WO2011045505A1 - Reinforcing element made of a fibre‑cement composite and method of reinforcing reinforced concrete structures by such an element - Google Patents

Reinforcing element made of a fibre‑cement composite and method of reinforcing reinforced concrete structures by such an element Download PDF

Info

Publication number
WO2011045505A1
WO2011045505A1 PCT/FR2010/052117 FR2010052117W WO2011045505A1 WO 2011045505 A1 WO2011045505 A1 WO 2011045505A1 FR 2010052117 W FR2010052117 W FR 2010052117W WO 2011045505 A1 WO2011045505 A1 WO 2011045505A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing
reinforcing element
reinforced concrete
mineral matrix
reinforcement
Prior art date
Application number
PCT/FR2010/052117
Other languages
French (fr)
Inventor
Emmanuel Ferrier
Amir Si-Larbi
Original Assignee
Universite Claude Bernard Lyon I
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Claude Bernard Lyon I filed Critical Universite Claude Bernard Lyon I
Publication of WO2011045505A1 publication Critical patent/WO2011045505A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements

Definitions

  • the present invention relates to the general field of civil engineering and construction of reinforced concrete structures.
  • the invention relates more particularly to a reinforcement element of concrete-reinforced structures, as well as a method of reinforcing such structures using such a reinforcing element.
  • NSM technique the techniques of rehabilitation by shotcrete and strengthening techniques by external bonding or internal by engravure (so-called NSM technique) of composite plates or frames with organic matrices and glass or carbon fibers.
  • the resulting reinforced structures have the advantage of being brought into conformity with the possibility of rebuilding the section of reinforced concrete. It is a solution well adapted to particularly damaged structures.
  • Reinforcement techniques by external or internal bonding are aimed at increasing the bearing capacity of the structures by gluing on the tensioned faces of the beams thereof a carbon / epoxy or glass / epoxy composite sheet. Reinforcement products are easy to implement and mechanically efficient. This technique is replacing more and more at the first in operations of reinforcement and / or repair of structures.
  • the object of the present invention is to provide a new reinforcement technique reinforced concrete structures by bonding reinforcing elements that does not have the disadvantages of known techniques listed above.
  • a further object of the present invention is to provide a reinforcement technique capable of increasing the mechanical performance, in service and at break, of reinforced reinforced concrete structure.
  • An object of the present invention is also to propose a reinforcement technique requiring the implementation of a reduced amount of reinforcement materials, and if possible, at most similar to the quantities used in bonding reinforcement techniques known at this time. day.
  • the present invention firstly proposes a reinforcing element of a reinforced concrete structure, of the plate or beam type to be assembled by bonding or anchoring to a reinforced concrete structure to be reinforced and which is characterized in that it consists at least of a mineral matrix comprising short fibers and stiffening reinforcements, the stiffening reinforcements being prestressed in the mineral matrix.
  • the inventors have demonstrated that it is possible to combine in a single reinforcing element a mineral matrix, short fibers and prestressing stiffening reinforcements, for example metal or composite, to obtain structure reinforcing elements meeting the objectives. above and thus to the expectations of users.
  • the reinforcing element of the invention has improved bending stiffness and / or ultimate load compared with CFRP bonding reinforcement solutions by virtue of increased inertia, especially provided by the mineral matrix, in which the frames are drowned.
  • This increase in inertia compared to known reinforcing elements provides the reinforcing elements of the invention with a reduced crack opening, and hence, increased durability of the reinforced structure using such elements.
  • the mineral matrix consists of at least one binder, sand, silica fume, water and a high water-reducing adjuvant.
  • the binder of the mineral matrix is chosen as a hydraulic cement.
  • the reinforcing element of the present invention thus advantageously has good compatibility with environmental criteria in view of the use of cement matrices to the detriment of organic matrices.
  • the short fibers included in the mineral matrix of the proposed reinforcement element are fibers of metallic and / or organic and / or mineral and / or composite nature.
  • These fibers advantageously have a length of between 8 and 15 mm, and preferably of the order of 10 to 12 mm.
  • the reinforcing armatures of the reinforcing element are reinforcements of a metallic and / or composite nature, and in particular made of steel and / or a polymer material reinforced with fiberglass and / or carbon fiber.
  • the prestressing of reinforcing reinforcements of the reinforcements is applied before the casting of the mineral matrix around said reinforcements during the manufacture of the reinforcing elements and this prestressing is between 30% and 60% of the elastic limit of said armatures.
  • the reinforcing element of the invention thus offers, thanks to such a prestressing stiffening reinforcement, substantially improved performance compared to the composite-plate elements used in the current adhesive reinforcement techniques.
  • the ultimate load supported by the reinforcing elements of the invention is at least 15% greater than that supported by carbon fiber reinforced polymer composite plates of the CFRP (Carbon Fiber Reinforced Polymer) type. Post-cracking stiffness is increased by 20%.
  • the reinforcements are embedded in the mineral matrix, they offer better fire resistance on the one hand and more generally external aggression, whether chemical or climatic, which improves the durability of the reinforcing element and therefore reinforcements operated using these materials.
  • the reinforcement element of the invention has at its ends a beveled shape conferring a gradual decrease in thickness with a slope of 15 to 45 ° to the end.
  • a geometry provides the reinforcing element of the invention with the advantage of delaying the delamination of the reinforcement plates, the particular geometry of the ends making it possible to limit the over-stressing at the ends.
  • the present invention also provides, according to a second object, a reinforcing method of reinforced concrete structures implementing at least one reinforcing element of the invention, as it has been presented previously.
  • This method consists essentially in assembling by gluing on a reinforced concrete structure to reinforce a reinforcement element according to the invention, consisting of at least one mineral matrix, short fibers mixed in this matrix and reinforcement reinforcements, embedded and prestressed in this mineral matrix.
  • the surfaces of the substrates to be bonded that is to say of the reinforced concrete structure to be reinforced and of the reinforcement element, are prepared prior to bonding, by sanding or mechanical sanding.
  • the two surfaces of the substrates to be assembled are preferably glued, which is then assembled by any means for applying the reinforcing element to the structure to be reinforced.
  • the assembly of the reinforced concrete structure to be reinforced and the reinforcing element after bonding for a period of at least twelve hours are then maintained under pressure.
  • this pressure maintenance of the assembly can last at least 24 hours, and up to 48 hours.
  • an adhesive thickness of between 1 mm and 5 mm is applied to the surfaces of the substrates to be assembled before assembly;
  • the assembly is maintained under pressure after sizing until a final adhesive thickness of between 0.5 and 2 mm is obtained;
  • the substrates are adhered with a structural adhesive based on polyurethane, epoxy or a combination of these materials; - the reinforcing element (s) are optionally prestressed;
  • the mineral matrix of the reinforcing element (s) comprises cement
  • the short fibers of the reinforcing element (s) are fibers of a metallic and / or composite nature and have a length of between 5 and 15 mm
  • the reinforcement element and the method of the present invention are both easy to implement, even in situ, and perfectly adapted to all construction industries, and in particular the building industry (individual houses, collective buildings). or industrial, freestanding floors, etc.), and to all markets for engineering structures (bridges, footbridges). Presentation of drawings
  • Figure 1 shows in perspective a reinforcing element according to the invention, in the form of a flat.
  • Figure 2 shows a cross-sectional view of a reinforcing member of the invention applied under a reinforced concrete structure.
  • FIGS. 3A and 3B show two exemplary embodiments of reinforcement of reinforced concrete structures by the implementation of the reinforcing element of the invention.
  • Figure 4 schematically illustrates the four-point bending test protocol established to evaluate the performance of the reinforcing member of the invention.
  • FIG. 5 shows the load-displacement curves established during the comparative strength tests of various reinforced concrete structures reinforced according to methods of the prior art and the method of the invention
  • FIG. 6 represents the stiffness curves obtained during the comparative strength tests of various reinforcing reinforced concrete structures according to methods of the prior art and the method of the invention.
  • the present invention provides a reinforcement element 1 of reinforced concrete structures.
  • a reinforcing element 1 may in a preferred embodiment be in the form of a reinforcing plate or plate as shown in FIGS. 1 and 2.
  • Such a reinforcing element 1 has a generally parallelepipedal general shape, except at its ends which have a particular beveled shape intended to limit the phenomena of delaminating shear stresses at the ends as will be described below.
  • the dimensions of the reinforcing element 1 are between 60 and 150 mm in width and between 25 and 45 mm in thickness, the length of the plate 1 being able to extend between 1 and 5 m.
  • the reinforcing element 1 essentially consists, according to the invention, of a mineral matrix 2 comprising short fibers and in which stiffening reinforcements 3 are embedded.
  • the mineral matrix 2 preferably comprises a cementitious binder.
  • the binder of the mineral matrix 2 is a cement and the composition of the matrix makes it possible to reduce the quantity of water at a Water / Cement ratio of 0.30, also comprising sand, silica fume, silica, water and a high water reducing adjuvant.
  • This composition makes it possible to obtain compressive strengths at 28 days greater than 100 MPa and a bending tensile strength greater than 15 MPa.
  • An example of a composition of a mineral matrix 2 of the reinforcement element of the invention is presented in Table 1 below: TABLE 1:
  • the matrix 2 of the reinforcing element 1 of the invention comprises short fibers of 10 to 12 mm.
  • These short fibers may in particular be of a metallic, mineral, organic or composite nature or their combination.
  • the short fibers are metallic allowing an increase in the tensile strength of the matrix and a ductile behavior.
  • the reinforcement element 1 of the invention finally comprises reinforcing reinforcements 3 embedded in the mineral matrix 2.
  • These reinforcements 3 preferably extend over the entire length of the reinforcing element and may be of a metallic or composite nature. , or both.
  • the reinforcements 3 may in particular be steel, polymer reinforced glass fiber or carbon, or their combination. Their diameter is advantageously between 6 and 12 mm, and they are positioned median in the thickness and the width of the matrix 2.
  • Tensile tensile moduli range from 40000 MPa for glass-fiber composites to 130000 MPa for carbon-fiber composites.
  • Tensile strengths range from 1000 MPa, for glass fiber composites (FC), to 2300 MPa, for carbon fiber composites (FC).
  • the reinforcements 3 may be prestressed before the casting of the die 2 to obtain an internally prestressed reinforcing member 1.
  • the prestressing force is between 30% and 60% of the maximum strength of the composite reinforcement.
  • the geometry of the ends of the reinforcement element of the invention is specific to limit shear overloads (-50%) according to the calculation results resulting from an analytical formulation specific to the mechanics of bonded joints (B. Taljsten Sr. Res.Engr., Div.of Structural Engrg., Dept. Of Civ.Engrg., Luleâ Univ. Of Technol., S-971 87 Luleâ, Sweden; STRENGTHENING OF BEAMS BY PLATE BONDING, part of the Journal of Materials in Civil Engineering, Vol 9, No. 4, November, 1997) and is well-validated in the field of glue joints in the aerospace industry.
  • the reinforcing element 1 of the present invention provides a particularly effective and advantageous solution for reinforcement of reinforced concrete structures.
  • the reinforcing element 1 can be used alone to reinforce, for example, a reinforced concrete beam PB (FIG. 3A) by longitudinal gluing under the beam of a reinforcing element 1, or by combination of several reinforcing elements 1 bonded parallel to each other under a reinforced concrete slab DB (FIG. 3B).
  • Reinforcement operations of reinforced concrete structures consist in assembling the reinforcing element 1 under the reinforcement reinforced concrete structure by bonding, as shown in FIGS. 3A and 3B.
  • This bonding assembly is advantageously with a structural adhesive 4 based on polyurethane, epoxy or a combination of these materials.
  • the surfaces to be bonded both of the structure to be reinforced and the reinforcement element or elements used to carry out the reinforcing operation.
  • This preparation of the bonding surfaces consists in particular in a sanding or mechanical sandblasting of said surfaces in order to clean them and facilitate the setting of the glue which is then applied, by any known means, in particular a spatula, on two surfaces of the substrates to be assembled.
  • an adhesive thickness of between 1 mm and 5 mm is preferably applied to the two surfaces of the substrates to be assembled.
  • the thickness of the glue layer depends in particular on its viscosity.
  • the amount of structural adhesive used according to the process of the invention should be about 2 Kg per unit area of bonding.
  • the glued surfaces are applied to one another by pressure of the reinforcing element or elements implemented on the surface of the reinforcing concrete structure previously glued.
  • it is then maintained under pressure, before the end of the DPU (practical duration of use) of the glue, the assembly of the reinforced concrete structure to reinforce and reinforcement element (s) for a duration of at least twelve hours and up to 48 hours, advantageously for 24 hours.
  • the pressurization is carried out until all the excess glue has been rejected, so as to obtain a final adhesive thickness varying from 0.3 to 3 mm, preferably from 0.5 to 2 mm .
  • the inventors have carried out various comparative mechanical tests whose nature and the results are reported below.
  • reinforcing plates 1 also called reinforcement plates
  • the dimensions of the sections of said plates the type of reinforcement ( CF P carbon or GFRP glass), prestressing possibly applied to reinforcements and geometry of the ends of the reinforcing plates.
  • the different combinations are referenced in Table 2.
  • a 4-point bend test described in FIG. 4 was carried out on the beams P1 to P12 thus prepared in order to test the different reinforcement configurations.
  • This test consists of stressing the beams statically and monotonically at four different points of application A1 to A4 until they break.
  • the loading of the beam is carried out by applying a force F applied to the points A2 and A3.
  • the arrow of the beam in the middle under the application of the force F is measured by a displacement sensor C.
  • the adopted instrumentation continuously collects the applied force and the arrow mid-span. The results of these bending tests are reported in Table 3 below and in Figure 5.
  • the reinforcing plates according to the invention are significantly more efficient than the carbon dish (P6), with a substantially increased ultimate load (up to 17%) .
  • This ultimate load remains moreover of the same order (2% difference) than the P7 beam reinforced by the NSM technique.

Abstract

The invention relates to an element (1) for reinforcing a reinforced concrete structure, of the plate or beam type to be assembled by bonding or anchoring to a reinforced concrete structure (PB, DB) to be reinforced, characterized in that it is formed from at least one mineral matrix (2) comprising short fibres and from stiffening reinforcements (3), the stiffening reinforcements (3) being prestressed in the mineral matrix. The invention also relates to a method of reinforcing reinforced concrete structures using such a reinforcing element.

Description

Elément de renforcement en composite fibres-ciment et procédé de renforcement de structures en béton armé par un tel élément Reinforcing element made of fiber cement composite and reinforcing method of reinforced concrete structures by such an element
Domaine technique de l'invention Technical field of the invention
La présente invention concerne le domaine général du génie civil et de la construction d'ouvrages en béton armé. The present invention relates to the general field of civil engineering and construction of reinforced concrete structures.
L'invention se rapporte plus particulièrement à un élément de renforcement de structures de béton-armé, ainsi qu'un procédé de renforcement de telles structures mettant en uvre un tel élément de renforcement.  The invention relates more particularly to a reinforcement element of concrete-reinforced structures, as well as a method of reinforcing such structures using such a reinforcing element.
Etat de la technique Différentes techniques ont déjà été proposées dans le domaine du renforcement de structures en béton armé et sont à ce jour exploitées. State of the art Various techniques have already been proposed in the field of reinforcement of reinforced concrete structures and are currently exploited.
On peut citer notamment parmi les plus fréquemment employées les techniques de réhabilitation par béton projeté et les techniques de renforcement par collage externe ou interne par engravure (technique dite NSM) de plaques ou armatures composites à matrices organiques et fibres de verre ou de carbone.  Among the most frequently used are the techniques of rehabilitation by shotcrete and strengthening techniques by external bonding or internal by engravure (so-called NSM technique) of composite plates or frames with organic matrices and glass or carbon fibers.
Les techniques de réhabilitation par béton projeté s'inscrivent dans le domaine du génie civil traditionnel utilisant des matériaux conventionnels. The techniques of rehabilitation by shotcrete are in the field of traditional civil engineering using conventional materials.
Les structures renforcées qui en résultent présentent l'avantage d'être remises en conformité avec la possibilité de reconstruction de la section de béton armé. Il s'agit d'une solution bien adaptée aux structures particulièrement endommagées. The resulting reinforced structures have the advantage of being brought into conformity with the possibility of rebuilding the section of reinforced concrete. It is a solution well adapted to particularly damaged structures.
Les techniques de renforcement par collage externe ou interne visent l'augmentation des capacités portantes des ouvrages en collant sur les faces tendues des poutres de ceux-ci une plaque de composite en carbone/époxy ou verre/époxy. Les produits de renforcement sont faciles de mise en œuvre et mécaniquement performants. Cette technique se substitue de plus en plus à la première dans des opérations de renforcement et/ou réparation de structures. Reinforcement techniques by external or internal bonding are aimed at increasing the bearing capacity of the structures by gluing on the tensioned faces of the beams thereof a carbon / epoxy or glass / epoxy composite sheet. Reinforcement products are easy to implement and mechanically efficient. This technique is replacing more and more at the first in operations of reinforcement and / or repair of structures.
Les documents US 2002/110680, WO 03/053679 ou encore EP 1 726 742 illustrent ainsi différentes techniques de renforcement par collage externe ou interne.  The documents US 2002/110680, WO 03/053679 or EP 1 726 742 thus illustrate different reinforcement techniques by external or internal bonding.
Toutefois, dans une majorité de cas, ces techniques présentent des inconvénients liés à la tenue en température des plaques collées (problèmes d'incendie), à la compatibilité des matériaux organiques et des matériaux céramiques mis en oeuvre et également au coût élevé, parfois rédhibitoire, du produit. De surcroît, le principal désavantage de ces techniques de renforcement par collage reste l'insuffisante rentabilisation des performances des plaques de renforts dont la résistance ultime est rarement approchée lors de la rupture du fait d'un délaminage prématuré d'une part, et d'une insuffisance d'inertie des plaques de renforcement particulièrement minces d'autre part.  However, in a majority of cases, these techniques have drawbacks related to the temperature resistance of the bonded sheets (fire problems), to the compatibility of the organic materials and ceramic materials used and also to the high cost, sometimes prohibitive. , of the product. In addition, the main disadvantage of these bonding reinforcement techniques is the insufficient profitability of the performance of the reinforcement plates, the ultimate strength of which is rarely approached during the rupture due to premature delamination on the one hand, and a lack of inertia particularly thin reinforcement plates on the other hand.
Description de l'invention Description of the invention
L'objectif de la présente invention consiste à proposer une nouvelle technique de renforcement de structures en béton armé par collage d'éléments de renforcement qui ne présente pas les inconvénients des techniques connues listées précédemment. The object of the present invention is to provide a new reinforcement technique reinforced concrete structures by bonding reinforcing elements that does not have the disadvantages of known techniques listed above.
Un objectif supplémentaire de la présente invention est de proposer une technique de renforcement propre à augmenter les performances mécaniques, en service et à rupture, de la structure en béton armé renforcée.  A further object of the present invention is to provide a reinforcement technique capable of increasing the mechanical performance, in service and at break, of reinforced reinforced concrete structure.
Un objectif de la présente invention est également de proposer une technique de renforcement nécessitant la mise en œuvre d'une quantité réduite de matériaux de renforcement, et si possible, tout au plus similaire aux quantités usitées dans les techniques de renforcement par collage connues à ce jour. Pour atteindre ces différents objectifs, la présente invention propose en premier lieu un élément de renforcement d'une structure de béton armé, de type plaque ou poutre à assembler par collage ou ancrage sur une structure de béton armé à renforcer et qui est caractérisé en ce qu'il est constitué au moins d'une matrice minérale comprenant des fibres courtes et d'armatures de rigidification, les armatures de rigidification étant précontraintes dans la matrice minérale. An object of the present invention is also to propose a reinforcement technique requiring the implementation of a reduced amount of reinforcement materials, and if possible, at most similar to the quantities used in bonding reinforcement techniques known at this time. day. To achieve these various objectives, the present invention firstly proposes a reinforcing element of a reinforced concrete structure, of the plate or beam type to be assembled by bonding or anchoring to a reinforced concrete structure to be reinforced and which is characterized in that it consists at least of a mineral matrix comprising short fibers and stiffening reinforcements, the stiffening reinforcements being prestressed in the mineral matrix.
Les inventeurs ont mis en évidence qu'il était possible de combiner en un unique élément de renforcement une matrice minérale, des fibres courtes et des armatures de rigidification précontraintes, par exemple métalliques ou composites, pour obtenir des éléments de renforcement de structures répondant aux objectifs ci-avant énoncés et ainsi aux attentes des utilisateurs.  The inventors have demonstrated that it is possible to combine in a single reinforcing element a mineral matrix, short fibers and prestressing stiffening reinforcements, for example metal or composite, to obtain structure reinforcing elements meeting the objectives. above and thus to the expectations of users.
Tout particulièrement, l'élément de renforcement de l'invention présente une rigidité en flexion et/ou une charge ultime améliorées comparativement aux solutions de renforcement par collage de type CFRP grâce à une inertie accrue, conférée notamment par la matrice minérale, dans laquelle les armatures sont noyées. Cette augmentation de l'inertie comparativement aux éléments de renforcement connus procure aux éléments de renforcement de l'invention une ouverture de fissure réduite, et partant, une durabilité accrue de la structure renforcée à l'aide de tels éléments.  In particular, the reinforcing element of the invention has improved bending stiffness and / or ultimate load compared with CFRP bonding reinforcement solutions by virtue of increased inertia, especially provided by the mineral matrix, in which the frames are drowned. This increase in inertia compared to known reinforcing elements provides the reinforcing elements of the invention with a reduced crack opening, and hence, increased durability of the reinforced structure using such elements.
Selon un mode de réalisation de l'élément de renforcement de l'invention, la matrice minérale est constituée au moins d'un liant, de sable, de fumée de silice, d'eau et d'un adjuvant haut réducteur d'eau. De façon préférée, le liant de la matrice minérale est choisi comme un ciment hydraulique.  According to one embodiment of the reinforcing element of the invention, the mineral matrix consists of at least one binder, sand, silica fume, water and a high water-reducing adjuvant. Preferably, the binder of the mineral matrix is chosen as a hydraulic cement.
L'élément de renforcement de la présente invention présente ainsi de façon avantageuse une bonne compatibilité avec les critères environnementaux compte tenu de l'utilisation de matrices cimentaires au détriment de matrices organiques. Selon une caractéristique de l'invention, les fibres courtes incluses dans la matrice minérale de l'élément de renforcement proposé sont des fibres de nature métallique et /ou organique et/ou minérale et/ou composite. The reinforcing element of the present invention thus advantageously has good compatibility with environmental criteria in view of the use of cement matrices to the detriment of organic matrices. According to one characteristic of the invention, the short fibers included in the mineral matrix of the proposed reinforcement element are fibers of metallic and / or organic and / or mineral and / or composite nature.
Ces fibres présentent par ailleurs de façon avantageuse une longueur comprise entre 8 et 15 mm, et de préférence de l'ordre de 10 à 12 mm.  These fibers advantageously have a length of between 8 and 15 mm, and preferably of the order of 10 to 12 mm.
Conformément à une autre caractéristique particulière et avantageuse de l'invention les armatures de rigidification de l'élément de renforcement sont des armatures de nature métallique et/ou composite, et en particulier constituées d'acier et/ou d'un matériau polymère renforcé de fibres de verre et/ou de carbone.  According to another particular and advantageous feature of the invention, the reinforcing armatures of the reinforcing element are reinforcements of a metallic and / or composite nature, and in particular made of steel and / or a polymer material reinforced with fiberglass and / or carbon fiber.
Dans un mode de réalisation avantageux de l'invention, la précontrainte des armatures de rigidification des armatures est appliquée avant la coulée de la matrice minérale autour desdites armatures lors de la fabrication des éléments de renforcement et cette précontrainte est comprise entre 30% et 60% de la limite élastique desdites armatures.  In an advantageous embodiment of the invention, the prestressing of reinforcing reinforcements of the reinforcements is applied before the casting of the mineral matrix around said reinforcements during the manufacture of the reinforcing elements and this prestressing is between 30% and 60% of the elastic limit of said armatures.
L'élément de renforcement de l'invention offre ainsi grâce à une telle précontrainte des armatures de rigidification des performances sensiblement améliorées par rapport aux éléments en plats composites utilisés dans les techniques actuelles de renforcement par collage. En particulier, la charge ultime supportée par les éléments de renforcement de l'invention est supérieure d'au moins 15% à celle supportée par des plats composites en polymère renforcé de fibres de carbone de type CFRP (Carbon Fiber Reinforced Polymer). La rigidité post-fissuration quant à elle est augmentée de 20%.  The reinforcing element of the invention thus offers, thanks to such a prestressing stiffening reinforcement, substantially improved performance compared to the composite-plate elements used in the current adhesive reinforcement techniques. In particular, the ultimate load supported by the reinforcing elements of the invention is at least 15% greater than that supported by carbon fiber reinforced polymer composite plates of the CFRP (Carbon Fiber Reinforced Polymer) type. Post-cracking stiffness is increased by 20%.
De plus, dans la mesure où les armatures sont noyées dans la matrice minérale, elles offrent une meilleure résistance au feu d'une part et plus généralement aux agressions externes, qu'elles soient chimiques ou climatiques, ce qui améliore la durabilité de l'élément de renforcement et donc des renforcements opérés à l'aide de ces matériels.  In addition, insofar as the reinforcements are embedded in the mineral matrix, they offer better fire resistance on the one hand and more generally external aggression, whether chemical or climatic, which improves the durability of the reinforcing element and therefore reinforcements operated using these materials.
Dans un mode de réalisation avantageux de l'élément de renforcement de l'invention, celui-ci présente à ses extrémités une forme biseautée conférant une diminution progressive d'épaisseur avec une pente de 15 à 45° jusqu'à l'extrémité. Une telle géométrie procure à l'élément de renforcement de l'invention l'avantage de différer le délaminage des plats de renforcement, la géométrie particulière des extrémités permettant de limiter les surcontraintes aux extrémités. In an advantageous embodiment of the reinforcement element of the invention, it has at its ends a beveled shape conferring a gradual decrease in thickness with a slope of 15 to 45 ° to the end. Such a geometry provides the reinforcing element of the invention with the advantage of delaying the delamination of the reinforcement plates, the particular geometry of the ends making it possible to limit the over-stressing at the ends.
La présente invention fournit également, suivant un deuxième objet, un procédé de renforcement de structures en béton armé mettant en œuvre au moins un élément de renforcement de l'invention, tel que celui-ci a été présenté précédemment. Ce procédé consiste essentiellement à assembler par collage sur une structure de béton armé à renforcer un élément de renforcement selon l'invention, constitué au moins d'une matrice minérale, de fibres courtes mélangées dans cette matrice et d'armatures de rigidification, noyées et précontraintes dans cette matrice minérale.  The present invention also provides, according to a second object, a reinforcing method of reinforced concrete structures implementing at least one reinforcing element of the invention, as it has been presented previously. This method consists essentially in assembling by gluing on a reinforced concrete structure to reinforce a reinforcement element according to the invention, consisting of at least one mineral matrix, short fibers mixed in this matrix and reinforcement reinforcements, embedded and prestressed in this mineral matrix.
Conformément au procédé de l'invention, on prépare les surfaces des subjectiles à encoller, c'est-à-dire de la structure de béton armé à renforcer et de l'élément de renforcement, préalablement au collage, par ponçage ou sablage mécanique.  According to the method of the invention, the surfaces of the substrates to be bonded, that is to say of the reinforced concrete structure to be reinforced and of the reinforcement element, are prepared prior to bonding, by sanding or mechanical sanding.
Ensuite, on encolle de façon préférée les deux surfaces des subjectiles à assembler, que l'on assemble ensuite par tout moyen d'application de l'élément de renforcement sur la structure à renforcer.  Next, the two surfaces of the substrates to be assembled are preferably glued, which is then assembled by any means for applying the reinforcing element to the structure to be reinforced.
Toujours selon le procédé de l'invention, on maintient ensuite sous pression l'assemblage de la structure de béton armé à renforcer et de l'élément de renforcement après collage pendant une durée d'au moins douze heures. De façon préférée, ce maintien sous pression de l'assemblage pourra durer au moins 24 heures, et jusqu'à 48 heures.  Still according to the method of the invention, the assembly of the reinforced concrete structure to be reinforced and the reinforcing element after bonding for a period of at least twelve hours are then maintained under pressure. Preferably, this pressure maintenance of the assembly can last at least 24 hours, and up to 48 hours.
Selon différentes caractéristiques préférées du procédé de l'invention : According to various preferred features of the process of the invention:
- on applique une épaisseur de colle comprise entre 1 mm et 5 mm sur les surfaces des subjectiles à assembler avant assemblage ; an adhesive thickness of between 1 mm and 5 mm is applied to the surfaces of the substrates to be assembled before assembly;
- on maintient sous pression l'assemblage après encollage jusqu'à obtenir une épaisseur de colle finale comprise entre 0,5 et 2 mm ;  the assembly is maintained under pressure after sizing until a final adhesive thickness of between 0.5 and 2 mm is obtained;
- on encolle les subjectiles avec une colle structurale à base de polyuréthane, d'époxy ou d'une combinaison de ces matières ; - le ou les élément(s) de renforcement sont éventuellement précontraints ; the substrates are adhered with a structural adhesive based on polyurethane, epoxy or a combination of these materials; - the reinforcing element (s) are optionally prestressed;
- la matrice minérale du ou des élément(s) de renforcement comporte du ciment;  the mineral matrix of the reinforcing element (s) comprises cement;
- les fibres courtes du ou des élément(s) de renforcement sont des fibres de nature métallique et/ou composite et présentent une longueur comprise entre 5 et 15 mm  the short fibers of the reinforcing element (s) are fibers of a metallic and / or composite nature and have a length of between 5 and 15 mm
L'élément de renforcement et le procédé de la présente invention sont tous deux de mise en œuvre aisée, même in-situ, et parfaitement adaptée à l'ensemble des industries de la construction, et notamment celle du bâtiment (maisons individuelles, bâtiments collectifs ou industriels, planchers autoporteurs, etc.), et à l'ensemble des marchés des ouvrages d'art (ponts, passerelles). Présentation des dessins  The reinforcement element and the method of the present invention are both easy to implement, even in situ, and perfectly adapted to all construction industries, and in particular the building industry (individual houses, collective buildings). or industrial, freestanding floors, etc.), and to all markets for engineering structures (bridges, footbridges). Presentation of drawings
D'autres avantages et caractéristiques de l'invention apparaîtront clairement à la lecture de la description et des exemples, donnés à titre purement illustratif et non limitatif, qui vont suivre. Other advantages and features of the invention will become clear from reading the description and examples, given purely by way of illustration and not limitation, which will follow.
La Figure 1 représente en perspective un élément de renforcement conforme à l'invention, sous la forme d'un plat.  Figure 1 shows in perspective a reinforcing element according to the invention, in the form of a flat.
La Figure 2 représente une vue en coupe transversale d'un élément de renforcement de l'invention appliqué sous une structure de béton armé.  Figure 2 shows a cross-sectional view of a reinforcing member of the invention applied under a reinforced concrete structure.
Les Figures 3A et 3B représentent deux exemples de réalisation de renforcement de structures de béton armé par la mise en œuvre de l'élément de renforcement de l'invention.  FIGS. 3A and 3B show two exemplary embodiments of reinforcement of reinforced concrete structures by the implementation of the reinforcing element of the invention.
La Figure 4 représente schématiquement le protocole d'essai de flexion quatre points établi pour évaluer les performances de l'élément de renforcement de l'invention.  Figure 4 schematically illustrates the four-point bending test protocol established to evaluate the performance of the reinforcing member of the invention.
La Figure 5 représente les courbes charge-déplacement établies lors des essais comparatifs de résistance de différentes structures de béton armé renforcées selon des procédés de l'art antérieur et le procédé de l'invention ; La Figure 6 représente tes courbes de rigidité obtenues lors des essais comparatifs de résistance de différentes structures de béton armé renforcées selon des procédés de l'art antérieur et le procédé de l'invention. Description détaillée de l'invention Figure 5 shows the load-displacement curves established during the comparative strength tests of various reinforced concrete structures reinforced according to methods of the prior art and the method of the invention; FIG. 6 represents the stiffness curves obtained during the comparative strength tests of various reinforcing reinforced concrete structures according to methods of the prior art and the method of the invention. Detailed description of the invention
Conformément à un premier objet, la présente invention propose un élément de renforcement 1 de structures de béton armé. Un tel élément de renforcement 1 peut dans un mode de réalisation préféré se présenter sous la forme d'un plat ou plaque de renforcement telle que représentée sur les figures 1 et 2. Un tel élément de renforcement 1 présente une forme générale sensiblement parallélépipédique, excepté à ses extrémités qui présentent une forme biseautée particulière destinée à limiter les phénomènes de contraintes délaminantes de cisaillement aux extrémités comme il sera décrit ci-après. According to a first object, the present invention provides a reinforcement element 1 of reinforced concrete structures. Such a reinforcing element 1 may in a preferred embodiment be in the form of a reinforcing plate or plate as shown in FIGS. 1 and 2. Such a reinforcing element 1 has a generally parallelepipedal general shape, except at its ends which have a particular beveled shape intended to limit the phenomena of delaminating shear stresses at the ends as will be described below.
De préférence, les dimensions de l'élément de renforcement 1 sont comprises entre 60 et 150 mm en largeur et entre 25 et 45 mm en épaisseur, la longueur de la plaque 1 pouvant elle s'étendre entre 1 et 5 m.  Preferably, the dimensions of the reinforcing element 1 are between 60 and 150 mm in width and between 25 and 45 mm in thickness, the length of the plate 1 being able to extend between 1 and 5 m.
L'élément de renforcement 1 est essentiellement constitué selon l'invention d'une matrice minérale 2 comportant des fibres courtes et dans laquelle sont noyées des armatures de rigidification 3. La matrice minérale 2 comporte de façon préférée un liant de type ciment.  The reinforcing element 1 essentially consists, according to the invention, of a mineral matrix 2 comprising short fibers and in which stiffening reinforcements 3 are embedded. The mineral matrix 2 preferably comprises a cementitious binder.
De façon avantageuse, le liant de la matrice minérale 2 est un ciment et la composition de la matrice permet de diminuer la quantité d'eau à un rapport Eau/Ciment de 0.30, comportant également du sable, de la fumée de silice, de l'eau et un adjuvant haut réducteur d'eau. Cette composition permet d'obtenir des résistances à la compression à 28 jours supérieures à 100 MPa et une résistance à la traction par flexion supérieure à 15 MPa. Un exemple de composition d'une matrice minérale 2 de l'élément de renforcement de l'invention est présenté dans le Tableau 1 ci-après : TABLEAU 1 : Advantageously, the binder of the mineral matrix 2 is a cement and the composition of the matrix makes it possible to reduce the quantity of water at a Water / Cement ratio of 0.30, also comprising sand, silica fume, silica, water and a high water reducing adjuvant. This composition makes it possible to obtain compressive strengths at 28 days greater than 100 MPa and a bending tensile strength greater than 15 MPa. An example of a composition of a mineral matrix 2 of the reinforcement element of the invention is presented in Table 1 below: TABLE 1:
Figure imgf000009_0001
Figure imgf000009_0001
Avantageusement, la matrice 2 de l'élément de renforcement 1 de l'invention comprend des fibres courtes de 10 à 12 mm. Ces fibres courtes peuvent notamment être de nature métallique, minérale, organique, composite ou leur combinaison. Dans le cas de la composition donnée dans le tableau 1 les fibres courtes sont métalliques permettant une augmentation de la résistance à la traction de la matrice et un comportement ductile. Advantageously, the matrix 2 of the reinforcing element 1 of the invention comprises short fibers of 10 to 12 mm. These short fibers may in particular be of a metallic, mineral, organic or composite nature or their combination. In the case of the composition given in Table 1, the short fibers are metallic allowing an increase in the tensile strength of the matrix and a ductile behavior.
L'élément de renforcement 1 de l'invention comporte enfin des armatures de rigidification 3 noyées dans la matrice minérale 2. Ces armatures 3 s'étendent de préférence sur toute la longueur de l'élément de renforcement est peuvent être de nature métallique ou composite, ou les deux. Les armatures 3 peuvent notamment être en acier, polymère renforcé de fibres de verre ou de carbone, ou leur combinaison. Leur diamètre est compris de façon avantageuse entre 6 et 12 mm, et elles sont positionnées de façon médiane dans l'épaisseur et la largeur de la matrice 2.  The reinforcement element 1 of the invention finally comprises reinforcing reinforcements 3 embedded in the mineral matrix 2. These reinforcements 3 preferably extend over the entire length of the reinforcing element and may be of a metallic or composite nature. , or both. The reinforcements 3 may in particular be steel, polymer reinforced glass fiber or carbon, or their combination. Their diameter is advantageously between 6 and 12 mm, and they are positioned median in the thickness and the width of the matrix 2.
Les modules d'élasticité en traction sont compris entre 40000 MPa, pour les composite à base de fibres de verre, et 130000 MPa, pour les composites à base de fibres de carbone. Les résistances en traction sont comprises entre 1000 MPa, pour les composites à base de fibres de verre (FC), et 2300 MPa, pour les composites à base de fibres de carbone (FC). Selon un mode de réalisation avantageux de l'élément de renforcement de l'invention, les armatures 3 peuvent être précontraintes avant le coulage de la matrice 2 pour obtenir un élément de renforcement 1 précontraint de façon interne. Avantageusement, l'effort de précontrainte est compris entre 30% et 60 % de la résistance maximale de l'armature composite. Tensile tensile moduli range from 40000 MPa for glass-fiber composites to 130000 MPa for carbon-fiber composites. Tensile strengths range from 1000 MPa, for glass fiber composites (FC), to 2300 MPa, for carbon fiber composites (FC). According to an advantageous embodiment of the reinforcement element of the invention, the reinforcements 3 may be prestressed before the casting of the die 2 to obtain an internally prestressed reinforcing member 1. Advantageously, the prestressing force is between 30% and 60% of the maximum strength of the composite reinforcement.
Enfin la géométrie des extrémités de l'élément de renforcement de l'invention est spécifique pour limiter les surcontraintes de cisaillement (- 50 %) conformément aux résultats de calcul issue d'une formulation analytique propre à la mécanique des joints collés (B. Taljsten - Sr. Res. Engr., Div. of Struct. Engrg., Dept. Of Civ. Engrg., Luleâ Univ. Of Technol., S- 971 87 Luleâ, Sweden ; STRENGTHENING OF BEAMS BY PLATE BONDING, part of the Journal of Materials in Civil Engineering, Vol. 9, No. 4, November, 1997 ) et parfaitement validée dans le domaine des joints collés de l'industrie aéronautique.  Finally, the geometry of the ends of the reinforcement element of the invention is specific to limit shear overloads (-50%) according to the calculation results resulting from an analytical formulation specific to the mechanics of bonded joints (B. Taljsten Sr. Res.Engr., Div.of Structural Engrg., Dept. Of Civ.Engrg., Luleâ Univ. Of Technol., S-971 87 Luleâ, Sweden; STRENGTHENING OF BEAMS BY PLATE BONDING, part of the Journal of Materials in Civil Engineering, Vol 9, No. 4, November, 1997) and is well-validated in the field of glue joints in the aerospace industry.
Selon l'invention, la forme des extrémités de l'élément de renforcement According to the invention, the shape of the ends of the reinforcing element
1 est biseautée, et confère une diminution progressive de l'épaisseur de l'élément 1 à son extrémité, sur les 15 derniers cm, avec une pente de 15 à 45° suivant l'épaisseur de l'élément. L'intensité des contraintes de cisaillement à l'interface entre élément de renforcement 1 et support renforcé est diminuée dans un rapport de 2 à 3 par cette géométrie spécifique. Le risque de décollement de l'élément de renforcement lié aux surcontraintes locales de cisaillement est ainsi sensiblement réduit. 1 is beveled, and gives a gradual decrease in the thickness of the element 1 at its end, the last 15 cm, with a slope of 15 to 45 ° depending on the thickness of the element. The intensity of the shear stresses at the interface between reinforcement element 1 and reinforced support is decreased in a ratio of 2 to 3 by this specific geometry. The risk of detachment of the reinforcing element due to local overloads of shear is thus substantially reduced.
Il s'agit d'un avantage par rapport aux solutions traditionnelles et qu'il est impossible à mettre en œuvre sur les solutions de type plats composites et armatures scellées (NSM).  This is an advantage over traditional solutions and can not be implemented on composite and sealed reinforcement (NSM) solutions.
L'élément de renforcement 1 de la présente invention procure une solution particulièrement efficace et avantageuse de renforcement de structures en béton armé. Comme représenté sur les figures 3A et 3B, L'élément de renforcement 1 peut être utilisé seul pour renforcer par exemple une poutre de béton armé PB (figure 3A) par collage longitudinal sous la poutre d'un élément de renforcement 1, ou bien en combinaison de plusieurs éléments de renforcement 1 collés parallèlement les uns aux autres sous une dalle de béton armé DB (figure 3B). The reinforcing element 1 of the present invention provides a particularly effective and advantageous solution for reinforcement of reinforced concrete structures. As shown in FIGS. 3A and 3B, the reinforcing element 1 can be used alone to reinforce, for example, a reinforced concrete beam PB (FIG. 3A) by longitudinal gluing under the beam of a reinforcing element 1, or by combination of several reinforcing elements 1 bonded parallel to each other under a reinforced concrete slab DB (FIG. 3B).
Les opérations de renforcement de structures de béton armé consistent à assembler l'élément de renforcement 1 sous la structure de béton armé à renforcer par collage, comme représenté sur les figures 3A et 3B. Cet assemblage par collage se fait de façon avantageuse avec une colle structurale 4 à base de polyuréthane, d'époxy ou d'une combinaison de ces matières.  Reinforcement operations of reinforced concrete structures consist in assembling the reinforcing element 1 under the reinforcement reinforced concrete structure by bonding, as shown in FIGS. 3A and 3B. This bonding assembly is advantageously with a structural adhesive 4 based on polyurethane, epoxy or a combination of these materials.
De préférence, il convient de préparer les surfaces à encoller à la fois de la structure à renforcer et du ou des éléments de renforcement mis en œuvre pour réaliser l'opération de renforcement. Cette préparation des surfaces de collage consiste notamment de façon adéquate en un ponçage ou un sablage mécanique desdites surfaces afin de les nettoyer et de faciliter la prise de la colle que l'on applique ensuite, par tout moyen connu, notamment une spatule, sur les deux surfaces des subjectiles à assembler.  Preferably, it is necessary to prepare the surfaces to be bonded both of the structure to be reinforced and the reinforcement element or elements used to carry out the reinforcing operation. This preparation of the bonding surfaces consists in particular in a sanding or mechanical sandblasting of said surfaces in order to clean them and facilitate the setting of the glue which is then applied, by any known means, in particular a spatula, on two surfaces of the substrates to be assembled.
Afin d'obtenir un assemblage de résistance satisfaisante, on applique de préférence une épaisseur de colle 4 comprise entre 1 mm et 5 mm sur les deux surfaces des subjectiles à assembler. L'épaisseur de la couche de colle dépend notamment de sa viscosité. Cependant, en tout état de cause, la quantité de colle structurale utilisée selon le procédé de l'invention doit être d'environ 2 Kg par unité de surface de collage.  In order to obtain a satisfactory strength assembly, an adhesive thickness of between 1 mm and 5 mm is preferably applied to the two surfaces of the substrates to be assembled. The thickness of the glue layer depends in particular on its viscosity. However, in any case, the amount of structural adhesive used according to the process of the invention should be about 2 Kg per unit area of bonding.
Une fois la colle appliquée, on applique les surfaces encollées l'une sur l'autre par pression du ou des éléments de renforcement mis en œuvre sur la surface de la structure de béton à renforcer préalablement encollée. Avantageusement, on maintient ensuite sous pression, avant la fin de la DPU (durée pratique d'utilisation) de la colle, l'assemblage de la structure de béton armé à renforcer et du ou des éléments de renforcement pendant une durée d'au moins douze heures et pouvant aller jusqu'à 48 heures, avantageusement pendant 24 heures. Préférentiellement, la mise sous pression est réalisée jusqu'à ce que tout l'excédent de colle ait été rejeté, de manière à obtenir une épaisseur de colle finale variant de 0,3 à 3 mm, de préférence de 0,5 à 2 mm. Afin de valider les performances intrinsèques de l'élément de renforcement 1 de l'invention et des structures renforcées suivant le procédé de l'invention, les inventeurs ont procédé à différents essais mécaniques comparatifs dont la nature et les résultats sont rapportés ci-après. Once the glue has been applied, the glued surfaces are applied to one another by pressure of the reinforcing element or elements implemented on the surface of the reinforcing concrete structure previously glued. Advantageously, it is then maintained under pressure, before the end of the DPU (practical duration of use) of the glue, the assembly of the reinforced concrete structure to reinforce and reinforcement element (s) for a duration of at least twelve hours and up to 48 hours, advantageously for 24 hours. Preferably, the pressurization is carried out until all the excess glue has been rejected, so as to obtain a final adhesive thickness varying from 0.3 to 3 mm, preferably from 0.5 to 2 mm . In order to validate the intrinsic performances of the reinforcement element 1 of the invention and the reinforced structures according to the method of the invention, the inventors have carried out various comparative mechanical tests whose nature and the results are reported below.
Quatre plats de renforts conformes à l'invention ont été constitués d'une matrice cimentaire fibrée 2 à hautes-performances (BFUP) conforme à la composition donnée dans le tableau 1, qui par la suite sera présentée dans les tableaux de résultats suivant comme la composition F6mod.  Four reinforcing plates in accordance with the invention were made up of a high-performance fibered cementitious matrix 2 (UHPC) in accordance with the composition given in Table 1, which will subsequently be presented in the following tables of results as the composition F6mod.
Afin de tester les performances de la matrice cimentaire elle-même, on a soumis quatre éprouvettes de béton de type 4 X 4 X 16 formée de cette matrice à un essai de flexion trois points pour mesurer la résistance en traction par flexion. La résistance moyenne obtenue est de 25,5 MPa.  In order to test the performance of the cementitious matrix itself, four 4 X 4 X 16 type concrete specimens formed from this matrix were subjected to a three-point bending test to measure the bending tensile strength. The average resistance obtained is 25.5 MPa.
Par la suite, dix poutres en béton armé prémunies vis-à-vis d'une rupture à l'effort tranchant ont été confectionnées, l'une (P8) dite « témoin » dépourvue de renforcement et les autres renforcées en partie inférieure par différents éléments de renforcement conformes à la présente invention, formés d'une plaque parallélépipédique de composite fibres courtes-ciment, collée entre les appuis de la poutre, et dans laquelle sont noyées de manière centrée des joncs de fibres composites de verre ou de carbone formant armatures de rigidification 3.  Subsequently, ten reinforced concrete girders protected against shear failure were made, one (P8) called "control" devoid of reinforcement and the others reinforced in the lower part by different reinforcing elements according to the present invention, formed of a parallelepipedal plate of composite short-cement fibers, glued between the supports of the beam, and in which are embedded centrally rods of composite glass or carbon fibers forming reinforcements stiffening 3.
Afin de comparer les performances du renforcement obtenues selon l'invention vis-à-vis des méthodes de renforcement existantes, deux autres poutres de béton armé, identiques à celles renforcées à l'aide de plaques composites fibres courtes-ciment conformes à l'invention ont été renforcées, l'une au moyen du collage d'un plat carbone (P6) et l'autre (P7) par le biais de deux jonc carbone collés dans deux rainures ménagées à même le béton conformément à la procédure NSM (Near Surface Mounted).  In order to compare the performance of the reinforcement obtained according to the invention with respect to existing reinforcement methods, two other reinforced concrete beams, identical to those reinforced using short-cement fiber composite plates according to the invention. have been reinforced, one by bonding one carbon plate (P6) and the other (P7) by means of two carbon rods glued in two grooves on the concrete according to the NSM procedure (Near Surface Mounted).
Plusieurs combinaisons de renforcement ont été testées, les variantes entre chaque poutre PI à P12 testées tenant aux formulations de la matrice cimentaire des plaques de renforts 1 (également appelées plats de renfort), les dimensions des sections desdites plaques, le type d'armatures (carbone CF P ou verre GFRP), la précontrainte éventuellement appliquée aux armatures et la géométrie des extrémités des plaques de renforcement. Les différentes combinaisons sont référencées dans le Tableau 2. Several combinations of reinforcement were tested, the variants between each beam PI to P12 tested holding cementitious matrix formulations reinforcing plates 1 (also called reinforcement plates), the dimensions of the sections of said plates, the type of reinforcement ( CF P carbon or GFRP glass), prestressing possibly applied to reinforcements and geometry of the ends of the reinforcing plates. The different combinations are referenced in Table 2.
Tableau 2 :  Table 2:
Figure imgf000013_0001
Un essai de flexion 4 points décrit à la Figure 4 a été réalisé sur les poutres PI à P12 ainsi préparées afin d'éprouver les différentes configurations de renforcement. Cet essai consiste à solliciter les poutres de manière statique et monotone en quatre points d'application Al à A4 distincts jusqu'à leur rupture. La sollicitation de la poutre est réalisée par application d'un effort F appliqué aux points A2 et A3. La flèche de la poutre en son milieu sous l'application de l'effort F est mesurée par un capteur de déplacement C. L'instrumentation adoptée permet de recueillir en continu l'effort appliqué ainsi que la flèche à mi-travée. Les résultats des ces essais de flexion sont rapportés dans le Tableau 3 ci-après et sur la Figure 5.
Figure imgf000013_0001
A 4-point bend test described in FIG. 4 was carried out on the beams P1 to P12 thus prepared in order to test the different reinforcement configurations. This test consists of stressing the beams statically and monotonically at four different points of application A1 to A4 until they break. The loading of the beam is carried out by applying a force F applied to the points A2 and A3. The arrow of the beam in the middle under the application of the force F is measured by a displacement sensor C. The adopted instrumentation continuously collects the applied force and the arrow mid-span. The results of these bending tests are reported in Table 3 below and in Figure 5.
Tableau 3 :  Table 3:
Figure imgf000014_0001
Ces résultats permettent de tirer les conclusions suivantes.
Figure imgf000014_0001
These results allow us to draw the following conclusions.
Les performances des poutres renforcées par des plaques de renforcement conformes à l'invention (P1-P6 et P9-P12), comprenant une matrice minérale composite fibres-ciment sont systématiquement et très sensiblement améliorées par rapport à celles de la poutre témoin (P8) qu'il s'agisse des charges ultimes (jusqu'à 63% de gain) ou qu'elles portent sur le comportement en service caractérisé par une rigidité sensiblement supérieure et un niveau de dégradation substantiellement différé.  The performance of the beams reinforced by reinforcement plates in accordance with the invention (P1-P6 and P9-P12), comprising a fiber-cement composite mineral matrix are systematically and very significantly improved compared to those of the control beam (P8). whether they are ultimate loads (up to 63% gain) or that they relate to service behavior characterized by significantly higher rigidity and a substantially deferred degradation level.
De plus, comparés aux solutions antérieures classiques (P6, P7) les plaques de renfort conformes à l'invention s'avèrent notablement plus performantes que le plat de carbone (P6), avec une charge ultime sensiblement augmentée (jusqu'à 17%). Cette charge ultime demeure par ailleurs du même ordre (2% d'écart) que la poutre P7 renforcée par la technique NSM.  In addition, compared to conventional prior solutions (P6, P7) the reinforcing plates according to the invention are significantly more efficient than the carbon dish (P6), with a substantially increased ultimate load (up to 17%) . This ultimate load remains moreover of the same order (2% difference) than the P7 beam reinforced by the NSM technique.
S'agissant de la rigidité post-fissuration et plastification des armatures passives métalliques, elle se trouve quant à elle augmentée (+ 20 %) vis-à- vis des deux solutions de type traditionnel renforçant ainsi l'intérêt de la présente invention notamment dans le cas du comportement en service (Figure 6). As for the post-cracking stiffness and plasticization of passive metal reinforcement, it is increased (+ 20%) vis-à-vis the two traditional solutions, thus reinforcing the interest of the present invention especially in the case of in-service behavior (Figure 6).
Il est aussi significatif de constater que le taux de travail (déformation et contrainte) des joncs de carbone dans les plaques de renforcement de l'invention est significativement augmenté (entre 10% et 30%) au regard des solutions de type CFRP (plat carbone) ou NSM ce qui suggère la possibilité d'une optimisation et conséquemment un gain de matière et son corollaire en termes de prix.  It is also significant to note that the rate of work (deformation and stress) of the rods of carbon in the reinforcement plates of the invention is significantly increased (between 10% and 30%) with regard to CFRP type solutions (carbon plate ) or NSM which suggests the possibility of optimization and consequently a gain of material and its corollary in terms of price.
Le recours à un ancrage mécanique et/ou à une modification de la géométrie des extrémités des plats procure également envisager une amélioration des performances des poutres notamment en termes de charge ultime.  The use of mechanical anchoring and / or a modification of the geometry of the ends of the dishes also provides an improvement in the performance of the beams, particularly in terms of ultimate load.
L'invention n'est pas limitée aux exemples décrits et représentés car diverses modifications peuvent y être apportées sans sortir de son cadre.  The invention is not limited to the examples described and shown because various modifications can be made without departing from its scope.

Claims

REVENDICATIONS
1 - Elément (1) de renforcement d'une structure de béton armé, de type plaque ou poutre à assembler par collage ou ancrage sur une structure (PB, DB) de béton armé à renforcer, caractérisé en ce qu'il est constitué au moins d'une matrice minérale (2) comprenant des fibres courtes et d'armatures de rigidification (3), les armatures de rigidification (3) étant précontraintes dans la matrice minérale. 1 - Element (1) for reinforcing a reinforced concrete structure, of the plate or beam type to be assembled by bonding or anchoring to a reinforced concrete structure (PB, DB), characterized in that it is constituted by less than one mineral matrix (2) comprising short fibers and stiffening reinforcements (3), the stiffening reinforcements (3) being prestressed in the mineral matrix.
2 - Elément de renforcement (1) selon la revendication 1, caractérisé en ce que la matrice minérale (2) est constituée au moins d'un liant, de sable, de fumée de silice, d'eau et d'un adjuvant haut réducteur d'eau.  2 - reinforcing element (1) according to claim 1, characterized in that the mineral matrix (2) consists of at least one binder, sand, silica fume, water and a high reducing adjuvant of water.
3 - Elément de renforcement (1) selon la revendication 2, caractérisé en ce que le liant de la matrice minérale est un ciment hydraulique.  3 - reinforcing element (1) according to claim 2, characterized in that the binder of the mineral matrix is a hydraulic cement.
4 - Elément de renforcement (1) selon l'une des revendications 1 à 4 - reinforcing element (1) according to one of claims 1 to
3, caractérisé en ce que les fibres courtes incluses dans la matrice minérale sont des fibres de nature métallique et /ou organique et/ou minérale et/ou composite. 3, characterized in that the short fibers included in the mineral matrix are fibers of a metallic and / or organic and / or mineral and / or composite nature.
5 - Elément de renforcement (1) selon l'une des revendications 1 à 5 - reinforcing element (1) according to one of claims 1 to
4, caractérisé en ce que les fibres courtes incluses dans la matrice minérale présentent une longueur comprise entre 8 et 15 mm. 4, characterized in that the short fibers included in the mineral matrix have a length of between 8 and 15 mm.
6 - Elément de renforcement (1) selon l'une des revendications 1 à 6 - reinforcing element (1) according to one of claims 1 to
5, caractérisé en ce que les armatures de rigidification (3) sont des armatures de nature métallique et/ou composite. 5, characterized in that the reinforcing plates (3) are reinforcements of a metallic and / or composite nature.
7 - Elément de renforcement (1) selon la revendication 6, caractérisé en ce que les armatures de rigidification (3) sont constituées d'acier et/ou d'un matériau polymère renforcé de fibres de verre et/ou de carbone.  7 - reinforcing element (1) according to claim 6, characterized in that the reinforcing reinforcements (3) consist of steel and / or a polymer material reinforced with glass fibers and / or carbon.
8 - Elément de renforcement (1) selon l'une des revendications 1, caractérisé en ce que la précontrainte des armatures de rigidification est comprise entre 30% et 60% de la limite élastique desdites armatures. 9 - Elément de renforcement (1) selon l'une des revendications 1 à 8, caractérisé en ce que ses extrémités présentent une forme biseautée conférant une diminution progressive d'épaisseur avec une pente de 15 à 45° jusqu'à l'extrémité. 8 - Reinforcement element (1) according to one of claims 1, characterized in that the preload of the stiffening reinforcement is between 30% and 60% of the elastic limit of said reinforcements. 9 - reinforcing element (1) according to one of claims 1 to 8, characterized in that its ends have a beveled shape conferring a gradual decrease in thickness with a slope of 15 to 45 ° to the end.
10 - Procédé de renforcement d'une structure de béton armé, caractérisé en ce que l'on assemble par collage sur une structure de béton armé à renforcer au moins un élément de renforcement (1) comportant une matrice minérale (2) comprenant des fibres courtes et des armatures de rigidification (3), lesdites armatures de rigidication étant précontraintes dans la matrice minérale.  10 - Reinforcing method of a reinforced concrete structure, characterized in that it is assembled by gluing on a reinforced concrete structure to reinforce at least one reinforcing element (1) comprising a mineral matrix (2) comprising fibers short and stiffening armatures (3), said stiffening armatures being prestressed in the mineral matrix.
11 - Procédé selon la revendication 10, caractérisé en ce que l'on prépare les surfaces des subjectiles à encoller préalablement au collage par ponçage ou sablage mécanique.  11 - Process according to claim 10, characterized in that the surfaces of the substrates to be bonded are prepared before bonding by sanding or mechanical sanding.
12 - Procédé selon la revendication 11, caractérisé en ce que l'on encolle les deux surfaces des subjectiles à assembler.  12 - Process according to claim 11, characterized in that one glues the two surfaces of the substrates to be assembled.
13 - Procédé selon l'une des revendications 11 à 13, caractérisé en ce que l'on maintient sous pression l'assemblage de la structure de béton armé à renforcer et de l'élément de renforcement après collage pendant une durée d'au moins douze heures.  13 - Method according to one of claims 11 to 13, characterized in that one maintains under pressure the assembly of the reinforced concrete structure to reinforce and the reinforcing element after gluing for a period of at least twelve o'clock.
14 - Procédé selon l'une des revendications 10 à 13, caractérisé en ce que l'on applique une épaisseur de colle (4) comprise entre 1 mm et 5 mm sur les surfaces des subjectiles à assembler avant assemblage.  14 - Method according to one of claims 10 to 13, characterized in that one applies a glue thickness (4) of between 1 mm and 5 mm on the surfaces of the substrates to be assembled before assembly.
15 - Procédé selon les revendications 13 et 14, caractérisé en ce que l'on maintient sous pression l'assemblage après encollage jusqu'à obtenir une épaisseur de colle (4) finale comprise entre 0,5 et 2 mm.  15 - Process according to claims 13 and 14, characterized in that the pressure is maintained under pressure after sizing to obtain a thickness of adhesive (4) final between 0.5 and 2 mm.
16 - Procédé selon l'une des revendications 10 à 15, caractérisé en ce que l'on encolle les surfaces à encoller avec une colle structurale (4) à base de polyuréthane, d'époxy ou d'une combinaison de ces matières.  16 - Method according to one of claims 10 to 15, characterized in that the surfaces to be glued are glued with a structural adhesive (4) based on polyurethane, epoxy or a combination of these materials.
17 - Procédé selon l'une des revendications 10 à 16, caractérisé en ce que la matrice minérale (2) du ou des élément(s) de renforcement comporte un liant hydraulique. 18 - Procédé selon l'une des revendications 10 à 17, caractérisé en ce que les fibres courtes du ou des élément(s) de renforcement sont des fibres de nature métallique et/ou composite et présentent une longueur comprise entre 5 et 15 mm. 17 - Method according to one of claims 10 to 16, characterized in that the mineral matrix (2) of the element (s) of reinforcement comprises a hydraulic binder. 18 - Process according to one of claims 10 to 17, characterized in that the short fibers of the reinforcing element (s) are fibers of a metallic and / or composite nature and have a length of between 5 and 15 mm.
PCT/FR2010/052117 2009-10-15 2010-10-07 Reinforcing element made of a fibre‑cement composite and method of reinforcing reinforced concrete structures by such an element WO2011045505A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0957251A FR2951483B1 (en) 2009-10-15 2009-10-15 FIBER-CEMENT COMPOSITE REINFORCEMENT ELEMENT AND METHOD FOR STRENGTHENING CONCRETE STRUCTURES USED BY SUCH A COMPONENT
FR0957251 2009-10-15

Publications (1)

Publication Number Publication Date
WO2011045505A1 true WO2011045505A1 (en) 2011-04-21

Family

ID=42144834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052117 WO2011045505A1 (en) 2009-10-15 2010-10-07 Reinforcing element made of a fibre‑cement composite and method of reinforcing reinforced concrete structures by such an element

Country Status (2)

Country Link
FR (1) FR2951483B1 (en)
WO (1) WO2011045505A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112922380A (en) * 2021-01-13 2021-06-08 上海久坚加固科技股份有限公司 Method for reinforcing silo structure by adhering high-strength glass fiber composite material in circumferential direction

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1286287B (en) * 1965-03-19 1969-01-02 Gallus Dr Ing Procedure for the subsequent reinforcement of prestressed concrete slab girders whose reinforcement is damaged
US5296187A (en) * 1993-03-23 1994-03-22 Ribbon Technology, Corp. Methods for manufacturing columnar structures
DE19525508A1 (en) * 1994-08-16 1996-02-22 Hochtief Ag Hoch Tiefbauten Laminate coating for reinforced concrete or brickwork
WO1997021009A1 (en) * 1995-12-05 1997-06-12 Josef Scherer Construction component or construction with a composite structure, associated composite construction element, and method of production
US20020110680A1 (en) 2000-11-28 2002-08-15 Bank Lawrence C. Structural reinforcement using composite strips
WO2003053679A1 (en) 2001-12-19 2003-07-03 Lawrence Technological University Ductile hybrid structural fabric
DE202005003093U1 (en) * 2005-02-25 2005-09-15 Hennecke Markus Support element for subsequently reinforcement of components
EP1726742A2 (en) 2005-05-23 2006-11-29 Kimia S.P.A. Structural elements for the reinforcement of building components

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1286287B (en) * 1965-03-19 1969-01-02 Gallus Dr Ing Procedure for the subsequent reinforcement of prestressed concrete slab girders whose reinforcement is damaged
US5296187A (en) * 1993-03-23 1994-03-22 Ribbon Technology, Corp. Methods for manufacturing columnar structures
DE19525508A1 (en) * 1994-08-16 1996-02-22 Hochtief Ag Hoch Tiefbauten Laminate coating for reinforced concrete or brickwork
WO1997021009A1 (en) * 1995-12-05 1997-06-12 Josef Scherer Construction component or construction with a composite structure, associated composite construction element, and method of production
US20020110680A1 (en) 2000-11-28 2002-08-15 Bank Lawrence C. Structural reinforcement using composite strips
WO2003053679A1 (en) 2001-12-19 2003-07-03 Lawrence Technological University Ductile hybrid structural fabric
DE202005003093U1 (en) * 2005-02-25 2005-09-15 Hennecke Markus Support element for subsequently reinforcement of components
EP1726742A2 (en) 2005-05-23 2006-11-29 Kimia S.P.A. Structural elements for the reinforcement of building components

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"STRENGTHENING OF BEAMS BY PLATE BONDING", JOURNAL OF MATERIALS IN CIVIL ENGINEERING, vol. 9, no. 4, November 1997 (1997-11-01)
B. TATJSTEN: "Sr. Res. Engr., Div. of Struct. Engrg., Dept. Of Civ. Engrg.", LULEÂ UNIV. OF TECHNOL., pages: 971 87

Also Published As

Publication number Publication date
FR2951483A1 (en) 2011-04-22
FR2951483B1 (en) 2014-10-17

Similar Documents

Publication Publication Date Title
CA2672637C (en) Production method and structural element
CA2176369A1 (en) Surface treated synthetic reinforcement for structural wood members
FR2790500A1 (en) METHOD AND DEVICE FOR REINFORCING A CONCRETE STRUCTURE
EP3690167A1 (en) Method for strengthening concrete or timber structures using cfrp strips and concrete or timber structures strengthened by this method
WO2011045505A1 (en) Reinforcing element made of a fibre‑cement composite and method of reinforcing reinforced concrete structures by such an element
FR2747146A1 (en) PROCESS FOR STRENGTHENING CIVIL ENGINEERING STRUCTURES USING COATED CARBON FIBERS
BE483753A (en)
EP2231946B1 (en) Wood-concrete carrier structure
Redda et al. Experimental analysis of bamboo and e-glass fiber reinforced epoxy hybrid composite
FR3068997B1 (en) WOOD AND CONCRETE STRUCTURE ELEMENTS AND METHOD OF MANUFACTURE
WO2010055227A1 (en) Structural element comprising wood and concrete
Yang et al. Flexural strengthening of reinforced concrete beams using externally bonded FRP laminates prestressed with a new method
Al-Ghrery et al. Strengthening of Concrete Bridge Girders with Concavely-Curved Soffit Using Fiber Reinforced Polymer
CN112127547A (en) Externally-bonded reinforced glass beam and manufacturing method thereof
Soliman et al. Flexural behaviour of concrete beams strengthened with near sur-face mounted FRP bars
Zachary et al. Feasibility of strengthening glulam beams with prestressed basalt fibre reinforced polymers
FR2919638A1 (en) Ultra-high performance fibred concrete elongated structural element e.g. frame, for manufacturing e.g. covering element, has two sections with faces extended along longitudinal direction, and surface bond extended between faces
Zhang et al. Influence of material properties of FRPs on strength of flexural strengthened RC beams
Deghenhard et al. Experimental analysis of various configurations of metal sheets in the reinforcement of flexion of reinforced concrete beams
WO2009109726A2 (en) Prestressed concrete beam obtained by fitting two side sills and method for abutting two beams
FR2891562A1 (en) Prefabricated concrete unit for forming e.g. passage slab, has reinforcing sheet with connecting elements each being cut and folded to present anchoring faces, where elements are inclined with respect to sheet and extended inside body
Rajai The shear behavior of anchored groove RC beams
Madhusudhana Reddy et al. Manufacturing and Properties Analysis of Fibre Reinforced Polymer Composites
FR3124204A1 (en) Slab for the construction and method of manufacturing such a slab
Jorge et al. Bond behavior between glulam and GFRP’s using pullout bending tests

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10781955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10781955

Country of ref document: EP

Kind code of ref document: A1