WO2011044727A1 - 一种旋光器件 - Google Patents

一种旋光器件 Download PDF

Info

Publication number
WO2011044727A1
WO2011044727A1 PCT/CN2009/074436 CN2009074436W WO2011044727A1 WO 2011044727 A1 WO2011044727 A1 WO 2011044727A1 CN 2009074436 W CN2009074436 W CN 2009074436W WO 2011044727 A1 WO2011044727 A1 WO 2011044727A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
fiber
mirror
light
rotator
Prior art date
Application number
PCT/CN2009/074436
Other languages
English (en)
French (fr)
Inventor
张钟铁
郭文基
Original Assignee
嘉隆科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉隆科技(深圳)有限公司 filed Critical 嘉隆科技(深圳)有限公司
Priority to PCT/CN2009/074436 priority Critical patent/WO2011044727A1/zh
Priority to CN2009801363902A priority patent/CN102395916A/zh
Publication of WO2011044727A1 publication Critical patent/WO2011044727A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2766Manipulating the plane of polarisation from one input polarisation to another output polarisation, e.g. polarisation rotators, linear to circular polarisation converters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • G02F1/0955Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure used as non-reciprocal devices, e.g. optical isolators, circulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/02Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 fibre
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/34Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector

Definitions

  • the present invention relates to optical passive components for optical communication, optical sensing and test applications, and more particularly to an optically active device.
  • a Faraday rotator 101 is placed between the mirror 102 and the optical fiber collimator 103 composed of the lens 1031 and the optical fiber 1032.
  • the collimator 103 emits light through the Faraday rotator 101, is reflected back by the plane mirror 102, and is recoupled into the fiber head of the collimator 103; the light recoupled into the fiber head of the collimator 103 passes through the Faraday rotator 101
  • the two rotations of the light change the polarization state of the light, which is different from the original light, and interferes with the two to make a light sensor and a measuring device.
  • the beam head of the structure collimator of Fig. 1 has a relatively large beam and a large spot size, especially a collimator made of an optical fiber having a small mode field diameter and a large numerical aperture.
  • the collimator has a larger exit light spot.
  • the required Faraday rotator has a larger light-passing area and a relatively high cost.
  • the optical rotatory device comprises a fiber tip, a mirror, an optical rotator disposed between the fiber head and the mirror, and the mirror is a concave mirror.
  • the concave mirror is a concave spherical mirror, or a concave aspheric mirror.
  • the optical rotator described in [I I] is a Faraday rotator or a wave plate.
  • the optical rotating sheet is one or two or more combined optical rotating sheets set as needed.
  • the fiber head is composed of a single fiber, or a fiber head composed of two or more fibers.
  • the two or more fiber ends are integrally provided, either synthetic or split.
  • the end faces of the fiber ends composed of two or more optical fibers are not in the same plane, and the optical fibers intersect from the end faces, and the intersection angles can be designed according to the process requirements.
  • the coupling of light usually needs to be coupled by means of a lens.
  • the concave mirror of the present invention can re-converge the light scattered by the fiber hair without using a lens, and then couple into the optical fiber to save the lens. Reduce costs.
  • the optical fiber is coupled with the lens, and the numerical aperture value of the optical fiber is equal to or smaller than the numerical aperture value of the lens, the optical coupling loss is small, and the lens itself absorbs or scatters part of the light, which also brings Optical coupling loss, but the concave spherical mirror is coupled to the fiber tip, there is no numerical aperture matching problem, any fiber optic head with numerical aperture value can be well coupled with the concave mirror, and the concave spherical mirror has no absorption or Part of the light is scattered, so the coupling between the fiber tip and the concave mirror is high and the loss is low.
  • FIG. 1 is a schematic structural view of the background art.
  • FIG. 2 is a schematic structural view of a first embodiment of a rotator assembly according to the present invention.
  • FIG. 3 is a schematic structural view of another rotatory mirror according to the present invention.
  • phase delay rotator 4 is a schematic structural view of another phase delay rotator according to the present invention.
  • FIG. 2 is a schematic structural view of an example of an optical rotatory device according to the present invention, including a concave ball mirror 201, a Faraday rotator 20, and a fiber tip 203.
  • the light emitted by the fiber head 203 is divergent, conical light. Since the spot of the light emitted by the fiber head 203 is small, the effective light-passing surface of the Faraday rotator 202 is required to be small, so that the Faraday rotator 20 2 can be cut into small pieces. .
  • the divergent conical light is reflected by the concave spherical mirror 201, and the reflected light becomes convergent conical light, which is coupled into the optical fiber of the optical fiber head 203, wherein the light penetrates the Faraday optical rotating plate 202 twice, and the polarization direction of the light is Faraday.
  • the optical rotator 202 is rotated twice, and the polarization direction of the reflected light does not coincide with the polarization direction of the outgoing light, causing interference.
  • This structure is a lens reduction, and the optical rotation sheet can be minimized, the structure is simple, the manufacturing cost is very low, and the size of the Faraday rotator is smaller, and the appearance size can be reduced.
  • FIG. 3 is a schematic structural view of another embodiment of an optical rotatory device according to the present invention, including a concave spherical mirror 301, an optical rotating film 30, and a double optical fiber 303.
  • the two fiber ends 303 are formed at the angle of the process design.
  • the divergent conical light emitted by the optical fiber 303 of the optical fiber head 303 passes through the optical rotator 302 and is reflected by the concave spherical mirror 301, and the reflected light becomes convergent conical light. , is coupled into the 303b fiber of the fiber optic head 303.
  • the polarization direction of the light is rotated by the Faraday rotator 302.
  • the polarization direction of the light in the optical fiber 303b is different from the polarization direction of the light in the optical fiber 303a.
  • FIG. 4 is a schematic structural view of another embodiment of a phase retarding optical rotatory device according to the present invention, including a concave spherical mirror 401, an optical rotating film 402, and a double optical fiber 403.
  • the two fiber ends 403 are formed at the angle of the process design.
  • the divergent conical light emitted by the optical fiber 403a of the optical fiber head 403 passes through the optical rotating plate 402 and is reflected by the concave spherical mirror 401, and the reflected light becomes convergent conical light. , is coupled into the 403b fiber of the fiber optic head 403.
  • the optical rotator 40 2 is a ⁇ /4 wave plate, and the light is rotated after passing through the wave plate 402, and the phase of the light is delayed.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

说明书
Title of Invention:一种旋光器件
[I] 技术领域
[2] 本发明涉及光通讯、 光传感及测试应用的光无源器件, 尤其是一种旋光器件。
[3] 背景技术
[4] 目前市场上的旋光器件普遍釆用如图 1所示的光学结构, 即把法拉第旋光片 101 置于反射镜 102与透镜 1031和光纤 1032组成的光纤准直器 103之间。 准直器 103发 出光透过法拉第旋光片 101, 经平面反射镜 102反射回来, 重新耦合进准直器 103 的光纤头中; 重新耦合进准直器 103光纤头中的光经过法拉第旋光片 101的两次 旋转, 光的偏振态发生了变化, 与原来的光不同, 两者之间产生干涉, 用以制 作成光传感器和测量设备。
[5] 由于透镜和法拉第旋光片较昂贵, 法拉第旋光片的成本与它的面积大小有关, 面积越大成本越高。 而图 1结构准直器的光纤头射出的光束较粗, 光斑很大, 特 别是用模场直径小、 数值孔径较大的光纤制作的准直器,准直器的出射光腰斑更 大, 所需的法拉第旋光片通光面积也会更大, 造价成本相当高。
[6] 发明内容
[7] 本发明的目的在于克服现有技术的不足而提供一种成本低廉且易批量生产的旋 光器件。
[8] 为实现上述目的, 本发明釆用了如下方案:
[9] 这种旋光器件, 包括光纤头, 反射镜, 设置于光纤头与反射镜之间的旋光片, 所述的反射镜是凹面反射镜。
[10] 所述的凹面反射镜是凹球面反射镜, 或者凹非球面反射镜。
[I I] 所述的旋光片是法拉第旋光片或者波片。
[12] 所述的旋光片为一个或者根据需要设定的两个或者两个以上的组合旋光片。
[13] 所述的光纤头是由单根光纤组成光纤头, 或者是由两根或两根以上的光纤组成 的光纤头。
[14] 所述的两个或两个以上的光纤头是一体设置的, 或者是合成的或分体的。 [15] 所述的两根或两根以上的光纤组成的各光纤头端面之间不在同一平面上, 各光 纤头从端面出射后光相交, 相交角可以根据工艺需求设计。
[16] 通过上述技术方案, 从而本发明具有下述有益效果:
[17] 1.光纤头发出光的光斑较小, 直接透过旋光片, 使光的偏振态得到偏转, 所需 旋光片的面积较小, 可以节省成本;
[18] 2.光的耦合通常要借助透镜才能耦合, 本发明的凹面反射镜在不使用透镜的情 况下, 能把光纤头发散的光重新汇聚, 再耦合进光纤中, 省约透镜, 大大地降 低成本。
[19] 3.光纤的光跟透镜耦合吋, 需要光纤的数值孔径值等于或小于透镜的数值孔径 值, 光耦合损耗才会小, 且透镜本身还要吸收或散射部分光, 也会带来光耦合 损耗, 但凹球面反射镜与光纤头耦合吋, 不存在数值孔径值匹配问题, 任何数 值孔径值的光纤头都能与凹面反射镜很好的耦合, 且凹球面反射镜不存在吸收 或散射部分光, 因此光纤头与凹面反射镜耦合效率高, 损耗低。
[20] 附图说明
[21] 图 1为背景技术的结构示意图。
[22] 图 2为本发明旋光镜组件第一实施例的结构示意图。
[23] 图 3为本发明另一种旋光镜结构示意图。
[24] 图 4为本发明另一种相位延迟旋光镜结构示意图。
[25] 具体实施方式
[26] 图 2为本发明旋光器件实例结构示意图, 包括凹球反射镜 201、 法拉第旋光片 20 2、 光纤头 203。 光纤头 203发出的光是发散的、 成圆锥型的光, 由于光纤头 203 发出光的光斑较小, 需要法拉第旋光片 202的有效通光面小, 故法拉第旋光片 20 2可以切割成很小。 发散的圆锥型光经过凹球反射镜 201反射, 反射光变成会聚 的圆锥型光, 被耦合进光纤头 203的光纤中, 其中光两次穿透法拉第旋光片 202 , 光的偏振方向被法拉第旋光片 202旋转两次, 反射回的光的偏振方向与出射光 的偏振方向不一致, 产生干涉。 此结构即省约透镜, 又可以使旋光片变的最小 , 且结构简单, 制造成本非常低, 同吋法拉第旋光片尺寸变小, 外观尺寸也可 以改小。 [27] 图 3为本发明旋光器件另一实施例结构示意图, 包括凹球反射镜 301、 旋光片 30 2、 双光纤头 303。 双光纤头 303两光纤端面成工艺设计的角度, 光纤头 303其中 的光纤 303a发出的发散圆锥型光, 穿过旋光片 302, 经凹球反射镜 301反射, 反射 光变成会聚的圆锥型光, 被耦合进光纤头 303的 303b光纤中。 光的偏振方向被法 拉第旋光片 302旋转。 光纤 303b中的光偏振方向与光纤 303a中的光偏振方向不同
[28] 图 4为本发明另一相位延迟旋光器件实施例结构示意图, 包括凹球反射镜 401、 旋光片 402、 双光纤头 403。 双光纤头 403两光纤端面成工艺设计的角度, 光纤头 403其中的光纤 403a发出的发散圆锥型光, 穿过旋光片 402, 经凹球反射镜 401反 射, 反射光变成会聚的圆锥型光, 被耦合进光纤头 403的 403b光纤中。 旋光片 40 2为 λ/4波片, 光经过波片 402后被旋转, 光的相位被延迟。
[29] 以上为几种典型的实施实例, 稍经过修改或增加元件, 可以衍生多种实例, 如 使用多组旋光镜, 或者有三根以上的光纤, 且不管光纤光纤头是一体设置的, 或者是合成的或分体的, 都属于本发明所要保护的范围。

Claims

权利要求书
[Claim 1] 1.一种旋光器件, 包括光纤头, 反射镜, 设置于光纤头与反射镜之 间的旋光片, 其特征在于: 所述的反射镜是凹面反射镜。
[Claim 2] 2.如权利要求 1所述的旋光器件, 其特征在于: 所述的凹面反射镜 是凹球面反射镜, 或者凹非球面反射镜。
[Claim 3] 3.如权利要求 1所述的旋光器件, 其特征在于: 所述的旋光片是法 拉第旋光片或者波片。
[Claim 4] 4.如权利要求 3所述的旋光器件, 其特征在于: 所述的旋光片为一 个或者根据需要设定的两个或者两个以上的组合旋光片。
[Claim 5] 5.如权利要求 1至 4任一所述的旋光器件, 其特征在于: 所述的光 纤头是由单根光纤组成光纤头, 或者是由两根或两根以上的光纤 组成的光纤头。
[Claim 6] 6.如权利要求 5所述的旋光器件, 其特征在于: 所述的两个或两个 以上的光纤头是一体设置的, 或者是合成的或分体的。
[Claim 7] 7.如权利要求 6所述的旋光器件, 其特征在于: 所述的两根或两根 以上的光纤组成的各光纤头端面之间不在同一平面上, 各光纤头 从端面出射后光相交, 相交角根据工艺需求设计。
PCT/CN2009/074436 2009-10-14 2009-10-14 一种旋光器件 WO2011044727A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2009/074436 WO2011044727A1 (zh) 2009-10-14 2009-10-14 一种旋光器件
CN2009801363902A CN102395916A (zh) 2009-10-14 2009-10-14 一种旋光器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/074436 WO2011044727A1 (zh) 2009-10-14 2009-10-14 一种旋光器件

Publications (1)

Publication Number Publication Date
WO2011044727A1 true WO2011044727A1 (zh) 2011-04-21

Family

ID=43875787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074436 WO2011044727A1 (zh) 2009-10-14 2009-10-14 一种旋光器件

Country Status (2)

Country Link
CN (1) CN102395916A (zh)
WO (1) WO2011044727A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191467A (en) * 1991-07-24 1993-03-02 Kaptron, Inc. Fiber optic isolater and amplifier
JPH0926556A (ja) * 1995-07-11 1997-01-28 Kyocera Corp ファラデ回転ミラー
JP2004233593A (ja) * 2003-01-29 2004-08-19 Kyocera Corp ファラデ回転ミラー
CN1270205C (zh) * 2002-10-25 2006-08-16 奥普林克通信公司 微型1×2磁-光开关
CN101017252A (zh) * 2006-02-09 2007-08-15 青岛招金光电子科技有限公司 微型磁光开关
JP2009053252A (ja) * 2007-08-23 2009-03-12 Namiki Precision Jewel Co Ltd ファラデー回転ミラー

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191467A (en) * 1991-07-24 1993-03-02 Kaptron, Inc. Fiber optic isolater and amplifier
JPH0926556A (ja) * 1995-07-11 1997-01-28 Kyocera Corp ファラデ回転ミラー
CN1270205C (zh) * 2002-10-25 2006-08-16 奥普林克通信公司 微型1×2磁-光开关
JP2004233593A (ja) * 2003-01-29 2004-08-19 Kyocera Corp ファラデ回転ミラー
CN101017252A (zh) * 2006-02-09 2007-08-15 青岛招金光电子科技有限公司 微型磁光开关
JP2009053252A (ja) * 2007-08-23 2009-03-12 Namiki Precision Jewel Co Ltd ファラデー回転ミラー

Also Published As

Publication number Publication date
CN102395916A (zh) 2012-03-28

Similar Documents

Publication Publication Date Title
US10228524B2 (en) Optical device and optical module
JP2986295B2 (ja) 光アイソレータ
WO2005124428B1 (en) Substrate-guided optical device with a wide aperture
WO2020244210A1 (zh) 光学系统及具有其的虚拟现实设备
WO2009060962A1 (ja) 結像光学系および距離測定装置
JPH06258598A (ja) 光アイソレータ
CN105319648A (zh) 组合的分光器、光隔离器和模斑转换器
US11698493B2 (en) Single-ended output circulator
CN104216050A (zh) 一种偏振分束合束器
US9448372B2 (en) Optical coupling element and optical module having the same
CN111722421A (zh) 一种光隔离器和激光器
US8787715B2 (en) Optical coupling lens
WO2011044727A1 (zh) 一种旋光器件
CN204241726U (zh) 一种法拉第旋转镜
CN215494380U (zh) 一种法拉第旋转镜
CN104834095A (zh) 基于多颜色光束的匀光装置及光学系统
JP7478755B2 (ja) 偏光回転子
CN201051160Y (zh) 一种高偏振度输出的保偏准直器
US20210018688A1 (en) Optical circulator
TWI702432B (zh) 光學透鏡結構
CN103412371B (zh) 一种可同时对多路光信号进行偏振态变换的法拉第旋转镜
CN106290154A (zh) 一种双柱面多光程气室
CN202502261U (zh) 一种旋光器件
CN105467483B (zh) 红外制冷探测器冷光阑的偏振型透射式挡光环及制作方法
CN203101764U (zh) 利用反射法实现光偏振态旋转的器件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136390.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850341

Country of ref document: EP

Kind code of ref document: A1