WO2011046160A1 - ウイルスの感染を抑制する物質のスクリーニング方法およびウイルス感染抑制剤 - Google Patents

ウイルスの感染を抑制する物質のスクリーニング方法およびウイルス感染抑制剤 Download PDF

Info

Publication number
WO2011046160A1
WO2011046160A1 PCT/JP2010/068010 JP2010068010W WO2011046160A1 WO 2011046160 A1 WO2011046160 A1 WO 2011046160A1 JP 2010068010 W JP2010068010 W JP 2010068010W WO 2011046160 A1 WO2011046160 A1 WO 2011046160A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
polypeptide
virus
seq
ras
Prior art date
Application number
PCT/JP2010/068010
Other languages
English (en)
French (fr)
Inventor
雄介 大場
忠昭 宮崎
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Publication of WO2011046160A1 publication Critical patent/WO2011046160A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • C12Q1/485Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving kinase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/82Translation products from oncogenes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/912Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • G01N2333/91205Phosphotransferases in general
    • G01N2333/9121Phosphotransferases in general with an alcohol group as acceptor (2.7.1), e.g. general tyrosine, serine or threonine kinases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/02Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)

Definitions

  • the present invention relates to a screening method for a substance that suppresses viral infection and a viral infection inhibitor, and in particular, a screening method for a substance that suppresses infection of a virus that can be infected by endocytosis independent of clathrin, which depends on clathrin.
  • the present invention relates to a virus infection inhibitor for viruses that can be infected by endocytosis, and a virus infection inhibitor for viruses that can be infected by endocytosis.
  • a virus is a micro structure that has either DNA or RNA as a genome without using a cell as a structural unit, and propagates only in the host cell, and propagates using the metabolic system in the host cell.
  • a disease that sometimes acts as a pathogen and is caused in the host as a result of virus propagation is called a viral infection.
  • Various viral infections include, for example, cold caused by rhinovirus, influenza caused by influenza virus, acquired immunodeficiency syndrome caused by human immunodeficiency virus (AIDS), herpes simplex caused by herpes simplex virus, cancer caused by tumor virus, etc. There is something.
  • Viruses can be propagated in the following ways: I “Adsorption onto the cell surface”, II “Invasion into cells”, III “Hulling”, IV “Synthesis of viral parts such as viral genomes and viral proteins”, V “Assembly of viral parts” , VI “Release from cell” is performed through steps I to VI. Therefore, research and development of various viral infection therapeutic agents and viral infection prevention / inhibitors have been conducted with these steps as attack targets.
  • a vaccine that is typical as a viral infection prevention / inhibitor or a viral infection treatment agent is used to acquire immunity by incorporating attenuated or inactivated virus into a host, and using this to obtain immunity.
  • the steps are I “Adsorption onto the cell surface”, II “Invasion into cells”, or VI “Release from cells”.
  • DNaseX protein disclosed in Japanese Patent Application Laid-Open No. 2008-253188 suppresses the incorporation of a viral gene into a host, and the peptide disclosed in Japanese Patent Application Laid-Open No. 2007-16044 can be integrated into a retrovirus.
  • Each of the IV “synthesis of viral components such as viral genomes and viral proteins” step is attacked by inhibiting the enzyme (Patent Document 1 and Patent Document 2).
  • influenza is known as a typical viral infection.
  • oseltamivir (trade name Tamiflu; Roche) that attacks the VI "release from cells” step by inhibiting the action of the enzyme neuraminidase present on the surface of influenza as an anti-influenza treatment agent and an influenza virus infection prevention / inhibitor.
  • zanamivir (trade name Relenza; GlaxoSmithKline), as well as amantadine (trade name Symmetrel; Novartis Pharma Co., Ltd.) that attacks the M2 protein of influenza virus to attack the III “dehulling” step.
  • amantadine (trade name Symmetrel; Novartis Pharma Co., Ltd.) that attacks the M2 protein of influenza virus to attack the III “dehulling” step. .
  • Patent Document 1 Although the viral infection prevention / inhibitor disclosed in Patent Document 1 has been shown to promote the degradation of foreign genes, it has not been confirmed whether or not it actually inhibits viral infection. The infection inhibitory effect is unknown.
  • the seasonal influenza vaccine currently used in Japan is unstable every year because a vaccine against a strain that is expected to be epidemic in Japan is prepared based on the information on the preceding epidemic strain in Australia. When this prediction is wrong or when a mutant occurs, it becomes difficult to cope with it.
  • the present invention has been made to solve the above-mentioned problems, and is capable of suppressing virus infection without being affected by changes on the virus side such as the appearance of subtypes and mutants.
  • rat sarcoma (Ras) protein and Phosphoinoside 3-kinase (PI3K) protein which are factors on the host cell side, form a complex and exist on the endosome. Inhibits virus infection by phosphorus-independent endocytosis and inhibits the formation of complexes between Ras and PI3K proteins or the presence of complexes formed by these proteins on endosomes Or by inhibiting the activity of the PI3K protein, it has been found that infection of a virus that can be infected by endocytosis independent of clathrin can be suppressed.
  • PI3K Phosphoinoside 3-kinase
  • a screening method for a substance that suppresses infection of a virus that can be infected by endocytosis independent of clathrin comprising ratrasarcoma (Ras) protein capable of binding to Phosphoinoside 3-kinase (PI3K) protein, and PI3K
  • ratrasarcoma Ros (Ras) protein capable of binding to Phosphoinoside 3-kinase (PI3K) protein
  • PI3K Phosphoinoside 3-kinase
  • the method comprising: coexisting with a substance; and evaluating whether the target substance has the ability to bind to the polypeptide; (I) a polypeptide comprising the amino acid sequence of SEQ ID NO: 30, (Ii) Ras protein when it is a polypeptide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 30, and constitutes a part of PI3K protein A polypeptide capable of causing a complex formed by phosphoprotein and PI3K protein to exist on the endosome, (Iii) a polypeptide consisting of the amino acid sequence of SEQ ID NO: 42, (Iv) a Ras protein when it is a polypeptide comprising an amino acid sequence in which
  • a virus infection-inhibiting agent that can be infected by endocytosis independent of clathrin, which comprises a substance that inhibits the binding of Phosphoinosideide 3-kinase (PI3K) protein and rat sarcoma (Ras) protein as an active ingredient A virus infection inhibitor.
  • PI3K Phosphoinosideide 3-kinase
  • Ras rat sarcoma
  • the viral infection inhibitor according to (10), wherein the substance that inhibits the activity of rat sarcoma (Ras) protein is a polypeptide of the following (i) and / or (ii); (I) a polypeptide comprising the amino acid sequence of SEQ ID NO: 19, (Ii) A polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 19, and which binds to a guanine nucleotide exchange factor.
  • the substance that inhibits the binding of Phosphoinoside 3-kinase (PI3K) protein and rat sarcoma (Ras) protein is one or more polypeptides selected from the following (i) to (vi): ) Or the viral infection inhibitor according to (9); (I) a polypeptide comprising the amino acid sequence of SEQ ID NO: 13, (Ii) a polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 13, and which binds to a Ras protein, (Iii) a polypeptide consisting of the amino acid sequence of SEQ ID NO: 32, (Iv) A polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 32, and which binds to a Ras protein.
  • V a polypeptide consisting of the amino acid sequence of SEQ ID NO: 58
  • Vi A polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 58, and which binds to a Ras protein.
  • a virus infection inhibitor capable of being infected by endocytosis independent of clathrin, comprising one or more polypeptides selected from the following (i) to (iv) as active ingredients: Infection inhibitor; (I) a polypeptide comprising the amino acid sequence of SEQ ID NO: 30, (Ii) A polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 30, and a complex formed by a Ras protein and a PI3K protein A polypeptide that inhibits its presence on the endosome, (Iii) a polypeptide consisting of the amino acid sequence of SEQ ID NO: 42, (Iv) A polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 42, and a complex formed by Ras protein and PI3K protein A polypeptide that inhibits its presence on endosomes.
  • a virus infection inhibitor which is a virus infection inhibitor capable of being infected by endocytosis independent of clathrin, and which comprises a substance that suppresses the activity of PI3K protein as an active ingredient.
  • a viral infection inhibitor capable of being infected by endocytosis, a substance that suppresses endocytosis independent of clathrin and a substance that suppresses clathrin-dependent endocytosis
  • a virus infection inhibitor comprising
  • the substance that suppresses endocytosis independent of clathrin is one or more substances and / or polypeptides selected from the following (i) to (vi): Infection inhibitor; (I) a substance that inhibits the binding of Phosphoinoside 3-kinase (PI3K) protein and rat sarcoma (Ras) protein; (Ii) a polypeptide consisting of the amino acid sequence of SEQ ID NO: 30, (Iii) A polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 30, and a complex formed by a Ras protein and a PI3K protein A polypeptide that inhibits its presence on the endosome, (Iv) a polypeptide consisting of the amino acid sequence of SEQ ID NO: 42, (V) a polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and /
  • rat sarcoma (Ras) protein is a polypeptide of the following (i) and / or (ii); (I) a polypeptide comprising the amino acid sequence of SEQ ID NO: 19, (Ii) A polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 19, and which binds to a guanine nucleotide exchange factor.
  • the substance that inhibits the binding of Phosphoinoside 3-kinase (PI3K) protein and rat sarcoma (Ras) protein is one or more polypeptides selected from the following (i) to (vi): ) Viral infection inhibitor (I) a polypeptide comprising the amino acid sequence of SEQ ID NO: 13, (Ii) A polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 13, and which binds to a Ras protein.
  • (Iii) a polypeptide consisting of the amino acid sequence of SEQ ID NO: 32
  • (Iv) A polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 32, and which binds to a Ras protein.
  • (V) a polypeptide consisting of the amino acid sequence of SEQ ID NO: 58
  • (Vi) A polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 58, and which binds to a Ras protein.
  • a substance capable of suppressing infection for a long period of time against a wide range of virus strains without being affected by changes on the virus side such as the appearance of subtypes and mutants is screened. be able to.
  • the virus infection inhibitor which concerns on this invention the infection of the virus which can be infected by endocytosis which is not dependent on clathrin, and / or the virus which can be infected by endocytosis can be suppressed.
  • H-Ras introduction group MEF cell group in which pCXN2-H-Ras-IRES-EGFP is introduced and PR8 virus is inoculated
  • MEF cell group in which pCXN2-H-RasS17N-IRES-EGFP is introduced and PR8 virus is inoculated Expression of H-Ras or H-RasS17N in (H-RasS17N introduction group) was observed by EGFP fluorescence (green), PR8 virus nucleoprotein was observed by AlexaFluor 594 fluorescence (red), and these FIG.
  • FIG. 8 shows the result of superimposing the above (the upper diagram), and the MEF cell group inoculated with PR8 virus without introducing H-Ras and H-RasS17N (control group), H-Ras introduced group, and H-RasS17N introduced Over 30 MEF cells in each group
  • an arrow indicates a cell expressing H-RasS17N protein. It is a restriction map of pIRM21-3HA (8069 bp).
  • the fluorescence intensity of the granular structure per cell is converted into the amount of dextran uptake. It is the graph which expressed.
  • the fluorescence intensity of the granular structure per cell is converted into the transferrin uptake amount. It is the graph which expressed. Expression of ECFP gene introduced using FuGene HD Transfection Reagent and Nucleofector is observed for wild-type MEF cell group, PI3KCG-deficient MEF cell group, PI3KCG-introduced MEF cell group, K251E-introduced MEF cell group and LY294002-added MEF cell group, respectively.
  • the locations of PI3KCG protein and K251E protein in the cells were observed with AlexaFluor 647 fluorescence (red purple), the location of H-Ras protein in the cells was observed with EGFP fluorescence (green), and EEA1 intracellular It is a figure which shows the result of having observed the presence location by the fluorescence (red) of AlexaFluor594. It is a figure which shows the viral infection rate at the time of inoculating a wild type MEF cell group, a LY294002 addition MEF cell group, a PI3KCG deficient MEF cell group, a PI3KCG introduction MEF cell group, and a K251E introduction MEF cell group.
  • the photo on the right side of the petri dish shows the plaque that appeared after the plaque assay.
  • the enclosed value is the average value of the fluorescence intensity of the granular structure per cell in each group. It is a figure which shows the virus infection rate at the time of inoculating a control group, a LY294002 addition MEF cell group, a 1 micromol addition MEF cell group, a 10 micromol addition MEF cell group, and a 100 micromol addition MEF cell group. It is a figure which shows the phylogenetic tree created by the neighborhood joint method about the amino acid sequence of RBD of PI3KCG protein, c-Raf1 protein, and RalGDS protein.
  • N28 polypeptide After introducing the vector into which the cDNA of N28 polypeptide was inserted, in MDCK cells inoculated with PR8 virus, expression of N28 polypeptide was observed by AlexaFluor 647 fluorescence (red purple), and PR8 virus nucleoprotein was analyzed by AlexaFluor488 fluorescence ( It is a figure which shows the result observed by green). It is a restriction map of pCAGGS-ECFP-H-RasG12V (6170 bp).
  • a screening method for a substance that suppresses infection of a virus according to the present invention is a screening method for a substance that suppresses infection of a virus that can be infected by endocytosis independent of clathrin, (I) a step in which a Ras protein capable of binding to a PI3K protein, a PI3K protein or RBD that is a Ras binding region thereof and a target substance coexist (Ras-PI3K / RBD coexistence step), (Ii) a step of evaluating whether or not the target substance has the ability to inhibit the binding between Ras protein and PI3K protein or RBD (Ras-PI3K / RBD binding inhibition ability evaluation step); The above steps (i) and (ii) are included.
  • a complex formed by the Ras protein and the PI3K protein is present on the endosome by binding the RBD of the PI3K protein and the Ras protein capable of binding thereto.
  • a substance that inhibits the formation of the complex that is, a substance that suppresses the infection of the virus, based on the knowledge that the virus is infected by endocytosis independent of clathrin. Screening method.
  • Phosphoinosideide 3-kinase (PI3K) protein is an enzyme that phosphorylates the hydroxyl group at the 3-position of inositol ring of inositol phospholipid.
  • the PI3K protein is a PI3K protein that can bind to a Ras protein.
  • Examples of such a PI3K protein include PI3K proteins having a Ras binding domain belonging to a class such as class IA, class IB, and class II. Can be mentioned.
  • examples of the catalytic subunit of class IA-PI3K protein include p110 ⁇ (PI3KCA protein), p110 ⁇ (PI3KCB protein), p110 ⁇ (PI3KCD protein), and the regulatory subunit includes For example, p85 ⁇ (PI3KR1 protein), p55 ⁇ (PI3KR1 protein), p50 ⁇ (PI3KR1 protein), p85 ⁇ (PI3KR2 protein), p55 ⁇ (PI3KR3 protein) and the like can be mentioned.
  • examples of the class IB-PI3K protein catalytic subunit include p110 ⁇ (PI3KCG protein), and examples of the control subunit include p101 and p84.
  • examples of class II-PI3K proteins include C2 ⁇ (PI3KC2A protein), C2 ⁇ (PI3KC2B protein), C2 ⁇ (PI3KC2G protein), and the like.
  • rat sarcoma (Ras) protein is a small molecule with a molecular weight of about 21 kDa having a site where GTP or GDP binds and an effector domain that interacts with other signal transduction factors such as PI3K protein, c-Raf1 protein, and RalGDS protein. It is a kind of GTP binding protein.
  • the Ras protein functions as a switch for intracellular signal transduction by reversibly taking two structures, an inactive form bound to GDP and an active form bound to GTP.
  • GEF guanine nucleotide exchange factor
  • GAP GTPase activating protein
  • the Ras protein is a Ras protein that can bind to the PI3K protein.
  • the K-Ras protein and the N-Ras protein having the same effector domain as that of the H-Ras protein And so on.
  • the homology of the amino acid sequences of H-Ras protein, K-Ras protein and N-Ras protein is shown in FIG. In FIG. 1, the effector domains correspond to the 32nd to 40th positions.
  • Endocytosis is a general term for a system in which cells generally take in substances from the outside world by vesicularization and fusion of cell membranes. Endocytosis depends on the type and size of the substance to be taken up and the cellular equipment involved, depending on macropinocytosis, clathrin-independent endocytosis, clathrin-dependent endocytosis. Cathrin-mediated endocytosis, Caveola-dependent endocytosis, Cholesterol-dependentpendocytosis, dynamin-2-dependentosendocytosis And so on (FIG. 2; Marsh et al., Cell, 134, 729, 2009).
  • endocytosis can be classified into receptor-dependent endocytosis and receptor-independent endocytosis depending on whether or not it occurs by stimulation of a receptor protein present in the cell membrane.
  • the former includes endocytosis corresponding to clathrin-mediated endocytosis and caveolae dependent endocytosis in the above classification
  • the latter includes Includes phagocytosis and phagocytosis (pinocytosis), etc., corresponding to clathrin-independent endocytosis and macropinocytosis in the above classification .
  • a virus that can be infected by endocytosis includes a virus that can be infected by clathrin-independent endocytosis, clathrin-mediated endocytosis. ), A virus infectable by Macropinocytosis, a virus infectable by Caveola-dependent endocytosis, a cholesterol-dependent endocytosis Viruses that can be infected by Capable of infecting viruses encompassed by dynamin 2 dependent endocytosis (Dynamin-2-dependent endocytosis).
  • viruses that can be infectious (infectious) by endocytosis include, for example, influenza virus, HIV virus, coronavirus, simian virus 40, vaccinia virus, Newcastle disease virus, herpes virus, Ebola virus, Examples include poliovirus, Coxsackievirus type B (CVB), rice dwarf virus, hepatitis C virus, and the like.
  • influenza virus HIV virus
  • coronavirus coronavirus
  • simian virus 40 vaccinia virus
  • Newcastle disease virus Newcastle disease virus
  • herpes virus herpes virus
  • Ebola virus examples include poliovirus, Coxsackievirus type B (CVB), rice dwarf virus, hepatitis C virus, and the like.
  • CVB Coxsackievirus type B
  • rice dwarf virus hepatitis C virus
  • a virus that can be infected by endocytosis independent of clathrin refers to an infection caused by endocytosis, excluding a virus that is exclusively infected by clathrin-mediated endocytosis.
  • Possible (infectious) viruses ie, those that can be infectious (infectious) by clathrin-independent endocytosis, those that can be infected by macropinocytosis (infection) Virus, which can be infected by caveolae-dependent endocytosis (sensation) Virus, infectable by cholesterol-dependent endocytosis, infectious by dynamin-2-dependent endocytosis Viruses (having infectivity) are included.
  • virus that can be infected by endocytosis independent of clathrin having infectivity
  • the virus that can be infected by clathrin-independent endocytosis (infectivity) Viruses
  • viruses that can be infected by Macropinocytosis infectious
  • viruses that can be infected by Caveolar-dependent endocytosis infectious
  • cholesterol-dependent Dynamin-2 an infectious virus that can be infected by cholesterol-dependent endocytosis Possible infection (infectious with) can be mentioned virus by presence endocytosis (Dynamin-2-dependent endocytosis).
  • a virus capable of being infected by clathrin-independent endocytosis and / or macropinocytosis such viruses include, for example, influenza viruses, HIV virus, coronavirus, simian virus 40, vaccinia virus, Newcastle disease virus and the like.
  • influenza viruses can be infected by endocytosis. That is, the “virus infectable by endocytosis” or the “virus infectable by clathrin-independent endocytosis” in the present invention is a virus that can be infected by membrane fusion (having infectivity). Are also included if they are viruses that can be infected by endocytosis or viruses that can be infected by endocytosis independent of clathrin (having infectivity).
  • the infection rate generally refers to an amount of a specimen that gives an infection rate of 50% when a specimen containing an infectious microorganism is inoculated into an equal amount of cultured cells, and is referred to as “TCID50 (tissue cult infective dose)”. It is represented by
  • “suppressing infection” is used interchangeably with “preventing infection”, “preventing infection”, and “inhibiting infection”. Further, “suppressing activity” is used interchangeably with “inhibiting activity”.
  • the Ras protein capable of binding to the PI3K protein and the method of allowing the PI3K protein or its RBD and the target substance to coexist use methods that can be appropriately selected by those skilled in the art. be able to.
  • a method of coexisting by preparing a solution of Ras protein and PI3K protein or its RBD and a target substance, or a carrier on which Ras protein is immobilized, PI3K protein or its RBD and a target substance The method of making it coexist by immersing in the solution containing these can be mentioned.
  • Ras protein, PI3K protein or RBD thereof and a target substance can be bound to a carrier or labeled with a labeling substance, if necessary.
  • carriers include plates such as microplates, test tubes, tubes, beads, balls, filters, membranes, cellulose carriers, agarose carriers, polyacrylamide carriers, dextran carriers, polystyrene carriers, polyvinyls.
  • Biologicals including soluble carriers such as alcohol carriers, polyamino acid carriers, insoluble carriers such as porous silica carriers, bovine serum albumin (BSA), glutathione-s-transferase, maltose binding protein (MBP)
  • BSA bovine serum albumin
  • carrier etc. can be mentioned,
  • carrier can use the method which those skilled in the art can select suitably according to the kind.
  • labeling substances that can be used include colored particles, enzymes, fluorescent substances, and isotopes.
  • the binding between Ras protein and PI3K protein or RBD means that the Ras protein and PI3K protein or RBD are hydrogen-bonded or ion-bonded. , Non-covalent bond by hydrophobic bond or van der Waals bond.
  • a method for confirming the binding between Ras protein and PI3K protein or RBD in step (ii) (Ras-PI3K / RBD binding inhibition ability evaluation step)
  • a method that can be appropriately selected by those skilled in the art can be used.
  • a co-immunoprecipitation method for example, a pull-down method using a column or beads, ELISA (enzyme-linked immunosorbent assay), BIACORE, fluorescence resonance energy transfer (FluorescenceFResonance Transfer; FRET) was used.
  • FRET fluorescence resonance energy transfer
  • FRET is a phenomenon in which excitation energy moves directly between two adjacent fluorescent materials not by electromagnetic waves but by electron resonance, and the other molecule is absorbed by the energy of light absorbed by one molecule (donor).
  • donor a phenomenon in which fluorescence is emitted from (acceptor). That is, when two fluorescent substances are close to each other, when excited with light corresponding to the absorption spectrum of the donor, fluorescence according to the emission spectrum of the acceptor, not the donor, appears.
  • Ras protein and PI3K protein or RBD When FRET is used as a method for confirming the binding between Ras protein and PI3K protein or RBD, for example, as shown in the upper part of FIG. 3, two different fluorescent proteins are connected to Ras protein and PI3K protein or RBD, respectively, and Ras protein It can be carried out by confirming whether or not the fluorescence of FRET observed by the binding of P3K to PI3K protein or RBD decreases when the target substance coexists.
  • Ras protein and PI3K protein or RBD may be connected to form one polypeptide, and two different fluorescent proteins may be connected to each domain.
  • fluorescent proteins examples include blue-green fluorescent protein (CFP) and yellow fluorescent protein (YFP).
  • a different aspect of the method for screening a substance that suppresses virus infection is a method for screening a substance that suppresses infection of a virus that can be infected by endocytosis independent of clathrin, (I) a step of coexisting one or two or more polypeptides selected from the following (a) to (d) with a target substance (polypeptide coexistence step); (A) the amino acid sequence of SEQ ID NO: 30 (b) a polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 30, and the PI3K protein A polypeptide capable of causing a complex PI3K protein formed by Ras protein and PI3K protein when part of it is present on an endosome (c) amino acid sequence of SEQ ID NO: 42 (d) one or more in SEQ ID NO: 42 A complex PI3K formed of a Ras protein and a PI3K protein when the poly
  • the RBD of PI3K protein and the Ras protein that can bind thereto bind to each other, and the amino (N) terminal polypeptide of RBD
  • the complex formed with the PI3K protein is present (localized) on the endosome, and as a result, based on the finding that the virus is infected by endocytosis independent of clathrin.
  • a polypeptide refers to a compound in which two or more amino acids are bonded by peptide bonds, and the number of amino acids constituting them is not particularly limited.
  • a dipeptide consisting of 2 amino acids, 3 amino acids
  • Tripeptides consisting of 4 tetrapeptides consisting of 4 amino acids
  • oligopeptides consisting of about 10 amino acids, peptides and proteins consisting of 20 or more amino acids.
  • the number of amino acids to be deleted, substituted, inserted and / or added when “an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added” is As for the amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 30 or 42 (SEQ ID NO: 41), Ras when it forms a part of the PI3K protein
  • SEQ ID NO: 30 or 42 SEQ ID NO: 41
  • Ras when it forms a part of the PI3K protein
  • the complex formed by the protein and the PI3K protein can be present on the endosome, and the complex formed by the Ras protein and the PI3K protein can be prevented from existing on the endosome when not constituting a part of the PI3K protein.
  • amino acids in SEQ ID NO: 19 As for the amino acid sequence added and / or added, one or several amino acids in SEQ ID NO: 13, SEQ ID NO: 32 or SEQ ID NO: 58 (SEQ ID NO: 57) are deleted or substituted as long as they bind to the guanine nucleotide exchange factor.
  • the inserted and / or added amino acid sequence is not particularly limited as long as it binds to Ras protein. For example, it is 1 to 27, preferably 1 to 20, more preferably 1 to 15, and still more preferably 1. An arbitrary number of ⁇ 10, more preferably 1 to 5, can be mentioned. In addition, as long as it corresponds to the same or similar amino acid sequence, more amino acids may be substituted, inserted, and / or added.
  • amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 19 consists of an amino acid sequence having high identity with the H-RasS17N protein, and guanine nucleotide exchange Polypeptides that bind factors are included. Furthermore, regarding the amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 13, SEQ ID NO: 32 or SEQ ID NO: 58 (SEQ ID NO: 57), the RBD, N28 of PI3K protein is used.
  • a polypeptide comprising an amino acid sequence having high identity with the RBD of a PI3K protein lacking a polypeptide or the RBD of a PI3K protein lacking an N11 polypeptide and binding to the Ras protein is included.
  • the term “high identity” as used herein means at least 50% or more, preferably 70% or more, more preferably 80% or more, still more preferably 90% or more, most preferably 95% or more. Point to.
  • a polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 30 or SEQ ID NO: 42 (SEQ ID NO: 41) according to the present invention includes one of PI3K proteins.
  • the complex formed by Ras protein and PI3K protein exists on the endosome when it constitutes the part, and the complex formed by Ras protein and PI3K protein exists on the endosome when it does not constitute part of the PI3K protein
  • a peptide comprising an amino acid sequence having one or more conservative amino acid substitutions of these amino acid sequences, as long as it has a function of inhibiting the amino acid sequence, and one or several amino acids in SEQ ID NO: 19 according to the present invention Amino acid sequences in which is deleted, substituted, inserted and / or added As long as it has a function of binding to a guanine nucleotide exchange factor, a polypeptide consisting of an amino acid sequence having one or a plurality of conservative amino acid substitutions of these amino acid sequences is included.
  • conservative amino acid substitutions are those that can be generally made without changing the physiological activity of the resulting molecule, ie, those that are recognized within the range of conservative substitutions (Watson et al., Molecular® Biology® of Gene), etc.
  • Yes for example, acidic amino acids of aspartic acid and glutamic acid; basic amino acids of lysine, arginine and histidine; nonpolar amino acids of alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine and tryptophan; glycine, asparagine, cysteine, glutamine, Serine, threonine and tyrosine polar uncharged side chain amino acids; phenylalanine, tryptophan, and tyrosine aromatic amino acids Replacement can be mentioned that occurs in the family inside) of Amino Acids.
  • acidic amino acids of aspartic acid and glutamic acid acidic amino acids of aspartic acid and glutamic acid; basic amino acids of lysine, arginine and histidine, aliphatic amino acids of glycine, alanine, valine, leucine, isoleucine, serine and threonine (classified as aliphatic-hydroxyamino acids of serine and threonine Can be classified); aromatic amino acids of phenylalanine, tyrosine and tryptophan; amides of asparagine and glutamine); sulfur-containing amino acids of cysteine and methionine.
  • the site of the polypeptide according to the present invention in the amino acid sequence of the PI3K protein may be any site other than RBD and RBD of the PI3K protein, RBD is preferred, the vicinity of the N-terminus of RBD is more preferred, a polypeptide composed of 1 to 28th counted from the N-terminus of RBD is more preferred, and composed of 5 to 24th counted from the N-terminus of RBD. More preferably, the 9th to 19th positions from the N-terminal of RBD are most preferable.
  • the method of coexisting the polypeptide of (a) to (d) and the target substance includes the same method as in the Ras-PI3K / RBD coexistence step. be able to.
  • the “binding of the polypeptide to the target substance” means “the Ras-PI3K / RBD binding inhibitory ability evaluation step” Similarly to “binding”, the polypeptide and the target substance are non-covalently bonded by hydrogen bond, ionic bond, hydrophobic bond, van der Waals bond, and the binding between the polypeptide and the target substance is determined.
  • the confirmation method include the same method as the method in the Ras-PI3K / RBD binding inhibition ability evaluation step.
  • the screening method for a substance that suppresses virus infection according to the present invention may have other steps as long as the characteristics thereof are not impaired, for example, an incubation step, a washing step, and the like. Good.
  • the virus infection inhibitor according to the present invention is a virus infection inhibitor that can be infected by endocytosis independent of clathrin, and contains a substance that inhibits the binding between PI3K protein and Ras protein as an active ingredient.
  • the virus infection inhibitor has a complex formed by Ras protein and PI3K protein existing (localized) on the endosome by binding of RBD of PI3K protein and Ras protein that can bind to it.
  • the virus is an antagonist containing a substance that inhibits the binding between PI3K protein and Ras protein as an active ingredient.
  • substances that inhibit the binding between PI3K protein and Ras protein include substances that suppress the activity of Ras protein.
  • “suppressing the activity of Ras protein” refers to suppressing signal transmission downstream of Ras protein in a signal transduction pathway involving Ras protein.
  • a substance that suppresses the activity of Ras protein for example, a substance that suppresses the conversion of GDP-bound Ras protein to GTP-bound Ras protein by binding to GEF, or the activity of GAP or GAP
  • examples include substances that enhance and promote the conversion of GTP-bound Ras protein into GDP-bound Ras protein, Ras protein inhibitors such as farnesyltransferase inhibitors, CAXX peptides, depalmitoylase inhibitors, etc.
  • a substance that binds to GEF is preferred.
  • substances that bind to GEF include the following polypeptides (e) and (f) that function as dominant recessive mutant proteins of Ras protein; (E) a polypeptide consisting of the amino acid sequence of SEQ ID NO: 19, (F) A polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 19, and which binds to a guanine nucleotide exchange factor.
  • the substance that inhibits the binding between the PI3K protein and the Ras protein includes, for example, the following polypeptides (g) to (l) and the virus of the present invention.
  • examples include substances screened by screening methods for substances that suppress infection;
  • G a polypeptide consisting of the amino acid sequence of SEQ ID NO: 13 which is the same polypeptide as the RBD of the PI3KCG protein
  • H one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 13
  • I a polypeptide comprising the amino acid sequence of SEQ ID NO: 32, which is the same polypeptide as the RBD of the PI3KCG protein lacking the N28 polypeptide
  • j A polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added, and which binds to a Ras protein
  • the polypeptide of (g) to (l) when used as an active ingredient, it can inhibit the formation of a complex of PI3K protein and Ras protein by antagonizing PI3K protein and binding to Ras protein. it can.
  • the virus infection inhibitor according to the second aspect of the present invention is a virus infection inhibitor that can be infected by endocytosis independent of clathrin, and is selected from the following (m) to (p): Or two or more polypeptides as active ingredients; (M) a polypeptide comprising the amino acid sequence of SEQ ID NO: 30 (n) consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in SEQ ID NO: 30, and the Ras protein and PI3K A polypeptide (o) that suppresses the presence of a complex formed with a protein on an endosome (o) a polypeptide consisting of the amino acid sequence of SEQ ID NO: 42 (p), wherein one or several amino acids are deleted in SEQ ID NO: 42; A polypeptide comprising an amino acid sequence substituted, inserted, and / or added, and suppressing the presence of a complex formed by a Ras protein and a PI3K protein on an endosome.
  • the RBD of PI3K protein and the Ras protein that can bind to this bind to each other, and the Ras protein and the PI3K protein are formed by the N-terminal polypeptide of RBD.
  • the complex is present (localized) on the endosome, and as a result, based on the finding that the virus is infected by endocytosis independent of clathrin, it is the same polypeptide as the N-terminal polypeptide of RBD. 1 selected from the polypeptides (m) and / or (o), or the polypeptides (n) and / or (p) having high homology with the (m) and / or the (o), respectively. Or two or more polypeptides as active ingredients, and these polypeptides Restrain the complexes are present on the endosome (localization).
  • these polypeptides are known to promote translocation into cells as long as the complex formed by Ras protein and PI3K protein is inhibited from existing (localized) on endosomes. Etc. may be added.
  • the polypeptide in the present invention can be synthesized based on the sequence using a method that can be appropriately selected by those skilled in the art.
  • a method for example, in addition to a peptide synthesis method in which each amino acid is chemically polymerized to synthesize a polypeptide, a recombinant vector into which cDNA corresponding to the polypeptide in the present invention is inserted is prepared. Then, a transformant obtained by introducing the prepared vector into an appropriate host cell is cultured in a medium and collected from the obtained culture, or a cDNA corresponding to the polypeptide in the present invention is cell-free. Examples thereof include a method obtained by expressing in a protein synthesis system.
  • the virus infection inhibitor of a third different aspect according to the present invention is a virus infection inhibitor that can be infected by endocytosis independent of clathrin, and contains a substance that suppresses the activity of PI3K protein as an active ingredient .
  • the virus infection inhibitor according to the different third aspect depends on clathrin by suppressing the activity of PI3K protein even when PI3K protein and Ras protein form a complex. Based on the knowledge that endocytosis is not inhibited, a substance that suppresses the activity of the PI3K protein is used as an active ingredient.
  • the substance that suppresses the activity of the PI3K protein may be a substance that suppresses the activity of a plurality of classes of PI3K proteins and a plurality of subunits, and specifically exhibits the activity of a specific class or a specific subunit.
  • a substance that specifically suppresses the activity of PI3KCG protein is preferably used.
  • examples of the substance that suppresses the activity of PI3K protein include LY294002 [2- (4-morpholinyl) -8-phenyl-4H-1-benzopyran-4, which is an activity inhibitor of all classes of PI3K proteins.
  • Wortmannin ZSTK474 [2- (2-difluoromethylbenzimidazol-1-yl) -4,6-dimorpholino-1,3,5-triazine] (Yaguchi), an inhibitor of the activity of PI3K proteins of class IA and class IB J. Natl. Cancer l Inst., Vol. 98, 545-556, 2006) and Quercetin [3,3 ′, 4 ′, 5,7-Pentahydroxyflavone. (WF Matter et al., Biochem. Biophys. Res. Commun.
  • PI605KCG protein-specific activity inhibitors AS605240 and 5-Quinoxalin-6-ylmethylene- Examples include thiazolidine-2,4-dione, IC48668 and IC87114, which are PI3KCD protein-specific activity inhibitors.
  • the virus infection inhibitor of the fourth different aspect according to the present invention is a virus infection inhibitor capable of infecting by endocytosis, comprising a substance that inhibits clathrin-independent endocytosis and a clathrin-dependent endothelium.
  • a substance that suppresses clathrin-mediated endocytosis is an active ingredient.
  • the viral infection inhibitor according to the different fourth aspect is adapted to inhibit infection by endocytosis by suppressing clathrin-dependent endocytosis and clathrin-mediated endocytosis.
  • an active ingredient is a substance that suppresses clathrin-independent endocytosis and a substance that suppresses clathrin-mediated endocytosis It is said.
  • to suppress endocytosis means to suppress one or more steps in a series of processes of endocytosis.
  • Endocytosis involves the formation of vesicles containing substances from the outside, the fusion of vesicles with organelles such as lysosomes, Golgi bodies, caveosomes, and endoplasmic reticulum, or the digestion and degradation of substances from the outside world.
  • organelles such as lysosomes, Golgi bodies, caveosomes, and endoplasmic reticulum
  • the substance that suppresses endocytosis according to the present invention is a substance that suppresses endocytosis by suppressing one or more steps among the steps included in a series of processes of endocytosis.
  • the substance that suppresses clathrin-independent endocytosis may be any one of clathrin-independent endocytosis, for example, clathrin-independent endocytosis.
  • clathrin-independent endocytosis Only, Macropinocytosis only, Caveola-dependent endocytosis only, Cholesterol-dependent endocytosis only, or Dynamin-2 dependent endocytosis Dynamin-2-dependent (endocytosis) only
  • the substance which suppresses is preferable.
  • examples of the substance that suppresses endocytosis independent of clathrin include cytochalasin B, 5- (N-ethyl-N-isopropyl) amyloid (EIPA), amiloride and the like.
  • EIPA 5- (N-ethyl-N-isopropyl) amyloid
  • amiloride and the like.
  • the infection inhibitor of the virus which can be infected by endocytosis independent of clathrin according to the present invention can be used.
  • examples of substances that suppress clathrin-dependent endocytosis include monodansyl cadaverine (MDC), sucrose, chloropromazine (CPZ), and methyl- ⁇ -Cyd. Can be mentioned.
  • MDC is used as a suitable substance that suppresses clathrin-dependent endocytosis.
  • the dosage form may also be a dosage form that can be appropriately selected by those skilled in the art.
  • examples of such a dosage form include tablets, granules, powders, capsules, and coating agents in the case of preparation as an oral dosage formulation.
  • forms such as inhalants, injections, drops, suppositories, coating agents, sprays, patches etc. it can.
  • the dosage can be appropriately set depending on the formulation form of the pharmaceutical composition, the administration method, the purpose of use, and the age, weight and symptom of the administration subject applied thereto.
  • Example 1 Confirmation of the presence of a complex of H-Ras protein and PI3KCG-RBD protein in a cell
  • RBD Ras binding domain
  • BiFC Bimolecular Fluorescence Complementation
  • EAA1 early endosome-associated antigen 1
  • H-RasG12V which is an activated mutant H-Ras
  • H-RasG12V (SEQ ID NO: 3) is obtained by replacing the 35th guanine of H-Ras (SEQ ID NO: 1) with thymine and the 36th cytosine with adenine, and hence H-RasG12V protein (SEQ ID NO: 3).
  • the glycine at the 12th position in the amino acid sequence of the H-Ras protein (SEQ ID NO: 2) is substituted with valine, and the H-RasG12V protein shows the state of the activated H-Ras protein that is GTP-linked.
  • vector pCAGGS-EGFP-H in which H-RasG12V is inserted into the XhoI / NotI site and cDNA of enhanced green fluorescent protein (EGFP) is inserted into the EcoRI / XhoI site.
  • -RasG12V used was provided by Michiyuki Matsuda from Kyoto University.
  • a restriction map of this vector is shown in FIG.
  • the vector pCXN2-Flag-H-RasG12V in which H-RasG12V was inserted into the XhoI / NotI site was used from Michiyuki Matsuda of Kyoto University.
  • a restriction map of this vector is shown in FIG.
  • the Venus protein cDNA Venus; SEQ ID NO: 5
  • Mr. Atsushi Miyawaki of RIKEN was provided by Mr. Atsushi Miyawaki of RIKEN.
  • PCR was performed using Expand High Fidelity PCR System (Roche), and Venus 1st to 516th (VN sequence; SEQ ID NO: 6) and 517 to 714th (VC sequence; SEQ ID NO: 7), Each was amplified and isolated.
  • the primers, PCR reaction solution composition and PCR reaction conditions used for PCR are as follows.
  • Primers used for amplification of VN sequences Forward primer; 5′-CCGAATTCGCCATGGTGAGCAAGGGCGAG-3 ′ (SEQ ID NO: 8) Reverse primer; 5′-GGCTCGAGGATGTTGTGGCGGATCTTGA-3 ′ (SEQ ID NO: 9)
  • Primers used for amplification of VC sequences Forward primer; 5'-CCGCCGGCCGCGAGGACGGCGGCGTGGCAGCT-3 '(SEQ ID NO: 10) Reverse primer; 5′-GGAGATTCTTCACTACAGCTCGTCCATGCCG-3 ′ (SEQ ID NO: 11) PCR reaction solution composition: dNTP 200 ⁇ mol / L, forward primer 300 nmol / L, reverse primer 300 nmol / L, template DNA 100 ng, MgCl 2 1.5 mmol / L, 1 ⁇ Expand High Fidelity Reaction buffer, Expand High Fidelity Enzyme mL 52 PCR reaction conditions: after 2 minutes of reaction at 94 ° C.
  • the obtained PCR product was purified by QIAXII (Qiagen).
  • the PCR product of the VN sequence was digested with restriction enzymes EcoRI and XhoI, then inserted into the EcoRI / XhoI site of the vector pCAGGS-EGFP-H-RasG12V in place of the EGFP cDNA, and pCAGGS-VN-H-RasG12V was inserted. Obtained.
  • the PCR product of the VC sequence was digested with restriction enzymes NotI and BglII and then inserted into the NotI / BglII site of the vector pCXN2-Flag-H-RasG12V to obtain pCXN2-Flag-H-RasG12V-VC.
  • Each vector was inserted in place of RasG12V to obtain pCXN2-Flag-PI3KCG-RBD-VC, pCXN2-Flag-c-Raf1-RBD-VC, and pCXN2-Flag-RalGDS-RBD-VC.
  • Cos1 cell group derived from African green monkey kidney (American Type Culture Collection; ATCC; accession number CRL-1650) was divided into three groups, PI3KCG group, c-Raf1 group and RalGDS group did.
  • FuGene HD Transfection Reagent (Roche), the vectors prepared in this Example (1) were combined and introduced into each group according to the attached instructions. The combinations are as follows.
  • DMEM medium Dulbecco's modified Eagle's medium
  • FBS fetal bovine serum
  • an anti-EEA1 mouse monoclonal antibody (BD Transaction Laboratories) was exposed to a solution diluted 1000-fold with PBS overnight at 4 ° C. to perform an antigen-antibody reaction with the primary antibody, followed by washing with PBS.
  • an anti-mouse antibody (Invitrogen) conjugated with AlexaFluor 594 was exposed to a 200-fold diluted solution with PBS for 1 hour at room temperature to perform an antigen-antibody reaction with a secondary antibody, and then washed with PBS.
  • H-RasG12V protein and RBD of PI3KCG protein in the PI3KCG group H-RasG12V protein and RBD of c-Raf1 protein in the c-Raf1 group, H-RasG12V protein and RalGDS protein in the RalGDS group
  • Each complex with RBD was detected by fluorescence of Venus protein (green), and EEA1 was detected by fluorescence of AlexaFluor 594 (red). The result is shown in FIG. 6a.
  • Example 2 Confirmation of change of intracellular location of complex of H-Ras protein and PI3KCG-RBD protein by EGF stimulation H-RasG12V protein by stimulation of epidermal growth factor (EGF) It was confirmed whether the presence location in the cell of the complex of PI3KCG protein RBD changes or not.
  • EGF epidermal growth factor
  • a vector was prepared by the method described in Example 1 (1). After introducing the vector into the Cos1 cell group by the method described in Example 1 (2), the vector was cultured for 24 hours.
  • each group was further divided into two groups, and EGF was added to one of the media so as to be 100 ng / mL, followed by incubation for 20 minutes.
  • Example 1 immunofluorescence staining was performed by the method described in Example 1 (3). Thereafter, fluorescence observation was performed by the method described in Example 1 (4), and the number of yellow granules and the number of red granules were counted for 10 to 20 cells in each group. Number / number of red granules ”was calculated, and the average value and standard deviation were obtained. The result is shown in FIG.
  • Example 3 Confirmation of viral nucleoprotein uptake of cells expressing dominant recessive mutant H-Ras protein MEF expressing H-RasS17N protein (SEQ ID NO: 19), which is the dominant recessive mutant H-Ras protein A group of cells was inoculated with influenza virus, and the amount of viral nucleoprotein incorporated into the cells was examined.
  • the 50th guanine of H-Ras (SEQ ID NO: 1) is replaced with adenine.
  • the 17th serine in the sequence is replaced with asparagine.
  • the H-RasS17N protein binds to a guanine nucleotide exchange factor (GEF) and inhibits the conversion of the GDP-bound H-Ras protein to the GTP-bound H-Ras protein. Inhibits activity (Feig. Et al., Mol. Cell. Biol., 8, 3235-3243, 1988).
  • GEF guanine nucleotide exchange factor
  • vector pCXN2-H-Ras in which H-Ras is inserted into the XhoI / NotI site, the Internal Ribosome Entry Site sequence (IRES sequence) is inserted into the NotI / Sall site, and the EGFP cDNA is inserted into the SalI / BglII site.
  • IRS sequence Internal Ribosome Entry Site sequence
  • MEF cell group A mouse embryonic fibroblast (MEF) cell group was prepared from a wild-type mouse (C57BL / 6N Jcl; CLEA Japan, Inc.) according to a previous report ⁇ Sasaki et al., Science, Vol. 287, No. 5455, pages 1040-1046, 2000 ⁇ , and cultured in the environment described in Example 1 (2) for 24 hours.
  • Example (3) Introduction of vector into MEF cell group
  • the MEF cell group of Example (2) was divided into 3 groups, which were used as a control group, an H-Ras introduction group, and an H-RasS17N introduction group.
  • FuGene HD Transfection Reagent (Roche), according to the attached instructions, pCAGGS-H-Ras-IRES-EGFP of this Example (1) is added to the H-Ras group, and this is applied to the H-RasS17N group.
  • PCAGGS-H-RasS17N-IRES-EGFP of Example (1) was introduced, respectively. None was introduced into the control group. Thereafter, the control group, the H-Ras introduction group, and the H-RasS17N introduction group were cultured for 24 hours in the environment described in Example 1 (2).
  • influenza virus A / Puerto Rico / 8/34 H1N1; PR8
  • Mr. Reito Takada of Hokkaido University chicken embryo 10-day embryo (Hokuren central breeding ground)
  • the chorioallantoic membrane was inoculated and grown at 37 ° C. for 48 hours.
  • MEM medium minimal essential medium
  • MOI multiplicity of infection
  • Example (6) Immunofluorescent staining and observation with a fluorescence microscope
  • Each group of this Example (5) was subjected to immunofluorescent staining by the method described in Example 1 (3).
  • an anti-influenza virus nucleoprotein mouse monoclonal antibody provided by Reito Takada of Hokkaido University was used in place of the anti-EEA1 mouse monoclonal antibody (BD Transaction Laboratories).
  • PBT was used instead of PBS for antibody dilution
  • the dilution ratio of the secondary antibody was 300 times instead of 200 times
  • the time of antigen-antibody reaction with the primary antibody was changed to 12 hours instead of overnight.
  • fluorescence observation was performed by the method described in Example 1 (4).
  • H-Ras protein or H-RasS17N protein was observed using as an index the expression of EGFP expressed bicistronicly from the same vector.
  • Representative results of the observation results of the H-Ras introduction group and the H-RasS17N introduction group are shown in the upper diagram of FIG.
  • the fluorescence intensity of AlexaFluor 594 in one cell was measured for each of 30 or more cells in which EGFP fluorescence was observed for the H-Ras introduction group and H-RasS17N introduction, and for any 30 or more cells for the control group. And represented in a boxplot. The results are shown in the lower diagram of FIG.
  • AlexaFluor 594 fluorescence is observed in cells in which EGFP fluorescence is observed, whereas in the H-RasS17N introduction group, AlexaFluor 594 fluorescence is observed in cells in which EGFP fluorescence is observed. Fluorescence was not observed.
  • the cells of the H-Ras introduced group had higher fluorescence of AlexaFluor 594 than the cells of the control group, whereas the cells of the H-RasS17N introduced group compared to the cells of the A group. AlexaFluor 594 fluorescence was low.
  • Example 4 Confirmation of endocytosis function in PI3KCG-deficient cells and K251E-introduced cells Transferrin known to be incorporated into cells mainly by clathrin-dependent endocytosis and endocyte independent of clathrin A mutation that does not bind to dextran having a molecular weight of 10,000, which is known to be taken up into cells mainly by clathrin-independent endocytosis and macropinocytosis, and does not bind to cells lacking PI3KCG protein and Ras protein. The cells were incorporated into cells expressing the PI3KCG protein (K251E protein; SEQ ID NO: 21), and the amount of incorporation was examined.
  • K251E protein SEQ ID NO: 21
  • K251E protein In the cDNA sequence of K251E protein (K251E; SEQ ID NO: 20), the 751st adenine of the cDNA sequence of PI3KCG protein (PI3KCG; SEQ ID NO: 22) is replaced with guanine, and thus the PI3KCG protein (SEQ ID NO: 23) is replaced with K251E protein.
  • amino acid sequence 251 is substituted with glutamic acid.
  • the obtained PCR product was purified by QIAXII (Qiagen). This was digested with restriction enzymes XhoI and NotI and then inserted into the XhoI / NotI site of pIRM21-3HA to obtain pIRM21-3HA-PI3KCG. Subsequently, this was digested with restriction enzymes SalI and NotI to obtain a DNA fragment containing the promoter region, 3HA and PIK3CG, and then pCXN2-Flag-H-RasG12V prepared by the method described in Example 1 (1). It was inserted into the SalI / NotI site instead of the DNA fragment containing Flag and H-RasG12V to obtain pCXN2-3HA-PIK3CG.
  • Example 2 After culturing for 2 days in the environment described in Example 1 (2), G418 disulfate (Sigma) was added to the medium to 0.5 mg / mL and further cultured to obtain resistant cells. It was. Subsequently, the obtained resistant cells were subjected to Western blotting according to a conventional method to confirm the presence or absence of expression of PI3KCG protein, cells that stably express PI3KCG protein were selected, and G418 disulfate (Sigma) was selected. ) In a DMEM medium containing 0.2 mg / mL.
  • 1st PCR Primers used for 1st to 762nd amplification of K251E Forward primer; primer of SEQ ID NO: 9 reverse primer; 5'-CTTGGCCATCTCGGTGAAGAAG-3 '(SEQ ID NO: 26) Primers used for amplification of K251E at positions 740-3309: Forward primer; 5′-CTTCTTCACCGAGATGGCCAAG-3 ′ (SEQ ID NO: 27) Reverse primer; primer of SEQ ID NO: 10 PCR reaction conditions; after 2 minutes reaction at 94 ° C, 30 cycles of 94 ° C for 30 seconds, 58 ° C for 30 seconds, 68 ° C for 3 minutes, 30 cycles, Thereafter, the reaction was carried out at 72 ° C. for 5 minutes.
  • PCR reaction conditions are as follows.
  • PCR reaction conditions after 2 minutes of reaction at 94 ° C., 30 cycles of 94 ° C. for 30 seconds, 58 ° C. for 30 seconds, 72 ° C. for 3 minutes, 30 cycles, then 72 ° C. for 5 minutes Went.
  • the obtained PCR product was inserted into the vector by the method described in Example (3) [3-1] to obtain pCXN2-3HA-K251E.
  • the PI3KCG-deficient MEF cell group, the K251E-introduced MEF cell group, and the LY294002-added MEF cell group showed a decrease in the amount of dextran taken up as compared to the wild-type MEF cell group.
  • the PI3KCG-introduced MEF cell group showed uptake of dextran to the same extent as the wild-type MEF cell group.
  • the transferrin uptake amount was not different from the wild-type MEF cell group in any of the cell groups.
  • ECFP enhanced blue-green fluorescent protein
  • FuGene HD Transfection Reagent FuGene HD Transfection Reagent (Roche), which is a gene introduction reagent via endocytosis
  • the method of using the method of using Nucleofector (amaxa) which is a gene transfer device by electroporation method, the method of using a lentiviral HIV known to be infected by endocytosis, and known to be infected by membrane fusion ECFP gene introduction into the PI3KCG-deficient cell group and the K251E-introduced cell group by four methods using the retrovirus MSCV And the number of cells expressing the introduced ECFP gene was examined.
  • Nucleofector amaxa
  • Example 1 (2) Thereafter, the cells were cultured for 24 hours in the environment described in Example 1 (2). Subsequently, fluorescence observation was carried out under the conditions shown below with the temperature kept at 37 ° C., the cells in which the fluorescence (blue) of ECFP was observed were counted, and the ratio of the total number of cells in each group was calculated. The result is shown in FIG. 12a.
  • PI3KCG-deficient MEF cell group, K251E-introduced MEF cell group, and LY294002-added MEF cell group were each wild-type MEF cell group.
  • the ratio of the number of cells expressing ECFP was significantly reduced.
  • the ratio of the number of ECFP-expressing cells was almost the same as that in the wild-type MEF cell group.
  • Nucleofector (amaxa) the ratio of ECFP-expressing cells in each cell group was almost the same as that in the wild-type MEF cell group.
  • endocytosis occurs when the binding between Ras protein and PI3KCG protein is inhibited by PI3KCG protein deficiency or PI3KCG protein mutation, and when the kinase activity of PI3K protein including PI3KCG protein is inhibited by LY294002.
  • FuGene HD Transfection Reagent Roche
  • Nucleofector Nucleofector
  • a lentiviral HIV carrying the ECFP cDNA was prepared by introducing it into a human embryonic kidney (HEK) 293T cell, which was donated by Mayer, ⁇ Pear et al., Proc. Natl. Acad. Sci. USA, 90, 8392, 1993; Ohba Y. et al. Et al., EMBO. J. et al. Vol. 20, No. 13, 3333-3341, 2001; Inuzuka T .; Et al. B. R. C. 379, 510-513, 2009; Miyoshi et al., Methods Mol. Bio. L246, 429-438, 2004 ⁇ .
  • HEK human embryonic kidney
  • MOI Multiplicity of Infection
  • a lentivirus-containing medium was added, and virus inoculation was carried out by culturing in a humidified environment containing 37% at CO 2 5% (v / v) for 12 hours. Subsequently, after washing with PBS, the cells were cultured in the environment described in Example 1 (2) for 2 days.
  • the results in the wild-type MEF cell group and the PI3KCG-deficient MEF cell group are converted into the value of “number of ECFP-expressing cells / total number of cells” and shown in FIG. .
  • Cos1 cell group (ATCC; accession number CRL-1650) was divided into two groups, the PI3KCG group and the K251E group, and FuGene HD Transfection Reagent (Roche) was used. According to the instructions for use, the vectors prepared in this Example (1) were introduced in combination and cultured for 24 hours in the environment described in Example 1 (2). The combinations of the vectors are as follows.
  • Example 3 Immunofluorescent staining
  • anti-EEA1 mouse monoclonal antibody BD Transduction Laboratories
  • anti-HA rat monoclonal antibody 3F10 Roche
  • the secondary antibody was anti-mouse antibody (Invitrogen) bound with AlexaFluor 594.
  • an anti-rat antibody (Invitrogen) conjugated with AlexaFluor647 was used.
  • Example 2 Observation with confocal microscope
  • the PI3KCG group and the K251E group of the present Example (2) were subjected to fluorescence observation by the method described in Example 1 (4). That is, the location where PI3KCG protein and K251E protein are present is detected by AlexaFluor 647 fluorescence (red purple), the location where H-RasG12V protein is present is detected by EGFP fluorescence, and EEA1 is further detected by AlexaFluor 594 fluorescence (red) did.
  • the result is shown in FIG.
  • the lower graph of the fusion diagram shows the intensity of each fluorescence along the dotted line in the fusion diagram.
  • the enlarged view is an enlarged view of a boxed portion in the fusion view.
  • Example 7 Confirmation of virus infection rate in PI3KCG-deficient cells and K251E-introduced cells
  • the group of PI3KCG-deficient cells and K251E-introduced cells was inoculated with influenza virus, and the virus infection rate was examined.
  • Example 3 (2) Preparation of influenza virus
  • the PR8 virus of Example 3 (4) and influenza virus A / Aichi / 2/68 (H3N2; Aichi) provided by Reito Takada of Hokkaido University were used in Example 3. Proliferated by the method described in (4).
  • virus inoculation was performed using what added LY294002 (Calbiochem) to PR8 virus containing medium and Aichi virus containing medium so that it might be set to 50 micromol / L. Subsequently, after washing with PBS, MEM medium (Invitrogen) containing 1% (w / v) Bact-agar and 5 ⁇ g / mL trypsin was added, and 35 ° C., CO 2 5% (v / v) For 2 days in a humidified environment.
  • MEM medium Invitrogen
  • the virus infection rates of PR8 virus and Aichi virus were significantly reduced. Moreover, also in the LY294002-added MEF cell group, the virus infection rates of PR8 virus and Aichi virus both decreased. On the other hand, in the PI3KCG-introduced MEF cell group, it was confirmed that the virus infection rates of PR8 virus and Aichi virus were both as high as the wild-type MEF cell group.
  • influenza virus infection was suppressed when the binding of PI3KCG protein to Ras protein is inhibited by the deletion of PI3KCG protein or the mutation of PI3KCG protein. It was also revealed that influenza virus infection was suppressed when LY294002 inhibited the kinase activity of PI3K protein including PI3KCG protein.
  • Example 8 Confirmation of Endocytosis Function in Cells Inhibiting PI3KCG Protein Activity 5-Quinoxalin-6-ylmethylene-thiazolidine-2,4-dione (PI3K ⁇ ), a drug that specifically inhibits PI3KCG protein activity Inhibitor (MERCK) was added to the culture medium, and dextran and transferrin having a molecular weight of 10,000 were taken up into the cultured cells, and the amounts taken up were examined.
  • PI3K ⁇ 5-Quinoxalin-6-ylmethylene-thiazolidine-2,4-dione
  • the average value of the fluorescence intensity in the wild-type MEF cell group is 99.2, while the average value of the fluorescence intensity in the PI3K ⁇ Inhibitor-added MEF cell group is 79.3,
  • the PI3K ⁇ Inhibitor-added MEF cell group showed a decrease in uptake compared to the wild-type MEF cell group.
  • the average fluorescence intensity in the wild-type MEF cell group is 86.3, and the average fluorescence intensity in the PI3K ⁇ Inhibitor-added MEF cell group is 93.7, so that PI3K ⁇ Inhibitor is added. It was confirmed that there was almost no difference in the amount of uptake between the MEF cell group and the wild-type MEF cell group.
  • Example 9 Confirmation of virus infection rate in cells in which PI3KCG protein activity was inhibited PI3K ⁇ Inhibitor (MERCK) was added to the culture medium to inoculate the influenza virus, and the virus infection rate was examined.
  • PI3KCG protein activity was inhibited
  • PI3K ⁇ Inhibitor MERCK
  • the MEF cell group prepared by the method described in Example 3 (2) was divided into 5 groups, which were defined as a control group, a LY294002-added MEF cell group, a 1 ⁇ M-added MEF cell group, a 10 ⁇ M-added MEF cell group, and a 100 ⁇ M-added MEF cell group.
  • LY294002 (Calbiochem) is added to the medium so as to be 50 ⁇ mol / L
  • PI3K ⁇ Inhibitor (MERCK) is added to the 1 ⁇ M added MEF cell group, the 10 ⁇ M added MEF cell group, and the 100 ⁇ M added MEF cell group.
  • MERCK PI3K ⁇ Inhibitor
  • the virus infection rate decreased as compared with the control group.
  • the magnitude of the viral infection rate is compared between the 1 ⁇ M-added MEF cell group, the 10 ⁇ M-added MEF cell group, and the 100 ⁇ M-added MEF cell group, it is 1 ⁇ M-added MEF cell group> 10 ⁇ M-added MEF cell group> 100 ⁇ M-added MEF cell group. It was confirmed that the viral infection rate decreased as the concentration of PI3K ⁇ Inhibitor added to the medium increased.
  • Example 10 Sequence comparison of Ras binding region The amino acid sequence of RBD of PI3KCG protein was compared with the amino acid sequences of RBD of Raf protein and RalGDS protein, which are other typical Ras binding molecules, and PI3KCG protein was compared. A sequence specific to RBD was extracted.
  • FIG. 17a A phylogenetic tree was created by the neighbor-joining (NJ) method for the amino acid sequences of RBD of the PI3KCG protein, c-Raf1 protein and RalGDS protein. The result is shown in FIG. 17a. For these sequences, alignment was made using Clustal W (http://clustalw.ddbj.nig.ac.JP/top-j.html). The result is shown in FIG. Further, FIG. 17c shows a visual representation of the conservation of the sequence based on the alignment creation result.
  • the amino acid sequence of the RBD of the PI3KCG protein was classified into a different category from the amino acid sequences of the RBD of the c-Raf1 protein and the RalGDS protein. It was confirmed from FIG. 17b that the amino acid sequence on the N-terminal side of the RBD of the PI3KCG protein is longer than that of the c-Raf1 protein and the RalGDS protein and has a characteristic 28 amino acid sequence. Furthermore, as shown in FIG. 17c, it was confirmed that the amino acid sequence has low conservation on the N-terminal side.
  • N-terminal 28 amino acids N28 polypeptide; SEQ ID NO: 29 and SEQ ID NO: 30
  • SEQ ID NO: 29 and SEQ ID NO: 30 N-terminal 28 amino acids of the RBD of the PI3KCG protein are sequences that impart functions different from those of other Ras binding factors to the PI3KCG protein. It was.
  • Example 11 Confirmation of intracellular location of complex of H-Ras protein and PI3KCG protein lacking N28 polypeptide
  • the complex of H-Ras protein and PI3KCG protein lacking N28 polypeptide was determined by BiFC method. It visualized and the location where this composite_body
  • Example 4 (3) Using the PI3KCG of [3-1] as a template, a cDNA (SEQ ID NO: 31) corresponding to the RBD (SEQ ID NO: 32) of the PI3KCG protein lacking the N28 polypeptide was amplified.
  • the PCR reaction solution composition and PCR reaction conditions were the same as those described in Example 1 (1).
  • the primers used for PCR are as follows.
  • the obtained PCR product was purified by QIAXII (Qiagen). This was digested with restriction enzymes XhoI and NotI and then inserted into the XhoI / NotI site of the vector pCXN2-Flag-H-RasG12V-VC in place of H-RasG12V, and pCXN2-Flag-PI3KCG-RBD-N28d-VC Got.
  • Cos1 cells (ATCC; accession number CRL-1650) were placed on a glass-based dish (Asahi Techno Glass Co., Ltd.) having a diameter of 35 mm and coated with collagen, and FuGene HD Transfection Reagent (Roche).
  • the vector prepared in this Example (1) was introduced in combination according to the attached instruction. The combinations are as follows.
  • the cells after the introduction of the vector were cultured for 24 hours in the environment described in Example 1 (2), and after removing the medium, a phenol red-free medium without FBS Dulbecco's Modified Eagle Medium Nutient Mixture F- 12 (DMEM / F12; Invitrogen) was added and further cultured for 4 hours.
  • DMEM / F12 Dulbecco's Modified Eagle Medium Nutient Mixture F- 12
  • Example 12 Confirmation of Endocytosis Function of Cells Expressing N28 Polypeptide Dextran having a molecular weight of 10,000 was taken up into MDCK cells expressing N28 polypeptide, and the amount of those taken up was examined.
  • PCR was performed using pCAGGS-Venus-PI3KCG-RBD as a template, and a DNA fragment containing Venus and N28 polypeptide cDNA was amplified and isolated.
  • the PCR reaction solution composition and PCR reaction conditions were the same as those described in Example 1 (1).
  • the primers used are as follows.
  • the obtained PCR product was purified by QIAXII (Qiagen). This was digested with restriction enzymes EcoRI and NotI and then inserted into the EcoRI / NotI site of pCAGGS-EGFP-H-Ras provided by Michiyuki Matsuda of Kyoto University, instead of EGFP-H-Ras, and pCAGGS-Venus -N28 was obtained.
  • a restriction enzyme map of this vector is shown in FIG.
  • pCAGGS-3HA-PI3KCG-RBD was digested with the restriction enzymes SpeI and XhoI to obtain a DNA fragment of about 1.7 kbp containing the promoter and the hemagglutinin cDNA, which was isolated from the SpeI / XhoI of pCAGGS-Venus-N28. In place of Venus, it was inserted into the site to obtain pCAGGS-3HA-N28.
  • a restriction enzyme map of this vector is shown in FIG.
  • MDCK cell group JCRB cell bank: JCRB9029
  • JCRB cell bank JCRB9029
  • pCAGGS-3HA-N28 prepared in Example (1) was introduced according to the attached instruction. Thereafter, the cells were cultured for 24 hours in the environment described in Example 1 (2).
  • Example (3) Evaluation of Endocytosis Function After the MDCK cell group of Example (2) was washed with PBS, dextran (Invitrogen) having a molecular weight of 10000 bound to AlexaFluor 488, 0.5 mg / mL and FBS 10% (v / v) ) was added, and the mixture was cultured at 37 ° C. in a humidified environment containing 5% (v / v) CO 2 for 10 minutes.
  • dextran Invitrogen having a molecular weight of 10000 bound to AlexaFluor 488, 0.5 mg / mL and FBS 10% (v / v)
  • Example 3 Immunofluorescent staining
  • PBT was used for antibody dilution instead of PBS, the dilution ratio of the secondary antibody was 300 times instead of 200 times, and the time of antigen-antibody reaction with the primary antibody was changed to 12 hours instead of overnight.
  • cells with high fluorescence intensity of AlexaFluor 488 and low fluorescence intensity of AlexaFluor 647 cells with low fluorescence intensity of AlexaFluor 488 and high fluorescence intensity of AlexaFluor 647, and fluorescence intensity of AlexaFluor 488 While there were many cells with low AlexaFluor 647 fluorescence intensity, there were no cells with high AlexaFluor 488 and AlexaFluor 647 fluorescence intensity.
  • Example 13 Confirmation of viral nucleoprotein uptake amount of cells expressing N28 polypeptide MDCK cell group expressing N28 polypeptide was inoculated with influenza virus, and the amount of viral nucleoprotein uptake into cells was examined. It was.
  • MEM medium Invitrogen
  • MEM medium Invitrogen
  • 1% (w / v) Bact-agar and 5 ⁇ g / mL trypsin was added, and 35 ° C., CO 2 5% (v / v) For 5 hours in a humidified environment.
  • Example 1 Immunofluorescence staining and observation with fluorescence microscope
  • the MDCK cell group of Example (1) [1-2] was subjected to immunofluorescence staining by the method described in Example 12 (4).
  • anti-HA rat monoclonal antibody 3F10 (Roche) as the primary antibody
  • anti-influenza virus nucleoprotein mouse monoclonal antibody provided by Reito Takada of Hokkaido University was used, and AlexaFluor 647 was bound as the secondary antibody.
  • AlexaFluor 647 was bound as the secondary antibody.
  • an anti-mouse antibody (Invitrogen) conjugated with AlexaFluor 488 was used. Thereafter, fluorescence observation was performed by the method described in Example 1 (4). The result is shown in FIG.
  • the fluorescence intensity of AlexaFluor 488 was low in cells with high fluorescence intensity of AlexaFluor 647, and the fluorescence intensity of AlexaFluor 647 was low in cells with high fluorescence intensity of AlexaFluor 488.
  • the MDCK cell group (JCRB cell bank: JCRB9029) was divided into two groups, which were a control group and an N28 group. According to the method described in Example 12 (2), pCAGGS-ECFP provided by Michiyuki Matsuda of Kyoto University was used for the control group, and pCAGGS-ECFP of Example (2) [2-1] was used for the N28 group. -N28 was introduced respectively. Thereafter, the control group and N28 group were inoculated with PR8 virus by the method described in Example (1) [1-2].
  • Example (2) [2-2] Immunofluorescence staining and observation with a fluorescence microscope
  • the control group and N28 group of Example (2) [2-2] were subjected to immunofluorescence staining by the method described in Example 12 (4).
  • the anti-HA rat monoclonal antibody 3F10 (Roche) as the primary antibody
  • anti-influenza virus nucleoprotein mouse monoclonal antibody provided by Reito Takada of Hokkaido University was used, and AlexaFluor 647 was bound as the secondary antibody.
  • an anti-mouse antibody (Invitrogen) conjugated with AlexaFluor 594 was used.
  • any one of cells having high fluorescence intensity of ECFP and low fluorescence intensity of AlexaFluor 594, cells having low fluorescence intensity of ECFP and high fluorescence intensity of AlexaFluor 594, and fluorescence intensity of ECFP and fluorescence intensity of AlexaFluor 594 Small cells and cells in which both the fluorescence intensity of ECFP and the fluorescence intensity of AlexaFluor 594 were large were present to the same extent.
  • Example 14 Confirmation of viral nucleoprotein uptake of cells expressing central amino acid 11 of N28 polypeptide Expression of central amino acid 11 of N28 polypeptide (N11 polypeptide; SEQ ID NO: 41 and SEQ ID NO: 42) MDCK cells were inoculated with influenza virus, and the amount of viral nucleoprotein incorporated into the cells was examined.
  • the obtained PCR product was purified by QIAXII (Qiagen). This was digested with restriction enzymes XhoI and BglII and then inserted into the XhoI / BglII site of pCAGGS-ECFP-N28. Instead of cDNA corresponding to N28 polypeptide, cDNA corresponding to 20 amino acids on the C-terminal side of N28 polypeptide was obtained. The inserted vector pCAGGS-ECFP-N20 was obtained.
  • PCR was performed using pCAGGS-ECFP-N20 as a template, and a 700 bp cDNA containing a cDNA corresponding to the N11 polypeptide (SEQ ID NO: 41) was amplified and isolated.
  • the PCR reaction solution composition and PCR reaction conditions were the same as those described in Example 1 (1).
  • the primers used are as follows.
  • the obtained PCR product was purified by QIAXII (Qiagen). This was digested with restriction enzymes EcoRI and NotI and then inserted into the EcoRI / NotI site of pCAGGS-ECFP-N20. Instead of cDNA corresponding to the 20 amino acids on the C-terminal side of N28 polypeptide, cDNA corresponding to N11 polypeptide was obtained. The inserted vector pCAGGS-ECFP-N11 was obtained.
  • the MDCK cell group (JCRB cell bank: JCRB9029) was divided into two groups, and used as a control group and an N11 group. According to the method described in Example 12 (2), pCAGGS-ECFP provided by Michiyuki Matsuda of Kyoto University was used for the control group, and pCAGGS-ECFP-N11 prepared in this Example (1) was used for the N11 group. Each was introduced. Thereafter, the control group and N11 group were inoculated with PR8 virus by the method described in Example 13 (2) [2-2].
  • any one of cells having low ECFP fluorescence intensity and high AlexaFluor 594 fluorescence intensity, cells having high ECFP fluorescence intensity and low AlexaFluor 594 fluorescence intensity, ECFP fluorescence intensity, and AlexaFluor 594 fluorescence intensity were present to the same extent.
  • Example 15 Confirmation of virus infection rate in cells in which both endocytosis independent of clathrin and clathrin-dependent endocytosis were suppressed
  • Example 4 and Example 13 do not depend on clathrin LY294002, an inhibitor of PI3K protein activity, confirmed to suppress endocytosis and monodansyl cadaverine (MDC; Schlegel et al., Proc. Natl, known to suppress clathrin-dependent endocytosis. Acad.Sci.USA, 79, 2291-2295, 1982; Ray et al., FEBS Lett., 378, 235-239, 1996) was added to inoculate the influenza virus, The virus infection rate was examined.
  • MDC monodansyl cadaverine
  • Pretreatment with each reagent MDCK cell group (JCRB cell bank: JCRB9029) cultured in 12-well plate using MEM medium is divided into 5 groups, control group, LY294002 group, MDC group, LY + MDC group and oseltamivir group did. Subsequently, pretreatment was performed by adding the following reagents to the culture medium of each group and incubating for 30 minutes. The concentration indicates the concentration in the medium.
  • Control group No addition LY294002 group; LY294002 (Calbiochem) 50 ⁇ mol / L MDC group: monodansyl cadaverine (MDC; Sigma) 50 ⁇ mol / L LY + MDC group; LY294002 (Calbiochem) 50 ⁇ mol / L Monodansyl cadaverine (MDC; Sigma) 50 ⁇ mol / L Oseltamivir group; oseltamivir (Roche) 100 ⁇ mol / L
  • the virus infection rates of the LY294002 group, the MDC group, the LY + MDC group, and the oseltamivir group were about 1/5, about 1, about 1/100, and about 1/10, respectively, as compared with the control group. It was.
  • Late endosomal marker protein, late endosomal marker protein, clathrin light chain protein and viral nucleoprotein are visualized by immunoantibody staining and fluorescent labeling, and these proteins are present in cells inoculated with influenza virus with LY294002 and MDC added I investigated where to go.
  • PCR was carried out using CLCa cDNA as a template, and CLCa cDNA having XhoI and NotI sites added to the 5 ′ and 3 ′ ends, respectively, was amplified and isolated.
  • the PCR reaction solution composition and PCR reaction conditions were the same as those described in Example 1 (1).
  • the primers used are as follows.
  • the obtained PCR product was purified by QIAXII (Qiagen). This was digested with restriction enzymes XhoI and NotI, and then inserted into the XhoI / NotI site of pCAGGS-Venus donated by Michiyuki Matsuda of Kyoto University to obtain pCAGGS-Venus-CLCa. A restriction map of this vector is shown in FIG.
  • PCR was performed using pEGFP-C1-Rab5 and pEGFP-C1-Rab7 as templates, and the respective cDNAs of Rab5 protein and Rab7 protein were amplified and isolated.
  • the PCR reaction solution composition and PCR reaction conditions were the same as those described in Example 1 (1).
  • the primers used are as follows.
  • Primer used for amplification of Rab5 Forward primer 5′-GGCTCGGAGATGGCTAATCGAGGAGC-3 ′ (SEQ ID NO: 53) Reverse primer; 5′-TAGCGGCCCCTCAGTTACTACAACACTGG-3 ′ (SEQ ID NO: 54) Primer used for amplification of Rab7 Forward primer; 5′-GGCTCGAGATGACCTCTAGGAAGAAAG-3 ′ (SEQ ID NO: 55) Reverse primer; 5′-TAGCGGCCCCTCAACAACTGCAGCTTTC-3 ′ (SEQ ID NO: 56)
  • the obtained PCR product was purified by QIAXII (Qiagen). This was digested with restriction enzymes XhoI and NotI, and then inserted into the XhoI / NotI sites of pCAGGS-ECFP donated by Mr. Michiyuki Matsuda of Kyoto University to obtain pCAGGS-ECFP-Rab5 and pCAGGS-ECFP-Rab7.
  • Example (3) Pretreatment with Reagents
  • the Cos1 cell group of Example (2) was divided into 4 groups, which were a control group, a LY294002 group, an MDC group, and an LY + MDC group. Subsequently, each of these groups was pretreated with each reagent by the method described in Example 15 (1).
  • Example (4) Immunofluorescence staining and observation with a fluorescence microscope
  • Each group of Example (4) was subjected to immunofluorescence staining by the method described in Example 13 (2) [2-3]. However, the dilution ratio of the secondary antibody was 250 times instead of 300 times. Thereafter, fluorescence observation was carried out by the method described in Example 1 (4), and Rab5 protein, Rab7 protein, CLCa protein and influenza virus viral nucleoprotein were respectively converted into ECFP, Venus protein fluorescence (green) and AlexaFluor 594 fluorescence (green). Red). The result is shown in the left figure of FIG.
  • influenza virus is taken into the cell by clathrin-dependent endocytosis, and when only clathrin-dependent endocytosis is suppressed, it depends on clathrin. It was revealed that influenza virus was taken up into cells by endocytosis. On the other hand, when both endocytosis not dependent on clathrin and clathrin-dependent endocytosis were suppressed, it was revealed that the uptake of influenza virus into cells was significantly suppressed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

【課題】 亜型や変異体の出現などのウイルス側の変化に影響されることなくウイルスの感染を抑制することができる、クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染を抑制する物質のスクリーニング方法、クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスのウイルス感染抑制剤、およびエンドサイトーシスにより感染可能なウイルスのウイルス感染抑制剤を提供する。 【解決手段】 クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染を抑制する物質のスクリーニング方法であって、PI3Kタンパク質に結合可能なRasタンパク質と、PI3Kタンパク質またはそのRBDと対象物質とを共存させる工程と、前記対象物質が前記Rasタンパク質と前記PI3Kタンパク質または前記RBDとの結合阻害能を有するか否かを評価する工程とを有する。

Description

ウイルスの感染を抑制する物質のスクリーニング方法およびウイルス感染抑制剤
 本発明は、ウイルスの感染を抑制する物質のスクリーニング方法およびウイルス感染抑制剤に関し、特に、クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染を抑制する物質のスクリーニング方法、クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスのウイルス感染抑制剤、およびエンドサイトーシスにより感染可能なウイルスのウイルス感染抑制剤に関する。
 ウイルスとは、細胞を構成単位とせずにDNAかRNAのいずれかをゲノムとして有し、宿主細胞内だけで増殖する微小構造体であり、宿主細胞内の代謝系を利用して増殖する。その際、病原体としてふるまうことがあり、ウイルスが増殖した結果として宿主に惹起される疾病をウイルス感染症という。ウイルス感染症には、例えば、ライノウイルスによる感冒、インフルエンザウイルスによるインフルエンザ、ヒト免疫不全ウイルスによる後天性免疫不全症候群(Acquired Immunodeficiency Syndrome;AIDS)、単純ヘルペスウイルスによる単純ヘルペス、腫瘍ウイルスによる癌など、さまざまなものがある。
 ウイルスの増殖は、I「細胞表面への吸着」、II「細胞内への侵入」、III「脱殻」、IV「ウイルスゲノムやウイルスタンパク質などのウイルス部品の合成」、V「ウイルス部品の集合」、VI「細胞からの放出」の、I~VIのステップを経てなされる。従って、従来、これらのステップを攻撃対象として、種々のウイルス感染症の治療剤やウイルス感染予防・阻害剤の研究開発がされている。
 例えば、ウイルス感染予防・阻害剤やウイルス感染症治療剤として代表的であるワクチンは、弱毒化または不活化したウイルスを宿主に取り込ませて免疫を獲得させ、これを利用することで、前記ステップのうち、I「細胞表面への吸着」、II「細胞内への侵入」、あるいはVI「細胞からの放出」ステップを対象としている。また、特開2008-253188号公報に開示されているDNaseXタンパク質は、ウイルス遺伝子の宿主への取り込みを抑制することで、特開2007-16044号公報に開示されているペプチドは、レトロウイルスのインテグラーゼを阻害することで、それぞれIV「ウイルスゲノムやウイルスタンパク質などのウイルス部品の合成」ステップを攻撃する(特許文献1および特許文献2)。
 一方、インフルエンザは、代表的なウイルス感染症として知られている。インフルエンザの治療剤、インフルエンザウイルス感染予防・阻害剤としては、例えば、インフルエンザ表面に存在する酵素ノイラミニダーゼの働きを阻害することによりVI「細胞からの放出」ステップを攻撃するオセルタミビル(商品名タミフル;ロシュ社)やザナミビル(商品名リレンザ;グラクソ・スミスクライン社)の他、インフルエンザウイルスのM2タンパク質を阻害することによりIII「脱殻」ステップを攻撃するアマンタジン(商品名シンメトレル;ノバルティスファーマ社)を挙げることができる。また、国際公開WO2007/105565号パンフレットには、インフルエンザウイルスのヘマグルチニンに親和性の高いペプチドが開示されており、I「細胞表面への吸着」およびII「細胞内への侵入」ステップを対象としている(特許文献3)。
特開2008-253188号公報 特開2007-16044号公報 国際公開WO2007/105565号パンフレット
 しかしながら、特許文献1に開示されたウイルス感染予防・阻害剤は、外来遺伝子の分解を促進することが示されているものの、実際のウイルス感染を阻害するか否かは確かめられておらず、ウイルス感染阻害効果は不明である。また、ワクチン、レトロウイルス感染阻害剤(特許文献2)、オセルタミビル、ザナミビル、アマンタジン、インフルエンザ予防・治療剤(特許文献3)は、いずれもウイルス本体に由来するタンパク質を標的としているため、亜型への効果が期待できず、また、変異体の出現により耐性獲得が生じやすいという問題点を抱えている。例えば、現在日本で使用されている季節性インフルエンザに対するワクチンは、先行するオーストラリアでの流行株の情報に基づき、日本で流行すると予想された株に対するワクチンが作製されるため、毎年不安定であるうえ、この予測が外れた場合や変異体が生じた場合には、対応が困難となる。
 本発明は、前記問題点を解決するためになされたものであって、亜型や変異体の出現などのウイルス側の変化に影響されることなくウイルスの感染を抑制することができる、クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染を抑制する物質のスクリーニング方法、クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスのウイルス感染抑制剤、およびエンドサイトーシスにより感染可能なウイルスのウイルス感染抑制剤を提供することを目的としている。
 本発明者らは、鋭意研究の結果、宿主細胞側の因子であるrat sarcoma(Ras)タンパク質とPhosphoinositide 3-kinase(PI3K)タンパク質とが複合体を形成し、エンドソーム上に存在することで、クラスリンに依存しないエンドサイトーシスによってウイルスが感染すること、および、Rasタンパク質とPI3Kタンパク質との複合体の形成を阻害することにより、あるいはこれらが形成する複合体がエンドソーム上に存在することを抑制することにより、あるいはまたPI3Kタンパク質の活性を抑制することにより、クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染を抑制できることを見出し、さらに、クラスリンに依存しないエンドサイトーシスとクラスリン依存性エンドサイトーシス(Clathrin-dependent endocytosis)とを抑制することにより、エンドサイトーシスにより感染可能なウイルスの感染を抑制できることを見出した。これらの知見に基づいて、本発明者らは下記の各発明を完成した。
(1)クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染を抑制する物質のスクリーニング方法であって、Phosphoinositide 3-kinase(PI3K)タンパク質に結合可能なrat sarcoma(Ras)タンパク質と、PI3Kタンパク質またはそのRas結合領域(Ras Binding Domain;RBD)と対象物質とを共存させる工程と、前記対象物質が前記Rasタンパク質と前記PI3Kタンパク質または前記RBDとの結合阻害能を有するか否かを評価する工程とを有する、前記方法。
(2)クラスリンに依存しないエンドサイトーシスがクラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)および/またはマクロピノサイトーシス(Macropinocytosis)である、(1)に記載の方法。
(3)ウイルスがインフルエンザウイルスである、(1)または(2)に記載の方法。
(4)蛍光共鳴エネルギー移動を観測する方法を用いる、(1)から(3)のいずれかに記載の方法。
(5)クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染を抑制する物質のスクリーニング方法であって、下記(i)~(iv)から選択される1または2以上のポリペプチドと対象物質とを共存させる工程と、前記対象物質が前記ポリペプチドとの結合能を有するか否かを評価する工程とを有する、前記方法;
(i)配列番号30のアミノ酸配列からなるポリペプチド、
(ii)配列番号30において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつPI3Kタンパク質の一部を構成した場合にRasタンパク質とPI3Kタンパク質とが形成する複合体をエンドソーム上に存在させることができるポリペプチド、
(iii)配列番号42のアミノ酸配列からなるポリペプチド、
(iv)配列番号42において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつPI3Kタンパク質の一部を構成した場合にRasタンパク質とPI3Kタンパク質とが形成する複合体をエンドソーム上に存在させることができるポリペプチド。
(6)クラスリンに依存しないエンドサイトーシスがクラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)および/またはマクロピノサイトーシス(Macropinocytosis)である、(5)に記載の方法。
(7)ウイルスがインフルエンザウイルスである、(5)または(6)に記載の方法。
(8)クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染抑制剤であって、Phosphoinositide 3-kinase(PI3K)タンパク質とrat sarcoma(Ras)タンパク質との結合を阻害する物質を有効成分とする、ウイルス感染抑制剤。
(9)クラスリンに依存しないエンドサイトーシスがクラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)および/またはマクロピノサイトーシス(Macropinocytosis)である、(8)に記載のウイルス感染抑制剤。
(10)Phosphoinositide 3-kinase(PI3K)タンパク質とrat sarcoma(Ras)タンパク質との結合を阻害する物質がrat sarcoma(Ras)タンパク質の活性を抑制する物質である、(8)または(9)に記載のウイルス感染抑制剤。
(11)rat sarcoma(Ras)タンパク質の活性を抑制する物質が下記(i)および/または(ii)のポリペプチドである、(10)に記載のウイルス感染抑制剤;
(i)配列番号19のアミノ酸配列からなるポリペプチド、
(ii)配列番号19において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつグアニンヌクレオチド交換因子と結合するポリペプチド。
(12)Phosphoinositide 3-kinase(PI3K)タンパク質とrat sarcoma(Ras)タンパク質との結合を阻害する物質が下記(i)~(vi)から選択される1または2以上のポリペプチドである、(8)または(9)に記載のウイルス感染抑制剤;
(i)配列番号13のアミノ酸配列からなるポリペプチド、
(ii)配列番号13において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質と結合するポリペプチド、
(iii)配列番号32のアミノ酸配列からなるポリペプチド、
(iv)配列番号32において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質と結合するポリペプチド。
(v)配列番号58のアミノ酸配列からなるポリペプチド、
(vi)配列番号58において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質と結合するポリペプチド。
(13)ウイルスがインフルエンザウイルスである、(8)から(12)のいずれかに記載のウイルス感染抑制剤。
(14)クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染抑制剤であって、下記(i)~(iv)から選択される1または2以上のポリペプチドを有効成分とする、ウイルス感染抑制剤;
(i)配列番号30のアミノ酸配列からなるポリペプチド、
(ii)配列番号30において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在するのを抑制するポリペプチド、
(iii)配列番号42のアミノ酸配列からなるポリペプチド、
(iv)配列番号42において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在するのを抑制するポリペプチド。
(15)クラスリンに依存しないエンドサイトーシスがクラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)および/またはマクロピノサイトーシス(Macropinocytosis)である、(14)に記載のウイルス感染抑制剤。
(16)ウイルスがインフルエンザウイルスである、(14)または(15)のいずれかに記載のウイルス感染抑制剤。
(17)クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染抑制剤であって、PI3Kタンパク質の活性を抑制する物質を有効成分とする、ウイルス感染抑制剤。
(18)クラスリンに依存しないエンドサイトーシスがクラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)および/またはマクロピノサイトーシス(Macropinocytosis)である、(17)に記載のウイルス感染抑制剤。
(19)ウイルスがインフルエンザウイルスである、(17)または(18)に記載のウイルス感染抑制剤。
(20)エンドサイトーシスにより感染可能なウイルスの感染抑制剤であって、クラスリンに依存しないエンドサイトーシスを抑制する物質とクラスリン依存性エンドサイトーシス(Clathrin-dependent endocytosis)を抑制する物質とを有効成分とする、ウイルス感染抑制剤。
(21)クラスリンに依存しないエンドサイトーシスがクラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)および/またはマクロピノサイトーシス(Macropinocytosis)である、(20)に記載のウイルス感染抑制剤。
(22)クラスリンに依存しないエンドサイトーシスを抑制する物質が、下記(i)~(vi)から選択される1または2以上の物質および/またはポリペプチドである、(20)に記載のウイルス感染抑制剤;
(i)Phosphoinositide 3-kinase(PI3K)タンパク質とrat sarcoma(Ras)タンパク質との結合を阻害する物質、
(ii)配列番号30のアミノ酸配列からなるポリペプチド、
(iii)配列番号30において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在するのを抑制するポリペプチド、
(iv)配列番号42のアミノ酸配列からなるポリペプチド、
(v)配列番号42において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在するのを抑制するポリペプチド、
(vi)PI3Kタンパク質の活性を抑制する物質。
(23)Phosphoinositide 3-kinase(PI3K)タンパク質とrat sarcoma(Ras)タンパク質との結合を阻害する物質がrat sarcoma(Ras)タンパク質の活性を抑制する物質である、(22)に記載のウイルス感染抑制剤。
(24)rat sarcoma(Ras)タンパク質の活性を抑制する物質が下記(i)および/または(ii)のポリペプチドである、(23)に記載のウイルス感染抑制剤;
(i)配列番号19のアミノ酸配列からなるポリペプチド、
(ii)配列番号19において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつグアニンヌクレオチド交換因子と結合するポリペプチド。
(25)Phosphoinositide 3-kinase(PI3K)タンパク質とrat sarcoma(Ras)タンパク質との結合を阻害する物質が下記(i)~(vi)から選択される1または2以上のポリペプチドである、(22)に記載のウイルス感染抑制剤;
(i)配列番号13のアミノ酸配列からなるポリペプチド、
(ii)配列番号13において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質と結合するポリペプチド。
(iii)配列番号32のアミノ酸配列からなるポリペプチド、
(iv)配列番号32において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質と結合するポリペプチド。
(v)配列番号58のアミノ酸配列からなるポリペプチド、
(vi)配列番号58において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質と結合するポリペプチド。
(26)ウイルスがインフルエンザウイルスである、(20)から(25)のいずれかに記載のウイルス感染抑制剤。
 本発明に係る方法によれば、亜型や変異体の出現などのウイルス側の変化に影響されることなく、広範囲のウイルス株に対して長期的に感染を抑制することができる物質をスクリーニングすることができる。また、本発明に係るウイルス感染抑制剤によれば、クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスおよび/またはエンドサイトーシスにより感染可能なウイルスの感染を抑制することができる。
H-Rasタンパク質、K-Rasタンパク質およびN-Rasタンパク質のアミノ酸配列の相同性を示す図である。 エンドサイトーシスの経路を説明する図である。 蛍光共鳴エネルギー移動(Fluorescence Resonance Energy Transfer;FRET)を用いてRasタンパク質とPI3Kタンパク質またはそのRBDとの結合を確認する場合の模式図である。 pCAGGS-EGFP-H-RasG12V(6170bp)の制限酵素地図である。 pCXN2-Flag-H-RasG12V(6791bp)の制限酵素地図である。 H-RasG12Vタンパク質とPI3KCGタンパク質のRBDとの複合体、H-RasG12Vタンパク質とc-Raf1タンパク質のRBDとの複合体、およびH-RasG12Vタンパク質とRalGDSタンパク質のRBDとの複合体の細胞内における存在箇所をVenusタンパク質の蛍光(緑色)により観察し、early endosome-associated antigen 1(EEA1)の細胞内における存在箇所をAlexaFluor594の蛍光(赤色)により観察した結果を示す図である。 PI3KCG群、c-Raf1群およびRalGDS群について、1細胞における緑、赤および黄の各色の顆粒数の平均値を示すグラフである。 PI3KCG群、c-Raf1群およびRalGDS群について、EGFを添加しない場合およびEGFを添加した場合の、1細胞における「黄色の顆粒数/赤色の顆粒数」の平均値を示すグラフである。 pCXN2-H-Ras-IRES-EGFP(8112bp)の制限酵素地図(上図)およびpCXN2-H-RasS17N-IRES-EGFP(8112bp)の制限酵素地図(下図)である。 pCXN2-H-Ras-IRES-EGFPを導入してPR8ウイルスを接種したMEF細胞群(H-Ras導入群)およびpCXN2-H-RasS17N-IRES-EGFPを導入してPR8ウイルスを接種したMEF細胞群(H-RasS17N導入群)におけるH-RasまたはH-RasS17Nの発現を、EGFPの蛍光(緑色)により観察した結果、PR8ウイルスのウイルス核タンパク質をAlexaFluor594の蛍光(赤色)により観察した結果、およびこれらを重ね合わせた結果を示す図(上図)と、H-RasおよびH-RasS17Nを導入せずにPR8ウイルスを接種したMEF細胞群(コントロール群)、H-Ras導入群、ならびにH-RasS17N導入群のそれぞれ30個以上のMEF細胞について、AlexaFluor594の蛍光強度を測定した結果を示す箱ひげ図(下図)である。上図中、矢印でH-RasS17Nタンパク質が発現している細胞を示す。 pIRM21-3HA(8069bp)の制限酵素地図である。 野生型MEF細胞群、LY294002添加MEF細胞群、PI3KCG欠損MEF細胞群、PI3KCG導入MEF細胞群およびK251E導入MEF細胞群について、1細胞あたりの顆粒状構造物の蛍光強度をデキストランの取り込み量に換算して表したグラフである。 野生型MEF細胞群、PI3KCG欠損MEF細胞群、PI3KCG導入MEF細胞群、K251E導入MEF細胞群およびLY294002添加MEF細胞群について、1細胞あたりの顆粒状構造物の蛍光強度をトランスフェリンの取り込み量に換算して表したグラフである。 野生型MEF細胞群、PI3KCG欠損MEF細胞群、PI3KCG導入MEF細胞群、K251E導入MEF細胞群およびLY294002添加MEF細胞群について、FuGene HD Transfection ReagentおよびNucleofectorをそれぞれ用いて導入したECFP遺伝子の発現が見られる細胞数の割合を示す図である。 野生型MEF細胞群およびPI3KCG欠損MEF細胞群について、FuGene HD Transfection Reagent、Nucleofector、レンチウイルスHIVおよびレトロウイルスMSCVをそれぞれ用いて導入したECFP遺伝子の発現が見られる細胞数の割合を示す図である。 PI3KCGタンパク質およびK251Eタンパク質の細胞内における存在箇所をそれぞれAlexaFluor647の蛍光(赤紫色)により観察し、H-Rasタンパク質の細胞内における存在箇所をEGFPの蛍光(緑色)により観察し、EEA1の細胞内における存在箇所をAlexaFluor594の蛍光(赤色)により観察した結果を示す図である。 野生型MEF細胞群、LY294002添加MEF細胞群、PI3KCG欠損MEF細胞群、PI3KCG導入MEF細胞群およびK251E導入MEF細胞群に、PR8ウイルスを接種した場合のウイルス感染率を示す図である。図中、右側のシャーレの写真はプラークアッセイを行って出現したプラークを示す。 野生型MEF細胞群、LY294002添加MEF細胞群、PI3KCG欠損MEF細胞群、PI3KCG導入MEF細胞群およびK251E導入MEF細胞群にAichiウイルスを接種した場合のウイルス感染率を示す図である。 野生型MEF細胞群およびPI3Kγ Inhibitor添加MEF細胞群について、1細胞あたりの顆粒状構造物の蛍光強度をデキストランの取り込み量およびトランスフェリンの取り込み量に換算して表したグラフである。グラフ中、囲んだ数値は各群における1細胞あたりの顆粒状構造物の蛍光強度の平均値である。 コントロール群、LY294002添加MEF細胞群、1μM添加MEF細胞群、10μM添加MEF細胞群および100μM添加MEF細胞群に、PR8ウイルスを接種した場合のウイルス感染率を示す図である。 PI3KCGタンパク質、c-Raf1タンパク質およびRalGDSタンパク質のRBDのアミノ酸配列について、近隣結合法により作成した系統樹を示す図である。 PI3KCGタンパク質、c-Raf1タンパク質およびRalGDSタンパク質のRBDのアミノ酸配列について、Clustal Wにより作成したアラインメントを示す図である。図中、PI3KCGタンパク質のRBDに特徴的なN末端側の28アミノ酸を囲んで示す。 PI3KCGタンパク質、c-Raf1タンパク質およびRalGDSタンパク質のRBDのアミノ酸配列について、アラインメント作成結果に基づき、配列の保存性について視覚的に表現した図である。 H-Rasタンパク質とN28ポリペプチドを欠くPI3KCGタンパク質との複合体の細胞内における存在箇所を、EGF刺激前後について、Venusタンパク質の蛍光(緑色)により観察した結果を示す図である。 pCAGGS-Venus-PI3KCG-RBD(5918bp)の制限酵素地図である。 pCAGGS-Venus-N28(5675bp)の制限酵素地図である。 pCAGGS-3HA-PI3KCG-RBD(5261bp)の制限酵素地図である。 pCAGGS-3HA-N28(5083bp)の制限酵素地図である。 N28ポリペプチドのcDNAが挿入されたベクターを導入した後、デキストランを取り込ませたMDCK細胞において、デキストランをAlexaFluor488の蛍光(緑色)により観察し、N28ポリペプチドの発現をAlexaFluor647の蛍光(赤紫色)により観察した結果を示す図である(上図)。また、24個のMDCK細胞について、AlexaFluor647の蛍光強度およびAlexaFluor488の蛍光強度をそれぞれ測定した結果を示すグラフである(下図)。 N28ポリペプチドのcDNAが挿入されたベクターを導入した後、PR8ウイルスを接種したMDCK細胞において、N28ポリペプチドの発現をAlexaFluor647の蛍光(赤紫色)により観察し、PR8ウイルス核タンパク質をAlexaFluor488の蛍光(緑色)により観察した結果を示す図である。 pCAGGS-ECFP-H-RasG12V(6170bp)の制限酵素地図である。 ECFPで標識したN28ポリペプチドのcDNAが挿入されたベクターを導入した後、PR8ウイルスを接種したMDCK細胞群(N28群)およびECFPのcDNAが挿入されたベクターを導入した後、PR8ウイルスを接種したMDCK細胞群(コントロール群)において、導入したcDNAの発現をECFPの蛍光(青色)により観察し、PR8ウイルスのウイルス核タンパク質をAlexaFluor594の蛍光(赤色)により観察した結果を示す図である(左図)。また、各群の120個のMDCK細胞について、ECFPの蛍光強度およびAlexaFluor594の蛍光強度をそれぞれ測定した結果を示すグラフである(右図)。 ECFPで標識したN11ポリペプチドのcDNAが挿入されたベクターを導入した後、PR8ウイルスを接種したMDCK細胞群(N11群)およびECFPのcDNAが挿入されたベクターを導入した後、PR8ウイルスを接種したMDCK細胞群(コントロール群)において、導入したcDNAの発現をECFPの蛍光(青色)により観察し、PR8ウイルスのウイルス核タンパク質をAlexaFluor594の蛍光(赤色)により観察した結果を示す図である(上図)。また、各群の90個のMDCK細胞について、ECFPの蛍光強度およびAlexaFluor594の蛍光強度をそれぞれ測定した結果を示すグラフである(下図)。 PR8ウイルスを接種したMDCK細胞群(コントロール群)、LY294002を添加してPR8ウイルスを接種したMDCK細胞群(LY294002群)、モノダンシルカダベリン(MDC)を添加してPR8ウイルスを接種したMDCK細胞群(MDC群)、LY294002とMDCとを添加してPR8ウイルスを接種したMDCK細胞群(LY+MDC群)、およびオセルタミビルを添加してPR8ウイルスを接種したMDCK細胞群(オセルタミビル群)の、それぞれのウイルス感染率を示すグラフである。 pCAGGS-Venus-CLCa(6245bp)の制限酵素地図である。 PR8ウイルスを接種したMDCK細胞群(コントロール群)、LY294002を添加してPR8ウイルスを接種したMDCK細胞群(LY294002群)、MDCを添加してPR8ウイルスを接種したMDCK細胞群(MDC群)およびLY294002とMDCとを添加してPR8ウイルスを接種したMDCK細胞群(LY+MDC群)における、PR8ウイルスのウイルス核タンパク質をAlexaFluor594の蛍光(赤色)により、Rab5タンパク質をECFPの蛍光(青色)により、Rab7タンパク質をECFPの蛍光(青色)により、CLCaタンパク質をVenusタンパク質の蛍光(緑色)によりそれぞれ検出した結果を示す図(左図)および各群における「ECFPの蛍光(青色)とAlexaFluor594の蛍光(赤色)との重複を示す顆粒数/AlexaFluor594の蛍光(赤色)を示す顆粒数(b/a)」と「Venusタンパク質の蛍光(緑色)とAlexaFluor594の蛍光(赤色)との重複を示す顆粒数/AlexaFluor594の蛍光(赤色)を示す顆粒数(c/a)」を示すグラフ(右図)である。
 以下、本発明に係るウイルスの感染を抑制する物質のスクリーニング方法およびウイルス感染抑制剤について詳細に説明する。本発明に係るウイルスの感染を抑制する物質のスクリーニング方法は、クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染を抑制する物質のスクリーニング方法であって、
(i)PI3Kタンパク質に結合可能なRasタンパク質と、PI3Kタンパク質またはそのRas結合領域であるRBDと対象物質とを共存させる工程(Ras-PI3K/RBD共存工程)、
(ii)対象物質がRasタンパク質とPI3Kタンパク質またはRBDとの結合阻害能を有するか否かを評価する工程(Ras-PI3K/RBD結合阻害能評価工程)、
 以上(i)および(ii)の工程を有する。
 すなわち、前記ウイルスの感染を抑制する物質のスクリーニング方法は、PI3Kタンパク質のRBDとこれに結合可能なRasタンパク質とが結合することにより、Rasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在(局在)することとなり、その結果、クラスリンに依存しないエンドサイトーシスによりウイルスが感染するという知見に基づいており、その複合体の形成を阻害する物質、すなわち前記ウイルスの感染を抑制する物質をスクリーニングする方法である。
 Phosphoinositide 3-kinase(PI3K)タンパク質はイノシトールリン脂質のイノシトール環3位のヒドロキシル基のリン酸化を行う酵素である。本発明において、PI3Kタンパク質はRasタンパク質に結合可能なPI3Kタンパク質であり、そのようなPI3Kタンパク質としては、例えば、クラスIA、クラスIB、クラスIIなどのクラスに属する、Ras結合ドメインを有するPI3Kタンパク質を挙げることができる。また、本発明において、クラスIA-PI3Kタンパク質の触媒サブユニットとしては、例えば、p110α(PI3KCAタンパク質)、p110β(PI3KCBタンパク質)、p110δ(PI3KCDタンパク質)などを挙げることができ、制御サブユニットとしては、例えば、p85α(PI3KR1タンパク質)、p55α(PI3KR1タンパク質)、p50α(PI3KR1タンパク質)、p85β(PI3KR2タンパク質)、p55γ(PI3KR3タンパク質)などを挙げることができる。また、本発明において、クラスIB-PI3Kタンパク質の触媒サブユニットとしては、例えば、p110γ(PI3KCGタンパク質)などを挙げることができ、制御サブユニットとしては、p101、p84などを挙げることができる。また、本発明において、クラスII-PI3Kタンパク質としては、例えば、C2α(PI3KC2Aタンパク質)、C2β(PI3KC2Bタンパク質)、C2γ(PI3KC2Gタンパク質)などを挙げることができる。
 rat sarcoma(Ras)タンパク質は、GTPまたはGDPが結合する部位と、PI3Kタンパク質やc-Raf1タンパク質、RalGDSタンパク質などの他のシグナル伝達因子と相互作用するエフェクタードメインとを有する、分子量約21kDaの低分子GTP結合タンパク質の一種である。Rasタンパク質は、GDPを結合した不活性型とGTPを結合した活性型との2つの構造を可逆的にとることにより、細胞内シグナル伝達のスイッチとして機能する。GDP結合型構造からGTP結合型構造への変換はグアニンヌクレオチド交換因子(GEF)により促進され、GTP結合型構造からGDP結合型構造への変換はGTPase活性化タンパク質(GAP)により促進される。
 本発明において、Rasタンパク質はPI3Kタンパク質に結合可能なRasタンパク質であり、例えば、H-Rasタンパク質の他、H-Rasタンパク質のエフェクタードメインと同一のエフェクタードメインを有するK-Rasタンパク質やN-Rasタンパク質などを挙げることができる。H-Rasタンパク質、K-Rasタンパク質およびN-Rasタンパク質のアミノ酸配列の相同性を、図1に示す。なお、図1において、エフェクタードメインは32番目から40番目に相当する。
 エンドサイトーシスとは、一般に、細胞が外界からの物質を細胞膜の小胞化と融合により内部に取り込む方式の総称である。エンドサイトーシスは、取り込む物質の種類や大きさ、関与する細胞装置の違いにより、マクロピノサイトーシス(Macropinocytosis)、クラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)、クラスリン依存性エンドサイトーシス(Clathrin-mediated endocytosis)、カベオラ依存性エンドサイトーシス(Caveolar-dependent endocytosis)、コレステロール依存性エンドサイトーシス(Cholesterol-dependent endocytosis)、ダイナミン-2依存性エンドサイトーシス(Dynamin-2-dependent endocytosis)などに分類されている(図2;Marshら、Cell、第134巻、第729頁、2009年)。
 また、エンドサイトーシスは、細胞膜に存在する受容体タンパク質への刺激により生じるか否かにより、受容体依存性エンドサイトーシスおよび受容体非依存性エンドサイトーシスにも分類可能である。この場合、前者には前記の分類でいうクラスリン依存性エンドサイトーシス(Clathrin-mediated endocytosis)やカベオラ依存性エンドサイトーシス(Caveolar dependent endocytosis)などに相当するエンドサイトーシスが含まれ、後者には前記の分類でいうクラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)やマクロピノサイトーシス(Macropinocytosis)に相当する、食作用(ファゴサイトーシス)や飲作用(ピノサイトーシス)などが含まれる。
 すなわち、本発明において「エンドサイトーシスにより感染可能なウイルス」には、クラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)により感染可能なウイルス、クラスリン依存性エンドサイトーシス(Clathrin-mediated endocytosis)により感染可能なウイルス、マクロピノサイトーシス(Macropinocytosis)により感染可能なウイルス、カベオラ依存性エンドサイトーシス(Caveolar-dependent endocytosis)により感染可能なウイルス、コレステロール依存性エンドサイトーシス(Cholesterol-dependent endocytosis)により感染可能なウイルス、ダイナミン-2依存性エンドサイトーシス(Dynamin-2-dependent endocytosis)により感染可能なウイルスが包含される。
 対象となる、エンドサイトーシスにより感染可能な(感染性を有する)ウイルスとしては、例えば、インフルエンザウイルス、HIVウイルス、コロナウイルス、シミアン-ウイルス40、ワクシニアウイルス、ニューカッスル病ウイルス、ヘルペスウイルス、エボラウイルス、ポリオウイルス、Coxsackievirus type B(CVB)、イネ萎縮ウイルス、C型肝炎ウイルスなどを挙げることができる。
 また、本発明において「クラスリンに依存しないエンドサイトーシスにより感染可能なウイルス」には、クラスリン依存性エンドサイトーシス(Clathrin-mediated endocytosis)によって専ら感染するウイルスを除いた、エンドサイトーシスによって感染可能な(感染性を有する)ウイルス、すなわちクラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)により感染可能な(感染性を有する)ウイルス、マクロピノサイトーシス(Macropinocytosis)により感染可能な(感染性を有する)ウイルス、カベオラ依存性エンドサイトーシス(Caveolar-dependent endocytosis)により感染可能な(感染性を有する)ウイルス、コレステロール依存性エンドサイトーシス(Cholesterol-dependent endocytosis)により感染可能な(感染性を有する)ウイルス、ダイナミン-2依存性エンドサイトーシス(Dynamin-2-dependent endocytosis)により感染可能な(感染性を有する)ウイルスが包含される。
 また、対象となる、クラスリンに依存しないエンドサイトーシスにより感染可能な(感染性を有する)ウイルスとしては、クラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)により感染可能な(感染性を有する)ウイルス、マクロピノサイトーシス(Macropinocytosis)により感染可能な(感染性を有する)ウイルス、カベオラ依存性エンドサイトーシス(Caveolar-dependent endocytosis)により感染可能な(感染性を有する)ウイルス、コレステロール依存性エンドサイトーシス(Cholesterol-dependent endocytosis)により感染可能な(感染性を有する)ウイルス、ダイナミン-2依存性エンドサイトーシス(Dynamin-2-dependent endocytosis)により感染可能な(感染性を有する)ウイルスを挙げることができる。好ましくは、クラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)および/またはマクロピノサイトーシス(Macropinocytosis)により感染可能なウイルスを挙げることができ、そのようなウイルスとしては、例えば、インフルエンザウイルス、HIVウイルス、コロナウイルス、シミアン-ウイルス40、ワクシニアウイルス、ニューカッスル病ウイルスなどを挙げることができる。
 ウイルスが細胞内へ侵入する際、一般的に、エンベロープを持つウイルスは膜融合を利用し、アデノウイルスなどのエンベロープを持たないウイルスはエンドサイトーシスを利用する場合が多いが、エンベロープを持つウイルスのうち、インフルエンザウイルスなどは、エンドサイトーシスにより感染可能であることが知られている。すなわち、本発明における「エンドサイトーシスにより感染可能なウイルス」または「クラスリンに依存しないエンドサイトーシスにより感染可能なウイルス」には、膜融合により感染可能な(感染性を有する)ウイルスであっても、それぞれ、エンドサイトーシスにより感染可能なウイルスまたはクラスリンに依存しないエンドサイトーシスにより感染可能な(感染性を有する)ウイルスであれば包含される。
 本発明において、感染を抑制するか否かは、J.Biol.Chem.、第276巻 、第10990頁、2001年や、Nature Cell Biol.、第3巻、第301頁、2001年、あるいはPLoS.Pathogens、第5巻、第3号、第e1000350頁、2009年などに従い、感染率を算出することにより評価することができる他、例えば、ウイルス株の感染価を指標として評価することができる。感染価とは、一般的に感染性の微生物を含む検体を培養細胞に等量ずつ接種した時、感染率50%を与えるようなその検体の量をいい、「TCID50(tissue culture infective dose)」で表される。
 なお、本発明において「感染を抑制する」は、「感染を予防する」、「感染を阻止する」、「感染を阻害する」と交換可能に用いられる。また、「活性を抑制する」という場合は、「活性を阻害する」と交換可能に用いられる。
 工程(i)(Ras-PI3K/RBD共存工程)における、PI3Kタンパク質に結合可能なRasタンパク質と、PI3Kタンパク質またはそのRBDと対象物質とを共存させる方法は、当業者によって適宜選択可能な方法を用いることができる。そのような方法としては、例えば、Rasタンパク質と、PI3Kタンパク質またはそのRBDと対象物質との溶液を調製することにより共存させる方法や、Rasタンパク質を固定した担体を、PI3Kタンパク質またはそのRBDと対象物質とを含む溶液に浸漬することにより共存させる方法などを挙げることができる。また、Rasタンパク質、PI3Kタンパク質またはそのRBDと対象物質は、必要に応じて、担体に結合させ、あるいは標識物質で標識することができる。そのような担体としては、例えば、マイクロプレートなどのプレート、試験管、チューブ、ビーズ、ボール、フィルター、メンブレン、セルロース系担体、アガロース系担体、ポリアクリルアミド系担体、デキストラン系担体、ポリスチレン系担体、ポリビニルアルコール系担体、ポリアミノ酸系担体、多孔性シリカ系担体などの不溶性担体、ウシ血清アルブミン(BSA)、グルタチオン-s-トランスフェラーゼ、マルトース結合タンパク質(MBP)などの可溶性タンパク質担体をはじめとする生物学的担体などを挙げることができ、担体への結合は、その種類に応じて、当業者が適宜選択可能な方法を用いることができる。また、使用可能な標識物質としては、例えば、着色粒子、酵素、蛍光物質、アイソトープなどを挙げることができる。
 工程(ii)(Ras-PI3K/RBD結合阻害能評価工程)における、「Rasタンパク質とPI3Kタンパク質またはRBDとの『結合』」とは、Rasタンパク質とPI3Kタンパク質またはRBDとが、水素結合、イオン結合、疎水結合、ファンデルワールス結合により非共有的に結合することをいう。
 工程(ii)(Ras-PI3K/RBD結合阻害能評価工程)における、Rasタンパク質とPI3Kタンパク質またはRBDとの結合を確認する方法は、当業者によって適宜選択可能な方法を用いることができる。そのような方法としては、例えば、共免疫沈降法、カラムまたはビーズを用いたプルダウン法、ELISA(酵素結合免疫吸着測定法)、BIACORE、蛍光共鳴エネルギー移動(Fluorescence Resonance Energy Transfer;FRET)を用いた方法などのインビトロアッセイを挙げることができる。
 FRETとは、近接した2個の蛍光物質の間で、励起エネルギーが電磁波ではなく電子の共鳴により直接移動する現象であり、一方の分子(供与体)で吸収された光のエネルギーによって他方の分子(受容体)から蛍光が放射される現象をいう。すなわち、2個の蛍光物質が近接している場合は、供与体の吸収スペクトルに相当する光で励起すると、供与体ではなく受容体の発光スペクトルに従う蛍光が現れる。
 Rasタンパク質とPI3Kタンパク質またはRBDとの結合を確認する方法としてFRETを用いる場合、例えば、図3上段に示すように、Rasタンパク質とPI3Kタンパク質またはRBDに、それぞれ二つの異なる蛍光タンパク質をつなぎ、Rasタンパク質とPI3Kタンパク質またはRBDとの結合により観察されるFRETの蛍光が、対象物質を共存させた場合に減ずるか否かを確認することにより行うことができる。また、図3下段に示すように、Rasタンパク質とPI3Kタンパク質またはRBDをつなげて一つのポリペプチドとし、それぞれのドメインに二つの異なる蛍光タンパク質をつないでもよい。この場合は、Rasタンパク質ドメインとPI3Kタンパク質ドメインまたはRBDドメインとの結合により観察されるFRETの蛍光が、対象物質を共存させた場合に減ずるか否かを確認すればよい。なお、本発明におけるFRETで用いることができる蛍光タンパク質として、青緑色蛍光タンパク質(cyan fluorescent protein;CFP)および黄色蛍光タンパク質(yellow fluorescent protein;YFP)を挙げることができる。
 また、本発明に係るウイルスの感染を抑制する物質のスクリーニング方法の異なる態様は、クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染を抑制する物質のスクリーニング方法であって、
(i)下記(a)~(d)から選択される1または2以上のポリペプチドと対象物質とを共存させる工程(ポリペプチド共存工程)、
 (a)配列番号30のアミノ酸配列
 (b)配列番号30において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつPI3Kタンパク質の一部を構成した場合にRasタンパク質とPI3Kタンパク質とが形成する複合体PI3Kタンパク質をエンドソーム上に存在させることができるポリペプチド
 (c)配列番号42のアミノ酸配列
 (d)配列番号42において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつPI3Kタンパク質の一部を構成した場合にRasタンパク質とPI3Kタンパク質とが形成する複合体PI3Kタンパク質をエンドソーム上に存在させることができるポリペプチド
(ii)前記対象物質が前記ポリペプチドとの結合能を有するか否かを評価する工程(ポリペプチド結合能評価工程)
 以上(i)および(ii)の工程を有する。
 すなわち、前記異なる態様に係るウイルスの感染を抑制する物質のスクリーニング方法は、PI3Kタンパク質のRBDとこれに結合可能なRasタンパク質とが結合し、RBDのアミノ(N)末端ポリペプチドによって、Rasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在(局在)することとなり、その結果、クラスリンに依存しないエンドサイトーシスによりウイルスが感染するという知見に基づいており、前記(a)~(d)から選択される1または2以上のポリペプチドと結合可能であって、Rasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在(局在)することを阻害する物質、すなわち前記ウイルスの感染を抑制する物質をスクリーニングする方法である。
 ここで、本発明においてポリペプチドとは、2以上のアミノ酸がペプチド結合により結合してなる化合物のことをいい、構成するアミノ酸数は特に限定されず、例えば、2アミノ酸からなるジペプチド、3アミノ酸からなるトリペプチド、4アミノ酸からなるテトラペプチド、10程度のアミノ酸からなるオリゴペプチド、20以上のアミノ酸からなるペプチドやタンパク質が包含される。
 また、本発明において、「1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列」というときの、欠失、置換、挿入および/または付加されるアミノ酸の個数は、配列番号30または配列番号42(配列番号41)において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列については、PI3Kタンパク質の一部を構成した場合にRasタンパク質とPI3Kタンパク質とが形成する複合体をエンドソーム上に存在させることができ、PI3Kタンパク質の一部を構成しない場合にRasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在するのを抑制する限り、配列番号19において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列については、グアニンヌクレオチド交換因子と結合する限り、配列番号13、配列番号32または配列番号58(配列番号57)において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列については、Rasタンパク質に結合する限り、それぞれ特に限定されないが、例えば1~27個、好ましくは1~20個、より好ましくは1~15個、さらに好ましくは1~10個、よりさらに好ましくは1~5個の任意の個数を挙げることができる。なお、同一あるいは性質の似たアミノ酸配列に相当するのであれば、さらに多くのアミノ酸が置換、挿入、および/または付加されてもよい。
 すなわち、配列番号30または配列番号42(配列番号41)において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列については、PI3Kタンパク質のRBDのN末端側1~28番目のアミノ酸から構成されるポリペプチドであるN28ポリペプチドまたはPI3Kタンパク質のRBDのN末端側9~19番目のアミノ酸から構成されるポリペプチドであるN11ポリペプチドと、それぞれ高い同一性を有するアミノ酸配列からなり、かつPI3Kタンパク質の一部を構成した場合にRasタンパク質とPI3Kタンパク質とが形成する複合体をエンドソーム上に存在させ、PI3Kタンパク質の一部を構成しない場合にRasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在するのを抑制するポリペプチドが含まれる。また、配列番号19において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列については、H-RasS17Nタンパク質と高い同一性を有するアミノ酸配列からなり、かつグアニンヌクレオチド交換因子と結合するポリペプチドが含まれる。さらに、配列番号13、配列番号32または配列番号58(配列番号57)において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列については、PI3Kタンパク質のRBD、N28ポリペプチドを欠くPI3Kタンパク質のRBD、またはN11ポリペプチドを欠くPI3Kタンパク質のRBDと、それぞれ高い同一性を有するアミノ酸配列からなり、かつRasタンパク質に結合するポリペプチドが含まれる。また、これらにいう「高い同一性」とは、少なくとも50%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、最も好ましくは95%以上の配列の同一性を指す。
 本発明に係る配列番号30または配列番号42(配列番号41)において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドには、PI3Kタンパク質の一部を構成した場合にRasタンパク質とPI3Kタンパク質とが形成する複合体をエンドソーム上に存在させ、PI3Kタンパク質の一部を構成しない場合にRasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在するのを抑制する機能を有する限り、これらアミノ酸配列の1または複数の保存的アミノ酸置換を有するアミノ酸配列からなるペプチドが包含され、また、本発明に係る配列番号19において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドには、グアニンヌクレオチド交換因子と結合する機能を有する限り、これらアミノ酸配列の1または複数の保存的アミノ酸置換を有するアミノ酸配列からなるペプチドが包含され、さらに、本発明に係る配列番号13、配列番号32または配列番号58(配列番号57)において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドには、Rasタンパク質に結合する機能を有する限り、これらアミノ酸配列の1または複数の保存的アミノ酸置換を有するアミノ酸配列からなるペプチドが包含される。
 本発明において、保存的アミノ酸置換とは、生じる分子の生理学的活性を変化させることなく一般的になされ得る範囲、すなわち保存的置換の範囲で認められるもの(Watsonら,Molecular Biology of Geneなど)であり、例えば、アスパラギン酸およびグルタミン酸の酸性アミノ酸;リシン、アルギニンおよびヒスチジンの塩基性アミノ酸;アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニンおよびトリプトファンの非極性アミノ酸;グリシン、アスパラギン、システイン、グルタミン、セリン、トレオニンおよびチロシンの極性無電荷側鎖アミノ酸;フェニルアラニン、トリプトファンおよびチロシンの芳香族アミノ酸といった側鎖に類似性のあるアミノ酸同士(アミノ酸のファミリー内部)で起こる置換を挙げることができる。同様に、アスパラギン酸およびグルタミン酸の酸性アミノ酸;リシン、アルギニンおよびヒスチジンの塩基性アミノ酸、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリンおよびトレオニンの脂肪族アミノ酸(セリンおよびトレオニンの脂肪族-ヒドロキシアミノ酸と分類することもできる);フェニルアラニン、チロシンおよびトリプトファンの芳香族アミノ酸;アスパラギンおよびグルタミンのアミド);システインおよびメチオニンの含硫アミノ酸といった分類をすることができる。
 本発明に係るポリペプチドがPI3Kタンパク質の一部を構成する場合、PI3Kタンパク質のアミノ酸配列において本発明に係るポリペプチドが構成する部位は、PI3Kタンパク質のRBD、RBD以外の部位のいずれでもよいが、RBDが好ましく、RBDのN末端付近がより好ましく、RBDのN末端から数えて1~28番目で構成されるポリペプチドがさらに好ましく、RBDのN末端から数えて5~24番目で構成されるがよりさらに好ましく、RBDのN末端から数えて9~19番目が最も好ましい。
 工程(i)(ポリペプチド共存工程)における、前記(a)~(d)のポリペプチドと対象物質とを共存させる方法としては、前記Ras-PI3K/RBD共存工程における方法と同様の方法を挙げることができる。
 工程(ii)(ポリペプチド結合能評価工程)における、「前記ポリペプチドと対象物質との結合」とは、前記Ras-PI3K/RBD結合阻害能評価工程における「Rasタンパク質とPI3Kタンパク質またはRBDとの『結合』」と同様、前記ポリペプチドと対象物質とが、水素結合、イオン結合、疎水結合、ファンデルワールス結合により非共有的に結合することをいい、前記ポリペプチドと対象物質との結合を確認する方法としては、前記Ras-PI3K/RBD結合阻害能評価工程における方法と同様の方法を挙げることができる。
 なお、本発明に係るウイルスの感染を抑制する物質のスクリーニング方法には、その特徴を損なわない限りにおいて、他の工程を有してもよく、例えば、インキュベート工程や洗浄工程などを有してもよい。
 本発明に係るウイルス感染抑制剤は、クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染抑制剤であって、PI3Kタンパク質とRasタンパク質との結合を阻害する物質を有効成分とする。
 すなわち、前記ウイルス感染抑制剤は、PI3Kタンパク質のRBDとこれに結合可能なRasタンパク質とが結合することにより、Rasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在(局在)することとなり、その結果、クラスリンに依存しないエンドサイトーシスによりウイルスが感染するという知見に基づき、PI3Kタンパク質とRasタンパク質との結合を阻害する物質を有効成分とするアンタゴニストである。
 PI3Kタンパク質とRasタンパク質との結合を阻害する物質としては、例えば、Rasタンパク質の活性を抑制する物質を挙げることができる。ここで、本発明において、「Rasタンパク質の活性を抑制する」とは、Rasタンパク質が関与するシグナル伝達経路において、Rasタンパク質の下流へシグナルが伝達されることを抑制することをいう。
 本発明において、Rasタンパク質の活性を抑制する物質としては、例えば、GEFと結合することによりGDP結合型Rasタンパク質がGTP結合型Rasタンパク質へ変換することを抑制する物質や、GAPないしGAPの活性を高めてGTP結合型Rasタンパク質がGDP結合型Rasタンパク質へ変換することを促進する物質、ファルネシル基転移酵素阻害剤、CAXXペプチド、脱パルミトイル化酵素阻害薬などのRasタンパク質阻害剤などを挙げることができるが、GEFと結合する物質が好ましい。GEFと結合する物質としては、例えば、Rasタンパク質の優勢劣性変異タンパク質として機能する下記(e)および(f)のポリペプチドを挙げることができる;
(e)配列番号19のアミノ酸配列からなるポリペプチド、
(f)配列番号19において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつグアニンヌクレオチド交換因子と結合するポリペプチド。
 また、PI3Kタンパク質とRasタンパク質との結合を阻害する物質としては、前記Rasタンパク質の活性を抑制する物質の他、例えば、下記(g)から(l)のポリペプチドや、本発明に係るウイルスの感染を抑制する物質のスクリーニング方法によってスクリーニングされた物質などを挙げることができる;
(g)PI3KCGタンパク質のRBDと同一のポリペプチドである配列番号13のアミノ酸配列からなるポリペプチド
(h)配列番号13において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつRasタンパク質と結合するポリペプチド
(i)N28ポリペプチドを欠くPI3KCGタンパク質のRBDと同一のポリペプチドである配列番号32のアミノ酸配列からなるポリペプチド
(j)配列番号32において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつRasタンパク質と結合するポリペプチド、(k)N11ポリペプチドを欠くPI3KCGタンパク質のRBDと同一のポリペプチドである配列番号58のアミノ酸配列からなるポリペプチド
(l)配列番号58において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつRasタンパク質と結合するポリペプチド。
 前記(g)から(l)のポリペプチドを有効成分とする場合、これらがPI3Kタンパク質と拮抗してRasタンパク質と結合することにより、PI3Kタンパク質とRasタンパク質との複合体の形成を阻害することができる。
 本発明に係る異なる第二の態様のウイルス感染抑制剤は、クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染抑制剤であって、下記(m)から(p)から選択される1または2以上のポリペプチドを有効成分とする;
(m)配列番号30のアミノ酸配列からなるポリペプチド
(n)配列番号30において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつRasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在するのを抑制するポリペプチド
(o)配列番号42のアミノ酸配列からなるポリペプチド
(p)配列番号42において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつRasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在するのを抑制するポリペプチド。
 すなわち、前記異なる第二の態様に係るウイルス感染抑制剤は、PI3Kタンパク質のRBDとこれに結合可能なRasタンパク質とが結合し、RBDのN末端ポリペプチドによって、Rasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在(局在)することとなり、その結果、クラスリンに依存しないエンドサイトーシスによりウイルスが感染するという知見に基づき、RBDのN末端ポリペプチドと同一のポリペプチドである前記(m)および/または前記(o)、もしくは前記(m)および/または前記(o)とそれぞれ高い相同性を有する前記(n)および/または前記(p)の各ポリペプチドから選択される1または2以上のポリペプチドを有効成分とするものであり、これらのポリペプチドは、前記複合体がエンドソーム上に存在(局在)するのを抑制する。
 また、これらのポリペプチドは、Rasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在(局在)するのを抑制する限り、細胞内への移行を促進することが知られているポリリジン等の配列が付加されていてもよい。
 本発明におけるポリペプチドは、その配列を基にして、当業者によって適宜選択可能な方法を用いて合成することができる。そのような方法としては、例えば、アミノ酸1つ1つを化学的に重合してポリペプチドを合成するペプチド合成法の他、本発明におけるポリペプチドに相当するcDNAが挿入された組換えベクターを作製し、作製したベクターを適切な宿主細胞中に導入して得られる形質転換体を培地にて培養し、得られた培養物から採取する方法や、本発明におけるポリペプチドに相当するcDNAを無細胞タンパク質合成系で発現させて得る方法などを挙げることができる。
 本発明に係る異なる第三の態様のウイルス感染抑制剤は、クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染抑制剤であって、PI3Kタンパク質の活性を抑制する物質を有効成分とする。
 すなわち、前記異なる第三の態様に係るウイルス感染抑制剤は、PI3Kタンパク質とRasタンパク質とが複合体を形成している場合であっても、PI3Kタンパク質の活性を抑制することにより、クラスリンに依存しないエンドサイトーシスが阻害されるという知見に基づき、PI3Kタンパク質の活性を抑制する物質を有効成分としている。
 PI3Kタンパク質の活性を抑制する物質は、複数のクラスのPI3Kタンパク質や複数のサブユニットに対してその活性を抑制する物質でもよく、特定のクラスや特定のサブユニットに対して特異的にその活性を抑制する物質でもよいが、本実施例においては、PI3KCGタンパク質に対して特異的にその活性を抑制する物質を好適に用いている。本発明において、PI3Kタンパク質の活性を抑制する物質としては、例えば、全てのクラスのPI3Kタンパク質の活性阻害剤であるLY294002[2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one]やWortmannin、クラスIAおよびクラスIBのPI3Kタンパク質の活性阻害剤であるZSTK474[2-(2-difluoromethylbenzimidazol-1-yl)-4,6-dimorpholino-1,3,5-triazine](Yaguchiら、J.Natl.Cancer Inst.第98巻、第545-556頁、2006年)やQuercetin[3,3’,4’,5,7-Pentahydroxyflavone](W.F.Matterら、Biochem.Biophys.Res.Commun.第186巻、第624-631頁、1992年)、PI3KCGタンパク質特異的な活性阻害剤であるAS605240や5-Quinoxalin-6-ylmethylene-thiazolidine-2,4-dione、PI3KCDタンパク質特異的な活性阻害剤であるIC486068やIC87114などを挙げることができる。
 本発明に係る異なる第四の態様のウイルス感染抑制剤は、エンドサイトーシスにより感染可能なウイルスの感染抑制剤であって、クラスリンに依存しないエンドサイトーシスを抑制する物質とクラスリン依存性エンドサイトーシス(Clathrin-mediated endocytosis)を抑制する物質とを有効成分とする。
 すなわち、前記異なる第四の態様に係るウイルス感染抑制剤は、クラスリンに依存しないエンドサイトーシスとクラスリン依存性エンドサイトーシス(Clathrin-mediated endocytosis)とを抑制することにより、エンドサイトーシスにより感染可能なウイルスの感染が顕著に抑制されるという知見に基づき、クラスリンに依存しないエンドサイトーシスを抑制する物質とクラスリン依存性エンドサイトーシス(Clathrin-mediated endocytosis)を抑制する物質とを有効成分としている。
 本発明において、エンドサイトーシスを抑制するとは、エンドサイトーシスの一連の過程のうちの1または2以上のステップを抑制することをいう。エンドサイトーシスには、外界からの物質を内部に含む小胞の形成、小胞とライソゾームやゴルジ体、カベオソーム、小胞体などの細胞小器官との融合、あるいは外界からの物質の消化・分解の一連の過程があり、この過程には、例えば、クラスリン依存性エンドサイトーシス(Clathrin-mediated endocytosis)であれば、リガンドの受容体への結合、細胞膜の陥入、リガンドの初期エンドソームへの取り込み、初期エンドソームから後期エンドソームへの成熟、後期エンドソームとリソソームとの合体、後期エンドソームとゴルジ体からの小胞との合体などのステップがあり、クラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)やマクロピノサイトーシス(Macropinocytosis)であれば、それぞれ細胞膜の陥入や葉状仮足からのマクロピノソームの形成、リガンドの初期エンドソームへの取り込み、初期エンドソームから後期エンドソームへの成熟、後期エンドソームとリソソームとの合体、後期エンドソームとゴルジ体からの小胞との合体などのステップがある。
 本発明に係るエンドサイトーシスを抑制する物質は、エンドサイトーシスの一連の過程に含まれるステップうち1または2以上のステップを抑制することにより、エンドサイトーシスを抑制する物質である。
 本発明において、クラスリンに依存しないエンドサイトーシスを抑制する物質は、クラスリンに依存しないエンドサイトーシスのうち、いずれか一つの経路、例えば、クラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)のみ、マクロピノサイトーシス(Macropinocytosis)のみ、カベオラ依存性エンドサイトーシス(Caveolar-dependent endocytosis)のみ、コレステロール依存性エンドサイトーシス(Cholesterol-dependent endocytosis)のみ、またはダイナミン-2依存性エンドサイトーシス(Dynamin-2-dependent endocytosis)のみを抑制するものでもよく、クラスリンに依存しないエンドサイトーシスのうちの2以上の経路を抑制するものでもよいが、クラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)および/またはマクロピノサイトーシス(Macropinocytosis)を抑制する物質が好ましい。
 本発明において、クラスリンに依存しないエンドサイトーシスを抑制する物質としては、例えば、サイトカラシンB、5-(N-ethyl-N-isopropyl)amirolide(EIPA)、アミロリドなどを挙げることができる他、本発明に係るクラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染抑制剤を用いることができる。
 本発明において、クラスリン依存性エンドサイトーシス(Clathrin-dependent endocytosis)を抑制する物質としては、例えば、モノダンシルカダベリン(MDC)、ショ糖、クロロプロマジン(CPZ)、メチル-β-Cydなどを挙げることができる。なお、本実施例においては、好適なクラスリン依存性エンドサイトーシス(Clathrin-dependent endocytosis)を抑制する物質として、MDCを用いている。
 本発明に係るウイルスの感染を抑制する物質のスクリーニング方法により得られるウイルスの感染を抑制する物質やウイルス感染抑制剤の製剤化には、当業者に公知の方法を用いることができる。投与形態もまた、当業者によって適宜選択することができる投与形態でよく、そのような投与形態としては、例えば、経口投与製剤として調製する場合の、錠剤、顆粒剤、散剤、カプセル剤、コーティング剤、液剤、懸濁剤などの形態を挙げることができ、非経口投与製剤にする場合の、吸入剤、注射剤、点滴剤、座薬、塗布剤、噴霧剤、貼付剤などの形態を挙げることができる。また、その投与量は、医薬組成物の製剤形態、投与方法、使用目的およびこれに適用される投与対象の年齢、体重、症状によって適宜設定することができる。
 以下、本発明に係るウイルスの感染を阻害する物質のスクリーニング方法およびウイルス感染阻害剤について、実施例に基づいて説明する。なお、本発明の技術的範囲は、これらの実施例によって示される特徴に限定されない。
<実施例1>H-Rasタンパク質とPI3KCG-RBDタンパク質との複合体の細胞内における存在箇所の確認
 H-Rasタンパク質とPI3KCGタンパク質のRas結合領域(Ras Binding Domain;RBD)との複合体を、Bimolecular Fluorescence Complementation(BiFC)法により可視化し、また、初期エンドソームマーカーであるearly endosome-associated antigen 1(EEA1)タンパク質を免疫抗体染色により可視化して、H-RasG12Vタンパク質とPI3KCGタンパク質のRBDとの複合体の細胞内における存在箇所を確認した。H-Rasは、活性化型変異H-RasであるH-RasG12Vを用いた。H-RasG12V(配列番号3)は、H-Ras(配列番号1)の35番目のグアニンをチミンに、36番目のシトシンをアデニンに置換したものであり、それ故、H-RasG12Vタンパク質(配列番号4)は、H-Rasタンパク質のアミノ酸配列(配列番号2)の12番目であるグリシンがバリンに置換されており、H-RasG12Vタンパク質は、GTP結合型である活性化H-Rasタンパク質の状態を恒常的に維持している(Lowy D.R.ら、Annu.Rev.Biochem.、第62巻、第851-891頁、1993年)。また、H-Rasタンパク質と、生体内においてRasタンパク質に結合することが知られている因子であるc-Raf1タンパク質およびRalGDSタンパク質の、それぞれのRBDとの複合体の細胞内における存在箇所も同時に確認し、H-Rasタンパク質とPI3KCGタンパク質のRBDとの複合体の細胞内における存在箇所と比較した。
(1)ベクターの調製
 以下、XhoI/NotIサイトにH-RasG12Vが挿入され、かつEcoRI/XhoIサイトに強化緑色蛍光タンパク質(enhanced green fluorescent protein;EGFP)のcDNAが挿入されたベクターpCAGGS-EGFP-H-RasG12Vは、京都大学の松田道行氏から供与されたものを用いた。このベクターの制限酵素地図を図4に示す。また、XhoI/NotIサイトにH-RasG12Vが挿入されたベクターpCXN2-Flag-H-RasG12Vは、京都大学の松田道行氏から供与されたものを用いた。このベクターの制限酵素地図を図5に示す。さらに、蛍光タンパク質であるVenusタンパク質のcDNA(Venus;配列番号5)は、理化学研究所の宮脇敦史氏から供与されたものを用いた。
 Venusを鋳型として、Expand High Fidelity PCR System(ロシュ社)を用いてPCRを行い、Venusの1~516番目(VN配列;配列番号6)および517~714番目(VC配列;配列番号7)を、それぞれ増幅して単離した。PCRに用いたプライマー、PCR反応溶液組成およびPCR反応条件は下記のとおりである。
 VN配列の増幅に用いたプライマー:
 フォワードプライマー;5’-CCGAATTCGCCATGGTGAGCAAGGGCGAG-3’(配列番号8)
 リバースプライマー ;5’-GGCTCGAGGATGTTGTGGCGGATCTTGA-3’(配列番号9)
 VC配列の増幅に用いたプライマー:
 フォワードプライマー;5’-CCGCGGCCGCGAGGACGGCGGCGTGCAGCT-3’(配列番号10)
 リバースプライマー ;5’-GGAGATCTTCACTACAGCTCGTCCATGCCG-3’(配列番号11)
 PCR反応溶液組成;dNTP 200μmol/L、フォワードプライマー 300nmol/L、リバースプライマー 300nmol/L、鋳型DNA 100ng、MgCl2 1.5mmol/L、1×Expand High Fidelity Reaction buffer、Expand High Fidelity Enzyme mix 52U/mL
 PCR反応条件;94℃で2分の反応の後、94℃で30秒、55℃で30秒、72℃で30秒の各反応を1サイクルとして30サイクル行い、その後72℃で5分の反応を行った。
 得られたPCR産物はQIAXII(キアゲン社)により精製した。VN配列のPCR産物は、制限酵素EcoRIおよびXhoIで消化した後、前記ベクターpCAGGS-EGFP-H-RasG12VのEcoRI/XhoIサイトに、EGFPのcDNAに代えて挿入し、pCAGGS-VN-H-RasG12Vを得た。また、VC配列のPCR産物は、制限酵素NotIおよびBglIIで消化した後、前記ベクターpCXN2-Flag-H-RasG12VのNotI/BglIIサイトに挿入し、pCXN2-Flag-H-RasG12V-VCを得た。
 続いて、The Babraham InstituteのL.Stephen氏から供与されたPI3KCGタンパク質のRBD(配列番号13)のcDNA(配列番号12)、北里大学の服部成介氏から供与されたc-Raf1タンパク質のRBD(配列番号15)のcDNA(配列番号14)および内皮細胞cDNAライブラリーから単離したRalGDSタンパク質のRBD(配列番号17)のcDNA(配列番号16)を、前記ベクターpCXN2-Flag-H-RasG12V-VCのXhoI/NotIサイトに、H-RasG12Vに代えてそれぞれ挿入し、pCXN2-Flag-PI3KCG-RBD-VC、pCXN2-Flag-c-Raf1-RBD-VCおよびpCXN2-Flag-RalGDS-RBD-VCの各ベクターを得た。
(2)Cos1細胞群へのベクターの導入
 アフリカミドリザル腎由来のCos1細胞群(American Type Culture Collection;ATCC;受託番号CRL-1650)を3群に分け、PI3KCG群、c-Raf1群およびRalGDS群とした。FuGene HD Transfection Reagent(ロシュ社)を用いて、付属の使用書に従い、各群に本実施例(1)で調製したベクターを組み合わせて導入した。その組み合わせは次のとおりである。
 導入したベクターの組み合わせ
 PI3KCG群;pCAGGS-VN-H-RasG12VとpCXN2-Flag-PI3KCG-RBD-VC
 c-Raf1群;pCAGGS-VN-H-RasG12VとpCXN2-Flag-c-Raf1-RBD-VC
 RalGDS群;pCAGGS-VN-H-RasG12VとpCXN2-Flag-RalGDS-RBD-VC
 その後、胎児牛血清(FBS;Cansera社)を10%(v/v)含むDulbecco’s modified Eagle’s medium(DMEM培地;シグマ社)で、37℃、CO5%(v/v)を含む加湿環境下にて24時間培養した。
(3)免疫蛍光染色
 本実施例(2)のPI3KCG群、c-Raf1群およびRalGDS群を、パラホルムアルデヒドを3%含むリン酸緩衝生理食塩水(PBS)を用いて室温で15分間固定した後、PBSで洗浄した。続いて、TritonX-100を0.1%含むPBSを用いて室温で4分間透過処理した後、PBSで洗浄した。ウシ血清アルブミン(BSA)を1%含むPBSを用いて室温にて30分間ブロッキングを行った後、PBSにTritonX-100およびBSAをそれぞれ0.05%および0.1%となるよう添加して調製したPBTで洗浄した。続いて、抗EEA1マウスモノクローナル抗体(BD Transduction Laboratories社)をPBSで1000倍希釈した溶液に4℃にて一晩曝して、一次抗体による抗原抗体反応を行った後、PBSで洗浄した。次に、AlexaFluor594を結合した抗マウス抗体(インビトロジェン社)をPBSで200倍希釈した溶液に室温にて1時間曝して、二次抗体による抗原抗体反応を行った後、PBSで洗浄した。
(4)蛍光顕微鏡による観察
 本実施例(3)のPI3KCG群、c-Raf1群およびRalGDS群について、Venusタンパク質の蛍光(緑色)およびAlexaFluor594の蛍光(赤色)を、共焦点レーザー顕微鏡FV‐1000(オリンパス社)を用いて、既報に従い観察した{Ohba Y.ら、EMBO.J.第22巻、第4号、第859-869頁、2003年}。すなわち、PI3KCG群においてはH-RasG12Vタンパク質とPI3KCGタンパク質のRBDとの、c-Raf1群においてはH-RasG12Vタンパク質とc-Raf1タンパク質のRBDとの、RalGDS群においてはH-RasG12Vタンパク質とRalGDSタンパク質のRBDとの、それぞれの複合体をVenusタンパク質の蛍光(緑色)により検出し、EEA1をAlexaFluor594の蛍光(赤色)により検出した。その結果を図6aに示す。また、画像処理ソフトウェアMetamorph(Universal Imaging Corporation)を用いて、各群の10個から20個の細胞について、1細胞毎に、Venusタンパク質の蛍光を示す顆粒(緑色の顆粒)、AlexaFluor594の蛍光を示す顆粒(赤色の顆粒)、およびVenusタンパク質の蛍光とAlexaFluor594の蛍光の重複を示す顆粒(黄色の顆粒)の数をそれぞれ数え、1細胞における各色の顆粒数の平均値と標準偏差を求めてグラフに表した。その結果を図6bに示す。
 図6aに示すように、PI3KCG群では、緑色の蛍光を示す箇所と、赤色の蛍光を示す箇所の多くが重複しているため、緑色と赤色との混色による黄色の蛍光が多く見られた。一方、c-Raf1群およびRalGDS群では、緑色の蛍光を示す箇所と、赤色の蛍光を示す箇所の重複が少ないため、緑色と赤色との混色による黄色の蛍光はほとんど見られなかった。また、図6bに示すように、緑色、赤色および黄色の顆粒の数をそれぞれ数えた結果も同様で、PI3KCG群では、緑色の顆粒数および赤色の顆粒数と比較して黄色の顆粒数が多かったが、c-Raf1群およびRalGDS群では、緑色の顆粒数および赤色の顆粒数と比較して黄色の顆粒数は少なかった。
 以上より、H-RasG12Vタンパク質とc-Raf1タンパク質のRBDとの複合体およびH-RasG12Vタンパク質とRalGDSタンパク質のRBDとの複合体は初期エンドソームにほとんど存在しない一方で、H-RasG12Vタンパク質とPI3KCGタンパク質のRBDとの複合体は初期エンドソームに存在することが明らかになった。
<実施例2>EGF刺激によるH-Rasタンパク質とPI3KCG-RBDタンパク質との複合体の細胞内における存在箇所の変化の確認
 上皮細胞増殖因子(epidermal growth factor;EGF)の刺激により、H-RasG12Vタンパク質とPI3KCGタンパク質のRBDとの複合体の細胞内における存在箇所が変化するか否かを確認した。
 まず、実施例1(1)に記載の方法によりベクターを調製し、実施例1(2)に記載の方法によりCos1細胞群にベクターを導入した後、24時間培養した。
 その後、各群をそれぞれさらに2つに分け、そのうち一方の培地にEGFを100ng/mLとなるよう添加して、20分間培養した。
 続いて、実施例1(3)に記載の方法により免疫蛍光染色を行った。その後、実施例1(4)に記載の方法により蛍光観察を行い、各群の10個から20個の細胞について、黄色の顆粒数および赤色の顆粒数を数えて、1細胞における「黄色の顆粒数/赤色の顆粒数」を算出し、その平均値と標準偏差を求めた。その結果を図7に示す。
 図7に示すように、PI3KCG群では、EGFを添加した場合はEGFを添加しない場合と比較して、黄色の顆粒数の割合が顕著に増加した。一方、c-Raf1群およびRalGDS群では、EGFを添加した場合はEGFを添加しない場合と比較して、黄色の顆粒数の割合はほとんど変わらなかった。
 以上より、EGFにより刺激をすると、H-RasG12Vタンパク質とPI3KCGタンパク質のRBDとの複合体がエンドソームに存在するようになることが明らかになった。
<実施例3>優勢劣性型変異H-Rasタンパク質を発現させた細胞のウイルス核タンパク質取り込み量の確認
 優勢劣性型変異H-Rasタンパク質であるH-RasS17Nタンパク質(配列番号19)を発現させたMEF細胞群にインフルエンザウイルスを接種し、細胞内へのウイルス核タンパク質の取り込み量を調べた。H-RasS17Nタンパク質のcDNA配列(配列番号18)では、H-Ras(配列番号1)の50番目のグアニンがアデニンに置換されており、これによりH-RasS17Nタンパク質(配列番号19)では、そのアミノ酸配列の17番目のセリンがアスパラギンに置換されている。その結果、H-RasS17Nタンパク質はグアニンヌクレオチド交換因子(GEF)と結合して、GDP結合型H-Rasタンパク質がGTP結合型H-Rasタンパク質に変換することを阻害することにより、H-Rasタンパク質の活性を抑制する(Feig.ら、Mol.Cell.Biol.、第8巻、第3235-3243頁、1988年)。
(1)ベクターの調製
 以下、XhoI/NotIサイトにH-Ras、NotI/SalIサイトにInternal Ribosome Entry Site配列(IRES配列)およびSalI/BglIIサイトにEGFPのcDNAが挿入されたベクターpCXN2-H-Ras-IRES-EGFP、ならびにXhoI/NotIサイトにH-RasS17N、NotI/SalIサイトにIRES配列およびSalI/BglIIサイトにEGFPのcDNAが挿入されたベクターpCXN2-H-RasS17N-IRES-EGFPは、京都大学の松田道行氏から供与されたものを用いた。これらのベクターの制限酵素地図を図8に示す。
(2)MEF細胞群の調製
 野生型マウス(C57BL/6N Jcl;日本クレア社)からマウス胎児繊維芽(Mouse embryonic fibroblast;MEF)細胞群を既報に従って調製し{Sasakiら、Science、第287巻、第5455号、第1040-1046頁、2000年}、実施例1(2)に記載の環境下で24時間培養した。
(3)MEF細胞群へのベクターの導入
 本実施例(2)のMEF細胞群を3群に分けてコントロール群、H-Ras導入群およびH-RasS17N導入群とした。次に、FuGene HD Transfection Reagent(ロシュ社)を用いて、付属の使用書に従い、H-Ras群に本実施例(1)のpCAGGS-H-Ras-IRES-EGFPを、H-RasS17N群に本実施例(1)のpCAGGS-H-RasS17N-IRES-EGFPをそれぞれ導入した。なお、コントロール群には何も導入しなかった。その後、コントロール群、H-Ras導入群およびH-RasS17N導入群を実施例1(2)に記載の環境下で24時間培養した。
(4)インフルエンザウイルスの調製
 次に、北海道大学の高田礼人氏より供与されたインフルエンザウイルスA/Puerto Rico/8/34(H1N1;PR8)を、ニワトリ卵10日胚(ホクレン中央種鶏場)の漿尿膜へ接種して、37℃にて48時間培養して増殖させた。
(5)MEF細胞群へインフルエンザウイルス接種
 本実施例(4)のPR8ウイルスを、重複感染度(Multiplicity of infection;MOI)=2となるようminimal essential medium(MEM培地;インビトロジェン社)に加えて、PR8ウイルス含有培地を調製した。本実施例(3)の各群をPBSで洗浄した後、PR8ウイルス含有培地を添加し、35℃、CO5%(v/v)を含む環境下にて1時間培養することによりウイルス接種を行った。続いて、PBSで洗浄した後、MEM培地(インビトロジェン社)を添加し、35℃、CO5%(v/v)を含む環境下にて5時間培養した。
(6)免疫蛍光染色および蛍光顕微鏡による観察
 本実施例(5)の各群について、実施例1(3)に記載の方法により、免疫蛍光染色を行った。ただし、一次抗体は抗EEA1マウスモノクローナル抗体(BD Transduction Laboratories社)に代えて北海道大学の高田礼人氏から供与された抗インフルエンザウイルス核タンパク質マウスモノクローナル抗体を用いた。また、抗体の希釈にはPBSに代えてPBTを用い、二次抗体の希釈倍率は200倍に代えて300倍とし、一次抗体による抗原抗体反応の時間は一晩に代えて12時間とした。その後、実施例1(4)に記載の方法により蛍光観察を行った。なお、H-Rasタンパク質またはH-RasS17Nタンパク質の発現は、同一ベクターからバイシストロン性に発現するEGFPの発現を指標として観察を行った。H-Ras導入群およびH-RasS17N導入群の観察結果のうち代表的なものを図9上図に示す。また、H-Ras導入群およびH-RasS17N導入についてはEGFPの蛍光が認められるそれぞれ30個以上の細胞、ならびにコントロール群については任意の30個以上の細胞について、1細胞におけるAlexaFluor594の蛍光強度を測定して、箱ひげ図に表した。その結果を図9下図に示す。
 図9上図に示すように、H-Ras導入群では、EGFPの蛍光が認められる細胞においてAlexaFluor594の蛍光が認められる一方で、H-RasS17N導入群では、EGFPの蛍光が認められる細胞においてAlexaFluor594の蛍光が認められなかった。
 また、図9下図に示すように、H-Ras導入群の細胞ではコントロール群の細胞と比較してAlexaFluor594の蛍光が大きい一方で、H-RasS17N導入群の細胞ではA群の細胞と比較してAlexaFluor594の蛍光が小さかった。
 これらの結果から、H-Rasタンパク質の発現量が増加するとウイルス感染量が増加する一方で、H-RasS17Nタンパク質の発現によりH-Rasタンパク質の活性が抑制されるとウイルス感染量が低下することが確認された。
<実施例4>PI3KCG欠損細胞およびK251E導入細胞におけるエンドサイトーシス機能の確認
 主にクラスリン依存性エンドサイトーシスにより細胞内に取り込まれることが知られているトランスフェリンと、クラスリンに依存しないエンドサイトーシスのうち、主にクラスリン非依存性エンドサイトーシスおよびマクロピノサイトーシスにより細胞内に取り込まれることが知られている分子量10000のデキストランとを、PI3KCGタンパク質を欠く細胞およびRasタンパク質に結合しない変異PI3KCGタンパク質(K251Eタンパク質;配列番号21)を発現する細胞に取り込ませ、それらの取り込み量を調べた。K251Eタンパク質のcDNA配列(K251E;配列番号20)では、PI3KCGタンパク質のcDNA配列(PI3KCG;配列番号22)の751番目のアデニンがグアニンに置換されており、これによりK251Eタンパク質ではPI3KCGタンパク質(配列番号23)のアミノ酸配列の251番目のリジンがグルタミン酸に置換されている。その結果、K251Eタンパク質はRasタンパク質に結合しないことが確認されている{Pacold M.E.ら、Cell、第103巻、第6号、第931-943頁、2000年}。
(1)野生型MEF細胞群およびLY294002を培地に添加して培養した野生型MEF細胞群(LY294002添加MEF細胞群)の調製
 実施例3(2)に記載の方法により調製したMEF細胞群を2群に分け、そのうち一方は野生型MEF細胞群とした。残りの一方は、全てのクラスのPI3Kタンパク質活性阻害剤であるLY294002(Calbiochem社)を50μmol/Lとなるよう培地に添加して1時間培養し、LY294002添加MEF細胞群とした。
(2)PI3KCG欠損MEF細胞群の調製
 C57BL/6N JclバックグラウンドのPIK3CG欠損マウスからPI3KCGを欠くMEF細胞群を既報に従って調製し{Sasakiら、Science、第287巻、第5455号、第1040-1046頁、2000年}、実施例1(2)に記載の環境下で24時間培養した。
(3)PI3KCG導入MEF細胞群の調製
[3-1]ベクターの調製
 京都大学の松田道行氏から供与された、ヘマグルチニン(HA)のcDNAが3コピー挿入されたベクターpIRM21-3HAの制限酵素地図を図10に示す。The Babraham InstituteのL.Stephen氏から供与されたPI3KCGを鋳型としてPCRを行い、PI3KCGを増幅して単離した。PCR反応溶液組成およびPCR反応条件は実施例1(1)に記載の方法と同様にした。用いたプライマーは下記のとおりである。
 フォワードプライマー;5’-GGCTCGAGATGGAGCTGGAGAACTATAA-3’(配列番号24)
 リバースプライマー ;5’-CCGGGCCCTCAGCTAGTTAGCGGCCGCCGGCTGAATGTTTCTCTC-3’(配列番号25)
 得られたPCR産物はQIAXII(キアゲン社)により精製した。これを制限酵素XhoIおよびNotIで消化した後、pIRM21-3HAのXhoI/NotIサイトに挿入し、pIRM21-3HA-PI3KCGを得た。続いて、これを制限酵素SalIおよびNotIで消化し、プロモーター領域、3HAおよびPIK3CGを含むDNA断片を得た後、実施例1(1)に記載の方法により調製したpCXN2-Flag-H-RasG12VのSalI/NotIサイトに、FlagおよびH-RasG12Vを含むDNA断片に代えて挿入し、pCXN2-3HA-PIK3CGを得た。
[3-2] PI3KCG欠損MEF細胞群へのベクターの導入
 本実施例(3)[3-1]で調製したpCXN2-3HA-PI3KCGをScaIで消化した後、Nucleofector(amaxa社)を用いて、付属の使用書に従い、本実施例(2)で調製したPI3KCG欠損MEF細胞に導入した。
 その後、実施例1(2)に記載の環境下で2日間培養した後、培地にG418二硫酸塩(シグマ社)を0.5mg/mLとなるよう添加してさらに培養し、耐性細胞を得た。続いて、得られた耐性細胞について、常法に従いウェスタンブロットを行ってPI3KCGタンパク質の発現の有無を確認し、PI3KCGタンパク質を安定して発現している細胞を選択し、G418二硫酸塩(シグマ社)を0.2mg/mL含むDMEM培地で培養した。
(4)K251E導入MEF細胞群の調製
[4-1]ベクターの調製
 PI3KCGの751番目のアデニンをグアニンに置換した部分を含む22塩基のフォワードプライマーおよびリバースプライマーを設計した。これらのプライマーをそれぞれ用いて、本実施例(3)のPI3KCGを鋳型として1回目のPCRを行い、K251Eの1~762番目およびK251Eの740~3309番目をそれぞれ増幅した。PCR反応溶液組成は実施例1(1)に記載の方法と同様にした。PCRに用いたプライマーおよびPCR反応条件は下記のとおりである。用いたプライマーにおいて、PI3KCGの751番目のアデニンをグアニンに置換した部分を下線で示す。
 1回目のPCR 
 K251Eの1~762番目の増幅に用いたプライマー:
 フォワードプライマー;配列番号9のプライマー
 リバースプライマー ;5’-CTTGGCCATCTCGGTGAAGAAG-3’(配列番号26)
 K251Eの740~3309番目の増幅に用いたプライマー:
 フォワードプライマー;5’-CTTCTTCACCGAGATGGCCAAG-3’(配列番号27)
 リバースプライマー ;配列番号10のプライマー
 PCR反応条件;94℃で2分の反応の後、94℃で30秒、58℃で30秒、68℃で3分の各反応を1サイクルとして30サイクル行い、その後72℃で5分の反応を行った。
 続いて、1回目のPCR産物を鋳型として、本実施例(3)[3-1]に記載のプライマーを用いて2回目のPCRを行い、K251Eを増幅して単離した。PCR反応溶液組成は、鋳型DNAを1回目のPCR産物各50ngずつとした他は、実施例1(1)に記載の方法と同様にした。PCR反応条件は下記のとおりである。
 PCR反応条件;94℃で2分の反応の後、94℃で30秒、58℃で30秒、72℃で3分の各反応を1サイクルとして30サイクル行い、その後72℃で5分の反応を行った。
 得られたPCR産物は、本実施例(3)[3-1]に記載の方法によりベクターに挿入し、pCXN2-3HA-K251Eを得た。
[4-2]PI3KCG欠損MEF細胞群へのベクターの導入
 本実施例(4)[4-1]で調製したpCXN2-3HA-K251Eを、本実施例(3)[3-2]に記載の方法により、PI3KCG欠損MEF細胞に導入し、K251E導入MEF細胞群を調製した。
(5)エンドサイトーシス機能の評価
 本実施例(1)から(4)で調製した各群をそれぞれ2つに分け、そのうち一方にはAlexaFluor546を結合した分子量10000のデキストラン(インビトロジェン社)を、他方にはAlexaFluor546を結合したトランスフェリン(インビトロジェン社)を、それぞれ0.5mg/mLとなるよう培地に添加し、37℃、CO5%を含む加湿環境下で、10分間培養した。
 その後、37℃に保った状態で実施例1(4)に記載の方法により蛍光観察を行い、各群における20個の細胞について、1細胞あたりの顆粒状構造物の蛍光強度を測定し、その平均値をデキストランの取り込み量およびトランスフェリンの取り込み量に換算してグラフに表した。その結果を図11aおよび図11bに示す。
 図11aに示すように、PI3KCG欠損MEF細胞群、K251E導入MEF細胞群およびLY294002添加MEF細胞群では、野生型MEF細胞群と比較してデキストランの取り込み量の低下が見られた。一方、PI3KCG導入MEF細胞群では、野生型MEF細胞群と同程度のデキストランの取り込みが見られた。また、図11bに示すように、トランスフェリンの取り込み量は、いずれの細胞群においても野生型MEF細胞群との違いが見られなかった。
 以上より、PI3KCGタンパク質の欠損またはPI3KCGタンパク質の変異によりRasタンパク質とPI3KCGタンパク質との結合が阻害された場合またはLY294002によりPI3KCGタンパク質を含むPI3Kタンパク質のキナーゼ活性が阻害された場合には、クラスリン依存性のエンドサイトーシスは抑制されない一方で、クラスリン非依存性エンドサイトーシスおよびマクロピノサイトーシスは抑制されることが明らかになった。
<実施例5>PI3KCG欠損細胞およびK251E導入細胞における強化青緑色蛍光タンパク質(enhanced cyan fluorescent protein;ECFP)遺伝子発現率の確認
 エンドサイトーシスを介する遺伝子導入試薬であるFuGene HD Transfection Reagent(ロシュ社)を用いる方法、エレクトロポレーション法による遺伝子導入装置であるNucleofector(amaxa社)を用いる方法、エンドサイトーシスにより感染することが知られているレンチウイルスHIVを用いる方法、および膜融合により感染することが知られているレトロウイルスMSCVを用いる方法の4つの方法により、PI3KCG欠損細胞群およびK251E導入細胞群にECFP遺伝子の導入を行い、導入したECFP遺伝子を発現する細胞数を調べた。
(1)FuGene HD Transfection ReagentおよびNucleofectorにより導入したECFP遺伝子の発現率
 実施例4(1)から(4)に記載の方法により調製した野生型MEF細胞群、LY294002添加MEF細胞群、PI3KCG欠損MEF細胞群、PI3KCG導入MEF細胞群およびK251E導入MEF細胞群に、FuGene HD Transfection Reagent(ロシュ社)およびNucleofector(amaxa社)をそれぞれ用いて、ECFPのcDNA(配列番号28)が挿入されたベクターpECFP-C1(クロンテック社)を、付属の使用書に従い導入した。なお、LY294002添加MEF細胞群については、LY294002を添加した培地において、ベクターの導入を行った。
 その後、実施例1(2)に記載の環境下で24時間培養した。続いて、気温を37℃に保った状態で下記に示す条件により蛍光観察を行い、ECFPの蛍光(青色)が見られる細胞を数え、各群の全体の細胞数に占める割合を算出した。その結果を図12aに示す。
 蛍光観察に用いた条件
 顕微鏡;倒立型リサーチ顕微鏡 IX71(オリンパス社)
 電動シャッター・ステージ;BioPointMAC5000(Ludi社)
 光源;キセノンランプ、75ワット
 減光フィルター;6%
 ダイクロイックミラー;XF2034(455DRLP;オメガ社)
 励起フィルター;XF1071(440AF21)(オメガ社)
 吸収フィルター;XF3075(480AF30)(オメガ社)
 記録装置;冷却CCDカメラCoolSNAP-HQ(RoperScientific社)
 CCDカメラおよびフィルターホイールの制御、画像データの分析;MetaMorphソフトウェア(Molecular Devices社)
 図12aに示すように、FuGene HD Transfection Reagent(ロシュ社)によりECFPのcDNAを導入した場合は、PI3KCG欠損MEF細胞群、K251E導入MEF細胞群およびLY294002添加MEF細胞群では、それぞれ野生型MEF細胞群と比較して、ECFP発現細胞数の割合が顕著に低下した。また、PI3KCG導入MEF細胞群では、野生型MEF細胞群と比較して、ECFP発現細胞数の割合はほぼ同じであった。一方、Nucleofector(amaxa社)によりECFPのcDNAを導入した場合は、いずれの細胞群においても、それぞれ野生型MEF細胞群と比較してECFP発現細胞数の割合はほぼ同じであった。
 以上より、PI3KCGタンパク質の欠損またはPI3KCGタンパク質の変異により、Rasタンパク質とPI3KCGタンパク質との結合が阻害された場合およびLY294002によりPI3KCGタンパク質を含むPI3Kタンパク質のキナーゼ活性が阻害された場合に、エンドサイトーシスを介する遺伝子導入試薬であるFuGene HD Transfection Reagent(ロシュ社)によるECFPのcDNAの導入が抑制された一方で、エレクトロポレーション法による遺伝子導入装置であるNucleofector(amaxa社)によるECFPのcDNAの導入は抑制されないことから、PI3KCGタンパク質の欠損またはPI3KCGタンパク質の変異によりRasタンパク質とPI3KCGタンパク質との結合が阻害された場合、またはLY294002によりPI3KCGタンパク質を含むPI3Kタンパク質のキナーゼ活性が阻害された場合は、エンドサイトーシスが抑制されることが明らかになった。
(2)レトロウイルスおよびレンチウイルスの感染により導入した遺伝子の発現率
[2-1]レトロウイルスMSCVおよびレンチウイルスHIVの調製
 ブリティッシュコロンビア大学のM.R.Gold氏から供与されたレトロウイルスベクターpMSCV-pac-ECFPを、同氏から供与されたパッケージング細胞であるBOSC23細胞に導入することにより、ECFPのcDNAを保持したレトロウイルスmurine stem cell virus(MSCV)を作成した。また、理化学研究所の三好浩之氏から供与されたCS-CA-ECFP、pCMV-VSV-RSV-RevおよびレンチウイルスベクターpCAG-HIVgpの3つのベクターを、コネチカット大学のB.Mayer氏から供与された、パッケージング細胞であるヒト胚性腎(human embryonic kidney;HEK)293T細胞に導入することにより、ECFPのcDNAを保持したレンチウイルスHIVを作成した{Pearら、Proc.Natl.Acad.Sci.USA、第90巻、第8392頁、1993年;Ohba Y.ら、EMBO.J.第20巻、第13号、第3333-3341頁、2001年;Inuzuka T.ら、B.B.R.C.第379巻、第510-513頁、2009年;Miyoshiら、Mothods Mol.Bio.第l246巻、第429-438頁、2004年}。
[2-2]野生型MEF細胞群およびPI3KCG欠損MEF細胞群へのレトロウイルスおよびレンチウイルス接種
 本実施例(2)[2-1]のレトロウイルスMSCVおよびレンチウイルスHIVを、それぞれ重複感染度(Multiplicity of infection;MOI)=1となるようDMEM培地に加えて、レトロウイルス含有培地およびレンチウイルス含有培地を調製した。実施例4(1)および(2)に記載の方法により調製した野生型MEF細胞群およびPI3KCG欠損MEF細胞群をPBSで洗浄した後、それぞれを2群に分け、そのうち一方にはレトロウイルス含有培地を、他方にはレンチウイルス含有培地を添加し、37℃、CO5%(v/v)を含む加湿環境下にて12時間培養することによりウイルス接種を行った。続いて、PBSで洗浄した後、実施例1(2)に記載の環境下で2日間培養した。
[2-3]ECFPの蛍光観察
 本実施例(2)[2-2]の各群について、気温を37℃に保った状態で本実施例(1)に記載の方法により蛍光観察を行い、ECFPの蛍光(青色)が検出される細胞を数えて、全体の細胞数に占める割合を算出した。その結果を図12bに示す。
 また、本実施例(1)の結果のうち、野生型MEF細胞群およびPI3KCG欠損MEF細胞群における結果について、「ECFP発現細胞数/全体の細胞数」の値に換算して、図12bに示す。
 図12bに示すように、レンチウイルスHIVの感染によりECFPのcDNAを導入した場合、およびFuGene HD Transfection Reagent(ロシュ社)によりECFPのcDNAを導入した場合は、野生型MEF細胞群と比較して、PI3KCG欠損MEF細胞群におけるECFP発現細胞数の割合が顕著に低下した。一方、レトロウイルスMSCVの感染によりECFPのcDNAの導入を行った場合、およびNucleofector(amaxa社)によりECFPのcDNAの導入を行った場合は、野生型MEF細胞群と比較して、PI3KCG欠損MEF細胞群におけるECFP発現細胞数の割合はほぼ同じであった。
 以上より、PI3KCGタンパク質が欠損すると、FuGene HD Transfection Reagent(ロシュ社)によるエンドサイトーシスを介した遺伝子導入、およびレンチウイルスの感染による遺伝子導入すなわちエンドサイトーシスによるウイルス感染が抑制されることが明らかになった。一方、PI3KCGタンパク質が欠損しても、レトロウイルスの感染すなわち膜融合によるウイルス感染は抑制されないことが明らかになった。
<実施例6>K251Eタンパク質およびH-Rasタンパク質の細胞内における存在箇所の確認
 K251Eタンパク質およびH-Rasタンパク質を免疫抗体染色および蛍光標識により可視化し、これらのタンパク質が細胞内において存在する箇所を確認した。
(1)ベクターの調製
 実施例4(3)[3-1]に記載の方法によりpCXN2-3HA-PI3KCGを得た。また、実施例4(4)[4-1]に記載の方法によりpCXN2-3HA-K251Eを得た。pCAGGS-EGFP-H-RasG12Vは実施例1(1)に記載のものを用いた。
(2)Cos1細胞群へのベクターの導入
 Cos1細胞群(ATCC;受託番号CRL-1650)を2群に分けてPI3KCG群およびK251E群とし、FuGene HD Transfection Reagent(ロシュ社)を用いて、付属の使用書に従い、本実施例(1)で調製したベクターを組み合わせて導入し、実施例1(2)に記載の環境下で24時間培養した。前記ベクターの組み合わせは次のとおりである。
 導入したベクターの組み合わせ
 PI3KCG群;pCXN2-3HA-PI3KCGとpCAGGS-EGFP-H-RasG12V
 K251E群;pCXN2-3HA-K251EとpCAGGS-EGFP-H-RasG12V
(3)免疫蛍光染色
 本実施例(2)のPI3KCG群およびK251E群について、実施例1(3)に記載の方法により免疫蛍光染色を行った。ただし、一次抗体として、抗EEA1マウスモノクローナル抗体(BD Transduction Laboratories社)に加えて抗HAラットモノクローナル抗体3F10(ロシュ社)を用い、二次抗体として、AlexaFluor594を結合した抗マウス抗体(インビトロジェン社)に加えてAlexaFluor647を結合した抗ラット抗体(インビトロジェン社)を用いた。
(4)共焦点顕微鏡による観察
 本実施例(2)のPI3KCG群およびK251E群について、実施例1(4)に記載の方法により蛍光観察を行った。すなわち、PI3KCGタンパク質およびK251Eタンパク質の存在する箇所をAlexaFluor647の蛍光(赤紫色)により検出し、H-RasG12Vタンパク質の存在する箇所をEGFPの蛍光により検出し、さらにEEA1をAlexaFluor594の蛍光(赤色)により検出した。その結果を図13に示す。融合図の下段のグラフは、融合図内に点線で示したラインに沿って、各蛍光の強度を示したものである。また、拡大図は融合図内の囲みの部分を拡大した図である。
 図13に示すように、PI3KCG群では、PI3KCGタンパク質、H-RasG12Vタンパク質およびEEA1タンパク質の発現の多くが、細胞内の同じ箇所で確認された。一方、K251E群では、H-RasG12Vタンパク質およびEEA1タンパク質の発現は同じ箇所に観察されるものの、K251Eタンパク質の発現は、H-RasG12Vタンパク質およびEEA1タンパク質の発現と、細胞内の同じ箇所ではほとんど確認されなかった。
 以上より、PI3KCGタンパク質とH-RasG12Vタンパク質との結合が阻害されると、初期エンドソームにおけるPI3KCGタンパク質の存在(局在)が抑制されることが明らかになった。
<実施例7>PI3KCG欠損細胞およびK251E導入細胞におけるウイルス感染率の確認
 PI3KCG欠損細胞群およびK251E導入細胞群にインフルエンザウイルスを接種し、ウイルス感染率を調べた。
(1)MEF細胞群の調製
 まず、実施例4(1)から(4)に記載の方法により、野生型MEF細胞群、LY294002添加MEF細胞群、PI3KCG欠損MEF細胞群、PI3KCG導入MEF細胞群およびK251E導入MEF細胞群を調製した。
(2)インフルエンザウイルスの準備
 次に、実施例3(4)のPR8ウイルスおよび北海道大学の高田礼人氏より供与されたインフルエンザウイルスA/Aichi/2/68(H3N2;Aichi)を、実施例3(4)に記載の方法により増殖させた。
(3)MEF細胞群へのインフルエンザウイルス接種
 続いて、本実施例(2)のPR8ウイルスおよびAichiウイルスを、MOI=250となるようMEM培地(インビトロジェン社)に加えて、PR8ウイルス含有培地およびAichiウイルス含有培地を調製した。本実施例(1)の各群をPBSで洗浄した後、それぞれを2群に分け、そのうち一方にはPR8ウイルス含有培地を、他方にはAichiウイルス含有培地を添加し、37℃、CO5%(v/v)を含む加湿環境下にて1時間培養することによりウイルス接種を行った。なお、LY294002添加MEF細胞群については、PR8ウイルス含有培地およびAichiウイルス含有培地にLY294002(Calbiochem社)を50μmol/Lとなるよう添加したものを用いてウイルス接種を行った。続いて、PBSで洗浄した後、1%(w/v)のBact-agarおよび5μg/mLのトリプシンを含むMEM培地(インビトロジェン社)を添加し、35℃、CO5%(v/v)を含む加湿環境下にて2日間培養した。
(4)プラークアッセイによるウイルス感染率の確認
 その後、本実施例(3)の培養上清を、12穴プレートで単層培養したMadin-Darby canine kidney(MDCK)細胞群(JCRB細胞バンク:JCRB9029)に添加して、37℃にて1時間培養した。続いて、培養上清を除去し、Bact-agar1%(w/v)およびトリプシン5μg/mLを含むMEM培地(インビトロジェン社)を添加して、35℃、CO5%(v/v)を含む加湿環境下にて2日間培養し、出現したプラークを数えた。この結果をもとに、PR8ウイルスおよびAichiウイルスの各群におけるウイルス感染率を求めた{J.Biol.Chem.、第276巻 、第10990頁、2001年;Nature Cell Biol.、第3巻、第301頁、2001年;PLoS.Pathogens、第5巻、第3号、第e1000350頁、2009年}。PR8ウイルスの結果を図14aに、Aichiウイルスの結果を図14bにそれぞれ示す。
 図14aおよび図14bに示すように、PI3KCG欠損MEF細胞群およびK251E導入MEF細胞群では、PR8ウイルスおよびAichiウイルスのウイルス感染率はいずれも顕著に低下した。また、LY294002添加MEF細胞群でも、PR8ウイルスおよびAichiウイルスのウイルス感染率はいずれも低下した。一方、PI3KCG導入MEF細胞群では、PR8ウイルスおよびAichiウイルスのウイルス感染率はいずれも野生型MEF細胞群と同程度に高いことが確認された。
 以上より、PI3KCGタンパク質の欠損またはPI3KCGタンパク質の変異により、PI3KCGタンパク質のRasタンパク質への結合が阻害されると、インフルエンザウイルスの感染が抑制されることが明らかになった。また、LY294002によりPI3KCGタンパク質を含むPI3Kタンパク質のキナーゼ活性が阻害された場合も、インフルエンザウイルスの感染が抑制されることが明らかになった。
<実施例8>PI3KCGタンパク質の活性を阻害した細胞におけるエンドサイトーシス機能の確認
 PI3KCGタンパク質の活性を特異的に阻害する薬剤である5-Quinoxalin-6-ylmethylene-thiazolidine-2,4-dione(PI3Kγ Inhibitor;MERCK社)を培地に添加して培養した細胞に分子量10000のデキストランおよびトランスフェリンを取り込ませ、それらの取り込み量を調べた。
(1)野生型MEF細胞群およびPI3Kγ Inhibitorを培地に添加して培養した野生型MEF細胞群(PI3Kγ Inhibitor添加MEF細胞群)の調製
 実施例3(2)に記載の方法により調製したMEF細胞群を2群に分け、そのうち一方は野生型MEF細胞群とした。残りの一方は、PI3Kγ Inhibitor(MERCK社)を20μmol/Lとなるよう培地に添加して30分間培養し、PI3Kγ Inhibitor添加MEF細胞群とした。
(2)エンドサイトーシス機能の評価
 本実施例(1)で調製した野生型MEF細胞群およびPI3Kγ Inhibitor添加MEF細胞群について、実施例4(5)に記載の方法により分子量10000のデキストランおよびトランスフェリンを培地に添加して培養し、それらの取り込み量を測定した。また、1細胞あたりの顆粒状構造物の蛍光強度の平均値を各群について算出した。その結果を図15に示す。
 図15に示すように、デキストランについては、野生型MEF細胞群における蛍光強度の平均値が99.2である一方で、PI3Kγ Inhibitor添加MEF細胞群における蛍光強度の平均値は79.3であり、PI3Kγ Inhibitor添加MEF細胞群で、野生型MEF細胞群と比較して取り込み量の低下が見られた。これに対し、トランスフェリンについては、野生型MEF細胞群における蛍光強度の平均値が86.3であり、PI3Kγ Inhibitor添加MEF細胞群における蛍光強度の平均値は93.7であることから、PI3Kγ Inhibitor添加MEF細胞群と野生型MEF細胞群とで、取り込み量に違いがほとんど見られないことが確認された。
 これらの結果から、PI3Kγ InhibitorによりPI3KCGタンパク質の活性が阻害された場合には、クラスリン依存性のエンドサイトーシスは抑制されない一方で、クラスリン非依存性エンドサイトーシスおよびマクロピノサイトーシスは抑制されることが明らかになった。
<実施例9>PI3KCGタンパク質の活性を阻害した細胞におけるウイルス感染率の確認
 PI3Kγ Inhibitor(MERCK社)を培地に添加して培養した細胞にインフルエンザウイルスを接種し、ウイルス感染率を調べた。
(1)MEF細胞群の調製                 
 実施例3(2)に記載の方法により調製したMEF細胞群を5群に分け、コントロール群、LY294002添加MEF細胞群、1μM添加MEF細胞群、10μM添加MEF細胞群および100μM添加MEF細胞群とした。LY294002添加MEF細胞群にはLY294002(Calbiochem社)を50μmol/Lとなるよう培地に添加し、1μM添加MEF細胞群、10μM添加MEF細胞群および100μM添加MEF細胞群にはPI3Kγ Inhibitor(MERCK社)をそれぞれ1μmol/L、10μmol/Lおよび100μmol/Lとなるよう培地に添加して、これらの各群を1時間培養した。なお、コントロール群の培地には何も添加しなかった。
(2)MEF細胞群へインフルエンザウイルス接種およびプラークアッセイによるウイルス感染率の確認
 実施例3(5)に記載の方法により、本実施例(1)の各群にPR8ウイルスを接種した。ただし、各群に添加するPR8ウイルス含有培地には、本実施例(1)の前処理時と同じ試薬を同じ濃度となるよう添加した。また、ウイルス接種後の培養時間は5時間に代えて2日間とした。その後、実施例7(4)に記載の方法によりプラークアッセイを行い、各群についてウイルス感染率の相対値を求めた。その結果を図16に示す。
 図16に示すように、LY294002添加MEF細胞群、1μM添加MEF細胞群、10μM添加MEF細胞群および100μM添加MEF細胞群ではコントロール群に比較して、ウイルス感染率はいずれも低下した。また、1μM添加MEF細胞群、10μM添加MEF細胞群および100μM添加MEF細胞群の間でウイルス感染率の大小を比較すると、1μM添加MEF細胞群>10μM添加MEF細胞群>100μM添加MEF細胞群であり、PI3Kγ Inhibitorの培地への添加濃度が大きいほど、ウイルス感染率が低下することが確認された。
 これらの結果から、PI3Kγ InhibitorによりPI3KCGタンパク質の活性が阻害された場合には、インフルエンザウイルスの感染が抑制されることが明らかになった。
<実施例10>Ras結合領域の配列比較
 PI3KCGタンパク質のRBDのアミノ酸配列と他の代表的なRas結合分子であるRafタンパク質およびRalGDSタンパク質の、それぞれのRBDのアミノ酸配列とを比較検討し、PI3KCGタンパク質のRBDに特異的な配列を抽出した。
 PI3KCGタンパク質、c-Raf1タンパク質およびRalGDSタンパク質のRBDのアミノ酸配列について、近隣結合(neighbor-joining;NJ)法により系統樹を作成した。その結果を図17aに示す。また、これらの配列について、Clustal W(http://clustalw.ddbj.nig.ac.JP/top-j.html)を用いてアラインメントを作成した。その結果を図17bに示す。また、アラインメント作成結果に基づき、配列の保存性について視覚的に表現した図を図17cに示す。
 図17aに示すように、PI3KCGタンパク質のRBDのアミノ酸配列は、c-Raf1タンパク質およびRalGDSタンパク質のRBDのアミノ酸配列と別のカテゴリーに分類された。それは、PI3KCGタンパク質のRBDのN末端側のアミノ酸配列がc-Raf1タンパク質およびRalGDSタンパク質のものより長く、かつ特徴的な28アミノ酸の配列を有することに起因することが図17bより確認された。さらに、図17cに示すように、N末端側においてアミノ酸配列の保存性が低いことが確認された。
 以上より、PI3KCGタンパク質のRBDのN末端28アミノ酸(N28ポリペプチド;配列番号29および配列番号30)が、PI3KCGタンパク質に、他のRas結合因子とは異なる機能を付与する配列であることが示唆された。
<実施例11>H-Rasタンパク質とN28ポリペプチドを欠くPI3KCGタンパク質との複合体の細胞内における存在箇所の確認
 H-Rasタンパク質とN28ポリペプチドを欠くPI3KCGタンパク質との複合体を、BiFC法により可視化し、この複合体が細胞内において存在する箇所を確認した。
(1)ベクターの調製
 実施例1(1)に記載の方法により、pCAGGS-VN-H-RasG12V、pCXN2-Flag-H-RasG12V-VCおよびpCXN2-Flag-PI3KCG-RBD-VCを得た。
 実施例4(3)[3-1]のPI3KCGを鋳型として、N28ポリペプチドを欠くPI3KCGタンパク質のRBD(配列番号32)に相当するcDNA(配列番号31)を増幅した。PCR反応溶液組成およびPCR反応条件は実施例1(1)に記載の方法と同様にした。PCRに用いたプライマーは下記のとおりである。
 フォワードプライマー;5’-CCCTCGAGCAGACCATTAAGGTCTCACC-3’(配列番号33)
 リバースプライマー ;5’-GGGCGGCCGCCGTCTGGAGGCGTGTCCAGT-3’(配列番号34)
 得られたPCR産物はQIAXII(キアゲン社)により精製した。これを制限酵素XhoIおよびNotIで消化した後、前記ベクターpCXN2-Flag-H-RasG12V-VCのXhoI/NotIサイトに、H-RasG12Vに代えて挿入し、pCXN2-Flag-PI3KCG-RBD-N28d-VCを得た。
(2)Cos1細胞群へのベクターの導入
 Cos1細胞(ATCC;受託番号CRL-1650)を、コラーゲンでコートした直径35mmのガラスベースディッシュ(旭テクノガラス社)に置き、FuGene HD Transfection Reagent(ロシュ社)を用いて、添付の使用書に従い、本実施例(1)で調製したベクターを組み合わせて導入した。その組み合わせは次のとおりである。
 導入したベクターの組み合わせ
 pCAGGS-VN-H-RasG12VとpCXN2-Flag-PI3KCG-RBD-VC
 pCAGGS-VN-H-RasG12VとpCXN2-Flag-PI3KCG-RBD-N28d-VC
 ベクター導入後の細胞は、実施例1(2)に記載の環境下で24時間培養し、培地を除去した後、FBSを含まないフェノールレッド不含培地Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12(DMEM/F12;インビトロジェン社)を添加し、さらに4時間培養した。
(3)蛍光顕微鏡による観察
 その後、37℃に保った状態で、実施例1(4)に記載の方法により蛍光観察を行った。観察開始から20分後に、培地にEGFを100ng/mLとなるよう添加し、さらに観察を行った。EGF添加前の結果を図18上段に、EGF添加後の結果を図18下段にそれぞれ示す。
 図18上段および下段に示すように、pCXN2-Flag-PI3KCG-RBD-VCを導入した細胞では、EGF添加前と比較して、EGF添加後にVenusタンパク質の蛍光(緑色)がエンドソームにおいて多数見られた。一方、pCXN2-Flag-PI3KCG-RBD-N28d-VCを導入した細胞では、EGF添加前と比較して、EGF添加後にVenusタンパク質の蛍光(緑色)がゴルジ装置に集積していることが確認された。
 以上より、N28ポリペプチドを欠くPI3KCGタンパク質のRBDとH-RasG12Vタンパク質との複合体は、エンドソームへ存在せずゴルジ装置に集積することが明らかになった。すなわち、N28ポリペプチドはPI3KCGタンパク質のRBDとH-RasG12Vタンパク質との複合体をエンドソームへ存在させる機能を有することが明らかになった。
<実施例12>N28ポリペプチドを発現させた細胞のエンドサイトーシス機能の確認
 分子量10000のデキストランを、N28ポリペプチドを発現させたMDCK細胞に取り込ませ、それらの取り込み量を調べた。
(1)ベクターの調製
 実施例4(3)[3-1]のPI3KCGタンパク質のRBDのcDNAを制限酵素XhoIおよびNotIで消化した後、京都大学の松田道行氏から供与されたベクターpCAGGS-VenusのXhoI/NotIサイトに挿入し、pCAGGS-Venus-PI3KCG-RBDを得た。このベクターの制限酵素地図を図19に示す。
 続いて、pCAGGS-Venus-PI3KCG-RBDを鋳型としてPCRを行い、VenusとN28ポリペプチドのcDNAとを含むDNA断片を増幅して単離した。PCR反応溶液組成およびPCR反応条件は実施例1(1)に記載の方法と同様にした。用いたプライマーは下記のとおりである。
 フォワードプライマー;5’-CCGAATTCGCCATGGTGAGCAAGGGCGAG-3’(配列番号35)
 リバースプライマー ;5’-TAGCGGCCGCTCAGCTGGTGGTGCTGCGG-3’(配列番号36)
 得られたPCR産物はQIAXII(キアゲン社)により精製した。これを制限酵素EcoRIおよびNotIで消化した後、京都大学の松田道行氏から供与されたpCAGGS-EGFP-H-RasのEcoRI/NotIサイトに、EGFP-H-Rasに代えて挿入し、pCAGGS-Venus-N28を得た。このベクターの制限酵素地図を図20に示す。
 次に、実施例4(3)[3-1]のPI3KCGタンパク質のRBDのcDNAを制限酵素XhoIおよびNotIで消化した後、京都大学の松田道行氏から供与されたベクターpCAGGS-3HAのXhoI/NotIサイトに挿入し、pCAGGS-3HA-PI3KCG-RBDを得た。このベクターの制限酵素地図を図21に示す。続いて、pCAGGS-3HA-PI3KCG-RBDを制限酵素SpeIおよびXhoIで消化し、プロモーターとヘマグルチニンのcDNAを含む約1.7kbpのDNA断片を得て、これを、pCAGGS-Venus-N28のSpeI/XhoIサイトに、Venusに代えて挿入し、pCAGGS-3HA-N28を得た。このベクターの制限酵素地図を図22に示す。
(2)MDCK細胞群へのベクターの導入
 MDCK細胞群(JCRB細胞バンク:JCRB9029)を、コラーゲンでコートした直径35mmのガラスベースディッシュ(旭テクノガラス社)に置き、FuGene HD Transfection Reagent(ロシュ社)を用いて、添付の使用書に従い、本実施例(1)で調製したpCAGGS-3HA-N28を導入した。その後、実施例1(2)に記載の環境下で24時間培養した。
(3)エンドサイトーシス機能の評価
 本実施例(2)のMDCK細胞群をPBSで洗浄した後、AlexaFluor488を結合した分子量10000のデキストラン(インビトロジェン社)0.5mg/mLおよびFBS10%(v/v)を含むDMEM培地を添加し、37℃、CO5%(v/v)を含む加湿環境下にて10分間培養した。
(4)免疫蛍光染色
 本実施例(3)のMDCK細胞群について、実施例1(3)に記載の方法により、免疫蛍光染色を行った。ただし、一次抗体は抗EEA1マウスモノクローナル抗体(BD Transduction Laboratories社)に代えて抗HAラットモノクローナル抗体3F10(ロシュ社)を用い、二次抗体はAlexaFluor594を結合した抗マウス抗体(インビトロジェン社)に代えてAlexaFluor647を結合した抗ラット抗体(インビトロジェン社)を用いた。また、抗体の希釈にはPBSに代えてPBTを用い、二次抗体の希釈倍率は200倍に代えて300倍とし、一次抗体による抗原抗体反応の時間は一晩に代えて12時間とした。
(5)蛍光顕微鏡による観察
 本実施例(4)のMDCK細胞群について、実施例1(4)に記載の方法により、蛍光観察を行い、AlexaFluor488の蛍光(緑色)およびAlexaFluor647の蛍光(赤紫色)を検出した。その結果を図23の上図に示す。また、24個の細胞について、1細胞におけるAlexaFluor488の蛍光強度およびAlexaFluor647の蛍光強度をそれぞれ測定し、AlexaFluor488の蛍光強度を縦軸に、AlexaFluor647の蛍光強度を横軸にとったグラフにプロットした。その結果を図23の下図に示す。
 図23の上図および下図に示すように、AlexaFluor488の蛍光強度が大きく、かつAlexaFluor647の蛍光強度が小さい細胞、AlexaFluor488の蛍光強度が小さく、かつAlexaFluor647の蛍光強度が大きい細胞、およびAlexaFluor488の蛍光強度とAlexaFluor647の蛍光強度とのいずれもが小さい細胞が多数存在するのに対し、AlexaFluor488の蛍光強度とAlexaFluor647の蛍光強度とのいずれもが大きい細胞は存在しなかった。
 以上より、N28ポリペプチドを発現させた細胞では、クラスリン非依存性エンドサイトーシスおよびマクロピノサイトーシスが抑制されることが明らかになった。
<実施例13>N28ポリペプチドを発現させた細胞のウイルス核タンパク質取り込み量の確認
 N28ポリペプチドを発現させたMDCK細胞群にインフルエンザウイルスを接種し、細胞内へのウイルス核タンパク質の取り込み量を調べた。
(1)HAにより標識したN28ポリペプチドを発現させた細胞におけるウイルス核タンパク質の取り込み量 
[1-1]ベクターの調製およびMDCK細胞群へのベクターの導入
 実施例12(1)に記載の方法によりpCAGGS-3HA-N28を得て、これを実施例12(2)に記載の方法によりMDCK細胞群に導入した。
[1-2]MDCK細胞群へのインフルエンザウイルス接種
 実施例3(4)に記載の方法により調製したPR8ウイルスを、MOI=2となるようMEM培地(インビトロジェン社)に加えて、PR8ウイルス含有培地を調製した。本実施例(1)[1-1]のMDCK細胞群をPBSで洗浄した後、PR8ウイルス含有培地を添加し、35℃、CO5%(v/v)を含む加湿環境下にて1時間培養することによりウイルス接種を行った。続いて、PBSで洗浄した後、1%(w/v)のBact-agarおよび5μg/mLのトリプシンを含むMEM培地(インビトロジェン社)を添加し、35℃、CO5%(v/v)を含む加湿環境下にて5時間培養した。
[1-3]免疫蛍光染色および蛍光顕微鏡による観察
 本実施例(1)[1-2]のMDCK細胞群について、実施例12(4)に記載の方法により、免疫蛍光染色を行った。ただし、一次抗体として、抗HAラットモノクローナル抗体3F10(ロシュ社)に加えて北海道大学の高田礼人氏から供与された抗インフルエンザウイルス核タンパク質マウスモノクローナル抗体を用い、二次抗体として、AlexaFluor647を結合した抗ラット抗体(インビトロジェン社)に加えてAlexaFluor488を結合した抗マウス抗体(インビトロジェン社)を用いた。その後、実施例1(4)に記載の方法により蛍光観察を行った。その結果を図24に示す。
 図24に示すように、AlexaFluor647の蛍光強度が大きい細胞ではAlexaFluor488の蛍光強度が小さく、AlexaFluor488の蛍光強度が大きい細胞ではAlexaFluor647の蛍光強度が小さかった。
 以上より、HAにより標識したN28ポリペプチドを発現させた細胞では、インフルエンザウイルスの細胞内への取り込みが抑制されることが明らかになった。
(2)ECFPにより標識したN28ポリペプチドを発現させた細胞におけるウイルス核タンパク質の取り込み量
[2-1]ベクターの調製
 京都大学の松田道行氏から供与されたpCAGGS-ECFP-H-RasG12V(制限酵素地図を図25に示す)を制限酵素SpeIおよびXhoIで消化して、プロモーターとECFPのcDNAを含む約2.4kbpの断片を得た。この2.4kbpの断片を、実施例12(1)に記載の方法により得たpCAGGS-3HA-N28のSpeI/XhoIサイトに、3コピーのHAのcDNAに代えて挿入し、pCAGGS-ECFP-N28を得た。
[2-2]MDCK細胞群へのベクターの導入およびインフルエンザウイルス接種
 MDCK細胞群(JCRB細胞バンク:JCRB9029)を2群に分け、コントロール群およびN28群とした。実施例12(2)に記載の方法により、コントロール群には京都大学の松田道行氏から供与されたpCAGGS-ECFPを、N28群には本実施例(2)[2-1]のpCAGGS-ECFP-N28をそれぞれ導入した。その後、本実施例(1)[1-2]に記載の方法によりコントロール群およびN28群にPR8ウイルスを接種した。
[2-3]免疫蛍光染色および蛍光顕微鏡による観察
 本実施例(2)[2-2]のコントロール群およびN28群について、実施例12(4)に記載の方法により、免疫蛍光染色を行った。ただし、一次抗体として、抗HAラットモノクローナル抗体3F10(ロシュ社)に代えて北海道大学の高田礼人氏から供与された抗インフルエンザウイルス核タンパク質マウスモノクローナル抗体を用い、二次抗体として、AlexaFluor647を結合した抗ラット抗体(インビトロジェン社)に代えてAlexaFluor594を結合した抗マウス抗体(インビトロジェン社)を用いた。その後、実施例1(4)に記載の方法により、蛍光観察を行った。その結果を図26の左図に示す。また、各群のそれぞれ120個の細胞について、1細胞におけるAlexaFluor594の蛍光強度およびECFPの蛍光強度をそれぞれ測定して、AlexaFluor594の蛍光強度を縦軸に、ECFPの蛍光強度を横軸にとったグラフにプロットした。その結果を図26の右図に示す。
 図26左図および右図に示すように、N28群では、ECFPの蛍光強度が大きく、かつAlexaFluor594の蛍光強度が小さい細胞、ECFPの蛍光強度が小さく、かつAlexaFluor594の蛍光強度が大きい細胞、およびECFPの蛍光強度とAlexaFluor594の蛍光強度とのいずれもが小さい細胞が多数存在するのに対し、ECFPの蛍光強度の蛍光強度とAlexaFluor594とのいずれもが大きい細胞は存在しなかった。一方、コントロール群では、ECFPの蛍光強度が大きく、かつAlexaFluor594の蛍光強度が小さい細胞、ECFPの蛍光強度が小さく、かつAlexaFluor594の蛍光強度が大きい細胞、ECFPの蛍光強度とAlexaFluor594の蛍光強度とのいずれもが小さい細胞およびECFPの蛍光強度とAlexaFluor594の蛍光強度とのいずれもが大きい細胞が同程度に存在していた。
 以上より、ECFPにより標識したN28ポリペプチドを発現させた細胞では、インフルエンザウイルスの細胞内への取り込みが抑制されることが明らかになった。また、この結果は本実施例(1)と同様の結果であることから、HAにより標識したN28ポリペプチドまたはECFPにより標識したN28ポリペプチドを発現させた細胞におけるインフルエンザウイルスの細胞内への取り込み抑制効果は、標識タンパク質によるものではなく、N28ポリペプチドによるものであることが確認された。
<実施例14>N28ポリペプチドの中央部11アミノ酸を発現させた細胞のウイルス核タンパク質取り込み量の確認
 N28ポリペプチドの中央部11アミノ酸(N11ポリペプチド;配列番号41および配列番号42)を発現させたMDCK細胞群にインフルエンザウイルスを接種し、細胞内へのウイルス核タンパク質の取り込み量を調べた。
(1)ベクターの調製
 実施例13(2)[2-1]に記載の方法によりpCAGGS-ECFP-N28を得た。pCAGGS-ECFP-N28を鋳型としてPCRを行い、N28ポリペプチドのカルボキシル(C)末端側20アミノ酸(配列番号38)に相当するcDNA(配列番号37)を含む200bpのDNA断片を増幅して単離した。PCR反応溶液組成およびPCR反応条件は実施例1(1)に記載の方法と同様にした。用いたプライマーは下記のとおりである。
 フォワードプライマー;5’-GGCTCGAGCTGTGGAAGAAGATTGCC-3’(配列番号39)
 リバースプライマー ;5’-AGATGCTCAAGGGGCTTCATGATG-3’(配列番号40)
 得られたPCR産物はQIAXII(キアゲン社)により精製した。これを制限酵素XhoIおよびBglIIで消化した後、pCAGGS-ECFP-N28のXhoI/BglIIサイトに挿入し、N28ポリペプチドに相当するcDNAに代えてN28ポリペプチドのC末端側20アミノ酸に相当するcDNAが挿入されたベクターpCAGGS-ECFP-N20を得た。
 続いて、pCAGGS-ECFP-N20を鋳型としてPCRを行い、N11ポリペプチドに相当するcDNA(配列番号41)を含む700bpのcDNAを増幅して単離した。PCR反応溶液組成およびPCR反応条件は実施例1(1)に記載の方法と同様にした。用いたプライマーは下記のとおりである。
 フォワードプライマー;5’-CCGAATTCGCCATGGTGAGCAAGGGCGAG-3’(配列番号42)
 リバースプライマー ;5’-TAGCGGCCGCTCAGAAGATGCAGTTGTTGGC-3’(配列番号44)
 得られたPCR産物はQIAXII(キアゲン社)により精製した。これを制限酵素EcoRIおよびNotIで消化した後、pCAGGS-ECFP-N20のEcoRI/NotIサイトに挿入し、N28ポリペプチドのC末端側20アミノ酸に相当するcDNAに代えてN11ポリペプチドに相当するcDNAが挿入されたベクターpCAGGS-ECFP-N11を得た。
(2)MDCK細胞群へのベクターの導入およびインフルエンザウイルス接種
 MDCK細胞群(JCRB細胞バンク:JCRB9029)を2群に分け、コントロール群およびN11群とした。実施例12(2)に記載の方法により、コントロール群には京都大学の松田道行氏から供与されたpCAGGS-ECFPを、N11群には本実施例(1)で調製したpCAGGS-ECFP-N11をそれぞれ導入した。その後、実施例13(2)[2-2]に記載の方法によりコントロール群およびN11群にPR8ウイルスを接種した。
(3)免疫蛍光染色および蛍光顕微鏡による観察
 本実施例(2)のコントロール群およびN11群について、実施例13(2)[2-3]に記載の方法により、免疫蛍光染色および蛍光顕微鏡による観察を行った。ただし、蛍光強度を測定した細胞数は120個に代えて90個とした。その結果を図27上図および下図に示す。
 図27上図および下図に示すように、N11群では、ECFPの蛍光強度が大きく、かつAlexaFluor594の蛍光強度が小さい細胞、ECFPの蛍光強度が小さく、かつAlexaFluor594の蛍光強度が大きい細胞、およびECFPの蛍光強度とAlexaFluor594の蛍光強度とのいずれもが小さい細胞が多数存在するのに対し、ECFPの蛍光強度とAlexaFluor594の蛍光強度とのいずれもが大きい細胞は存在しなかった。一方、コントロール群では、ECFPの蛍光強度が小さく、かつAlexaFluor594の蛍光強度が大きい細胞、ECFPの蛍光強度が大きく、かつAlexaFluor594の蛍光強度が小さい細胞、ECFPの蛍光強度とAlexaFluor594の蛍光強度とのいずれもが小さい細胞およびECFPの蛍光強度とAlexaFluor594の蛍光強度とのいずれもが大きい細胞が同程度に存在していた。
 以上より、N11ポリペプチドを発現させた細胞では、インフルエンザウイルスの細胞内への取り込みが抑制されることが明らかになった。
<実施例15>クラスリンに依存しないエンドサイトーシスおよびクラスリン依存性エンドサイトーシスのいずれも抑制した細胞におけるウイルス感染率の確認
 実施例4、実施例5および実施例13においてクラスリンに依存しないエンドサイトーシスを抑制することが確認された、PI3Kタンパク質の活性阻害剤であるLY294002およびクラスリン依存性エンドサイトーシスを抑制することが知られているモノダンシルカダベリン(MDC;Schlegelら、Proc.Natl.Acad.Sci.USA、第79巻、第2291-2295頁、1982年; Rayら、FEBS Lett.、第378巻、第235-239頁、1996年)を添加してインフルエンザウイルスを接種し、ウイルス感染率を調べた。
(1)各試薬による前処理
 12ウェルプレートでMEM培地を用いて培養したMDCK細胞群(JCRB細胞バンク:JCRB9029)を5群に分け、コントロール群、LY294002群、MDC群、LY+MDC群およびオセルタミビル群とした。続いて、各群の培地に下記の試薬を添加して30分間培養することにより、前処理を行った。濃度は培地中の濃度を示す。
 コントロール群  ;無添加
 LY294002群;LY294002(Calbiochem社)50μmol/L
 MDC群     ;モノダンシルカダベリン(MDC;シグマ社)50μmol/L
 LY+MDC群  ;LY294002(Calbiochem社)50μmol/L
           モノダンシルカダベリン(MDC;シグマ社)50μmol/L
 オセルタミビル群 ;オセルタミビル(Roche社)     100μmol/L
(2)MDCK細胞群へのインフルエンザウイルス接種およびプラークアッセイによるウイルス感染率の確認
 実施例13(1)[1-2]に記載の方法により、本実施例(1)の各群にPR8ウイルスを接種した。ただし、MOI=2に代えてMOI=1とし、各群に添加するPR8ウイルス含有培地には、本実施例(1)の前処理時と同じ試薬を同じ濃度となるよう添加した。また、ウイルス接種後の培養時間は5時間に代えて2日間とした。その後、実施例6(4)に記載の方法によりプラークアッセイを行い、ウイルス感染率を求めた。その結果を図28に示す。
 図28に示すように、LY294002群、MDC群、LY+MDC群およびオセルタミビル群のウイルス感染率は、コントロール群と比較してそれぞれ約1/5、約1、約1/100および約1/10であった。
 以上より、クラスリンに依存しないエンドサイトーシスおよびクラスリン依存性エンドサイトーシスのいずれも抑制すると、インフルエンザウイルスの感染を顕著に抑制できることが明らかになった。
<実施例16>クラスリンに依存しないエンドサイトーシスおよびクラスリン依存性エンドサイトーシスのいずれも抑制した細胞におけるウイルス核タンパク質の存在(局在)箇所の確認
 初期エンドソームマーカータンパク質、後期エンドソームマーカータンパク質、クラスリン軽鎖タンパク質およびウイルス核タンパク質を免疫抗体染色および蛍光標識により可視化し、LY294002およびMDCを添加してインフルエンザウイルスを接種した細胞において、これらのタンパク質が存在する箇所を調べた。
(1)ベクターの調製
 初期エンドソームに存在(局在)することが知られているRab5タンパク質(配列番号46)のcDNA(配列番号45)が挿入されたベクターpEGFP-C1-Rab5、および後期エンドソームに存在(局在)することが知られているRab7タンパク質(配列番号48)のcDNA(配列番号47)が挿入されたベクターpEGFP-C1-Rab7は東京大学の坪井貴司氏から供与された。また、クラスリン軽鎖(CLCa)タンパク質(配列番号50)のcDNA(配列番号49)は東京大学の河岡義裕氏から供与された。CLCaのcDNAを鋳型としてPCRを行い、5’端および3’端にそれぞれXhoIおよびNotIサイトが付加されたCLCaのcDNAを増幅して単離した。PCR反応溶液組成およびPCR反応条件は実施例1(1)に記載の方法と同様にした。用いたプライマーは下記のとおりである。
 フォワードプライマー;5’-GGCTCGAGATGGCTGAGCTGGATCC-3’(配列番号51)
 リバースプライマー;5’-TAGCGGCCGCTCAGTGCACCAGCGGG-3’(配列番号52)
 得られたPCR産物はQIAXII(キアゲン社)により精製した。これを制限酵素XhoIおよびNotIで消化した後、京都大学の松田道行氏から供与されたpCAGGS-VenusのXhoI/NotIサイトに挿入し、pCAGGS-Venus-CLCaを得た。このベクターの制限酵素地図を図29に示す。
 続いて、pEGFP-C1-Rab5およびpEGFP-C1-Rab7を鋳型としてPCRを行い、Rab5タンパク質およびRab7タンパク質のそれぞれのcDNAを増幅して単離した。PCR反応溶液組成およびPCR反応条件は実施例1(1)に記載の方法と同様にした。用いたプライマーは下記のとおりである。
Rab5の増幅に用いたプライマー
 フォワードプライマー;5’-GGCTCGAGATGGCTAATCGAGGAGC-3’(配列番号53)
 リバースプライマー ;5’-TAGCGGCCGCTCAGTTACTACAACACTGG-3’(配列番号54)
Rab7の増幅に用いたプライマー
 フォワードプライマー;5’-GGCTCGAGATGACCTCTAGGAAGAAAG-3’(配列番号55)
 リバースプライマー ;5’-TAGCGGCCGCTCAACAACTGCAGCTTTC-3’(配列番号56)
 得られたPCR産物はQIAXII(キアゲン社)により精製した。これを制限酵素XhoIおよびNotIで消化した後、京都大学の松田道行氏から供与されたpCAGGS-ECFPのXhoI/NotIサイトにそれぞれ挿入し、pCAGGS-ECFP-Rab5およびpCAGGS-ECFP-Rab7を得た。
(2)Cos1細胞群へのベクターの導入
 実施例12(2)に記載の方法により、本実施例(1)のpCAGGS-ECFP-Rab5、pCAGGS-ECFP-Rab7およびpCAGGS-Venus-CLCaをCos1細胞群(ATCC;受託番号CRL-1650)に導入した。
(3)各試薬による前処理
 本実施例(2)のCos1細胞群を4群に分け、コントロール群、LY294002群、MDC群およびLY+MDC群とした。続いて、これらの各群に、実施例15(1)に記載の方法により各試薬による前処理を行った。
(4)Cos1細胞群へのインフルエンザウイルス接種
 実施例13(1)[1-2]に記載の方法により、本実施例(3)の各群にPR8ウイルスを接種した。ただし、MOI=2に代えてMOI=100とし、各群に添加するPR8ウイルス含有培地には、本実施例(3)の前処理時と同じ試薬を同じ濃度となるよう添加した。またウイルス接種後の培養は行わなかった。
(5)免疫蛍光染色および蛍光顕微鏡による観察
 本実施例(4)の各群について、実施例13(2)[2-3]に記載の方法により、免疫蛍光染色を行った。ただし、二次抗体の希釈倍率は300倍に代えて250倍とした。その後、実施例1(4)に記載の方法により、蛍光観察を行い、Rab5タンパク質、Rab7タンパク質、CLCaタンパク質およびインフルエンザウイルスのウイルス核タンパク質をそれぞれECFP、Venusタンパク質の蛍光(緑色)およびAlexaFluor594の蛍光(赤色)により検出した。その結果を図30の左図に示す。また、各群の10個の細胞について、下記の蛍光を示す顆粒の数をそれぞれ数え、b/aおよびc/aの1細胞あたりの割合をそれぞれ求めた。その結果を図30の右図に示す。
a;AlexaFluor594の蛍光(赤色)を示す顆粒
b;ECFPの蛍光(青色)とAlexaFluor594の蛍光(赤色)との重複を示す顆粒
c;Venusタンパク質の蛍光(緑色)とAlexaFluor594の蛍光(赤色)との重複を示す顆粒
 図30の左図および右図に示すように、LY294002群では、コントロール群と比較してb/aが低下した一方で、c/aは同様の割合であり、MDC群では、コントロール群と比較してb/aがやや低下した一方で、c/aは顕著に低下した。これに対し、LY+MDC群では、コントロール群と比較してb/aおよびc/aのいずれも顕著に低下した。
 以上より、クラスリンに依存しないエンドサイトーシスを抑制した場合はクラスリン依存性エンドサイトーシスによりインフルエンザウイルスが細胞内に取り込まれ、クラスリン依存性エンドサイトーシスのみを抑制した場合はクラスリンに依存しないエンドサイトーシスによりインフルエンザウイルスが細胞内に取り込まれることが明らかになった。これに対し、クラスリンに依存しないエンドサイトーシスおよびクラスリン依存性エンドサイトーシスのいずれも抑制した場合は、インフルエンザウイルスの細胞内への取り込みが顕著に抑制されることが明らかになった。

Claims (26)

  1.  クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染を抑制する物質のスクリーニング方法であって、
     Phosphoinositide 3-kinase(PI3K)タンパク質に結合可能なrat sarcoma(Ras)タンパク質と、PI3Kタンパク質またはそのRas結合領域(Ras Binding Domain;RBD)と対象物質とを共存させる工程と、
     前記対象物質が前記Rasタンパク質と前記PI3Kタンパク質または前記RBDとの結合阻害能を有するか否かを評価する工程と
     を有する、前記方法。
  2.  クラスリンに依存しないエンドサイトーシスがクラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)および/またはマクロピノサイトーシス(Macropinocytosis)である、請求項1に記載の方法。
  3.  ウイルスがインフルエンザウイルスである、請求項1または請求項2に記載の方法。
  4.  蛍光共鳴エネルギー移動を観測する方法を用いる、請求項1から請求項3のいずれかに記載の方法。
  5.  クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染を抑制する物質のスクリーニング方法であって、下記(i)~(iv)から選択される1または2以上のポリペプチドと対象物質とを共存させる工程と、
     前記対象物質が前記ポリペプチドとの結合能を有するか否かを評価する工程と
     を有する、前記方法;
    (i)配列番号30のアミノ酸配列からなるポリペプチド、
    (ii)配列番号30において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつPI3Kタンパク質の一部を構成した場合にRasタンパク質とPI3Kタンパク質とが形成する複合体をエンドソーム上に存在させることができるポリペプチド、
    (iii)配列番号42のアミノ酸配列からなるポリペプチド、
    (iv)配列番号42において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつPI3Kタンパク質の一部を構成した場合にRasタンパク質とPI3Kタンパク質とが形成する複合体をエンドソーム上に存在させることができるポリペプチド。
  6.  クラスリンに依存しないエンドサイトーシスがクラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)および/またはマクロピノサイトーシス(Macropinocytosis)である、請求項5に記載の方法。
  7.  ウイルスがインフルエンザウイルスである、請求項5または請求項6に記載の方法。
  8.  クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染抑制剤であって、Phosphoinositide 3-kinase(PI3K)タンパク質とrat sarcoma(Ras)タンパク質との結合を阻害する物質を有効成分とする、ウイルス感染抑制剤。
  9.  クラスリンに依存しないエンドサイトーシスがクラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)および/またはマクロピノサイトーシス(Macropinocytosis)である、請求項8に記載のウイルス感染抑制剤。
  10.  Phosphoinositide 3-kinase(PI3K)タンパク質とrat sarcoma(Ras)タンパク質との結合を阻害する物質がrat sarcoma(Ras)タンパク質の活性を抑制する物質である、請求項8または請求項9に記載のウイルス感染抑制剤。
  11.  rat sarcoma(Ras)タンパク質の活性を抑制する物質が下記(i)および/または(ii)のポリペプチドである、請求項10に記載のウイルス感染抑制剤;
    (i)配列番号19のアミノ酸配列からなるポリペプチド、
    (ii)配列番号19において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつグアニンヌクレオチド交換因子と結合するポリペプチド。
  12.  Phosphoinositide 3-kinase(PI3K)タンパク質とrat sarcoma(Ras)タンパク質との結合を阻害する物質が下記(i)~(vi)から選択される1または2以上のポリペプチドである、請求項8または請求項9に記載のウイルス感染抑制剤;
    (i)配列番号13のアミノ酸配列からなるポリペプチド、
    (ii)配列番号13において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質と結合するポリペプチド、
    (iii)配列番号32のアミノ酸配列からなるポリペプチド、
    (iv)配列番号32において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質と結合するポリペプチド、
    (v)配列番号58のアミノ酸配列からなるポリペプチド、
    (vi)配列番号58において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質と結合するポリペプチド。
  13.  ウイルスがインフルエンザウイルスである、請求項8から請求項12のいずれかに記載のウイルス感染抑制剤。
  14.  クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染抑制剤であって、下記(i)~(iv)から選択される1または2以上のポリペプチドを有効成分とする、ウイルス感染抑制剤;
    (i)配列番号30のアミノ酸配列からなるポリペプチド、
    (ii)配列番号30において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在するのを抑制するポリペプチド、
    (iii)配列番号42のアミノ酸配列からなるポリペプチド、
    (iv)配列番号42において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在するのを抑制するポリペプチド。
  15.  クラスリンに依存しないエンドサイトーシスがクラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)および/またはマクロピノサイトーシス(Macropinocytosis)である、請求項14に記載のウイルス感染抑制剤。
  16.  ウイルスがインフルエンザウイルスである、請求項14または請求項15に記載のウイルス感染抑制剤。
  17.  クラスリンに依存しないエンドサイトーシスにより感染可能なウイルスの感染抑制剤であって、PI3Kタンパク質の活性を抑制する物質を有効成分とする、ウイルス感染抑制剤。
  18.  クラスリンに依存しないエンドサイトーシスがクラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)および/またはマクロピノサイトーシス(Macropinocytosis)である、請求項17に記載のウイルス感染抑制剤。
  19.  ウイルスがインフルエンザウイルスである、請求項17または請求項18に記載のウイルス感染抑制剤。
  20.  エンドサイトーシスにより感染可能なウイルスの感染抑制剤であって、クラスリンに依存しないエンドサイトーシスを抑制する物質とクラスリン依存性エンドサイトーシス(Clathrin-dependent endocytosis)を抑制する物質とを有効成分とする、ウイルス感染抑制剤。
  21.  クラスリンに依存しないエンドサイトーシスがクラスリン非依存性エンドサイトーシス(Clathrin-independent endocytosis)および/またはマクロピノサイトーシス(Macropinocytosis)である、請求項20に記載のウイルス感染抑制剤。
  22.  クラスリンに依存しないエンドサイトーシスを抑制する物質が、下記(i)~(vi)から選択される1または2以上の物質および/またはポリペプチドである、請求項20に記載のウイルス感染抑制剤;
    (i)Phosphoinositide 3-kinase(PI3K)タンパク質とrat sarcoma(Ras)タンパク質との結合を阻害する物質、
    (ii)配列番号30のアミノ酸配列からなるポリペプチド、
    (iii)配列番号30において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在するのを抑制するポリペプチド、
    (iv)配列番号42のアミノ酸配列からなるポリペプチド、
    (v)配列番号42において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質とPI3Kタンパク質とが形成する複合体がエンドソーム上に存在するのを抑制するポリペプチド、
    (vi)PI3Kタンパク質の活性を抑制する物質。
  23.  Phosphoinositide 3-kinase(PI3K)タンパク質とrat sarcoma(Ras)タンパク質との結合を阻害する物質がrat sarcoma(Ras)タンパク質の活性を抑制する物質である、請求項22に記載のウイルス感染抑制剤。
  24.  rat sarcoma(Ras)タンパク質の活性を抑制する物質が下記(i)および/または(ii)のポリペプチドである、請求項23に記載のウイルス感染抑制剤;
    (i)配列番号19のアミノ酸配列からなるポリペプチド、
    (ii)配列番号19において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつグアニンヌクレオチド交換因子と結合するポリペプチド。
  25.  Phosphoinositide 3-kinase(PI3K)タンパク質とrat sarcoma(Ras)タンパク質との結合を阻害する物質が下記(i)~(vi)から選択される1または2以上のポリペプチドである、請求項22に記載のウイルス感染抑制剤;
    (i)配列番号13のアミノ酸配列からなるポリペプチド、
    (ii)配列番号13において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質と結合するポリペプチド。
    (iii)配列番号32のアミノ酸配列からなるポリペプチド、
    (iv)配列番号32において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質と結合するポリペプチド。
    (v)配列番号58のアミノ酸配列からなるポリペプチド、
    (vi)配列番号58において1個もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるポリペプチドであって、かつRasタンパク質と結合するポリペプチド。
  26.  ウイルスがインフルエンザウイルスである、請求項20から請求項25のいずれかに記載のウイルス感染抑制剤。
PCT/JP2010/068010 2009-10-14 2010-10-14 ウイルスの感染を抑制する物質のスクリーニング方法およびウイルス感染抑制剤 WO2011046160A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009236758 2009-10-14
JP2009-236758 2009-10-14
JP2010-107602 2010-05-07
JP2010107602A JP2013006772A (ja) 2009-10-14 2010-05-07 ウイルスの感染を抑制する物質のスクリーニング方法およびウイルス感染抑制剤

Publications (1)

Publication Number Publication Date
WO2011046160A1 true WO2011046160A1 (ja) 2011-04-21

Family

ID=43876209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068010 WO2011046160A1 (ja) 2009-10-14 2010-10-14 ウイルスの感染を抑制する物質のスクリーニング方法およびウイルス感染抑制剤

Country Status (2)

Country Link
JP (1) JP2013006772A (ja)
WO (1) WO2011046160A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000511062A (ja) * 1996-06-27 2000-08-29 オニックス ファーマシューティカルズ G―ベータ―ガンマ調節ホスファチジルイノシトール―3’キナーゼ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000511062A (ja) * 1996-06-27 2000-08-29 オニックス ファーマシューティカルズ G―ベータ―ガンマ調節ホスファチジルイノシトール―3’キナーゼ

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DONALDSON J.G. ET AL: "G PROTEINS IN ENDOSOMAL TRAFFICKING PATHWAYS", J.PHYSIOL.SCI., vol. 59, no. 1, 11 August 2009 (2009-08-11), pages 56 *
FEIG L.A. ET AL: "Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP", MOL.CELL. BIOL., vol. 8, no. 8, August 1988 (1988-08-01), pages 3235 - 3243 *
FUJIOKA Y. ET AL.: "The Ras-PI3K signaling pathway mediates endocytosis and the incorporation of influenza viruses", ANNUAL MEETING OF THE JAPAN SOCIETY FOR CELL BIOLOGY ABSTRACTS, vol. 62, - 7 May 2010 (2010-05-07), pages 117 *
FUJIOKA Y. ET AL: "Imaging Analysis of the Mechanism of Ras-Dependent PI3K Activation in the Endosome", ANNUAL MEETING OF THE JAPAN SOCIETY FOR CELL BIOLOGY ABSTRACTS, vol. 61, - 11 May 2009 (2009-05-11), pages 233 *
FUJIOKA Y. ET AL: "Ras-PI3K signaling regulates influenza virus infection", ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN KOEN YOSHISHU, vol. 3, - 11 December 2009 (2009-12-11), pages 156 *
SIECZKARSKI S.B. ET AL.: "Influenza Virus Can Enter and Infect Cells in the Absence of Clathrin-Mediated Endocytosis", J.VIROL., vol. 76, no. 20, October 2002 (2002-10-01), pages 10455 - 10464 *
YOICHIRO FUJIOKA ET AL.: "Endosome ni Okeru Ras Izonsei PI3K Kasseika Kiko no Imaging Shuho o Mochiita Kaiseki", JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY, 2008, SHOROKU CD, 2008, pages 1T14-4 *

Also Published As

Publication number Publication date
JP2013006772A (ja) 2013-01-10

Similar Documents

Publication Publication Date Title
Essalmani et al. Distinctive roles of furin and TMPRSS2 in SARS-CoV-2 infectivity
Chung et al. NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains
Cong et al. Identification of the myelin oligodendrocyte glycoprotein as a cellular receptor for rubella virus
US20060223055A1 (en) Methods and compositions for treatment of viral lnfection
Zhu et al. Host cellular protein TRAPPC6AΔ interacts with influenza A virus M2 protein and regulates viral propagation by modulating M2 trafficking
Carpp et al. Interaction between the yellow fever virus nonstructural protein NS3 and the host protein Alix contributes to the release of infectious particles
Yang et al. Annexin 2 is a host protein binding to classical swine fever virus E2 glycoprotein and promoting viral growth in PK-15 cells
Chao et al. Proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2), a host membrane-deforming protein, is critical for membranous web formation in hepatitis C virus replication
Bhuvanakantham et al. Human Sec3 protein is a novel transcriptional and translational repressor of flavivirus
Krishnan et al. Functional characterization of seven-band grouper immunoglobulin like cell adhesion molecule, Nectin4 as a cellular receptor for nervous necrosis virus
EP2633321B1 (en) Antisera assays for mlv related viruses in humans and other mammals
US8940960B2 (en) HCV entry factor, Occludin
WO2021239086A1 (zh) SARS-CoV-2假病毒及其检测样品中和SARS-CoV-2能力的方法
Hrincius et al. Avian influenza viruses inhibit the major cellular signalling integrator c‐A bl
Lai et al. Restriction of influenza A virus by SERINC5
US20160090402A1 (en) Peptide domain required for interaction between the envelope of a virus pertaining to the herv-w interference group and an hasct receptor
Qiu et al. Proteasomal degradation of human SERINC4: a potent host anti-HIV-1 factor that is antagonized by nef
Sato et al. Localization of influenza virus proteins to nuclear dot 10 structures in influenza virus-infected cells
Li et al. Japanese encephalitis virus counteracts BST2 restriction via its envelope protein E
Wang et al. Sequential Glycosylations at the Multibasic Cleavage Site of SARS-CoV-2 Spike Protein Regulate Viral Activation, Assembly, and Infection
WO2011046160A1 (ja) ウイルスの感染を抑制する物質のスクリーニング方法およびウイルス感染抑制剤
US20090220490A1 (en) Compositions and Assays for Inhibiting HCV Infection
Hémonnot et al. Phosphorylation of the HTLV-1 matrix L-domain-containing protein by virus-associated ERK-2 kinase
CN116999558B (zh) Par1作为用于治疗或者抑制埃博拉病毒的靶点的应用
US12102635B2 (en) Methods of using protein palmitoylations inhibitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823428

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10823428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP