선하는 제4 RF SAW필터(17a)로 이루어지는 업 컨버터부(19)를 구비하여 구성된다.Here, the down-and-up converter unit DUC1 includes a first RF SAW filter 14, an oscillation signal from the local oscillator LO, and a filter (1), which primarily improve the skirt characteristic of the RF signal input from the low noise amplifier 11. A first mixer 15 for downmixing the signal passing through 14 to generate an intermediate frequency, a line amplifier 16 for amplifying the signal from the first mixer 15 and an intermediate from the line amplifier 16; Line amplifier 16a for amplifying the intermediate frequency signal from the down converter unit 18 and the second RF SAW filter 14a, which are composed of the second RF SAW filter 14a for improving the skirt characteristic of the frequency signal, and the amplified frequency. A third RF SAW filter 17 for improving the skirt frequency characteristic of the signal, an oscillation signal from the local oscillator (LO) and the signal from the third RF SAW filter 17 are upmixed to generate an RF signal of an original size. Skirt of the RF mixer upmixed by the second mixer 15a and the second mixer 15a An up-converter section 19, which is composed of a fourth RF SAW filter 17a for improving the characteristics again, is provided.
이와 같은 구성에 의해, 한쪽 듀플렉서(10)의 수신단(Rx)에 입력된 특정 RF신호는 저잡음증폭기(11)와 다운 앤드 업 컨버터(DUC1)를 경유하며 스커트특성이 향상되고, 구동증폭기(12) 및 고전력증폭기(13)를 경유하여 본래의 RF신호 크기로 복원되고, 다른쪽 듀플렉서(20)의 송신단(Tx)에 입력된 후 안테나(ANT)를 통해 외부로 방사된다.By such a configuration, the specific RF signal input to the receiving end Rx of one duplexer 10 passes through the low noise amplifier 11 and the down-and-up converter DUC1, and the skirt characteristic is improved, and the driving amplifier 12 And it is restored to the original RF signal size via the high power amplifier 13, input to the transmitting terminal (Tx) of the other duplexer 20 and radiated to the outside through the antenna (ANT).
한편, 듀플렉서(20)의 수신단(Rx)으로부터 수신된 RF 신호는 신호 중의 잡음을 억제하면서 수신 신호를 증폭하는 저잡음 증폭기(21)와 이 저잡음 증폭기(21)로부터의 RF 신호를 중간 주파수(IF)로 다운 컨버트하여 스커트 특성을 개선한 후, 업 컨버트하여 본래의 RF신호로 복구하는 제2 다운 앤드 업 컨버터부(DUC2:down and up converter), 이 다운 앤드 업 컨버터로부터의 RF신호를 증폭하는 구동 증폭기(22:drive amp) 및 고전력 증폭기(23:high power amp)를 경유하여 상기 듀플렉서(10)의 송신단(Tx)에 입력된 후 안테나(ANT)를 통해 외부로 방사된다. On the other hand, the RF signal received from the receiving end (Rx) of the duplexer 20 is a low noise amplifier 21 for amplifying the received signal while suppressing noise in the signal and the RF signal from the low noise amplifier 21 to the intermediate frequency (IF) A second down-and-converter (DUC2) which down-converts to improve the skirt characteristic and then up-converts to restore the original RF signal; driving to amplify the RF signal from this down-and-up converter It is input to the transmitting terminal Tx of the duplexer 10 via an amplifier 22 and a high power amplifier 23 and then radiated to the outside through the antenna ANT.
여기서, 제2다운 앤드 업 컨버터부(DUC2)는 상기된 컨버터(DUC1)와 마찬가지로, 저잡음 증폭기(21)로부터의 주파수 신호의 스커트 특성을 일차적으로 개선하는 제1 RF SAW필터(24), 국부 발진기(LO)로부터의 발진 신호와 필터(24)를 통과한 신호를 다운 믹싱하여 중간 주파수를 생성하는 제1믹서(25), 이 제1믹서(25)로부터의 신호를 증폭하는 라인 증폭기(26)와 이 라인증폭기(26)로부터의 중간주파수 신호의 스커트 특성을 개선하는 제2RF SAW필터(24a)로 이루어지는 다운 컨버터부(28) 및 상기 제2 RF SAW필터(24a)로부터의 중간주파수 신호를 증폭하는 라인 증폭기(26a), 증폭된 주파수 신호의 스커트 주파수특성을 개선하는 제3 RF SAW필터(27), 국부 발진기(LO)로부터의 발진 신호와 제3 RF SAW필터(27)로부터의 신호를 업믹싱하여 본래 크기의 RF신호를 생성하는 제2믹서(25a)와 이 제2믹서(25a)에서 업믹싱된 RF신호의 스커트 특성을 개선하는 제4 RF SAW필터(27a)로 이루어지는 업컨버터부(29)로 구성된다.Here, the second down-and-up converter unit DUC2, like the converter DUC1 described above, has a first RF SAW filter 24 and a local oscillator that primarily improve the skirt characteristic of the frequency signal from the low noise amplifier 21. A first mixer 25 for downmixing the oscillation signal from LO and the signal passing through the filter 24 to generate an intermediate frequency, and a line amplifier 26 for amplifying the signal from the first mixer 25. And amplifying the intermediate frequency signal from the down converter section 28 comprising the second RF SAW filter 24a and the second RF SAW filter 24a for improving the skirt characteristic of the intermediate frequency signal from the line amplifier 26. Up the line amplifier 26a, the third RF SAW filter 27 for improving the skirt frequency characteristic of the amplified frequency signal, the oscillation signal from the local oscillator LO and the signal from the third RF SAW filter 27 A second mixer 25a for mixing and generating an RF signal of an original size; 2 consists of a mixer (25a) up-converter portion 29 consisting of the 4 RF SAW filter (27a) to improve the skirt characteristics in the up mixer from the RF signal.
상기 무선중계기들의 증가로 인해 역방향으로 인입되는 잡음도 증가하였으며, 무선중계기들의 설치 장소 또는 환경에 따라 발진현상이 발생한다는 문제점이 있다. 무선중계기에서 수신부의 RF단과 송신부의 RF단은 신호의 세기가 일정수준 이상이면 서비스안테나의 신호가 궤환되어 도너안테나로 유입되므로 무선중계기의 중계품질이 급격히 저하된다. 즉 도너안테나와 서비스안테나간의 격리도 확보가 반드시 필요하다. Due to the increase of the wireless repeaters, the noise drawn in the reverse direction has also increased, and there is a problem that oscillation occurs according to the installation place or environment of the wireless repeaters. In the radio repeater, if the RF stage of the receiver and the RF stage of the transmitter are above a certain level, the signal of the service antenna is fed back into the donor antenna, and thus the repeater quality of the radio repeater is drastically degraded. In other words, it is necessary to secure the isolation between the donor antenna and the service antenna.
또한 무선중계기간의 다단으로 연결하는 경우에 있어서도 상기와 같은 격리도 확보를 통한 중계기 품질을 확보해야 할 필요성이 있다. In addition, there is a need to secure the repeater quality by securing the above degree of isolation even in the case of connecting in multiple stages of the wireless relay period.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 도너안테나와 서비스안테나의 서로 다른 편파특성을 이용하여 안테나 상호간의 격리도를 확보하는 궤환간섭신호를 제거하는 일체형 중계기 및 다수개의 상기 궤환간섭신호를 제거하는 일체형 중계기를 다단으로 구성하여 전파음영지역에 최적의 통신품질을 제공할 수 있는 궤환간섭신호를 제거하는 일체형 중계기를 이용한 다단 중계시스템을 제공함에 그 목적이 있다.The present invention has been made to solve the above problems, an integrated repeater and a plurality of the feedback interference signal to remove the feedback interference signal to ensure the isolation between the antenna using different polarization characteristics of the donor antenna and the service antenna It is an object of the present invention to provide a multi-stage relay system using an integrated repeater for eliminating feedback interference signals that can provide an optimum communication quality in a radio-shaded area by configuring an integrated repeater for removing the multi-stage.
