WO2011046059A1 - Device for detecting a substance in a liquid and manufacturing method therefor - Google Patents

Device for detecting a substance in a liquid and manufacturing method therefor Download PDF

Info

Publication number
WO2011046059A1
WO2011046059A1 PCT/JP2010/067626 JP2010067626W WO2011046059A1 WO 2011046059 A1 WO2011046059 A1 WO 2011046059A1 JP 2010067626 W JP2010067626 W JP 2010067626W WO 2011046059 A1 WO2011046059 A1 WO 2011046059A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
resin layer
wave element
detection device
acoustic wave
Prior art date
Application number
PCT/JP2010/067626
Other languages
French (fr)
Japanese (ja)
Inventor
雅章 安田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2011046059A1 publication Critical patent/WO2011046059A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/222Constructional or flow details for analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0255(Bio)chemical reactions, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0423Surface waves, e.g. Rayleigh waves, Love waves

Definitions

  • the present invention relates to a manufacturing method of a submerged substance detection device and a submerged substance detection device, and more particularly to a manufacturing method of a submerged substance detection device including a surface acoustic wave element and a submerged substance detection device.
  • Patent Document 1 proposes an in-liquid substance detection apparatus using a surface acoustic wave element as an example of an in-liquid substance detection apparatus.
  • FIG. 15 is a partially cutaway enlarged front cross-sectional view in which a main part of the in-liquid substance detection device described in Patent Document 1 is enlarged.
  • the in-liquid substance detection device 100 has a base substrate 101 in which an opening 101c is formed.
  • a protective member 103 is disposed on the surface of one side of the base substrate 101 with an adhesion layer 102 interposed therebetween.
  • An opening 103a is formed in the protection member 103, and the opening 103a is connected to the opening 101c.
  • a protective member 104 is disposed on the other surface of the base substrate 101.
  • An opening 104a is formed in the protection member 104, and the opening 104a is connected to the opening 101c.
  • a surface acoustic wave element 105 is disposed in the opening 104a.
  • the surface acoustic wave element 105 includes a piezoelectric substrate 105a.
  • An IDT electrode 105b is formed on the surface 105a1 of the piezoelectric substrate 105a.
  • the IDT electrode 105b is covered with a reaction film 105c to which a detection target substance in the liquid binds.
  • the surface acoustic wave element 105 is mounted on electrode lands 101a and 101b provided on the other surface of the base substrate 101 via bump electrodes 106a and 106b. Note that the joint portion formed by the bump electrodes 106 a and 106 b is sealed with a resin layer 107.
  • the in-liquid substance detection device 100 when the liquid containing the detection target substance adheres to the sensing unit 110 of the surface acoustic wave element 105 provided with the IDT electrode 105b and the reaction film 105c via the openings 103a and 101c, The detection target substance is bonded to the reaction film 105c. For this reason, the load applied to the IDT electrode 105b of the surface acoustic wave element 105 varies. Therefore, the output from the surface acoustic wave element 105 fluctuates, and the presence or absence of the detection target substance and the concentration of the detection target substance are detected based on the change in the output value.
  • the detection target substance can be detected even when the amount of the liquid containing the detection target substance is small. It is very useful for detecting substances in the biotechnology field where trace amounts are used.
  • the substance detection results may vary. That is, the submerged substance detection device 100 may not be able to detect the substance stably with high accuracy.
  • the present invention has been made in view of such a point, and an object of the present invention is to provide a method for manufacturing a submerged substance detection apparatus and a submerged substance detection apparatus capable of stably detecting a substance with high accuracy. is there.
  • the present inventors have found that the bleed generated from the resin layer 107 may cause a variation in the detection result of the substance when the substance is detected using the submerged substance detection apparatus 100. I found out. That is, when the bleed generated from the resin layer 107 adheres to the sensing unit 110, elutes in the liquid, or swells, the load applied to the sensing unit 110 varies regardless of the presence or absence of the detection target substance. It has been found that the detection results of substances may vary, and as a result, the present invention has been made.
  • the method for manufacturing a submerged substance detection device includes a substrate having an opening, a piezoelectric substrate, and an IDT electrode that is formed on the piezoelectric substrate and forms a sensing unit. And a surface acoustic wave device mounted on the substrate so that the sensing portion faces the opening of the substrate, and a resin layer formed so as to surround the sensing portion between the substrate and the surface acoustic wave element.
  • the present invention relates to a method for manufacturing a submerged substance detection device, in which a detection concave portion in which a liquid to be detected is stored is formed by an opening of a substrate and a resin layer.
  • the method for manufacturing a submerged substance detection device includes a preparation step of preparing a mounting structure in which the surface acoustic wave element is mounted on a substrate having at least an inner surface of an opening that is hydrophobic, A resin layer forming step of forming a resin layer so as to surround the sensing portion between the surface acoustic wave element and a hydrophilic step of applying a hydrophilic treatment to the surface of the detection concave portion are provided.
  • the mounting structure includes an annular wall portion so as to surround the sensing portion, and the resin layer is walled in the resin layer forming step. It forms outside the part. In this case, since the bleed from the resin layer enters the concave portion for detection by the wall portion, it is possible to manufacture an in-liquid substance detection device with higher detection accuracy.
  • the preparation step includes a step of mounting the surface acoustic wave element on the substrate, and an inner surface of the opening of the substrate on which the surface acoustic wave element is mounted. And hydrophobizing treatment.
  • the degree of freedom in designing the substrate can be increased.
  • the preparation step includes a step of subjecting the inner surface of the opening of the substrate to a hydrophobic treatment, and a substrate having the inner surface of the opening subjected to the hydrophobic treatment. And mounting a surface acoustic wave device on the substrate.
  • a hydrophobic substance since it is not always necessary to include a hydrophobic substance in the substrate, the degree of freedom in designing the substrate can be increased.
  • the hydrophobic treatment on the inner surface of the opening is performed by discharging a hydrophobic treatment agent from a nozzle inserted in the opening.
  • the substrate includes a hydrophobic substance.
  • a hydrophobic treatment it is not always necessary to apply a hydrophobic treatment to the inner surface of the opening of the substrate. Therefore, the manufacturing process of the submerged substance detection device can be simplified.
  • the resin layer is formed by placing a thermosetting resin and curing the thermosetting resin by heating.
  • a thermosetting resin is used, bleed is likely to occur even when the resin is cured.
  • the thermosetting resin is used. Even so, it is possible to manufacture a substance detection apparatus with high detection accuracy.
  • the resin layer forming step is performed so that the resin layer is not positioned in the opening when viewed from the opening direction of the opening of the substrate. It is a process of forming a layer. In this case, since it can suppress more effectively that a bleed enters in the recessed part for a detection, the submerged substance detection apparatus with a higher detection precision can be manufactured.
  • the hydrophilization step is performed by performing plasma treatment or UV treatment on the surface of the detection recess.
  • the submerged substance detection device includes a substrate, a surface acoustic wave element, and a resin layer.
  • An opening is formed in the substrate.
  • the surface acoustic wave element has a piezoelectric substrate and an IDT electrode.
  • the IDT electrode is formed on the piezoelectric substrate.
  • the IDT electrode constitutes a sensing unit.
  • the surface acoustic wave element is mounted on the substrate so that the sensing unit faces the opening of the substrate.
  • the resin layer is formed outside the sensing unit between the substrate and the surface acoustic wave element.
  • a detection recess for storing a liquid to be detected is formed by the opening of the substrate and the resin layer.
  • the wall surface of the detection recess is hydrophilic.
  • the submerged substance detection device further includes a hydrophobic layer.
  • the hydrophobic layer is positioned closer to the detection recess than the resin layer on the surface of the substrate on the surface acoustic wave element side, and positioned closer to the detection recess than the resin layer on the substrate side of the surface acoustic wave element. It is formed on at least one of the portions.
  • the hydrophobic layer is formed on at least a portion located on the detection recess side of the resin layer on the surface of the substrate on the surface acoustic wave element side. Has been.
  • the hydrophobic layer includes a portion located on the detection recess side of the resin layer on the surface of the substrate on the surface acoustic wave element side, and a surface acoustic wave. It is formed on both the resin layer on the substrate side surface of the element and the portion located on the detection recess side.
  • the hydrophobic layer is formed in an annular shape so as to surround the detection recess.
  • the resin layer is formed in an annular shape so as to surround the detection recess.
  • the hydrophobic layer and the resin layer are formed concentrically so as to surround the detection recess.
  • the gap between the substrate and the surface acoustic wave element is formed by the hydrophobic layer of the gap due to the water repellency of the hydrophobic layer. This is the distance at which the liquid to be detected supplied to the detection concave portion is prevented from entering the portion where the detection is performed.
  • the gap between the substrate and the surface acoustic wave element in the region where the hydrophobic layer is formed is 100 ⁇ m or less.
  • the submerged substance detection device is arranged so as to reach the surface acoustic wave element from the substrate in a portion located on the detection recess side of the resin layer. A wall portion formed is further provided.
  • the resin layer is formed in a state where the inner surface of the opening of the substrate is hydrophobic, it is possible to prevent the bleed generated from the resin layer from entering the detection recess. Is done. Therefore, according to the manufacturing method of the present invention, it is possible to manufacture an in-liquid substance detection device capable of detecting a substance with high accuracy and stability.
  • the submerged substance detection device includes a portion located on the detection recess side of the surface of the surface acoustic wave element side of the substrate and a resin layer on the surface of the surface acoustic wave element on the substrate side. Is also provided with a hydrophobic layer formed on at least one of the portions located on the detection recess side. For this reason, the liquid to be detected reaches the resin layer effectively by the water repellency of the hydrophobic layer. For this reason, the fall of the detection accuracy resulting from the elution of the bleed at the time of a detection can be suppressed effectively. In addition, since the wall surface of the detection recess is hydrophilic, the detection liquid can be stably taken in and out and replaced.
  • FIG. 1 is a schematic plan view of the submerged substance detection device according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a schematic cross-sectional view taken along line III-III in FIG. 4 is a schematic cross-sectional view taken along line VI-VI in FIG.
  • FIG. 5 is a schematic plan view of the substrate.
  • FIG. 6 is a schematic configuration diagram of the sensing unit.
  • FIG. 7 is a flowchart showing a manufacturing process of the submerged substance detection device according to the first embodiment.
  • FIG. 8 is a schematic cross-sectional view showing the hydrophobization process.
  • FIG. 9 is a schematic cross-sectional view of the in-liquid substance detection device of the second embodiment.
  • FIG. 10 is a flowchart showing a manufacturing process of the submerged substance detection device according to the second embodiment.
  • FIG. 11 is a schematic cross-sectional view of the in-liquid substance detection device of the third embodiment.
  • FIG. 12 is a graph showing the amount of frequency change in the example.
  • FIG. 13 is a graph showing the frequency change amount in the comparative example.
  • FIG. 14 is a schematic configuration diagram of a sensing unit in a modified example.
  • FIG. 15 is a partially cutaway enlarged front cross-sectional view in which a main part of the in-liquid substance detection device described in Patent Document 1 is enlarged.
  • FIG. 16 is a schematic cross-sectional view of the submerged substance detection device of the fourth embodiment.
  • FIG. 17 is a schematic cross-sectional view of the in-liquid substance detection device of the fifth embodiment.
  • FIG. 18 is a schematic cross-sectional view of the in-liquid substance detection device of the sixth embodiment.
  • FIG. 19 is a schematic plan view of the in-liquid substance detection device of the seventh embodiment.
  • FIG. 20 is a schematic plan view of the submerged substance detection device according to the eighth embodiment.
  • FIG. 21 is a schematic plan view of the submerged substance detection device of the ninth embodiment.
  • FIG. 1 is a schematic plan view of a submerged substance detection device 1 of the present embodiment
  • FIGS. 2 to 4 are schematic cross-sectional views of the submerged substance detection device 1.
  • FIG. 1 and the like the IDT electrode is represented by a rectangle with two diagonal lines drawn.
  • FIG. 1 etc. the drawing of a reflector is abbreviate
  • the number of electrode fingers is smaller than the actual number.
  • the in-liquid substance detection device 1 is an apparatus for detecting a substance present in the liquid. By using the in-liquid substance detection device 1, the concentration of the substance present in the liquid can be measured. Examples of the liquid to be detected include a dispersion solution in which an aqueous solution or a colloid is dispersed.
  • the submerged substance detection device 1 includes a surface acoustic wave element (SAW element) 10 and a substrate 30.
  • the surface acoustic wave element 10 includes a piezoelectric substrate 11.
  • the piezoelectric substrate 11 is not particularly limited.
  • the piezoelectric substrate 11 can be configured by a piezoelectric single crystal substrate such as a LiNbO 3 substrate or a LiTaO 3 substrate, a piezoelectric ceramic substrate, or the like.
  • First and second IDT electrodes 12 and 15 are formed on the piezoelectric substrate 11.
  • the first and second IDT electrodes 12 and 15 constitute first and second sensing units 18 and 19 that detect substances in the liquid, respectively.
  • the first IDT electrode 12 has two pairs of comb electrodes 12a, 12b, 12c, and 12d that are interleaved with each other.
  • the comb electrode 12a is connected to the first input / output port 12e.
  • the comb electrode 12c is connected to the second input / output port 12g, and the comb electrode 12b is connected to the ground port 12f.
  • the comb electrode 12d is connected to the ground port 12h.
  • Grating reflectors 13 and 14 are disposed on both sides in the elastic wave propagation direction of the region where the first IDT electrode 12 is provided.
  • the second IDT electrode 15 also has two pairs of comb electrodes 15a, 15b, 15c, and 15d that are inserted into each other in the same manner as the first IDT electrode 12.
  • the comb electrode 15b is connected to the first input / output port 15f.
  • the comb electrode 15d is connected to the second input / output port 15h, and the comb electrode 15a is connected to the ground port 15e.
  • the comb electrode 15c is connected to the ground port 15g.
  • Grating reflectors 16 and 17 are disposed on both sides of the region where the second IDT electrode 15 is provided in the elastic wave propagation direction.
  • bump electrodes 21a, 21b, 21c, 21d, 22a, 22b, 22c, and 22d are formed on the piezoelectric substrate 10.
  • bump electrodes 21c, 21d, 22c, and 22d are bump electrodes that are connected to the ground electrode
  • bump electrodes 21a, 21b, 22a, and 22b are bump electrodes that are connected to the input / output ports.
  • the bump electrode 21a is connected to the first input / output port 12e.
  • the bump electrode 21b is connected to the second input / output port 12g.
  • the bump electrode 21c is connected to the ground port 12f.
  • the bump electrode 21d is connected to the ground port 12h.
  • the bump electrode 22a is connected to the first input / output port 15f.
  • the bump electrode 22b is connected to the second input / output port 15h.
  • the bump electrode 22c is connected to the ground port 15e.
  • the bump electrode 22d is connected to the ground port 15g.
  • the first and second IDT electrodes are formed by two pairs of interdigital electrodes interleaved with each other.
  • the second IDT electrode may be formed by a pair of comb electrodes interleaved with each other.
  • impedance matching with the circuit connected to the surface acoustic wave element 10 tends to be difficult as compared with the case where two pairs of comb-tooth electrodes are formed, but the submerged substance detection device 1 has a simpler configuration. Since this can be realized, it is easier to reduce the size of the apparatus.
  • each of the bump electrodes 21 a, 21 b, 21 c, 21 d, 22 a, 22 b, 22 c, 22 d is exposed from the protective film 20 described later and is higher than the surface of the protective film 20. Projects to the position.
  • Each of the first and second IDT electrodes 12 and 15, grating reflectors 13, 14, 16, 17 and bump electrodes 21a, 21b, 21c, 21d, 22a, 22b, 22c, and 22d is, for example, Ag, It can be formed of an appropriate conductive material such as a metal such as Au, Pd, Pt, Al, Cu, and Ti, or an alloy such as Ag—Pd.
  • Each of the first and second IDT electrodes 12, 15, grating reflectors 13, 14, 16, 17, and bump electrodes 21a, 21b, 21c, 21d, 22a, 22b, 22c, 22d includes a plurality of conductive layers. May be constituted by a conductive layer laminate in which is laminated.
  • a protective film 20 is formed on the piezoelectric substrate 10.
  • the protective film 20 covers the first and second IDT electrodes 12 and 15 and the grating reflectors 13, 14, 16 and 17.
  • the protective film 20 is a layer for protecting the first and second IDT electrodes 12 and 15 and the grating reflectors 13, 14, 16, and 17 from liquids, dust, and the like.
  • the protective film 20 can be formed of an insulating material such as silicon oxide such as SiO 2 or silicon nitride such as SiN.
  • reaction film is a film that reacts with a substance in a liquid.
  • adsorption film is a film that adsorbs a substance in the liquid.
  • a substrate 30 is disposed on the surface acoustic wave element 10.
  • This substrate 30 is for forming a detection recess for storing the liquid to be detected on the upper portions of the sensing units 18 and 19.
  • the substrate 30 is formed with first and second openings 30a and 30b. These openings 30 a and 30 b are formed larger than the sensing portions 18 and 19.
  • the surface acoustic wave element 10 is mounted on the substrate 30 so that the openings 30 a and 30 b of the substrate 30 face the sensing units 18 and 19.
  • the substrate 30 is not particularly limited as long as the substrate 30 has rigidity capable of supporting the surface acoustic wave element 10.
  • the substrate 30 may be a substrate made of an inorganic material, a substrate made of an organic material, or a substrate containing both an inorganic material and an organic material.
  • the substrate 30 can be composed of, for example, a glass epoxy substrate, a glass substrate, a ceramic substrate, a resin substrate, or the like.
  • substrate 30 may be comprised with the film.
  • the glass epoxy substrate is a substrate formed by immersing an epoxy resin in a glass woven fabric in which glass fibers are knitted into a cloth shape.
  • a conductive layer 31 is formed on the substrate 30.
  • the conductive layer 31 includes not only the surface 30 c of the substrate 30 on the surface acoustic wave element 10 side, but also the inner surfaces of the first and second openings 30 a and 30 b and the surface acoustic wave element 10 of the substrate 30.
  • the back surface 30d opposite to the side is covered. Thereby, the deterioration by the corrosion of the board
  • substrate 30 is suppressed.
  • the conductive layer 31 includes a layer having excellent corrosion resistance such as an Au layer, deterioration of the substrate 30 due to corrosion can be more effectively suppressed.
  • deterioration due to corrosion of the substrate 30 is particularly likely to proceed on the inner surfaces of the first and second openings 30a and 30b that are in contact with the liquid, and therefore, the back surface 30d of the substrate 30 and the first and second openings 30a and 30b are not affected. It is preferable to form the conductive layer 31 on the inner surfaces, particularly on the inner surfaces of the first and second openings 30a and 30b.
  • the portion located on the surface 30c of the conductive layer 31 constitutes a ground electrode 31a and first to fourth electrode lands 31b to 31e.
  • the bump electrode 21a is connected to the first electrode land 31b
  • the bump electrode 21b is connected to the second electrode land 31c
  • the bump electrode 22a is connected to the third electrode land 31d.
  • the electrode 22b is connected to the fourth electrode land 31e
  • the bump electrodes 21c, 21d, 22c, and 22d are mounted on the substrate 30 so as to be connected to the ground electrode 31a.
  • a resin layer 40 is disposed between the substrate 30 and the surface acoustic wave element 10.
  • the resin layer 40 is connected to the surface 30 c of the substrate 30 and the surface of the surface acoustic wave element 10. Specifically, the resin layer 40 bonds the substrate 30 and the surface acoustic wave element 10 together.
  • the resin layer 40 is formed so as to surround the sensing units 18 and 19. That is, in the present embodiment, the resin layer 40 is formed in a portion other than the top of the sensing units 18 and 19.
  • the resin layer 40 and the first and second openings 30 a and 30 b formed in the substrate 30 form first and second detection recesses 32 and 33.
  • the resin layer 40 is formed so as not to be positioned in the openings 30 a and 30 b when viewed from the opening direction x of the openings 30 a and 30 b of the substrate 30. That is, the edge part of the resin layer 40 is located outside the openings 30a and 30b.
  • the resin layer 40 is particularly limited as long as it can adhere the substrate 30 and the surface acoustic wave element 10 and has a certain degree of durability against the liquid supplied to the detection recesses 32 and 33.
  • the resin layer 40 may be, for example, a thermoplastic resin or an energy ray curable resin that is cured by energy rays.
  • the energy rays include heat rays and light rays.
  • the energy ray curable resin includes a thermosetting resin, a photocurable resin, and the like.
  • the resin layer 40 can be formed of, for example, an epoxy resin or a polyimide resin.
  • a surface acoustic wave element 10 and a substrate 30 are prepared in step S1.
  • step S2 the surface acoustic wave element 10 is flip-chip mounted on the substrate 30, whereby the ground electrode 31a, the first to fourth electrode lands 31b to 31e, and the bump electrodes 21a, 21b, 22a, 22b, 21c. , 21d, 22c, and 22d.
  • the mounting of the surface acoustic wave element 10 on the substrate 30 is not limited to flip chip mounting.
  • the surface acoustic wave element 10 may be mounted on the substrate 30 by a mounting method other than flip chip mounting.
  • a hydrophobic treatment is performed. Specifically, at least the inner surfaces of the first and second openings 30a and 30b are subjected to a hydrophobic treatment. Specifically, in the present embodiment, the first and second openings 30a and 30b, the portion of the surface 30c of the substrate 30 located near the first and second openings 30a and 30b, and the first and second openings The surface of the two sensing units 18 and 19 is subjected to a hydrophobic treatment.
  • the method of the hydrophobic treatment is not particularly limited, and for example, the hydrophobic treatment can be performed by applying a hydrophobic treatment agent on the surface.
  • a hydrophobic treatment agent on the surface.
  • the nozzle 41 is inserted into the openings 30a and 30b, and the hydrophobic treatment agent is discharged from the nozzle 41, whereby the hydrophobic treatment agent is applied to the surface. Apply. Thereafter, the surface is washed with a washing liquid and dried to complete the hydrophobization treatment.
  • the hydrophobizing agent include bleed inhibitors such as non-bleed N-11 and non-bleed N-31.
  • a mounting structure 42 (see FIG. 7) is prepared in which the surface acoustic wave element 10 is mounted on the substrate 30 in which at least the inner surfaces of the openings 30a and 30b are hydrophobic.
  • step S4 resin layer forming step shown in FIG. 7, the resin layer 40 is formed, and the detection recesses 32 and 33 are formed. Specifically, a nozzle is set between the substrate 30 and the surface acoustic wave element 10, and sealing resin (underfill) is discharged from the nozzle. The discharged resin enters the back of the gap by capillary action. Thereafter, the resin layer 40 is formed by curing the resin. The resin is cured by, for example, supplying heat when the resin is a thermosetting resin and supplying light when the resin is a photocurable resin.
  • the injection of the resin into the gap between the substrate 30 and the surface acoustic wave element 10 is performed so that the resin is not located in the openings 30a and 30b when viewed from the opening direction of the openings 30a and 30b. It is preferable. That is, it is preferable to form the resin layer 40 so that the resin layer 40 is not located in the openings 30a and 30b when viewed from the opening direction of the openings 30a and 30b.
  • step S5 the surface of the detection recesses 32 and 33 is subjected to a hydrophilic treatment.
  • a hydrophilic treatment is not specifically limited, For example, you may perform a hydrophilic treatment by apply
  • the surfaces of the first and second openings 30a and 30b and the sensing portions 18 and 19 are subjected to a hydrophobic treatment. For this reason, the bleed generated during resin filling or curing is repelled by the hydrophobized surface and hardly flows into the detection recesses 32 and 33. Therefore, the bleed is less likely to adhere to the sensing units 18 and 19.
  • the amount of bleed existing in the detection recesses 32 and 33 can be reduced, characteristic changes of the sensing units 18 and 19 due to bleed eluting into the liquid or bleed swell during detection, It is possible to suppress a decrease in measurement accuracy due to a change in liquid characteristics. Therefore, the substance in the liquid can be detected stably with high measurement accuracy.
  • the resin layer 40 is not located in the openings 30a and 30b. Therefore, it is possible to more effectively suppress the bleed from entering the detection recesses 32 and 33.
  • the generated bleed is generally a low viscosity component contained in the resin, typically a low molecular weight component.
  • Specific examples of the bleed include additives such as a curing agent and uncured resin.
  • the present invention is not limited to this.
  • at least the substrate 30 of the substrate 30 and the surface acoustic wave element 10 may be subjected to a hydrophobic treatment.
  • the substrate 30 may be a substrate having a hydrophobic surface.
  • the substrate 30 may include a hydrophobic substance. In that case, it is not always necessary to perform the hydrophobization treatment.
  • the hydrophobic substance include polytetrafluoroethylene (PTFE) and fluororesin.
  • the submerged substance detection device 2 of the present embodiment shown in FIG. 9 is substantially the same as the submerged substance detection device 1 of the first embodiment except that the submerged substance detection device 2 has first and second wall portions 43 and 44. It has the composition of. As shown in FIG. 9, in the present embodiment, the surface of the piezoelectric substrate 11 is formed in an annular shape so as to surround the sensing portions 18 and 19, and the first and second walls extending toward the substrate 30 side. Portions 43 and 44 are formed. The resin layer 40 is located outside the first and second wall portions 43 and 44.
  • tips of the first and second wall portions 43 and 44 may reach the substrate 30 or may not reach the substrate 30.
  • step S11 the surface acoustic wave element 10 and the substrate 30 are prepared as in step S1 described above.
  • step S12 the substrate 30 is hydrophobized.
  • This hydrophobizing process is the same as the hydrophobizing process described in the first embodiment. However, when the substrate 30 includes a hydrophobic substance, step S12 is not necessarily performed.
  • step S13 the surface acoustic wave element 10 is mounted on the substrate 30 as in step S2.
  • step S14 the resin layer 40 is formed in the same manner as in step S4.
  • step S ⁇ b> 14 the resin layer 40 is formed outside the wall portions 43 and 44. That is, the resin is prevented from entering the walls 43 and 44.
  • step S15 a hydrophilic treatment is performed in the same manner as in step S5.
  • step S12 since the hydrophobization process is performed in step S12, it is possible to prevent the bleed from entering the detection recesses 32 and 33. Moreover, since the wall parts 43 and 44 are provided, it can suppress more effectively that a bleed enters the recessed parts 32 and 33 for a detection. Therefore, it is possible to more effectively suppress a decrease in detection accuracy due to bleeding.
  • the wall portions 43 and 44 are formed on the piezoelectric substrate 11 .
  • the present invention is not limited to this configuration.
  • the wall portions 43 and 44 may be formed on the substrate 30.
  • FIG. 16 is a schematic cross-sectional view of the submerged substance detection device of the fourth embodiment.
  • FIG. 6 is referred to in common with the first embodiment.
  • the 16 is a device for detecting substances present in the liquid to be detected.
  • the concentration of the substance present in the liquid to be detected can be measured.
  • the submerged substance detection device 4 includes a surface acoustic wave element (SAW element) 10 and a substrate 30.
  • the surface acoustic wave element 10 includes a piezoelectric substrate 11.
  • the piezoelectric substrate 11 is not particularly limited.
  • the piezoelectric substrate 11 can be configured by a piezoelectric single crystal substrate such as a LiNbO 3 substrate or a LiTaO 3 substrate, a piezoelectric ceramic substrate, or the like.
  • First and second IDT electrodes 12 and 15 are formed on the piezoelectric substrate 11.
  • the first and second IDT electrodes 12 and 15 constitute first and second sensing units 18 and 19 that detect substances in the liquid, respectively.
  • the first IDT electrode 12 has two pairs of comb electrodes 12a, 12b, 12c, and 12d that are interleaved with each other.
  • the comb electrode 12a is connected to the first input / output port 12e.
  • the comb electrode 12c is connected to the second input / output port 12g, and the comb electrode 12b is connected to the ground port 12f.
  • the comb electrode 12d is connected to the ground port 12h.
  • Grating reflectors 13 and 14 are disposed on both sides in the elastic wave propagation direction of the region where the first IDT electrode 12 is provided.
  • the second IDT electrode 15 also has two pairs of comb electrodes 15a, 15b, 15c, and 15d that are inserted into each other in the same manner as the first IDT electrode 12.
  • the comb electrode 15b is connected to the first input / output port 15f.
  • the comb electrode 15d is connected to the second input / output port 15h, and the comb electrode 15a is connected to the ground port 15e.
  • the comb electrode 15c is connected to the ground port 15g.
  • Grating reflectors 16 and 17 are disposed on both sides of the region where the second IDT electrode 15 is provided in the elastic wave propagation direction.
  • the first and second IDT electrodes are formed by two pairs of comb electrodes interleaved with each other.
  • the first and second IDT electrodes are mutually connected. It may be formed by a pair of interdigital electrodes that are interleaved.
  • impedance matching with a circuit connected to the surface acoustic wave element tends to be difficult compared with the case where two pairs of comb-tooth electrodes are formed, but the submerged substance detection device 4 is realized with a simpler configuration. Therefore, it is easier to reduce the size of the apparatus.
  • the electrodes such as the first and second IDT electrodes 12 and 15 are made of, for example, an appropriate conductive material such as a metal such as Ag, Au, Pd, Pt, Al, Cu, or Ti, or an alloy such as Ag—Pd. Can be formed.
  • the electrodes such as the first and second IDT electrodes 12 and 15 may be formed of a conductive layer stack in which a plurality of conductive layers are stacked.
  • a protective film 20 is formed on the piezoelectric substrate 10.
  • the protective film 20 covers the first and second IDT electrodes 12 and 15 and the grating reflectors 13, 14, 16 and 17.
  • the protective film 20 is a layer for protecting the first and second IDT electrodes 12 and 15 and the grating reflectors 13, 14, 16, and 17 from liquids, dust, and the like.
  • the protective film 20 can be formed of an insulating material such as silicon oxide such as SiO 2 or silicon nitride such as SiN.
  • reaction film is a film that reacts with a substance in a liquid.
  • adsorption film is a film that adsorbs a substance in the liquid.
  • a substrate 30 is disposed on the surface acoustic wave element 10. This substrate 30 is for forming a detection recess for storing the liquid to be detected on the upper portions of the sensing units 18 and 19.
  • the substrate 30 has first and second openings 30a and 30b. These openings 30 a and 30 b are formed larger than the sensing portions 18 and 19.
  • the surface acoustic wave element 10 is mounted on the substrate 30 such that the openings 30 a and 30 b of the substrate 30 face the sensing units 18 and 19.
  • the substrate 30 is not particularly limited as long as the substrate 30 has rigidity capable of supporting the surface acoustic wave element 10.
  • the substrate 30 may be a substrate made of an inorganic material, a substrate made of an organic material, or a substrate containing both an inorganic material and an organic material.
  • the substrate 30 can be composed of, for example, a glass epoxy substrate, a glass substrate, a ceramic substrate, a resin substrate, or the like.
  • substrate 30 may be comprised with the film.
  • a conductive layer 31 is formed on the substrate 30.
  • the conductive layer 31 includes not only the surface 30c of the substrate 30 on the surface acoustic wave element 10 side, but also the inner surfaces of the first and second openings 30a and 30b, and the back surface of the substrate 30 opposite to the surface acoustic wave element 10 side. 30d is covered. Thereby, the deterioration by the corrosion of the board
  • substrate 30 is suppressed.
  • the conductive layer 31 includes a layer having excellent corrosion resistance such as an Au layer, deterioration of the substrate 30 due to corrosion can be more effectively suppressed.
  • deterioration due to corrosion of the substrate 30 is particularly likely to proceed on the inner surfaces of the first and second openings 30a and 30b that are in contact with the liquid, and therefore, the back surface 30d of the substrate 30 and the first and second openings 30a and 30b are not affected. It is preferable to form the conductive layer 31 on the inner surfaces, particularly on the inner surfaces of the first and second openings 30a and 30b.
  • the resin layer 40 is disposed between the substrate 30 and the surface acoustic wave element 10.
  • the substrate 30 and the surface acoustic wave element 10 are bonded by the resin layer 40.
  • the resin layer 40 is connected to the surface 30 c of the substrate 30 and the surface of the surface acoustic wave element 10. That is, the resin layer 40 is formed so as to reach the surface acoustic wave element 10 from the substrate 30.
  • the resin layer 40 is formed outside the sensing units 18 and 19. Specifically, the resin layer 40 is formed in an annular shape so as to surround the sensing units 18 and 19.
  • the resin layer 40 and the first and second openings 30 a and 30 b formed in the substrate 30 form first and second detection recesses 32 and 33.
  • the resin layer 40 is provided at a position retracted from the end surfaces of the openings 30a and 30b. That is, the resin layer 40 is formed so as not to be positioned in the openings 30a and 30b when viewed from the opening direction x of the openings 30a and 30b of the substrate 30. For this reason, the resin layer 40 is not formed on the periphery of the openings 30a and 30b of the surface 30c of the substrate 30.
  • the resin layer 40 is particularly limited as long as it can adhere the substrate 30 and the surface acoustic wave element 10 and has a certain degree of durability against the liquid supplied to the detection recesses 32 and 33.
  • the resin layer 40 may be, for example, a thermoplastic resin or an energy ray curable resin that is cured by energy rays.
  • the energy rays include heat rays and light rays.
  • the energy ray curable resin includes a thermosetting resin, a photocurable resin, and the like.
  • the resin layer 40 can be formed of, for example, an epoxy resin or a polyimide resin.
  • the wall surfaces of the detection recesses 32 and 33 are hydrophilic. Specifically, the surface of the conductive layer 31 constituting the wall surfaces of the detection recesses 32 and 33 has hydrophilicity.
  • a hydrophobic layer 45 having hydrophobicity is formed on at least one of the portions positioned on the detection recesses 32 and 33 side. Specifically, in the present embodiment, the hydrophobic layer 45 is formed on a portion of the surface 30c of the substrate 30 on the surface acoustic wave element 10 side that is located on the detection recesses 32 and 33 side of the resin layer 40. Has been.
  • the hydrophobic layer 45 is formed on a portion extending from the openings 30a and 30b of the surface 30c to the outside of the resin layer 40.
  • the portion of the hydrophobic layer 45 located inside the resin layer 40 is formed in an annular shape so as to surround the detection recesses 32 and 33.
  • the hydrophobic layer 45 can be formed of, for example, perfluoroalkylethyl acrylate or a fluorine-based resin containing a perfluoro group.
  • the hydrophobic layer 45 is provided. Therefore, the liquid to be detected injected into the detection recesses 32 and 33 is repelled by the hydrophobic layer 45. Therefore, the water-based detection liquid is effectively suppressed from reaching the resin layer 40 by the water repellent force of the hydrophobic layer 45. Accordingly, it is possible to effectively suppress the bleed material from the resin layer 40 from being mixed into the liquid to be detected located in the sensing units 18 and 19. As a result, the substance contained in the liquid to be detected can be detected with high detection accuracy.
  • the gap between the substrate 30 and the surface acoustic wave element 10 is determined by the water repellency of the hydrophobic layer 45 and the surface of the liquid to be detected. It is preferable that the distance is such that the liquid to be detected can be effectively prevented from entering the gap between the substrate 30 and the surface acoustic wave element 10 due to the tension.
  • the gap between the substrate 30 and the surface acoustic wave element 10 is preferably 100 ⁇ m or less.
  • the hydrophobic layer 45 is formed in an annular shape so as to surround the detection recesses 32 and 33. For this reason, it can suppress more reliably that a to-be-detected liquid reaches the resin layer 40.
  • the hydrophobic layer 45 is formed on the surface of the substrate 30 and is not formed on the surface of the surface acoustic wave element 10. For this reason, the characteristic change of the surface acoustic wave element 10 due to the formation of the hydrophobic layer 45 on the surface acoustic wave element 10 can be suppressed.
  • the hydrophobic layer 45 is not formed on the terminal portion 30c1 of the surface 30c of the substrate 30 to be electrically connected. For this reason, by providing the hydrophobic layer 45, electrical connection can be reliably performed.
  • the surfaces of the detection recesses 32 and 33 are hydrophilic, the liquid to be detected can be taken out and replaced stably.
  • FIG. 17 is a schematic cross-sectional view of the in-liquid substance detection device of the fifth embodiment.
  • the submerged substance detection device 5 according to the present embodiment is different from the submerged substance detection device 4 of the fourth embodiment in that a wall 46 is provided.
  • the wall portion 46 is formed so as to reach the surface acoustic wave element 10 from the substrate 30 in a portion located on the detection recesses 32 and 33 side with respect to the resin layer 40. For this reason, the resin layer 40 is isolated from the detection recesses 32 and 33 by the wall 46. Therefore, it can suppress more effectively that the bleed thing from the resin layer 40 mixes in a to-be-detected liquid.
  • the wall portion 46 can be formed of a material other than a resin that generates a bleed material, such as polyimide.
  • FIG. 18 is a schematic cross-sectional view of the in-liquid substance detection device of the sixth embodiment.
  • the hydrophobic layer 45 is formed only on the substrate 30 side.
  • the hydrophobic layer may be formed on both the substrate side and the surface acoustic wave element side.
  • the hydrophobic layer 45a is formed on the portion of the surface 30c of the substrate 30 on the surface acoustic wave element 10 side that is positioned on the detection recesses 32 and 33 side of the resin layer 40.
  • a hydrophobic layer 45b is formed on a portion of the surface acoustic wave element 10 located on the detection recesses 32 and 33 side of the surface of the substrate 30 side of the surface acoustic wave element 10.
  • the hydrophobic layer 45a and the hydrophobic layer 45b are opposed to each other.
  • the hydrophobic layer 45a on the substrate 30 side and the hydrophobic layer 45b on the surface acoustic wave element 10 side it is more effectively suppressed that the liquid to be detected reaches the resin layer 40. can do. Therefore, higher detection accuracy can be realized.
  • FIG. 19 is a schematic plan view of the in-liquid substance detection device according to the seventh embodiment.
  • FIG. 20 is a schematic plan view of the in-liquid substance detection device of the eighth embodiment.
  • FIG. 21 is a schematic plan view of the in-liquid substance detection device of the ninth embodiment.
  • the arrangement of the resin layer 40 and the hydrophobic layer 45 is not particularly limited as long as the hydrophobic layer 45 is located between the resin layer 40 and the detection recesses 32 and 33.
  • the resin layer 40 and the hydrophobic layer 45 may be arranged as shown in the seventh to ninth embodiments shown in FIGS.
  • the resin layer 40 and the hydrophobic layer 45 are formed concentrically. In this way, by forming the resin layer 40 in an annular shape, when the liquid to be detected is put, the space between the liquid to be detected, the resin layer 40, the substrate 30, and the surface acoustic wave element 10 and only air exists. By being formed, it is possible to effectively suppress wetting and spreading on the substrate 30 or the surface of the surface acoustic wave element 10.
  • the resin layer 40 is not formed so as to surround the detection recesses 32 and 33.
  • the resin layer 40 is formed in a rectangular shape.
  • Example 10 Ten actual submerged substance detection devices 3 shown in FIG. 11 are produced by the manufacturing method described in the second embodiment, and water is put into the detection recesses 32 and 33 for each sample. The substance was detected. Specifically, the transmission frequencies of the sensing units 18 and 19 were measured, and the amount of frequency change from the transmission frequency at the start of measurement was monitored over time. The result is shown in FIG. In the present embodiment, an epoxy underfill is used as the resin layer 40. The hydrophobizing treatment was performed with non-bleed N-11. The hydrophilic treatment was performed by UV / ozone irradiation.
  • the frequency change amount increased with time. Moreover, the frequency change amount of the transmission frequency greatly differs depending on the sample. This result shows that the substance in the liquid cannot be detected stably.
  • Substance detection apparatus 10 Surface acoustic wave element 11 ... Piezoelectric substrate 12 ... 1st IDT electrode 12a, 12b, 12c, 12d ... Comb electrode 12e ... 1st input / output port 12f, 12h ... Ground Port 12g ... second input / output port 13,14 ... grating reflector 15 ... second IDT electrodes 15a, 15b, 15c, 15d ... comb electrode 15e, 15g ... ground port 15g ... first input / output port 15h ... Second input / output ports 16, 17 ... grating reflectors 18, 19 ... sensing unit 20 ...

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Disclosed is a device for detecting a substance in a liquid, said device being capable of precise, stable detection of a substance. Also disclosed is a method for manufacturing said device. The device (1) for detecting a substance in a liquid is provided with: a substrate (30) in which openings (30a, 30b) are formed; an elastic surface-wave element (10) that has a piezoelectric substrate (11), has IDT electrodes (12, 15) that constitute sensing parts (18, 19), and is mounted on the substrate (30) such that the sensing parts (18, 19) face the openings (30a, 3b) in the substrate (30); and a resin layer (40) that is formed between the substrate (30) and the elastic surface-wave element (10) so as to surround the sensing parts (18, 19). The disclosed device for detecting a substance in a liquid is manufactured by: preparing a mounted structure (42) in which the elastic surface-wave element (10) is mounted on the substrate (30), at least the inside surfaces of the openings (30a, 30b) of which are hydrophobic; forming the resin layer (40) in the mounted structure (42); and hydrophilizing the surfaces of detection depressions (32, 33).

Description

液中物質検出装置の製造方法及び液中物質検出装置Method for manufacturing substance detection device in liquid and substance detection device in liquid
 本発明は、液中物質検出装置の製造方法及び液中物質検出装置に関し、特には、弾性表面波素子を備える液中物質検出装置の製造方法及び液中物質検出装置に関する。 The present invention relates to a manufacturing method of a submerged substance detection device and a submerged substance detection device, and more particularly to a manufacturing method of a submerged substance detection device including a surface acoustic wave element and a submerged substance detection device.
 従来、液体中に存在する物質を検出するバイオセンサーなどの液中物質検出装置として、種々の装置が知られている。例えば下記の特許文献1には、液中物質検出装置の一例として、弾性表面波素子を用いた液中物質検出装置が提案されている。図15は、特許文献1に記載されている液中物質検出装置の要部を拡大した部分切欠拡大正面断面図である。 Conventionally, various devices are known as in-liquid substance detection devices such as biosensors for detecting substances present in a liquid. For example, Patent Document 1 below proposes an in-liquid substance detection apparatus using a surface acoustic wave element as an example of an in-liquid substance detection apparatus. FIG. 15 is a partially cutaway enlarged front cross-sectional view in which a main part of the in-liquid substance detection device described in Patent Document 1 is enlarged.
 図15に示すように、液中物質検出装置100は、開口101cが形成されているベース基板101を有する。ベース基板101の一方側の表面上には、密着層102を介して、保護部材103が配置されている。保護部材103には、開口103aが形成されており、開口103aは、開口101cに接続されている。ベース基板101の他方側の表面上には、保護部材104が配置されている。保護部材104には、開口104aが形成されており、開口104aは、開口101cに接続されている。開口104a内には、弾性表面波素子105が配置されている。弾性表面波素子105は、圧電基板105aを備えている。圧電基板105aの表面105a1上には、IDT電極105bが形成されている。IDT電極105bは、液中の検出対象物質が結合する反応膜105cにより覆われている。弾性表面波素子105は、ベース基板101の他方側の表面上に設けられた電極ランド101a、101bに、バンプ電極106a、106bを介して実装されている。なお、バンプ電極106a、106bによる接合部は、樹脂層107により封止されている。 As shown in FIG. 15, the in-liquid substance detection device 100 has a base substrate 101 in which an opening 101c is formed. A protective member 103 is disposed on the surface of one side of the base substrate 101 with an adhesion layer 102 interposed therebetween. An opening 103a is formed in the protection member 103, and the opening 103a is connected to the opening 101c. A protective member 104 is disposed on the other surface of the base substrate 101. An opening 104a is formed in the protection member 104, and the opening 104a is connected to the opening 101c. A surface acoustic wave element 105 is disposed in the opening 104a. The surface acoustic wave element 105 includes a piezoelectric substrate 105a. An IDT electrode 105b is formed on the surface 105a1 of the piezoelectric substrate 105a. The IDT electrode 105b is covered with a reaction film 105c to which a detection target substance in the liquid binds. The surface acoustic wave element 105 is mounted on electrode lands 101a and 101b provided on the other surface of the base substrate 101 via bump electrodes 106a and 106b. Note that the joint portion formed by the bump electrodes 106 a and 106 b is sealed with a resin layer 107.
 液中物質検出装置100では、検出対象物質を含む液体が、開口103a及び101cを経由して、IDT電極105b及び反応膜105cが設けられている弾性表面波素子105のセンシング部110に付着すると、反応膜105cに検出対象物質が結合する。このため、弾性表面波素子105のIDT電極105bに加わる負荷が変動する。よって、弾性表面波素子105からの出力が変動し、その出力値の変化に基づいて、検出対象物質の有無及び検出対象物質の濃度が検出される。 In the in-liquid substance detection device 100, when the liquid containing the detection target substance adheres to the sensing unit 110 of the surface acoustic wave element 105 provided with the IDT electrode 105b and the reaction film 105c via the openings 103a and 101c, The detection target substance is bonded to the reaction film 105c. For this reason, the load applied to the IDT electrode 105b of the surface acoustic wave element 105 varies. Therefore, the output from the surface acoustic wave element 105 fluctuates, and the presence or absence of the detection target substance and the concentration of the detection target substance are detected based on the change in the output value.
 弾性表面波素子105を用いた液中物質検出装置100によれば、検出対象物質を含む液体が少量である場合であっても、検出対象物質の検出が行えるため、検出対象物質を含む液体が微量であるバイオ分野などにおける物質検出に非常に有用である。 According to the in-liquid substance detection device 100 using the surface acoustic wave element 105, the detection target substance can be detected even when the amount of the liquid containing the detection target substance is small. It is very useful for detecting substances in the biotechnology field where trace amounts are used.
特許3952083号公報Japanese Patent No. 3952083
 しかしながら、液中物質検出装置100を用いて物質の検出を行った場合、物質の検出結果にばらつきが生じる場合があった。すなわち、液中物質検出装置100では、物質を高い精度で安定して検出できない場合があった。 However, when substances are detected using the submerged substance detection apparatus 100, the substance detection results may vary. That is, the submerged substance detection device 100 may not be able to detect the substance stably with high accuracy.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、高い精度で安定して物質の検出が可能な液中物質検出装置の製造方法及び液中物質検出装置を提供することにある。 The present invention has been made in view of such a point, and an object of the present invention is to provide a method for manufacturing a submerged substance detection apparatus and a submerged substance detection apparatus capable of stably detecting a substance with high accuracy. is there.
 本発明者は、鋭意研究の結果、液中物質検出装置100を用いて物質の検出を行った場合に物質の検出結果にばらつきが生じる場合がある原因が、樹脂層107から生じたブリードにあることを見出した。すなわち、樹脂層107から生じたブリードがセンシング部110に付着したり、液体中に溶出したり、または膨潤したりすると、検出対象物質の有無に関わらずセンシング部110に加わる負荷が変動するため、物質の検出結果にばらつきが生じる場合があることを見出し、その結果、本発明をなすに至った。 As a result of intensive research, the present inventors have found that the bleed generated from the resin layer 107 may cause a variation in the detection result of the substance when the substance is detected using the submerged substance detection apparatus 100. I found out. That is, when the bleed generated from the resin layer 107 adheres to the sensing unit 110, elutes in the liquid, or swells, the load applied to the sensing unit 110 varies regardless of the presence or absence of the detection target substance. It has been found that the detection results of substances may vary, and as a result, the present invention has been made.
 すなわち、本発明に係る液中物質検出装置の製造方法は、開口が形成されている基板と、圧電基板と、圧電基板上に形成されており、センシング部を構成しているIDT電極とを有し、基板の開口にセンシング部が臨むように基板上に実装されている弾性表面波素子と、基板と弾性表面波素子との間において、センシング部を囲うように形成されている樹脂層とを備え、基板の開口と、樹脂層とによって被検出液が溜められる検出用凹部が形成されている液中物質検出装置の製造方法に関する。本発明に係る液中物質検出装置の製造方法は、少なくとも開口の内面が疎水性である基板上に記弾性表面波素子が実装された実装構造を用意する用意工程と、実装構造に、基板と弾性表面波素子との間において、センシング部を囲うように樹脂層を形成する樹脂層形成工程と、検出用凹部の表面に親水化処理を施す親水化工程とを備えている。 That is, the method for manufacturing a submerged substance detection device according to the present invention includes a substrate having an opening, a piezoelectric substrate, and an IDT electrode that is formed on the piezoelectric substrate and forms a sensing unit. And a surface acoustic wave device mounted on the substrate so that the sensing portion faces the opening of the substrate, and a resin layer formed so as to surround the sensing portion between the substrate and the surface acoustic wave element. The present invention relates to a method for manufacturing a submerged substance detection device, in which a detection concave portion in which a liquid to be detected is stored is formed by an opening of a substrate and a resin layer. The method for manufacturing a submerged substance detection device according to the present invention includes a preparation step of preparing a mounting structure in which the surface acoustic wave element is mounted on a substrate having at least an inner surface of an opening that is hydrophobic, A resin layer forming step of forming a resin layer so as to surround the sensing portion between the surface acoustic wave element and a hydrophilic step of applying a hydrophilic treatment to the surface of the detection concave portion are provided.
 本発明に係る液中物質検出装置の製造方法のある特定の局面では、実装構造には、センシング部を囲うように環状の壁部が形成されており、樹脂層形成工程において、樹脂層を壁部よりも外側に形成する。この場合、検出用凹部内に樹脂層からのブリードが進入することが壁部により抑制されるため、より検出精度が高い液中物質検出装置を製造することができる。 In a specific aspect of the method for manufacturing a submerged substance detection device according to the present invention, the mounting structure includes an annular wall portion so as to surround the sensing portion, and the resin layer is walled in the resin layer forming step. It forms outside the part. In this case, since the bleed from the resin layer enters the concave portion for detection by the wall portion, it is possible to manufacture an in-liquid substance detection device with higher detection accuracy.
 本発明に係る液中物質検出装置の製造方法の他の特定の局面では、用意工程は、基板上に弾性表面波素子を実装する工程と、弾性表面波素子が実装された基板の開口の内面に疎水化処理を施す工程とを含む。この場合、基板に疎水性物質を含有させる必要が必ずしもないため、基板の設計自由度を高めることができる。 In another specific aspect of the method for manufacturing a submerged substance detection device according to the present invention, the preparation step includes a step of mounting the surface acoustic wave element on the substrate, and an inner surface of the opening of the substrate on which the surface acoustic wave element is mounted. And hydrophobizing treatment. In this case, since it is not always necessary to include a hydrophobic substance in the substrate, the degree of freedom in designing the substrate can be increased.
 本発明に係る液中物質検出装置の製造方法の別の特定の局面では、用意工程は、基板の開口の内面に疎水化処理を施す工程と、開口の内面に疎水化処理が施された基板の上に、弾性表面波素子を実装する工程とを含む。この場合、基板に疎水性物質を含有させる必要が必ずしもないため、基板の設計自由度を高めることができる。 In another specific aspect of the method for manufacturing a submerged substance detection device according to the present invention, the preparation step includes a step of subjecting the inner surface of the opening of the substrate to a hydrophobic treatment, and a substrate having the inner surface of the opening subjected to the hydrophobic treatment. And mounting a surface acoustic wave device on the substrate. In this case, since it is not always necessary to include a hydrophobic substance in the substrate, the degree of freedom in designing the substrate can be increased.
 本発明に係る液中物質検出装置の製造方法のさらに他の特定の局面では、開口の内面の疎水化処理は、開口に挿入したノズルから疎水化処理剤を吐出することにより行う。 In yet another specific aspect of the method for manufacturing a submerged substance detection device according to the present invention, the hydrophobic treatment on the inner surface of the opening is performed by discharging a hydrophobic treatment agent from a nozzle inserted in the opening.
 本発明に係る液中物質検出装置の製造方法のさらに別の特定の局面では、基板は、疎水性物質を含む。この場合、基板の開口の内面に疎水化処理を施す必要が必ずしもなくなる。従って、液中物質検出装置の製造工程を簡略化することができる。 In yet another specific aspect of the method for manufacturing a submerged substance detection device according to the present invention, the substrate includes a hydrophobic substance. In this case, it is not always necessary to apply a hydrophobic treatment to the inner surface of the opening of the substrate. Therefore, the manufacturing process of the submerged substance detection device can be simplified.
 本発明に係る液中物質検出装置の製造方法のまた他の特定の局面では、樹脂層の形成は、熱硬化性樹脂を配置し、加熱することにより熱硬化性樹脂を硬化させることにより行う。熱硬化性樹脂を用いた場合、樹脂の硬化時にもブリードが発生しやすくなるが、本発明では、ブリードが検出用凹部内に進入することが抑制されるため、熱硬化性樹脂を用いた場合であっても検出精度の高い液中物質検出装置を製造することができる。 In another specific aspect of the method for manufacturing a submerged substance detection device according to the present invention, the resin layer is formed by placing a thermosetting resin and curing the thermosetting resin by heating. When a thermosetting resin is used, bleed is likely to occur even when the resin is cured. However, in the present invention, since the bleed is prevented from entering the detection recess, the thermosetting resin is used. Even so, it is possible to manufacture a substance detection apparatus with high detection accuracy.
 本発明に係る液中物質検出装置の製造方法のまた別の特定の局面では、樹脂層形成工程は、基板の開口の開口方向から視た際に、樹脂層が開口内に位置しないように樹脂層を形成する工程である。この場合、ブリードが検出用凹部内に進入することをより効果的に抑制できるため、検出精度がより高い液中物質検出装置を製造することができる。 In another specific aspect of the method for manufacturing a submerged substance detection device according to the present invention, the resin layer forming step is performed so that the resin layer is not positioned in the opening when viewed from the opening direction of the opening of the substrate. It is a process of forming a layer. In this case, since it can suppress more effectively that a bleed enters in the recessed part for a detection, the submerged substance detection apparatus with a higher detection precision can be manufactured.
 本発明に係る液中物質検出装置の製造方法のさらにまた他の特定の局面では、親水化工程は、検出用凹部の表面にプラズマ処理またはUV処理を施すことにより行う。 In yet another specific aspect of the method for manufacturing a submerged substance detection device according to the present invention, the hydrophilization step is performed by performing plasma treatment or UV treatment on the surface of the detection recess.
 本発明に係る液中物質検出装置は、基板と、弾性表面波素子と、樹脂層とを備えている。基板には、開口が形成されている。弾性表面波素子は、圧電基板と、IDT電極とを有する。IDT電極は、圧電基板上に形成されている。IDT電極は、センシング部を構成している。弾性表面波素子は、基板の開口にセンシング部が臨むように基板上に実装されている。樹脂層は、基板と弾性表面波素子との間において、センシング部の外側に形成されている。基板の開口と、樹脂層とによって被検出液が溜められる検出用凹部が形成されている。検出用凹部の壁面は、親水性である。本発明に係る液中物質検出装置は、疎水層をさらに備えている。疎水層は、基板の弾性表面波素子側の表面の樹脂層よりも検出用凹部側に位置している部分と、弾性表面波素子の基板側の表面の樹脂層よりも検出用凹部側に位置している部分とのうちの少なくとも一方の上に形成されている。 The submerged substance detection device according to the present invention includes a substrate, a surface acoustic wave element, and a resin layer. An opening is formed in the substrate. The surface acoustic wave element has a piezoelectric substrate and an IDT electrode. The IDT electrode is formed on the piezoelectric substrate. The IDT electrode constitutes a sensing unit. The surface acoustic wave element is mounted on the substrate so that the sensing unit faces the opening of the substrate. The resin layer is formed outside the sensing unit between the substrate and the surface acoustic wave element. A detection recess for storing a liquid to be detected is formed by the opening of the substrate and the resin layer. The wall surface of the detection recess is hydrophilic. The submerged substance detection device according to the present invention further includes a hydrophobic layer. The hydrophobic layer is positioned closer to the detection recess than the resin layer on the surface of the substrate on the surface acoustic wave element side, and positioned closer to the detection recess than the resin layer on the substrate side of the surface acoustic wave element. It is formed on at least one of the portions.
 本発明に係る液中物質検出装置のある特定の局面では、疎水層は、少なくとも、基板の弾性表面波素子側の表面の樹脂層よりも検出用凹部側に位置している部分の上に形成されている。 In a specific aspect of the in-liquid substance detection device according to the present invention, the hydrophobic layer is formed on at least a portion located on the detection recess side of the resin layer on the surface of the substrate on the surface acoustic wave element side. Has been.
 本発明に係る液中物質検出装置の他の特定の局面では、疎水層は、基板の弾性表面波素子側の表面の樹脂層よりも検出用凹部側に位置している部分と、弾性表面波素子の基板側の表面の樹脂層よりも検出用凹部側に位置している部分との両方の上に形成されている。 In another specific aspect of the in-liquid substance detection device according to the present invention, the hydrophobic layer includes a portion located on the detection recess side of the resin layer on the surface of the substrate on the surface acoustic wave element side, and a surface acoustic wave. It is formed on both the resin layer on the substrate side surface of the element and the portion located on the detection recess side.
 本発明に係る液中物質検出装置の別の特定の局面では、疎水層は、検出用凹部を包囲するように環状に形成されている。 In another specific aspect of the in-liquid substance detection device according to the present invention, the hydrophobic layer is formed in an annular shape so as to surround the detection recess.
 本発明に係る液中物質検出装置のさらに他の特定の局面では、樹脂層は、検出用凹部を包囲するように環状に形成されている。 In yet another specific aspect of the in-liquid substance detection device according to the present invention, the resin layer is formed in an annular shape so as to surround the detection recess.
 本発明に係る液中物質検出装置のさらに別の特定の局面では、疎水層と樹脂層とは、検出用凹部を包囲するように同心円状に形成されている。 In yet another specific aspect of the in-liquid substance detection device according to the present invention, the hydrophobic layer and the resin layer are formed concentrically so as to surround the detection recess.
 本発明に係る液中物質検出装置のまたさらに他の特定の局面では、基板と弾性表面波素子との間の隙間の間隔は、疎水層による撥水力によって、当該隙間のうちの疎水層が形成されている部分に、検出用凹部に供給される被検出液が進入することが抑制される距離である。 In still another specific aspect of the in-liquid substance detection device according to the present invention, the gap between the substrate and the surface acoustic wave element is formed by the hydrophobic layer of the gap due to the water repellency of the hydrophobic layer. This is the distance at which the liquid to be detected supplied to the detection concave portion is prevented from entering the portion where the detection is performed.
 本発明に係る液中物質検出装置のまたさらに別の特定の局面では、疎水層が形成されている領域における基板と弾性表面波素子との間の隙間の間隔は、100μm以下である。 In yet another specific aspect of the in-liquid substance detection device according to the present invention, the gap between the substrate and the surface acoustic wave element in the region where the hydrophobic layer is formed is 100 μm or less.
 本発明に係る液中物質検出装置のさらにまた他の特定の局面では、液中物質検出装置は、樹脂層よりも検出用凹部側に位置する部分において、基板から弾性表面波素子に至るように形成されている壁部をさらに備えている。 In still another specific aspect of the submerged substance detection device according to the present invention, the submerged substance detection device is arranged so as to reach the surface acoustic wave element from the substrate in a portion located on the detection recess side of the resin layer. A wall portion formed is further provided.
 本発明に係る液中物質検出装置の製造方法では、基板の開口の内面が疎水性である状態で樹脂層の形成を行うため、樹脂層から発生したブリードが検出用凹部に進入することが抑制される。従って、本発明の製造方法によれば、高い精度で安定して物質の検出が可能な液中物質検出装置を製造することができる。 In the method for manufacturing a submerged substance detection device according to the present invention, since the resin layer is formed in a state where the inner surface of the opening of the substrate is hydrophobic, it is possible to prevent the bleed generated from the resin layer from entering the detection recess. Is done. Therefore, according to the manufacturing method of the present invention, it is possible to manufacture an in-liquid substance detection device capable of detecting a substance with high accuracy and stability.
 本発明に係る液中物質検出装置は、基板の弾性表面波素子側の表面の樹脂層よりも検出用凹部側に位置している部分と、弾性表面波素子の基板側の表面の樹脂層よりも検出用凹部側に位置している部分とのうちの少なくとも一方の上に形成されている疎水層を備えている。このため、疎水層の撥水力により、被検出液が樹脂層に到達することが効果的に抑制されている。このため、検出時におけるブリードの溶出に起因する検出精度の低下を効果的に抑制することができる。また、検出用凹部の壁面は、親水性であるため、被検出液の出し入れや置換を安定して行うことができる。 The submerged substance detection device according to the present invention includes a portion located on the detection recess side of the surface of the surface acoustic wave element side of the substrate and a resin layer on the surface of the surface acoustic wave element on the substrate side. Is also provided with a hydrophobic layer formed on at least one of the portions located on the detection recess side. For this reason, the liquid to be detected reaches the resin layer effectively by the water repellency of the hydrophobic layer. For this reason, the fall of the detection accuracy resulting from the elution of the bleed at the time of a detection can be suppressed effectively. In addition, since the wall surface of the detection recess is hydrophilic, the detection liquid can be stably taken in and out and replaced.
図1は、第1の実施形態の液中物質検出装置の略図的平面図である。FIG. 1 is a schematic plan view of the submerged substance detection device according to the first embodiment. 図2は、図1のII-II線における略図的断面図である。FIG. 2 is a schematic cross-sectional view taken along the line II-II in FIG. 図3は、図2のIII-III線における略図的断面図である。FIG. 3 is a schematic cross-sectional view taken along line III-III in FIG. 図4は、図1のVI-VI線における略図的断面図である。4 is a schematic cross-sectional view taken along line VI-VI in FIG. 図5は、基板の略図的平面図である。FIG. 5 is a schematic plan view of the substrate. 図6は、センシング部の略図的構成図である。FIG. 6 is a schematic configuration diagram of the sensing unit. 図7は、第1の実施形態における液中物質検出装置の製造工程を表すフローチャートである。FIG. 7 is a flowchart showing a manufacturing process of the submerged substance detection device according to the first embodiment. 図8は、疎水化処理工程を表す略図的断面図である。FIG. 8 is a schematic cross-sectional view showing the hydrophobization process. 図9は、第2の実施形態の液中物質検出装置の略図的断面図である。FIG. 9 is a schematic cross-sectional view of the in-liquid substance detection device of the second embodiment. 図10は、第2の実施形態における液中物質検出装置の製造工程を表すフローチャートである。FIG. 10 is a flowchart showing a manufacturing process of the submerged substance detection device according to the second embodiment. 図11は、第3の実施形態の液中物質検出装置の略図的断面図である。FIG. 11 is a schematic cross-sectional view of the in-liquid substance detection device of the third embodiment. 図12は、実施例における周波数変化量を表すグラフである。FIG. 12 is a graph showing the amount of frequency change in the example. 図13は、比較例における周波数変化量を表すグラフである。FIG. 13 is a graph showing the frequency change amount in the comparative example. 図14は、変形例におけるセンシング部の略図的構成図である。FIG. 14 is a schematic configuration diagram of a sensing unit in a modified example. 図15は、特許文献1に記載されている液中物質検出装置の要部を拡大した部分切欠拡大正面断面図である。FIG. 15 is a partially cutaway enlarged front cross-sectional view in which a main part of the in-liquid substance detection device described in Patent Document 1 is enlarged. 図16は、第4の実施形態の液中物質検出装置の略図的断面図である。FIG. 16 is a schematic cross-sectional view of the submerged substance detection device of the fourth embodiment. 図17は、第5の実施形態の液中物質検出装置の略図的断面図である。FIG. 17 is a schematic cross-sectional view of the in-liquid substance detection device of the fifth embodiment. 図18は、第6の実施形態の液中物質検出装置の略図的断面図である。FIG. 18 is a schematic cross-sectional view of the in-liquid substance detection device of the sixth embodiment. 図19は、第7の実施形態の液中物質検出装置の略図的平面図である。FIG. 19 is a schematic plan view of the in-liquid substance detection device of the seventh embodiment. 図20は、第8の実施形態の液中物質検出装置の略図的平面図である。FIG. 20 is a schematic plan view of the submerged substance detection device according to the eighth embodiment. 図21は、第9の実施形態の液中物質検出装置の略図的平面図である。FIG. 21 is a schematic plan view of the submerged substance detection device of the ninth embodiment.
 以下、本発明を実施した好ましい形態の一例について説明する。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described.
 (第1の実施形態)
 図1は、本実施形態の液中物質検出装置1の略図的平面図であり、図2~4は、液中物質検出装置1の略図的断面図である。なお、本明細書において用いる図では、描画の便宜上、IDT電極やグレーティング反射器などの複雑な構造を模式簡略化して記載している。例えば、図1などにおいては、IDT電極を2本の対角線が引かれた矩形により表現している。また、図1などにおいては、反射器の描画を適宜省略している。図2などにおいては、電極指の本数を実際よりも少なく記載している。
(First embodiment)
FIG. 1 is a schematic plan view of a submerged substance detection device 1 of the present embodiment, and FIGS. 2 to 4 are schematic cross-sectional views of the submerged substance detection device 1. In the drawings used in this specification, for convenience of drawing, complicated structures such as IDT electrodes and grating reflectors are schematically illustrated. For example, in FIG. 1 and the like, the IDT electrode is represented by a rectangle with two diagonal lines drawn. Moreover, in FIG. 1 etc., the drawing of a reflector is abbreviate | omitted suitably. In FIG. 2 and the like, the number of electrode fingers is smaller than the actual number.
 液中物質検出装置1は、液体中に存在する物質を検出するための装置である。液中物質検出装置1を用いることにより、液体中に存在する物質の濃度を測定することができる。なお、被検出液には、水溶液やコロイドなどが分散した分散系溶液などが例示される。 The in-liquid substance detection device 1 is an apparatus for detecting a substance present in the liquid. By using the in-liquid substance detection device 1, the concentration of the substance present in the liquid can be measured. Examples of the liquid to be detected include a dispersion solution in which an aqueous solution or a colloid is dispersed.
 図1及び図2に示すように、液中物質検出装置1は、弾性表面波素子(SAW素子)10と、基板30とを備えている。図2に示すように、弾性表面波素子10は、圧電基板11を備えている。圧電基板11は、特に限定されないが、例えば、LiNbO基板や、LiTaO基板などの圧電単結晶基板や圧電セラミック基板などにより構成することができる。 As shown in FIGS. 1 and 2, the submerged substance detection device 1 includes a surface acoustic wave element (SAW element) 10 and a substrate 30. As shown in FIG. 2, the surface acoustic wave element 10 includes a piezoelectric substrate 11. The piezoelectric substrate 11 is not particularly limited. For example, the piezoelectric substrate 11 can be configured by a piezoelectric single crystal substrate such as a LiNbO 3 substrate or a LiTaO 3 substrate, a piezoelectric ceramic substrate, or the like.
 圧電基板11の上には、第1及び第2のIDT電極12,15が形成されている。これら第1及び第2のIDT電極12,15のそれぞれにより、液体中の物質を検出する第1及び第2のセンシング部18,19が構成されている。 First and second IDT electrodes 12 and 15 are formed on the piezoelectric substrate 11. The first and second IDT electrodes 12 and 15 constitute first and second sensing units 18 and 19 that detect substances in the liquid, respectively.
 図6に示すように、第1のIDT電極12は、互いに間挿し合う二対のくし歯電極12a、12b、12c、12dを有する。くし歯電極12aは、第1の入出力ポート12eに接続されている。同様に、くし歯電極12cは第2の入出力ポート12gに、くし歯電極12bはグラウンドポート12fに接続されている。くし歯電極12dはグラウンドポート12hに接続されている。第1のIDT電極12が設けられた領域の弾性波伝搬方向の両側には、グレーティング反射器13,14が配置されている。 As shown in FIG. 6, the first IDT electrode 12 has two pairs of comb electrodes 12a, 12b, 12c, and 12d that are interleaved with each other. The comb electrode 12a is connected to the first input / output port 12e. Similarly, the comb electrode 12c is connected to the second input / output port 12g, and the comb electrode 12b is connected to the ground port 12f. The comb electrode 12d is connected to the ground port 12h. Grating reflectors 13 and 14 are disposed on both sides in the elastic wave propagation direction of the region where the first IDT electrode 12 is provided.
 また、第2のIDT電極15も、第1のIDT電極12と同様に、互いに間挿し合う二対のくし歯電極15a、15b、15c、15dを有する。くし歯電極15bは、第1の入出力ポート15fに接続されている。同様に、くし歯電極15dは第2の入出力ポート15hに、くし歯電極15aはグラウンドポート15eに接続されている。くし歯電極15cはグラウンドポート15gに接続されている。第2のIDT電極15が設けられた領域の弾性波伝搬方向の両側には、グレーティング反射器16,17が配置されている。 The second IDT electrode 15 also has two pairs of comb electrodes 15a, 15b, 15c, and 15d that are inserted into each other in the same manner as the first IDT electrode 12. The comb electrode 15b is connected to the first input / output port 15f. Similarly, the comb electrode 15d is connected to the second input / output port 15h, and the comb electrode 15a is connected to the ground port 15e. The comb electrode 15c is connected to the ground port 15g. Grating reflectors 16 and 17 are disposed on both sides of the region where the second IDT electrode 15 is provided in the elastic wave propagation direction.
 また、本実施形態では、図1に示すように、圧電基板10上には、バンプ電極21a、21b、21c、21d、22a、22b、22c、22dが形成されている。これらバンプ電極のうち、バンプ電極21c、21d、22c、22dがグラウンド電極に接続されるバンプ電極であり、バンプ電極21a、21b、22a、22bが、入出力ポートに接続されるバンプ電極である。具体的には、バンプ電極21aが第1の入出力ポート12eに接続されている。バンプ電極21bが第2の入出力ポート12gに接続されている。バンプ電極21cがグラウンドポート12fに接続されている。バンプ電極21dがグラウンドポート12hに接続されている。バンプ電極22aが第1の入出力ポート15fに接続されている。バンプ電極22bが第2の入出力ポート15hに接続されている。バンプ電極22cがグラウンドポート15eに接続されている。バンプ電極22dがグラウンドポート15gに接続されている。 In the present embodiment, as shown in FIG. 1, bump electrodes 21a, 21b, 21c, 21d, 22a, 22b, 22c, and 22d are formed on the piezoelectric substrate 10. Among these bump electrodes, bump electrodes 21c, 21d, 22c, and 22d are bump electrodes that are connected to the ground electrode, and bump electrodes 21a, 21b, 22a, and 22b are bump electrodes that are connected to the input / output ports. Specifically, the bump electrode 21a is connected to the first input / output port 12e. The bump electrode 21b is connected to the second input / output port 12g. The bump electrode 21c is connected to the ground port 12f. The bump electrode 21d is connected to the ground port 12h. The bump electrode 22a is connected to the first input / output port 15f. The bump electrode 22b is connected to the second input / output port 15h. The bump electrode 22c is connected to the ground port 15e. The bump electrode 22d is connected to the ground port 15g.
 なお、本実施形態では、第1及び第2のIDT電極が、互いに間挿し合う二対のくし歯電極によって形成されている例について説明するが、例えば、図14に示すように、第1及び第2のIDT電極が互いに間挿し合う一対のくし歯電極によって形成されていてもよい。この場合、二対のくし歯電極を形成する場合に比べ、弾性表面波素子10に接続される回路とのインピーダンス整合が難しくなる傾向があるが、液中物質検出装置1をより簡単な構成で実現することができるため、装置を小型化することがより容易となる。 In the present embodiment, an example in which the first and second IDT electrodes are formed by two pairs of interdigital electrodes interleaved with each other will be described. For example, as shown in FIG. The second IDT electrode may be formed by a pair of comb electrodes interleaved with each other. In this case, impedance matching with the circuit connected to the surface acoustic wave element 10 tends to be difficult as compared with the case where two pairs of comb-tooth electrodes are formed, but the submerged substance detection device 1 has a simpler configuration. Since this can be realized, it is easier to reduce the size of the apparatus.
 図4に代表的に示すように、バンプ電極21a、21b、21c、21d、22a、22b、22c、22dのそれぞれは、後述する保護膜20から露出しており、保護膜20の表面よりも高い位置まで突出している。 As representatively shown in FIG. 4, each of the bump electrodes 21 a, 21 b, 21 c, 21 d, 22 a, 22 b, 22 c, 22 d is exposed from the protective film 20 described later and is higher than the surface of the protective film 20. Projects to the position.
 なお、第1及び第2のIDT電極12,15、グレーティング反射器13,14,16,17並びにバンプ電極21a、21b、21c、21d、22a、22b、22c、22dのそれぞれは、例えば、Ag、Au、Pd、Pt、Al、Cu、Ti等の金属や、Ag-Pd等の合金などの適宜の導電材料により形成することができる。また、第1及び第2のIDT電極12,15、グレーティング反射器13,14,16,17並びにバンプ電極21a、21b、21c、21d、22a、22b、22c、22dのそれぞれは、複数の導電層が積層された導電層積層体により構成されていてもよい。 Each of the first and second IDT electrodes 12 and 15, grating reflectors 13, 14, 16, 17 and bump electrodes 21a, 21b, 21c, 21d, 22a, 22b, 22c, and 22d is, for example, Ag, It can be formed of an appropriate conductive material such as a metal such as Au, Pd, Pt, Al, Cu, and Ti, or an alloy such as Ag—Pd. Each of the first and second IDT electrodes 12, 15, grating reflectors 13, 14, 16, 17, and bump electrodes 21a, 21b, 21c, 21d, 22a, 22b, 22c, 22d includes a plurality of conductive layers. May be constituted by a conductive layer laminate in which is laminated.
 図2に示すように、圧電基板10の上には、保護膜20が形成されている。この保護膜20により、第1及び第2のIDT電極12,15並びにグレーティング反射器13,14,16,17が覆われている。保護膜20は、第1及び第2のIDT電極12,15並びにグレーティング反射器13,14,16,17を液体や、ゴミ等から保護するための層である。保護膜20は、SiOなどの酸化珪素や、SiNなどの窒化珪素等の絶縁材料により形成することができる。 As shown in FIG. 2, a protective film 20 is formed on the piezoelectric substrate 10. The protective film 20 covers the first and second IDT electrodes 12 and 15 and the grating reflectors 13, 14, 16 and 17. The protective film 20 is a layer for protecting the first and second IDT electrodes 12 and 15 and the grating reflectors 13, 14, 16, and 17 from liquids, dust, and the like. The protective film 20 can be formed of an insulating material such as silicon oxide such as SiO 2 or silicon nitride such as SiN.
 なお、保護膜20の上に、センシング部18,19を覆う反応膜及び吸着膜のうちの少なくとも一方を形成してもよい。なお、反応膜とは、液体中の物質と反応する膜である。また、吸着膜は、液体中の物質を吸着する膜である。 Note that at least one of a reaction film and an adsorption film that covers the sensing units 18 and 19 may be formed on the protective film 20. A reaction film is a film that reacts with a substance in a liquid. Further, the adsorption film is a film that adsorbs a substance in the liquid.
 図2に示すように、弾性表面波素子10の上には、基板30が配置されている。この基板30は、検出対象となる液体をセンシング部18,19の上部に溜めておくための検出用の凹部を形成するためのものである。具体的には、図1及び図2に示すように、基板30には、第1及び第2の開口30a、30bが形成されている。これら開口30a、30bは、センシング部18,19よりも大きく形成されている。図2に示すように、弾性表面波素子10は、基板30の開口30a、30bがセンシング部18,19に臨むように基板30上に実装されている。 As shown in FIG. 2, a substrate 30 is disposed on the surface acoustic wave element 10. This substrate 30 is for forming a detection recess for storing the liquid to be detected on the upper portions of the sensing units 18 and 19. Specifically, as shown in FIGS. 1 and 2, the substrate 30 is formed with first and second openings 30a and 30b. These openings 30 a and 30 b are formed larger than the sensing portions 18 and 19. As shown in FIG. 2, the surface acoustic wave element 10 is mounted on the substrate 30 so that the openings 30 a and 30 b of the substrate 30 face the sensing units 18 and 19.
 基板30は、弾性表面波素子10を支持することができる剛性を有している基板であれば特に限定されない。基板30は、無機材料からなる基板であってもよいし、有機材料からなる基板であってもよいし、無機材料と有機材料との両方を含む基板であってもよい。基板30は、例えば、ガラスエポキシ基板、ガラス基板、セラミック基板、樹脂基板などにより構成することができる。また、基板30は、フィルムにより構成されていてもよい。 The substrate 30 is not particularly limited as long as the substrate 30 has rigidity capable of supporting the surface acoustic wave element 10. The substrate 30 may be a substrate made of an inorganic material, a substrate made of an organic material, or a substrate containing both an inorganic material and an organic material. The substrate 30 can be composed of, for example, a glass epoxy substrate, a glass substrate, a ceramic substrate, a resin substrate, or the like. Moreover, the board | substrate 30 may be comprised with the film.
 なお、ガラスエポキシ基板とは、ガラス繊維を布状に編んだガラス織布にエポキシ樹脂を滲みこませることにより形成した基板である。 The glass epoxy substrate is a substrate formed by immersing an epoxy resin in a glass woven fabric in which glass fibers are knitted into a cloth shape.
 図2及び図5に示すように、基板30には、導電層31が形成されている。図2に示すように、導電層31は、基板30の弾性表面波素子10側の表面30cのみならず、第1及び第2の開口30a、30bの内面並びに、基板30の弾性表面波素子10側とは反対側の裏面30dを覆っている。これにより、基板30の腐食による劣化が抑制されている。例えば、導電層31に、Au層等の耐腐食性に優れた層が存在する場合は、基板30の腐食による劣化をより効果的に抑制することができる。 2 and 5, a conductive layer 31 is formed on the substrate 30. As shown in FIG. As shown in FIG. 2, the conductive layer 31 includes not only the surface 30 c of the substrate 30 on the surface acoustic wave element 10 side, but also the inner surfaces of the first and second openings 30 a and 30 b and the surface acoustic wave element 10 of the substrate 30. The back surface 30d opposite to the side is covered. Thereby, the deterioration by the corrosion of the board | substrate 30 is suppressed. For example, when the conductive layer 31 includes a layer having excellent corrosion resistance such as an Au layer, deterioration of the substrate 30 due to corrosion can be more effectively suppressed.
 なお、基板30の腐食による劣化は、液体と接触する第1及び第2の開口30a、30bの内面において特に進行しやすいため、基板30の裏面30d並びに第1及び第2の開口30a、30bの内面のうち、特に第1及び第2の開口30a、30bの内面に導電層31を形成しておくことが好ましい。 Note that deterioration due to corrosion of the substrate 30 is particularly likely to proceed on the inner surfaces of the first and second openings 30a and 30b that are in contact with the liquid, and therefore, the back surface 30d of the substrate 30 and the first and second openings 30a and 30b are not affected. It is preferable to form the conductive layer 31 on the inner surfaces, particularly on the inner surfaces of the first and second openings 30a and 30b.
 図5に示すように、導電層31の表面30c上に位置する部分は、グラウンド電極31aと、第1~第4の電極ランド31b~31eとを構成している。弾性表面波素子10は、バンプ電極21aが第1の電極ランド31bに接続され、バンプ電極21bが第2の電極ランド31cに接続され、バンプ電極22aが第3の電極ランド31dに接続され、バンプ電極22bが第4の電極ランド31eに接続され、バンプ電極21c、21d、22c、22dのそれぞれがグラウンド電極31aに接続されるように、基板30上に実装されている。 As shown in FIG. 5, the portion located on the surface 30c of the conductive layer 31 constitutes a ground electrode 31a and first to fourth electrode lands 31b to 31e. In the surface acoustic wave element 10, the bump electrode 21a is connected to the first electrode land 31b, the bump electrode 21b is connected to the second electrode land 31c, and the bump electrode 22a is connected to the third electrode land 31d. The electrode 22b is connected to the fourth electrode land 31e, and the bump electrodes 21c, 21d, 22c, and 22d are mounted on the substrate 30 so as to be connected to the ground electrode 31a.
 また、図2に示すように、基板30と弾性表面波素子10との間には、樹脂層40が配置されている。この樹脂層40は、基板30の表面30cと、弾性表面波素子10の表面とに接続されている。詳細には、樹脂層40は、基板30と弾性表面波素子10とを接着している。そして、樹脂層40は、センシング部18,19を囲うように形成されている。すなわち、本実施形態では、樹脂層40は、センシング部18,19の上以外の部分に形成されている。この樹脂層40と、基板30に形成されている第1及び第2の開口30a、30bによって、第1及び第2の検出用凹部32,33が形成されている。 Further, as shown in FIG. 2, a resin layer 40 is disposed between the substrate 30 and the surface acoustic wave element 10. The resin layer 40 is connected to the surface 30 c of the substrate 30 and the surface of the surface acoustic wave element 10. Specifically, the resin layer 40 bonds the substrate 30 and the surface acoustic wave element 10 together. The resin layer 40 is formed so as to surround the sensing units 18 and 19. That is, in the present embodiment, the resin layer 40 is formed in a portion other than the top of the sensing units 18 and 19. The resin layer 40 and the first and second openings 30 a and 30 b formed in the substrate 30 form first and second detection recesses 32 and 33.
 より詳細には、樹脂層40は、図2に示すように、基板30の開口30a、30bの開口方向xから視た際に、開口30a、30b内に位置しないように形成されている。すなわち、樹脂層40の端部は、開口30a、30bよりも外側に位置している。 More specifically, as shown in FIG. 2, the resin layer 40 is formed so as not to be positioned in the openings 30 a and 30 b when viewed from the opening direction x of the openings 30 a and 30 b of the substrate 30. That is, the edge part of the resin layer 40 is located outside the openings 30a and 30b.
 なお、樹脂層40は、基板30と弾性表面波素子10とを接着することができ、かつ、検出用凹部32,33に供給される液体に対する耐久性がある程度以上あるものである限りにおいて特に限定されない。樹脂層40は、例えば、熱可塑性樹脂であってもよいし、エネルギー線により硬化するエネルギー線硬化性樹脂であってもよい。ここで、エネルギー線には、熱線や光線が含まれる。すなわち、エネルギー線硬化性樹脂には、熱硬化性樹脂や光硬化性樹脂などが含まれる。より具体的には、樹脂層40は、例えば、エポキシ系樹脂やポリイミド系樹脂などにより形成することができる。 The resin layer 40 is particularly limited as long as it can adhere the substrate 30 and the surface acoustic wave element 10 and has a certain degree of durability against the liquid supplied to the detection recesses 32 and 33. Not. The resin layer 40 may be, for example, a thermoplastic resin or an energy ray curable resin that is cured by energy rays. Here, the energy rays include heat rays and light rays. That is, the energy ray curable resin includes a thermosetting resin, a photocurable resin, and the like. More specifically, the resin layer 40 can be formed of, for example, an epoxy resin or a polyimide resin.
 次に、液中物質検出装置1の製造工程について、主として図7を参照しながら詳細に説明する。 Next, the manufacturing process of the in-liquid substance detection device 1 will be described in detail with reference mainly to FIG.
 まず、図7に示すように、ステップS1において、弾性表面波素子10及び基板30を用意する。 First, as shown in FIG. 7, a surface acoustic wave element 10 and a substrate 30 are prepared in step S1.
 次に、ステップS2において弾性表面波素子10を基板30にフリップチップ実装することにより、グラウンド電極31a及び第1~第4の電極ランド31b~31eと、バンプ電極21a、21b、22a、22b、21c、21d、22c、22dとを接続する。なお、弾性表面波素子10の基板30に対する実装は、フリップチップ実装に限定されず、例えば、フリップチップ実装以外の実装方法により弾性表面波素子10を基板30に実装してもよい。 Next, in step S2, the surface acoustic wave element 10 is flip-chip mounted on the substrate 30, whereby the ground electrode 31a, the first to fourth electrode lands 31b to 31e, and the bump electrodes 21a, 21b, 22a, 22b, 21c. , 21d, 22c, and 22d. Note that the mounting of the surface acoustic wave element 10 on the substrate 30 is not limited to flip chip mounting. For example, the surface acoustic wave element 10 may be mounted on the substrate 30 by a mounting method other than flip chip mounting.
 次に、ステップS3において、疎水化処理を行う。詳細には、少なくとも第1及び第2の開口30a、30bの内面に疎水化処理を行う。具体的には、本実施形態では、第1及び第2の開口30a、30bと、基板30の表面30cの第1及び第2の開口30a、30bの近傍に位置する部分と、第1及び第2のセンシング部18,19の表面に疎水化処理を行う。 Next, in step S3, a hydrophobic treatment is performed. Specifically, at least the inner surfaces of the first and second openings 30a and 30b are subjected to a hydrophobic treatment. Specifically, in the present embodiment, the first and second openings 30a and 30b, the portion of the surface 30c of the substrate 30 located near the first and second openings 30a and 30b, and the first and second openings The surface of the two sensing units 18 and 19 is subjected to a hydrophobic treatment.
 疎水化処理の方法は、特に限定されず、例えば、疎水化処理剤を表面上に塗布することにより疎水化処理を行うことができる。具体的には、本実施形態では、図8に示すように、ノズル41を開口30a、30b内に装入し、ノズル41から疎水化処理剤を吐出することにより、表面に疎水化処理剤を塗布する。その後、洗浄液により表面を洗浄し、乾燥させることにより、疎水化処理を完了する。なお、疎水化処理剤の具体例としては、例えば、ノンブリードN-11、ノンブリードN-31などのブリード防止剤などが挙げられる。 The method of the hydrophobic treatment is not particularly limited, and for example, the hydrophobic treatment can be performed by applying a hydrophobic treatment agent on the surface. Specifically, in this embodiment, as shown in FIG. 8, the nozzle 41 is inserted into the openings 30a and 30b, and the hydrophobic treatment agent is discharged from the nozzle 41, whereby the hydrophobic treatment agent is applied to the surface. Apply. Thereafter, the surface is washed with a washing liquid and dried to complete the hydrophobization treatment. Specific examples of the hydrophobizing agent include bleed inhibitors such as non-bleed N-11 and non-bleed N-31.
 すなわち、ステップS1~S3(用意工程)において、少なくとも開口30a、30bの内面が疎水性である基板30上に弾性表面波素子10が実装された実装構造42(図7を参照)を用意する。 That is, in steps S1 to S3 (preparation step), a mounting structure 42 (see FIG. 7) is prepared in which the surface acoustic wave element 10 is mounted on the substrate 30 in which at least the inner surfaces of the openings 30a and 30b are hydrophobic.
 次に、図7に示すステップS4(樹脂層形成工程)において、樹脂層40を形成し、検出用凹部32,33を形成する。具体的には、ノズルを基板30と弾性表面波素子10との間にセットし、そのノズルから封止樹脂(アンダーフィル)を吐出する。吐出された樹脂は、毛細管現象により隙間の奥へと進入していく。その後、樹脂を硬化させることにより樹脂層40を形成する。樹脂の硬化は、例えば、樹脂が熱硬化性樹脂である場合は熱を、光硬化性樹脂である場合は光を供給することにより行う。 Next, in step S4 (resin layer forming step) shown in FIG. 7, the resin layer 40 is formed, and the detection recesses 32 and 33 are formed. Specifically, a nozzle is set between the substrate 30 and the surface acoustic wave element 10, and sealing resin (underfill) is discharged from the nozzle. The discharged resin enters the back of the gap by capillary action. Thereafter, the resin layer 40 is formed by curing the resin. The resin is cured by, for example, supplying heat when the resin is a thermosetting resin and supplying light when the resin is a photocurable resin.
 なお、ノズルを基板30と弾性表面波素子10との間の隙間への樹脂の注入は、開口30a、30bの開口方向から視た際に、樹脂が開口30a、30b内に位置しないように行うことが好ましい。すなわち、開口30a、30bの開口方向から視た際に、樹脂層40が開口30a、30b内に位置しないように、樹脂層40を形成することが好ましい。 The injection of the resin into the gap between the substrate 30 and the surface acoustic wave element 10 is performed so that the resin is not located in the openings 30a and 30b when viewed from the opening direction of the openings 30a and 30b. It is preferable. That is, it is preferable to form the resin layer 40 so that the resin layer 40 is not located in the openings 30a and 30b when viewed from the opening direction of the openings 30a and 30b.
 次に、ステップS5(親水化工程)において、検出用凹部32,33の表面に親水化処理を施す。親水化処理の具体的な方法は特に限定されないが、例えば、アミノシラン等の親水化処理剤を塗布することにより親水化処理を行ってもよい。また、プラズマ処理またはUV処理により親水化処理を行ってもよい。また、UVを照射すると共に、オゾンを照射することにより、疎水化処理剤を除去することによって親水化処理を行ってもよい。このように、親水化処理を行っておくことにより、検出用凹部32,33の液体に対する親和性が向上する。従って、検出精度をより高くすることができる。 Next, in step S5 (hydrophilization step), the surface of the detection recesses 32 and 33 is subjected to a hydrophilic treatment. Although the specific method of a hydrophilic treatment is not specifically limited, For example, you may perform a hydrophilic treatment by apply | coating hydrophilic treatment agents, such as aminosilane. Further, the hydrophilic treatment may be performed by plasma treatment or UV treatment. Moreover, you may perform a hydrophilization process by removing a hydrophobization processing agent by irradiating ozone while irradiating UV. Thus, the affinity for the liquid of the detection concave portions 32 and 33 is improved by performing the hydrophilic treatment. Therefore, the detection accuracy can be further increased.
 以上説明したように、本実施形態では、樹脂層40の形成に先立って第1及び第2の開口30a、30b及びセンシング部18,19の表面に疎水化処理が施される。このため、樹脂の充填時、硬化時などにおいて発生したブリードが、疎水化処理された表面によりはじかれ、検出用凹部32,33内に流入しにくくなる。よって、ブリードがセンシング部18,19に付着しにくくなる。また、検出用凹部32,33内に存在するブリードの量を少なくできるため、検出中に、ブリードが液体中に溶出したり、ブリードが膨潤したりすることによるセンシング部18,19の特性変化や液体の特性変化に起因する測定精度の低下を抑制することができる。従って、高い測定精度で安定して液中物質の検出を行うことができる。 As described above, in the present embodiment, prior to the formation of the resin layer 40, the surfaces of the first and second openings 30a and 30b and the sensing portions 18 and 19 are subjected to a hydrophobic treatment. For this reason, the bleed generated during resin filling or curing is repelled by the hydrophobized surface and hardly flows into the detection recesses 32 and 33. Therefore, the bleed is less likely to adhere to the sensing units 18 and 19. In addition, since the amount of bleed existing in the detection recesses 32 and 33 can be reduced, characteristic changes of the sensing units 18 and 19 due to bleed eluting into the liquid or bleed swell during detection, It is possible to suppress a decrease in measurement accuracy due to a change in liquid characteristics. Therefore, the substance in the liquid can be detected stably with high measurement accuracy.
 また、本実施形態では、開口30a、30b内に樹脂層40が位置していない。従って、ブリードが検出用凹部32,33に進入することがより効果的に抑制することができる。 In this embodiment, the resin layer 40 is not located in the openings 30a and 30b. Therefore, it is possible to more effectively suppress the bleed from entering the detection recesses 32 and 33.
 なお、発生するブリードは、一般的には、樹脂内に含まれる低粘度成分で、典型的には、低分子量成分である。ブリードの具体例としては、硬化剤などの添加剤や未硬化の樹脂などが挙げられる。 Note that the generated bleed is generally a low viscosity component contained in the resin, typically a low molecular weight component. Specific examples of the bleed include additives such as a curing agent and uncured resin.
 なお、上記第1の実施形態では、弾性表面波素子10を基板30に実装した後に、疎水化処理を行う例について説明した。但し、本発明は、これに限定されない。例えば、弾性表面波素子10を基板30に実装する前に、基板30と弾性表面波素子10とのうちの少なくとも基板30に疎水化処理を行ってもよい。 In the first embodiment, the example in which the hydrophobic treatment is performed after the surface acoustic wave element 10 is mounted on the substrate 30 has been described. However, the present invention is not limited to this. For example, before the surface acoustic wave element 10 is mounted on the substrate 30, at least the substrate 30 of the substrate 30 and the surface acoustic wave element 10 may be subjected to a hydrophobic treatment.
 また、基板30を、表面が疎水性を有する基板としてもよい。具体的には、基板30は、疎水性物質を含むものであってもよい。その場合は、疎水化処理を行う必要は必ずしもない。なお、疎水性物質の具体例としては、例えば、ポリテトラフルオロエチレン(PTFE)、フッ素樹脂などが挙げられる。 Further, the substrate 30 may be a substrate having a hydrophobic surface. Specifically, the substrate 30 may include a hydrophobic substance. In that case, it is not always necessary to perform the hydrophobization treatment. Specific examples of the hydrophobic substance include polytetrafluoroethylene (PTFE) and fluororesin.
 上記第1の実施形態では、検出用凹部が複数形成されている例について説明したが、検出用凹部はひとつのみ形成されていてもよい。 In the first embodiment, an example in which a plurality of detection recesses are formed has been described, but only one detection recess may be formed.
 以下、本発明を実施した好ましい形態の他の例について説明する。なお、以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。また、図1及び図4~図6を上記第1の実施形態と共通に参照する。 Hereinafter, other examples of preferred embodiments in which the present invention is implemented will be described. In the following description, members having substantially the same functions as those of the first embodiment are referred to by the same reference numerals, and description thereof is omitted. 1 and 4 to 6 are referred to in common with the first embodiment.
 (第2の実施形態)
 図9に示す本実施形態の液中物質検出装置2は、第1及び第2の壁部43,44を有すること以外は上記第1の実施形態の液中物質検出装置1と実質的に同様の構成を有する。図9に示すように、本実施形態では、圧電基板11の表面には、センシング部18,19を囲うように環状に形成されており、基板30側に向かって延びる第1及び第2の壁部43,44が形成されている。そして、この第1及び第2の壁部43,44よりも外側に樹脂層40が位置している。
(Second Embodiment)
The submerged substance detection device 2 of the present embodiment shown in FIG. 9 is substantially the same as the submerged substance detection device 1 of the first embodiment except that the submerged substance detection device 2 has first and second wall portions 43 and 44. It has the composition of. As shown in FIG. 9, in the present embodiment, the surface of the piezoelectric substrate 11 is formed in an annular shape so as to surround the sensing portions 18 and 19, and the first and second walls extending toward the substrate 30 side. Portions 43 and 44 are formed. The resin layer 40 is located outside the first and second wall portions 43 and 44.
 なお、第1及び第2の壁部43,44の先端は、基板30に達していてもよいし、基板30にまで達していなくてもよい。 Note that the tips of the first and second wall portions 43 and 44 may reach the substrate 30 or may not reach the substrate 30.
 次に、本実施形態の液中物質検出装置2の製造工程について、主として図10を参照しながら説明する。 Next, the manufacturing process of the submerged substance detection device 2 of the present embodiment will be described mainly with reference to FIG.
 まず、図10に示すように、ステップS11において、上述のステップS1と同様に、弾性表面波素子10及び基板30を用意する。 First, as shown in FIG. 10, in step S11, the surface acoustic wave element 10 and the substrate 30 are prepared as in step S1 described above.
 次に、ステップS12において、基板30の疎水化処理を行う。この疎水化処理は、上記第1の実施形態で述べた疎水化処理と同様である。もっとも、基板30に疎水性物質が含まれている場合などにおいては、ステップS12を行う必要は必ずしもない。 Next, in step S12, the substrate 30 is hydrophobized. This hydrophobizing process is the same as the hydrophobizing process described in the first embodiment. However, when the substrate 30 includes a hydrophobic substance, step S12 is not necessarily performed.
 次に、ステップS13において、上記ステップS2と同様に、弾性表面波素子10を基板30に実装する。 Next, in step S13, the surface acoustic wave element 10 is mounted on the substrate 30 as in step S2.
 その後、ステップS14において、上記ステップS4と同様に、樹脂層40を形成する。なお、ステップS14においては、壁部43,44よりも外側に樹脂層40を形成する。すなわち、樹脂が壁部43,44内に進入しないようにする。 Thereafter, in step S14, the resin layer 40 is formed in the same manner as in step S4. In step S <b> 14, the resin layer 40 is formed outside the wall portions 43 and 44. That is, the resin is prevented from entering the walls 43 and 44.
 次に、ステップS15において、上記ステップS5と同様に、親水化処理を行う。 Next, in step S15, a hydrophilic treatment is performed in the same manner as in step S5.
 本実施形態においても、ステップS12において疎水化処理を行うため、ブリードが検出用凹部32,33に進入することを抑制することができる。また、壁部43,44が設けられているため、ブリードが検出用凹部32,33に進入することをより効果的に抑制することができる。従って、ブリードに起因する検出精度の低下をより効果的に抑制することができる。 Also in the present embodiment, since the hydrophobization process is performed in step S12, it is possible to prevent the bleed from entering the detection recesses 32 and 33. Moreover, since the wall parts 43 and 44 are provided, it can suppress more effectively that a bleed enters the recessed parts 32 and 33 for a detection. Therefore, it is possible to more effectively suppress a decrease in detection accuracy due to bleeding.
 なお、本実施形態では、壁部43,44が圧電基板11の上に形成されている例について説明した。但し、本発明は、この構成に限定されず、例えば、壁部43,44を基板30の上に形成してもよい。 In the present embodiment, the example in which the wall portions 43 and 44 are formed on the piezoelectric substrate 11 has been described. However, the present invention is not limited to this configuration. For example, the wall portions 43 and 44 may be formed on the substrate 30.
 (第3の実施形態)
 上記第2の実施形態では、壁部43,44が圧電基板11から、保護膜20を貫通して基板30側に延びている例について説明した。但し、本発明は、この構成に限定されない。例えば、図11に示すように、保護膜20の上に壁部43,44を形成してもよい。
(Third embodiment)
In the second embodiment, the example in which the wall portions 43 and 44 extend from the piezoelectric substrate 11 through the protective film 20 to the substrate 30 side has been described. However, the present invention is not limited to this configuration. For example, as shown in FIG. 11, wall portions 43 and 44 may be formed on the protective film 20.
 (第4の実施形態)
 図16は、第4の実施形態の液中物質検出装置の略図的断面図である。なお、本実施形態において、図6を上記第1の実施形態と共通に参照する。
(Fourth embodiment)
FIG. 16 is a schematic cross-sectional view of the submerged substance detection device of the fourth embodiment. In the present embodiment, FIG. 6 is referred to in common with the first embodiment.
 図16に示す液中物質検出装置4は、被検出液中に存在する物質を検出するための装置である。液中物質検出装置4を用いることにより、被検出液中に存在する物質の濃度を測定することができる。 16 is a device for detecting substances present in the liquid to be detected. By using the in-liquid substance detection device 4, the concentration of the substance present in the liquid to be detected can be measured.
 液中物質検出装置4は、弾性表面波素子(SAW素子)10と、基板30とを備えている。弾性表面波素子10は、圧電基板11を備えている。圧電基板11は、特に限定されないが、例えば、LiNbO基板や、LiTaO基板などの圧電単結晶基板や圧電セラミック基板などにより構成することができる。 The submerged substance detection device 4 includes a surface acoustic wave element (SAW element) 10 and a substrate 30. The surface acoustic wave element 10 includes a piezoelectric substrate 11. The piezoelectric substrate 11 is not particularly limited. For example, the piezoelectric substrate 11 can be configured by a piezoelectric single crystal substrate such as a LiNbO 3 substrate or a LiTaO 3 substrate, a piezoelectric ceramic substrate, or the like.
 圧電基板11の上には、第1及び第2のIDT電極12,15が形成されている。これら第1及び第2のIDT電極12,15のそれぞれにより、液体中の物質を検出する第1及び第2のセンシング部18,19が構成されている。 First and second IDT electrodes 12 and 15 are formed on the piezoelectric substrate 11. The first and second IDT electrodes 12 and 15 constitute first and second sensing units 18 and 19 that detect substances in the liquid, respectively.
 図6に示すように、第1のIDT電極12は、互いに間挿し合う二対のくし歯電極12a、12b、12c、12dを有する。くし歯電極12aは、第1の入出力ポート12eに接続されている。同様に、くし歯電極12cは第2の入出力ポート12gに、くし歯電極12bはグラウンドポート12fに接続されている。くし歯電極12dはグラウンドポート12hに接続されている。第1のIDT電極12が設けられた領域の弾性波伝搬方向の両側には、グレーティング反射器13,14が配置されている。 As shown in FIG. 6, the first IDT electrode 12 has two pairs of comb electrodes 12a, 12b, 12c, and 12d that are interleaved with each other. The comb electrode 12a is connected to the first input / output port 12e. Similarly, the comb electrode 12c is connected to the second input / output port 12g, and the comb electrode 12b is connected to the ground port 12f. The comb electrode 12d is connected to the ground port 12h. Grating reflectors 13 and 14 are disposed on both sides in the elastic wave propagation direction of the region where the first IDT electrode 12 is provided.
 また、第2のIDT電極15も、第1のIDT電極12と同様に、互いに間挿し合う二対のくし歯電極15a、15b、15c、15dを有する。くし歯電極15bは、第1の入出力ポート15fに接続されている。同様に、くし歯電極15dは第2の入出力ポート15hに、くし歯電極15aはグラウンドポート15eに接続されている。くし歯電極15cはグラウンドポート15gに接続されている。第2のIDT電極15が設けられた領域の弾性波伝搬方向の両側には、グレーティング反射器16,17が配置されている。 The second IDT electrode 15 also has two pairs of comb electrodes 15a, 15b, 15c, and 15d that are inserted into each other in the same manner as the first IDT electrode 12. The comb electrode 15b is connected to the first input / output port 15f. Similarly, the comb electrode 15d is connected to the second input / output port 15h, and the comb electrode 15a is connected to the ground port 15e. The comb electrode 15c is connected to the ground port 15g. Grating reflectors 16 and 17 are disposed on both sides of the region where the second IDT electrode 15 is provided in the elastic wave propagation direction.
 なお、本実施形態では、第1及び第2のIDT電極が、互いに間挿し合う二対のくし歯電極によって形成されている例について説明するが、例えば、第1及び第2のIDT電極が互いに間挿し合う一対のくし歯電極によって形成されていてもよい。この場合、二対のくし歯電極を形成する場合に比べ、弾性表面波素子に接続される回路とのインピーダンス整合が難しくなる傾向があるが、液中物質検出装置4をより簡単な構成で実現することができるため、装置を小型化することがより容易となる。 In this embodiment, an example in which the first and second IDT electrodes are formed by two pairs of comb electrodes interleaved with each other will be described. For example, the first and second IDT electrodes are mutually connected. It may be formed by a pair of interdigital electrodes that are interleaved. In this case, impedance matching with a circuit connected to the surface acoustic wave element tends to be difficult compared with the case where two pairs of comb-tooth electrodes are formed, but the submerged substance detection device 4 is realized with a simpler configuration. Therefore, it is easier to reduce the size of the apparatus.
 なお、第1及び第2のIDT電極12,15等の電極は、例えば、Ag、Au、Pd、Pt、Al、Cu、Ti等の金属や、Ag-Pd等の合金などの適宜の導電材料により形成することができる。また、第1及び第2のIDT電極12,15等の電極は、複数の導電層が積層された導電層積層体により構成されていてもよい。 The electrodes such as the first and second IDT electrodes 12 and 15 are made of, for example, an appropriate conductive material such as a metal such as Ag, Au, Pd, Pt, Al, Cu, or Ti, or an alloy such as Ag—Pd. Can be formed. In addition, the electrodes such as the first and second IDT electrodes 12 and 15 may be formed of a conductive layer stack in which a plurality of conductive layers are stacked.
 圧電基板10の上には、保護膜20が形成されている。この保護膜20により、第1及び第2のIDT電極12,15並びにグレーティング反射器13,14,16,17が覆われている。保護膜20は、第1及び第2のIDT電極12,15並びにグレーティング反射器13,14,16,17を液体や、ゴミ等から保護するための層である。保護膜20は、SiOなどの酸化珪素や、SiNなどの窒化珪素等の絶縁材料により形成することができる。 A protective film 20 is formed on the piezoelectric substrate 10. The protective film 20 covers the first and second IDT electrodes 12 and 15 and the grating reflectors 13, 14, 16 and 17. The protective film 20 is a layer for protecting the first and second IDT electrodes 12 and 15 and the grating reflectors 13, 14, 16, and 17 from liquids, dust, and the like. The protective film 20 can be formed of an insulating material such as silicon oxide such as SiO 2 or silicon nitride such as SiN.
 なお、保護膜20の上に、センシング部18,19を覆う反応膜及び吸着膜のうちの少なくとも一方を形成してもよい。なお、反応膜とは、液体中の物質と反応する膜である。また、吸着膜は、液体中の物質を吸着する膜である。 Note that at least one of a reaction film and an adsorption film that covers the sensing units 18 and 19 may be formed on the protective film 20. A reaction film is a film that reacts with a substance in a liquid. Further, the adsorption film is a film that adsorbs a substance in the liquid.
 弾性表面波素子10の上には、基板30が配置されている。この基板30は、検出対象となる液体をセンシング部18,19の上部に溜めておくための検出用の凹部を形成するためのものである。基板30には、第1及び第2の開口30a、30bが形成されている。これら開口30a、30bは、センシング部18,19よりも大きく形成されている。弾性表面波素子10は、基板30の開口30a、30bがセンシング部18,19に臨むように基板30上に実装されている。 A substrate 30 is disposed on the surface acoustic wave element 10. This substrate 30 is for forming a detection recess for storing the liquid to be detected on the upper portions of the sensing units 18 and 19. The substrate 30 has first and second openings 30a and 30b. These openings 30 a and 30 b are formed larger than the sensing portions 18 and 19. The surface acoustic wave element 10 is mounted on the substrate 30 such that the openings 30 a and 30 b of the substrate 30 face the sensing units 18 and 19.
 基板30は、弾性表面波素子10を支持することができる剛性を有している基板であれば特に限定されない。基板30は、無機材料からなる基板であってもよいし、有機材料からなる基板であってもよいし、無機材料と有機材料との両方を含む基板であってもよい。基板30は、例えば、ガラスエポキシ基板、ガラス基板、セラミック基板、樹脂基板などにより構成することができる。また、基板30は、フィルムにより構成されていてもよい。 The substrate 30 is not particularly limited as long as the substrate 30 has rigidity capable of supporting the surface acoustic wave element 10. The substrate 30 may be a substrate made of an inorganic material, a substrate made of an organic material, or a substrate containing both an inorganic material and an organic material. The substrate 30 can be composed of, for example, a glass epoxy substrate, a glass substrate, a ceramic substrate, a resin substrate, or the like. Moreover, the board | substrate 30 may be comprised with the film.
 基板30には、導電層31が形成されている。導電層31は、基板30の弾性表面波素子10側の表面30cのみならず、第1及び第2の開口30a、30bの内面並びに、基板30の弾性表面波素子10側とは反対側の裏面30dを覆っている。これにより、基板30の腐食による劣化が抑制されている。例えば、導電層31に、Au層等の耐腐食性に優れた層が存在する場合は、基板30の腐食による劣化をより効果的に抑制することができる。 A conductive layer 31 is formed on the substrate 30. The conductive layer 31 includes not only the surface 30c of the substrate 30 on the surface acoustic wave element 10 side, but also the inner surfaces of the first and second openings 30a and 30b, and the back surface of the substrate 30 opposite to the surface acoustic wave element 10 side. 30d is covered. Thereby, the deterioration by the corrosion of the board | substrate 30 is suppressed. For example, when the conductive layer 31 includes a layer having excellent corrosion resistance such as an Au layer, deterioration of the substrate 30 due to corrosion can be more effectively suppressed.
 なお、基板30の腐食による劣化は、液体と接触する第1及び第2の開口30a、30bの内面において特に進行しやすいため、基板30の裏面30d並びに第1及び第2の開口30a、30bの内面のうち、特に第1及び第2の開口30a、30bの内面に導電層31を形成しておくことが好ましい。 Note that deterioration due to corrosion of the substrate 30 is particularly likely to proceed on the inner surfaces of the first and second openings 30a and 30b that are in contact with the liquid, and therefore, the back surface 30d of the substrate 30 and the first and second openings 30a and 30b are not affected. It is preferable to form the conductive layer 31 on the inner surfaces, particularly on the inner surfaces of the first and second openings 30a and 30b.
 基板30と弾性表面波素子10との間には、樹脂層40が配置されている。この樹脂層40により、基板30と弾性表面波素子10とが接着されている。 The resin layer 40 is disposed between the substrate 30 and the surface acoustic wave element 10. The substrate 30 and the surface acoustic wave element 10 are bonded by the resin layer 40.
 樹脂層40は、基板30の表面30cと、弾性表面波素子10の表面とに接続されている。すなわち、樹脂層40は、基板30から弾性表面波素子10に至るように形成されている。樹脂層40は、センシング部18,19の外側に形成されている。具体的には、樹脂層40は、センシング部18,19を包囲するように環状に形成されている。この樹脂層40と、基板30に形成されている第1及び第2の開口30a、30bによって、第1及び第2の検出用凹部32,33が形成されている。 The resin layer 40 is connected to the surface 30 c of the substrate 30 and the surface of the surface acoustic wave element 10. That is, the resin layer 40 is formed so as to reach the surface acoustic wave element 10 from the substrate 30. The resin layer 40 is formed outside the sensing units 18 and 19. Specifically, the resin layer 40 is formed in an annular shape so as to surround the sensing units 18 and 19. The resin layer 40 and the first and second openings 30 a and 30 b formed in the substrate 30 form first and second detection recesses 32 and 33.
 なお、本実施形態においては、樹脂層40は、開口30a、30bの端面から後退した位置に設けられている。すなわち、樹脂層40は、基板30の開口30a、30bの開口方向xから視た際に、開口30a、30b内に位置しないように形成されている。このため、基板30の表面30cの開口30a、30b周辺部の上には樹脂層40が形成されていない。 In the present embodiment, the resin layer 40 is provided at a position retracted from the end surfaces of the openings 30a and 30b. That is, the resin layer 40 is formed so as not to be positioned in the openings 30a and 30b when viewed from the opening direction x of the openings 30a and 30b of the substrate 30. For this reason, the resin layer 40 is not formed on the periphery of the openings 30a and 30b of the surface 30c of the substrate 30.
 なお、樹脂層40は、基板30と弾性表面波素子10とを接着することができ、かつ、検出用凹部32,33に供給される液体に対する耐久性がある程度以上あるものである限りにおいて特に限定されない。樹脂層40は、例えば、熱可塑性樹脂であってもよいし、エネルギー線により硬化するエネルギー線硬化性樹脂であってもよい。ここで、エネルギー線には、熱線や光線が含まれる。すなわち、エネルギー線硬化性樹脂には、熱硬化性樹脂や光硬化性樹脂などが含まれる。より具体的には、樹脂層40は、例えば、エポキシ系樹脂やポリイミド系樹脂などにより形成することができる。 The resin layer 40 is particularly limited as long as it can adhere the substrate 30 and the surface acoustic wave element 10 and has a certain degree of durability against the liquid supplied to the detection recesses 32 and 33. Not. The resin layer 40 may be, for example, a thermoplastic resin or an energy ray curable resin that is cured by energy rays. Here, the energy rays include heat rays and light rays. That is, the energy ray curable resin includes a thermosetting resin, a photocurable resin, and the like. More specifically, the resin layer 40 can be formed of, for example, an epoxy resin or a polyimide resin.
 本実施形態において、検出用凹部32,33の壁面は、親水性を有する。具体的には、検出用凹部32,33の壁面を構成している導電層31の表面は、親水性を有する。 In the present embodiment, the wall surfaces of the detection recesses 32 and 33 are hydrophilic. Specifically, the surface of the conductive layer 31 constituting the wall surfaces of the detection recesses 32 and 33 has hydrophilicity.
 基板30の弾性表面波素子10側の表面30cの樹脂層40よりも検出用凹部32,33側に位置している部分と、弾性表面波素子10の基板30側の表面の樹脂層40よりも検出用凹部32,33側に位置している部分とのうちの少なくとも一方の上には、疎水性を有する疎水層45が形成されている。具体的には、本実施形態では、疎水層45は、基板30の弾性表面波素子10側の表面30cの樹脂層40よりも検出用凹部32,33側に位置している部分の上に形成されている。疎水層45は、表面30cの開口30a、30bから樹脂層40の外側に至る部分の上に形成されている。疎水層45の樹脂層40の内側に位置している部分は、検出用凹部32,33を包囲するように環状に形成されている。 A portion of the surface 30c on the surface acoustic wave element 10 side of the substrate 30 that is located closer to the detection recesses 32 and 33 than the resin layer 40, and a surface of the surface acoustic wave element 10 on the substrate 30 side of the resin layer 40. A hydrophobic layer 45 having hydrophobicity is formed on at least one of the portions positioned on the detection recesses 32 and 33 side. Specifically, in the present embodiment, the hydrophobic layer 45 is formed on a portion of the surface 30c of the substrate 30 on the surface acoustic wave element 10 side that is located on the detection recesses 32 and 33 side of the resin layer 40. Has been. The hydrophobic layer 45 is formed on a portion extending from the openings 30a and 30b of the surface 30c to the outside of the resin layer 40. The portion of the hydrophobic layer 45 located inside the resin layer 40 is formed in an annular shape so as to surround the detection recesses 32 and 33.
 なお、疎水層45は、例えば、パーフルオロアルキルエチルアクリレートや、パーフルオロ基などを含有したフッ素系樹脂などにより形成することができる。 The hydrophobic layer 45 can be formed of, for example, perfluoroalkylethyl acrylate or a fluorine-based resin containing a perfluoro group.
 以上説明したように、本実施形態では、疎水層45が設けられている。このため、検出用凹部32,33に注入された被検出液は、疎水層45によってはじかれる。よって、疎水層45の撥水力によって、水系の被検出液が樹脂層40に至ることが効果的に抑制される。従って、樹脂層40からのブリード物がセンシング部18,19に位置する被検出液に混入することを効果的に抑制することができる。その結果、高い検出精度で被検出液に含まれる物質の検出を行うことができる。 As described above, in this embodiment, the hydrophobic layer 45 is provided. Therefore, the liquid to be detected injected into the detection recesses 32 and 33 is repelled by the hydrophobic layer 45. Therefore, the water-based detection liquid is effectively suppressed from reaching the resin layer 40 by the water repellent force of the hydrophobic layer 45. Accordingly, it is possible to effectively suppress the bleed material from the resin layer 40 from being mixed into the liquid to be detected located in the sensing units 18 and 19. As a result, the substance contained in the liquid to be detected can be detected with high detection accuracy.
 被検出液が樹脂層40に至ることをより効果的に抑制する観点からは、基板30と弾性表面波素子10との間の隙間の間隔が、疎水層45の撥水力と被検出液の表面張力により基板30と弾性表面波素子10との間の隙間に被検出液が侵入することが効果的に抑制される程度の距離であることが好ましい。具体的には、基板30と弾性表面波素子10との間の隙間の間隔は、100μm以下であることが好ましい。 From the viewpoint of more effectively suppressing the liquid to be detected from reaching the resin layer 40, the gap between the substrate 30 and the surface acoustic wave element 10 is determined by the water repellency of the hydrophobic layer 45 and the surface of the liquid to be detected. It is preferable that the distance is such that the liquid to be detected can be effectively prevented from entering the gap between the substrate 30 and the surface acoustic wave element 10 due to the tension. Specifically, the gap between the substrate 30 and the surface acoustic wave element 10 is preferably 100 μm or less.
 また、本実施形態では、疎水層45が検出用凹部32,33を包囲するように環状に形成されている。このため、被検出液が樹脂層40に至ることをより確実に抑制することができる。 In this embodiment, the hydrophobic layer 45 is formed in an annular shape so as to surround the detection recesses 32 and 33. For this reason, it can suppress more reliably that a to-be-detected liquid reaches the resin layer 40. FIG.
 本実施形態では、疎水層45が基板30の表面の上に形成されており、弾性表面波素子10の表面の上には形成されていない。このため、疎水層45が弾性表面波素子10の上に形成されることによる弾性表面波素子10の特性変化を抑制することができる。 In the present embodiment, the hydrophobic layer 45 is formed on the surface of the substrate 30 and is not formed on the surface of the surface acoustic wave element 10. For this reason, the characteristic change of the surface acoustic wave element 10 due to the formation of the hydrophobic layer 45 on the surface acoustic wave element 10 can be suppressed.
 本実施形態では、電気的接続を行う、基板30の表面30cの端子部30c1の上には、疎水層45が形成されていない。このため、疎水層45を設けることにより、確実に電気的接続を行うことができる。 In this embodiment, the hydrophobic layer 45 is not formed on the terminal portion 30c1 of the surface 30c of the substrate 30 to be electrically connected. For this reason, by providing the hydrophobic layer 45, electrical connection can be reliably performed.
 また、検出用凹部32,33の表面が親水性であるため、被検出液の出し入れや置換を安定して行うことができる。 In addition, since the surfaces of the detection recesses 32 and 33 are hydrophilic, the liquid to be detected can be taken out and replaced stably.
 (第5の実施形態)
 図17は、第5の実施形態の液中物質検出装置の略図的断面図である。
(Fifth embodiment)
FIG. 17 is a schematic cross-sectional view of the in-liquid substance detection device of the fifth embodiment.
 本実施形態に係る液中物質検出装置5は、壁部46を備えている点において、上記第4の実施形態の液中物質検出装置4と異なる。 The submerged substance detection device 5 according to the present embodiment is different from the submerged substance detection device 4 of the fourth embodiment in that a wall 46 is provided.
 本実施形態において、壁部46は、樹脂層40よりも検出用凹部32,33側に位置する部分において、基板30から弾性表面波素子10に至るように形成されている。このため、樹脂層40は、壁部46によって検出用凹部32,33から隔離されている。従って、樹脂層40からのブリード物が被検出液に混入することをより効果的に抑制することができる。 In the present embodiment, the wall portion 46 is formed so as to reach the surface acoustic wave element 10 from the substrate 30 in a portion located on the detection recesses 32 and 33 side with respect to the resin layer 40. For this reason, the resin layer 40 is isolated from the detection recesses 32 and 33 by the wall 46. Therefore, it can suppress more effectively that the bleed thing from the resin layer 40 mixes in a to-be-detected liquid.
 なお、壁部46は、例えば、ポリイミドなどの、ブリード物を発生させる樹脂以外の材料により形成することができる。 The wall portion 46 can be formed of a material other than a resin that generates a bleed material, such as polyimide.
 (第6の実施形態)
 図18は、第6の実施形態の液中物質検出装置の略図的断面図である。
(Sixth embodiment)
FIG. 18 is a schematic cross-sectional view of the in-liquid substance detection device of the sixth embodiment.
 上記第4の実施形態では、疎水層45が、基板30側にのみ形成されている例について説明した。但し、本発明は、この構成に限定されない。疎水層は、基板側及び弾性表面波素子側の両方に形成されていてもよい。 In the fourth embodiment, the example in which the hydrophobic layer 45 is formed only on the substrate 30 side has been described. However, the present invention is not limited to this configuration. The hydrophobic layer may be formed on both the substrate side and the surface acoustic wave element side.
 図18に示すように、本実施形態では、基板30の弾性表面波素子10側の表面30cの樹脂層40よりも検出用凹部32,33側に位置している部分の上に、疎水層45aが形成されていると共に、弾性表面波素子10の基板30側の表面の樹脂層40よりも検出用凹部32,33側に位置している部分の上に、疎水層45bが形成されている。疎水層45aと疎水層45bとは、対向している。 As shown in FIG. 18, in the present embodiment, the hydrophobic layer 45a is formed on the portion of the surface 30c of the substrate 30 on the surface acoustic wave element 10 side that is positioned on the detection recesses 32 and 33 side of the resin layer 40. And a hydrophobic layer 45b is formed on a portion of the surface acoustic wave element 10 located on the detection recesses 32 and 33 side of the surface of the substrate 30 side of the surface acoustic wave element 10. The hydrophobic layer 45a and the hydrophobic layer 45b are opposed to each other.
 本実施形態のように、基板30側に疎水層45aを設けると共に、弾性表面波素子10側に疎水層45bを設けることによって、被検出液が樹脂層40に到達することをより効果的に抑制することができる。従って、さらに高い検出精度を実現することができる。 As in the present embodiment, by providing the hydrophobic layer 45a on the substrate 30 side and the hydrophobic layer 45b on the surface acoustic wave element 10 side, it is more effectively suppressed that the liquid to be detected reaches the resin layer 40. can do. Therefore, higher detection accuracy can be realized.
 (第7~第9の実施形態)
 図19は、第7の実施形態の液中物質検出装置の略図的平面図である。図20は、第8の実施形態の液中物質検出装置の略図的平面図である。図21は、第9の実施形態の液中物質検出装置の略図的平面図である。
(Seventh to ninth embodiments)
FIG. 19 is a schematic plan view of the in-liquid substance detection device according to the seventh embodiment. FIG. 20 is a schematic plan view of the in-liquid substance detection device of the eighth embodiment. FIG. 21 is a schematic plan view of the in-liquid substance detection device of the ninth embodiment.
 本発明において、樹脂層40及び疎水層45の配置は、樹脂層40と検出用凹部32,33との間に疎水層45が位置しておればよく、その限りにおいて、特に限定されない。例えば、図19~図21に示す第7~第9の実施形態に示すように樹脂層40及び疎水層45を配置してもよい。 In the present invention, the arrangement of the resin layer 40 and the hydrophobic layer 45 is not particularly limited as long as the hydrophobic layer 45 is located between the resin layer 40 and the detection recesses 32 and 33. For example, the resin layer 40 and the hydrophobic layer 45 may be arranged as shown in the seventh to ninth embodiments shown in FIGS.
 図19に示す第7の実施形態に係る液中物質検出装置では、樹脂層40と疎水層45とが同心円状に形成されている。このように、樹脂層40を環状に形成することによって、被検出液を入れた際に、被検出液と樹脂層40と基板30と弾性表面波素子10に挟まれた、空気のみ存在する空間が形成されることにより、基板30上または弾性表面波素子10の表面上をぬれ広がることを効果的に抑制することができる。 In the submerged substance detection device according to the seventh embodiment shown in FIG. 19, the resin layer 40 and the hydrophobic layer 45 are formed concentrically. In this way, by forming the resin layer 40 in an annular shape, when the liquid to be detected is put, the space between the liquid to be detected, the resin layer 40, the substrate 30, and the surface acoustic wave element 10 and only air exists. By being formed, it is possible to effectively suppress wetting and spreading on the substrate 30 or the surface of the surface acoustic wave element 10.
 また、図20に示す第8の実施形態に係る液中物質検出装置では、樹脂層40は、検出用凹部32,33を包囲するように形成されていない。図21に示す第9の実施形態に係る液中物質検出装置では、樹脂層40が矩形状に形成されている。 In the in-liquid substance detection device according to the eighth embodiment shown in FIG. 20, the resin layer 40 is not formed so as to surround the detection recesses 32 and 33. In the in-liquid substance detection device according to the ninth embodiment shown in FIG. 21, the resin layer 40 is formed in a rectangular shape.
 (実施例)
 図11に示す液中物質検出装置3を、上記第2の実施形態において説明した製造方法により、実際に10個作成し、それぞれのサンプルについて、検出用凹部32,33に水を入れ、水中の物質の検出を行った。具体的には、センシング部18,19の発信周波数を測定し、測定開始時の発信周波数からの周波数変化量を経時的にモニタした。その結果を、図12に示す。なお、本実施例では、樹脂層40としては、エポキシ系アンダーフィルを用いた。また、疎水化処理は、ノンブリードN-11により行った。親水化処理は、UV・オゾン照射により行った。
(Example)
Ten actual submerged substance detection devices 3 shown in FIG. 11 are produced by the manufacturing method described in the second embodiment, and water is put into the detection recesses 32 and 33 for each sample. The substance was detected. Specifically, the transmission frequencies of the sensing units 18 and 19 were measured, and the amount of frequency change from the transmission frequency at the start of measurement was monitored over time. The result is shown in FIG. In the present embodiment, an epoxy underfill is used as the resin layer 40. The hydrophobizing treatment was performed with non-bleed N-11. The hydrophilic treatment was performed by UV / ozone irradiation.
 また、比較として、疎水化処理及び親水化処理を行わなかったこと以外は、上記実施例と同様にして10個の液中物質検出装置のサンプルを10個作成し、上記実施例と同様にして各サンプルについて、発信周波数の周波数変化量を経時的にモニタした。その結果を図13に示す。 For comparison, 10 samples of the submerged substance detection device were prepared in the same manner as in the above example except that the hydrophobic treatment and the hydrophilic treatment were not performed. For each sample, the amount of frequency change of the transmission frequency was monitored over time. The result is shown in FIG.
 図13に示すように、疎水化処理及び親水化処理をしなかった比較例では、経時的に周波数変化量が大きくなった。また、サンプルによって発信周波数の周波数変化量が大きく異なった。この結果から、液体中の物質を安定して検出できないことが分かる。 As shown in FIG. 13, in the comparative example in which the hydrophobization treatment and the hydrophilization treatment were not performed, the frequency change amount increased with time. Moreover, the frequency change amount of the transmission frequency greatly differs depending on the sample. This result shows that the substance in the liquid cannot be detected stably.
 それに対して、疎水化処理及び親水化処理を行った実施例では、図12に示すように、周波数変化量の経時変化が少なく、かつサンプル間における周波数変化量のばらつきも少なかった。この結果から、疎水化処理及び親水化処理を行うことにより、液体中の物質を安定して正確に検出できることが分かる。 On the other hand, in the example in which the hydrophobization treatment and the hydrophilization treatment were performed, as shown in FIG. 12, the change in the frequency change amount with time was small, and the variation in the frequency change amount between samples was small. From this result, it can be seen that the substance in the liquid can be detected stably and accurately by performing the hydrophobization treatment and the hydrophilization treatment.
1~7…液中物質検出装置
10…弾性表面波素子
11…圧電基板
12…第1のIDT電極
12a、12b、12c、12d…くし歯電極
12e…第1の入出力ポート
12f、12h…グラウンドポート
12g…第2の入出力ポート
13,14…グレーティング反射器
15…第2のIDT電極
15a、15b、15c,15d…くし歯電極
15e、15g…グラウンドポート
15g…第1の入出力ポート
15h…第2の入出力ポート
16,17…グレーティング反射器
18,19…センシング部
20…保護膜
21a、21b、21c、21d、22a、22b、22c、22d…バンプ電極
30…基板
30a、30b…開口
30c…基板の表面
30d…基板の裏面
31…導電層
31a…グラウンド電極
31b~31e…電極ランド
32,33…検出用凹部
40…樹脂層
41…ノズル
42…実装構造
43,44…壁部
45、45a、45b…疎水層
46…壁部
DESCRIPTION OF SYMBOLS 1-7 ... Substance detection apparatus 10 ... Surface acoustic wave element 11 ... Piezoelectric substrate 12 ... 1st IDT electrode 12a, 12b, 12c, 12d ... Comb electrode 12e ... 1st input / output port 12f, 12h ... Ground Port 12g ... second input / output port 13,14 ... grating reflector 15 ... second IDT electrodes 15a, 15b, 15c, 15d ... comb electrode 15e, 15g ... ground port 15g ... first input / output port 15h ... Second input / output ports 16, 17 ... grating reflectors 18, 19 ... sensing unit 20 ... protective films 21a, 21b, 21c, 21d, 22a, 22b, 22c, 22d ... bump electrodes 30 ... substrates 30a, 30b ... openings 30c ... surface 30d of substrate ... back surface 31 of substrate ... conductive layer 31a ... ground electrodes 31b to 31e ... electrode lands 32, 33 ... Out recessed portion 40 ... resin layer 41 ... nozzle 42 ... mounting structure 43, 44 ... wall portion 45, 45a, 45b ... hydrophobic layer 46 ... wall portion

Claims (18)

  1.  開口が形成されている基板と、
     圧電基板と、前記圧電基板上に形成されており、センシング部を構成しているIDT電極とを有し、前記基板の開口に前記センシング部が臨むように前記基板上に実装されている弾性表面波素子と、
     前記基板と前記弾性表面波素子との間において、前記センシング部を囲うように形成されている樹脂層とを備え、
     前記基板の開口と、前記樹脂層とによって被検出液が溜められる検出用凹部が形成されている液中物質検出装置の製造方法であって、
     少なくとも前記開口の内面が疎水性である前記基板上に前記弾性表面波素子が実装された実装構造を用意する用意工程と、
     前記実装構造に、前記基板と前記弾性表面波素子との間において、前記センシング部を囲うように前記樹脂層を形成する樹脂層形成工程と、
     前記検出用凹部の表面に親水化処理を施す親水化工程とを備える、液中物質検出装置の製造方法。
    A substrate having an opening formed thereon;
    An elastic surface having a piezoelectric substrate and an IDT electrode which is formed on the piezoelectric substrate and forms a sensing portion, and is mounted on the substrate so that the sensing portion faces the opening of the substrate A wave element;
    Between the substrate and the surface acoustic wave element, comprising a resin layer formed so as to surround the sensing unit,
    A method of manufacturing a submerged substance detection device in which a detection recess in which a liquid to be detected is stored is formed by the opening of the substrate and the resin layer,
    A preparation step of preparing a mounting structure in which the surface acoustic wave element is mounted on the substrate where at least the inner surface of the opening is hydrophobic;
    In the mounting structure, a resin layer forming step of forming the resin layer so as to surround the sensing unit between the substrate and the surface acoustic wave element;
    A method for producing a submerged substance detection device, comprising: a hydrophilic step of applying a hydrophilic treatment to the surface of the detection recess.
  2.  前記実装構造には、前記センシング部を囲うように環状の壁部が形成されており、前記樹脂層形成工程において、前記樹脂層を前記壁部よりも外側に形成する、請求項1に記載の液中物質検出装置の製造方法。 2. The mounting structure according to claim 1, wherein an annular wall portion is formed so as to surround the sensing portion, and in the resin layer forming step, the resin layer is formed outside the wall portion. A method for manufacturing a submerged substance detection device.
  3.  前記用意工程は、前記基板上に前記弾性表面波素子を実装する工程と、前記弾性表面波素子が実装された前記基板の開口の内面に疎水化処理を施す工程とを含む、請求項1または2に記載の液中物質検出装置の製造方法。 The preparation step includes a step of mounting the surface acoustic wave element on the substrate and a step of applying a hydrophobic treatment to the inner surface of the opening of the substrate on which the surface acoustic wave element is mounted. 3. A method for producing the in-liquid substance detection device according to 2.
  4.  前記用意工程は、前記基板の開口の内面に疎水化処理を施す工程と、前記開口の内面に疎水化処理が施された基板の上に、前記弾性表面波素子を実装する工程とを含む、請求項1または2に記載の液中物質検出装置の製造方法。 The preparing step includes a step of subjecting the inner surface of the opening of the substrate to a hydrophobic treatment, and a step of mounting the surface acoustic wave element on the substrate subjected to the hydrophobic treatment of the inner surface of the opening. The manufacturing method of the in-liquid substance detection apparatus of Claim 1 or 2.
  5.  前記開口の内面の疎水化処理は、前記開口に挿入したノズルから疎水化処理剤を吐出することにより行う、請求項3または4に記載の液中物質検出装置の製造方法。 The method for manufacturing a submerged substance detection device according to claim 3 or 4, wherein the hydrophobic treatment on the inner surface of the opening is performed by discharging a hydrophobic treatment agent from a nozzle inserted into the opening.
  6.  前記基板は、疎水性物質を含む、請求項1~5のいずれか一項に記載の液中物質検出装置の製造方法。 6. The method for manufacturing an in-liquid substance detection device according to claim 1, wherein the substrate contains a hydrophobic substance.
  7.  前記樹脂層の形成は、熱硬化性樹脂を配置し、加熱することにより前記熱硬化性樹脂を硬化させることにより行う、請求項1~6のいずれか一項に記載の液中物質検出装置の製造方法。 The in-liquid substance detection device according to any one of claims 1 to 6, wherein the resin layer is formed by disposing a thermosetting resin and curing the thermosetting resin by heating. Production method.
  8.  前記樹脂層形成工程は、前記基板の開口の開口方向から視た際に、前記樹脂層が前記開口内に位置しないように前記樹脂層を形成する工程である、請求項1~7のいずれか一項に記載の液中物質検出装置の製造方法。 The resin layer forming step is a step of forming the resin layer so that the resin layer is not positioned in the opening when viewed from the opening direction of the opening of the substrate. The manufacturing method of the in-liquid substance detection apparatus of one term.
  9.  前記親水化工程は、前記検出用凹部の表面にプラズマ処理またはUV処理を施すことにより行う、請求項1~8のいずれか一項に記載の液中物質検出装置の製造方法。 The method for manufacturing an in-liquid substance detection device according to any one of claims 1 to 8, wherein the hydrophilization step is performed by performing plasma treatment or UV treatment on a surface of the detection recess.
  10.  開口が形成されている基板と、
     圧電基板と、前記圧電基板上に形成されており、センシング部を構成しているIDT電極とを有し、前記基板の開口に前記センシング部が臨むように前記基板上に実装されている弾性表面波素子と、
     前記基板と前記弾性表面波素子との間において、前記センシング部の外側に形成されている樹脂層と、
    を備え、
     前記基板の開口と、前記樹脂層とによって被検出液が溜められる検出用凹部が形成されている液中物質検出装置であって、
     前記検出用凹部の壁面は、親水性であり、
     前記基板の前記弾性表面波素子側の表面の前記樹脂層よりも前記検出用凹部側に位置している部分と、前記弾性表面波素子の前記基板側の表面の前記樹脂層よりも前記検出用凹部側に位置している部分とのうちの少なくとも一方の上に形成されている疎水層をさらに備える、液中物質検出装置。
    A substrate having an opening formed thereon;
    An elastic surface having a piezoelectric substrate and an IDT electrode which is formed on the piezoelectric substrate and forms a sensing portion, and is mounted on the substrate so that the sensing portion faces the opening of the substrate A wave element;
    Between the substrate and the surface acoustic wave element, a resin layer formed outside the sensing unit;
    With
    An in-liquid substance detection device in which a detection concave portion in which a liquid to be detected is stored is formed by the opening of the substrate and the resin layer,
    The wall surface of the detection recess is hydrophilic,
    A portion of the surface of the substrate on the surface acoustic wave element side that is positioned closer to the detection recess than the resin layer, and the surface of the surface acoustic wave element for detection than the resin layer on the surface of the substrate An in-liquid substance detection device further comprising a hydrophobic layer formed on at least one of a portion located on the concave side.
  11.  前記疎水層は、少なくとも、前記基板の前記弾性表面波素子側の表面の前記樹脂層よりも前記検出用凹部側に位置している部分の上に形成されている、請求項10に記載の液中物質検出装置。 11. The liquid according to claim 10, wherein the hydrophobic layer is formed on at least a portion of the surface of the substrate on the surface acoustic wave element side that is positioned closer to the detection recess than the resin layer. Medium substance detection device.
  12.  前記疎水層は、前記基板の前記弾性表面波素子側の表面の前記樹脂層よりも前記検出用凹部側に位置している部分と、前記弾性表面波素子の前記基板側の表面の前記樹脂層よりも前記検出用凹部側に位置している部分との両方の上に形成されている、請求項11に記載の液中物質検出装置。 The hydrophobic layer includes a portion of the surface of the substrate on the surface acoustic wave element side that is positioned closer to the concave portion for detection than the resin layer, and the resin layer on the surface of the surface acoustic wave element on the substrate side The in-liquid substance detection device according to claim 11, wherein the in-liquid substance detection device is formed on both the portion positioned closer to the detection concave portion than the portion.
  13.  前記疎水層は、前記検出用凹部を包囲するように環状に形成されている、請求項10~12のいずれか一項に記載の液中物質検出装置。 The in-liquid substance detection device according to any one of claims 10 to 12, wherein the hydrophobic layer is formed in an annular shape so as to surround the detection recess.
  14.  前記樹脂層は、前記検出用凹部を包囲するように環状に形成されている、請求項10~13のいずれか一項に記載の液中物質検出装置。 The in-liquid substance detection device according to any one of claims 10 to 13, wherein the resin layer is formed in an annular shape so as to surround the detection recess.
  15.  前記疎水層と前記樹脂層とは、前記検出用凹部を包囲するように同心円状に形成されている、請求項10~14のいずれか一項に記載の液中物質検出装置。 The submerged substance detection device according to any one of claims 10 to 14, wherein the hydrophobic layer and the resin layer are formed concentrically so as to surround the detection recess.
  16.  前記基板と前記弾性表面波素子との間の隙間の間隔は、前記疎水層による撥水力によって、当該隙間のうちの前記疎水層が形成されている部分に、前記検出用凹部に供給される被検出液が進入することが抑制される距離である、請求項10~15のいずれか一項に記載の液中物質検出装置。 The gap between the substrate and the surface acoustic wave element is formed by the water repellent force of the hydrophobic layer on the portion of the gap where the hydrophobic layer is formed, to be supplied to the detection recess. The in-liquid substance detection device according to any one of claims 10 to 15, which is a distance at which the detection liquid is prevented from entering.
  17.  前記疎水層が形成されている領域における前記基板と前記弾性表面波素子との間の隙間の間隔は、100μm以下である、請求項10~16のいずれか一項に記載の液中物質検出装置。 The in-liquid substance detection device according to any one of claims 10 to 16, wherein a gap between the substrate and the surface acoustic wave element in a region where the hydrophobic layer is formed is 100 袖 m or less. .
  18.  前記樹脂層よりも前記検出用凹部側に位置する部分において、前記基板から前記弾性表面波素子に至るように形成されている壁部をさらに備える、請求項10~17のいずれか一項に記載の液中物質検出装置。 The wall portion formed so as to reach the surface acoustic wave element from the substrate in a portion located on the detection concave portion side with respect to the resin layer is further provided. In-liquid substance detection device.
PCT/JP2010/067626 2009-10-13 2010-10-07 Device for detecting a substance in a liquid and manufacturing method therefor WO2011046059A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009235951 2009-10-13
JP2009-235951 2009-10-13

Publications (1)

Publication Number Publication Date
WO2011046059A1 true WO2011046059A1 (en) 2011-04-21

Family

ID=43876110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067626 WO2011046059A1 (en) 2009-10-13 2010-10-07 Device for detecting a substance in a liquid and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2011046059A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152209A (en) * 2011-12-27 2013-08-08 Kyocera Corp Surface acoustic wave sensor and manufacturing method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153582A (en) * 1997-11-21 1999-06-08 Japan Science & Technology Corp Method for measuring physical properties of fluid and apparatus therefor
WO2006018981A1 (en) * 2004-08-05 2006-02-23 Sony Corporation Dna chip manufacturing method, manufacturing system, hybridization detection method, detection system, substrate treatment device, and substrate treatment method
JP3952083B2 (en) * 2004-09-10 2007-08-01 株式会社村田製作所 Submerged substance detection sensor and submerged substance detection apparatus using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153582A (en) * 1997-11-21 1999-06-08 Japan Science & Technology Corp Method for measuring physical properties of fluid and apparatus therefor
WO2006018981A1 (en) * 2004-08-05 2006-02-23 Sony Corporation Dna chip manufacturing method, manufacturing system, hybridization detection method, detection system, substrate treatment device, and substrate treatment method
JP3952083B2 (en) * 2004-09-10 2007-08-01 株式会社村田製作所 Submerged substance detection sensor and submerged substance detection apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152209A (en) * 2011-12-27 2013-08-08 Kyocera Corp Surface acoustic wave sensor and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP6987955B2 (en) Sensor device
JP6411439B2 (en) Biosensor
US8322218B2 (en) Surface acoustic wave element and equipment for measuring characteristics of liquid material
US7656070B2 (en) Surface wave sensor apparatus
JP6312347B2 (en) Surface acoustic wave sensor
KR101245296B1 (en) Electrically responsive device
US7034434B2 (en) Surface acoustic wave device
JP6453316B2 (en) Method for creating a plurality of measurement areas on a chip, and a chip having measurement areas
WO2006027893A1 (en) Sensor for detecting substance in liquid and device for detecting substance in liquid employing the sensor
JP4807199B2 (en) Humidity sensor device
JP2008039508A (en) Humidity sensor
JP6194015B2 (en) Sensor device
WO2011046059A1 (en) Device for detecting a substance in a liquid and manufacturing method therefor
JP5472557B1 (en) Composite electronic component and electronic device including the same
JP2018105885A (en) Sensor device
JP6128764B2 (en) Biosensor, detection method, detection system, and detection apparatus
WO2016159112A1 (en) Specimen liquid sensor, and method of measuring specimen liquid
KR101392748B1 (en) Surface acoustic wave device and method of manufacturing the same
JP6154103B2 (en) Surface acoustic wave sensor and manufacturing method thereof
CN115051665A (en) Wafer-level packaging structure of filter and manufacturing method thereof
JP6324803B2 (en) Pressure-sensitive sensor and manufacturing method thereof
CN109690301B (en) Volumetric gas sensor
JP2012119918A (en) Electronic component
JP2009258092A (en) Concentration sensor device
Fukuura et al. Biosensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10823327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP