WO2011045927A1 - Encoding device, decoding device and methods therefor - Google Patents

Encoding device, decoding device and methods therefor Download PDF

Info

Publication number
WO2011045927A1
WO2011045927A1 PCT/JP2010/006088 JP2010006088W WO2011045927A1 WO 2011045927 A1 WO2011045927 A1 WO 2011045927A1 JP 2010006088 W JP2010006088 W JP 2010006088W WO 2011045927 A1 WO2011045927 A1 WO 2011045927A1
Authority
WO
WIPO (PCT)
Prior art keywords
encoding
information
layer
gain
band
Prior art date
Application number
PCT/JP2010/006088
Other languages
French (fr)
Japanese (ja)
Inventor
山梨智史
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/501,354 priority Critical patent/US8949117B2/en
Priority to EP10823195.2A priority patent/EP2490217A4/en
Priority to JP2011536038A priority patent/JP5544371B2/en
Publication of WO2011045927A1 publication Critical patent/WO2011045927A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/24Variable rate codecs, e.g. for generating different qualities using a scalable representation such as hierarchical encoding or layered encoding

Definitions

  • the present invention relates to an encoding device, a decoding device, and these methods used in a communication system that encodes and transmits a signal.
  • Non-Patent Document 1 a spectrum of a desired frequency band (MDCT (Modified Discrete Cosine Transform)) is obtained using TwinVQ (Transform Domain Weighted Interleave Vector Quantization) in which the basic structural unit is modularized.
  • MDCT Modified Discrete Cosine Transform
  • TwinVQ Transform Domain Weighted Interleave Vector Quantization
  • a method of hierarchically encoding (coefficients) is disclosed. By using the module in common and using it a plurality of times, a simple and highly flexible scalable encoding can be realized.
  • the subbands to be encoded in each layer (layer) are basically configured in advance, but the subbands to be encoded in each layer (layer) according to the nature of the input signal.
  • a configuration is also disclosed in which the position of is fluctuated within a predetermined band.
  • Non-Patent Document 1 when a subband to be encoded is selected from a plurality of candidates in each layer (layer), consider whether the selected subband has already been encoded in a lower layer. Encoding is performed. Therefore, for example, when vector quantization is performed on energy information of subbands already selected in the lower layer, vector quantization is performed regardless of the magnitude of the residual energy of each subband, resulting in high coding performance. There is a problem that cannot be obtained.
  • An object of the present invention is to provide a code that can efficiently encode energy information of the current layer and improve the quality of a decoded signal in a scalable coding scheme that selects a band to be coded in each layer (layer). It is to provide an encoding device, a decoding device, and these methods.
  • One aspect of an encoding apparatus is an encoding apparatus having at least two encoding layers, which receives a first input signal in a frequency domain and has a plurality of subbands obtained by dividing the frequency domain.
  • a first quantization target band of the first input signal is selected from among the first input signals in the first quantization target band, and includes first band information of the first quantization target band Generating first encoded information, generating a first decoded signal using the first encoded information, and generating a second input signal using the first input signal and the first decoded signal.
  • a first layer encoding means the second input signal and the first encoded information are input, a second quantization target band of the second input signal is selected from the plurality of subbands, and second While obtaining band information, the second quantization target band A gain of the second input signal is obtained, and the second input signal of the second quantization target band is encoded using the first encoded information, and the second band information and the gain are encoded.
  • Second layer encoding means for generating second encoded information including gain encoded information obtained.
  • One aspect of a decoding apparatus is a decoding apparatus that receives and decodes information generated in an encoding apparatus having at least two encoding layers, the first layer code of the encoding apparatus
  • the first encoded information including the first band information generated by selecting the first quantization target band of the first layer from the plurality of subbands obtained by dividing the frequency domain; Generated by selecting the second quantization target band of the second layer from the plurality of subbands obtained by encoding of the second layer of the encoding device using the first encoding information.
  • the second encoded information including the second band information, and receiving means for receiving the information; and the first encoded information obtained from the information is input and included in the first encoded information Based on the first band information
  • First layer decoding means for generating a first decoded signal for the set first quantization target band, the first encoded information and the second encoded information obtained from the information are input, and the second Secondly, a signal for the second quantization target band set based on the second band information included in the encoded information is corrected using the first encoded information and the second encoded information.
  • Second layer decoding means for generating a decoded signal.
  • One aspect of an encoding method is an encoding method in which encoding is performed with at least two encoding layers, and a plurality of frequency domain first input signals are input and the frequency domain is divided.
  • a first quantization target band of the first input signal is selected from the subbands, the first input signal of the first quantization target band is encoded, and the first band of the first quantization target band is encoded.
  • First encoded information including information is generated, a first decoded signal is generated using the first encoded information, and a second input signal is generated using the first input signal and the first decoded signal.
  • a gain of the second input signal in the target band is obtained, and the second input signal in the second quantization target band is encoded using the first encoded information, and the second band information and the gain are calculated.
  • a second layer encoding step for generating second encoded information including gain encoded information obtained by encoding.
  • One aspect of a decoding method is a decoding method for receiving and decoding information generated in an encoding device having at least two encoding layers, the first layer code of the encoding device
  • the first encoded information including the first band information generated by selecting the first quantization target band of the first layer from the plurality of subbands obtained by dividing the frequency domain; Generated by selecting the second quantization target band of the second layer from the plurality of subbands obtained by encoding of the second layer of the encoding device using the first encoding information.
  • the second encoded information including the second band information, a reception step for receiving the information, and the first encoded information obtained from the information is input and included in the first encoded information Based on the first band information
  • a signal for the second quantization target band set based on the second band information included in the second encoded information is corrected using the first encoded information and the second encoded information,
  • a second layer decoding step of generating two decoded signals is used to generate two decoded signals.
  • the current layer is based on a lower layer coding result (quantized band).
  • the block diagram which shows the structure of the communication system which has the encoding apparatus and decoding apparatus which concern on one embodiment of this invention The block diagram which shows the main structures inside the encoding apparatus shown in FIG.
  • the block diagram which shows the main structures inside the 2nd layer encoding part shown in FIG. The figure which shows the structure of the region which concerns on the said embodiment.
  • the block diagram which shows the main structures inside the 2nd layer decoding part shown in FIG. The block diagram which shows the main structures inside the 3rd layer encoding part shown in FIG.
  • the block diagram which shows the main structures inside the decoding apparatus shown in FIG. The block diagram which shows the main structures inside the 3rd layer decoding part shown in FIG.
  • FIG. 1 is a block diagram showing a configuration of a communication system having an encoding device and a decoding device according to an embodiment of the present invention.
  • the communication system includes an encoding device 101 and a decoding device 103, and can communicate with each other via a transmission path 102.
  • both the encoding apparatus 101 and the decoding apparatus 103 are normally mounted and used in a base station apparatus or a communication terminal apparatus.
  • the encoding apparatus 101 divides the input signal into N samples (N is a natural number), and encodes each frame with N samples as one frame.
  • an input signal to be encoded is represented as x (n).
  • the encoding apparatus 101 transmits encoded input information (hereinafter referred to as “encoding information”) to the decoding apparatus 103 via the transmission path 102.
  • the decoding device 103 receives the encoded information transmitted from the encoding device 101 via the transmission path 102, decodes it, and obtains an output signal.
  • FIG. 2 is a block diagram showing a main configuration inside the encoding apparatus 101 shown in FIG.
  • the encoding apparatus 101 is a hierarchical encoding apparatus including three encoding hierarchies (layers).
  • the first layer, the second layer, and the third layer are referred to in order from the lowest bit rate.
  • the first layer encoding unit 201 generates the first layer encoded information by encoding the input signal using, for example, a CELP (Code Excited Linear Prediction) method audio encoding method.
  • the first layer encoded information is output to first layer decoding section 202 and encoded information integration section 209.
  • First layer decoding section 202 decodes the first layer encoded information input from first layer encoding section 201 using, for example, a CELP speech decoding method, and converts the first layer decoded signal to The generated first layer decoded signal is output to adding section 203.
  • the adding unit 203 inverts the polarity of the first layer decoded signal and adds it to the input signal to calculate a difference signal between the input signal and the first layer decoded signal, and the obtained difference signal is used as the first layer. It outputs to the orthogonal transformation process part 204 as a difference signal.
  • MDCT modified discrete cosine transform
  • the orthogonal transform processing unit 204 initializes the buffer buf1 (n) using “0” as an initial value according to the following equation (1).
  • the orthogonal transform processing unit 204 performs a modified discrete cosine transform (MDCT) on the first layer difference signal x1 (n) according to the following equation (2), and the MDCT coefficient of the first layer difference signal x1 (n): X1 (k) is obtained (hereinafter referred to as “first layer difference spectrum”).
  • MDCT modified discrete cosine transform
  • k represents the index of each sample in one frame.
  • the orthogonal transform processing unit 204 obtains x1 ′ (n), which is a vector obtained by combining the first layer differential signal x1 (n) and the buffer buf1 (n), using the following equation (3).
  • the orthogonal transform processing unit 204 updates the buffer buf1 (n) using Expression (4).
  • the orthogonal transform processing unit 204 outputs the first layer difference spectrum X1 (k) to the second layer encoding unit 205 and the adding unit 207.
  • the second layer encoding unit 205 generates the second layer encoded information using the first layer difference spectrum X1 (k) input from the orthogonal transform processing unit 204, and the generated second layer encoded information is Output to second layer decoding section 206, third layer encoding section 208, and encoded information integration section 209. Details of second layer encoding section 205 will be described later.
  • the second layer decoding unit 206 decodes the second layer encoded information input from the second layer encoding unit 205 and calculates a second layer decoded spectrum. Next, second layer decoding section 206 outputs the generated second layer decoded spectrum to addition section 207. Details of second layer decoding section 206 will be described later.
  • the adding unit 207 calculates the difference spectrum between the first layer difference spectrum and the second layer decoded spectrum by inverting the polarity of the second layer decoded spectrum and adding the result to the first layer difference spectrum.
  • the difference spectrum is output to third layer encoding section 208 as the second layer difference spectrum.
  • Third layer encoding section 208 uses the second layer encoded information input from second layer encoding section 205 and the second layer differential spectrum input from adding section 207 to generate third layer encoded information. And the generated third layer encoded information is output to the encoded information integration section 209. Details of third layer encoding section 208 will be described later.
  • the encoding information integration unit 209 includes first layer encoding information input from the first layer encoding unit 201, second layer encoding information input from the second layer encoding unit 205, and third layer encoding.
  • the third layer encoded information input from the encoding unit 208 is integrated.
  • the encoded information integration unit 209 adds a transmission error code or the like to the integrated information source code, if necessary, and outputs this to the transmission path 102 as encoded information.
  • FIG. 3 is a block diagram showing the main configuration of second layer encoding section 205.
  • the second layer encoding unit 205 includes a band selection unit 301, a shape encoding unit 302, a gain encoding unit 303, and a multiplexing unit 304.
  • the band selection unit 301 divides the first layer difference spectrum input from the orthogonal transform processing unit 204 into a plurality of subbands, selects a band to be quantized (quantization target band) from the plurality of subbands, Band information indicating the selected band is output to the shape encoding unit 302 and the multiplexing unit 304. Band selection section 301 also outputs the first layer difference spectrum to shape coding section 302. Note that the input of the first layer difference spectrum to the shape encoding unit 302 is directly input from the orthogonal transform processing unit 204 to the shape encoding unit 302 separately from the input from the orthogonal transform processing unit 204 to the band selection unit 301. You may make it. Details of the processing of the band selection unit 301 will be described later.
  • the shape encoding unit 302 uses the spectrum (MDCT coefficient) corresponding to the band indicated by the band information input from the band selection unit 301 among the first layer difference spectra input from the band selection unit 301. Encoding is performed to generate shape encoding information, and the generated shape encoding information is output to the multiplexing unit 304. Further, shape coding section 302 obtains an ideal gain (gain information) calculated at the time of shape coding, and outputs the obtained ideal gain to gain coding section 303. Details of the processing of the shape encoding unit 302 will be described later.
  • the ideal gain is input from the shape encoding unit 302 to the gain encoding unit 303.
  • the gain encoding unit 303 quantizes the ideal gain input from the shape encoding unit 302 to obtain gain encoded information.
  • Gain coding section 303 outputs gain coding information obtained to multiplexing section 304. Details of the processing of the gain encoding unit 303 will be described later.
  • the multiplexing unit 304 multiplexes the band information input from the band selection unit 301, the shape encoding information input from the shape encoding unit 302, and the gain encoding information input from the gain encoding unit 303.
  • the resulting bitstream is output as second layer encoded information to second layer decoding section 206, third layer encoding section 208, and encoded information integration section 209.
  • the second layer encoding unit 205 having the above configuration performs the following operation.
  • the first layer difference spectrum X1 (k) is input from the orthogonal transform processing unit 204 to the band selection unit 301.
  • Band selection section 301 first divides first layer difference spectrum X1 (k) into a plurality of subbands.
  • J J is a natural number
  • the band selection unit 301 selects L (L is a natural number) subbands among the J subbands, and obtains M (M is a natural number) types of subband groups.
  • this group of M types of subbands is referred to as a region.
  • FIG. 4 is a diagram illustrating a configuration of a region obtained by the band selection unit 301.
  • the band selection unit 301 calculates the average energy E1 (m) of each of the M types of regions according to the following equation (5).
  • j represents the index of each of the J subbands
  • m represents the index of each of the M types of regions.
  • S (m) indicates the minimum value among the indices of the L subbands constituting the region m
  • B (j) is the minimum value among the indices of the plurality of MDCT coefficients constituting the subband j.
  • W (j) indicates the bandwidth of subband j, and in the following description, the case where all the J subbands have the same bandwidth, that is, the case where W (j) is a constant will be described as an example.
  • the band selection unit 301 is a band to be quantized (band to be quantized) of a region having the maximum average energy E1 (m), for example, a band composed of subbands j ′′ to (j ′′ + L ⁇ 1).
  • the index m_max indicating this region is output to the shape encoding unit 302 and the multiplexing unit 304 as band information.
  • the band selection unit 301 outputs the first layer difference spectrum X1 (k) of the quantization target band to the shape coding unit 302.
  • the band index indicating the quantization target band selected by the band selection unit 301 is j ′′ to (j ′′ + L ⁇ 1).
  • the shape encoding unit 302 performs shape quantization for each subband on the first layer difference spectrum X1 (k) corresponding to the band indicated by the band information m_max input from the band selection unit 301. Specifically, the shape encoding unit 302 searches the built-in shape codebook composed of SQ shape code vectors for each of the L subbands, and evaluates the shape scale_q (i) of Equation (6) below. Find the index of the shape code vector that maximizes.
  • SC i k indicates a shape code vector constituting the shape code book
  • i indicates an index of the shape code vector
  • k indicates an index of an element of the shape code vector
  • the shape encoding unit 302 outputs the shape code vector index S_max that maximizes the evaluation measure Shape_q (i) of the above equation (6) to the multiplexing unit 304 as shape encoding information.
  • the shape encoding unit 302 calculates an ideal gain Gain_i (j) according to the following equation (7), and outputs the calculated ideal gain Gain_i (j) to the gain encoding unit 303.
  • the gain encoding unit 303 quantizes the ideal gain Gain_i (j) input from the shape encoding unit 302 according to the following equation (8).
  • gain encoding section 303 treats the ideal gain as an L-dimensional vector, searches for a built-in gain codebook composed of GQ gain code vectors, and performs vector quantization.
  • G_min the index of the gain codebook that minimizes the square error Gain_q (i) of the above equation (8).
  • the gain encoding unit 303 outputs G_min to the multiplexing unit 304 as gain encoding information.
  • Multiplexer 304 multiplexes band information m_max input from band selector 301, shape encoded information S_max input from shape encoder 302, and gain encoded information G_min input from gain encoder 303.
  • the obtained bit stream is output to the second layer decoding section 206, the third layer encoding section 208, and the encoded information integration section 209 as second layer encoded information.
  • FIG. 5 is a block diagram illustrating a main configuration of the second layer decoding unit 206.
  • the second layer decoding unit 206 includes a separation unit 401, a shape decoding unit 402, and a gain decoding unit 403.
  • Separating section 401 separates band information, shape coding information, and gain coding information from the second layer coding information output from second layer coding section 205, and obtains the obtained band information and shape coding information. The result is output to shape decoding section 402, and the gain encoded information is output to gain decoding section 403.
  • the shape decoding unit 402 obtains the shape value of the MDCT coefficient corresponding to the quantization target band indicated by the band information input from the separation unit 401 by decoding the shape coding information input from the separation unit 401, The obtained shape value is output to gain decoding section 403. Details of the processing of the shape decoding unit 402 will be described later.
  • the gain decoding unit 403 uses a built-in gain codebook to dequantize the gain encoded information input from the separating unit 401 to obtain a gain value.
  • Gain decoding section 403 obtains a decoded MDCT coefficient of the quantization target band using the gain value obtained and the shape value input from shape decoding section 402, and uses the obtained decoded MDCT coefficient as the second layer decoded spectrum. The result is output to the adding unit 207. Details of the processing of the gain decoding unit 403 will be described later.
  • the second layer decoding unit 206 having the above configuration performs the following operation.
  • Separating section 401 separates band information m_max, shape encoded information S_max, and gain encoded information G_min from the second layer encoded information input from second layer encoding section 205, and provides obtained band information m_max and shape
  • the encoded information S_max is output to the shape decoding unit 402, and the gain encoded information G_min is output to the gain decoding unit 403.
  • the shape decoding unit 402 incorporates a shape code book similar to the shape code book included in the shape coding unit 302 of the second layer coding unit 205, and uses the shape coding information S_max input from the separation unit 401 as an index. Search for shape code vectors.
  • the shape decoding unit 402 outputs the searched shape code vector to the gain decoding unit 403 as the shape value of the MDCT coefficient in the quantization target band indicated by the band information m_max input from the separation unit 401.
  • Gain decoding section 403 incorporates a gain codebook similar to the gain codebook included in gain encoding section 303 of second layer encoding section 205, and dequantizes the gain value according to the following equation (9). Again, the gain value is treated as an L-dimensional vector, and vector inverse quantization is performed. That is, the gain code vector GC j G_min corresponding to the gain encoded information G_min is directly set as the gain value.
  • the gain decoding unit 403 uses the gain value obtained by inverse quantization of the current frame and the shape value input from the shape decoding unit 402, according to the following equation (10), and the second layer decoded spectrum X2 "(K) calculates the decoded MDCT coefficient.
  • the gain value is Gain_q '. The value of (j ′′) is taken.
  • the gain decoding unit 403 outputs the second layer decoded spectrum X2 ′′ (k) calculated according to the above equation (10) to the adding unit 207.
  • FIG. 6 is a block diagram showing a main configuration of third layer encoding section 208.
  • the third layer encoding unit 208 includes a band selection unit 301, a shape encoding unit 302, a gain correction coefficient setting unit 601, a gain encoding unit 602, and a multiplexing unit 304.
  • the band selection unit 301 and the shape encoding unit 302 are the same as the components in the second layer encoding unit 205 except that the names of input and output information are different, and therefore the same code The description is omitted.
  • Band information is input from the band selection unit 301 to the gain correction coefficient setting unit 601.
  • This band information is information of a band selected as an encoding target by the third layer encoding unit 208, and is hereinafter referred to as “third layer band information”.
  • the second layer encoding information is input from the second layer encoding unit 205 to the gain correction coefficient setting unit 601.
  • This second layer encoded information includes information on the band selected as an encoding target by second layer encoding section 205.
  • the information on the band selected as the encoding target by the second layer encoding unit 205 is referred to as “second layer band information”.
  • Gain correction coefficient setting section 601 sets a correction coefficient used when quantizing the gain information for each subband indicated by the third layer band information from the second layer band information and the third layer band information. To do.
  • a gain correction coefficient ⁇ j is set as shown in the following equation (11).
  • each subband indicated by the third layer band information includes a subband indicated by the second layer band information (that is, the third layer encoding unit 208 encodes the second layer band information by the second layer encoding unit 205).
  • the gain correction coefficient ⁇ j is set as in the following equation (12).
  • the gain correction coefficient setting unit 601 outputs the set gain correction coefficient ⁇ j to the gain encoding unit 602.
  • the ideal gain is input from the shape encoding unit 302 to the gain encoding unit 602.
  • the gain encoding unit 602 receives the gain correction coefficient ⁇ j from the gain correction coefficient setting unit 601.
  • the gain encoding unit 602 corrects the ideal gain by dividing the ideal gain input from the shape encoding unit 302 by the gain correction coefficient ⁇ j as shown in Expression (13).
  • gain encoding section 602 quantizes ideal gain Gain_i ′ (j) corrected using gain correction coefficient ⁇ j according to equation (13) to obtain gain encoded information.
  • the gain encoding unit 602 uses the ideal gain Gain_i ′ (j) corrected using the gain correction coefficient ⁇ j according to Equation (13), and uses GQ pieces for each of the L subbands.
  • the built-in gain codebook consisting of the gain code vectors is searched for, and the index of the gain code vector that minimizes the square error Gainq_i (i) in equation (14) is obtained.
  • GC i j indicates a gain code vector constituting the gain codebook
  • i indicates an index of the gain code vector
  • j indicates an index of an element of the gain code vector.
  • L 5
  • Gain coding section 602 treats L subbands in one region as an L-dimensional vector and performs vector quantization.
  • the gain encoding unit 602 outputs the index G_min of the gain code vector that minimizes the square error Gainq_i (i) of the above equation (14) to the multiplexing unit 304 as gain encoding information.
  • gain correction coefficient setting section 601 includes a case where the subband indicated by the third layer band information does not include the subband indicated by the second layer band information in the lower layer, and a case where it is included.
  • the gain correction coefficient ⁇ j for correcting the ideal gain is switched as in Expression (11) or Expression (12).
  • the gain encoding unit 602 obtains the gain for the quantization target band quantized in the lower layer with respect to the corresponding element of the gain codebook.
  • a gain code vector that most closely approximates the ideal gain after correction is searched from the gain code book.
  • the subband indicated by the third layer bandwidth information that is the current layer includes the subband indicated by the second layer bandwidth information in the lower layer.
  • the ideal gain Gain_i (j) is corrected so as to increase.
  • the gain correction coefficient ⁇ j represents the distribution of gain code vectors in the quantization target band of the current layer, the distribution of gain code vectors in the quantization target band of the lower layer (the gain code vector in the gain codebook). It can be said that the coefficient approaches the size distribution.
  • the magnitude of the energy of each element of the gain code vector can be smoothed. Can be made.
  • FIG. 7 is a block diagram showing a main configuration inside decoding apparatus 103 shown in FIG.
  • the decoding apparatus 103 is a hierarchical decoding apparatus including three decoding hierarchies (layers).
  • the first layer, the second layer, and the third layer are referred to in order from the lowest bit rate.
  • the encoded information separation unit 701 receives the encoded information sent from the encoding apparatus 101 via the transmission path 102, separates the encoded information into encoded information of each layer, and performs decoding processing responsible for each decoding process To the output. Specifically, the encoded information separation unit 701 outputs the first layer encoded information included in the encoded information to the first layer decoding unit 702, and the second layer encoded information included in the encoded information. Are output to second layer decoding section 703 and third layer decoding section 704, and the third layer encoded information included in the encoded information is output to third layer decoding section 704.
  • First layer decoding section 702 decodes the first layer encoded information input from encoded information separating section 701 using, for example, a CELP speech decoding method to generate a first layer decoded signal.
  • the generated first layer decoded signal is output to adding section 707.
  • Second layer decoding section 703 decodes the second layer encoded information input from encoded information separating section 701, and outputs the obtained second layer decoded spectrum X2 ′′ (k) to adding section 705. Since the processing of the layer decoding unit 703 is the same as the processing of the second layer decoding unit 206 described above, description thereof is omitted here.
  • Third layer decoding section 704 decodes the third layer encoded information input from encoded information separating section 701, and outputs the obtained third layer decoded spectrum X3 ′′ (k) to adding section 705. The processing in the layer decoding unit 704 will be described later.
  • the adder 705 receives the second layer decoded spectrum X2 ′′ (k) from the second layer decoder 703. Also, the adder 705 receives the third layer decoded spectrum X3 ′′ from the third layer decoder 704. (K) is input. Adder 705 adds input second layer decoded spectrum X2 ′′ (k) and third layer decoded spectrum X3 ′′ (k), and performs orthogonal transform processing using the added spectrum as first added spectrum X4 ′′ (k) To the unit 706.
  • the orthogonal transform processing unit 706 first initializes a built-in buffer buf ′ (k) to a “0” value according to the following equation (15).
  • the orthogonal transform processing unit 706 receives the first addition spectrum X4 ′′ (k) and obtains the first addition decoded signal y ′′ (n) according to the following equation (16).
  • X5 (k) is a vector obtained by combining the first addition spectrum X4 ′′ (k) and the buffer buf ′ (k), and is obtained using the following equation (17).
  • the orthogonal transform processing unit 706 updates the buffer buf ′ (k) according to the following equation (18).
  • the orthogonal transform processing unit 706 outputs the first addition decoded signal y ′′ (n) to the adding unit 707.
  • the first layer decoded signal is input from the first layer decoding unit 702 to the adding unit 707. Further, the first addition decoded signal is input from the orthogonal transform processing unit 706 to the adding unit 707. Adder 707 adds the input first layer decoded signal and first added decoded signal, and outputs the added signal as an output signal.
  • FIG. 8 is a block diagram showing the main configuration of the third layer decoding unit 704.
  • the third layer decoding unit 704 includes a separation unit 801, a shape decoding unit 402, a gain correction coefficient setting unit 802, and a gain decoding unit 803.
  • the shape decoding part 402 is the same as the structure mentioned above, the same code
  • Separating section 801 separates band information, shape encoded information, and gain encoded information from the third layer encoded information input from encoded information separating section 701, and converts the obtained band information into shape decoding section 402 and gain It outputs to correction coefficient setting section 802, outputs shape coding information to shape decoding section 402, and outputs gain coding information to gain decoding section 803.
  • the band information is input from the separating unit 801 to the gain correction coefficient setting unit 802.
  • This band information is the third layer band information selected as an encoding target by the third layer encoding unit 208.
  • the gain correction coefficient setting unit 802 receives the second layer encoded information from the encoded information separation unit 701.
  • the second layer encoded information includes second layer band information selected as an encoding target by the second layer encoding unit 205.
  • Gain correction coefficient setting section 802 sets a correction coefficient used when quantizing gain information for each subband indicated by the third layer band information from the second layer band information and the third layer band information. To do.
  • the gain correction coefficient ⁇ j is set as shown in the above equation (11).
  • each subband indicated by the third layer band information includes a subband indicated by the second layer band information (that is, the third layer decoding unit 704 selects the second layer decoding unit 703 as a decoding target).
  • the gain correction coefficient ⁇ j is set as in the above equation (12).
  • the gain correction coefficient setting unit 802 outputs the set gain correction coefficient ⁇ j to the gain decoding unit 803.
  • the gain decoding unit 803 directly dequantizes the gain encoded information input from the separation unit 801 using a built-in gain codebook to obtain a gain value.
  • gain decoding section 803 has a built-in gain codebook similar to gain encoding section 602 of third layer encoding section 208, and calculates gain correction coefficient ⁇ j according to the following equation (19).
  • the gain value Gain_q ′ is obtained by performing inverse quantization of the gain.
  • gain decoding section 803 treats L subbands in one region as an L-dimensional vector, and performs vector inverse quantization.
  • gain decoding section 803 uses the gain value obtained by inverse quantization of the current frame and the shape value input from shape decoding section 402 as the third layer decoded spectrum according to the following equation (20).
  • Decode MDCT coefficients are calculated.
  • the calculated decoded MDCT coefficient is denoted as X3 ′′ (k).
  • the gain value Gain_q ′ (j) takes the value of Gain_q ′ (j ′′).
  • Gain decoding section 803 outputs third layer decoded spectrum X3 ′′ (k) calculated according to equation (20) to addition section 705.
  • the third layer encoding unit 208 performs a quantization method for gain information (energy information) of the quantization target band of the current layer.
  • gain encoding section 602 Quantization is performed after correcting Gain_i (j) to be large.
  • Gain_i (j) the energy magnitude of each element of the gain codebook can be smoothed even when vector quantization is performed on a plurality of gain information having greatly different energies. Therefore, it is possible to efficiently vector quantize the gain information of a plurality of subbands consisting of subbands that are selected and quantized in the lower layer and subbands that are not, using the same gain codebook, The quality of the decoded signal can be improved.
  • the present invention is not limited to this, and can be similarly applied to setting values other than those described above.
  • the setting method of the gain correction coefficient is not limited to the setting method as described above, and may be set by statistical calculation using many input samples.
  • the configuration has been described in which the ideal gain is first divided by the gain correction coefficient to flatten the energy and the value is vector quantized.
  • the present invention is not limited to this, and the gain codebook to be searched is described. The same applies to a configuration in which each gain code vector is multiplied by a gain correction coefficient.
  • the number of calculations using the gain correction coefficient is reduced compared to the above configuration, so that the quality can be improved without significantly increasing the calculation amount.
  • the method has been described in which the gain values of the entire vector are made uniform by increasing the gain value of the subband quantized in the lower layer.
  • the present invention is not limited to this. Contrary to the above method, the present invention can be similarly applied to the case where the gain values of the entire vector are made uniform by reducing the gain values of the subbands not quantized in the lower layer.
  • a configuration has been described in which a gain code vector that minimizes a square error is searched for a value obtained by dividing an ideal gain by a gain correction coefficient, and a gain value is encoded.
  • the present invention is not limited to this, and the present invention can be similarly applied to the case where the square error is calculated based on the magnitude of the gain correction coefficient.
  • a specific method will be described below. For example, when the value of the gain correction coefficient is 0.5, the value after dividing by the gain correction coefficient is twice the original gain value. Therefore, the corresponding subband is calculated by multiplying the square error value by 0.5. Thereby, the distance (error) in the distribution before correction by the gain correction coefficient can be calculated, and as a result, the quality of the decoded signal can be improved.
  • the present invention is not limited to this, and there is no first layer encoding unit. The same applies to cases.
  • the first layer encoding unit can be similarly applied to a configuration in which the frequency component is encoded in the same manner as the second layer encoding unit.
  • the frequency components of the entire band are not quantized by the first layer encoding unit, so the second layer encoding unit is also described in the present embodiment.
  • a configuration in which a gain component (energy component) quantization method such as a three-layer encoding unit is switched can also be applied. In that case, the same gain correction coefficient may be used in the encoding section of each layer, or different gain correction coefficients may be used in the encoding section of each layer.
  • a different gain correction coefficient can be set according to the number of times selected as a quantization target band in the lower layer.
  • the gain correction coefficient in this case can also be statistically calculated and set using many input samples.
  • the present invention can be applied to the decoding apparatus in the same manner for each configuration corresponding to the configuration of the encoding apparatus.
  • the encoding apparatus includes three encoding layers (three layers) has been described.
  • the present invention is not limited to this, and the present invention can be similarly applied to configurations other than three layers. .
  • the configuration in which the first layer encoding unit / decoding unit of the lowest layer employs the CELP encoding / decoding method has been described, but the present invention is not limited to this, and the CELP encoding / decoding method is used. The same applies to the case where there is no layer that employs the encoding / decoding method.
  • an adder that performs addition and subtraction on the time axis on the encoding device and the decoding device is not required for a configuration that is a layer of the frequency transform encoding / decoding method.
  • the configuration has been described in which, in the encoding device, the differential signal between the first layer decoded signal and the input signal is calculated and then orthogonally transformed to calculate the differential spectrum.
  • This is not limited to this, and the same applies to a configuration in which an orthogonal transform process is first performed on the input signal and the first layer decoded signal, and the difference spectrum is calculated after calculating the input spectrum and the first layer decoded spectrum, respectively. Applicable to.
  • the decoding apparatus performs processing using the encoded information transmitted from the encoding apparatus according to each of the above embodiments, but the present invention is not limited to this, and necessary parameters and As long as the encoded information includes data, the process can be performed even if it is not necessarily the encoded information from the encoding device in each of the above embodiments.
  • the present invention can also be applied to a case where a signal processing program is recorded and written on a machine-readable recording medium such as a memory, a disk, a tape, a CD, or a DVD, and the operation is performed. Actions and effects similar to those of the form can be obtained.
  • each functional block used in the description of the present embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable / processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the encoding apparatus, decoding apparatus and these methods according to the present invention can improve the quality of a decoded signal in a configuration in which a quantization target band is hierarchically selected and encoded / decoded. It can be applied to mobile communication systems.

Abstract

Disclosed is an encoding device, wherein the energy information of a given layer is efficiently encoded using a scalable encoding method in which the band to be encoded is selected in each layer, and the quality of decoded signals can be enhanced. An encoding device (101) is equipped with: a second layer encoding unit (205) which selects from among a plurality of sub-bands, the frequency regions of which are divided, a first band to be quantized in a first layer differential spectrum as a first input signal, and generates a second layer encoded information included in which is the first band information of said band; a second layer decoding unit (206) which generates a first decoding signal by using the second layer encoded information; an adding unit (207) which generates a second layer differential spectrum as a second input signal by using the first input signal and the first decoding signal; and a third layer encoding unit (208) which generates a third layer encoded information included in which is a second band information obtained by selecting a second band to be quantized in the second input signal, and a gain (energy information) which was corrected by using the first band information and the second band information.

Description

符号化装置、復号装置およびこれらの方法Encoding device, decoding device and methods thereof
 本発明は、信号を符号化して伝送する通信システムに用いられる符号化装置、復号装置およびこれらの方法に関する。 The present invention relates to an encoding device, a decoding device, and these methods used in a communication system that encodes and transmits a signal.
 インターネット通信に代表されるパケット通信システムや、移動通信システムなどで音声・楽音信号を伝送する場合、音声・楽音信号の伝送効率を高めるため、圧縮・符号化技術がよく使われる。また、近年では、単に低ビットレートで音声・楽音信号を符号化するという一方で、より広帯域の音声・楽音信号を高品質に符号化する技術に対するニーズが高まっている。 When transmitting voice / musical sound signals in packet communication systems typified by Internet communication or mobile communication systems, compression / coding techniques are often used to increase the transmission efficiency of voice / musical sound signals. In recent years, there has been an increasing need for a technique for encoding a voice / music signal of a wider band with high quality while simply encoding a voice / music signal at a low bit rate.
 このようなニーズに対して、複数の符号化技術を階層的に統合する様々な技術が開発されてきている。例えば非特許文献1では、基本構成単位をモジュール化されたTwinVQ(Transform Domain Weighted Interleave Vector Quantization;周波数領域重み付きインターリーブベクトル量子化)を用いて所望の周波数帯域のスペクトル(MDCT(Modified Discrete Cosine Transform)係数)を階層的に符号化する手法が開示されている。当該モジュールを共通化して複数回使用することにより、シンプルかつ自由度の高いスケーラブル符号化を実現できる。この手法では、各階層(レイヤ)の符号化対象となるサブバンドは予め定められている構成が基本となるが、入力信号の性質に応じて各階層(レイヤ)の符号化対象となるサブバンドの位置を予め定められた帯域の中で変動させる構成も開示されている。 In response to such needs, various technologies for hierarchically integrating a plurality of encoding technologies have been developed. For example, in Non-Patent Document 1, a spectrum of a desired frequency band (MDCT (Modified Discrete Cosine Transform)) is obtained using TwinVQ (Transform Domain Weighted Interleave Vector Quantization) in which the basic structural unit is modularized. A method of hierarchically encoding (coefficients) is disclosed. By using the module in common and using it a plurality of times, a simple and highly flexible scalable encoding can be realized. In this method, the subbands to be encoded in each layer (layer) are basically configured in advance, but the subbands to be encoded in each layer (layer) according to the nature of the input signal. A configuration is also disclosed in which the position of is fluctuated within a predetermined band.
 しかしながら、上記非特許文献1では、各階層(レイヤ)において符号化対象となるサブバンドを複数の候補から選択する場合において、選択したサブバンドが既に下位レイヤで符号化されているかどうかを考慮せずに符号化を行っている。したがって、例えば、既に下位レイヤで選択されたサブバンドのエネルギ情報をベクトル量子化する際には、各サブバンドの残差エネルギの大きさに関係なくベクトル量子化することになり、高い符号化性能を得ることができないといった問題点がある。 However, in the above Non-Patent Document 1, when a subband to be encoded is selected from a plurality of candidates in each layer (layer), consider whether the selected subband has already been encoded in a lower layer. Encoding is performed. Therefore, for example, when vector quantization is performed on energy information of subbands already selected in the lower layer, vector quantization is performed regardless of the magnitude of the residual energy of each subband, resulting in high coding performance. There is a problem that cannot be obtained.
 本発明の目的は、各階層(レイヤ)において符号化対象となる帯域を選択するスケーラブル符号化方式において、現レイヤのエネルギ情報を効率的に符号化し、復号信号の品質を改善することができる符号化装置、復号装置およびこれらの方法を提供することである。 An object of the present invention is to provide a code that can efficiently encode energy information of the current layer and improve the quality of a decoded signal in a scalable coding scheme that selects a band to be coded in each layer (layer). It is to provide an encoding device, a decoding device, and these methods.
 本発明に係る符号化装置の一つの態様は、少なくとも2つの符号化レイヤを有する符号化装置であって、周波数領域の第1入力信号を入力し、前記周波数領域を分割した複数のサブバンドの中から前記第1入力信号の第1量子化対象帯域を選択し、前記第1量子化対象帯域の前記第1入力信号を符号化して、前記第1量子化対象帯域の第1帯域情報を含む第1符号化情報を生成するとともに、前記第1符号化情報を用いて第1復号信号を生成し、前記第1入力信号と前記第1復号信号とを用いて第2入力信号を生成する第1レイヤ符号化手段と、前記第2入力信号と前記第1符号化情報とを入力し、前記複数のサブバンドの中から前記第2入力信号の第2量子化対象帯域を選択して第2帯域情報を求めるとともに、前記第2量子化対象帯域の前記第2入力信号の利得を求め、前記第1符号化情報を用いて、前記第2量子化対象帯域の前記第2入力信号を符号化して、前記第2帯域情報と前記利得を符号化して得られる利得符号化情報とを含む第2符号化情報を生成する第2レイヤ符号化手段と、を具備する。 One aspect of an encoding apparatus according to the present invention is an encoding apparatus having at least two encoding layers, which receives a first input signal in a frequency domain and has a plurality of subbands obtained by dividing the frequency domain. A first quantization target band of the first input signal is selected from among the first input signals in the first quantization target band, and includes first band information of the first quantization target band Generating first encoded information, generating a first decoded signal using the first encoded information, and generating a second input signal using the first input signal and the first decoded signal. A first layer encoding means, the second input signal and the first encoded information are input, a second quantization target band of the second input signal is selected from the plurality of subbands, and second While obtaining band information, the second quantization target band A gain of the second input signal is obtained, and the second input signal of the second quantization target band is encoded using the first encoded information, and the second band information and the gain are encoded. Second layer encoding means for generating second encoded information including gain encoded information obtained.
 本発明に係る復号装置の一つの態様は、少なくとも2つの符号化レイヤを有する符号化装置において生成された情報を受信して復号する復号装置であって、前記符号化装置の第1レイヤの符号化により得られた、周波数領域を分割した複数のサブバンドの中から前記第1レイヤの第1量子化対象帯域を選択して生成された第1帯域情報を含む前記第1符号化情報と、前記第1符号化情報を用いた前記符号化装置の第2レイヤの符号化により得られた、前記複数のサブバンドの中から前記第2レイヤの第2量子化対象帯域を選択して生成された第2帯域情報を含む前記第2符号化情報と、を有する前記情報を受信する受信手段と、前記情報から得られる前記第1符号化情報を入力し、前記第1符号化情報に含まれる前記第1帯域情報に基づいて設定される前記第1量子化対象帯域に対する第1復号信号を生成する第1レイヤ復号手段と、前記情報から得られる前記第1符号化情報及び前記第2符号化情報を入力し、前記第2符号化情報に含まれる前記第2帯域情報に基づいて設定される前記第2量子化対象帯域に対する信号に、前記第1符号化情報及び前記第2符号化情報を用いた補正を行って第2復号信号を生成する第2レイヤ復号手段と、を具備する。 One aspect of a decoding apparatus according to the present invention is a decoding apparatus that receives and decodes information generated in an encoding apparatus having at least two encoding layers, the first layer code of the encoding apparatus The first encoded information including the first band information generated by selecting the first quantization target band of the first layer from the plurality of subbands obtained by dividing the frequency domain; Generated by selecting the second quantization target band of the second layer from the plurality of subbands obtained by encoding of the second layer of the encoding device using the first encoding information. The second encoded information including the second band information, and receiving means for receiving the information; and the first encoded information obtained from the information is input and included in the first encoded information Based on the first band information First layer decoding means for generating a first decoded signal for the set first quantization target band, the first encoded information and the second encoded information obtained from the information are input, and the second Secondly, a signal for the second quantization target band set based on the second band information included in the encoded information is corrected using the first encoded information and the second encoded information. Second layer decoding means for generating a decoded signal.
 本発明に係る符号化方法の一つの態様は、少なくとも2つの符号化レイヤで符号化を行う符号化方法であって、周波数領域の第1入力信号を入力し、前記周波数領域を分割した複数のサブバンドの中から前記第1入力信号の第1量子化対象帯域を選択し、前記第1量子化対象帯域の前記第1入力信号を符号化して、前記第1量子化対象帯域の第1帯域情報を含む第1符号化情報を生成するとともに、前記第1符号化情報を用いて第1復号信号を生成し、前記第1入力信号と前記第1復号信号とを用いて第2入力信号を生成する第1レイヤ符号化ステップと、前記第2入力信号と前記第1符号化情報とを入力し、前記複数のサブバンドの中から前記第2入力信号の第2量子化対象帯域を選択して第2帯域情報を求めるとともに、前記第2量子化対象帯域の前記第2入力信号の利得を求め、前記第1符号化情報を用いて、前記第2量子化対象帯域の前記第2入力信号を符号化して、前記第2帯域情報と前記利得を符号化して得られる利得符号化情報とを含む第2符号化情報を生成する第2レイヤ符号化ステップと、を具備する。 One aspect of an encoding method according to the present invention is an encoding method in which encoding is performed with at least two encoding layers, and a plurality of frequency domain first input signals are input and the frequency domain is divided. A first quantization target band of the first input signal is selected from the subbands, the first input signal of the first quantization target band is encoded, and the first band of the first quantization target band is encoded. First encoded information including information is generated, a first decoded signal is generated using the first encoded information, and a second input signal is generated using the first input signal and the first decoded signal. A first layer encoding step to be generated, the second input signal and the first encoding information are input, and a second quantization target band of the second input signal is selected from the plurality of subbands. To obtain the second band information and the second quantum A gain of the second input signal in the target band is obtained, and the second input signal in the second quantization target band is encoded using the first encoded information, and the second band information and the gain are calculated. A second layer encoding step for generating second encoded information including gain encoded information obtained by encoding.
 本発明に係る復号方法の一つの態様は、少なくとも2つの符号化レイヤを有する符号化装置において生成された情報を受信して復号する復号方法であって、前記符号化装置の第1レイヤの符号化により得られた、周波数領域を分割した複数のサブバンドの中から前記第1レイヤの第1量子化対象帯域を選択して生成された第1帯域情報を含む前記第1符号化情報と、前記第1符号化情報を用いた前記符号化装置の第2レイヤの符号化により得られた、前記複数のサブバンドの中から前記第2レイヤの第2量子化対象帯域を選択して生成された第2帯域情報を含む前記第2符号化情報と、を有する前記情報を受信する受信ステップと、前記情報から得られる前記第1符号化情報を入力し、前記第1符号化情報に含まれる前記第1帯域情報に基づいて設定される前記第1量子化対象帯域に対する第1復号信号を生成する第1レイヤ復号ステップと、前記情報から得られる前記第1符号化情報及び前記第2符号化情報を入力し、前記第2符号化情報に含まれる前記第2帯域情報に基づいて設定される前記第2量子化対象帯域に対する信号に、前記第1符号化情報及び前記第2符号化情報を用いた補正を行って第2復号信号を生成する第2レイヤ復号ステップと、を具備する。 One aspect of a decoding method according to the present invention is a decoding method for receiving and decoding information generated in an encoding device having at least two encoding layers, the first layer code of the encoding device The first encoded information including the first band information generated by selecting the first quantization target band of the first layer from the plurality of subbands obtained by dividing the frequency domain; Generated by selecting the second quantization target band of the second layer from the plurality of subbands obtained by encoding of the second layer of the encoding device using the first encoding information. The second encoded information including the second band information, a reception step for receiving the information, and the first encoded information obtained from the information is input and included in the first encoded information Based on the first band information A first layer decoding step for generating a first decoded signal for the first quantization target band that is set, and input the first encoded information and the second encoded information obtained from the information, A signal for the second quantization target band set based on the second band information included in the second encoded information is corrected using the first encoded information and the second encoded information, A second layer decoding step of generating two decoded signals.
 本発明によれば、符号化対象とする帯域を階層(レイヤ)毎に選択する階層符号化(スケーラブル符号化)方式において、下位レイヤの符号化結果(量子化された帯域)に基づいて現レイヤの量子化対象帯域のエネルギ情報の符号化方法を切り替えることにより、効率的にエネルギ情報を符号化でき、その結果復号信号の品質を改善することができる。 According to the present invention, in a hierarchical coding (scalable coding) method in which a band to be coded is selected for each layer (layer), the current layer is based on a lower layer coding result (quantized band). By switching the encoding method of energy information in the quantization target band, energy information can be efficiently encoded, and as a result, the quality of the decoded signal can be improved.
本発明の一実施の形態に係る符号化装置および復号装置を有する通信システムの構成を示すブロック図The block diagram which shows the structure of the communication system which has the encoding apparatus and decoding apparatus which concern on one embodiment of this invention 図1に示した符号化装置の内部の主要な構成を示すブロック図The block diagram which shows the main structures inside the encoding apparatus shown in FIG. 図2に示した第2レイヤ符号化部の内部の主要な構成を示すブロック図The block diagram which shows the main structures inside the 2nd layer encoding part shown in FIG. 上記実施の形態に係るリージョンの構成を示す図The figure which shows the structure of the region which concerns on the said embodiment. 図2に示した第2レイヤ復号部の内部の主要な構成を示すブロック図The block diagram which shows the main structures inside the 2nd layer decoding part shown in FIG. 図2に示した第3レイヤ符号化部の内部の主要な構成を示すブロック図The block diagram which shows the main structures inside the 3rd layer encoding part shown in FIG. 図1に示した復号装置の内部の主要な構成を示すブロック図The block diagram which shows the main structures inside the decoding apparatus shown in FIG. 図7に示した第3レイヤ復号部の内部の主要な構成を示すブロック図The block diagram which shows the main structures inside the 3rd layer decoding part shown in FIG.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、本発明に係る符号化装置および復号装置として、音声符号化装置および音声復号装置を例にとって説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that a speech encoding device and a speech decoding device will be described as examples of the encoding device and the decoding device according to the present invention.
 (実施の形態)
 図1は、本発明の実施の形態に係る符号化装置および復号装置を有する通信システムの構成を示すブロック図である。図1において、通信システムは、符号化装置101と復号装置103とを備え、それぞれ伝送路102を介して通信可能な状態となっている。なお、符号化装置101および復号装置103はいずれも、通常、基地局装置あるいは通信端末装置等に搭載されて用いられる。
(Embodiment)
FIG. 1 is a block diagram showing a configuration of a communication system having an encoding device and a decoding device according to an embodiment of the present invention. In FIG. 1, the communication system includes an encoding device 101 and a decoding device 103, and can communicate with each other via a transmission path 102. Note that both the encoding apparatus 101 and the decoding apparatus 103 are normally mounted and used in a base station apparatus or a communication terminal apparatus.
 符号化装置101は、入力信号をNサンプルずつ区切り(Nは自然数)、Nサンプルを1フレームとしてフレーム毎に符号化を行う。ここで、符号化の対象となる入力信号をx(n)と表すこととする。n(n=0、…、N-1)は、Nサンプルずつ区切られた入力信号のうち、信号要素のn+1番目を示す。符号化装置101は、符号化された入力情報(以下「符号化情報」という)を、伝送路102を介して復号装置103に送信する。 The encoding apparatus 101 divides the input signal into N samples (N is a natural number), and encodes each frame with N samples as one frame. Here, an input signal to be encoded is represented as x (n). n (n = 0,..., N−1) represents the (n + 1) th signal element in the input signal divided by N samples. The encoding apparatus 101 transmits encoded input information (hereinafter referred to as “encoding information”) to the decoding apparatus 103 via the transmission path 102.
 復号装置103は、伝送路102を介して符号化装置101から送信された符号化情報を受信し、これを復号し出力信号を得る。 The decoding device 103 receives the encoded information transmitted from the encoding device 101 via the transmission path 102, decodes it, and obtains an output signal.
 図2は、図1に示した符号化装置101の内部の主要な構成を示すブロック図である。符号化装置101は、一例として3つの符号化階層(レイヤ)からなる階層符号化装置とする。ここで、ビットレートの低い方から順に、第1レイヤ、第2レイヤ、第3レイヤと呼ぶことにする。 FIG. 2 is a block diagram showing a main configuration inside the encoding apparatus 101 shown in FIG. As an example, the encoding apparatus 101 is a hierarchical encoding apparatus including three encoding hierarchies (layers). Here, the first layer, the second layer, and the third layer are referred to in order from the lowest bit rate.
 第1レイヤ符号化部201は、入力信号に対して、例えばCELP(Code Excited Linear Prediction)方式の音声符号化方法を用いて符号化を行って、第1レイヤ符号化情報を生成し、生成した第1レイヤ符号化情報を第1レイヤ復号部202および符号化情報統合部209に出力する。 The first layer encoding unit 201 generates the first layer encoded information by encoding the input signal using, for example, a CELP (Code Excited Linear Prediction) method audio encoding method. The first layer encoded information is output to first layer decoding section 202 and encoded information integration section 209.
 第1レイヤ復号部202は、第1レイヤ符号化部201から入力される第1レイヤ符号化情報に対して、例えばCELP方式の音声復号方法を用いて復号を行って、第1レイヤ復号信号を生成し、生成した第1レイヤ復号信号を加算部203に出力する。 First layer decoding section 202 decodes the first layer encoded information input from first layer encoding section 201 using, for example, a CELP speech decoding method, and converts the first layer decoded signal to The generated first layer decoded signal is output to adding section 203.
 加算部203は、第1レイヤ復号信号の極性を反転させて、入力信号に加算することにより、入力信号と第1レイヤ復号信号との差分信号を算出し、得られた差分信号を第1レイヤ差分信号として直交変換処理部204に出力する。 The adding unit 203 inverts the polarity of the first layer decoded signal and adds it to the input signal to calculate a difference signal between the input signal and the first layer decoded signal, and the obtained difference signal is used as the first layer. It outputs to the orthogonal transformation process part 204 as a difference signal.
 直交変換処理部204は、バッファbuf1(n)(n=0、…、N-1)を内部に有し、第1レイヤ差分信号x1(n)を修正離散コサイン変換(MDCT:Modified Discrete Cosine Transform)することにより、周波数領域パラメータ(周波数領域信号)に変換する。 The orthogonal transform processing unit 204 has a buffer buf1 (n) (n = 0,..., N−1) inside, and modifies the first layer differential signal x1 (n) by a modified discrete cosine transform (MDCT). ) To convert to a frequency domain parameter (frequency domain signal).
 次に、直交変換処理部204における直交変換処理について、その計算手順と内部バッファへのデータ出力に関して説明する。 Next, the orthogonal transformation processing in the orthogonal transformation processing unit 204 will be described with respect to the calculation procedure and data output to the internal buffer.
 まず、直交変換処理部204は、下記の式(1)によりバッファbuf1(n)を、「0」を初期値として初期化する。
Figure JPOXMLDOC01-appb-M000001
First, the orthogonal transform processing unit 204 initializes the buffer buf1 (n) using “0” as an initial value according to the following equation (1).
Figure JPOXMLDOC01-appb-M000001
 次いで、直交変換処理部204は、下記の式(2)に従って、第1レイヤ差分信号x1(n)に対し修正離散コサイン変換(MDCT)を行い、第1レイヤ差分信号x1(n)のMDCT係数(以下「第1レイヤ差分スペクトル」と呼ぶ)X1(k)を求める。
Figure JPOXMLDOC01-appb-M000002
Next, the orthogonal transform processing unit 204 performs a modified discrete cosine transform (MDCT) on the first layer difference signal x1 (n) according to the following equation (2), and the MDCT coefficient of the first layer difference signal x1 (n): X1 (k) is obtained (hereinafter referred to as “first layer difference spectrum”).
Figure JPOXMLDOC01-appb-M000002
 ここで、kは1フレームにおける各サンプルのインデックスを示す。直交変換処理部204は、第1レイヤ差分信号x1(n)とバッファbuf1(n)とを結合させたベクトルであるx1’(n)を下記の式(3)により求める。
Figure JPOXMLDOC01-appb-M000003
Here, k represents the index of each sample in one frame. The orthogonal transform processing unit 204 obtains x1 ′ (n), which is a vector obtained by combining the first layer differential signal x1 (n) and the buffer buf1 (n), using the following equation (3).
Figure JPOXMLDOC01-appb-M000003
 次に、直交変換処理部204は、式(4)によりバッファbuf1(n)を更新する。
Figure JPOXMLDOC01-appb-M000004
Next, the orthogonal transform processing unit 204 updates the buffer buf1 (n) using Expression (4).
Figure JPOXMLDOC01-appb-M000004
 そして、直交変換処理部204は、第1レイヤ差分スペクトルX1(k)を第2レイヤ符号化部205、および加算部207に出力する。 Then, the orthogonal transform processing unit 204 outputs the first layer difference spectrum X1 (k) to the second layer encoding unit 205 and the adding unit 207.
 第2レイヤ符号化部205は、直交変換処理部204から入力される第1レイヤ差分スペクトルX1(k)を用いて第2レイヤ符号化情報を生成し、生成した第2レイヤ符号化情報を、第2レイヤ復号部206、第3レイヤ符号化部208、および符号化情報統合部209に出力する。なお、第2レイヤ符号化部205の詳細については後述する。 The second layer encoding unit 205 generates the second layer encoded information using the first layer difference spectrum X1 (k) input from the orthogonal transform processing unit 204, and the generated second layer encoded information is Output to second layer decoding section 206, third layer encoding section 208, and encoded information integration section 209. Details of second layer encoding section 205 will be described later.
 第2レイヤ復号部206は、第2レイヤ符号化部205から入力される第2レイヤ符号化情報を復号し、第2レイヤ復号スペクトルを算出する。次に、第2レイヤ復号部206は、生成した第2レイヤ復号スペクトルを加算部207に出力する。なお、第2レイヤ復号部206の詳細については後述する。 The second layer decoding unit 206 decodes the second layer encoded information input from the second layer encoding unit 205 and calculates a second layer decoded spectrum. Next, second layer decoding section 206 outputs the generated second layer decoded spectrum to addition section 207. Details of second layer decoding section 206 will be described later.
 加算部207は、第2レイヤ復号スペクトルの極性を反転させて、第1レイヤ差分スペクトルに加算することにより、第1レイヤ差分スペクトルと第2レイヤ復号スペクトルとの差分スペクトルを算出し、得られた差分スペクトルを第2レイヤ差分スペクトルとして第3レイヤ符号化部208に出力する。 The adding unit 207 calculates the difference spectrum between the first layer difference spectrum and the second layer decoded spectrum by inverting the polarity of the second layer decoded spectrum and adding the result to the first layer difference spectrum. The difference spectrum is output to third layer encoding section 208 as the second layer difference spectrum.
 第3レイヤ符号化部208は、第2レイヤ符号化部205から入力される第2レイヤ符号化情報と、加算部207から入力される第2レイヤ差分スペクトルとを用いて第3レイヤ符号化情報を生成し、生成した第3レイヤ符号化情報を符号化情報統合部209に出力する。なお、第3レイヤ符号化部208の詳細については後述する。 Third layer encoding section 208 uses the second layer encoded information input from second layer encoding section 205 and the second layer differential spectrum input from adding section 207 to generate third layer encoded information. And the generated third layer encoded information is output to the encoded information integration section 209. Details of third layer encoding section 208 will be described later.
 符号化情報統合部209は、第1レイヤ符号化部201から入力される第1レイヤ符号化情報と、第2レイヤ符号化部205から入力される第2レイヤ符号化情報と、第3レイヤ符号化部208から入力される第3レイヤ符号化情報とを統合する。そして、符号化情報統合部209は、統合された情報源符号に対し、必要であれば伝送誤り符号などを付加した上でこれを符号化情報として伝送路102に出力する。 The encoding information integration unit 209 includes first layer encoding information input from the first layer encoding unit 201, second layer encoding information input from the second layer encoding unit 205, and third layer encoding. The third layer encoded information input from the encoding unit 208 is integrated. The encoded information integration unit 209 adds a transmission error code or the like to the integrated information source code, if necessary, and outputs this to the transmission path 102 as encoded information.
 図3は、第2レイヤ符号化部205の主要な構成を示すブロック図である。 FIG. 3 is a block diagram showing the main configuration of second layer encoding section 205.
 この図において、第2レイヤ符号化部205は、帯域選択部301、形状符号化部302、利得符号化部303、および多重化部304を備える。 In this figure, the second layer encoding unit 205 includes a band selection unit 301, a shape encoding unit 302, a gain encoding unit 303, and a multiplexing unit 304.
 帯域選択部301は、直交変換処理部204から入力される第1レイヤ差分スペクトルを複数のサブバンドに分割し、複数のサブバンドから量子化対象となる帯域(量子化対象帯域)を選択し、選択した帯域を示す帯域情報を形状符号化部302、多重化部304に出力する。また、帯域選択部301は、第1レイヤ差分スペクトルを形状符号化部302に出力する。なお、形状符号化部302への第1レイヤ差分スペクトルの入力は、直交変換処理部204から帯域選択部301への入力とは別に、直交変換処理部204から形状符号化部302へ直接入力されるようにしても良い。帯域選択部301の処理の詳細は後述する。 The band selection unit 301 divides the first layer difference spectrum input from the orthogonal transform processing unit 204 into a plurality of subbands, selects a band to be quantized (quantization target band) from the plurality of subbands, Band information indicating the selected band is output to the shape encoding unit 302 and the multiplexing unit 304. Band selection section 301 also outputs the first layer difference spectrum to shape coding section 302. Note that the input of the first layer difference spectrum to the shape encoding unit 302 is directly input from the orthogonal transform processing unit 204 to the shape encoding unit 302 separately from the input from the orthogonal transform processing unit 204 to the band selection unit 301. You may make it. Details of the processing of the band selection unit 301 will be described later.
 形状符号化部302は、帯域選択部301から入力される第1レイヤ差分スペクトルのうち、帯域選択部301から入力される帯域情報が示す帯域に対応するスペクトル(MDCT係数)を用いて形状情報の符号化を行って形状符号化情報を生成し、生成した形状符号化情報を多重化部304に出力する。また、形状符号化部302は、形状符号化時に算出される理想利得(利得情報)を求め、求められた理想利得を利得符号化部303に出力する。形状符号化部302の処理の詳細は後述する。 The shape encoding unit 302 uses the spectrum (MDCT coefficient) corresponding to the band indicated by the band information input from the band selection unit 301 among the first layer difference spectra input from the band selection unit 301. Encoding is performed to generate shape encoding information, and the generated shape encoding information is output to the multiplexing unit 304. Further, shape coding section 302 obtains an ideal gain (gain information) calculated at the time of shape coding, and outputs the obtained ideal gain to gain coding section 303. Details of the processing of the shape encoding unit 302 will be described later.
 利得符号化部303には、形状符号化部302から理想利得が入力される。利得符号化部303は、形状符号化部302から入力される理想利得を量子化して利得符号化情報を得る。利得符号化部303は、得られる利得符号化情報を多重化部304に出力する。利得符号化部303の処理の詳細は後述する。 The ideal gain is input from the shape encoding unit 302 to the gain encoding unit 303. The gain encoding unit 303 quantizes the ideal gain input from the shape encoding unit 302 to obtain gain encoded information. Gain coding section 303 outputs gain coding information obtained to multiplexing section 304. Details of the processing of the gain encoding unit 303 will be described later.
 多重化部304は、帯域選択部301から入力される帯域情報、形状符号化部302から入力される形状符号化情報、および利得符号化部303から入力される利得符号化情報を多重化し、得られるビットストリームを第2レイヤ符号化情報として、第2レイヤ復号部206、第3レイヤ符号化部208、および符号化情報統合部209に出力する。 The multiplexing unit 304 multiplexes the band information input from the band selection unit 301, the shape encoding information input from the shape encoding unit 302, and the gain encoding information input from the gain encoding unit 303. The resulting bitstream is output as second layer encoded information to second layer decoding section 206, third layer encoding section 208, and encoded information integration section 209.
 上記のような構成を有する第2レイヤ符号化部205は以下の動作を行う。 The second layer encoding unit 205 having the above configuration performs the following operation.
 帯域選択部301には、直交変換処理部204から第1レイヤ差分スペクトルX1(k)が入力される。 The first layer difference spectrum X1 (k) is input from the orthogonal transform processing unit 204 to the band selection unit 301.
 帯域選択部301は、まず、第1レイヤ差分スペクトルX1(k)を複数のサブバンドに分割する。ここでは、J(Jは自然数)個のサブバンドに均等に分割する場合を例に挙げて説明する。そして、帯域選択部301は、J個のサブバンドの中で連続するL(Lは自然数)個のサブバンドを選択し、M(Mは自然数)種類のサブバンドのグループを得る。以下、このM種類のサブバンドのグループをリージョンと呼ぶ。 Band selection section 301 first divides first layer difference spectrum X1 (k) into a plurality of subbands. Here, a case will be described as an example where J (J is a natural number) subbands are evenly divided. Then, the band selection unit 301 selects L (L is a natural number) subbands among the J subbands, and obtains M (M is a natural number) types of subband groups. Hereinafter, this group of M types of subbands is referred to as a region.
 図4は、帯域選択部301において得られるリージョンの構成を例示する図である。 FIG. 4 is a diagram illustrating a configuration of a region obtained by the band selection unit 301.
 この図において、サブバンドの数は17個(J=17)であり、リージョンの種類は8種類(M=8)であり、各リージョンは連続する5個(L=5)のサブバンドで構成されている。そのうち、例えばリージョン4はサブバンド6~10からなる。 In this figure, the number of subbands is 17 (J = 17), the types of regions are 8 (M = 8), and each region is composed of 5 consecutive subbands (L = 5). Has been. Among them, for example, the region 4 includes subbands 6 to 10.
 次いで、帯域選択部301は、下記の式(5)に従い、M種類の各リージョンの平均エネルギE1(m)を算出する。
Figure JPOXMLDOC01-appb-M000005
Next, the band selection unit 301 calculates the average energy E1 (m) of each of the M types of regions according to the following equation (5).
Figure JPOXMLDOC01-appb-M000005
 この式において、jはJ個の各サブバンドのインデックスを示し、mは、M種類の各リージョンのインデックスを示す。なお、S(m)は、リージョンmを構成するL個のサブバンドのインデックスのうちの最小値を示し、B(j)は、サブバンドjを構成する複数のMDCT係数のインデックスのうちの最小値を示す。W(j)は、サブバンドjのバンド幅を示し、以下の説明では、J個の各サブバンドのバンド幅が全て等しい場合、すなわちW(j)が定数である場合を例にとって説明する。 In this equation, j represents the index of each of the J subbands, and m represents the index of each of the M types of regions. S (m) indicates the minimum value among the indices of the L subbands constituting the region m, and B (j) is the minimum value among the indices of the plurality of MDCT coefficients constituting the subband j. Indicates the value. W (j) indicates the bandwidth of subband j, and in the following description, the case where all the J subbands have the same bandwidth, that is, the case where W (j) is a constant will be described as an example.
 次に、帯域選択部301は、平均エネルギE1(m)が最大となるリージョン、例えばサブバンドj”~(j”+L-1)からなる帯域を量子化対象となる帯域(量子化対象帯域)として選択し、このリージョンを示すインデックスm_maxを帯域情報として形状符号化部302、および多重化部304に出力する。また、帯域選択部301は、量子化対象帯域の第1レイヤ差分スペクトルX1(k)を形状符号化部302に出力する。なお、以下の説明では、帯域選択部301で選択した量子化対象帯域を示すバンドインデックスをj”~(j”+L-1)とする。 Next, the band selection unit 301 is a band to be quantized (band to be quantized) of a region having the maximum average energy E1 (m), for example, a band composed of subbands j ″ to (j ″ + L−1). The index m_max indicating this region is output to the shape encoding unit 302 and the multiplexing unit 304 as band information. Further, the band selection unit 301 outputs the first layer difference spectrum X1 (k) of the quantization target band to the shape coding unit 302. In the following description, it is assumed that the band index indicating the quantization target band selected by the band selection unit 301 is j ″ to (j ″ + L−1).
 形状符号化部302は、帯域選択部301から入力される帯域情報m_maxが示す帯域に対応する第1レイヤ差分スペクトルX1(k)に対して、サブバンド毎に形状量子化を行う。具体的には、形状符号化部302はL個の各サブバンド毎に、SQ個の形状コードベクトルからなる内蔵の形状コードブックを探索して、下記の式(6)の評価尺度Shape_q(i)が最大となる形状コードベクトルのインデックスを求める。
Figure JPOXMLDOC01-appb-M000006
The shape encoding unit 302 performs shape quantization for each subband on the first layer difference spectrum X1 (k) corresponding to the band indicated by the band information m_max input from the band selection unit 301. Specifically, the shape encoding unit 302 searches the built-in shape codebook composed of SQ shape code vectors for each of the L subbands, and evaluates the shape scale_q (i) of Equation (6) below. Find the index of the shape code vector that maximizes.
Figure JPOXMLDOC01-appb-M000006
 この式において、SC は形状コードブックを構成する形状コードベクトルを示し、iは形状コードベクトルのインデックスを示し、kは形状コードベクトルの要素のインデックスを示す。 In this equation, SC i k indicates a shape code vector constituting the shape code book, i indicates an index of the shape code vector, and k indicates an index of an element of the shape code vector.
 形状符号化部302は、上記の式(6)の評価尺度Shape_q(i)が最大となる形状コードベクトルのインデックスS_maxを形状符号化情報として多重化部304に出力する。また、形状符号化部302は、下記の式(7)に従い、理想利得Gain_i(j)を算出し、算出した理想利得Gain_i(j)を利得符号化部303に出力する。
Figure JPOXMLDOC01-appb-M000007
The shape encoding unit 302 outputs the shape code vector index S_max that maximizes the evaluation measure Shape_q (i) of the above equation (6) to the multiplexing unit 304 as shape encoding information. The shape encoding unit 302 calculates an ideal gain Gain_i (j) according to the following equation (7), and outputs the calculated ideal gain Gain_i (j) to the gain encoding unit 303.
Figure JPOXMLDOC01-appb-M000007
 利得符号化部303は、下記の式(8)に従い、形状符号化部302から入力される理想利得Gain_i(j)を量子化する。ここで、利得符号化部303は、理想利得をL次元ベクトルとして扱い、GQ個の利得コードベクトルからなる内蔵の利得コードブックを探索して、ベクトル量子化を行う。
Figure JPOXMLDOC01-appb-M000008
The gain encoding unit 303 quantizes the ideal gain Gain_i (j) input from the shape encoding unit 302 according to the following equation (8). Here, gain encoding section 303 treats the ideal gain as an L-dimensional vector, searches for a built-in gain codebook composed of GQ gain code vectors, and performs vector quantization.
Figure JPOXMLDOC01-appb-M000008
 ここでは、上記の式(8)の二乗誤差Gain_q(i)を最小にする利得コードブックのインデックスをG_minと記す。 Here, the index of the gain codebook that minimizes the square error Gain_q (i) of the above equation (8) is denoted as G_min.
 利得符号化部303は、G_minを利得符号化情報として多重化部304に出力する。 The gain encoding unit 303 outputs G_min to the multiplexing unit 304 as gain encoding information.
 多重化部304は、帯域選択部301から入力される帯域情報m_max、形状符号化部302から入力される形状符号化情報S_max、および利得符号化部303から入力される利得符号化情報G_minを多重化し、得られるビットストリームを第2レイヤ符号化情報として第2レイヤ復号部206、第3レイヤ符号化部208、および符号化情報統合部209に出力する。 Multiplexer 304 multiplexes band information m_max input from band selector 301, shape encoded information S_max input from shape encoder 302, and gain encoded information G_min input from gain encoder 303. The obtained bit stream is output to the second layer decoding section 206, the third layer encoding section 208, and the encoded information integration section 209 as second layer encoded information.
 図5は、第2レイヤ復号部206の主要な構成を示すブロック図である。 FIG. 5 is a block diagram illustrating a main configuration of the second layer decoding unit 206.
 この図において、第2レイヤ復号部206は、分離部401、形状復号部402、および利得復号部403を備える。 In this figure, the second layer decoding unit 206 includes a separation unit 401, a shape decoding unit 402, and a gain decoding unit 403.
 分離部401は、第2レイヤ符号化部205から出力される第2レイヤ符号化情報から帯域情報、形状符号化情報、および利得符号化情報を分離し、得られる帯域情報および形状符号化情報を形状復号部402に出力し、利得符号化情報を利得復号部403に出力する。 Separating section 401 separates band information, shape coding information, and gain coding information from the second layer coding information output from second layer coding section 205, and obtains the obtained band information and shape coding information. The result is output to shape decoding section 402, and the gain encoded information is output to gain decoding section 403.
 形状復号部402は、分離部401から入力される形状符号化情報を復号することにより、分離部401から入力される帯域情報が示す量子化対象帯域に対応するMDCT係数の形状の値を求め、求めた形状の値を利得復号部403に出力する。形状復号部402の処理の詳細は後述する。 The shape decoding unit 402 obtains the shape value of the MDCT coefficient corresponding to the quantization target band indicated by the band information input from the separation unit 401 by decoding the shape coding information input from the separation unit 401, The obtained shape value is output to gain decoding section 403. Details of the processing of the shape decoding unit 402 will be described later.
 利得復号部403は、内蔵の利得コードブックを用いて、分離部401から入力される利得符号化情報を逆量子化して利得値を得る。利得復号部403は、得られる利得値、および形状復号部402から入力される形状の値を用いて、量子化対象帯域の復号MDCT係数を求め、求めた復号MDCT係数を第2レイヤ復号スペクトルとして加算部207に出力する。利得復号部403の処理の詳細は後述する。 The gain decoding unit 403 uses a built-in gain codebook to dequantize the gain encoded information input from the separating unit 401 to obtain a gain value. Gain decoding section 403 obtains a decoded MDCT coefficient of the quantization target band using the gain value obtained and the shape value input from shape decoding section 402, and uses the obtained decoded MDCT coefficient as the second layer decoded spectrum. The result is output to the adding unit 207. Details of the processing of the gain decoding unit 403 will be described later.
 上記のような構成を有する第2レイヤ復号部206は以下の動作を行う。 The second layer decoding unit 206 having the above configuration performs the following operation.
 分離部401は、第2レイヤ符号化部205から入力される第2レイヤ符号化情報から帯域情報m_max、形状符号化情報S_max、および利得符号化情報G_minを分離し、得られる帯域情報m_maxおよび形状符号化情報S_maxを形状復号部402に出力し、利得符号化情報G_minを利得復号部403に出力する。 Separating section 401 separates band information m_max, shape encoded information S_max, and gain encoded information G_min from the second layer encoded information input from second layer encoding section 205, and provides obtained band information m_max and shape The encoded information S_max is output to the shape decoding unit 402, and the gain encoded information G_min is output to the gain decoding unit 403.
 形状復号部402は、第2レイヤ符号化部205の形状符号化部302が備える形状コードブックと同様な形状コードブックを内蔵し、分離部401から入力される形状符号化情報S_maxをインデックスとする形状コードベクトルを探索する。形状復号部402は、探索した形状コードベクトルを、分離部401から入力される帯域情報m_maxが示す量子化対象帯域のMDCT係数の形状の値として利得復号部403に出力する。ここでは、形状の値として探索された形状コードベクトルをShape_q’(k)(k=B(j”),…,B(j”+L)-1)と記す。 The shape decoding unit 402 incorporates a shape code book similar to the shape code book included in the shape coding unit 302 of the second layer coding unit 205, and uses the shape coding information S_max input from the separation unit 401 as an index. Search for shape code vectors. The shape decoding unit 402 outputs the searched shape code vector to the gain decoding unit 403 as the shape value of the MDCT coefficient in the quantization target band indicated by the band information m_max input from the separation unit 401. Here, the shape code vector searched as a shape value is denoted as Shape_q ′ (k) (k = B (j ″),..., B (j ″ + L) −1).
 利得復号部403は、第2レイヤ符号化部205の利得符号化部303が備える利得コードブックと同様な利得コードブックを内蔵し、下記の式(9)に従い利得の値を逆量子化する。ここでも、利得値をL次元ベクトルとして扱い、ベクトル逆量子化を行う。すなわち、利得符号化情報G_minに対応する利得コードベクトルGC G_minを、直接利得値とする。
Figure JPOXMLDOC01-appb-M000009
Gain decoding section 403 incorporates a gain codebook similar to the gain codebook included in gain encoding section 303 of second layer encoding section 205, and dequantizes the gain value according to the following equation (9). Again, the gain value is treated as an L-dimensional vector, and vector inverse quantization is performed. That is, the gain code vector GC j G_min corresponding to the gain encoded information G_min is directly set as the gain value.
Figure JPOXMLDOC01-appb-M000009
 次いで、利得復号部403は、現フレームの逆量子化で得られる利得値、および形状復号部402から入力される形状の値を用いて、下記の式(10)に従い、第2レイヤ復号スペクトルX2”(k)として復号MDCT係数を算出する。また、復号MDCT係数の逆量子化において、kがB(j”)~B(j”+1)-1内に存在する場合、利得値はGain_q’(j”)の値をとる。
Figure JPOXMLDOC01-appb-M000010
Next, the gain decoding unit 403 uses the gain value obtained by inverse quantization of the current frame and the shape value input from the shape decoding unit 402, according to the following equation (10), and the second layer decoded spectrum X2 "(K) calculates the decoded MDCT coefficient. In addition, in the inverse quantization of the decoded MDCT coefficient, when k exists in B (j") to B (j "+1) -1, the gain value is Gain_q '. The value of (j ″) is taken.
Figure JPOXMLDOC01-appb-M000010
 利得復号部403は、上記の式(10)に従い算出された第2レイヤ復号スペクトルX2”(k)を加算部207に出力する。 The gain decoding unit 403 outputs the second layer decoded spectrum X2 ″ (k) calculated according to the above equation (10) to the adding unit 207.
 図6は、第3レイヤ符号化部208の主要な構成を示すブロック図である。 FIG. 6 is a block diagram showing a main configuration of third layer encoding section 208.
 この図において、第3レイヤ符号化部208は、帯域選択部301、形状符号化部302、利得補正係数設定部601、利得符号化部602、および多重化部304を備える。なお、帯域選択部301、および形状符号化部302については、入出力される情報の名称が異なるという点以外は、第2レイヤ符号化部205内の構成要素と同一であるため、同一の符号を付し、説明は省略する。 In this figure, the third layer encoding unit 208 includes a band selection unit 301, a shape encoding unit 302, a gain correction coefficient setting unit 601, a gain encoding unit 602, and a multiplexing unit 304. Note that the band selection unit 301 and the shape encoding unit 302 are the same as the components in the second layer encoding unit 205 except that the names of input and output information are different, and therefore the same code The description is omitted.
 利得補正係数設定部601には、帯域選択部301から帯域情報が入力される。この帯域情報は、第3レイヤ符号化部208にて符号化対象として選択された帯域の情報であり、以下「第3レイヤ帯域情報」と呼ぶ。 Band information is input from the band selection unit 301 to the gain correction coefficient setting unit 601. This band information is information of a band selected as an encoding target by the third layer encoding unit 208, and is hereinafter referred to as “third layer band information”.
 また、利得補正係数設定部601には、第2レイヤ符号化部205から第2レイヤ符号化情報が入力される。この第2レイヤ符号化情報には、第2レイヤ符号化部205にて符号化対象として選択された帯域の情報が含まれる。以下、第2レイヤ符号化部205にて符号化対象として選択された帯域の情報を、「第2レイヤ帯域情報」と呼ぶ。 Also, the second layer encoding information is input from the second layer encoding unit 205 to the gain correction coefficient setting unit 601. This second layer encoded information includes information on the band selected as an encoding target by second layer encoding section 205. Hereinafter, the information on the band selected as the encoding target by the second layer encoding unit 205 is referred to as “second layer band information”.
 利得補正係数設定部601は、第2レイヤ帯域情報、および第3レイヤ帯域情報から、第3レイヤ帯域情報が示す各サブバンドに対して、利得情報を量子化する際に利用する補正係数を設定する。 Gain correction coefficient setting section 601 sets a correction coefficient used when quantizing the gain information for each subband indicated by the third layer band information from the second layer band information and the third layer band information. To do.
 具体的には、第3レイヤ帯域情報が示すサブバンドに、第2レイヤ帯域情報が示すサブバンドが含まれていない場合(つまり、第3レイヤ符号化部208が、第2レイヤ符号化部205では符号化対象として選択されていない帯域を符号化する場合)には、以下の式(11)のように利得補正係数γを設定する。
Figure JPOXMLDOC01-appb-M000011
Specifically, when the subbands indicated by the second layer band information are not included in the subbands indicated by the third layer band information (that is, the third layer encoding unit 208 performs the second layer encoding unit 205). In the case of encoding a band not selected as an encoding target, a gain correction coefficient γ j is set as shown in the following equation (11).
Figure JPOXMLDOC01-appb-M000011
 また、第3レイヤ帯域情報が示す各サブバンドに、第2レイヤ帯域情報が示すサブバンドが含まれている場合(つまり、第3レイヤ符号化部208が、第2レイヤ符号化部205で符号化対象として選択された帯域を再度符号化する場合)には、以下の式(12)のように利得補正係数γを設定する。
Figure JPOXMLDOC01-appb-M000012
Further, when each subband indicated by the third layer band information includes a subband indicated by the second layer band information (that is, the third layer encoding unit 208 encodes the second layer band information by the second layer encoding unit 205). When re-encoding the band selected as the conversion target), the gain correction coefficient γ j is set as in the following equation (12).
Figure JPOXMLDOC01-appb-M000012
 利得補正係数設定部601は、設定した利得補正係数γを利得符号化部602に出力する。 The gain correction coefficient setting unit 601 outputs the set gain correction coefficient γ j to the gain encoding unit 602.