상술한 바와 같은 목적을 구현하기 위한 본 발명의 궤환간섭신호를 제거하는 일체형 중계기는 도너안테나를 통해 기지국으로부터 수신되는 고주파 신호를 중간주파수 신호로 변환하는 다운 컨버터부, 중간주파수 신호를 고주파 신호로 변환하는 업 컨버터부, 듀플렉서로 구성되는 RF 모듈부, 기저대역의 신호를 처리하여 궤환간섭신호를 제거하는 수단을 구비한 디지털 신호처리부 및 상기 업 컨버터부를 통하여 고주파 신호로 변환하여 서비스안테나를 통해 이동국으로 송출하는 궤환간섭신호를 제거하는 일체형 중계기에 있어서, The integrated repeater for removing the feedback interference signal of the present invention for realizing the above object is a down converter unit for converting a high frequency signal received from a base station through a donor antenna into an intermediate frequency signal, and converts an intermediate frequency signal into a high frequency signal. An up-converter unit, an RF module unit consisting of a duplexer, a digital signal processing unit having a baseband signal to remove feedback interference signals, and a high-frequency signal through the up-converter unit to convert a high frequency signal to a mobile station through a service antenna. In the integrated repeater for removing the feedback interference signal sent out,
상기 도너안테나는 대응되는 4개의 제1,제2,제3,제4 방사소자, 일단은 상기 제1,제2,제3,제4 방사소자 각각의 좌면과 우면에 연결되며 타단은 기지국단 듀플렉서와 연결되는 마이크로스트립형태의 급전선을 포함하여 이루어져 중계기 본체기판을 중심으로 하우징의 내부 일면에 부착되어 수평 편파를 발생시키는 도너안테나, 상기 서비스안테나는 대응되는 4개의 제5,제6,제7,제8 방사소자, 일단은 상기 제5,제6,제7,제8 방사소자의 상면과 하면에 연결되며 타단은 이동국단 듀플렉서와 연결되는 마이크로스트립형태의 급전선을 포함하여 이루어져 중계기 본체기판을 중심으로 하우징의 내부 타면에 부착되어 수직 편파를 발생시키는 서비스안테나, 상기 도너안테나 및 서비스안테나와 각 듀플렉서 사이에 위치한 RF 스위치를 통하여 확장 안테나와 연결하는 외부확장용 도너안테나 포트 및 서비스안테나 포트, 및 궤환간섭신호를 제거하는 수단을 구비한 디지털 신호처리부에 연결되어 설치시 고주파신호의 전파방향에 따라 안테나의 지향 방향을 조정하기 위한 입력 레벨 및 격리도 인디케이터를 포함하여 이루어지는 것을 특징으로 한다.The donor antenna has four corresponding first, second, third and fourth radiating elements, one end of which is connected to the left and right sides of each of the first, second, third and fourth radiating elements, and the other end of the donor antenna A donor antenna comprising a microstrip type feed line connected to the duplexer and attached to one inner surface of the housing around the main body of the repeater to generate horizontal polarization, and the service antennas correspond to four corresponding fifth, sixth, and seventh antennas. , The eighth radiating element, one end of which is connected to the top and bottom surfaces of the fifth, sixth, seventh, and eighth radiating elements, and the other end includes a feed line of a microstrip type connected to a mobile station duplexer. A service antenna which is attached to the other inner surface of the housing and generates vertical polarization, and connects to the extension antenna through an RF switch located between the donor antenna and the service antenna and each duplexer. Input level and isolation to adjust the antenna's directing direction according to the propagation direction of the high frequency signal when it is connected to the digital signal processing unit having an external expansion donor antenna port and service antenna port and a means for canceling the feedback interference signal. Characterized in that it comprises an indicator.
또한 상기 궤환간섭신호를 제거하는 수단을 구비한 디지털 신호처리부는 In addition, the digital signal processor having a means for removing the feedback interference signal
A/D변환기의 출력신호와 D/A변환기의 입력신호의 상관관계를 이용하여 구한 궤환신호의 지연시간 및 진폭을 이용하여 초기 탭계수를 설정하고, 상기 초기 탭계수의 수렴상태를 판단하여 격리도를 검출하는 궤환신호 지연시간 및 격리도 검출부, 상기 궤환신호 지연시간 및 격리도 검출부에서 검출된 각 궤환신호의 지연시간을 갖는 기준신호를 생성하여 적응형 필터 서브 블록 연산부에 출력함으로써 궤환신호가 있는 지연시간에만 적응형 필터의 서브 블록을 할당하는 출력신호 지연부, 상기 궤환신호 지연시간 및 격리도 검출부의 초기 탭계수를 서브블록의 탭계수로 설정한 후 적응형 필터계수를 갱신하는 적응형 필터 서브 블록 갱신부, 상기 적응형 필터 서브 블록 갱신부에서 갱신된 필터계수와 상기 출력신호 지연부에서 출력되는 기준신호를 승산하여 할당된 서브 블록별로 궤환신호를 생성하는 적응형 필터 서브 블록 연산부, 상기 적응형 필터 서브 블록 연산부에서 서브 블록별로 생성된 상기 궤환 신호들을 가산하여 최종 궤환신호를 생성하는 궤환신호 생성부, 및 상기 궤환신호 생성부에서 생성된 최종 궤환신호와 상기 A/D변환기의 출력신호를 감산하여 원신호를 검출하는 원신호 검출부를 포함하여 이루어지는 것을 특징으로 한다.The initial tap coefficient is set using the delay time and amplitude of the feedback signal obtained by using the correlation between the output signal of the A / D converter and the input signal of the D / A converter, and the convergence state of the initial tap coefficient is determined. Feedback signal delay time and isolation detection unit for detecting a signal and delay time of each feedback signal detected by the feedback signal delay time and isolation detection unit are generated and output to the adaptive filter sub-block calculation unit An adaptive filter for setting the initial tap coefficient of the output signal delay unit for allocating the sub-block of the adaptive filter only for the delay time, the feedback signal delay time, and the isolation detector as the tap coefficient of the sub-block, and then updating the adaptive filter coefficient. A sub-block updater and a filter coefficient updated by the adaptive filter sub-block updater and a reference signal output from the output signal delay unit; An adaptive filter subblock calculator for generating a feedback signal for each allocated subblock, a feedback signal generator for generating a final feedback signal by adding the feedback signals generated for each subblock in the adaptive filter subblock calculator, and the And an original signal detector configured to subtract the final feedback signal generated by the feedback signal generator and the output signal of the A / D converter to detect the original signal.
또 다른 목적을 구현하기 위한 본 발명의 궤환간섭신호를 제거하는 일체형 중계기를 이용한 다단 중계시스템은 중계기 본체기판을 보호하기 위한 하우징의 외부는 중계기 설치물에 중계기를 수평방향으로 고정시킬 수 있는 제1브라킷 또는 설치물에 중계기를 수직방향으로 고정시킬 수 있는 제2브라킷 이용하여 수평 또는 수직으로 설치되는 제1궤환간섭신호를 제거하는 일체형 중계기,설치된 상기 제1궤환간섭신호를 제거하는 일체형 중계기와 수평 또는 수직이 교차되도록 설치되는 제2궤환간섭신호를 제거하는 일체형 중계기, 및 상기 제1궤환간섭신호를 제거하는 일체형 중계기 및 상기 제2궤환간섭신호를 제거하는 일체형 중계기가 수평 또는 수직이 교차되도록 반복 설치되어 도너안테나와 서비스안테나간 격리도를 확보하고 전파음영지역을 해소하는 것을 특징으로 한다. Multi-stage repeater system using an integrated repeater to remove the feedback interference signal of the present invention for realizing another object of the first bracket that can be fixed to the repeater in the horizontal direction outside the housing for protecting the repeater main board Or an integrated repeater for removing the first feedback interference signal installed horizontally or vertically by using a second bracket that can fix the repeater in the vertical direction to the installation, and an integrated repeater for removing the installed first feedback interference signal horizontally or vertically The integral repeater for removing the second feedback interference signal installed to intersect, the integral repeater for removing the first feedback interference signal, and the integral repeater for removing the second feedback interference signal are repeatedly installed so that horizontal or vertical crosses. Secure isolation between donor antenna and service antenna It is characterized by.
본 발명에 따른 궤환간섭신호를 제거하는 일체형 중계기 및 그것을 이용한 다단 중계시스템에 의하면, 도너안테나와 서비스안테나간에 서로 다른 편파를 사용함으로써 격리도를 확보하고, 궤환신호를 제거함으로써 중계품질을 향상시키며, 궤환간섭신호를 제거하는 일체형 중계기 상호간을 연결하는 다단 중계시스템을 구성함에 있어서도 상기 서로 다른 편파를 방사하는 안테나 특징에 따라 수직방향 또는 수평방향으로 설치함으로서 무선중계기 설치시 최적의 전파특성을 확보할 수 있는 장점이 있다. According to the integrated repeater for eliminating the feedback interference signal and the multi-stage relay system using the same, it is possible to secure isolation by using different polarizations between the donor antenna and the service antenna, and improve the relay quality by removing the feedback signal. Even when constructing a multi-stage relay system that connects the integrated repeaters to remove the interference signal, it is possible to secure optimal propagation characteristics when installing the radio repeater by installing them in the vertical direction or the horizontal direction according to the characteristics of the antenna radiating different polarizations. There is an advantage.
도 1은 일반적인 중계기 회로를 개략적으로 나타낸 블록도,1 is a block diagram schematically showing a general repeater circuit,
도 2는 본 발명에 따른 궤환간섭신호를 제거하는 일체형 중계기의 블록도,2 is a block diagram of an integrated repeater for removing the feedback interference signal according to the present invention;
도 3은 본 발명에 따른 도너안테나 구성도, 3 is a donor antenna configuration according to the present invention,
도 4는 본 발명에 따른 서비스안테나 구성도,4 is a diagram illustrating a service antenna according to the present invention;
도 5는 본 발명에 따른 적응형 필터 서브 블록을 할당 또는 해지하는 디지털신호처리를 이용하여 궤환간섭신호를 제거하는 일체형 중계기의 디지털 신호처리부의 블록도이다.5 is a block diagram of a digital signal processing unit of an integrated repeater for removing a feedback interference signal using digital signal processing for allocating or canceling an adaptive filter subblock according to the present invention.
도 6은 본 발명에 따른 제1브라킷 및 제2브라킷을 구비한 궤환간섭신호를 제거하는 일체형 중계기 외관도, 6 is an external view of an integrated repeater for removing a feedback interference signal having a first bracket and a second bracket according to the present invention;
도 7은 본 발명에 따른 궤환간섭신호를 제거하는 일체형 중계기를 이용한 다단 중계시스템의 구성도,7 is a block diagram of a multi-stage relay system using an integrated repeater for removing the feedback interference signal according to the present invention;
도 8은 본 발명에 따른 외부확장 안테나 포트를 이용하여 궤환간섭신호를 제거하는 일체형 중계기를 이용한 다단 중계시스템을 구성하는 개략도,8 is a schematic diagram of a multi-stage relay system using an integrated repeater for removing a feedback interference signal using an external extension antenna port according to the present invention;
도 9은 본 발명에 따른 입력 레벨 및 격리도 인디케이터의 개략도이다.9 is a schematic diagram of input level and isolation indicators in accordance with the present invention.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다. Hereinafter, the configuration and operation of the preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명에 따른 궤환간섭신호를 제거하는 일체형 중계기의 블록도이다.2 is a block diagram of an integrated repeater for removing the feedback interference signal according to the present invention.
여기서 기지국 신호를 기저대역으로 변환하는 업링크 또는 다운링크측의 컨버터부(300a,300b,400a,400b)에 대한 설명은 배경기술란에서 설명하였으므로 생략한다. Here, the description of the converter units 300a, 300b, 400a, and 400b on the uplink or downlink side for converting the base station signal to the baseband is omitted since it is described in the background art section.
본 발명의 궤환간섭신호를 제거하는 일체형 중계기는 마이크로스트립형태의 4개의 방사소자로 구성되어 수평 편파를 발생시키는 도너안테나(100), 마이크로스트립형태의 4개의 방사소자로 구성되어 수직 편파를 발생시키는 서비스안테나(200), 도너안테나와 기지국단 듀플렉서 사이에 위치한 기지국단 RF스위치(190) 및 서비스안테나와 이동국단 듀플렉서 사이에 위치한 이동국단 RF스위치(290)를 이용하여 외부 확장 안테나와 연결할 수 있는 외부확장용 도너안테나 포트(180) 및 서비스안테나 포트(280) 및 고주파신호의 전파방향에 따라 안테나의 지향 방향을 조정하기 위한 입력 레벨 및 격리도 인디케이터(900)를 포함한다. The integrated repeater for removing the feedback interference signal of the present invention is composed of four radiating elements in the form of microstrip, and a donor antenna 100 generating horizontal polarization, and four radiating elements in the form of microstrip to generate vertical polarization. External to which an external extension antenna can be connected using the service antenna 200, the base station RF switch 190 located between the donor antenna and the base station duplexer, and the mobile station RF switch 290 located between the service antenna and the mobile station duplexer. The expansion donor antenna port 180 and the service antenna port 280, and the input level and isolation indicator 900 for adjusting the directing direction of the antenna in accordance with the propagation direction of the high frequency signal.
도 3은 본 발명에 따른 도너안테나 구성도이다.3 is a diagram illustrating a donor antenna according to the present invention.
도 3에서 보는 바와 같이, 본 발명의 도너안테나(100)는 대응되는 4개의 원형의 제1,제2,제3,제4방사소자(110,120,130,140), 상기 제1,제2,제3,제4방사소자(110,120,130,140)에 급전하기 위한 급전선(111,112,121,122,131,132,141,142) 및 기지국단의 듀플렉서와 연결되어 있는 제1급전부(150)를 포함한다. 제2,3,4방사소자(120,130,140)의 형태와 제1방사소자(110)의 형태가 대응하므로 여기서는 제1방사소자에 대해서만 자세하게 설명한다.As shown in FIG. 3, the donor antenna 100 of the present invention includes four circular first, second, third, and fourth radiating elements 110, 120, 130, and 140, and the first, second, third, and third agents. Feed lines (111, 112, 121, 122, 131, 132, 141, 142) for feeding the four radiating elements (110, 120, 130, 140) and the first feed unit 150 is connected to the duplexer of the base station. Since the shapes of the second, third, and fourth radiating elements 120, 130, and 140 correspond to the shapes of the first radiating element 110, only the first radiating element will be described in detail here.
상기 제1방사소자(110)는 제1방사소자(110)의 좌측에는 제1급전선(111)이, 우측에는 제2급전선(112)이 연결되어 있다. 따라서 제1,제2,제3,제4 방사소자에 의하여 방사되는 전파특성은 수평 편파특성을 갖는다.The first radiating element 110 has a first feed line 111 is connected to the left side of the first radiating element 110, the second feed line 112 is connected to the right side. Therefore, the propagation characteristics radiated by the first, second, third, and fourth radiating elements have a horizontal polarization characteristic.
기지국단의 듀플렉스에 연결되어 있는 제1급전부(150)로부터 급전되면, 먼저 제1분배기(160)에서 제1,제2방사소자(110,120)와 제3,제4방사소자(130,140)로 분기되고, 제2분배기(161)에서 제1방사소자(110)와 제2방사소자(120)가 분기되며, 마지막으로 제3분배기(162)에서 제1급전선(111)과 제2급전선(112)으로 분기되어 제1방사소자(110)에 급전된다. When the power is supplied from the first feeder 150 connected to the duplex of the base station, the first divider 160 branches to the first and second radiating elements 110 and 120 and the third and fourth radiating elements 130 and 140. The first radiating element 110 and the second radiating element 120 branch from the second divider 161, and finally, the first feed line 111 and the second feed line 112 are separated from the third divider 162. Branched to the power supply to the first radiating element (110).
여기서 제3분배기(162)로부터 제1방사소자(110)에 연결되는 제1급전선(111)과 제2급전선(112)의 길이를 다르게(즉 제2급전선의 길이를 λ/4라 하면, 제1급전선의 길이는 3λ/4)하여 180도 위상 전이를 이루도록 함으로써 이중편파 안테나를 제작한다. 따라서 이중편파안테나의 상호분리도를 개선하고, 또한 4개의 방사소자를 구성한 어레이 구조를 가짐으로써 지향성 및 안테나 효율을 증가시킬 수 있다. Here, when the lengths of the first feed line 111 and the second feed line 112 that are connected to the first radiating element 110 from the third distributor 162 are different (that is, the length of the second feed line is λ / 4), The length of the feeder wire is 3λ / 4) to achieve a 180 degree phase shift to fabricate a dual polarized antenna. Therefore, by improving the mutual separation of the dual polarization antenna, and having an array structure consisting of four radiating elements can improve the directivity and antenna efficiency.
도 4는 본 발명에 따른 서비스안테나 구성도이다.4 is a configuration diagram of a service antenna according to the present invention.
도 4에서 보는 바와 같이, 본 발명의 서비스안테나(200)는 대응되는 4개의 원형의 제5,제6,제7,제8방사소자(210,220,230,240), 상기 제5,제6,제7,제8방사소자(210,220,230,240)에 급전하기 위한 급전선(211,212,221,222,231,232,241,242) 및 이동국단의 듀플렉서와 연결되어 있는 제2급전부(250)를 포함한다. 제6,7,8방사소자(220,230,240)의 형태와 제5방사소자(210)의 형태가 대응하므로 여기서는 제5방사소자에 대해서만 자세하게 설명한다.As shown in FIG. 4, the service antenna 200 according to the present invention has four circular fifth, sixth, seventh, and eighth radiating elements 210, 220, 230, and 240, and the fifth, sixth, seventh, and fifth agents. Feed lines 211, 212, 221, 222, 231, 232, 241, 242 for feeding the eight radiating elements 210, 220, 230, and 240, and a second feeder 250 connected to the duplexer of the mobile station. Since the shape of the sixth, seventh, and eighth radiating elements 220, 230, and 240 corresponds to the shape of the fifth radiating element 210, only the fifth radiating element will be described in detail.
상기 제5방사소자(210)는 제5방사소자(210)의 상면에는 제4급전선(212)이, 하면에는 제3급전선(211)이 연결되어 있다. 따라서 제5,제6,제7,제8 방사소자에 의하여 방사되는 전파특성은 수직 편파특성을 갖는다.In the fifth radiating element 210, a fourth feed line 212 is connected to an upper surface of the fifth radiating element 210, and a third feed line 211 is connected to a lower surface of the fifth radiating element 210. Therefore, the propagation characteristics radiated by the fifth, sixth, seventh, and eighth radiating elements have vertical polarization characteristics.
이동국단의 듀플렉스에 연결되어 있는 제2급전부(250)로부터 급전되면, 먼저 제4분배기(260)에서 제5,제6방사소자(210,220)와 제7,제8방사소자(230,240)로 분기되고, 제5분배기(261)에서 제1방사소자(110)와 제2방사소자(120)가 분기되며, 마지막으로 제6분배기(262)에서 제3급전선(211)과 제4급전선(212)으로 분기되어 제5방사소자(210)에 급전된다. When the power is supplied from the second feeder 250 connected to the duplex of the mobile station, first branching from the fourth distributor 260 to the fifth and sixth radiating elements 210 and 220 and the seventh and eighth radiating elements 230 and 240 is performed. The first radiating element 110 and the second radiating element 120 are branched at the fifth distributor 261, and finally, the third feeder 211 and the fourth feeder line 212 are disposed at the sixth distributor 262. Branched to and is fed to the fifth radiating element (210).
여기서 제6분배기(262)로부터 제5방사소자(210)에 연결되는 제3급전선(211)과 제4급전선(212)의 길이를 다르게(즉 제4급전선의 길이를 λ/4라 하면, 제3급전선의 길이는 3λ/4)하여 180도 위상 전이를 이루도록 함으로써 이중편파 안테나를 제작한다. 따라서 이중편파안테나의 상호분리도를 개선하고, 또한 4개의 방사소자를 구성한 어레이 구조를 가짐으로써 지향성 및 안테나 효율을 증가시킬 수 있다. Here, when the lengths of the third feed line 211 and the fourth feed line 212 connected to the fifth radiating element 210 from the sixth distributor 262 are different (that is, the length of the fourth feed line is λ / 4), The length of the feeder wire is 3λ / 4) to achieve a 180 degree phase shift to fabricate a dual polarized antenna. Therefore, by improving the mutual separation of the dual polarization antenna, and having an array structure consisting of four radiating elements can improve the directivity and antenna efficiency.
상기 도너안테나(100)와 서비스안테나(200)는 궤환간섭신호를 제거하는 일체형 중계기 본체기판을 중심으로 하우징의 내부 일면 및 타면에 부착된다. The donor antenna 100 and the service antenna 200 are attached to one inner surface and the other surface of the housing centering on an integrated repeater body substrate for removing the feedback interference signal.
이하 궤환간섭신호를 제거하는 디지털신호처리부(도 2의 500)에 대하여 설명한다.Hereinafter, the digital signal processor (500 of FIG. 2) for removing the feedback interference signal will be described.
도 5는 본 발명에 따른 적응형 필터 서브 블록을 할당 또는 해지하는 디지털신호처리를 이용하여 궤환간섭신호를 제거하는 일체형 중계기의 디지털 신호처리부의 블록도이다. 5 is a block diagram of a digital signal processing unit of an integrated repeater for removing a feedback interference signal using digital signal processing for allocating or canceling an adaptive filter subblock according to the present invention.
A/D변환기는 도너안테나측에 입력된 아날로그 신호를 특정 샘플링 주파수로 샘플링하여 디지털 신호를 출력하는 기능을 한다. The A / D converter functions to sample the analog signal input to the donor antenna at a specific sampling frequency and output a digital signal.
궤환신호 지연시간 및 격리도 검출부(510)는 상기 A/D변환기의 출력신호[Xin(t)]와 원신호 검출부(560)의 출력신호[Xout(t)]의 상관관계를 통하여 궤환신호의 지연시간 및 진폭를 검출한다. The feedback signal delay time and isolation detector 510 feeds back through the correlation between the output signal X in (t) of the A / D converter and the output signal X out (t) of the original signal detector 560. Detect the delay and amplitude of the signal.
하기의 수학식1은 Xin(t),Xout(t)의 상관관계를 보여준다. Equation 1 below shows the correlation between X in (t) and X out (t).
[수학식1][Equation 1]
Figure PCTKR2010006957-appb-I000001
Figure PCTKR2010006957-appb-I000001
로 나타나며, 여기서 n은 다중 경로 수, ai는 i번째 경로의 수신된 임펄스의 진폭, Ti는 i번째 도착한 임펄스의 지연시간이다. Where n is the number of multipaths, a i is the amplitude of the received impulse of the i th path, and T i is the delay time of the i th arriving impulse.
상기 수학식1에서 구한 지연시간(Ti)과 진폭(ai)을 이용하여 궤환신호 지연시간 및 격리도 검출부(510)에 포함된 초기 적응형 필터(도시하지는 않음)의 초기 탭계수 및 지연시간을 설정한다. 이 후 상기 초기 적응형 필터는 수학식1의 상관관계가 최소가 되도록 연산을 수행하여 필터 탭계수값은 특정한 값으로 수렴하게 된다.Equation (1) the delay time (T i) determined in the amplitude (a i) the use of the feedback signal delay time, and isolated the initial tap coefficient and the delay of the initial adaptive filter (but not shown) included in the detector 510 Set the time. Thereafter, the initial adaptive filter performs an operation so that the correlation of Equation 1 is minimized so that the filter tap coefficient value converges to a specific value.
이후 궤환신호 지연시간 및 격리도 검출부(510)에서는 상기 수렴된 필터 계수값으로부터 시스템의 격리도를 검출하고, 상기 검출된 격리도를 기준값과 비교, 판단한다.Thereafter, the feedback signal delay time and isolation detector 510 detects an isolation of the system from the converged filter coefficient values, and compares and determines the detected isolation with a reference value.
격리도가 양호한 경우 출력시간지연부(550)의 초기 설정된 지연시간을 시스템이 허용하는 최대 지연시간까지 순차적으로 변경함으로써 다중경로를 통하여 수신안테나로 들어오는 여러 궤환신호의 지연시간 분포를 측정(스캔) 한다. If the isolation is good, the delay time distribution of several feedback signals coming into the receiving antenna through the multipath is measured (scanned) by sequentially changing the initial delay time of the output time delay unit 550 to the maximum delay time allowed by the system. .
또한 격리도가 양호하지 않는 경우 상기 측정된 각 궤환신호의 지연시간 분포에 따라 각 출력시간지연부(550)를 동작시킴으로써 적응형 필터부(540)의 서브 블록을 할당할 지를 결정한다. In addition, when the isolation is not good, it is determined whether to allocate a sub block of the adaptive filter unit 540 by operating each output time delay unit 550 according to the measured delay time distribution of each feedback signal.
출력신호 지연부(550)는 원신호 검출부(560)의 출력신호[Xout(t)]에 상기 궤환신호 지연시간 및 격리도 검출부(510)에서 출력되는 다중경로를 통하여 수신안테나로 들어오는 여러 궤환신호의 각자의 지연시간을 갖는 각각의 기준신호[X(n)]를 생성하여 적응형 필터 서브 블록 연산부(520)의 각 서브 블록별에 출력한다. The output signal delay unit 550 receives various inputs to the reception antenna through the multi-path output from the feedback signal delay time and the isolation detector 510 to the output signal X out (t) of the original signal detector 560. Each reference signal X (n) having a respective delay time of the signal is generated and output to each subblock of the adaptive filter subblock calculator 520.
다음으로 적응형 필터부(540)는 적응형 필터 서브 블록 갱신부(530)와 적응형 필터 서브 블록 연산부(520)로 구성되며, 할당된 적응형 필터 서브 블록은 궤환신호 지연시간 및 격리도 검출부(510)에서 검출된 초기 필터 탭계수에 대한 정보를 입력받는다. Next, the adaptive filter unit 540 includes an adaptive filter subblock updater 530 and an adaptive filter subblock calculator 520, and the allocated adaptive filter subblocks include a feedback signal delay time and an isolation detector. Information about the initial filter tap coefficient detected at 510 is received.
또한 적응형 필터부(540)는 궤환신호 지연시간 및 격리도 검출부(510)로부터 적응형 필터부에서 할당된 각 서브 블록의 출력값을 궤환신호 생성부(570)에 전달하도록 명령받는다. In addition, the adaptive filter unit 540 is instructed by the feedback signal delay time and isolation detector 510 to transmit the output value of each sub-block allocated by the adaptive filter unit to the feedback signal generator 570.
상기 적응형 필터 서브 블록 갱신부(530)는 궤환신호의 환경 변화율 및 서비스 신호의 크기에 따라 수렴 속도를 제어하는 구조를 가지고 적응형 필터의 계수를 갱신한다. 즉 원신호 검출부(560)의 출력신호[Xout(t)]에서 출력신호 지연부(550)에서 출력되는 기준신호[X(n)]에 필터 탭계수를 승산한 신호를 감산한 결과값을 이용하여 필터 계수값을 갱신하는 알고리즘으로 구성된다.The adaptive filter subblock updater 530 has a structure for controlling the convergence speed according to the environment change rate of the feedback signal and the size of the service signal, and updates the coefficient of the adaptive filter. That is, a result obtained by subtracting a signal obtained by multiplying the filter tap coefficient by the output signal X out (t) of the original signal detector 560 from the output signal delay unit 550 to the reference signal X (n). It consists of an algorithm for updating the filter coefficient value by using.
여기서 적응형 필터의 계수를 갱신하는 적응형 필터 서브 블록 갱신부(530)에 적용되는 상기 알고리즘은 LMS(Least Mean Square) 알고리즘 및 MNSE(Minimun Mean Square Error) 알고리즘 등 다양한 방식의 알고리즘을 사용할 수 있다. Here, the algorithm applied to the adaptive filter subblock updater 530 for updating the coefficients of the adaptive filter may use various types of algorithms such as a Least Mean Square (LMS) algorithm and a Minimun Mean Square Error (MNSE) algorithm. .
상기 적응형 필터 서브 블록 연산부(520)는 각 서브 블록별로 출력신호 지연부(520)에서 출력되는 기준신호[X(n)]와 상기 적응형 필터 서브 블록 갱신부(530)에 의하여 생성된 필터계수(W)를 승산하는 내부 알고리즘에 의하여 각 서브 블록별로 궤환신호를 생성한다. The adaptive filter subblock calculator 520 is a filter generated by the adaptive signal subblock updater 530 and the reference signal X (n) output from the output signal delay unit 520 for each subblock. A feedback signal is generated for each subblock by an internal algorithm multiplying the coefficient W.
다음으로 궤환신호 생성부(570)는 상기 적응형 필터 서브 블록 연산부(520)에서 각 서브 블록 별로 생성된 궤환신호를 가산하여 전체 궤환신호를 생성한다.Next, the feedback signal generator 570 generates the entire feedback signal by adding the feedback signals generated for each subblock by the adaptive filter subblock calculator 520.
다음으로 원신호 검출부(560)는 궤환신호 생성부(570)에서 생성된 전체 궤환신호와 A/D변환기의 원신호에 궤환신호가 간섭되어진 출력신호를 감산하여 원신호를 검출한다. Next, the original signal detector 560 detects the original signal by subtracting the entire feedback signal generated by the feedback signal generator 570 and the output signal in which the feedback signal is interfered with the original signal of the A / D converter.
여기서 원신호 검출부(560)에서 출력되는 원신호는 순시 오차 성분 또는 서비스 대역의 미세한 오차 등으로 인해 원하지 않는 주파수 대역에 잡음 성분이 발생한다. 따라서 원신호 검출부(560) 다음에 디지털 채널필터(도시하지는 않음)를 추가하여 상기 잡음 성분을 제거할 수 있다.Here, the original signal output from the original signal detector 560 generates noise components in an unwanted frequency band due to an instantaneous error component or a minute error of a service band. Accordingly, the noise component may be removed by adding a digital channel filter (not shown) after the original signal detector 560.
여기에서 상기 서브 블록은 적응형 필터의 탭 수를 8개 이하를 가진 하나의 블록으로 정의되며, 서브 블록단위로 궤환신호를 복원하여 궤환신호를 제거한다. 일실시예로 적응형 필터 하나의 탭은 수용할 수 있는 전파 지연시간 20나노-초(nano-second)를 기준으로 8개의 탭으로 구성되어 이동체의 움직임을 수용할 수 있는 능력은 시간상으로 160 나노초, 거리상으로는 약 50미터의 범위 내에서 궤환신호를 제거할 수 있다. 물론 본 발명은 적응형 필터의 탭수를 한정하지 하지 않으나 적응형 필터의 서브블록을 구성하는 탭수는 8개로 구성함이 바람직하다.Here, the sub block is defined as one block having 8 or less taps of the adaptive filter, and the feedback signal is removed by sub-block units to remove the feedback signal. In one embodiment, one tap of the adaptive filter consists of eight taps based on an acceptable propagation delay of 20 nano-seconds, so that the ability to accommodate movement of the moving object is 160 nanoseconds in time. In this case, the feedback signal can be removed within a range of about 50 meters. Of course, the present invention does not limit the number of taps of the adaptive filter, but the number of taps constituting the subblock of the adaptive filter is preferably 8.
일반적으로 시스템 궤환신호가 환경에 따라 연속되지 않고 다중 경로를 통해 각기 다른 지연시간 및 환경을 형성하기 때문에 연속적인 필터 탭을 사용하더라도 궤환신호가 없거나 미약한 부분에 해당하는 탭 계수는 매우 작은 값으로 형성되어 시스템 성능에는 별 영향을 미치지 못한다. In general, since the system feedback signal is not continuous according to the environment and forms a different delay time and environment through multiple paths, even if continuous filter taps are used, the tap coefficient corresponding to the part where no feedback signal is weak or weak is very small. It does not affect system performance.
따라서 본 발명은 궤환신호가 있는 지연시간에만 적응형 필터의 서브 블록을 할당함으로써 전체적인 시스템 구성에 보다 효율적인 구조를 형성하고 연속적인 필터 탭을 사용하므로써 생성될 수 있는 불필요한 잡음을 제거한다.Accordingly, the present invention allocates the sub-blocks of the adaptive filter only to the delay time of the feedback signal to form a more efficient structure in the overall system configuration and eliminates unnecessary noise that may be generated by using continuous filter taps.
도 6은 본 발명에 따른 제1브라킷 및 제2브라킷을 구비한 궤환간섭신호를 제거하는 일체형 중계기 외관도이다. 6 is an external view of an integrated repeater for removing a feedback interference signal having a first bracket and a second bracket according to the present invention.
도 6에서 보는 바와 같이, 중계기를 설치하고자 하는 구조물(도시하지 않음)에 중계기를 수평방향으로 고정시킬 수 있도록 중계기에 제1브라킷(610)을 연결한다. 또는 중계기를 수직방향으로 고정시킬 수 있도록 중계기에 제2브라킷(620)연결한다. 이는 다음의 일체형 중계기를 이용한 다단 중계시스템을 구성하기 위함이다. As shown in FIG. 6, the first bracket 610 is connected to the repeater so as to fix the repeater horizontally to a structure (not shown) to which the repeater is to be installed. Alternatively, the second bracket 620 is connected to the repeater to fix the repeater in the vertical direction. This is to construct a multi-stage relay system using the following integrated repeater.
도 7은 본 발명에 따른 궤환간섭신호를 제거하는 일체형 중계기를 이용한 다단 중계시스템의 구성도이다. 도 7에서 보는 바와 같이, 최초 기지국으로부터 고주파신호를 송신받은 제1궤환간섭신호를 제거하는 일체형 중계기(a)를 설치하고자 하는 구조물에 제1브라킷을 이용하여 수평방향으로 설치한다. 제1궤환간섭신호를 제거하는 일체형 중계기(a)의 서비스안테나는 기본적으로 수직편파를 발생하나, 제1브라킷을 이용하여 수평방향으로 설치되어 있음으로 제1궤환간섭신호를 제거하는 일체형 중계기(a)의 서비스 안테나는 수평 편파를 송신하게 된다. 7 is a block diagram of a multi-stage relay system using an integrated repeater for removing the feedback interference signal according to the present invention. As shown in FIG. 7, the first bracket is installed in a horizontal direction in a structure to install an integrated repeater (a) that removes the first feedback interference signal received from the first base station. The service antenna of the integrated repeater (a) which removes the first feedback interference signal basically generates vertical polarization, but is installed in the horizontal direction by using the first bracket and thus the integrated repeater (a) which removes the first feedback interference signal (a). ) Service antenna transmits a horizontal polarization.
다음으로 상기 제2궤환간섭신호를 제거하는 일체형 중계기(b)를 설치하고자 하는 구조물에 제2브라킷을 이용하여 수직방향으로 설치한다. 제2궤환간섭신호를 제거하는 일체형 중계기(b)의 도너안테나는 수평 편파를 수신하게 되고 서비스안테나는 수직 편파를 송신하게 된다. Next, the structure is to be installed in a vertical direction by using a second bracket to the structure to install the integrated repeater (b) to remove the second feedback interference signal. The donor antenna of the integrated repeater b that eliminates the second feedback interference signal receives horizontal polarization and the service antenna transmits vertical polarization.
다음으로 제3궤환간섭신호를 제거하는 일체형 중계기(c)를 제1브라킷을 이용하여 수평방향으로 설치하여 전단의 제2궤환간섭신호를 제거하는 일체형 중계기(b)와 90도 교차되도록 설치한다. Next, an integral repeater (c) for removing the third feedback interference signal is installed in the horizontal direction by using the first bracket so as to intersect 90 degrees with the integral repeater (b) for removing the second feedback interference signal at the front end.
즉 궤환간섭신호를 제거하는 일체형 중계기의 도너안테나와 서비스안테나는 서로 다른 편파를 발생하므로 다단으로 상기 궤환간섭신호를 제거하는 일체형 중계기를 연결하는 다단 중계시스템을 구성하는 경우 도너안테나와 서비스안테나간 격리도를 확보하기 위하여 상기 제1궤환간섭신호를 제거하는 일체형 중계기 및 상기 제2궤환간섭신호를 제거하는 일체형 중계기가 수평 또는 수직이 교차되도록 반복적으로 설치하여 최적의 전파환경을 구현할 수 있다. That is, the donor antenna and the service antenna of the integrated repeater for removing the feedback interference signal generate different polarizations, so when the multi-stage relay system for connecting the integrated repeater for removing the feedback interference signal in multiple stages is isolated between the donor antenna and the service antenna. In order to ensure the integrated relay repeater to remove the first feedback interference signal and the integrated repeater to remove the second feedback interference signal may be repeatedly installed so that the horizontal or vertical cross to implement the optimum propagation environment.
도 8은 본 발명에 따른 외부확장 안테나 포트를 이용하여 궤환간섭신호를 제거하는 일체형 중계기를 이용한 다단 중계시스템을 구성하는 개략도이다. 8 is a schematic diagram of a multi-stage relay system using an integrated repeater that removes a feedback interference signal using an external extension antenna port according to the present invention.
제1궤환간섭신호를 제거하는 일체형 중계기와 제2궤환간섭신호를 제거하는 일체형 중계기를 설치함에 있어, 전파 가시거리(Line Of Sight)가 확보되지 않은 경우 외부확장용 도너안테나 포트 또는 서비스안테나 포트를 이용하여 전파 가시거리를 확보할 수 있다.In installing an integrated repeater that removes the first feedback interference signal and an integrated repeater that removes the second feedback interference signal, the donor antenna port or service antenna port for external extension is used when the line of sight is not secured. It is possible to secure the radio wave visibility.
즉 도 8에서 보는 바와 같이, 제1궤환간섭신호를 제거하는 일체형 중계기의 이동국단에 위치한 RF스위치를 외부 확장용 서비스안테나 포트와 연결한 후 상기 서비스안테나 포트에 제2궤환간섭신호를 제거하는 일체형 중계기의 도너안테나와 전파 가시거리를 확보할 수 있는 위치에 수직 또는 수평 편파를 발생하는 확장 안테나(280)를 연결함으로서 궤환간섭신호를 제거하는 일체형 중계기의 서비스영역을 넓힐 수 있다.That is, as shown in Figure 8, after connecting the RF switch located in the mobile station of the integrated repeater to remove the first feedback interference signal with the service antenna port for external expansion, the integrated signal to remove the second feedback interference signal to the service antenna port By connecting the donor antenna of the repeater and the expansion antenna 280 generating vertical or horizontal polarization at a position to secure the visible line of sight, the service area of the integrated repeater for removing the feedback interference signal can be widened.
도 9는 본 발명에 따른 입력 레벨 및 격리도 인디케이터의 개략도이다. 9 is a schematic diagram of input level and isolation indicators in accordance with the present invention.
도 9에서 보는 바와 같이, 본 발명에 의한 궤환간섭신호를 제거하는 일체형 중계기를 다단으로 연결하는 다단 중계시스템을 구성할 경우 전파환경에 따른 입력레벨 및 격리도가 외부로 표시되는 인디케이터를 직접 확인함으로써, 중계기 설치시 즉각적으로 설치되는 궤환간섭신호를 제거하는 일체형 중계기의 환경에 적응하도록 최적화된 설치가 가능하다. As shown in Figure 9, when constructing a multi-stage relay system for connecting the integrated repeater to remove the feedback interference signal according to the multi-stage by directly confirming the indicator of the input level and isolation diagram according to the radio environment to the outside, When the repeater is installed, the installation can be optimized to adapt to the environment of the integrated repeater to remove the feedback interference signal is installed immediately.
따라서 도너안테나와 서비스안테나간에 서로 다른 편파를 사용함으로써 격리도를 확보하고, 궤환신호를 제거함으로써 중계품질을 향상시키며, 궤환간섭신호를 제거하는 일체형 중계기 상호간을 연결하는 다단 중계시스템을 구성함에 있어서도 상기 서로 다른 편파를 방사하는 안테나 특징에 따라 수직방향 또는 수평방향으로 설치함으로서 무선중계기 설치시 최적의 전파특성을 확보할 수 있다.Therefore, the use of different polarizations between the donor antenna and the service antenna ensures isolation, improves the relay quality by removing the feedback signal, and in constructing a multi-stage relay system that interconnects the repeaters that eliminate the feedback interference signal. By installing in the vertical direction or the horizontal direction according to the characteristics of the antenna that emits different polarizations, it is possible to secure the optimum propagation characteristics when installing a wireless repeater.
본 발명은 상기 실시예에 한정되지 않고 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정·변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.It is apparent to those skilled in the art that the present invention is not limited to the above embodiments and can be practiced in various ways without departing from the technical spirit of the present invention. will be.

Claims (8)

  1. 도너안테나를 통해 기지국으로부터 수신되는 고주파 신호를 중간주파수 신호로 변환하는 다운 컨버터부, 중간주파수 신호를 고주파 신호로 변환하는 업 컨버터부, 듀플렉서로 구성되는 RF 모듈부, 기저대역의 신호를 처리하여 궤환간섭신호를 제거하는 수단을 구비한 디지털 신호처리부 및 상기 업 컨버터부를 통하여 고주파 신호로 변환하여 서비스안테나를 통해 이동국으로 송출하는 궤환간섭신호를 제거하는 일체형 중계기에 있어서, Down converter unit for converting the high frequency signal received from the base station to the intermediate frequency signal through the donor antenna, an up converter unit for converting the intermediate frequency signal to the high frequency signal, an RF module unit composed of the duplexer, and processing the baseband signal A digital signal processing unit having a means for removing an interference signal and an integrated repeater for converting a high frequency signal through the up converter unit to remove the feedback interference signal sent to the mobile station through a service antenna,
    상기 도너안테나는 대응되는 4개의 제1,제2,제3,제4 방사소자, 일단은 상기 제1,제2,제3,제4 방사소자 각각의 좌면과 우면에 연결되며 타단은 기지국단 듀플렉서와 연결되는 마이크로스트립형태의 급전선을 포함하여 이루어져 중계기 본체기판을 중심으로 하우징의 내부 일면에 부착되어 수평 편파를 발생시키는 도너안테나,The donor antenna has four corresponding first, second, third and fourth radiating elements, one end of which is connected to the left and right sides of each of the first, second, third and fourth radiating elements, and the other end of the donor antenna A donor antenna comprising a microstrip feed line connected to the duplexer and attached to one inner surface of the housing around the repeater main board to generate horizontal polarization.
    상기 서비스안테나는 대응되는 4개의 제5,제6,제7,제8 방사소자, 일단은 상기 제5,제6,제7,제8 방사소자의 상면과 하면에 연결되며 타단은 이동국단 듀플렉서와 연결되는 마이크로스트립형태의 급전선을 포함하여 이루어져 중계기 본체기판을 중심으로 하우징의 내부 타면에 부착되어 수직 편파를 발생시키는 서비스안테나,The service antenna has four corresponding fifth, sixth, seventh and eighth radiating elements, one end of which is connected to the top and bottom surfaces of the fifth, sixth, seventh and eighth radiating elements, and the other end of the mobile station duplexer. Service antenna that includes a feed strip of the microstrip type connected to the main body substrate attached to the inner surface of the housing to generate a vertical polarization,
    상기 도너안테나 및 서비스안테나와 각 듀플렉서 사이에 위치한 RF 스위치를 통하여 확장 안테나와 연결하는 외부확장용 도너안테나 포트 및 서비스안테나 포트, 및 An external extension donor antenna port and a service antenna port for connecting to an extension antenna through an RF switch located between the donor antenna and the service antenna and each duplexer; and
    궤환간섭신호를 제거하는 수단을 구비한 디지털 신호처리부에 연결되어 설치시 고주파신호의 전파방향에 따라 안테나의 지향 방향을 조정하기 위한 입력 레벨 및 격리도 인디케이터를 포함하여 이루어지는 것을 특징으로 하는 궤환간섭신호를 제거하는 일체형 중계기.Feedback interference signal comprising an input level and isolation indicator for adjusting the directing direction of the antenna in accordance with the propagation direction of the high frequency signal when connected to a digital signal processing unit having means for removing the feedback interference signal. Integral repeater to remove the.
  2. 제 1항에 있어서,The method of claim 1,
    상기 제1,제2,제3,제4 방사소자 및 제5,제6,제7,제8 방사소자의 형태는 원형인 것을 특징으로 하는 궤환간섭신호를 제거하는 일체형 중계기.And the first, second, third, and fourth radiating elements and the fifth, sixth, seventh, and eighth radiating elements have a circular shape.
  3. 제 1항에 있어서, The method of claim 1,
    상기 도너안테나 및 서비스안테나의 각 방사소자에 연결되는 급전선의 길이를 달리하여 180도 위상전이 시킴으로서 안테나간 격리도를 확보하는 것을 특징으로 하는 궤환간섭신호를 제거하는 일체형 중계기.Integrated repeater to remove the feedback interference signal to ensure the isolation between the antenna by performing a 180-degree phase shift by varying the length of the feed line connected to each radiating element of the donor antenna and the service antenna.
  4. 제 1항에 있어서,The method of claim 1,
    상기 궤환간섭신호를 제거하는 수단을 구비한 디지털 신호처리부는 A digital signal processor having means for removing the feedback interference signal
    A/D변환기의 출력신호와 D/A변환기의 입력신호의 상관관계를 이용하여 구한 궤환신호의 지연시간 및 진폭을 이용하여 초기 탭계수를 설정하고, 상기 초기 탭계수의 수렴상태를 판단하여 격리도를 검출하는 궤환신호 지연시간 및 격리도 검출부,The initial tap coefficient is set using the delay time and amplitude of the feedback signal obtained by using the correlation between the output signal of the A / D converter and the input signal of the D / A converter, and the convergence state of the initial tap coefficient is determined. Feedback signal delay time and isolation detector for detecting
    상기 궤환신호 지연시간 및 격리도 검출부에서 검출된 각 궤환신호의 지연시간을 갖는 기준신호를 생성하여 적응형 필터 서브 블록 연산부에 출력함으로써 궤환신호가 있는 지연시간에만 적응형 필터의 서브 블록을 할당하는 출력신호 지연부, A reference signal having a delay time of each feedback signal detected by the feedback signal delay time and the isolation detector is generated and outputted to an adaptive filter subblock calculator to allocate a subblock of the adaptive filter only to the delay time of the feedback signal. Output signal delay unit,
    상기 궤환신호 지연시간 및 격리도 검출부의 초기 탭계수를 서브블록의 탭계수로 설정한 후 적응형 필터계수를 갱신하는 적응형 필터 서브 블록 갱신부,An adaptive filter sub-block updating unit for updating the adaptive filter coefficient after setting the initial tap coefficient of the feedback signal delay time and the isolation detection unit as the tap coefficient of the sub-block;
    상기 적응형 필터 서브 블록 갱신부에서 갱신된 필터계수와 상기 출력신호 지연부에서 출력되는 기준신호를 승산하여 할당된 서브 블록별로 궤환신호를 생성하는 적응형 필터 서브 블록 연산부,An adaptive filter subblock calculator configured to generate a feedback signal for each allocated subblock by multiplying the filter coefficient updated by the adaptive filter subblock updater and a reference signal output from the output signal delay unit;
    상기 적응형 필터 서브 블록 연산부에서 서브 블록별로 생성된 상기 궤환 신호들을 가산하여 최종 궤환신호를 생성하는 궤환신호 생성부, 및A feedback signal generator for generating a final feedback signal by adding the feedback signals generated for each subblock in the adaptive filter subblock calculator;
    상기 궤환신호 생성부에서 생성된 최종 궤환신호와 상기 A/D변환기의 출력신호를 감산하여 원신호를 검출하는 원신호 검출부를 포함하여 이루어지는 것을 특징으로 하는 궤환간섭신호를 제거하는 일체형 중계기.And an original signal detector configured to subtract the final feedback signal generated by the feedback signal generator and the output signal of the A / D converter to detect the original signal.
  5. 제 1항에 있어서,The method of claim 1,
    중계기 본체기판을 보호하기 위한 상기 하우징의 외부는 중계기 설치물에 중계기를 수평방향으로 고정시킬 수 있는 제1브라킷, 및 설치물에 중계기를 수직방향으로 고정시킬 수 있는 제2브라킷을 포함하여 이루어지는 것을 특징으로 하는 궤환간섭신호를 제거하는 일체형 중계기. The outside of the housing for protecting the repeater body substrate is characterized in that it comprises a first bracket for fixing the repeater in the horizontal direction to the repeater installation, and a second bracket for fixing the repeater in the vertical direction to the installation Integrated repeater to remove the feedback interference signal.
  6. 중계기 본체기판을 보호하기 위한 하우징의 외부는 중계기 설치물에 중계기를 수평방향으로 고정시킬 수 있는 제1브라킷 또는 설치물에 중계기를 수직방향으로 고정시킬 수 있는 제2브라킷 이용하여 수평 또는 수직으로 설치되는 제1궤환간섭신호를 제거하는 일체형 중계기,The outside of the housing for protecting the repeater main board is installed horizontally or vertically by using a first bracket that can fix the repeater to the repeater installation in the horizontal direction or a second bracket that can fix the repeater to the installation in the vertical direction. Integrated repeater to remove 1 feedback interference signal,
    설치된 상기 제1궤환간섭신호를 제거하는 일체형 중계기와 수평 또는 수직이 교차되도록 설치되는 제2궤환간섭신호를 제거하는 일체형 중계기, 및An integrated repeater for removing the first feedback interference signal installed to remove the second feedback interference signal installed so as to intersect horizontally or vertically;
    상기 제1궤환간섭신호를 제거하는 일체형 중계기 및 상기 제2궤환간섭신호를 제거하는 일체형 중계기가 수평 또는 수직이 교차되도록 반복 설치되어 도너안테나와 서비스안테나간 격리도를 확보하고 전파음영지역을 해소하는 것을 특징으로 하는 궤환간섭신호를 제거하는 일체형 중계기를 이용한 다단 중계시스템.The integrated repeater for removing the first feedback interference signal and the integrated repeater for removing the second feedback interference signal are repeatedly installed so as to intersect horizontally or vertically to secure the isolation between the donor antenna and the service antenna and to solve the radio shade region. Multi-stage relay system using an integrated repeater to remove the feedback interference signal.
  7. 제 6항에 있어서,The method of claim 6,
    상기 제1궤환간섭신호를 제거하는 일체형 중계기와 상기 제2궤환간섭신호를 제거하는 일체형 중계기 사이에 전파 가시거리(Line Of Sight)가 확보되지 않은 경우 외부확장용 도너안테나 포트 또는 서비스안테나 포트를 이용하여 수직 또는 수평 편파를 발생하는 확장 안테나를 연결함으로써 전파 가시거리를 확보하는 것을 특징으로 하는 궤환간섭신호를 제거하는 일체형 중계기를 이용한 다단 중계시스템.When the line of sight is not secured between the integrated repeater for removing the first feedback interference signal and the integrated repeater for removing the second feedback interference signal, an external extension donor antenna port or a service antenna port is used. Multi-stage relay system using an integrated repeater to remove the feedback interference signal, characterized in that to secure the visible line of sight by connecting the expansion antenna for generating a vertical or horizontal polarization.
  8. 제 6항에 있어서,The method of claim 6,
    상기 제1, 제2궤환간섭신호를 제거하는 일체형 중계기 설치시 고주파신호의 전파방향에 따라 안테나의 지향 방향을 조정하기 위한 입력 레벨 및 격리도 인디케이터로 표시되는 정보를 이용하는 것을 특징으로 하는 궤환간섭신호를 제거하는 일체형 중계기를 이용한 다단 중계시스템.Feedback interference signal, characterized in that using the information displayed by the input level and isolation indicator for adjusting the directing direction of the antenna according to the propagation direction of the high frequency signal when installing the integrated repeater to remove the first and second feedback interference signal Multi-stage relay system using an integrated repeater to remove the.
PCT/KR2010/006957 2009-10-12 2010-10-12 Unitary repeater for cancelling feedback interference signals and cascade relay system using same WO2011046339A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0096790 2009-10-12
KR1020090096790A KR100954141B1 (en) 2009-10-12 2009-10-12 Unified communication repeater with cancelling interference signal and cascade relay system using thereof

Publications (3)

Publication Number Publication Date
WO2011046339A2 true WO2011046339A2 (en) 2011-04-21
WO2011046339A9 WO2011046339A9 (en) 2011-08-11
WO2011046339A3 WO2011046339A3 (en) 2011-09-29

Family

ID=42220195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006957 WO2011046339A2 (en) 2009-10-12 2010-10-12 Unitary repeater for cancelling feedback interference signals and cascade relay system using same

Country Status (2)

Country Link
KR (1) KR100954141B1 (en)
WO (1) WO2011046339A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10033999B2 (en) 2011-06-24 2018-07-24 Dolby International Ab Method of coding and decoding images, coding and decoding device and computer programs corresponding thereto
US10382784B2 (en) 2011-03-07 2019-08-13 Dolby International Ab Method of coding and decoding images, coding and decoding device and computer programs corresponding thereto

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101470441B1 (en) * 2014-07-10 2014-12-12 주식회사알에프윈도우 Portable ICS Repeater for Cascade RF Connect

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060099846A (en) * 2005-03-15 2006-09-20 주식회사 케이티프리텔 Apparatus and method for removing interference noise of rf repeater system
WO2007078032A1 (en) * 2006-01-02 2007-07-12 Dong-Sik Choi Interference cancellation repeater
US20080125033A1 (en) * 2006-11-24 2008-05-29 Rf Window Co., Ltd. Radio Frequency Repeater for Cancelling Feedback Interference Signal with Built In Antenna
KR20080056358A (en) * 2006-12-18 2008-06-23 (주) 기산텔레콤 Wireless communication repeater and method for controlling isolation insurance in the wireless communication repeater

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010001092A (en) * 1999-06-01 2001-01-05 구관영 Interference Cancellation System of Repeater by using Dual Polarization Antenna
KR20060019478A (en) * 2004-08-27 2006-03-03 주식회사 케이티 Apparatus and method for interfacing base station to repeater
KR100753532B1 (en) * 2005-08-04 2007-08-30 한국전자통신연구원 Dual Polarization Isolation Antenna
KR200407800Y1 (en) 2005-11-24 2006-02-03 주식회사 브로던 single unit a antenna and transponder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060099846A (en) * 2005-03-15 2006-09-20 주식회사 케이티프리텔 Apparatus and method for removing interference noise of rf repeater system
WO2007078032A1 (en) * 2006-01-02 2007-07-12 Dong-Sik Choi Interference cancellation repeater
US20080125033A1 (en) * 2006-11-24 2008-05-29 Rf Window Co., Ltd. Radio Frequency Repeater for Cancelling Feedback Interference Signal with Built In Antenna
KR20080056358A (en) * 2006-12-18 2008-06-23 (주) 기산텔레콤 Wireless communication repeater and method for controlling isolation insurance in the wireless communication repeater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10382784B2 (en) 2011-03-07 2019-08-13 Dolby International Ab Method of coding and decoding images, coding and decoding device and computer programs corresponding thereto
US10681376B2 (en) 2011-03-07 2020-06-09 Dolby International Ab Method of coding and decoding images, coding and decoding device and computer programs corresponding thereto
US11343535B2 (en) 2011-03-07 2022-05-24 Dolby International Ab Method of coding and decoding images, coding and decoding device and computer programs corresponding thereto
US11736723B2 (en) 2011-03-07 2023-08-22 Dolby International Ab Method of coding and decoding images, coding and decoding device and computer programs corresponding thereto
US10033999B2 (en) 2011-06-24 2018-07-24 Dolby International Ab Method of coding and decoding images, coding and decoding device and computer programs corresponding thereto
US10362311B2 (en) 2011-06-24 2019-07-23 Dolby International Ab Method of coding and decoding images, coding and decoding device and computer programs corresponding thereto
US10694186B2 (en) 2011-06-24 2020-06-23 Dolby International Ab Method of coding and decoding images, coding and decoding device and computer programs corresponding thereto

Also Published As

Publication number Publication date
WO2011046339A9 (en) 2011-08-11
WO2011046339A3 (en) 2011-09-29
KR100954141B1 (en) 2010-04-20

Similar Documents

Publication Publication Date Title
WO2020032666A1 (en) Method and apparatus for measuring remote cross-link interference
WO2018021865A1 (en) Method for reporting channel state information by terminal in wireless communication system and device for supporting same
US6745003B1 (en) Adaptive cancellation for wireless repeaters
US5854986A (en) Cellular communication system having device coupling distribution of antennas to plurality of transceivers
WO2016153204A1 (en) Apparatus and method for operating full-duplex scheme in communication system supporting beam-forming scheme
WO2019050197A1 (en) Method for receiving ssb according to sync raster, and user equipment
WO2018030875A1 (en) Method for transmitting analog beam-related information in wireless communication system, and entity using method
WO2017082632A1 (en) Method and device for providing coordinated communication of plurality of base stations in communication system to which beanforming is applied
WO2017007292A1 (en) Method and apparatus for calibration in radio frequency module
WO2018169278A1 (en) Method for performing random access procedure between terminal and base station in wireless communication system, and device supporting same
WO2017115925A1 (en) Main unit and distributed antenna system comprising same
US20160156381A1 (en) Leakage cancellation a multiple-input multiple-output transceiver
WO2011046339A9 (en) Unitary repeater for cancelling feedback interference signals and cascade relay system using same
WO2017171120A1 (en) Base station signal matching device, and base station interface unit and distributed antenna system comprising same
WO2017034131A1 (en) Method and apparatus for performing handover in inter-vehicle communication system
WO2022050690A1 (en) High-performance mobile communication antenna device
WO2012165823A2 (en) Repeater
KR100363216B1 (en) Multi-path repeating method for wireless communiction system and apparatus thereof
WO2017074101A1 (en) Method and device for transmitting and receiving signals
KR20010001092A (en) Interference Cancellation System of Repeater by using Dual Polarization Antenna
KR100544227B1 (en) Interference signal cancellation system and relay system therefor
WO2021071140A1 (en) Antenna device implementing spatial-polarization separation of beams using quad-polarized antenna module array
WO2011043600A2 (en) System and method for cancelling interference signals using digital signal processing
KR100632833B1 (en) Installation for remove passive intermodulation distortion signal
KR101973669B1 (en) Apparatus and method to remove PIM for mobile telecommunications system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC OF 170712

122 Ep: pct application non-entry in european phase

Ref document number: 10823578

Country of ref document: EP

Kind code of ref document: A2