 利得符号化部602には、形状符号化部302から理想利得が入力される。また、利得符号化部602には、利得補正係数設定部601から利得補正係数γが入力される。利得符号化部602は、式(13)のようにして、形状符号化部302から入力される理想利得を利得補正係数γで割ることにより、理想利得を補正する。
Figure JPOXMLDOC01-appb-M000013
The ideal gain is input from the shape encoding unit 302 to the gain encoding unit 602. The gain encoding unit 602 receives the gain correction coefficient γ j from the gain correction coefficient setting unit 601. The gain encoding unit 602 corrects the ideal gain by dividing the ideal gain input from the shape encoding unit 302 by the gain correction coefficient γ j as shown in Expression (13).
Figure JPOXMLDOC01-appb-M000013
 次に、利得符号化部602は、式(13)に従い、利得補正係数γを用いて補正した理想利得Gain_i’(j)を量子化し、利得符号化情報を得る。 Next, gain encoding section 602 quantizes ideal gain Gain_i ′ (j) corrected using gain correction coefficient γ j according to equation (13) to obtain gain encoded information.
 具体的には、利得符号化部602は、式(13)に従い、利得補正係数γを用いて補正した理想利得Gain_i’(j)を利用し、L個の各サブバンド毎に、GQ個の利得コードベクトルからなる内蔵の利得コードブックを探索して、式(14)の二乗誤差Gainq_i(i)が最小となる利得コードベクトルのインデックスを求める。
Figure JPOXMLDOC01-appb-M000014
Specifically, the gain encoding unit 602 uses the ideal gain Gain_i ′ (j) corrected using the gain correction coefficient γ j according to Equation (13), and uses GQ pieces for each of the L subbands. The built-in gain codebook consisting of the gain code vectors is searched for, and the index of the gain code vector that minimizes the square error Gainq_i (i) in equation (14) is obtained.
Figure JPOXMLDOC01-appb-M000014
 この式において、GC は利得コードブックを構成する利得コードベクトルを示し、iは利得コードベクトルのインデックスを示し、jは利得コードベクトルの要素のインデックスを示す。例えば、リージョンを構成するサブバンド数が5の場合(L=5の場合)、jは0~4の値を取る。なお、利得符号化部602は、1リージョン内のL個のサブバンドをL次元ベクトルとして扱い、ベクトル量子化を行う。 In this equation, GC i j indicates a gain code vector constituting the gain codebook, i indicates an index of the gain code vector, and j indicates an index of an element of the gain code vector. For example, when the number of subbands constituting the region is 5 (L = 5), j takes a value from 0 to 4. Gain coding section 602 treats L subbands in one region as an L-dimensional vector and performs vector quantization.
 利得符号化部602は、上記の式(14)の二乗誤差Gainq_i(i)が最小となる利得コードベクトルのインデックスG_minを、利得符号化情報として多重化部304に出力する。 The gain encoding unit 602 outputs the index G_min of the gain code vector that minimizes the square error Gainq_i (i) of the above equation (14) to the multiplexing unit 304 as gain encoding information.
 このようにして、利得補正係数設定部601は、第3レイヤ帯域情報が示すサブバンドに、下位レイヤにおける第2レイヤ帯域情報が示すサブバンドが含まれていない場合と、含まれている場合とで、式(11)又は式(12)のように、理想利得を補正するための利得補正係数γを切り替える。 In this way, gain correction coefficient setting section 601 includes a case where the subband indicated by the third layer band information does not include the subband indicated by the second layer band information in the lower layer, and a case where it is included. Thus, the gain correction coefficient γ j for correcting the ideal gain is switched as in Expression (11) or Expression (12).
 そして、利得符号化部602は、現レイヤの量子化対象帯域の利得情報の量子化時に、下位レイヤで量子化された量子化対象帯域については、利得コードブックの対応する要素に対して、利得補正係数γにより補正した理想利得を用いて、補正後の理想利得を最も近似する利得コードベクトルを、利得コードブックから探索する。 Then, when the gain information of the quantization target band of the current layer is quantized, the gain encoding unit 602 obtains the gain for the quantization target band quantized in the lower layer with respect to the corresponding element of the gain codebook. Using the ideal gain corrected by the correction coefficient γ j, a gain code vector that most closely approximates the ideal gain after correction is searched from the gain code book.
 式(11)および式(12)から分かるように、本実施の形態では、現レイヤである第3レイヤ帯域情報が示すサブバンドが、下位レイヤにおける第2レイヤ帯域情報が示すサブバンドを含む場合、理想利得Gain_i(j)が大きくなるよう補正される。 As can be seen from Equation (11) and Equation (12), in this embodiment, the subband indicated by the third layer bandwidth information that is the current layer includes the subband indicated by the second layer bandwidth information in the lower layer. The ideal gain Gain_i (j) is corrected so as to increase.
 すなわち、利得補正係数γは、現レイヤの量子化対象帯域の利得コードベクトルの大きさの分布を、下位レイヤの量子化対象帯域の利得コードベクトルの分布(利得コードブック内の利得コードベクトルの大きさの分布)に近づける係数といえる。 That is, the gain correction coefficient γ j represents the distribution of gain code vectors in the quantization target band of the current layer, the distribution of gain code vectors in the quantization target band of the lower layer (the gain code vector in the gain codebook). It can be said that the coefficient approaches the size distribution.
 この結果、エネルギが大きく異なる複数の要素のベクトル量子化を行う場合においても、利得コードベクトルの各要素のエネルギの大きさを平滑化できるので、同一の利得コードブックを使って効率的にベクトル量子化を行うことができる。 As a result, even when performing vector quantization of a plurality of elements having greatly different energies, the magnitude of the energy of each element of the gain code vector can be smoothed. Can be made.
 以上が、第3レイヤ符号化部208の処理説明である。 The above is the processing description of the third layer encoding unit 208.
 以上が、符号化装置101の処理説明である。 The above is the processing description of the encoding apparatus 101.
 図7は、図1に示した復号装置103の内部の主要な構成を示すブロック図である。復号装置103は、一例として3つの復号階層(レイヤ)からなる階層復号装置とする。ここでは、符号化装置101と同様、ビットレートの低い方から順に、第1レイヤ、第2レイヤ、第3レイヤと呼ぶことにする。 FIG. 7 is a block diagram showing a main configuration inside decoding apparatus 103 shown in FIG. As an example, the decoding apparatus 103 is a hierarchical decoding apparatus including three decoding hierarchies (layers). Here, like the encoding apparatus 101, the first layer, the second layer, and the third layer are referred to in order from the lowest bit rate.
 符号化情報分離部701は、伝送路102を介して符号化装置101から送られる符号化情報を入力とし、符号化情報を各レイヤの符号化情報に分離し、それぞれの復号処理を担当する復号部に出力する。具体的には、符号化情報分離部701は、符号化情報中に含まれる第1レイヤ符号化情報を第1レイヤ復号部702に出力し、符号化情報中に含まれる第2レイヤ符号化情報を第2レイヤ復号部703および第3レイヤ復号部704に出力し、符号化情報中に含まれる第3レイヤ符号化情報を第3レイヤ復号部704に出力する。 The encoded information separation unit 701 receives the encoded information sent from the encoding apparatus 101 via the transmission path 102, separates the encoded information into encoded information of each layer, and performs decoding processing responsible for each decoding process To the output. Specifically, the encoded information separation unit 701 outputs the first layer encoded information included in the encoded information to the first layer decoding unit 702, and the second layer encoded information included in the encoded information. Are output to second layer decoding section 703 and third layer decoding section 704, and the third layer encoded information included in the encoded information is output to third layer decoding section 704.
 第1レイヤ復号部702は、符号化情報分離部701から入力される第1レイヤ符号化情報に対して、例えばCELP方式の音声復号方法を用いて復号を行って第1レイヤ復号信号を生成し、生成した第1レイヤ復号信号を加算部707に出力する。 First layer decoding section 702 decodes the first layer encoded information input from encoded information separating section 701 using, for example, a CELP speech decoding method to generate a first layer decoded signal. The generated first layer decoded signal is output to adding section 707.
 第2レイヤ復号部703は、符号化情報分離部701から入力される第2レイヤ符号化情報を復号し、得られる第2レイヤ復号スペクトルX2”(k)を加算部705に出力する。第2レイヤ復号部703の処理は、上述した第2レイヤ復号部206の処理と同一であるためここでは説明を省略する。 Second layer decoding section 703 decodes the second layer encoded information input from encoded information separating section 701, and outputs the obtained second layer decoded spectrum X2 ″ (k) to adding section 705. Since the processing of the layer decoding unit 703 is the same as the processing of the second layer decoding unit 206 described above, description thereof is omitted here.
 第3レイヤ復号部704は、符号化情報分離部701から入力される第3レイヤ符号化情報を復号し、得られる第3レイヤ復号スペクトルX3”(k)を加算部705に出力する。第3レイヤ復号部704における処理については後述する。 Third layer decoding section 704 decodes the third layer encoded information input from encoded information separating section 701, and outputs the obtained third layer decoded spectrum X3 ″ (k) to adding section 705. The processing in the layer decoding unit 704 will be described later.
 加算部705には、第2レイヤ復号部703から第2レイヤ復号スペクトルX2”(k)が入力される。また、加算部705には、第3レイヤ復号部704から第3レイヤ復号スペクトルX3”(k)が入力される。加算部705は、入力された第2レイヤ復号スペクトルX2”(k)および第3レイヤ復号スペクトルX3”(k)を加算し、加算したスペクトルを第1加算スペクトルX4”(k)として直交変換処理部706に出力する。 The adder 705 receives the second layer decoded spectrum X2 ″ (k) from the second layer decoder 703. Also, the adder 705 receives the third layer decoded spectrum X3 ″ from the third layer decoder 704. (K) is input. Adder 705 adds input second layer decoded spectrum X2 ″ (k) and third layer decoded spectrum X3 ″ (k), and performs orthogonal transform processing using the added spectrum as first added spectrum X4 ″ (k) To the unit 706.
 直交変換処理部706は、まず下記の式(15)に従い内蔵のバッファbuf’(k)を「0」値に初期化する。
Figure JPOXMLDOC01-appb-M000015
The orthogonal transform processing unit 706 first initializes a built-in buffer buf ′ (k) to a “0” value according to the following equation (15).
Figure JPOXMLDOC01-appb-M000015
 直交変換処理部706は、第1加算スペクトルX4”(k)を入力とし、下記の式(16)に従い第1加算復号信号y”(n)を求める。
Figure JPOXMLDOC01-appb-M000016
The orthogonal transform processing unit 706 receives the first addition spectrum X4 ″ (k) and obtains the first addition decoded signal y ″ (n) according to the following equation (16).
Figure JPOXMLDOC01-appb-M000016
 この式において、X5(k)は、第1加算スペクトルX4”(k)とバッファbuf’(k)とを結合させたベクトルであり、下記の式(17)を用いて求められる。
Figure JPOXMLDOC01-appb-M000017
In this equation, X5 (k) is a vector obtained by combining the first addition spectrum X4 ″ (k) and the buffer buf ′ (k), and is obtained using the following equation (17).
Figure JPOXMLDOC01-appb-M000017
 次いで、直交変換処理部706は、下記の式(18)に従いバッファbuf’(k)を更新する。
Figure JPOXMLDOC01-appb-M000018
Next, the orthogonal transform processing unit 706 updates the buffer buf ′ (k) according to the following equation (18).
Figure JPOXMLDOC01-appb-M000018
 直交変換処理部706は、第1加算復号信号y”(n)を加算部707に出力する。 The orthogonal transform processing unit 706 outputs the first addition decoded signal y ″ (n) to the adding unit 707.
 加算部707には、第1レイヤ復号部702から第1レイヤ復号信号が入力される。また、加算部707には、直交変換処理部706から第1加算復号信号が入力される。加算部707は、入力された第1レイヤ復号信号および第1加算復号信号を加算し、加算した信号を出力信号として出力する。 The first layer decoded signal is input from the first layer decoding unit 702 to the adding unit 707. Further, the first addition decoded signal is input from the orthogonal transform processing unit 706 to the adding unit 707. Adder 707 adds the input first layer decoded signal and first added decoded signal, and outputs the added signal as an output signal.
 図8は、第3レイヤ復号部704の主要な構成を示すブロック図である。 FIG. 8 is a block diagram showing the main configuration of the third layer decoding unit 704.
 この図において、第3レイヤ復号部704は、分離部801、形状復号部402、利得補正係数設定部802、および利得復号部803を備える。なお、形状復号部402は、上述した構成と同じであるため、同一の符号を付し、説明を省略する。 In this figure, the third layer decoding unit 704 includes a separation unit 801, a shape decoding unit 402, a gain correction coefficient setting unit 802, and a gain decoding unit 803. In addition, since the shape decoding part 402 is the same as the structure mentioned above, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 分離部801は、符号化情報分離部701から入力される第3レイヤ符号化情報から帯域情報、形状符号化情報、および利得符号化情報を分離し、得られる帯域情報を形状復号部402および利得補正係数設定部802に出力し、形状符号化情報を形状復号部402に出力し、利得符号化情報を利得復号部803に出力する。 Separating section 801 separates band information, shape encoded information, and gain encoded information from the third layer encoded information input from encoded information separating section 701, and converts the obtained band information into shape decoding section 402 and gain It outputs to correction coefficient setting section 802, outputs shape coding information to shape decoding section 402, and outputs gain coding information to gain decoding section 803.
 利得補正係数設定部802には、分離部801から帯域情報が入力される。この帯域情報は、第3レイヤ符号化部208にて符号化対象として選択された第3レイヤ帯域情報である。 The band information is input from the separating unit 801 to the gain correction coefficient setting unit 802. This band information is the third layer band information selected as an encoding target by the third layer encoding unit 208.
 また、利得補正係数設定部802には、符号化情報分離部701から第2レイヤ符号化情報が入力される。この第2レイヤ符号化情報には、第2レイヤ符号化部205にて符号化対象として選択された第2レイヤ帯域情報が含まれる。 Also, the gain correction coefficient setting unit 802 receives the second layer encoded information from the encoded information separation unit 701. The second layer encoded information includes second layer band information selected as an encoding target by the second layer encoding unit 205.
 利得補正係数設定部802は、第2レイヤ帯域情報、および第3レイヤ帯域情報から、第3レイヤ帯域情報が示す各サブバンドに対して、利得情報を量子化する際に利用する補正係数を設定する。 Gain correction coefficient setting section 802 sets a correction coefficient used when quantizing gain information for each subband indicated by the third layer band information from the second layer band information and the third layer band information. To do.
 具体的には、第3レイヤ帯域情報が示す各サブバンドに、第2レイヤ帯域情報が示すサブバンドが含まれていない場合(つまり、第3レイヤ復号部704が、第2レイヤ復号部703では復号対象として選択されていない帯域を復号する場合)には、上記式(11)のように利得補正係数γを設定する。 Specifically, when the subbands indicated by the second layer band information are not included in the subbands indicated by the third layer band information (that is, the third layer decoding unit 704 is configured by the second layer decoding unit 703). When decoding a band not selected as a decoding target), the gain correction coefficient γ j is set as shown in the above equation (11).
 また、第3レイヤ帯域情報が示す各サブバンドに、第2レイヤ帯域情報が示すサブバンドが含まれている場合(つまり、第3レイヤ復号部704が、第2レイヤ復号部703では復号対象として選択されていない帯域を再度復号する場合)には、上記式(12)のように利得補正係数γを設定する。 In addition, when each subband indicated by the third layer band information includes a subband indicated by the second layer band information (that is, the third layer decoding unit 704 selects the second layer decoding unit 703 as a decoding target). When the band not selected is decoded again), the gain correction coefficient γ j is set as in the above equation (12).
 利得補正係数設定部802は、設定した利得補正係数γを利得復号部803に出力する。 The gain correction coefficient setting unit 802 outputs the set gain correction coefficient γ j to the gain decoding unit 803.
 利得復号部803は、内蔵の利得コードブックを用いて、分離部801から入力される利得符号化情報を直接逆量子化して利得値を得る。具体的には、利得復号部803は、第3レイヤ符号化部208の利得符号化部602と同様な利得コードブックを内蔵しており、下記の式(19)に従い、利得補正係数γを利用し、利得の逆量子化を行って利得値Gain_q’を得る。ここで、利得復号部803は、1リージョン内のL個のサブバンドをL次元ベクトルとして扱い、ベクトル逆量子化を行う。
Figure JPOXMLDOC01-appb-M000019
The gain decoding unit 803 directly dequantizes the gain encoded information input from the separation unit 801 using a built-in gain codebook to obtain a gain value. Specifically, gain decoding section 803 has a built-in gain codebook similar to gain encoding section 602 of third layer encoding section 208, and calculates gain correction coefficient γ j according to the following equation (19). The gain value Gain_q ′ is obtained by performing inverse quantization of the gain. Here, gain decoding section 803 treats L subbands in one region as an L-dimensional vector, and performs vector inverse quantization.
Figure JPOXMLDOC01-appb-M000019
 次いで、利得復号部803は、現フレームの逆量子化で得られる利得値、および形状復号部402から入力される形状の値を用いて、下記の式(20)に従い、第3レイヤ復号スペクトルとして復号MDCT係数を算出する。ここでは、算出された復号MDCT係数をX3”(k)と記す。また、MDCT係数の逆量子化において、kがB(j”)~B(j”+1)-1内に存在する場合、利得値Gain_q’(j)はGain_q’(j”)の値をとる。
Figure JPOXMLDOC01-appb-M000020
Next, gain decoding section 803 uses the gain value obtained by inverse quantization of the current frame and the shape value input from shape decoding section 402 as the third layer decoded spectrum according to the following equation (20). Decode MDCT coefficients are calculated. Here, the calculated decoded MDCT coefficient is denoted as X3 ″ (k). In addition, in the inverse quantization of the MDCT coefficient, when k exists in B (j ″) to B (j ″ +1) −1, The gain value Gain_q ′ (j) takes the value of Gain_q ′ (j ″).
Figure JPOXMLDOC01-appb-M000020
 利得復号部803は、式(20)に従い算出された第3レイヤ復号スペクトルX3”(k)を加算部705に出力する。 Gain decoding section 803 outputs third layer decoded spectrum X3 ″ (k) calculated according to equation (20) to addition section 705.
 以上が、第3レイヤ復号部704の処理説明である。 The above is the processing description of the third layer decoding unit 704.
 以上が、復号装置103の処理説明である。 The above is the process description of the decryption device 103.
 このように、本実施の形態によれば、符号化対象とする帯域(量子化対象帯域)を階層(レイヤ)毎に選択する階層符号化(スケーラブル符号化)を行う符号化装置101において、下位レイヤの量子化対象帯域と現レイヤの量子化対象帯域との比較結果に基づいて、第3レイヤ符号化部208は、現レイヤの量子化対象帯域の利得情報(エネルギ情報)の量子化方法を切り替える。 As described above, according to the present embodiment, in coding apparatus 101 that performs hierarchical coding (scalable coding) that selects a band to be coded (band to be quantized) for each layer (layer), lower order Based on the comparison result between the quantization target band of the layer and the quantization target band of the current layer, the third layer encoding unit 208 performs a quantization method for gain information (energy information) of the quantization target band of the current layer. Switch.
 すなわち、第3レイヤ符号化部208において現レイヤである第3レイヤ帯域情報が示すサブバンドが、下位レイヤにおける第2レイヤ帯域情報が示すサブバンドを含む場合、利得符号化部602は、理想利得Gain_i(j)が大きくなるよう補正してから量子化する。この結果、エネルギが大きく異なる複数の利得情報のベクトル量子化を行う場合においても、利得コードブックの各要素のエネルギの大きさを平滑化できる。そのため、下位レイヤにおいて選択され量子化されたサブバンドと、そうでないサブバンドとからなる複数のサブバンドの利得情報を、同一の利得コードブックを使って効率的にベクトル量子化することができ、復号信号の品質を改善することができる。 That is, when the subband indicated by the third layer band information which is the current layer in third layer encoding section 208 includes the subband indicated by the second layer band information in the lower layer, gain encoding section 602 Quantization is performed after correcting Gain_i (j) to be large. As a result, the energy magnitude of each element of the gain codebook can be smoothed even when vector quantization is performed on a plurality of gain information having greatly different energies. Therefore, it is possible to efficiently vector quantize the gain information of a plurality of subbands consisting of subbands that are selected and quantized in the lower layer and subbands that are not, using the same gain codebook, The quality of the decoded signal can be improved.
 なお、本実施の形態における利得補正係数設定部では、下位レイヤにおいて選択されたサブバンドに対してはγ=0.5とし、そうでないサブバンドに対してはγ=1.0と設定する構成を例に挙げて説明したが、本発明はこれに限らず、上記以外の設定値についても同様に適用できる。 In the gain correction coefficient setting unit according to the present embodiment, γ j = 0.5 is set for the subbands selected in the lower layer, and γ j = 1.0 is set for the other subbands. However, the present invention is not limited to this, and can be similarly applied to setting values other than those described above.
 また、利得補正係数の設定方法についても、上述した説明のような設定方法に限られず、多くの入力サンプルを用いて統計的に算出して設定しても良い。 Also, the setting method of the gain correction coefficient is not limited to the setting method as described above, and may be set by statistical calculation using many input samples.
 また、本実施の形態においては、まず理想利得を利得補正係数で割ってエネルギを平坦化し、その値をベクトル量子化する構成について説明したが、本発明はこれに限らず、探索する利得コードブック中の各利得コードベクトルに対して利得補正係数を乗じる構成についても同様に適用できる。但し、本実施の形態で説明した構成では、上記の構成に対して利得補正係数を利用した演算の回数が少なくなるため、演算量を大幅には増加させずに品質を向上させることができる。 In the present embodiment, the configuration has been described in which the ideal gain is first divided by the gain correction coefficient to flatten the energy and the value is vector quantized. However, the present invention is not limited to this, and the gain codebook to be searched is described. The same applies to a configuration in which each gain code vector is multiplied by a gain correction coefficient. However, in the configuration described in the present embodiment, the number of calculations using the gain correction coefficient is reduced compared to the above configuration, so that the quality can be improved without significantly increasing the calculation amount.
 なお、本実施の形態においては、下位レイヤで量子化されたサブバンドの利得値を大きくすることにより、ベクトル全体の利得値の大きさを揃える方法について説明したが、本発明はこれに限らず、上記の方法とは逆に、下位レイヤで量子化されていないサブバンドの利得値を小さくすることによってベクトル全体の利得値を揃える場合についても同様に適用できる。 In the present embodiment, the method has been described in which the gain values of the entire vector are made uniform by increasing the gain value of the subband quantized in the lower layer. However, the present invention is not limited to this. Contrary to the above method, the present invention can be similarly applied to the case where the gain values of the entire vector are made uniform by reducing the gain values of the subbands not quantized in the lower layer.
 また、本実施の形態においては、理想利得を利得補正係数で割った値について、二乗誤差が最小となる利得コードベクトルを探索し、利得値を符号化する構成について説明したが、本発明はこれに限らず、利得補正係数の大きさに基づいて二乗誤差を算出する場合にも同様に適用できる。具体的な方法を以下に説明する。例えば、利得補正係数の値が0.5であった場合、利得補正係数で割った後の値は元々の利得値の2倍となっている。そこで、該当するサブバンドについては、二乗誤差の値を0.5倍して計算する。これにより、利得補正係数によって補正する前の分布における距離(誤差)を算出することができ、結果として、復号信号の品質を向上させることができる。 In the present embodiment, a configuration has been described in which a gain code vector that minimizes a square error is searched for a value obtained by dividing an ideal gain by a gain correction coefficient, and a gain value is encoded. The present invention is not limited to this, and the present invention can be similarly applied to the case where the square error is calculated based on the magnitude of the gain correction coefficient. A specific method will be described below. For example, when the value of the gain correction coefficient is 0.5, the value after dividing by the gain correction coefficient is twice the original gain value. Therefore, the corresponding subband is calculated by multiplying the square error value by 0.5. Thereby, the distance (error) in the distribution before correction by the gain correction coefficient can be calculated, and as a result, the quality of the decoded signal can be improved.
 なお、本実施の形態における第1レイヤ符号化部にはCELP方式の符号化方法を採る構成を例に挙げて説明したが、本発明はこれに限らず、第1レイヤ符号化部が存在しない場合についても同様に適用できる。また、第1レイヤ符号化部が、第2レイヤ符号化部と同様に周波数成分を符号化する構成についても同様に適用できる。 Although the first layer encoding unit in the present embodiment has been described by taking as an example a configuration employing the CELP encoding method, the present invention is not limited to this, and there is no first layer encoding unit. The same applies to cases. The first layer encoding unit can be similarly applied to a configuration in which the frequency component is encoded in the same manner as the second layer encoding unit.
 また、第1レイヤ符号化部が、第2レイヤ符号化部と同様に、全帯域を符号化するのではなく、符号化対象となる帯域を部分的に選択し、符号化する構成についても同様に適用できる。なお、この構成の場合には、第1レイヤ符号化部にて全帯域の周波数成分を量子化するわけではないため、第2レイヤ符号化部に対しても、本実施の形態で説明した第3レイヤ符号化部のような利得成分(エネルギ成分)の量子化方法を切り替える構成を適用することもできる。その場合、各レイヤの符号化部において同一の利得補正係数を使っても良いし、また各レイヤの符号化部において異なる利得補正係数を使ってもよい。 Also, the same applies to the configuration in which the first layer encoding unit does not encode the entire band as in the second layer encoding unit, but partially selects and encodes the band to be encoded. Applicable to. In the case of this configuration, the frequency components of the entire band are not quantized by the first layer encoding unit, so the second layer encoding unit is also described in the present embodiment. A configuration in which a gain component (energy component) quantization method such as a three-layer encoding unit is switched can also be applied. In that case, the same gain correction coefficient may be used in the encoding section of each layer, or different gain correction coefficients may be used in the encoding section of each layer.
 また、各帯域において、下位レイヤにおいて量子化対象帯域として選択された回数に応じて、異なる利得補正係数を設定することもできる。この場合の利得補正係数についても、多くの入力サンプルを用いて統計的に算出して設定することもできる。 In each band, a different gain correction coefficient can be set according to the number of times selected as a quantization target band in the lower layer. The gain correction coefficient in this case can also be statistically calculated and set using many input samples.
 なお、復号装置に対しても、上記の符号化装置の構成に対応した各構成についても同様に適用できる。 It should be noted that the present invention can be applied to the decoding apparatus in the same manner for each configuration corresponding to the configuration of the encoding apparatus.
 また、本実施の形態では、符号化装置が3つの符号化階層(3レイヤ)からなる構成について説明したが、本発明はこれに限らず、階層数が3以外の構成においても同様に適用できる。 Further, in the present embodiment, the configuration in which the encoding apparatus includes three encoding layers (three layers) has been described. However, the present invention is not limited to this, and the present invention can be similarly applied to configurations other than three layers. .
 また、本実施の形態では、最下位レイヤの第1レイヤ符号化部/復号部において、CELP方式の符号化/復号方法を採る構成について説明したが、本発明はこれに限らず、CELP方式の符号化/復号方法を採るレイヤが存在しない場合についても同様に適用できる。例えば、全て周波数変換符号化/復号方法のレイヤである構成に対しては、符号化装置、復号装置上で時間軸での加減算をする加算部は不要となる。 Also, in the present embodiment, the configuration in which the first layer encoding unit / decoding unit of the lowest layer employs the CELP encoding / decoding method has been described, but the present invention is not limited to this, and the CELP encoding / decoding method is used. The same applies to the case where there is no layer that employs the encoding / decoding method. For example, an adder that performs addition and subtraction on the time axis on the encoding device and the decoding device is not required for a configuration that is a layer of the frequency transform encoding / decoding method.
 また、本実施の形態では、符号化装置において、第1レイヤ復号信号と入力信号との差分信号を算出した後に、それを直交変換処理し、差分スペクトルを算出する構成について説明したが、本発明はこれに限らず、まず入力信号および第1レイヤ復号信号に対してまず直交変換処理を行い、それぞれ入力スペクトル、および第1レイヤ復号スペクトルを算出した後に、差分スペクトルを算出するという構成についても同様に適用できる。 Further, in the present embodiment, the configuration has been described in which, in the encoding device, the differential signal between the first layer decoded signal and the input signal is calculated and then orthogonally transformed to calculate the differential spectrum. This is not limited to this, and the same applies to a configuration in which an orthogonal transform process is first performed on the input signal and the first layer decoded signal, and the difference spectrum is calculated after calculating the input spectrum and the first layer decoded spectrum, respectively. Applicable to.
 また、本実施の形態における復号装置は、上記各実施の形態における符号化装置から伝送された符号化情報を用いて処理を行うとしたが、本発明はこれに限定されず、必要なパラメータやデータを含む符号化情報であれば、必ずしも上記各実施の形態における符号化装置からの符号化情報でなくても処理は可能である。 In addition, the decoding apparatus according to the present embodiment performs processing using the encoded information transmitted from the encoding apparatus according to each of the above embodiments, but the present invention is not limited to this, and necessary parameters and As long as the encoded information includes data, the process can be performed even if it is not necessarily the encoded information from the encoding device in each of the above embodiments.
 また、信号処理プログラムを、メモリ、ディスク、テープ、CD、DVD等の機械読み取り可能な記録媒体に記録、書き込みをし、動作を行う場合についても、本発明は適用することができ、本実施の形態と同様の作用および効果を得ることができる。 The present invention can also be applied to a case where a signal processing program is recorded and written on a machine-readable recording medium such as a memory, a disk, a tape, a CD, or a DVD, and the operation is performed. Actions and effects similar to those of the form can be obtained.
 また、本実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。 Further, although cases have been described with the above embodiment as examples where the present invention is configured by hardware, the present invention can also be realized by software.
 また、本実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Further, each functional block used in the description of the present embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル/プロセッサを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable / processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. Biotechnology can be applied.
 2009年10月14日出願の特願2009-237684に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, drawings and abstract contained in Japanese Patent Application No. 2009-237684, filed on October 14, 2009, is incorporated herein by reference.
 本発明にかかる符号化装置、復号装置およびこれらの方法は、階層的に量子化対象帯域を選択し符号化/復号する構成において、復号信号の品質を向上することができ、例えば、パケット通信システム、移動通信システムなどに適用できる。 INDUSTRIAL APPLICABILITY The encoding apparatus, decoding apparatus and these methods according to the present invention can improve the quality of a decoded signal in a configuration in which a quantization target band is hierarchically selected and encoded / decoded. It can be applied to mobile communication systems.
 101 符号化装置
 102 伝送路
 103 復号装置
 201 第1レイヤ符号化部
 202,702 第1レイヤ復号部
 203,207,705,707 加算部
 204,706 直交変換処理部
 205 第2レイヤ符号化部
 206,703 第2レイヤ復号部
 208 第3レイヤ符号化部
 209 符号化情報統合部
 301 帯域選択部
 302 形状符号化部
 303,602 利得符号化部
 304 多重化部
 401,801 分離部
 402 形状復号部
 403,803 利得復号部
 601,802 利得補正係数設定部
 701 符号化情報分離部
 704 第3レイヤ復号部
 
DESCRIPTION OF SYMBOLS 101 Coding apparatus 102 Transmission path 103 Decoding apparatus 201 1st layer encoding part 202,702 1st layer decoding part 203,207,705,707 Adder 204,706 Orthogonal transformation process part 205 2nd layer encoding part 206, 703 Second layer decoding unit 208 Third layer encoding unit 209 Encoding information integration unit 301 Band selection unit 302 Shape encoding unit 303, 602 Gain encoding unit 304 Multiplexing unit 401, 801 Separation unit 402 Shape decoding unit 403, 803 Gain decoding unit 601, 802 Gain correction coefficient setting unit 701 Encoding information separation unit 704 Third layer decoding unit

Claims (14)

  1.  少なくとも2つの符号化レイヤを有する符号化装置であって、
     周波数領域の第1入力信号を入力し、前記周波数領域を分割した複数のサブバンドの中から前記第1入力信号の第1量子化対象帯域を選択し、前記第1量子化対象帯域の前記第1入力信号を符号化して、前記第1量子化対象帯域の第1帯域情報を含む第1符号化情報を生成するとともに、前記第1符号化情報を用いて第1復号信号を生成し、前記第1入力信号と前記第1復号信号とを用いて第2入力信号を生成する第1レイヤ符号化手段と、
     前記第2入力信号と前記第1符号化情報とを入力し、前記複数のサブバンドの中から前記第2入力信号の第2量子化対象帯域を選択して第2帯域情報を求めるとともに、前記第2量子化対象帯域の前記第2入力信号の利得を求め、前記第1符号化情報を用いて、前記第2量子化対象帯域の前記第2入力信号を符号化して、前記第2帯域情報と前記利得を符号化して得られる利得符号化情報とを含む第2符号化情報を生成する第2レイヤ符号化手段と、
     を具備する符号化装置。
    An encoding device having at least two encoding layers,
    A first input signal in a frequency domain is input, a first quantization target band of the first input signal is selected from a plurality of subbands obtained by dividing the frequency domain, and the first quantization target band of the first quantization target band is selected. Encoding one input signal to generate first encoded information including first band information of the first quantization target band, and generating a first decoded signal using the first encoded information, First layer encoding means for generating a second input signal using the first input signal and the first decoded signal;
    The second input signal and the first encoded information are input, a second quantization target band of the second input signal is selected from the plurality of subbands to obtain second band information, and A gain of the second input signal in the second quantization target band is obtained, the second input signal in the second quantization target band is encoded using the first encoding information, and the second band information is obtained. And second layer encoding means for generating second encoded information including gain encoded information obtained by encoding the gain,
    An encoding device comprising:
  2.  前記第2レイヤ符号化手段は、
     前記複数のサブバンドの中から前記第2入力信号の前記第2量子化対象帯域を選択して前記第2帯域情報を生成するとともに、前記第2量子化対象帯域の前記第2入力信号を出力する帯域選択手段と、
     前記第2量子化対象帯域の前記第2入力信号の形状及び前記利得を符号化して形状符号化情報及び前記利得符号化情報を生成する形状・利得符号化手段と、
     を具備する、請求項1記載の符号化装置。
    The second layer encoding means includes
    The second quantization target band of the second input signal is selected from the plurality of subbands to generate the second band information, and the second input signal of the second quantization target band is output Band selection means to perform,
    Shape / gain encoding means for encoding shape and gain of the second input signal in the second quantization target band to generate shape encoded information and gain encoded information;
    The encoding device according to claim 1, comprising:
  3.  前記第2レイヤ符号化手段は、
     前記第1符号化情報を用いて、前記利得の符号化に用いる符号帳に格納されたコードベクトルのうち前記第1量子化対象帯域のコードベクトルの大きさを補正する利得補正係数を設定する係数設定手段をさらに具備し、
     前記形状・利得符号化手段は、
     前記利得補正係数を用いて前記第1量子化対象帯域のコードベクトルが補正された前記符号帳を用いて前記利得を符号化する、
     請求項2記載の符号化装置。
    The second layer encoding means includes
    A coefficient for setting a gain correction coefficient for correcting the size of the code vector of the first quantization target band among the code vectors stored in the codebook used for encoding the gain using the first encoding information Further comprising setting means,
    The shape / gain encoding means includes:
    Encoding the gain using the codebook in which the code vector of the first quantization target band is corrected using the gain correction coefficient;
    The encoding device according to claim 2.
  4.  前記係数設定手段は、
     前記利得補正係数を、前記符号帳内の前記第2量子化対象帯域のコードベクトルの大きさの分布を、前記第2量子化対象帯域の利得の大きさの分布に近づけるように設定する、
     請求項3記載の符号化装置。
    The coefficient setting means includes
    The gain correction coefficient is set so that the distribution of the code vector size of the second quantization target band in the codebook approaches the distribution of the gain size of the second quantization target band,
    The encoding device according to claim 3.
  5.  前記第2レイヤ符号化手段は、
     前記第1符号化情報に含まれる前記第1帯域情報を用いて求められる前記第1量子化対象帯域と、前記第2帯域情報を用いて求められる前記第2量子化対象帯域と、の比較結果を用いて前記利得の量子化方法を選択する選択手段をさらに具備し、
     前記形状・利得符号化手段は、
     前記選択手段により選択された前記量子化方法を用いて前記利得を符号化する、
     請求項2記載の符号化装置。
    The second layer encoding means includes
    Comparison result between the first quantization target band obtained using the first band information included in the first encoded information and the second quantization target band obtained using the second band information Further comprising a selection means for selecting the gain quantization method using
    The shape / gain encoding means includes:
    Encoding the gain using the quantization method selected by the selection means;
    The encoding device according to claim 2.
  6.  請求項1に記載の符号化装置を具備する通信端末装置。 A communication terminal device comprising the encoding device according to claim 1.
  7.  請求項1に記載の符号化装置を具備する基地局装置。 A base station apparatus comprising the encoding apparatus according to claim 1.
  8.  少なくとも2つの符号化レイヤを有する符号化装置において生成された情報を受信して復号する復号装置であって、
     前記符号化装置の第1レイヤの符号化により得られた、周波数領域を分割した複数のサブバンドの中から前記第1レイヤの第1量子化対象帯域を選択して生成された第1帯域情報を含む前記第1符号化情報と、前記第1符号化情報を用いた前記符号化装置の第2レイヤの符号化により得られた、前記複数のサブバンドの中から前記第2レイヤの第2量子化対象帯域を選択して生成された第2帯域情報を含む前記第2符号化情報と、を有する前記情報を受信する受信手段と、
     前記情報から得られる前記第1符号化情報を入力し、前記第1符号化情報に含まれる前記第1帯域情報に基づいて設定される前記第1量子化対象帯域に対する第1復号信号を生成する第1レイヤ復号手段と、
     前記情報から得られる前記第1符号化情報及び前記第2符号化情報を入力し、前記第2符号化情報に含まれる前記第2帯域情報に基づいて設定される前記第2量子化対象帯域に対する信号に、前記第1符号化情報及び前記第2符号化情報を用いた補正を行って第2復号信号を生成する第2レイヤ復号手段と、
     を具備する復号装置。
    A decoding device that receives and decodes information generated in an encoding device having at least two encoding layers,
    First band information generated by selecting the first quantization target band of the first layer from among a plurality of subbands obtained by dividing the frequency domain, obtained by encoding the first layer of the encoding device And the second encoding of the second layer out of the plurality of subbands obtained by encoding the second layer of the encoding device using the first encoding information. Receiving means comprising: the second encoded information including second band information generated by selecting a quantization target band; and
    The first encoded information obtained from the information is input, and a first decoded signal is generated for the first quantization target band set based on the first band information included in the first encoded information. First layer decoding means;
    The first encoded information and the second encoded information obtained from the information are input, and the second quantization target band set based on the second band information included in the second encoded information Second layer decoding means for generating a second decoded signal by performing correction on the signal using the first encoded information and the second encoded information;
    A decoding device comprising:
  9.  前記第1レイヤ復号手段は、
     前記第1符号化情報に含まれる第1形状符号化情報と前記第1帯域情報とを用いて、前記第1量子化対象帯域に対する前記第1復号信号の形状を求める第1形状復号手段と、
     前記第1符号化情報に含まれる第1利得符号化情報を用いて前記第1復号信号の利得を求め、前記第1量子化対象帯域に対する前記第1復号信号の形状と前記第1復号信号の利得とを用いて前記第1復号信号を生成する第1利得復号手段と、
     を具備する、請求項8記載の復号装置。
    The first layer decoding means includes
    First shape decoding means for determining the shape of the first decoded signal for the first quantization target band using the first shape encoded information and the first band information included in the first encoded information;
    The gain of the first decoded signal is obtained using first gain encoded information included in the first encoded information, and the shape of the first decoded signal with respect to the first quantization target band and the first decoded signal First gain decoding means for generating the first decoded signal using a gain;
    The decoding device according to claim 8, comprising:
  10.  前記第2レイヤ復号手段は、
     前記第2符号化情報に含まれる第2形状符号化情報と前記第2帯域情報とを用いて、前記第2量子化対象帯域に対する前記第2復号信号の形状を求める第2形状復号手段と、
     前記第2符号化情報に含まれる第2利得符号化情報を用いて前記第2復号信号の利得を求め、前記第1符号化情報に含まれる前記第1帯域情報及び前記第2符号化情報に含まれる前記第2帯域情報を用いて前記第2復号信号の利得を補正した前記第2復号信号の補正利得を生成し、前記第2量子化対象帯域に対する前記第2復号信号の形状と前記第2復号信号の補正利得とを用いて前記第2復号信号を生成する第2利得復号手段と、
     を具備する、請求項8記載の復号装置。
    The second layer decoding means includes
    Second shape decoding means for determining the shape of the second decoded signal for the second quantization target band using the second shape encoded information and the second band information included in the second encoded information;
    The gain of the second decoded signal is obtained using second gain encoded information included in the second encoded information, and the first band information and the second encoded information included in the first encoded information are obtained. A correction gain of the second decoded signal is generated by correcting the gain of the second decoded signal using the included second band information, and the shape of the second decoded signal with respect to the second quantization target band and the second Second gain decoding means for generating the second decoded signal using a correction gain of two decoded signals;
    The decoding device according to claim 8, comprising:
  11.  請求項8に記載の復号装置を具備する通信端末装置。 A communication terminal device comprising the decoding device according to claim 8.
  12.  請求項8に記載の復号装置を具備する基地局装置。 A base station apparatus comprising the decoding apparatus according to claim 8.
  13.  少なくとも2つの符号化レイヤで符号化を行う符号化方法であって、
     周波数領域の第1入力信号を入力し、前記周波数領域を分割した複数のサブバンドの中から前記第1入力信号の第1量子化対象帯域を選択し、前記第1量子化対象帯域の前記第1入力信号を符号化して、前記第1量子化対象帯域の第1帯域情報を含む第1符号化情報を生成するとともに、前記第1符号化情報を用いて第1復号信号を生成し、前記第1入力信号と前記第1復号信号とを用いて第2入力信号を生成する第1レイヤ符号化ステップと、
     前記第2入力信号と前記第1符号化情報とを入力し、前記複数のサブバンドの中から前記第2入力信号の第2量子化対象帯域を選択して第2帯域情報を求めるとともに、前記第2量子化対象帯域の前記第2入力信号の利得を求め、前記第1符号化情報を用いて、前記第2量子化対象帯域の前記第2入力信号を符号化して、前記第2帯域情報と前記利得を符号化して得られる利得符号化情報とを含む第2符号化情報を生成する第2レイヤ符号化ステップと、
     を具備する符号化方法。
    An encoding method for encoding with at least two encoding layers,
    A first input signal in a frequency domain is input, a first quantization target band of the first input signal is selected from a plurality of subbands obtained by dividing the frequency domain, and the first quantization target band of the first quantization target band is selected. Encoding one input signal to generate first encoded information including first band information of the first quantization target band, and generating a first decoded signal using the first encoded information, A first layer encoding step of generating a second input signal using the first input signal and the first decoded signal;
    The second input signal and the first encoded information are input, a second quantization target band of the second input signal is selected from the plurality of subbands to obtain second band information, and A gain of the second input signal in the second quantization target band is obtained, the second input signal in the second quantization target band is encoded using the first encoding information, and the second band information is obtained. And a second layer encoding step for generating second encoded information including gain encoded information obtained by encoding the gain,
    An encoding method comprising:
  14.  少なくとも2つの符号化レイヤを有する符号化装置において生成された情報を受信して復号する復号方法であって、
     前記符号化装置の第1レイヤの符号化により得られた、周波数領域を分割した複数のサブバンドの中から前記第1レイヤの第1量子化対象帯域を選択して生成された第1帯域情報を含む前記第1符号化情報と、前記第1符号化情報を用いた前記符号化装置の第2レイヤの符号化により得られた、前記複数のサブバンドの中から前記第2レイヤの第2量子化対象帯域を選択して生成された第2帯域情報を含む前記第2符号化情報と、を有する前記情報を受信する受信ステップと、
     前記情報から得られる前記第1符号化情報を入力し、前記第1符号化情報に含まれる前記第1帯域情報に基づいて設定される前記第1量子化対象帯域に対する第1復号信号を生成する第1レイヤ復号ステップと、
     前記情報から得られる前記第1符号化情報及び前記第2符号化情報を入力し、前記第2符号化情報に含まれる前記第2帯域情報に基づいて設定される前記第2量子化対象帯域に対する信号に、前記第1符号化情報及び前記第2符号化情報を用いた補正を行って第2復号信号を生成する第2レイヤ復号ステップと、
     を具備する復号方法。
     
     
    A decoding method for receiving and decoding information generated in an encoding device having at least two encoding layers,
    First band information generated by selecting the first quantization target band of the first layer from among a plurality of subbands obtained by dividing the frequency domain, obtained by encoding the first layer of the encoding device And the second encoding of the second layer out of the plurality of subbands obtained by encoding the second layer of the encoding device using the first encoding information. Receiving the information comprising: the second encoded information including second band information generated by selecting a quantization target band; and
    The first encoded information obtained from the information is input, and a first decoded signal is generated for the first quantization target band set based on the first band information included in the first encoded information. A first layer decoding step;
    The first encoded information and the second encoded information obtained from the information are input, and the second quantization target band set based on the second band information included in the second encoded information A second layer decoding step of generating a second decoded signal by performing correction on the signal using the first encoded information and the second encoded information;
    A decoding method comprising:

PCT/JP2010/006088 2009-10-14 2010-10-13 Encoding device, decoding device and methods therefor WO2011045927A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/501,354 US8949117B2 (en) 2009-10-14 2010-10-13 Encoding device, decoding device and methods therefor
EP10823195.2A EP2490217A4 (en) 2009-10-14 2010-10-13 Encoding device, decoding device and methods therefor
JP2011536038A JP5544371B2 (en) 2009-10-14 2010-10-13 Encoding device, decoding device and methods thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-237684 2009-10-14
JP2009237684 2009-10-14

Publications (1)

Publication Number Publication Date
WO2011045927A1 true WO2011045927A1 (en) 2011-04-21

Family

ID=43875983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006088 WO2011045927A1 (en) 2009-10-14 2010-10-13 Encoding device, decoding device and methods therefor

Country Status (4)

Country Link
US (1) US8949117B2 (en)
EP (1) EP2490217A4 (en)
JP (1) JP5544371B2 (en)
WO (1) WO2011045927A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6523498B1 (en) * 2018-01-19 2019-06-05 ヤフー株式会社 Learning device, learning method and learning program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080027718A1 (en) * 2006-07-31 2008-01-31 Venkatesh Krishnan Systems, methods, and apparatus for gain factor limiting
JP2008519991A (en) * 2004-11-09 2008-06-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Speech encoding and decoding
JP2009237684A (en) 2008-03-26 2009-10-15 Hitachi Software Eng Co Ltd Character conversion system for portable information terminal

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223049A (en) * 1995-02-14 1996-08-30 Sony Corp Signal coding method and device, signal decoding method and device, information recording medium and information transmission method
JP2002202799A (en) * 2000-10-30 2002-07-19 Fujitsu Ltd Voice code conversion apparatus
DE602004004950T2 (en) * 2003-07-09 2007-10-31 Samsung Electronics Co., Ltd., Suwon Apparatus and method for bit-rate scalable speech coding and decoding
JPWO2006025313A1 (en) * 2004-08-31 2008-05-08 松下電器産業株式会社 Speech coding apparatus, speech decoding apparatus, communication apparatus, and speech coding method
KR20070084002A (en) * 2004-11-05 2007-08-24 마츠시타 덴끼 산교 가부시키가이샤 Scalable decoding apparatus and scalable encoding apparatus
US7835904B2 (en) * 2006-03-03 2010-11-16 Microsoft Corp. Perceptual, scalable audio compression
US8306827B2 (en) * 2006-03-10 2012-11-06 Panasonic Corporation Coding device and coding method with high layer coding based on lower layer coding results
WO2009116280A1 (en) * 2008-03-19 2009-09-24 パナソニック株式会社 Stereo signal encoding device, stereo signal decoding device and methods for them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519991A (en) * 2004-11-09 2008-06-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Speech encoding and decoding
US20080027718A1 (en) * 2006-07-31 2008-01-31 Venkatesh Krishnan Systems, methods, and apparatus for gain factor limiting
JP2009237684A (en) 2008-03-26 2009-10-15 Hitachi Software Eng Co Ltd Character conversion system for portable information terminal

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKIO KAMI ET AL.: "Scalable Audio Coding Based on Hierarchical Transform Coding Modules", TRANSACTION OF INSTITUTE OF ELECTRONICS AND COMMUNICATION ENGINEERS OF JAPAN, A, vol. J83-A, no. 3, March 2000 (2000-03-01), pages 241 - 252
HIROYUKI EHARA ET AL.: "Development of 32kbit/s scalable wide-band speech and audio coding algorithm using high-efficiency code-excited linear prediction and band-selective modified discrete cosine transform coding algorithms", JOURNAL OF THE ACOUSTICAL SOCIETY OF JAPAN, 1 April 2008 (2008-04-01), pages 196 - 207, XP008162599 *
See also references of EP2490217A4 *

Also Published As

Publication number Publication date
EP2490217A1 (en) 2012-08-22
JP5544371B2 (en) 2014-07-09
EP2490217A4 (en) 2016-08-24
US8949117B2 (en) 2015-02-03
US20120203546A1 (en) 2012-08-09
JPWO2011045927A1 (en) 2013-03-04

Similar Documents

Publication Publication Date Title
TWI405187B (en) Scalable speech and audio encoder device, processor including the same, and method and machine-readable medium therefor
WO2008072737A1 (en) Encoding device, decoding device, and method thereof
WO2006041055A1 (en) Scalable encoder, scalable decoder, and scalable encoding method
WO2007132750A1 (en) Lsp vector quantization device, lsp vector inverse-quantization device, and their methods
US9153242B2 (en) Encoder apparatus, decoder apparatus, and related methods that use plural coding layers
JPWO2007114290A1 (en) Vector quantization apparatus, vector inverse quantization apparatus, vector quantization method, and vector inverse quantization method
US20100017197A1 (en) Voice coding device, voice decoding device and their methods
JP5714002B2 (en) Encoding device, decoding device, encoding method, and decoding method
JPWO2008132850A1 (en) Stereo speech coding apparatus, stereo speech decoding apparatus, and methods thereof
JP5544370B2 (en) Encoding device, decoding device and methods thereof
JP5606457B2 (en) Encoding apparatus and encoding method
JP5544371B2 (en) Encoding device, decoding device and methods thereof
JP5774490B2 (en) Encoding device, decoding device and methods thereof
WO2020009082A1 (en) Encoding device and encoding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823195

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011536038

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13501354

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010823195

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE