WO2011043419A1 - Positive electrode active material for lithium secondary battery, process for production of same, and lithium secondary battery utilizing same - Google Patents

Positive electrode active material for lithium secondary battery, process for production of same, and lithium secondary battery utilizing same Download PDF

Info

Publication number
WO2011043419A1
WO2011043419A1 PCT/JP2010/067647 JP2010067647W WO2011043419A1 WO 2011043419 A1 WO2011043419 A1 WO 2011043419A1 JP 2010067647 W JP2010067647 W JP 2010067647W WO 2011043419 A1 WO2011043419 A1 WO 2011043419A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
active material
electrode active
secondary battery
Prior art date
Application number
PCT/JP2010/067647
Other languages
French (fr)
Japanese (ja)
Inventor
潤 金田
大 稲垣
有花 長嶺
順幸 諸石
真吾 池田
浩一郎 宮嶋
Original Assignee
東洋インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキ製造株式会社 filed Critical 東洋インキ製造株式会社
Priority to CN201080045624.5A priority Critical patent/CN102576873B/en
Priority to JP2011535452A priority patent/JP5640987B2/en
Publication of WO2011043419A1 publication Critical patent/WO2011043419A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium transition metal composite oxide coated with conductive carbon suitable as a positive electrode active material for a lithium secondary battery, a method for producing the same, and a lithium secondary battery using the composite oxide.
  • lithium secondary batteries are being actively developed.
  • a positive electrode in which an electrode mixture composed of a positive electrode active material containing lithium ions, a conductive additive, an organic binder, and the like is fixed to the surface of a current collector of a metal foil, and a lithium ion
  • a negative electrode is used in which an electrode mixture composed of a removable negative electrode active material, a conductive additive, an organic binder, and the like is fixed to the surface of a current collector of a metal foil.
  • lithium transition metal composite oxides such as lithium cobaltate, lithium manganate, and lithium nickelate are used. These lithium transition metal composite oxides are thermally stable. There are problems such as performance degradation due to composition change at the time of charge and discharge, high price due to the use of rare metals, etc. As a countermeasure for these, lithium iron phosphorus composite oxide containing iron rich in resources and cheap Attention has been paid.
  • lithium iron phosphate having an olivine structure represented by LiFePO 4 is expected as a highly practical material because it has a potential of about 3.5 V with respect to metallic lithium. Yes.
  • a lithium transition metal phosphorus composite oxide having an olivine structure represented by LiFePO 4 is a crystal having a very poor electronic conductivity as compared with other positive electrode active materials, and the conduction of lithium ions in the crystal.
  • the high discharge capacity in the battery could not be expected.
  • the primary particles of the positive electrode active material are made into fine particles (Patent Documents 1, 2, 3, 4), and the surface of the positive electrode active material particles is coated with a conductive component (Patent Documents 5, 6, 7, 8, 9, 10), and countermeasures such as doping a different metal into the positive electrode active material crystal (Patent Document 11) have been reported.
  • Both methods improve the electronic conductivity of the positive electrode active material and / or improve the conductivity of lithium ions, and the battery has a good discharge capacity close to the theoretical value and good charge / discharge characteristics at high load. It is obtained.
  • many methods for coating the surface of the positive electrode active material particles with a conductive component have been proposed as methods for improving the electron conductivity of the positive electrode active material easily and effectively.
  • Patent Document 5 carbon black (Patent Document 5) which is a conductive fine particle, an organic compound (Patent Documents 6, 7, 8, 9) capable of forming a conductive carbon film by thermal decomposition, and Conductive metal oxides (Patent Document 10) have been reported.
  • Patent Documents 6, 7, 8, 9 organic compound capable of forming a conductive carbon film by thermal decomposition
  • Conductive metal oxides Patent Document 10.
  • a conductive carbon coating obtained by thermally decomposing saccharides as organic compounds is used as the conductive component. It has been reported.
  • Japanese Patent No. 4058680 Japanese Patent No. 4190912 JP 2002-015735 A JP 2008-159495 A Japanese Patent No. 4151210 Japanese Patent No. 4297406 Japanese Patent Laid-Open No. 2004-063386 JP 2007-250417 A JP 2008-034306 A Japanese Patent Laid-Open No. 2003-300734 International Publication WO20055041327
  • the problem is that a part or all of the particle surface of the lithium transition metal composite oxide is coated with conductive carbon, and the conductive carbon is composed of an unmodified or modified natural wax, natural resin, and vegetable oil.
  • a positive electrode active material for a lithium secondary battery which is a thermal decomposition product of a natural material selected from the group.
  • the present invention provides a positive electrode active material for a lithium secondary battery, wherein the conductive carbon content is 0.1 wt% or more and 30 wt% or less with respect to the entire positive electrode active material for a lithium secondary battery. Regarding materials.
  • the present invention also relates to a positive electrode active material for a lithium secondary battery, wherein the lithium transition metal composite oxide is a lithium transition metal phosphorus composite oxide having an olivine structure.
  • the present invention also includes a step of mixing a lithium-containing compound, a transition metal-containing compound, and an unmodified or modified natural material selected from the group consisting of natural wax, natural resin, and vegetable oil, and the mixture. And a method of producing a positive electrode active material for a lithium secondary battery, comprising a step of heating at 200 to 1100 ° C.
  • the present invention also includes a step of mixing a lithium-containing compound, a transition metal-containing compound, a phosphorus-containing compound, and a natural material selected from the group consisting of an unmodified or modified natural wax, natural resin, and vegetable oil. And a method for producing a positive electrode active material for a lithium secondary battery, comprising the step of heating the mixture at 200 to 1100 ° C.
  • the present invention also includes a step of mixing a lithium transition metal composite oxide with an unmodified or modified natural material selected from the group consisting of natural waxes, natural resins, and vegetable oils, and the mixture comprising 200-1100.
  • the manufacturing method of the positive electrode active material material for lithium secondary batteries including the process heated at degreeC.
  • the present invention also relates to a positive electrode active material for a lithium secondary battery produced using the production method.
  • the present invention also relates to an electrode containing the positive electrode active material for a lithium secondary battery.
  • the present invention also relates to a lithium secondary battery comprising the electrode as a positive electrode.
  • a natural material which is an inexpensively available material, is used as a conductive carbon source, and the particle surface of the lithium transition metal composite oxide is treated by heat treatment.
  • the surface of the particles of the lithium transition metal composite oxide can be coated with conductive carbon, and a positive electrode active material for a lithium secondary battery with improved conductivity can be produced at low cost.
  • the discharge capacity and charge / discharge characteristics of the lithium secondary battery can be improved by using the positive electrode active material for a lithium secondary battery according to a preferred embodiment of the present invention for the positive electrode of the lithium secondary battery. .
  • the positive electrode active material for a lithium secondary battery according to the present invention is formed by covering part or all of the particle surface of the lithium transition metal composite oxide with conductive carbon, and the conductive carbon is unmodified or modified.
  • the heat-decomposed product of a natural material selected from the group consisting of natural wax, natural resin, and vegetable oil is described below in detail.
  • the lithium transition metal composite oxide is not particularly limited, but is a metal oxide containing at least lithium and a transition metal.
  • the transition metal include Fe, Co, Ni, Mn, and the like, and one lithium transition metal composite oxide may contain two or more transition metals.
  • phosphorus (P) may be contained.
  • layered lithium nickel composite oxide, lithium cobalt composite oxide, lithium manganese composite oxide, lithium cobalt nickel composite oxide, lithium nickel manganese composite oxide, lithium cobalt nickel manganese composite examples thereof include oxides and lithium cobalt nickel aluminum based composite oxides.
  • the lithium manganese type complex oxide etc. of a spinel structure are mentioned.
  • lithium iron phosphate, lithium manganese phosphate, lithium iron manganese phosphate and the like, which are lithium transition metal phosphorus composite oxides having an olivine structure can be mentioned.
  • olivine-structured lithium iron phosphate is a preferable material from the viewpoint of cost and safety.
  • the lithium transition metal phosphorus composite oxide having an olivine structure has poor electronic conductivity as compared with other lithium transition metal composite oxides, so that it is difficult to obtain excellent battery performance.
  • the present inventors are such a complex oxide, the particle surface of which is a thermal decomposition product of a natural material selected from the group consisting of an unmodified or modified natural wax, natural resin, and vegetable oil. It has been found that by covering with conductive carbon, the electronic conductivity is improved, and the discharge capacity and charge / discharge characteristics of the lithium secondary battery are improved.
  • conductive carbon is produced by thermally decomposing a natural material.
  • a natural material selected from the group consisting of unmodified or modified natural wax, natural resin, and vegetable oil is preferable.
  • these natural materials can be used after being dissolved or dispersed in a medium such as a solvent or water.
  • Natural waxes include plant waxes and mineral waxes.
  • plant waxes include carnauba wax, rice wax, cadilla wax, and Japan wax, depending on the plant used as a raw material.
  • mineral waxes include montan wax produced by solvent extraction from brown coal, and are mainly used after being modified.
  • modified natural wax examples include oxidized or esterified modified products of montan wax.
  • Examples of commercially available plant-based natural waxes include natural waxes manufactured by Toyo Adri Co., Ltd. such as Carnauba No. 1, Carnauba No. 2, Carnauba No. 3, and Candelilla wax; Towa such as rice wax decolorized products, refined rice wax, Japan wax, etc. Natural wax produced by Kasei Co .; natural wax produced by Miki Chemical Industry Co., Ltd. such as bead wax;
  • Examples of commercially available mineral-modified natural waxes include modified natural waxes manufactured by Toyo Adre such as Montan Wax EP, Montan Wax OP, and Montan Wax NA; LUWAX-S, LUWAX-E, LUWAX-OP, LUWAX-LEG, and the like. Examples include, but are not limited to, modified natural waxes manufactured by BASF; modified natural waxes manufactured by Clariant, such as Recowax E, Recolve WE4, Recolve WE40, Recommont ET141, Recommont ET132, and the like.
  • Natural resins include non-volatile solid or semi-solid substances contained in the sap secreted from the bark and resinous substances secreted by the scale insects parasitic on the tree. Specific examples of natural resins include rosin, dammar, copal and shellac.
  • Examples of commercially available natural resins include natural resins manufactured by Harima Chemicals, Inc. such as tall rosin RX and tall rosin R-WW; natural resins manufactured by Arakawa Chemical Co., Ltd .; gum rosin; Chinese gum rosin X grade; Chinese gum rosin WW grade; Natural resin made by Azuchi Sangyo Co., Ltd.
  • natural resin is mentioned, it is not limited to these.
  • modified natural resins include modified resins such as rosin and terpene.
  • modified natural resins examples include, as modified rosins, polymerized rosin, high veil CH, superester L, superester A-18, superester A-75, superester A-100, superester A-115, Superester A-125, Superester T-125, Pencel A, Pencel AZ, Pencel C, Pencel D-125, Pencel D-135, Pencel 160, Pencel KK, Ester Gum AAG, Ester Gum AAL, Ester Gum A, Ester Gum AAV, Ester Gum 105, Ester Gum AT, Ester Gum H, Ester Gum HP, Ester Gum HD, Pine Crystal KR-85, Pine Crystal KR-612, Pine Crystal KR-614, Pine Crystal KE-100, In Crystal KE-311, Pine Crystal KE-359, Pine Crystal KE-604, Pine Crystal D-6011, Pine Crystal KE-615-3, Pine Crystal D-6250, Pine Crystal KM-1500, Pine Crystal KR-50M, Superester E-720
  • Vegetable oils include soybean oil, linseed oil, castor oil, coconut oil, tung oil, rice bran oil, palm oil, coconut oil, corn oil, olive oil, rapeseed oil, sunflower oil, tall oil, turpentine oil, and the like.
  • Examples of commercially available vegetable oils include vegetable oils manufactured by Marusho Co., Ltd. such as soybean oil KT; vegetable oils manufactured by Nissin Oilio Co., Ltd. such as soybean white squeezed oil and flaxseed oil; vegetable oils manufactured by Bosso fats such as rice salad oil; Vegetable oils; vegetable oils manufactured by Azuchi Sangyo Co., Ltd. such as limonene oil, eucalyptus oil, tung oil; vegetable oils manufactured by Harima Kasei Co., Ltd. such as Hartle SR-20, Hartle SR-30, Hartle R-30, etc .; Examples include, but are not limited to, turpentine made by Arakawa Chemical.
  • Modified vegetable oils include modified products such as soybean oil, linseed oil, castor oil, coconut oil, tung oil, sunflower oil, tall oil and the like.
  • modified vegetable oils examples include Arachid IA-120-60L, Arachid 1782-60, Araeze 3101X-60, Arachid 8042-80, Araeze 5301X-50, Arachid 8012, Araeze 5350, Arachid 1465-60, Arachid 3145- 80, Araeze 310, Arachid 5001, Arachid 251, Arachid 6300, Araeze S-5021, Arachid M-302, Araeze 7502X, Arachid 7506, Arachid 1232-60, Arachid 7100X-50, Arachid 7104, Arachid 7107, Arachid 7108, Arachid Modified vegetable oils manufactured by Arakawa Chemical Co., Ltd.
  • Haliftal 732-60 Haliftal COG40-5 T, Halfiftal SB-3600, Halfiftal SB-7150X, Halfiftal SB-7540, Halfiftal 3011, Halfiftal 3100, Halfiftal 3150, Halfiftal 3271, Halfiftal 3371, Halfiftal SC-3059TX, Halfiftal 764, Halfiftal SL816, Half Vital SL816 , Haliftal 3011PN, Haliftal 3254PN, Khalfartar 3256P, Khalfartar 3200PN, Khalfartar 3258P-N150, Halifartal 3530P, Khalfartal 3004, Halifaltal 3005, Haliftal 601, Haliftal 640, Halifartal 1284, Halifaltar SL-2184, F-8, Haripor F-16, Haridimer 200, Haridimer 250, Haridimer 270S, DIACID-1550, Hartle Q-1, Hartle Q-2, Hartle QFA-2, Hartle FE-
  • These natural materials are very inexpensive carbon-containing compounds, have a high carbon content in the compounds, and contain almost only carbon remaining in the elements by thermal decomposition in an inert gas atmosphere or a reducing gas atmosphere. In addition, it has the characteristic of easily producing carbon with electronic conductivity efficiently with a small addition amount. Further, by modifying with other compounds, physical properties such as melting point, softening point, decomposition temperature, etc. can be easily changed, so that it is improved to a more preferable compound as an organic compound that generates conductive carbon by thermal decomposition. You can also.
  • Saccharides which are the same natural materials, can be cited as materials that generate conductive carbon by thermal decomposition, but natural materials selected from the group consisting of unmodified or modified natural waxes, natural resins, and vegetable oils used in the present invention.
  • natural materials selected from the group consisting of unmodified or modified natural waxes, natural resins, and vegetable oils used in the present invention.
  • the effect of suppressing the crystal growth of lithium transition metal composite oxides during heating is poor, primary particle diameters vary greatly, and particles tend to sinter, and are uniformly coated with carbon at the primary particle level. It is difficult to obtain a positive electrode active material for a lithium secondary battery. Therefore, it is difficult to obtain better battery characteristics.
  • the amount of conductive carbon produced by thermal decomposition is significantly smaller when compared with the same addition amount and the same reaction conditions, and there are many materials that are not efficient in terms of productivity.
  • the content of the conductive carbon in the positive electrode active material for a lithium secondary battery is specifically 0.1 wt% or more and 30 wt% or less, preferably 0.5 wt% or more and 20 wt% or less, More preferably, it is desirable to use a material of 1 to 15% by weight, most preferably 1 to 10% by weight.
  • a positive electrode active material for a lithium secondary battery having a conductive carbon content of less than 0.1% by weight it may be difficult to obtain sufficient conductivity, and the internal resistance of the positive electrode is improved and high. Battery performance may be difficult to obtain.
  • a positive electrode active material for a lithium secondary battery having a conductive carbon content of more than 30% by weight is used, sufficient conductivity is obtained, but the content of the lithium transition metal composite oxide in the positive electrode decreases. At the same time, the lithium ion content also decreases, so the discharge capacity per volume of the battery may decrease, and it may be difficult to use as a highly practical battery.
  • the positive electrode active material for a lithium secondary battery in the present invention there is little sintering between particles of a lithium transition metal composite oxide (including a lithium transition metal phosphorus composite oxide having an olivine structure),
  • the primary particle size is as uniform as possible, and the particle surface of lithium transition metal composite oxide (including lithium transition metal phosphorus composite oxide having olivine structure) is uniformly treated with a small amount of conductive carbon. Is mentioned.
  • the lithium transition metal composite oxide is subjected to thermal decomposition of a natural material selected from the group consisting of unmodified or modified natural wax, natural resin, and vegetable oil.
  • the method for treating the conductive carbon produced by the process is not limited to one method.
  • a method for producing a positive electrode active material for a lithium secondary battery when synthesizing a lithium transition metal composite oxide whose surface is treated with conductive carbon, a lithium-containing compound, a transition metal-containing compound, A method comprising a step of preparing a mixture of a modified or modified natural material selected from the group consisting of natural wax, natural resin, and vegetable oil, and a step of heating and reacting the mixture.
  • a reaction for forming a lithium transition metal composite oxide upon heating and a reaction for generating conductive carbon by thermal decomposition of a natural material selected from the group consisting of unmodified or modified natural wax, natural resin, and vegetable oil The lithium transition metal composite oxide whose surface is treated with conductive carbon is finally obtained.
  • a lithium transition metal phosphorus composite oxide having an olivine structure a lithium-containing compound, a transition metal compound, phosphorus And a production method including a step of making a mixture of a contained compound and a natural material selected from the group consisting of unmodified or modified natural wax, natural resin, and vegetable oil, and a step of heating and reacting the mixture.
  • a lithium transition metal composite oxide (including a lithium transition metal phosphorus composite oxide having an olivine structure) is shown below.
  • ⁇ Mixing process, mixing device> The following dry processing machines and wet processing machines are used in the process of mixing the natural material selected from the group consisting of unmodified or natural wax, natural resin, and vegetable oil with other raw material components. Can be used.
  • dry processing machines include roll mills such as 2 rolls and 3 rolls, high-speed stirrers such as Henschel mixers and super mixers, fluid energy crushers such as micronizers and jet mills, attritors, and particle composites manufactured by Hosokawa Micron.
  • Examples of the apparatus include “Nanocure”, “Nobilta”, “Mechanofusion”, Nara Machinery Co., Ltd. powder surface modification device “Hybridization system”, “Mechanomicros”, “Miraro”, and the like.
  • natural materials selected from the group consisting of unmodified or modified natural waxes, natural resins, and vegetable oils, there are materials that are solid at room temperature but have a low melting point and softening point of less than 100 ° C. In some cases, it is possible to mix more uniformly by melting and mixing under heating than when mixing at normal temperature.
  • wet processing machines include mixers such as dispersers, homomixers, or planetary mixers; homogenizers such as “Clearmix” manufactured by M Technique, or “Fillmix” manufactured by PRIMIX; paint conditioner (Red Devil) ), Ball mill, sand mill (such as “Dynomill” manufactured by Shinmaru Enterprises), media type disperser such as attritor, pearl mill (such as “DCP mill” manufactured by Eirich), or coball mill; wet jet mill (Genus) "Genus PY” manufactured by Sugino Machine, “Starburst” manufactured by Sugino Machine, “Nanomizer” manufactured by Nanomizer, etc., "Claire SS-5" manufactured by M Technique, or “Micros” manufactured by Nara Machinery Co., Ltd. Disperser; or other Mill, but a kneader and the like, but is not limited thereto. Moreover, it is preferable to use what performed the metal mixing prevention process from an apparatus as a wet processing machine.
  • a disperser in which the agitator and vessel are made of a ceramic or resin disperser, or the surface of the metal agitator and vessel is treated with tungsten carbide spraying or resin coating is preferably used.
  • ceramic beads such as glass beads, zirconia beads, or alumina beads.
  • a roll mill it is preferable to use a ceramic roll. Only one type of dispersion device may be used, or a plurality of types of devices may be used in combination.
  • a general pigment dispersant can be added together and dispersed and mixed.
  • Battery performance by selecting the best mixing or dispersing device for natural materials selected from the group consisting of unmodified or modified natural waxes, natural resins, and vegetable oils that produce conductive carbon by pyrolysis Excellent positive electrode active material for a lithium secondary battery can be obtained.
  • the heating temperature in the heating step varies depending on the target positive electrode active material for a lithium secondary battery, but is desirably 200 to 1100 ° C., preferably 400 to 1000 ° C.
  • the heating temperature in the heating step is lower than 200 ° C.
  • the heating temperature exceeds 1100 ° C. conductive carbon generated by pyrolysis of a natural material selected from the group consisting of unmodified or modified natural wax, natural resin, and vegetable oil tends to be lost by combustion.
  • impurities other than the target positive electrode active material for a lithium secondary battery may be easily generated.
  • the atmosphere in the heating process varies depending on the target positive electrode active material for the lithium secondary battery, but it is an air atmosphere, an inert gas atmosphere such as nitrogen or argon, or a reducing gas atmosphere containing hydrogen. Etc.
  • the positive electrode active material for a lithium secondary battery is a lithium transition metal phosphorus composite oxide having an olivine structure
  • the transition metal is easily oxidized by oxygen and a lithium transition metal phosphorus composite oxide having a different purpose is used. Since it may be produced, it is preferable to carry out in an inert gas atmosphere or a reducing gas atmosphere containing as little oxygen as possible.
  • Lithium-containing compound, transition metal-containing compound, phosphorus-containing compound For raw materials other than natural materials selected from the group consisting of unmodified or modified natural waxes, natural resins, and vegetable oils that produce conductive carbon by pyrolysis, the lithium transition metal composite oxide or olivine structure to be produced It varies depending on the composition of the lithium transition metal phosphorus-based composite oxide.
  • any compound containing lithium can be used.
  • organic acid salts such as oxides, hydroxides, chlorides, carbonates, phosphates, and acetates are preferable.
  • transition metal-containing compound any compound containing transition metals such as cobalt, nickel, manganese, iron and the like can be used.
  • organic acid salts such as oxides, hydroxides, chlorides, carbonates, phosphates, and acetates are preferable.
  • a phosphate is preferable from the viewpoint of storage stability and ease of handling.
  • ⁇ Method for producing lithium transition metal composite oxide> In the method for producing a positive electrode active material for a lithium secondary battery in the present invention, a specific example of a lithium transition metal composite oxide (including a lithium transition metal phosphorus-based composite oxide having an olivine structure) before treating conductive carbon Various production methods include a solid phase method, a hydrothermal method, a coprecipitation method, and the like.
  • lithium cobalt oxide and lithium manganate which are lithium transition metal composite oxides
  • Japanese Patent No. 3067165, Japanese Patent No. 3274016, Japanese Patent No. 3012229, and Japanese Patent No. 3030764 Etc. can be produced with reference to the above.
  • cobalt dioxide CoO 2
  • lithium carbonate Li 2 CO 3
  • lithium manganate manganese oxide (Mn 3 O 4 ) and lithium nitrate (LiNO 3 ) are mixed so that the element ratio of lithium and manganese is 1.025: 2, and then used in a dry pulverizer or the like.
  • firing, cooling and mixing are performed at 264 ° C. for 24 hours in an air atmosphere
  • firing, cooling and mixing are performed at 450 ° C. for 24 hours
  • firing and cooling are performed at 650 ° C. for 24 hours. It can be obtained by grinding the fired product.
  • lithium iron phosphate which is a lithium transition metal phosphorus composite oxide having an olivine structure is not particularly limited, it can be produced with reference to Japanese Patent Nos. 4187523 and 4187524.
  • ferrous phosphate octahydrate Fe 3 (PO 4 ) 2 ⁇ 8H 2 O
  • lithium phosphate Li 3 PO 4
  • the element ratio between lithium and iron is The mixture is mixed at 1: 1, pulverized and mixed by a dry pulverizer or the like, then fired at 600 ° C. for several hours in an inert gas atmosphere, and the obtained fired product is pulverized.
  • the electrode is obtained by coating an electrode mixture composed of at least a positive electrode active material for a lithium secondary battery and a binder on a current collector. Furthermore, in order to improve the electroconductivity of an electrode, a conductive support agent can also be added in an electrode mixture. Incidentally, it is preferable to use an aluminum foil for the positive electrode as the current collector.
  • composition ratio of each component in the electrode mixture constituting the electrode is as follows.
  • the composition ratio of the positive electrode active material for a lithium secondary battery is desirably 70% by weight or more and 99.0% by weight or less, preferably 80% by weight or more and 95% by weight or less in the electrode mixture.
  • the composition ratio of the positive electrode active material for a lithium secondary battery is less than 70% by weight, it may be difficult to obtain sufficient conductivity and discharge capacity.
  • the composition ratio exceeds 98.5% by weight, the ratio of the binder is increased. Therefore, the adhesion to the current collector may be reduced, and the positive electrode active material for the lithium secondary battery may be easily detached.
  • the composition ratio of the binder is desirably 1 to 10% by weight, preferably 2 to 8% by weight in the electrode mixture.
  • the composition ratio of the binder is less than 1% by weight, the binding property is lowered, so that the positive electrode active material for the lithium secondary battery and the conductive assistant may be easily detached from the current collector.
  • it exceeds since the ratio of the positive electrode active material material for lithium secondary batteries will fall, it may lead to the fall of battery performance.
  • the composition ratio of the conductive auxiliary agent is desirably 0.5 to 25% by weight, preferably 1.0 to 15% by weight in the electrode mixture. If the composition ratio of the conductive assistant is less than 0.5% by weight, it may be difficult to obtain sufficient conductivity. If the composition ratio exceeds 25% by weight, the positive electrode for a lithium secondary battery that greatly contributes to battery performance. Since the ratio of the active material decreases, problems such as a decrease in discharge capacity per volume of the battery may occur.
  • binder used in the electrode mixture examples include acrylic resin, polyurethane resin, polyester resin, phenol resin, epoxy resin, phenoxy resin, urea resin, melamine resin, alkyd resin, acrylic resin, formaldehyde resin, silicon resin, fluorine
  • binder resin such as carboxymethyl cellulose, synthetic rubber such as styrene-butadiene rubber and fluorine rubber, and conductive resin such as polyaniline and polyacetylene.
  • the modified body, mixture, or copolymer of these resin may be sufficient.
  • examples thereof include a copolymer contained as a structural unit.
  • a polymer compound having a fluorine atom in the molecule such as polyvinylidene fluoride, polyvinyl fluoride, and polytetrafluoroethylene.
  • the weight average molecular weight of these resins as binders is preferably 10,000 to 1,000,000. When the molecular weight is small, the resistance of the binder may decrease. When the molecular weight is increased, the resistance of the binder is improved, but the viscosity of the binder itself is increased, the workability is lowered, and it acts as an aggregating agent.
  • a carbon material is most preferable.
  • the carbon material is not particularly limited as long as it is a conductive carbon material, but graphite, carbon black, carbon nanotube, carbon nanofiber, carbon fiber, fullerene, etc. alone or in combination of two or more. Can be used. From the viewpoint of conductivity, availability, and cost, it is preferable to use carbon black.
  • Carbon black is a furnace black produced by continuously pyrolyzing a gas or liquid raw material in a reactor, especially ketjen black using ethylene heavy oil as a raw material.
  • Channel black rapidly cooled and precipitated, thermal black obtained by periodically repeating combustion and thermal decomposition using gas as a raw material, and various types such as acetylene black using acetylene gas as a raw material alone, Or two or more types can be used together.
  • Ordinarily oxidized carbon black, hollow carbon and the like can also be used.
  • the oxidation treatment of carbon is performed by treating carbon at a high temperature in the air or by secondary treatment with nitric acid, nitrogen dioxide, ozone, etc., for example, such as phenol group, quinone group, carboxyl group, carbonyl group.
  • This is a treatment for directly introducing (covalently bonding) an oxygen-containing polar functional group to the carbon surface, and is generally performed to improve the dispersibility of carbon.
  • it since it is common for the conductivity of carbon to fall, so that the introduction amount of a functional group increases, it is preferable to use the carbon which has not been oxidized.
  • the specific surface area (BET) determined from the adsorption amount of nitrogen is 20 m 2 / g or more and 1500 m 2 / g or less, preferably 50 m 2 / g or more and 1500 m 2 / g or less, more preferably 100 m 2. / G or more and 1500 m 2 / g or less are desirable.
  • BET specific surface area
  • the particle size of the carbon black used is preferably 0.005 to 1 ⁇ m, particularly preferably 0.01 to 0.2 ⁇ m in terms of primary particle size.
  • the primary particle diameter here is an average of the particle diameters measured with an electron microscope or the like.
  • Examples of commercially available carbon black include furnace blacks manufactured by Tokai Carbon Co., Ltd. such as Toka Black # 4300, # 4400, # 4500, and # 5500; furnace blacks manufactured by Degussa such as Printex L; Raven7000, 5750, 5250, 5000ULTRAIII Furnace Black made by Colombian, such as 5000 ULTRA, Conductex SC ULTRA, 975 ULTRA, PUER BLACK 100, 115, and 205; # 2350, # 2400B, # 2600B, # 30050B, # 3030B, # 3230B, # 3350B, # 3400B, and # 5400B Furnace Black manufactured by Mitsubishi Chemical Corporation; MONARCH1400, 1300, 900, VulcanXC-72R, and Black Furnace black manufactured by Cabot, such as earls 2000; Furnace black manufactured by TIMCAL, such as Ensaco 250G, Ensaco 260G, Ensaco 350G, and SuperP-Li; Ke
  • the method for producing the electrode is not particularly limited.For example, after preparing a mixture paste by dispersing and mixing a positive electrode active material for a lithium secondary battery, a conductive additive, and a binder in a solvent, It is produced by applying to a current collector such as an aluminum foil and drying.
  • a disperser usually used for pigment dispersion or the like can be used.
  • mixers such as disperser, homomixer, or planetary mixer; homogenizers such as “Clearmix” manufactured by M Technique, or “Fillmix” manufactured by PRIMIX; paint conditioner (manufactured by Red Devil), ball mill, sand mill (Shinmaru Enterprises "Dynomill”, etc.), Attritor, Pearl Mill (Eirich “DCP Mill”, etc.), or Coball Mill, etc .; Media type dispersers; Wet Jet Mill (Genus, “Genus PY”, Sugino Media-less dispersers such as “Starburst” manufactured by Machine, “Nanomizer” manufactured by Nanomizer, etc., “Claire SS-5” manufactured by M Technique, or “Micros” manufactured by Nara Machinery Co., Ltd .; or other roll mills Etc. , But it is not limited thereto. Further, as the disperser, it is preferable to use a disperser that has been subjected to a metal mixing prevention treatment from the disperser
  • a disperser in which the agitator and vessel are made of a ceramic or resin disperser, or the surface of the metal agitator and vessel is treated with tungsten carbide spraying or resin coating is preferably used.
  • ceramic beads such as glass beads, zirconia beads, or alumina beads.
  • a roll mill it is preferable to use a ceramic roll. Only one type of dispersion device may be used, or a plurality of types of devices may be used in combination.
  • solvent used in preparing the mixture paste examples include alcohols, glycols, cellosolves, amino alcohols, amines, ketones, carboxylic acid amides, phosphoric acid amides, sulfoxides, and carboxylic acids.
  • examples include esters, phosphate esters, ethers, nitriles, and water.
  • N-methyl-2-pyrrolidone an amide solvent obtained by dialkylating nitrogen such as N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, and N, N-diethylacetamide , Hexamethylphosphoric triamide, and dimethyl sulfoxide, but are not limited thereto. Two or more types can be used in combination.
  • Lithium secondary battery provided with an electrode using a positive electrode active material for a lithium secondary battery as a positive electrode will be described.
  • the lithium secondary battery includes a positive electrode having a positive electrode mixture layer on a current collector, a negative electrode having a negative electrode mixture layer on the current collector, and an electrolyte containing lithium.
  • An electrode base layer may be formed between the positive electrode mixture layer and the current collector or between the negative electrode mixture layer and the current collector.
  • the material and shape of the current collector to be used are not particularly limited, and as the material, a metal or an alloy such as aluminum, copper, nickel, titanium, or stainless steel is used. Copper is preferred as the negative electrode material.
  • a flat plate foil is generally used, but a roughened surface, a perforated foil shape, and a mesh shape can also be used.
  • Examples of the method for forming the electrode base layer on the current collector include a method in which an electrode base paste in which carbon black as a conductive material and a binder component are dispersed in a solvent is applied to the electrode current collector and dried.
  • the film thickness of the electrode underlayer is not particularly limited as long as the conductivity and adhesion are maintained, but is generally 0.05 ⁇ m or more and 20 ⁇ m or less, preferably 0.1 ⁇ m or more and 10 ⁇ m or less. It is.
  • an electrode mixture layer on a current collector As a method of forming an electrode mixture layer on a current collector, a method of directly applying and drying the above-mentioned mixture paste on the current collector, and a mixture paste after forming an electrode base layer on the current collector The method of apply
  • coating and drying is mentioned.
  • the mixture paste When the electrode mixture layer is formed on the electrode underlayer, after applying the electrode undercoat paste on the current collector, the mixture paste may be applied in a wet state and dried. .
  • the thickness of the electrode mixture layer is generally 1 ⁇ m or more and 500 ⁇ m or less, preferably 10 ⁇ m or more and 300 ⁇ m or less.
  • the coating method is not particularly limited, and a known method can be used. Specific examples include a die coating method, a dip coating method, a roll coating method, a doctor coating method, a spray coating method, a gravure coating method, a screen printing method, and an electrostatic coating method. Moreover, you may perform the rolling process by a lithographic press, a calendar roll, etc. after application
  • an electrolyte containing lithium is dissolved in a non-aqueous solvent.
  • a non-aqueous solvent LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 3 C , LiI, LiBr, LiCl, LiAlCl , LiHF 2, LiSCN, or LiBPh 4 etc. but are not limited to.
  • the non-aqueous solvent is not particularly limited.
  • carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate; ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ - Lactones such as octanoic lactone; tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-methoxyethane, 1,2-ethoxyethane, and 1,2 -Grimes such as dibutoxyethane; esters such as methyl formate, methyl acetate and methyl propionate; sulfoxides such as dimethyl sulfoxide and sulfolane; and nitriles such as acetonitrile. And the like.
  • These solvents may be used alone or in combination of two or more.
  • the above electrolyte solution can be held in a polymer matrix to form a gel polymer electrolyte.
  • the polymer matrix include, but are not limited to, an acrylate resin having a polyalkylene oxide segment, a polyphosphazene resin having a polyalkylene oxide segment, and a polysiloxane having a polyalkylene oxide segment.
  • the structure of the lithium secondary battery is not particularly limited, but is usually composed of a positive electrode and a negative electrode, and a separator provided as necessary, depending on the purpose of use, such as paper type, cylindrical type, button type, laminated type, etc. Various shapes can be used.
  • part means “part by weight”
  • % means “% by weight”.
  • the following measuring apparatus was used for the analysis of the positive electrode active material for a lithium secondary battery.
  • -XRD X-ray diffraction
  • X'Pert PRO MPD made by PANalytical SEM (scanning electron microscope): SEM S-4300 manufactured by Hitachi, Ltd.
  • -CHN elemental analysis Model 2400 CHN elemental analysis manufactured by PerkinElmer
  • Example 1 lithium cobalt composite oxide
  • Cobalt oxide (CoO 2 ), lithium carbonate (Li 2 CO 3 ), and natural wax Carnauba No. 2 manufactured by Toyo Adri Co., Ltd.
  • an element ratio of cobalt to lithium being 1: 1, natural in the raw material mixture
  • the fired product was pulverized in a mortar to obtain a positive electrode active material (1) for a lithium secondary battery, which was a lithium cobalt composite oxide.
  • the obtained lithium cobalt composite oxide was identified as LiCoO 2 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 3.0 to 5.0 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 0.2% from CHN elemental analysis.
  • Example 2 lithium manganese composite oxide
  • Manganese oxide (Mn 3 O 4 ), lithium nitrate (LiNO 3 ), and ester gum HD which is a modified natural resin, have an element ratio of manganese to lithium of 2: 1 in the raw material mixture Weighed so that the modified natural resin content is 2.0%, pulverized and mixed in a mortar, filled in an alumina crucible, fired in an electric furnace at 300 ° C. for 24 hours in an air atmosphere, and cooled. After performing, it mixes with a mortar, baked at 700 degreeC for 30 hours, The obtained baked material is grind
  • the obtained lithium manganese composite oxide was identified as LiMn 2 O 3 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 1.0 to 3.0 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 0.15% from CHN elemental analysis.
  • Example 3 Lithium iron phosphorus composite oxide
  • Example 3 of basic patent Distilling 13.44 parts of iron chloride tetrahydrate (FeCl 2 .4H 2 O), 2.87 parts of lithium chloride (LiCl), 6.63 parts of phosphoric acid (H 3 PO 4 ), and 12.30 parts of urea
  • a raw material aqueous solution was prepared by dissolving in 100 parts of water. After this raw material aqueous solution was charged in a pressure vessel, it was heated in an electric furnace at 300 ° C. for 5 hours, cooled to room temperature, and then a lithium iron phosphorus composite oxide was produced by filtration, washing with water and drying.
  • the obtained lithium iron phosphorus composite oxide and vegetable oil soybean oil KT (manufactured by Marusho Co., Ltd.) are mixed in a mortar so that the weight ratio of the lithium iron phosphorus composite oxide and vegetable oil is 1: 0.5. And calcination at 600 ° C. for 10 hours in a nitrogen atmosphere in an electric furnace.
  • the obtained fired product is pulverized in a mortar and is a lithium iron phosphorus composite oxide positive electrode active material for lithium secondary battery (3) Got.
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 0.8 to 1.5 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 5.5% from CHN elemental analysis.
  • Example 4 lithium iron phosphorus composite oxide
  • FeCl 2 .4H 2 O Iron chloride tetrahydrate
  • LiCl lithium chloride
  • H 3 PO 4 phosphoric acid
  • 12.30 parts of urea A raw material aqueous solution was prepared by dissolving in 100 parts of water. After this raw material aqueous solution was charged in a pressure vessel, it was heated in an electric furnace at 300 ° C. for 5 hours, cooled to room temperature, and then a lithium iron phosphorus composite oxide was produced by filtration, washing with water and drying.
  • the obtained lithium iron phosphorus composite oxide and vegetable oil soybean oil KT (manufactured by Marusho) were mixed in a mortar so that the weight ratio of lithium iron phosphorus composite oxide and vegetable oil was 1: 0.15. And calcination at 600 ° C. for 10 hours in a nitrogen atmosphere in an electric furnace, and the fired product obtained is pulverized in a mortar and is a lithium iron phosphorus composite oxide positive electrode active material for a lithium secondary battery (4) Got.
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 0.4 to 1.0 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 5.0% from CHN elemental analysis.
  • Example 5 Lithium iron phosphorus composite oxide
  • a raw material aqueous solution was prepared by dissolving in 100 parts of water. After this raw material aqueous solution was charged in a pressure vessel, it was heated in an electric furnace at 300 ° C. for 5 hours, cooled to room temperature, and then a lithium iron phosphorus composite oxide was produced by filtration, washing with water and drying.
  • the obtained lithium iron phosphorus composite oxide and natural resin GSN (manufactured by Gifu Shellac Manufacturing Co., Ltd.) are mortar so that the weight ratio of lithium iron phosphorus composite oxide and natural resin is 1: 0.2. , Baked at 700 ° C. for 10 hours in a nitrogen atmosphere in an electric furnace, and the fired product obtained was pulverized in a mortar to be a lithium iron phosphorus composite oxide positive electrode active material for a lithium secondary battery (5) was obtained.
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 0.8 to 1.5 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 4.7% from CHN elemental analysis.
  • Example 6 Lithium iron phosphorus composite oxide
  • a raw material aqueous solution was prepared by dissolving in 100 parts of water. After this raw material aqueous solution was charged in a pressure vessel, it was heated in an electric furnace at 300 ° C. for 5 hours, cooled to room temperature, and then a lithium iron phosphorus composite oxide was produced by filtration, washing with water and drying.
  • the obtained lithium iron phosphorus composite oxide and the natural wax rice wax decolorized product (manufactured by Toa Kasei Co., Ltd.) are so prepared that the weight ratio of the lithium iron phosphorus composite oxide and the natural wax is 1: 0.15.
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 0.8 to 1.5 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 3.0% from CHN elemental analysis.
  • Example 7 Lithium iron phosphorus composite oxide
  • Ferrous phosphate octahydrate (Fe 3 (PO 4 ) 2 ⁇ 8H 2 O), lithium phosphate (Li 3 PO 4 ), and modified natural wax LUWAX-S manufactured by BASF
  • the element ratio of iron and lithium is 1: 1, and the natural wax content in the raw material mixture is weighed to 10.0%, pulverized and mixed in a mortar, then filled into an alumina crucible, and placed in an electric furnace. After baking and cooling at 300 ° C. for 10 hours in a nitrogen atmosphere, mixing in a mortar, baking at 700 ° C. for 15 hours, pulverizing the obtained fired product in a mortar and lithium iron phosphorus composite oxidation As a result, a positive electrode active material (7) for a lithium secondary battery was obtained.
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 0.07 to 0.2 ⁇ m (FIG. 1; 30000 times) from SEM (scanning electron microscope) observation, and the carbon content was 4.5% from CHN elemental analysis.
  • Example 8 Lithium iron phosphorus composite oxide
  • Ferrous phosphate octahydrate (Fe 3 (PO 4 ) 2 ⁇ 8H 2 O), lithium phosphate (Li 3 PO 4 ), and modified natural wax LUWAX-S manufactured by BASF
  • the element ratio of iron and lithium is 1: 1, and the content of the modified natural wax in the raw material mixture is weighed to be 5.0%, pulverized and mixed in a mortar, then filled into an alumina crucible, and an electric furnace After baking and cooling at 300 ° C. for 10 hours in a nitrogen atmosphere, mixing in a mortar, baking at 700 ° C. for 15 hours, and pulverizing the obtained fired product in a mortar and lithium iron phosphorus composite A positive electrode active material (8) for a lithium secondary battery, which was an oxide, was obtained.
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 0.1 to 1.0 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 4.0% from CHN elemental analysis.
  • Example 9 Lithium iron phosphorus composite oxide
  • the element ratio of iron, phosphorus and lithium is 1: 1: 1, and the content of vegetable oil in the raw material mixture is 40.0%.
  • the alumina crucible Baked at 300 ° C. for 10 hours in an electric furnace in a nitrogen atmosphere, cooled, then mixed in a mortar, baked at 700 ° C. for 15 hours, and the resulting fired product in a mortar
  • the positive electrode active material (9) for lithium secondary batteries which is a pulverized lithium iron phosphorus composite oxide was obtained.
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 0.2 to 0.5 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 6.4% from CHN elemental analysis.
  • Example 10 Lithium iron phosphorus composite oxide
  • the element ratio of iron, phosphorus and lithium is 1: 1: 1, and the content of vegetable oil in the raw material mixture is 20.0%.
  • the alumina crucible Baked at 300 ° C. for 10 hours in an electric furnace in a nitrogen atmosphere, cooled, then mixed in a mortar, baked at 700 ° C. for 15 hours, and the resulting fired product in a mortar
  • the positive electrode active material (10) for lithium secondary batteries which is a pulverized lithium iron phosphorus composite oxide was obtained.
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 0.2 to 0.5 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 5.8% from CHN elemental analysis.
  • Example 11 Lithium iron phosphorus composite oxide
  • Iron phosphate dihydrate (FePO 4 .2H 2 O), lithium acetate (CH 3 COOLi), and natural resin tall rosin RX have an iron to lithium element ratio of 1: 1, the content of the natural resin in the raw material mixture was weighed so as to be 30.0%, pulverized and mixed in a mortar, filled in an alumina crucible, and 10% at 300 ° C. in a nitrogen atmosphere in an electric furnace. After time firing and cooling, mixing in a mortar, firing at 700 ° C. for 15 hours, and pulverizing the obtained fired product in a mortar to form a lithium iron phosphorus composite oxide positive electrode for a lithium secondary battery An active material (11) was obtained.
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle size was 0.1 to 0.5 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 5.0% from CHN elemental analysis.
  • Example 12 Lithium iron phosphorus composite oxide
  • Iron phosphate dihydrate (FePO 4 .2H 2 O), lithium acetate (CH 3 COOLi), and natural resin tall rosin RX have an iron to lithium element ratio of 1: 1, the content of the natural resin in the raw material mixture was weighed so as to be 15.0%, pulverized and mixed in a mortar, filled in an alumina crucible, and 10% at 300 ° C. in a nitrogen atmosphere in an electric furnace. After time firing and cooling, mixing in a mortar, firing at 700 ° C. for 15 hours, and pulverizing the obtained fired product in a mortar to form a lithium iron phosphorus composite oxide positive electrode for a lithium secondary battery An active material (12) was obtained.
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 0.1 to 0.6 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 4.3% from CHN elemental analysis.
  • Example 13 Lithium iron phosphorus composite oxide
  • ⁇ -FePO 4 iron phosphate anhydrate
  • Li 2 CO 3 lithium carbonate
  • Chinese rosin X manufactured by Arakawa Chemical Industries
  • the content of the natural resin in the raw material mixture would be 10.0%, pulverized and mixed in a mortar, filled in an alumina crucible, and then in an electric furnace under nitrogen atmosphere at 700 ° C. for 15 hours. Firing was performed, and the obtained fired product was pulverized in a mortar to obtain a positive electrode active material (13) for a lithium secondary battery, which is a lithium iron phosphorus composite oxide.
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. Further, the primary particle diameter is 0.05 to 0.2 ⁇ m (FIG. 2; 20000 times, FIG. 3; 50000 times) from SEM (scanning electron microscope) observation, and the carbon content is 4. It was 8%.
  • Example 14 Lithium iron phosphorus composite oxide
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 0.1 to 0.3 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 3.2% from CHN elemental analysis.
  • Example 15 Lithium iron phosphorus composite oxide
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. Further, the primary particle diameter is 0.05 to 0.3 ⁇ m (FIG. 4; 20000 times, FIG. 5; 50000 times) from SEM (scanning electron microscope) observation, and the carbon content is 3. It was 5%.
  • Example 16 Lithium iron phosphorus composite oxide
  • the raw material mixture is weighed so that the content of the natural resin is 5.0%, pulverized and mixed in a mortar, then filled into an alumina crucible, and 300 ° C. in a nitrogen atmosphere in an electric furnace. After baking for 10 hours and cooling, mixing in a mortar, baking at 700 ° C. for 15 hours, pulverizing the obtained fired product in a mortar and lithium lithium phosphorus composite oxide lithium secondary battery A positive electrode active material (16) was obtained.
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 0.05 to 0.4 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 2.0% from CHN elemental analysis.
  • Example 17 lithium iron phosphorus composite oxide
  • the ratio is 1: 1, the modified natural resin content in the raw material mixture is weighed to 7.0%, pulverized and mixed in a mortar, then filled into an alumina crucible, and in an electric furnace under a nitrogen atmosphere After baking and cooling at 300 ° C. for 10 hours, mixing in a mortar, baking at 700 ° C. for 15 hours, and pulverizing the obtained fired product in a mortar to obtain lithium iron phosphorus composite oxide lithium
  • a positive electrode active material (17) for secondary batteries was obtained.
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 0.05 to 0.3 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 3.5% from CHN elemental analysis.
  • Example 18 Lithium manganese phosphorus composite oxide
  • the element ratio of lithium is 1: 1: 1, and the natural wax content in the raw material mixture is weighed so as to be 40.0%, pulverized and mixed in a mortar, then filled into an alumina crucible, and placed in an electric furnace. Then, after baking and cooling at 400 ° C. for 15 hours in a nitrogen atmosphere, mixing in a mortar, baking at 800 ° C. for 20 hours, and pulverizing the obtained fired product in a mortar and lithium manganese phosphorus composite oxidation As a result, a positive electrode active material (18) for a lithium secondary battery was obtained.
  • the obtained lithium manganese phosphorus composite oxide was identified as LiMnPO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 0.8 to 1.5 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 6.8% from CHN elemental analysis.
  • Example 19 lithium manganese phosphorus composite oxide
  • the element ratio of lithium is 1: 1: 1, and the natural wax content in the raw material mixture is weighed to 20.0%, pulverized and mixed in a mortar, then filled into an alumina crucible, and placed in an electric furnace. Then, after baking and cooling at 400 ° C. for 15 hours in a nitrogen atmosphere, mixing in a mortar, baking at 800 ° C. for 20 hours, and pulverizing the obtained fired product in a mortar and lithium manganese phosphorus composite oxidation As a result, a positive electrode active material (19) for a lithium secondary battery was obtained.
  • the obtained lithium manganese phosphorus composite oxide was identified as LiMnPO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 0.5 to 1.2 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 4.5% from CHN elemental analysis.
  • Example 20 Lithium manganese phosphorus composite oxide
  • Harimac T-80 manufactured by Harima Chemical Co., Ltd.
  • the element ratio of phosphorus and lithium is 1: 1: 1, and the natural resin content in the raw material mixture is weighed to be 40.0%, pulverized and mixed in a mortar, then filled into an alumina crucible, After firing and cooling at 400 ° C. for 15 hours in a nitrogen atmosphere in a furnace, mixing in a mortar, firing at 800 ° C. for 20 hours, and pulverizing the obtained fired product in a mortar to obtain lithium manganese phosphorus
  • the obtained lithium manganese phosphorus composite oxide was identified as LiMnPO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle size was 1.0 to 1.5 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 7.5% from CHN elemental analysis.
  • Example 21 lithium manganese phosphorus composite oxide
  • Harimac T-80 manufactured by Harima Chemical Co., Ltd.
  • the element ratio of phosphorus and lithium is 1: 1: 1, and weighed so that the content of the modified natural resin in the raw material mixture is 20.0%, pulverized and mixed in a mortar, and then filled into an alumina crucible, After firing and cooling at 400 ° C. for 15 hours in a nitrogen atmosphere in an electric furnace, mixing in a mortar, firing at 800 ° C. for 20 hours, and pulverizing the obtained fired product in a mortar, lithium manganese A positive electrode active material (21) for a lithium secondary battery, which was a phosphorus composite oxide, was obtained.
  • the obtained lithium manganese phosphorus composite oxide was identified as LiMnPO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 1.2 to 1.8 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 5.8% from CHN elemental analysis.
  • the obtained lithium cobalt composite oxide was identified as LiCoO 2 by XRD (X-ray diffraction) measurement.
  • the primary particle diameter was 1.0 to 8.0 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 0.3% from CHN elemental analysis.
  • the obtained lithium manganese composite oxide was identified as LiMn 2 O 3 by XRD (X-ray diffraction) measurement.
  • the primary particle size was 0.8 to 6.0 ⁇ m from SEM (scanning electron microscope) observation, and the carbon content was 0.25% from CHN elemental analysis.
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. Further, from SEM (scanning electron microscope) observation, the primary particle diameter was 0.05 to 1.0 ⁇ m (FIG. 6; 30000 times), and many large aggregated particles were confirmed by the fusion of the particles. Furthermore, the carbon content was 5.8% from CHN elemental analysis.
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle size is 0.05 to 2.0 ⁇ m (FIG. 7; 20000 times, FIG. 8; 50000 times), and the particle size varies greatly. Many were confirmed.
  • the carbon content was as low as 1.8% by CHN elemental analysis.
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle size was 0.1 to 0.4 ⁇ m and the variation in the particle size was small, but from CHN elemental analysis, the carbon content was 0.5%. Very few.
  • the obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement.
  • XRD X-ray diffraction
  • SEM scanning electron microscope
  • the obtained lithium manganese phosphorus composite oxide was identified as LiMnPO 4 by XRD (X-ray diffraction) measurement.
  • the primary particle size was 0.2-2.0 ⁇ m as observed by SEM (scanning electron microscope), and the particle size variation was large, and the carbon content was as low as 2.2% by CHN elemental analysis. .
  • NMP N-methyl-2-pyrrolidone
  • PVDF polyvinylidene fluoride (KF polymer W # 1100, manufactured by Kureha)
  • a separator made of a porous polypropylene film between the working electrode and the counter electrode (# 2400, manufactured by Celgard Co., Ltd.) with the positive electrode fabricated previously punched out to a diameter of 9 mm and used as a working electrode and a metal lithium foil (thickness 0.15 mm) as a counter electrode Are inserted and laminated, filled with an electrolyte (nonaqueous electrolyte in which LiPF 6 is dissolved at a concentration of 1 M in a mixed solvent of ethylene carbonate and diethyl carbonate in a ratio of 1: 1), and a bipolar metal cell (Hosen) (HS flat cell).
  • the cell was assembled in a glow box substituted with argon gas, and after the cell was assembled, predetermined battery characteristics were evaluated.
  • the particle diameter of the positive electrode active material is uniform in a narrow range, so that the packing density of the positive electrode active material in the electrode coating film is higher than in the comparative example, The conductivity in the electrode coating was improved, and the initial discharge capacity at 0.2C was improved. Also, in the high rate discharge capacity maintenance rate, the positive electrode active material of the example tended to be higher than the comparative example.

Abstract

Disclosed are: a positive electrode active material for a lithium secondary battery, in which the surfaces of the primary particles of the positive electrode active material are coated with a small quantity of an inexpensive electrically conductive component uniformly to improve the electron conductivity of the positive electrode active material; and a lithium secondary battery which is produced using the positive electrode active material, has an improved initial discharge capacity at a low rate and also has an improved discharge capacity in a high rate (in a short-term charge-discharge test). The positive electrode active material for a lithium secondary battery comprises particles of a lithium-(transition metal) composite oxide, wherein the surfaces of the particles are partially or entirely coated with an electrically conductive carbon, wherein the electrically conductive carbon is a thermally decomposed product of a natural material selected from the group consisting of unmodified or modified natural waxes, natural resins and plant oils.

Description

リチウム二次電池用正極活物質材料、その製造方法、及びそれを用いたリチウム二次電池Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
 本発明は、リチウム二次電池用正極活物質材料として好適である導電性炭素で被覆されたリチウム遷移金属複合酸化物、その製造方法、及び該複合酸化物を用いたリチウム二次電池に関する。 The present invention relates to a lithium transition metal composite oxide coated with conductive carbon suitable as a positive electrode active material for a lithium secondary battery, a method for producing the same, and a lithium secondary battery using the composite oxide.
 近年、デジタルカメラや携帯電話のような小型携帯型電子機器が広く用いられるようになってきた。これらの電子機器には、容積を最小限にし、かつ重量を軽くすることが常に求められてきており、搭載される電池においても、小型、軽量かつ大容量の電池の実現が求められている。又、自動車搭載用等の大型二次電池においても、従来の鉛蓄電池に代えて、大型の非水電解質二次電池の実現が望まれている。 In recent years, small portable electronic devices such as digital cameras and mobile phones have been widely used. These electronic devices have always been required to minimize the volume and reduce the weight, and the batteries to be mounted are also required to be small, light, and have a large capacity. Also, in large-sized secondary batteries for automobiles and the like, it is desired to realize a large non-aqueous electrolyte secondary battery instead of the conventional lead-acid battery.
 そのような要求に応えるため、リチウム二次電池の開発が活発に行われている。リチウム二次電池の電極としては、リチウムイオンを含む正極活物質、導電助剤、及び有機バインダー等からなる電極合剤を金属箔の集電体の表面に固着させた正極、及び、リチウムイオンの脱挿入可能な負極活物質、導電助剤、及び有機バインダー等からなる電極合剤を金属箔の集電体の表面に固着させた負極が使用されている。 In response to such demands, lithium secondary batteries are being actively developed. As an electrode of a lithium secondary battery, a positive electrode in which an electrode mixture composed of a positive electrode active material containing lithium ions, a conductive additive, an organic binder, and the like is fixed to the surface of a current collector of a metal foil, and a lithium ion A negative electrode is used in which an electrode mixture composed of a removable negative electrode active material, a conductive additive, an organic binder, and the like is fixed to the surface of a current collector of a metal foil.
 一般的に、正極活物質としては、コバルト酸リチウム、マンガン酸リチウム、及びニッケル酸リチウム等のリチウム遷移金属複合酸化物が用いられているが、これらのリチウム遷移金属複合酸化物は、熱安定性、充放電時における組成変化による性能低下、希少金属を使用することによる高価格などの問題があり、これらの改善策として資源的に豊富でかつ安価な鉄を含んだリチウム鉄リン複合酸化物が注目されている。 In general, as the positive electrode active material, lithium transition metal composite oxides such as lithium cobaltate, lithium manganate, and lithium nickelate are used. These lithium transition metal composite oxides are thermally stable. There are problems such as performance degradation due to composition change at the time of charge and discharge, high price due to the use of rare metals, etc. As a countermeasure for these, lithium iron phosphorus composite oxide containing iron rich in resources and cheap Attention has been paid.
 リチウム鉄リン複合酸化物の中でもLiFePOで表される、オリビン構造を持ったリン酸鉄リチウムは、金属リチウムに対して3.5V程度の電位を有することから実用性の高い材料として期待されている。 Among lithium iron phosphorus composite oxides, lithium iron phosphate having an olivine structure represented by LiFePO 4 is expected as a highly practical material because it has a potential of about 3.5 V with respect to metallic lithium. Yes.
 しかし、LiFePOで表される、オリビン構造を持ったリチウム遷移金属リン複合酸化物は、他の正極活物質などと比べて非常に電子伝導性が乏しい結晶であり、結晶内のリチウムイオンの伝導性も悪く、電池での高い放電容量は期待できないものであった。 However, a lithium transition metal phosphorus composite oxide having an olivine structure represented by LiFePO 4 is a crystal having a very poor electronic conductivity as compared with other positive electrode active materials, and the conduction of lithium ions in the crystal. The high discharge capacity in the battery could not be expected.
 上記のような課題を解決させるために、これまでに様々な対策が取られてきた。具体的には、正極活物質の一次粒子を微粒子化する(特許文献1、2、3、4)、正極活物質粒子表面を導電性成分で被覆する(特許文献5、6、7、8、9、10)、異種金属を正極活物質結晶内にドープする(特許文献11)などの対策が報告されている。いずれの方法も、正極活物質の電子伝導性の向上、及び/又はリチウムイオンの伝導性の向上を行い、電池で理論値に近い良好な放電容量や、高負荷時の良好な充放電特性が得られるものである。その中でも、特に、容易で効果的に正極活物質の電子伝導性を向上させる方法として、正極活物質粒子表面を導電性成分で被覆する方法が数多く提案されている。 In order to solve the above problems, various measures have been taken so far. Specifically, the primary particles of the positive electrode active material are made into fine particles (Patent Documents 1, 2, 3, 4), and the surface of the positive electrode active material particles is coated with a conductive component (Patent Documents 5, 6, 7, 8, 9, 10), and countermeasures such as doping a different metal into the positive electrode active material crystal (Patent Document 11) have been reported. Both methods improve the electronic conductivity of the positive electrode active material and / or improve the conductivity of lithium ions, and the battery has a good discharge capacity close to the theoretical value and good charge / discharge characteristics at high load. It is obtained. Among them, many methods for coating the surface of the positive electrode active material particles with a conductive component have been proposed as methods for improving the electron conductivity of the positive electrode active material easily and effectively.
 導電性成分として具体的には、導電性微粒子であるカーボンブラック(特許文献5)、加熱分解することで導電性炭素被膜を形成可能な有機化合物(特許文献6、7、8、9)、及び導電性金属酸化物(特許文献10)などが報告されている。その中でも、正極活物質の一次粒子表面を少量の安価な導電性成分で均一に被覆する方法として、導電性成分に、有機化合物である糖類が加熱分解した導電性炭素被膜を使用した例が多く報告されている。 Specifically, as the conductive component, carbon black (Patent Document 5) which is a conductive fine particle, an organic compound (Patent Documents 6, 7, 8, 9) capable of forming a conductive carbon film by thermal decomposition, and Conductive metal oxides (Patent Document 10) have been reported. Among them, as a method for uniformly covering the surface of the primary particles of the positive electrode active material with a small amount of an inexpensive conductive component, there are many examples in which a conductive carbon coating obtained by thermally decomposing saccharides as organic compounds is used as the conductive component. It has been reported.
特許第4058680号公報Japanese Patent No. 4058680 特許第4190912号公報Japanese Patent No. 4190912 特開2002-015735号公報JP 2002-015735 A 特開2008-159495号公報JP 2008-159495 A 特許第4151210号公報Japanese Patent No. 4151210 特許第4297406号公報Japanese Patent No. 4297406 特開2004-063386号公報Japanese Patent Laid-Open No. 2004-063386 特開2007-250417号公報JP 2007-250417 A 特開2008-034306号公報JP 2008-034306 A 特開2003-300734号公報Japanese Patent Laid-Open No. 2003-300734 国際公開WO2005041327号公報International Publication WO20055041327
 しかし、加熱分解することで導電性炭素被膜を形成可能な有機化合物として糖類を使用した場合、電子伝導性の向上による放電容量の向上は可能であったが、リン酸鉄リチウムの粒子表面を少量の炭素で均一に被覆し電子伝導性を向上させることは難しく、高レート(短時間での充放電試験)において高い放電容量は得られにくいものであった。 However, when sugar is used as an organic compound capable of forming a conductive carbon film by thermal decomposition, it was possible to improve the discharge capacity by improving the electron conductivity, but a small amount of lithium iron phosphate particle surface was used. It was difficult to improve the electron conductivity by uniformly covering with carbon, and it was difficult to obtain a high discharge capacity at a high rate (charge / discharge test in a short time).
 前記課題は、リチウム遷移金属複合酸化物の粒子表面の一部または全部が導電性炭素で被覆されてなり、前記導電性炭素が、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料の加熱分解物であるリチウム二次電池用正極活物質材料により解決される。 The problem is that a part or all of the particle surface of the lithium transition metal composite oxide is coated with conductive carbon, and the conductive carbon is composed of an unmodified or modified natural wax, natural resin, and vegetable oil. This is solved by a positive electrode active material for a lithium secondary battery, which is a thermal decomposition product of a natural material selected from the group.
 又、本発明は、導電性炭素の含有率は、リチウム二次電池用正極活物質材料全体に対して、0.1重量%以上かつ30重量%以下である、リチウム二次電池用正極活物質材料に関する。 Further, the present invention provides a positive electrode active material for a lithium secondary battery, wherein the conductive carbon content is 0.1 wt% or more and 30 wt% or less with respect to the entire positive electrode active material for a lithium secondary battery. Regarding materials.
 又、本発明は、リチウム遷移金属複合酸化物が、オリビン構造を有するリチウム遷移金属リン複合酸化物である、リチウム二次電池用正極活物質材料に関する。 The present invention also relates to a positive electrode active material for a lithium secondary battery, wherein the lithium transition metal composite oxide is a lithium transition metal phosphorus composite oxide having an olivine structure.
 又、本発明は、リチウム含有化合物と、遷移金属含有化合物と、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料とを混合物とする工程と、前記混合物を200~1100℃で加熱する工程とを含む、リチウム二次電池用正極活物質材料の製造方法に関する。 The present invention also includes a step of mixing a lithium-containing compound, a transition metal-containing compound, and an unmodified or modified natural material selected from the group consisting of natural wax, natural resin, and vegetable oil, and the mixture. And a method of producing a positive electrode active material for a lithium secondary battery, comprising a step of heating at 200 to 1100 ° C.
 又、本発明は、リチウム含有化合物と、遷移金属含有化合物と、リン含有化合物と、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料とを混合物とする工程と、前記混合物を200~1100℃で加熱する工程とを含む、リチウム二次電池用正極活物質材料の製造方法に関する。 The present invention also includes a step of mixing a lithium-containing compound, a transition metal-containing compound, a phosphorus-containing compound, and a natural material selected from the group consisting of an unmodified or modified natural wax, natural resin, and vegetable oil. And a method for producing a positive electrode active material for a lithium secondary battery, comprising the step of heating the mixture at 200 to 1100 ° C.
 又、本発明は、リチウム遷移金属複合酸化物と、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料とを混合物とする工程と、前記混合物を200~1100℃で加熱する工程とを含む、リチウム二次電池用正極活物質材料の製造方法に関する。 The present invention also includes a step of mixing a lithium transition metal composite oxide with an unmodified or modified natural material selected from the group consisting of natural waxes, natural resins, and vegetable oils, and the mixture comprising 200-1100. The manufacturing method of the positive electrode active material material for lithium secondary batteries including the process heated at degreeC.
 又、本発明は、前記製造方法を用いて製造される、リチウム二次電池用正極活物質材料に関する。 The present invention also relates to a positive electrode active material for a lithium secondary battery produced using the production method.
 又、本発明は、前記リチウム二次電池用正極活物質材料を含有する、電極に関する。 The present invention also relates to an electrode containing the positive electrode active material for a lithium secondary battery.
 又、本発明は、前記電極を正極として備える、リチウム二次電池に関する。 The present invention also relates to a lithium secondary battery comprising the electrode as a positive electrode.
 本発明の好ましい実施態様によれば、安価に入手可能な材料である天然材料を導電性炭素源として用い、加熱処理により、リチウム遷移金属複合酸化物の粒子表面を処理することにより、少量で効率的にリチウム遷移金属複合酸化物の粒子表面に導電性炭素を被覆することができ、導電性がより向上したリチウム二次電池用正極活物質材料を安価に製造することができる。更に、本発明の好ましい実施態様に係るリチウム二次電池用正極活物質材料を、リチウム二次電池の正極に使用することにより、リチウム二次電池の放電容量や充放電特性を向上させることができる。 According to a preferred embodiment of the present invention, a natural material, which is an inexpensively available material, is used as a conductive carbon source, and the particle surface of the lithium transition metal composite oxide is treated by heat treatment. In particular, the surface of the particles of the lithium transition metal composite oxide can be coated with conductive carbon, and a positive electrode active material for a lithium secondary battery with improved conductivity can be produced at low cost. Furthermore, the discharge capacity and charge / discharge characteristics of the lithium secondary battery can be improved by using the positive electrode active material for a lithium secondary battery according to a preferred embodiment of the present invention for the positive electrode of the lithium secondary battery. .
実施例7のリチウム鉄リン複合酸化物のSEM観察(30000倍)である。It is SEM observation (30000 times) of the lithium iron phosphorus complex oxide of Example 7. 実施例13のリチウム鉄リン複合酸化物のSEM観察(20000倍)である。It is a SEM observation (20000 times) of the lithium iron phosphorus complex oxide of Example 13. 実施例13のリチウム鉄リン複合酸化物のSEM観察(50000倍)である。It is SEM observation (50000 times) of the lithium iron phosphorus complex oxide of Example 13. 実施例15のリチウム鉄リン複合酸化物のSEM観察(20000倍)である。It is a SEM observation (20000 times) of the lithium iron phosphorus complex oxide of Example 15. 実施例15のリチウム鉄リン複合酸化物のSEM観察(50000倍)である。It is SEM observation (50000 times) of the lithium iron phosphorus complex oxide of Example 15. 比較例3のリチウム鉄リン複合酸化物のSEM観察(30000倍)である。It is SEM observation (30000 times) of the lithium iron phosphorus complex oxide of the comparative example 3. 比較例4のリチウム鉄リン複合酸化物のSEM観察(20000倍)である。It is a SEM observation (20000 times) of the lithium iron phosphorus complex oxide of the comparative example 4. 比較例4のリチウム鉄リン複合酸化物のSEM観察(50000倍)である。It is SEM observation (50000 times) of the lithium iron phosphorus complex oxide of the comparative example 4.
<リチウム二次電池用正極活物質材料>
 本発明におけるリチウム二次電池用正極活物質材料は、リチウム遷移金属複合酸化物の粒子表面の一部または全部が導電性炭素で被覆されてなり、前記導電性炭素が、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料の加熱分解物であることを特徴とするが、以下にその詳細を説明する。
<Positive electrode active material for lithium secondary battery>
The positive electrode active material for a lithium secondary battery according to the present invention is formed by covering part or all of the particle surface of the lithium transition metal composite oxide with conductive carbon, and the conductive carbon is unmodified or modified. The heat-decomposed product of a natural material selected from the group consisting of natural wax, natural resin, and vegetable oil is described below in detail.
<リチウム遷移金属複合酸化物>
 リチウム遷移金属複合酸化物は、特に限定はされないが、少なくともリチウムと遷移金属とを含有した金属酸化物である。例えば、遷移金属としては、Fe、Co、Ni、及びMn等が挙げられ、1つのリチウム遷移金属複合酸化物中に2種類以上の遷移金属を含有してもよい。また、リン(P)を含有していてもよい。
<Lithium transition metal composite oxide>
The lithium transition metal composite oxide is not particularly limited, but is a metal oxide containing at least lithium and a transition metal. For example, examples of the transition metal include Fe, Co, Ni, Mn, and the like, and one lithium transition metal composite oxide may contain two or more transition metals. Moreover, phosphorus (P) may be contained.
 具体的には、層状構造のリチウムニッケル複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、リチウムコバルトニッケル系複合酸化物、リチウムニッケルマンガン系複合酸化物、リチウムコバルトニッケルマンガン系複合酸化物、リチウムコバルトニッケルアルミニウム系複合酸化物等が挙げられる。また、スピネル構造のリチウムマンガン系複合酸化物等が挙げられる。さらに、オリビン構造を有するリチウム遷移金属リン系複合酸化物であるリン酸鉄リチウム、リン酸マンガンリチウム、リン酸鉄マンガンリチウム等が挙げられる。 Specifically, layered lithium nickel composite oxide, lithium cobalt composite oxide, lithium manganese composite oxide, lithium cobalt nickel composite oxide, lithium nickel manganese composite oxide, lithium cobalt nickel manganese composite Examples thereof include oxides and lithium cobalt nickel aluminum based composite oxides. Moreover, the lithium manganese type complex oxide etc. of a spinel structure are mentioned. Furthermore, lithium iron phosphate, lithium manganese phosphate, lithium iron manganese phosphate and the like, which are lithium transition metal phosphorus composite oxides having an olivine structure, can be mentioned.
 なかでも、オリビン構造のリン酸鉄リチウムは、コスト面や安全面の観点で好ましい材料である。 Among these, olivine-structured lithium iron phosphate is a preferable material from the viewpoint of cost and safety.
 特に、オリビン構造を有するリチウム遷移金属リン系複合酸化物は、他のリチウム遷移金属複合酸化物に比べて電子導電性が乏しいため、優れた電池性能が得られにくい。本発明者らは、このような複合酸化物であっても、その粒子表面を、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料の加熱分解物である導電性炭素で被覆することにより、電子導電性が向上し、リチウム二次電池での放電容量や充放電特性が向上することを見出した。 In particular, the lithium transition metal phosphorus composite oxide having an olivine structure has poor electronic conductivity as compared with other lithium transition metal composite oxides, so that it is difficult to obtain excellent battery performance. The present inventors are such a complex oxide, the particle surface of which is a thermal decomposition product of a natural material selected from the group consisting of an unmodified or modified natural wax, natural resin, and vegetable oil. It has been found that by covering with conductive carbon, the electronic conductivity is improved, and the discharge capacity and charge / discharge characteristics of the lithium secondary battery are improved.
<天然材料>
 本発明では、天然材料を加熱分解することにより導電性炭素を生成させるが、この天然材料としては、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料が好ましい。また、これらの天然材料は、溶剤、水等の媒体中に溶解、また分散させて用いることもできる。
<Natural materials>
In the present invention, conductive carbon is produced by thermally decomposing a natural material. As the natural material, a natural material selected from the group consisting of unmodified or modified natural wax, natural resin, and vegetable oil is preferable. . Further, these natural materials can be used after being dissolved or dispersed in a medium such as a solvent or water.
 天然ワックスとしては、植物系ワックスと鉱物系ワックスが挙げられる。植物系ワックスとしては、原料の植物の違いによって、カルナバワックス、ライスワックス、キャデリラワックス、ジャパンワックス等が挙げられる。一方、鉱物系ワックスとしては、褐炭より溶剤抽出して作られるモンタンワックス等があるが、主に変性して使われる。 Natural waxes include plant waxes and mineral waxes. Examples of plant waxes include carnauba wax, rice wax, cadilla wax, and Japan wax, depending on the plant used as a raw material. On the other hand, examples of mineral waxes include montan wax produced by solvent extraction from brown coal, and are mainly used after being modified.
 変性された天然ワックスとしては、モンタンワックスの酸化またはエステル化変性物が挙げられる。 Examples of modified natural wax include oxidized or esterified modified products of montan wax.
 市販の植物系天然ワックスとしては、例えば、カルナバ1号、カルナバ2号、カルナバ3号、及びキャンデリラワックス等の東洋アドレ社製天然ワックス;ライスワックス脱色品、精製ライスワックス、ジャパンワックス等の東亜化成社製天然ワックス;ビーズワックス等の三木化学工業社製天然ワックス;雪ロウ等のセラリカNODA社製天然ワックスが挙げられるが、これらに限定されるものではない。 Examples of commercially available plant-based natural waxes include natural waxes manufactured by Toyo Adri Co., Ltd. such as Carnauba No. 1, Carnauba No. 2, Carnauba No. 3, and Candelilla wax; Towa such as rice wax decolorized products, refined rice wax, Japan wax, etc. Natural wax produced by Kasei Co .; natural wax produced by Miki Chemical Industry Co., Ltd. such as bead wax;
 市販の鉱物系変性天然ワックスとしては、例えば、モンタンワックスEP、モンタンワックスOP、モンタンワックスNA等の東洋アドレ社製変性天然ワックス;LUWAX-S、LUWAX-E、LUWAX-OP、LUWAX-LEG等のBASF社製変性天然ワックス;リコワックスE、リコルブWE4、リコルブWE40、リコモントET141、リコモントET132等のクラリアント社製の変性天然ワックス等が挙げられるが、これらに限定されるものではない。 Examples of commercially available mineral-modified natural waxes include modified natural waxes manufactured by Toyo Adre such as Montan Wax EP, Montan Wax OP, and Montan Wax NA; LUWAX-S, LUWAX-E, LUWAX-OP, LUWAX-LEG, and the like. Examples include, but are not limited to, modified natural waxes manufactured by BASF; modified natural waxes manufactured by Clariant, such as Recowax E, Recolve WE4, Recolve WE40, Recommont ET141, Recommont ET132, and the like.
 天然樹脂としては、樹皮より分泌される樹液に含まれる不揮発性の固体または半固形体の物質や、樹木に寄生するラックカイガラムシが分泌する樹脂状物質が挙げられる。具体的な天然樹脂としては、ロジン、ダンマル、コパール、シェラック等が挙げられる。 Natural resins include non-volatile solid or semi-solid substances contained in the sap secreted from the bark and resinous substances secreted by the scale insects parasitic on the tree. Specific examples of natural resins include rosin, dammar, copal and shellac.
 市販の天然樹脂としては、例えば、トールロジンR-X、トールロジンR-WW等のハリマ化成社製の天然樹脂;ガムロジンの荒川化学社製の天然樹脂;中国ガムロジンXグレード、中国ガムロジンWWグレード、ダンマル樹脂Aグレード、コパール樹脂Aグレード、コパール樹脂Bグレード、コパール樹脂Cグレード等の安土産業社製の天然樹脂;GSN、GSNハルス、2GSN、3GSN、GSFN、GS、GS-3、GST、BH、GSA、GSオレンジ-1、GSオレンジ-8、GSL、PEARL-N811、GBN-D、GBN-DB、GBN-D-6、S-GB-D、F-GB-D等の岐阜セラツク製造所社製の天然樹脂が挙げられるが、これらに限定されるものではない。 Examples of commercially available natural resins include natural resins manufactured by Harima Chemicals, Inc. such as tall rosin RX and tall rosin R-WW; natural resins manufactured by Arakawa Chemical Co., Ltd .; gum rosin; Chinese gum rosin X grade; Chinese gum rosin WW grade; Natural resin made by Azuchi Sangyo Co., Ltd. such as A grade, copal resin A grade, copal resin B grade, copal resin C grade; GSN, GSN Hals, 2GSN, 3GSN, GSFN, GS, GS-3, GST, BH, GSA, GS Orange-1, GS Orange-8, GSL, PEARL-N811, GBN-D, GBN-DB, GBN-D-6, S-GB-D, F-GB-D, etc. Although natural resin is mentioned, it is not limited to these.
 変性天然樹脂としては、ロジン、テルペン等の変性樹脂が挙げられる。 Examples of modified natural resins include modified resins such as rosin and terpene.
 市販の変性された天然樹脂としては、例えば、変性ロジンとして、重合ロジン、ハイベールCH、スーパーエステルL、スーパーエステルA-18、スーパーエステルA-75、スーパーエステルA-100、スーパーエステルA-115、スーパーエステルA-125、スーパーエステルT-125、ペンセルA、ペンセルAZ、ペンセルC、ペンセルD-125、ペンセルD-135、ペンセル160、ペンセルKK、エステルガムAAG、エステルガムAAL、エステルガムA、エステルガムAAV、エステルガム105、エステルガムAT、エステルガムH、エステルガムHP、エステルガムHD、パインクリスタルKR-85、パインクリスタルKR-612、パインクリスタルKR-614、パインクリスタルKE-100、パインクリスタルKE-311、パインクリスタルKE-359、パインクリスタルKE-604、パインクリスタルD-6011、パインクリスタルKE-615-3、パインクリスタルD-6250、パインクリスタルKM-1500、パインクリスタルKR-50M、スーパーエステルE-720、スーパーエステルE-730-55、スーパーエステルE-650、スーパーエステルE-865、マルキードNo1、マルキードNo2、マルキードNo5、マルキードNo6、マルキードNo8、マルキードNo31、マルキードNo32、マルキードNo33、マルキードNo34、マルキード32-30WS、マルキード3002、タマノル135、タマノル340、タマノル350、タマノル352、タマノル354、タマノル361、タマノル366、タマノル380、タマノル386、タマノル392、タマノル396、タマノル406、タマノル409、タマノル410、タマノル412、タマノル414、タマノル417、タマノル418、タマノル420、タマノル423、タマノルE-100、タマノルE-200NT、タマノル803L、タマノル901等の荒川化学社製の変性天然樹脂;ハリマックM-130A、ハリマック135GN、ハリマック145P、ハリマックR-120AH、ハリマックAS-5、ハリマックR-80、ハリマックT-80、ハリマックR-100、ハリマックM-453、ハリフェノール512、ハリフェノール532、ハリフェノール561、ハリフェノール573、ハリフェノール582、ハリフェノール504、ハリフェノール565、ハリフェノールP-102U、ハリフェノールP-130、ハリフェノールP-160、ハリフェノールP-292、ハリフェノールPN-717、ハリフェノールS-420、ハリフェノールP-600、ハリフェノールT3120、ハリフェノールP-216、ハリフェノールP-637、ハリフェノールP-222、ハリフェノールP-622、ハリエスターNL、ハリエスターP、ハリエスターKT-2、ハリエスターKW、ハリエスターTF、ハリエスターS、ハリエスターC、ハリエスターDS-70L、ハリエスターDS-90、ハリエスターDS-130、ハリエスターAD-130、ハリエスターMSR-4、ハリエスターDS-70E、ハリエスターSK-70D、ハリエスターSK-90D-55、ハリエスターSK-508H、ハリエスターSK-816E、ハリエスターSK-822E、ハリエスターSK-218NS、ハリエスターSK-323NS、ハリエスターSK-370N、ハリエスターSK-501NS、ハリエスターSK-385NS、ネオトールG2、ネオトール101N、ネオトールNT-15、ネオトール125HK、バンビームUV-22A、バンビームUV-22C、ハリタックF-75、ハリタックFG-90、ハリタックAQ-90A、ハーサイズNES-500、ハーサイズNES-680、ハーサイズNES-745、ハーサイズNES-748、ニューサイズ738、REO-15、REO-30、バンディスT-100H、G-100F、DG-100等のハリマ化成社製の変性天然樹脂が挙げられるが、これらに限定されるものではない。 Examples of commercially available modified natural resins include, as modified rosins, polymerized rosin, high veil CH, superester L, superester A-18, superester A-75, superester A-100, superester A-115, Superester A-125, Superester T-125, Pencel A, Pencel AZ, Pencel C, Pencel D-125, Pencel D-135, Pencel 160, Pencel KK, Ester Gum AAG, Ester Gum AAL, Ester Gum A, Ester Gum AAV, Ester Gum 105, Ester Gum AT, Ester Gum H, Ester Gum HP, Ester Gum HD, Pine Crystal KR-85, Pine Crystal KR-612, Pine Crystal KR-614, Pine Crystal KE-100, In Crystal KE-311, Pine Crystal KE-359, Pine Crystal KE-604, Pine Crystal D-6011, Pine Crystal KE-615-3, Pine Crystal D-6250, Pine Crystal KM-1500, Pine Crystal KR-50M, Superester E-720, Superester E-730-55, Superester E-650, Superester E-865, Marquise No1, Marquide No2, Marquise No5, Marquide No6, Marquide No8, Marquide No31, Marquide No32, Marquide No33, Marquide No34, Marquide 32-30WS, Marquide 3002, Tamanoru 135, Tamanoru 340, Tamanoru 350, Tamanoru 352, Tamanoru 354, Tamano 361, Tamanoru 366, Tamanoru 380, Tamanoru 386, Tamanoru 392, Tamanoru 396, Tamanoru 406, Tamanoru 409, Tamanoru 410, Tamanoru 412, Tamanoru 414, Tamanoru 417, Tamanoru 418, Tamanoru 420, Tamanoru 423, Tamanoru E-100, Tamanoru Modified natural resins made by Arakawa Chemical Co., such as E-200NT, Tamanol 803L, Tamanol 901; Harimac M-130A, Harimac 135GN, Harimac 145P, Harimac R-120AH, Harimac AS-5, Harimac R-80, Harimac T-80 , Harimac R-100, Harimac M-453, Hariphenol 512, Hariphenol 532, Hariphenol 561, Hariphenol 573, Hariphenol 582, Hariphenol 504 , Hariphenol 565, Hariphenol P-102U, Hariphenol P-130, Hariphenol P-160, Hariphenol P-292, Hariphenol PN-717, Hariphenol S-420, Hariphenol P-600, Hariphenol T3120 , Hariphenol P-216, Hariphenol P-637, Hariphenol P-222, Hariphenol P-622, Harrier Star NL, Harrier Star P, Harrier Star KT-2, Harrier Star KW, Harrier Star TF, Harrier Star S , Harrier Star C, Harrier Star DS-70L, Harrier Star DS-90, Harrier Star DS-130, Harrier Star AD-130, Harrier Star MSR-4, Harrier Star DS-70E, Harrier Star SK-70D, Harrier Star SK -90D 55, Harrier Star SK-508H, Harrier Star SK-816E, Harrier Star SK-822E, Harrier Star SK-218NS, Harrier Star SK-323NS, Harrier Star SK-370N, Harrier Star SK-501NS, Harrier Star SK-385NS, Neotor G2, Neotor 101N, Neotor NT-15, Neotor 125HK, Van Beam UV-22A, Van Beam UV-22C, Haritac F-75, Haritac FG-90, Haritac AQ-90A, Her Size NES-500, Her Size NES-680 Modified natural trees made by Harima Kasei Co., Ltd., such as Harsize NES-745, Hersize NES-748, New Size 738, REO-15, REO-30, Bandis T-100H, G-100F, DG-100 Including without being limited thereto.
 変性テルペンとしては、YSレジンPX1250、YSレジンPX1150、YSレジンPX1000、YSレジンPXN1150N、YSポリスターU130、YSポリスターU115、YSポリスターT160、YSポリスターT145、YSポリスターT130、YSポリスターT115、YSポリスターT100、YSポリスターS145、マイティエースG150、マイティエースG125、マイティエースK140、マイティエースK125、YSレジンTO125、YSレジンTO115、YSレジンTO105、YSレジンTR105、クリアロンP150、クリアロンP135、クリアロンP125、クリアロンP115、クリアロンP105、クリアロンM115、クリアロンM105、クリアロンK110、クリアロンK100、クリアロン4100、クリアロン4090等のヤスハラケミカル社製の変性天然樹脂が挙げられるが、これらに限定されるものではない。 As modified terpenes, YS resin PX1250, YS resin PX1150, YS resin PX1000, YS resin PXN1150N, YS polystar U130, YS polystar U115, YS polystar T160, YS polystar T145, YS polystar T130, YS polystar T115, YS polystar T100, YS polystar T100, YS Polystar S145, Mighty Ace G150, Mighty Ace G125, Mighty Ace K140, Mighty Ace K125, YS Resin TO125, YS Resin TO115, YS Resin TO105, YS Resin TR105, Clearon P150, Clearon P135, Clearon P125, Clearon P115, Clearon P105, Clearon M115, Clearon M105, Clearon K110, Clear Emissions K100, Clearon 4100, including but Yasuhara Chemical Co., Ltd. modified natural resins such as Clearon 4090, but is not limited thereto.
 植物油としては、大豆油、アマニ油、ひまし油、ヤシ油、桐油、米糠油、パーム油、ココナッツ油、コーン油、オリーブ油、菜種油、ヒマワリ油等、トール油、テレビン油等が挙げられる。 Vegetable oils include soybean oil, linseed oil, castor oil, coconut oil, tung oil, rice bran oil, palm oil, coconut oil, corn oil, olive oil, rapeseed oil, sunflower oil, tall oil, turpentine oil, and the like.
 市販の植物油としては、例えば、大豆油KT等の丸正社製植物油;大豆白絞油、亜麻仁油等の日清オイリオ社製植物油;コメサラダ油等のボーソー油脂製植物油;TEXAPRINTSDCE等のコグニスジャパン社製植物油;リモネン油、ユーカリオイル、桐油等の安土産業社製植物油;ハートールSR-20、ハートールSR-30、ハートールR-30等のハリマ化成社製植物油;α-ピネン、東洋松印、ヂペンテン等の荒川化学社製のテレビン油が挙げられるが、これらに限定されるものではない。 Examples of commercially available vegetable oils include vegetable oils manufactured by Marusho Co., Ltd. such as soybean oil KT; vegetable oils manufactured by Nissin Oilio Co., Ltd. such as soybean white squeezed oil and flaxseed oil; vegetable oils manufactured by Bosso fats such as rice salad oil; Vegetable oils; vegetable oils manufactured by Azuchi Sangyo Co., Ltd. such as limonene oil, eucalyptus oil, tung oil; vegetable oils manufactured by Harima Kasei Co., Ltd. such as Hartle SR-20, Hartle SR-30, Hartle R-30, etc .; Examples include, but are not limited to, turpentine made by Arakawa Chemical.
 変性植物油としては、大豆油、アマニ油、ひまし油、ヤシ油、桐油、ヒマワリ油、トール油等の変性物が挙げられる。 Modified vegetable oils include modified products such as soybean oil, linseed oil, castor oil, coconut oil, tung oil, sunflower oil, tall oil and the like.
 市販の変性植物油としては、例えば、アラキードIA-120-60L、アラキード1782-60、アラキード3101X-60、アラキード8042-80、アラキード5301X-50、アラキード8012、アラキード5350、アラキード1465-60、アラキード3145-80、アラキード310、アラキード5001、アラキード251、アラキード6300、アラキードS-5021、アラキードM-302、アラキード7502X、アラキード7506、アラキード1232-60、アラキード7100X-50、アラキード7104、アラキード7107、アラキード7108、アラキード7109、アラキード7110等の荒川化学社製の変性植物油;ハリフタール732-60、ハリフタールCOG40-50T、ハリフタールSB-3600、ハリフタールSB-7150X、ハリフタールSB-7540、ハリフタール3011、ハリフタール3100、ハリフタール3150、ハリフタール3271、ハリフタール3371、ハリフタールSC-3059TX、ハリフタール764、ハリフタール816、ハリフタールSL-3500、ハリフタール193HV、ハリフタール3011PN、ハリフタール3254PN、ハリフタール3256P、ハリフタール3200PN、ハリフタール3258P-N150、ハリフタール3530P、ハリフタール3004、ハリフタール3005、ハリフタール601、ハリフタール640、ハリフタール1155、ハリフタール2184、ハリフタールSL-280、ハリポールF-6、ハリポールF-8、ハリポールF-16、ハリダイマー200、ハリダイマー250、ハリダイマー270S、DIACID-1550、ハートールQ-1、ハートールQ-2、ハートールQFA-2、ハートールFE-500、ハートールM-33、ハリコンSK-613、バンディスM-550L等のハリマ化成社製の変性植物油;ダイマロン、YSオイルDA等のヤスハラケミカル社製の変性植物油;脱水ひまし油、脱水ひまし油脂肪酸、高共役脱水ひまし油脂肪酸、ひまし硬化油等の小倉合成工業社製変性植物油等が挙げられるが、これらに限定されるものではない。 Examples of commercially available modified vegetable oils include Arachid IA-120-60L, Arachid 1782-60, Arachide 3101X-60, Arachid 8042-80, Arachide 5301X-50, Arachid 8012, Arachide 5350, Arachid 1465-60, Arachid 3145- 80, Arachide 310, Arachid 5001, Arachid 251, Arachid 6300, Arachide S-5021, Arachid M-302, Arachide 7502X, Arachid 7506, Arachid 1232-60, Arachid 7100X-50, Arachid 7104, Arachid 7107, Arachid 7108, Arachid Modified vegetable oils manufactured by Arakawa Chemical Co., Ltd. 7109, Arachide 7110, etc .; Haliftal 732-60, Haliftal COG40-5 T, Halfiftal SB-3600, Halfiftal SB-7150X, Halfiftal SB-7540, Halfiftal 3011, Halfiftal 3100, Halfiftal 3150, Halfiftal 3271, Halfiftal 3371, Halfiftal SC-3059TX, Halfiftal 764, Halfiftal SL816, Half Vital SL816 , Haliftal 3011PN, Haliftal 3254PN, Khalfartar 3256P, Khalfartar 3200PN, Khalfartar 3258P-N150, Halifartal 3530P, Khalfartal 3004, Halifaltal 3005, Haliftal 601, Haliftal 640, Halifartal 1284, Halifaltar SL-2184, F-8, Haripor F-16, Haridimer 200, Haridimer 250, Haridimer 270S, DIACID-1550, Hartle Q-1, Hartle Q-2, Hartle QFA-2, Hartle FE-500, Hartle M-33, Halicon SK- 613, modified vegetable oil manufactured by Harima Kasei Co., Ltd. such as Bandis M-550L; modified vegetable oil manufactured by Yashara Chemical Co., Ltd. such as Daimalon and YS Oil DA; dehydrated castor oil, dehydrated castor oil fatty acid, highly conjugated dehydrated castor oil fatty acid, castor hardened oil, etc. Examples include, but are not limited to, modified vegetable oils manufactured by Synthetic Industries.
 これらの天然材料は、非常に安価な炭素含有化合物であり、化合物中の炭素含有量も高く、不活性ガス雰囲気下、または還元性ガス雰囲気下での加熱分解により残存する元素がほとんど炭素のみであり、少ない添加量で効率的に電子伝導性をもった炭素を生成しやすい特性を持つ。また、他の化合物と変性させることで、融点、軟化点、分解温度などの物理的性質を容易に変えることができるため、加熱分解により導電性炭素を生成する有機化合物としてより好ましい化合物に改良することもできる。 These natural materials are very inexpensive carbon-containing compounds, have a high carbon content in the compounds, and contain almost only carbon remaining in the elements by thermal decomposition in an inert gas atmosphere or a reducing gas atmosphere. In addition, it has the characteristic of easily producing carbon with electronic conductivity efficiently with a small addition amount. Further, by modifying with other compounds, physical properties such as melting point, softening point, decomposition temperature, etc. can be easily changed, so that it is improved to a more preferable compound as an organic compound that generates conductive carbon by thermal decomposition. You can also.
 同じ天然材料である糖類も、加熱分解により導電性炭素を生成する材料として挙げられるが、本発明において使用される未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料に比べて、加熱時のリチウム遷移金属複合酸化物の結晶成長抑制効果が乏しく、一次粒子径に大きなバラツキが生じたり、粒子同士の焼結を起こしやすく、一次粒子レベルで均一に炭素被覆されたリチウム二次電池用正極活物質材料が得られにくい。そのため、より優れた電池特性は得られにくいものであった。 Saccharides, which are the same natural materials, can be cited as materials that generate conductive carbon by thermal decomposition, but natural materials selected from the group consisting of unmodified or modified natural waxes, natural resins, and vegetable oils used in the present invention. Compared with materials, the effect of suppressing the crystal growth of lithium transition metal composite oxides during heating is poor, primary particle diameters vary greatly, and particles tend to sinter, and are uniformly coated with carbon at the primary particle level. It is difficult to obtain a positive electrode active material for a lithium secondary battery. Therefore, it is difficult to obtain better battery characteristics.
 また、更に、加熱分解により導電性炭素を生成する材料としては、糖類だけでなく、多くの有機化合物が該当するが、本発明において使用される未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料に比べて、同じ添加量、同じ反応条件において比較すると、加熱分解により生成する導電性炭素量は顕著に少なく、生産性の面から効率的でない材料が多い。 Furthermore, as a material for generating conductive carbon by thermal decomposition, not only saccharides but also many organic compounds are applicable, but unmodified or modified natural wax, natural resin, and Compared to natural materials selected from the group consisting of vegetable oils, the amount of conductive carbon produced by thermal decomposition is significantly smaller when compared with the same addition amount and the same reaction conditions, and there are many materials that are not efficient in terms of productivity.
 導電性炭素のリチウム二次電池用正極活物質材料中の含有率としては、具体的には0.1重量%以上、30重量%以下、好ましくは0.5重量%以上、20重量%以下、更に好ましくは1重量%以上、15重量%以下、もっとも好ましくは1重量%以上、10重量%以下のものを使用することが望ましい。 The content of the conductive carbon in the positive electrode active material for a lithium secondary battery is specifically 0.1 wt% or more and 30 wt% or less, preferably 0.5 wt% or more and 20 wt% or less, More preferably, it is desirable to use a material of 1 to 15% by weight, most preferably 1 to 10% by weight.
 導電性炭素の含有率が0.1重量%を下回るリチウム二次電池用正極活物質材料を用いると、十分な導電性を得ることが難しくなる場合があり、正極の内部抵抗が向上し、高い電池性能が得にくいことがある。一方、導電性炭素の含有率が30重量%を上回るリチウム二次電池用正極活物質材料を用いると、十分な導電性は得られるが正極中のリチウム遷移金属複合酸化物の含有量が少なくなると同時に、リチウムイオンの含有量も少なくなるため、電池の体積あたりの放電容量が少なくなる場合があり、実用性の高い電池としては使用しにくいことがある。 If a positive electrode active material for a lithium secondary battery having a conductive carbon content of less than 0.1% by weight is used, it may be difficult to obtain sufficient conductivity, and the internal resistance of the positive electrode is improved and high. Battery performance may be difficult to obtain. On the other hand, when a positive electrode active material for a lithium secondary battery having a conductive carbon content of more than 30% by weight is used, sufficient conductivity is obtained, but the content of the lithium transition metal composite oxide in the positive electrode decreases. At the same time, the lithium ion content also decreases, so the discharge capacity per volume of the battery may decrease, and it may be difficult to use as a highly practical battery.
 更に、本発明におけるリチウム二次電池用正極活物質材料の特徴としては、リチウム遷移金属複合酸化物(オリビン構造を有するリチウム遷移金属リン系複合酸化物を含む)の粒子同士の焼結が少なく、一次粒子径ができるだけ均一に揃えられ、リチウム遷移金属複合酸化物(オリビン構造を有するリチウム遷移金属リン系複合酸化物を含む)の粒子表面を少量の導電性炭素で均一に処理されていることなどが挙げられる。 Furthermore, as a feature of the positive electrode active material for a lithium secondary battery in the present invention, there is little sintering between particles of a lithium transition metal composite oxide (including a lithium transition metal phosphorus composite oxide having an olivine structure), The primary particle size is as uniform as possible, and the particle surface of lithium transition metal composite oxide (including lithium transition metal phosphorus composite oxide having olivine structure) is uniformly treated with a small amount of conductive carbon. Is mentioned.
<リチウム二次電池用正極活物質材料の製造方法>
 本発明におけるリチウム二次電池用正極活物質材料の製造方法において、リチウム遷移金属複合酸化物に、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料の加熱分解により生成する導電性炭素を処理する方法としては、一つの方法に限定されるものではない。
<Method for producing positive electrode active material for lithium secondary battery>
In the method for producing a positive electrode active material for a lithium secondary battery in the present invention, the lithium transition metal composite oxide is subjected to thermal decomposition of a natural material selected from the group consisting of unmodified or modified natural wax, natural resin, and vegetable oil. The method for treating the conductive carbon produced by the process is not limited to one method.
 リチウム二次電池用正極活物質材料の製造方法の一つとしては、導電性炭素が表面に処理されたリチウム遷移金属複合酸化物を合成する場合、リチウム含有化合物と、遷移金属含有化合物と、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料とを混合物とする工程と、前記混合物を加熱し反応させる工程とを含む方法が挙げられる。 As one method for producing a positive electrode active material for a lithium secondary battery, when synthesizing a lithium transition metal composite oxide whose surface is treated with conductive carbon, a lithium-containing compound, a transition metal-containing compound, A method comprising a step of preparing a mixture of a modified or modified natural material selected from the group consisting of natural wax, natural resin, and vegetable oil, and a step of heating and reacting the mixture.
 該製造方法では、加熱時にリチウム遷移金属複合酸化物の生成反応と、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料の熱分解による導電性炭素の生成反応が同時に進行し、最終的に導電性炭素が表面に処理されたリチウム遷移金属複合酸化物が得られる。 In the production method, a reaction for forming a lithium transition metal composite oxide upon heating and a reaction for generating conductive carbon by thermal decomposition of a natural material selected from the group consisting of unmodified or modified natural wax, natural resin, and vegetable oil The lithium transition metal composite oxide whose surface is treated with conductive carbon is finally obtained.
 更に、本発明におけるリチウム二次電池用正極活物質材料の製造方法の一つとして、オリビン構造を有するリチウム遷移金属リン系複合酸化物の場合は、リチウム含有化合物と、含遷移金属化合物と、リン含有化合物と、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料とを混合物とする工程と、前記混合物を加熱し反応させる工程とを含む製造方法が挙げられる。 Furthermore, as one of the methods for producing a positive electrode active material for a lithium secondary battery in the present invention, in the case of a lithium transition metal phosphorus composite oxide having an olivine structure, a lithium-containing compound, a transition metal compound, phosphorus And a production method including a step of making a mixture of a contained compound and a natural material selected from the group consisting of unmodified or modified natural wax, natural resin, and vegetable oil, and a step of heating and reacting the mixture. .
 該製造方法では、加熱時にオリビン構造を有するリチウム遷移金属リン系複合酸化物の生成反応と、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料の熱分解による導電性炭素の生成反応が同時に進行し、最終的に導電性炭素が表面に処理されたオリビン構造を有するリチウム遷移金属リン系複合酸化物が得られる。 In the production method, by a reaction of forming a lithium transition metal phosphorus-based composite oxide having an olivine structure upon heating, and thermal decomposition of a natural material selected from the group consisting of an unmodified or modified natural wax, natural resin, and vegetable oil The formation reaction of conductive carbon proceeds simultaneously, and finally a lithium transition metal phosphorus composite oxide having an olivine structure in which conductive carbon is treated on the surface is obtained.
 更に、本発明におけるリチウム二次電池用正極活物質材料の製造方法の一つとして、リチウム遷移金属複合酸化物(オリビン構造を有するリチウム遷移金属リン系複合酸化物を含む)を下記に示すような一般的な合成方法で先に合成したあと、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料と混合する工程と、前記混合物を加熱し反応させる工程とを含む方法が挙げられる。 Furthermore, as one of the methods for producing a positive electrode active material for a lithium secondary battery in the present invention, a lithium transition metal composite oxide (including a lithium transition metal phosphorus composite oxide having an olivine structure) is shown below. A step of mixing with a natural material selected from the group consisting of an unmodified or modified natural wax, natural resin, and vegetable oil, and a step of heating and reacting the mixture. The method of including is mentioned.
<混合工程、混合装置>
 未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料と、他の原料成分を混合する工程で使用する装置としては、以下のような乾式処理機や湿式処理機が使用できる。
<Mixing process, mixing device>
The following dry processing machines and wet processing machines are used in the process of mixing the natural material selected from the group consisting of unmodified or natural wax, natural resin, and vegetable oil with other raw material components. Can be used.
 乾式処理機としては、例えば、2本ロールや3本ロール等のロールミル、ヘンシェルミキサーやスーパーミキサー等の高速攪拌機、マイクロナイザーやジェットミル等の流体エネルギー粉砕機、アトライター、ホソカワミクロン社製粒子複合化装置「ナノキュア」、「ノビルタ」、「メカノフュージョン」、奈良機械製作所社製粉体表面改質装置「ハイブリダイゼーションシステム」、「メカノマイクロス」、「ミラーロ」等が挙げられる。 Examples of dry processing machines include roll mills such as 2 rolls and 3 rolls, high-speed stirrers such as Henschel mixers and super mixers, fluid energy crushers such as micronizers and jet mills, attritors, and particle composites manufactured by Hosokawa Micron. Examples of the apparatus include “Nanocure”, “Nobilta”, “Mechanofusion”, Nara Machinery Co., Ltd. powder surface modification device “Hybridization system”, “Mechanomicros”, “Miraro”, and the like.
 又、乾式処理機を使用する際、母体となる原料粉体に、他の原料を粉体のまま直接添加しても良いが、より均一な混合物を製造するために、前もって他の原料を少量の溶媒に溶解、又、分散させておき、母体となる原料粉体の凝集粒子を解しながら添加する方法が好ましい。更に、処理効率を上げるために、加温することが好ましい場合もある。 In addition, when using a dry processing machine, other raw materials may be added directly to the raw material powder as a base material, but in order to produce a more uniform mixture, a small amount of other raw materials is used in advance. It is preferable to add it while dissolving or dispersing in the above solvent and dissolving the agglomerated particles of the raw material powder as the base material. Furthermore, it may be preferable to heat in order to increase the processing efficiency.
 未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料の中には、常温では固体であるが、融点や軟化点が100℃未満と低い材料があり、こういった材料を用いる場合、常温で混合するより、加温下で溶融させて混合する方がより均一に混合できる場合もある。 Among natural materials selected from the group consisting of unmodified or modified natural waxes, natural resins, and vegetable oils, there are materials that are solid at room temperature but have a low melting point and softening point of less than 100 ° C. In some cases, it is possible to mix more uniformly by melting and mixing under heating than when mixing at normal temperature.
 湿式処理機としては、例えば、ディスパー、ホモミキサー、若しくはプラネタリーミキサー等のミキサー類;エム・テクニック社製「クレアミックス」、若しくはPRIMIX社製「フィルミックス」等のホモジナイザー類;ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、若しくはコボールミル等のメディア型分散機;湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS-5」、若しくは奈良機械製作所社製「マイクロス」等のメディアレス分散機;又は、その他ロールミル、ニーダー等が挙げられるが、これらに限定されるものではない。又、湿式処理機としては、装置からの金属混入防止処理を施したものを用いることが好ましい。 Examples of wet processing machines include mixers such as dispersers, homomixers, or planetary mixers; homogenizers such as “Clearmix” manufactured by M Technique, or “Fillmix” manufactured by PRIMIX; paint conditioner (Red Devil) ), Ball mill, sand mill (such as “Dynomill” manufactured by Shinmaru Enterprises), media type disperser such as attritor, pearl mill (such as “DCP mill” manufactured by Eirich), or coball mill; wet jet mill (Genus) "Genus PY" manufactured by Sugino Machine, "Starburst" manufactured by Sugino Machine, "Nanomizer" manufactured by Nanomizer, etc., "Claire SS-5" manufactured by M Technique, or "Micros" manufactured by Nara Machinery Co., Ltd. Disperser; or other Mill, but a kneader and the like, but is not limited thereto. Moreover, it is preferable to use what performed the metal mixing prevention process from an apparatus as a wet processing machine.
 例えば、メディア型分散機を使用する場合は、アジテーター及びベッセルがセラミック製又は樹脂製の分散機を使用する方法や、金属製アジテーター及びベッセル表面をタングステンカーバイド溶射や樹脂コーティング等の処理をした分散機を用いることが好ましい。そして、メディアとしては、ガラスビーズ、又は、ジルコニアビーズ、若しくはアルミナビーズ等のセラミックビーズを用いることが好ましい。又、ロールミルを使用する場合についても、セラミック製ロールを用いることが好ましい。分散装置は、1種のみを使用しても良いし、複数種の装置を組み合わせて使用しても良い。 For example, when using a media-type disperser, a disperser in which the agitator and vessel are made of a ceramic or resin disperser, or the surface of the metal agitator and vessel is treated with tungsten carbide spraying or resin coating. Is preferably used. And as a medium, it is preferable to use ceramic beads, such as glass beads, zirconia beads, or alumina beads. Moreover, also when using a roll mill, it is preferable to use a ceramic roll. Only one type of dispersion device may be used, or a plurality of types of devices may be used in combination.
 又、各原料の溶媒への濡れ性、分散性を向上させるために、一般的な顔料分散剤を一緒に添加し、分散、混合することができる。 Also, in order to improve the wettability and dispersibility of each raw material in a solvent, a general pigment dispersant can be added together and dispersed and mixed.
 加熱分解により導電性炭素を生成する未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料に対して、最適な混合装置又は分散装置を選択することにより、電池性能の優れたリチウム二次電池用正極活物質材料が得ることができる。 Battery performance by selecting the best mixing or dispersing device for natural materials selected from the group consisting of unmodified or modified natural waxes, natural resins, and vegetable oils that produce conductive carbon by pyrolysis Excellent positive electrode active material for a lithium secondary battery can be obtained.
<加熱工程>
 加熱工程における加熱温度に関しては、目的とするリチウム二次電池用正極活物質材料によって異なるものであるが、200~1100℃、好ましくは400~1000℃であることが望ましい。
<Heating process>
The heating temperature in the heating step varies depending on the target positive electrode active material for a lithium secondary battery, but is desirably 200 to 1100 ° C., preferably 400 to 1000 ° C.
 加熱工程における加熱温度が200℃を下回る場合、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料の熱分解が生じにくく、導電性炭素が生成しにくいことがある。一方、加熱温度が1100℃を超える場合、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料の熱分解により生成された導電性炭素が燃焼により消失し易くなり、更に目的とするリチウム二次電池用正極活物質材料以外の不純物が生成されやすくなることがある。 When the heating temperature in the heating step is lower than 200 ° C., it is difficult for the natural material selected from the group consisting of unmodified or modified natural wax, natural resin, and vegetable oil to be thermally decomposed, and it is difficult to generate conductive carbon. is there. On the other hand, when the heating temperature exceeds 1100 ° C., conductive carbon generated by pyrolysis of a natural material selected from the group consisting of unmodified or modified natural wax, natural resin, and vegetable oil tends to be lost by combustion. In addition, impurities other than the target positive electrode active material for a lithium secondary battery may be easily generated.
 更に、加熱工程における雰囲気に関しては、目的とするリチウム二次電池用正極活物質材料によって異なるものであるが、空気雰囲気、窒素やアルゴンなどの不活性ガス雰囲気、水素が含有された還元性ガス雰囲気などが挙げられる。 Furthermore, the atmosphere in the heating process varies depending on the target positive electrode active material for the lithium secondary battery, but it is an air atmosphere, an inert gas atmosphere such as nitrogen or argon, or a reducing gas atmosphere containing hydrogen. Etc.
 特に、本発明における未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料を用いる場合、酸素により容易に燃焼し消失しやすい材料があるため、効率的に導電性炭素を生成させるためには、酸素をできる限り含まない不活性ガス雰囲気や還元性ガス雰囲気下で行うことが好ましい。 In particular, when using a natural material selected from the group consisting of an unmodified or modified natural wax, natural resin, and vegetable oil in the present invention, there is a material that easily burns and disappears due to oxygen, so that it is efficiently conductive. In order to generate carbon, it is preferable to carry out in inert gas atmosphere or reducing gas atmosphere which does not contain oxygen as much as possible.
 また、リチウム二次電池用正極活物質材料がオリビン構造を有するリチウム遷移金属リン系複合酸化物の場合においても、遷移金属が酸素により容易に酸化し目的と異なるリチウム遷移金属リン系複合酸化物が生成される可能性があるため、酸素をできる限り含まない不活性ガス雰囲気や還元性ガス雰囲気下で行うことが好ましい。 In addition, even when the positive electrode active material for a lithium secondary battery is a lithium transition metal phosphorus composite oxide having an olivine structure, the transition metal is easily oxidized by oxygen and a lithium transition metal phosphorus composite oxide having a different purpose is used. Since it may be produced, it is preferable to carry out in an inert gas atmosphere or a reducing gas atmosphere containing as little oxygen as possible.
<リチウム含有化合物、遷移金属含有化合物、リン含有化合物>
 加熱分解により導電性炭素を生成する未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料以外の原料に関しては、製造するリチウム遷移金属複合酸化物、又はオリビン構造を有するリチウム遷移金属リン系複合酸化物の組成によって変わるものである。
<Lithium-containing compound, transition metal-containing compound, phosphorus-containing compound>
For raw materials other than natural materials selected from the group consisting of unmodified or modified natural waxes, natural resins, and vegetable oils that produce conductive carbon by pyrolysis, the lithium transition metal composite oxide or olivine structure to be produced It varies depending on the composition of the lithium transition metal phosphorus-based composite oxide.
 リチウム含有化合物としては、リチウムを含有するものであればいずれの化合物でも使用可能である。しかし、保存安定性や取扱い易さ等の観点から、酸化物、水酸化物、塩化物、炭酸塩、リン酸塩、酢酸塩などの有機酸塩などが好ましい。 As the lithium-containing compound, any compound containing lithium can be used. However, from the viewpoints of storage stability and ease of handling, organic acid salts such as oxides, hydroxides, chlorides, carbonates, phosphates, and acetates are preferable.
 遷移金属含有化合物としては、遷移金属であるコバルト、ニッケル、マンガン、鉄などを含有するものであればいずれの化合物でも使用可能である。しかし、保存安定性や取扱い易さ等の観点から、酸化物、水酸化物、塩化物、炭酸塩、リン酸塩、酢酸塩などの有機酸塩などが好ましい。 As the transition metal-containing compound, any compound containing transition metals such as cobalt, nickel, manganese, iron and the like can be used. However, from the viewpoints of storage stability and ease of handling, organic acid salts such as oxides, hydroxides, chlorides, carbonates, phosphates, and acetates are preferable.
 リン含有化合物としては、保存安定性や取扱い易さの観点から、リン酸塩が好ましく、具体的には、リン酸、リン酸鉄、リン酸リチウム、リン酸アンモニウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸エステル化合物などが挙げられる。 As the phosphorus-containing compound, a phosphate is preferable from the viewpoint of storage stability and ease of handling. Specifically, phosphoric acid, iron phosphate, lithium phosphate, ammonium phosphate, ammonium dihydrogen phosphate, phosphorus Examples thereof include diammonium oxyhydrogen and phosphate ester compounds.
<リチウム遷移金属複合酸化物の製造方法>
 本発明におけるリチウム二次電池用正極活物質材料の製造方法において、導電性炭素を処理する前のリチウム遷移金属複合酸化物(オリビン構造を有するリチウム遷移金属リン系複合酸化物を含む)の具体的な製造方法としては、固相法、水熱法、共沈法など様々な方法が挙げられる。
<Method for producing lithium transition metal composite oxide>
In the method for producing a positive electrode active material for a lithium secondary battery in the present invention, a specific example of a lithium transition metal composite oxide (including a lithium transition metal phosphorus-based composite oxide having an olivine structure) before treating conductive carbon Various production methods include a solid phase method, a hydrothermal method, a coprecipitation method, and the like.
 リチウム遷移金属複合酸化物であるコバルト酸リチウムやマンガン酸リチウムは、特に限定されるものではないが、特許第3067165号公報、特許第3274016号公報、特許第3021229号公報、及び特許第3030764号公報等を参考に製造することができる。 Although lithium cobalt oxide and lithium manganate, which are lithium transition metal composite oxides, are not particularly limited, Japanese Patent No. 3067165, Japanese Patent No. 3274016, Japanese Patent No. 3012229, and Japanese Patent No. 3030764 Etc. can be produced with reference to the above.
 例えば、コバルト酸リチウムの場合、二酸化コバルト(CoO)と炭酸リチウム(LiCO)とを、リチウムとコバルトの元素比率が1:1となるように混合し、乾式粉砕機等で粉砕混合処理を行ったあと空気雰囲気下、900℃で10時間焼成を行い、得られた焼成物を粉砕することにより得られる。 For example, in the case of lithium cobaltate, cobalt dioxide (CoO 2 ) and lithium carbonate (Li 2 CO 3 ) are mixed so that the element ratio of lithium and cobalt is 1: 1, and pulverized and mixed with a dry pulverizer or the like. After the treatment, it is obtained by firing at 900 ° C. for 10 hours in an air atmosphere and pulverizing the obtained fired product.
 更に、マンガン酸リチウムの場合、酸化マンガン(Mn)と硝酸リチウム(LiNO)とを、リチウムとマンガンの元素比率が1.025:2となるように混合し、乾式粉砕機等で粉砕混合処理を行ったあと空気雰囲気下、264℃で24時間焼成、冷却、混合を行い、450℃で24時間焼成、冷却、混合を行い、650℃で24時間焼成、冷却を行い、得られた焼成物を粉砕することにより得られる。 Further, in the case of lithium manganate, manganese oxide (Mn 3 O 4 ) and lithium nitrate (LiNO 3 ) are mixed so that the element ratio of lithium and manganese is 1.025: 2, and then used in a dry pulverizer or the like. After pulverizing and mixing treatment, firing, cooling and mixing are performed at 264 ° C. for 24 hours in an air atmosphere, firing, cooling and mixing are performed at 450 ° C. for 24 hours, and firing and cooling are performed at 650 ° C. for 24 hours. It can be obtained by grinding the fired product.
 オリビン構造を有するリチウム遷移金属リン複合酸化物であるリン酸鉄リチウムは、特に限定されるものではないが、特許第4187523号公報、及び特許第4187524号公報等を参考に製造することができる。 Although lithium iron phosphate which is a lithium transition metal phosphorus composite oxide having an olivine structure is not particularly limited, it can be produced with reference to Japanese Patent Nos. 4187523 and 4187524.
 例えば、リン酸鉄リチウムの場合、リン酸第一鉄八水和物(Fe(PO・8HO)と燐酸リチウム(LiPO)とを、リチウムと鉄の元素比率が1:1となるように混合し、乾式粉砕機等で粉砕混合処理を行ったあと不活性ガス雰囲気下、600℃で数時間焼成を行い、得られた焼成物を粉砕することにより得られる。 For example, in the case of lithium iron phosphate, ferrous phosphate octahydrate (Fe 3 (PO 4 ) 2 · 8H 2 O) and lithium phosphate (Li 3 PO 4 ) are used, and the element ratio between lithium and iron is The mixture is mixed at 1: 1, pulverized and mixed by a dry pulverizer or the like, then fired at 600 ° C. for several hours in an inert gas atmosphere, and the obtained fired product is pulverized.
<電極>
 次に、リチウム二次電池用正極活物質材料を用いて製造される電極について説明する。
<Electrode>
Next, an electrode manufactured using a positive electrode active material for a lithium secondary battery will be described.
 電極は、集電体上に、少なくともリチウム二次電池用正極活物質材料と、バインダーで構成される電極合剤が塗工されたものである。更に、電極の導電性を向上させるために、電極合剤中に導電助剤を添加することもできる。ちなみに、集電体としては、正極にアルミニウム箔を用いることが好ましい。 The electrode is obtained by coating an electrode mixture composed of at least a positive electrode active material for a lithium secondary battery and a binder on a current collector. Furthermore, in order to improve the electroconductivity of an electrode, a conductive support agent can also be added in an electrode mixture. Incidentally, it is preferable to use an aluminum foil for the positive electrode as the current collector.
<成分の組成比率>
 電極を構成する電極合剤中の各成分の組成比率は、以下の通りである。
<Composition ratio of components>
The composition ratio of each component in the electrode mixture constituting the electrode is as follows.
 リチウム二次電池用正極活物質材料の組成比率は、電極合剤中70重量%以上、99.0重量%以下、好ましくは80重量%以上、95重量%以下で使用することが望ましい。リチウム二次電池用正極活物質材料の組成比率が70重量%を下回ると、十分な導電性、放電容量を得ることが難しくなる場合があり、98.5重量%を超えると、バインダーの割合が低下するため、集電体への密着性が低下し、リチウム二次電池用正極活物質材料が脱離しやすくなる場合がある。 The composition ratio of the positive electrode active material for a lithium secondary battery is desirably 70% by weight or more and 99.0% by weight or less, preferably 80% by weight or more and 95% by weight or less in the electrode mixture. When the composition ratio of the positive electrode active material for a lithium secondary battery is less than 70% by weight, it may be difficult to obtain sufficient conductivity and discharge capacity. When the composition ratio exceeds 98.5% by weight, the ratio of the binder is increased. Therefore, the adhesion to the current collector may be reduced, and the positive electrode active material for the lithium secondary battery may be easily detached.
 バインダーの組成比率は、電極合剤中1重量%以上、10重量%以下、好ましくは2重量%以上、8重量%以下で使用することが望ましい。バインダーの組成比率が1重量%を下回ると、結着性が低下するため、集電体からリチウム二次電池用正極活物質材料や導電助剤が脱離しやすくなる場合があり、10重量%を超えると、リチウム二次電池用正極活物質材料の割合が低下するため、電池性能の低下に繋がる場合がある。 The composition ratio of the binder is desirably 1 to 10% by weight, preferably 2 to 8% by weight in the electrode mixture. When the composition ratio of the binder is less than 1% by weight, the binding property is lowered, so that the positive electrode active material for the lithium secondary battery and the conductive assistant may be easily detached from the current collector. When it exceeds, since the ratio of the positive electrode active material material for lithium secondary batteries will fall, it may lead to the fall of battery performance.
 導電助剤の組成比率は、電極合剤中0.5重量%以上、25重量%以下、好ましくは1.0重量%以上、15重量%以下で使用することが望ましい。導電助剤の組成比率が、0.5重量%を下回ると、十分な導電性を得ることが難しくなる場合があり、25重量%を超えると、電池性能に大きく関与するリチウム二次電池用正極活物質材料の割合が低下するため、電池の体積あたりの放電容量が低下する等の問題が発生する場合がある。 The composition ratio of the conductive auxiliary agent is desirably 0.5 to 25% by weight, preferably 1.0 to 15% by weight in the electrode mixture. If the composition ratio of the conductive assistant is less than 0.5% by weight, it may be difficult to obtain sufficient conductivity. If the composition ratio exceeds 25% by weight, the positive electrode for a lithium secondary battery that greatly contributes to battery performance. Since the ratio of the active material decreases, problems such as a decrease in discharge capacity per volume of the battery may occur.
<バインダー>
 電極合剤に使用されるバインダーとしては、例えば、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、アクリル樹脂、ホルムアルデヒド樹脂、シリコン樹脂、フッ素樹脂、カルボキシルメチルセルロース等のセルロース樹脂、スチレン-ブタジエンゴムやフッ素ゴム等の合成ゴム、ポリアニリンやポリアセチレン等の導電性樹脂等が挙げられる。又、これらの樹脂の変性体、混合物、又は共重合体でも良い。
<Binder>
Examples of the binder used in the electrode mixture include acrylic resin, polyurethane resin, polyester resin, phenol resin, epoxy resin, phenoxy resin, urea resin, melamine resin, alkyd resin, acrylic resin, formaldehyde resin, silicon resin, fluorine Examples thereof include resin, cellulose resin such as carboxymethyl cellulose, synthetic rubber such as styrene-butadiene rubber and fluorine rubber, and conductive resin such as polyaniline and polyacetylene. Moreover, the modified body, mixture, or copolymer of these resin may be sufficient.
 具体的には、エチレン、プロピレン、塩化ビニル、酢酸ビニル、ビニルアルコール、マレイン酸、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、アクリロニトリル、スチレン、ビニルブチラール、ビニルアセタール、及びビニルピロリドン等を構成単位として含む共重合体が挙げられる。 Specifically, ethylene, propylene, vinyl chloride, vinyl acetate, vinyl alcohol, maleic acid, acrylic acid, acrylic ester, methacrylic acid, methacrylic ester, acrylonitrile, styrene, vinyl butyral, vinyl acetal, vinyl pyrrolidone, etc. Examples thereof include a copolymer contained as a structural unit.
 特に、耐性面から分子内にフッ素原子を有する高分子化合物、例えば、ポリフッ化ビニリデン、ポリフッ化ビニル、及びポリテトラフルオロエチレン等の使用が好ましい。 In particular, from the viewpoint of resistance, it is preferable to use a polymer compound having a fluorine atom in the molecule, such as polyvinylidene fluoride, polyvinyl fluoride, and polytetrafluoroethylene.
 又、バインダーとしてのこれらの樹脂類の重量平均分子量は、10,000~1,000,000が好ましい。分子量が小さいとバインダーの耐性が低下することがある。分子量が大きくなるとバインダーの耐性は向上するものの、バインダー自体の粘度が高くなり作業性が低下するとともに、凝集剤として働き、合剤成分が著しく凝集してしまうことがある。 The weight average molecular weight of these resins as binders is preferably 10,000 to 1,000,000. When the molecular weight is small, the resistance of the binder may decrease. When the molecular weight is increased, the resistance of the binder is improved, but the viscosity of the binder itself is increased, the workability is lowered, and it acts as an aggregating agent.
<導電助剤>
 電極合剤に使用される導電助剤としては、炭素材料が最も好ましい。炭素材料としては、導電性を有する炭素材料であれば特に限定されるものではないが、グラファイト、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー、及びフラーレン等を単独で、若しくは2種類以上併せて使用することができる。導電性、入手の容易さ、及びコスト面から、カーボンブラックの使用が好ましい。
<Conductive aid>
As the conductive additive used for the electrode mixture, a carbon material is most preferable. The carbon material is not particularly limited as long as it is a conductive carbon material, but graphite, carbon black, carbon nanotube, carbon nanofiber, carbon fiber, fullerene, etc. alone or in combination of two or more. Can be used. From the viewpoint of conductivity, availability, and cost, it is preferable to use carbon black.
 カーボンブラックとしては、気体若しくは液体の原料を反応炉中で連続的に熱分解し製造するファーネスブラック、特にエチレン重油を原料としたケッチェンブラック、原料ガスを燃焼させて、その炎をチャンネル鋼底面にあて急冷し析出させたチャンネルブラック、ガスを原料とし燃焼と熱分解を周期的に繰り返すことにより得られるサーマルブラック、及び、特にアセチレンガスを原料とするアセチレンブラック等の各種のものを単独で、若しくは2種類以上併せて使用することができる。又、通常行われている酸化処理されたカーボンブラックや、中空カーボン等も使用できる。 Carbon black is a furnace black produced by continuously pyrolyzing a gas or liquid raw material in a reactor, especially ketjen black using ethylene heavy oil as a raw material. Channel black rapidly cooled and precipitated, thermal black obtained by periodically repeating combustion and thermal decomposition using gas as a raw material, and various types such as acetylene black using acetylene gas as a raw material alone, Or two or more types can be used together. Ordinarily oxidized carbon black, hollow carbon and the like can also be used.
 カーボンの酸化処理は、カーボンを空気中で高温処理したり、硝酸や二酸化窒素、オゾン等で二次的に処理したりすることより、例えばフェノール基、キノン基、カルボキシル基、カルボニル基の様な酸素含有極性官能基をカーボン表面に直接導入(共有結合)する処理であり、カーボンの分散性を向上させるために一般的に行われている。しかしながら、官能基の導入量が多くなる程カーボンの導電性が低下することが一般的であるため、酸化処理をしていないカーボンの使用が好ましい。 The oxidation treatment of carbon is performed by treating carbon at a high temperature in the air or by secondary treatment with nitric acid, nitrogen dioxide, ozone, etc., for example, such as phenol group, quinone group, carboxyl group, carbonyl group. This is a treatment for directly introducing (covalently bonding) an oxygen-containing polar functional group to the carbon surface, and is generally performed to improve the dispersibility of carbon. However, since it is common for the conductivity of carbon to fall, so that the introduction amount of a functional group increases, it is preferable to use the carbon which has not been oxidized.
 用いるカーボンブラックの比表面積は、値が大きいほど、カーボンブラック粒子どうしの接触点が増えるため、電極の内部抵抗を下げるのに有利となる。具体的には、窒素の吸着量から求められる比表面積(BET)で、20m/g以上、1500m/g以下、好ましくは50m/g以上、1500m/g以下、更に好ましくは100m/g以上、1500m/g以下のものを使用することが望ましい。比表面積が20m/gを下回るカーボンブラックを用いると、十分な導電性を得ることが難しくなる場合があり、1500m/gを超えるカーボンブラックは、市販材料での入手が困難となる場合がある。 As the specific surface area of the carbon black used increases, the number of contact points between the carbon black particles increases, which is advantageous in reducing the internal resistance of the electrode. Specifically, the specific surface area (BET) determined from the adsorption amount of nitrogen is 20 m 2 / g or more and 1500 m 2 / g or less, preferably 50 m 2 / g or more and 1500 m 2 / g or less, more preferably 100 m 2. / G or more and 1500 m 2 / g or less are desirable. When carbon black having a specific surface area of less than 20 m 2 / g is used, it may be difficult to obtain sufficient conductivity, and carbon black of more than 1500 m 2 / g may be difficult to obtain from commercially available materials. is there.
 又、用いるカーボンブラックの粒径は、一次粒子径で0.005~1μmが好ましく、特に、0.01~0.2μmが好ましい。ただし、ここでいう一次粒子径とは、電子顕微鏡等で測定された粒子径を平均したものである。 The particle size of the carbon black used is preferably 0.005 to 1 μm, particularly preferably 0.01 to 0.2 μm in terms of primary particle size. However, the primary particle diameter here is an average of the particle diameters measured with an electron microscope or the like.
 市販のカーボンブラックとしては、例えば、トーカブラック#4300、#4400、#4500、及び#5500等の東海カーボン社製ファーネスブラック;プリンテックスL等のデグサ社製ファーネスブラック;Raven7000、5750、5250、5000ULTRAIII、5000ULTRA、Conductex SC ULTRA、975 ULTRA、PUER BLACK100、115、及び205等のコロンビヤン社製ファーネスブラック;#2350、#2400B、#2600B、#30050B、#3030B、#3230B、#3350B、#3400B、及び#5400B等の三菱化学社製ファーネスブラック;MONARCH1400、1300、900、VulcanXC-72R、及びBlackPearls2000等のキャボット社製ファーネスブラック;Ensaco250G、Ensaco260G、Ensaco350G、及びSuperP-Li等のTIMCAL社製ファーネスブラック;ケッチェンブラックEC-300J、及びEC-600JD等のアクゾ社製ケッチェンブラック;並びに、デンカブラック、デンカブラックHS-100、FX-35等の電気化学工業社製アセチレンブラック等が挙げられるが、これらに限定されるものではない。 Examples of commercially available carbon black include furnace blacks manufactured by Tokai Carbon Co., Ltd. such as Toka Black # 4300, # 4400, # 4500, and # 5500; furnace blacks manufactured by Degussa such as Printex L; Raven7000, 5750, 5250, 5000ULTRAIII Furnace Black made by Colombian, such as 5000 ULTRA, Conductex SC ULTRA, 975 ULTRA, PUER BLACK 100, 115, and 205; # 2350, # 2400B, # 2600B, # 30050B, # 3030B, # 3230B, # 3350B, # 3400B, and # 5400B Furnace Black manufactured by Mitsubishi Chemical Corporation; MONARCH1400, 1300, 900, VulcanXC-72R, and Black Furnace black manufactured by Cabot, such as earls 2000; Furnace black manufactured by TIMCAL, such as Ensaco 250G, Ensaco 260G, Ensaco 350G, and SuperP-Li; Ketjen black manufactured by Akzo, such as Ketjen Black EC-300J and EC-600JD; and Denka Examples thereof include, but are not limited to, acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd. such as black, Denka Black HS-100 and FX-35.
<電極の作製>
 電極の作製方法に関しては、特に限定されるものではないが、例えば、リチウム二次電池用正極活物質材料と、導電助剤と、バインダーを溶媒中に分散混合させ合剤ペーストを調製したあと、アルミニウム箔などの集電体に塗工し、乾燥することにより作製される。
<Production of electrode>
The method for producing the electrode is not particularly limited.For example, after preparing a mixture paste by dispersing and mixing a positive electrode active material for a lithium secondary battery, a conductive additive, and a binder in a solvent, It is produced by applying to a current collector such as an aluminum foil and drying.
 リチウム二次電池用正極活物質材料と、導電助剤と、バインダーを溶媒中に分散混合させ正極合剤ペーストを調製する場合、顔料分散等に通常用いられている分散機が使用できる。 When preparing a positive electrode mixture paste by dispersing and mixing a positive electrode active material for a lithium secondary battery, a conductive additive, and a binder in a solvent, a disperser usually used for pigment dispersion or the like can be used.
 例えば、ディスパー、ホモミキサー、若しくはプラネタリーミキサー等のミキサー類;エム・テクニック社製「クレアミックス」、若しくはPRIMIX社「フィルミックス」等のホモジナイザー類;ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、若しくはコボールミル等のメディア型分散機;湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS-5」、若しくは奈良機械製作所社製「マイクロス」等のメディアレス分散機;又は、その他ロールミル等が挙げられるが、これらに限定されるものではない。又、分散機としては、分散機からの金属混入防止処理を施したものを用いることが好ましい。 For example, mixers such as disperser, homomixer, or planetary mixer; homogenizers such as “Clearmix” manufactured by M Technique, or “Fillmix” manufactured by PRIMIX; paint conditioner (manufactured by Red Devil), ball mill, sand mill (Shinmaru Enterprises "Dynomill", etc.), Attritor, Pearl Mill (Eirich "DCP Mill", etc.), or Coball Mill, etc .; Media type dispersers; Wet Jet Mill (Genus, "Genus PY", Sugino Media-less dispersers such as “Starburst” manufactured by Machine, “Nanomizer” manufactured by Nanomizer, etc., “Claire SS-5” manufactured by M Technique, or “Micros” manufactured by Nara Machinery Co., Ltd .; or other roll mills Etc. , But it is not limited thereto. Further, as the disperser, it is preferable to use a disperser that has been subjected to a metal mixing prevention treatment from the disperser.
 例えば、メディア型分散機を使用する場合は、アジテーター及びベッセルがセラミック製又は樹脂製の分散機を使用する方法や、金属製アジテーター及びベッセル表面をタングステンカーバイド溶射や樹脂コーティング等の処理をした分散機を用いることが好ましい。そして、メディアとしては、ガラスビーズ、又は、ジルコニアビーズ、若しくはアルミナビーズ等のセラミックビーズを用いることが好ましい。又、ロールミルを使用する場合についても、セラミック製ロールを用いることが好ましい。分散装置は、1種のみを使用しても良いし、複数種の装置を組み合わせて使用しても良い。 For example, when using a media-type disperser, a disperser in which the agitator and vessel are made of a ceramic or resin disperser, or the surface of the metal agitator and vessel is treated with tungsten carbide spraying or resin coating. Is preferably used. And as a medium, it is preferable to use ceramic beads, such as glass beads, zirconia beads, or alumina beads. Moreover, also when using a roll mill, it is preferable to use a ceramic roll. Only one type of dispersion device may be used, or a plurality of types of devices may be used in combination.
<溶剤>
 合剤ペーストを作製する際に使用する溶媒としては、例えば、アルコール類、グリコール類、セロソルブ類、アミノアルコール類、アミン類、ケトン類、カルボン酸アミド類、リン酸アミド類、スルホキシド類、カルボン酸エステル類、リン酸エステル類、エーテル類、ニトリル類、及び水等が挙げられる。
<Solvent>
Examples of the solvent used in preparing the mixture paste include alcohols, glycols, cellosolves, amino alcohols, amines, ketones, carboxylic acid amides, phosphoric acid amides, sulfoxides, and carboxylic acids. Examples include esters, phosphate esters, ethers, nitriles, and water.
 バインダー樹脂の溶解性や、導電助剤である炭素材料の分散安定性を得るためには、極性の高い溶媒を使用することが好ましい。 In order to obtain the solubility of the binder resin and the dispersion stability of the carbon material which is a conductive aid, it is preferable to use a highly polar solvent.
 例えば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、及びN,N-ジエチルアセトアミド等の様な窒素をジアルキル化したアミド系溶剤、N-メチル-2-ピロリドン、ヘキサメチル燐酸トリアミド、並びに、ジメチルスルホキシド等が挙げられるが、これらに限定されない。二種類以上を併用することもできる。 For example, N-methyl-2-pyrrolidone, an amide solvent obtained by dialkylating nitrogen such as N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, and N, N-diethylacetamide , Hexamethylphosphoric triamide, and dimethyl sulfoxide, but are not limited thereto. Two or more types can be used in combination.
<リチウム二次電池>
 次に、リチウム二次電池用正極活物質材料を用いた電極を正極として備えるリチウム二次電池について説明する。
<Lithium secondary battery>
Next, a lithium secondary battery provided with an electrode using a positive electrode active material for a lithium secondary battery as a positive electrode will be described.
 リチウム二次電池は、集電体上に正極合剤層を有する正極と、集電体上に負極合剤層を有する負極と、リチウムを含む電解質とを具備する。前記正極合剤層と前記集電体との間や、前記負極合剤層と前記集電体との間には、電極下地層が形成されていてもよい。 The lithium secondary battery includes a positive electrode having a positive electrode mixture layer on a current collector, a negative electrode having a negative electrode mixture layer on the current collector, and an electrolyte containing lithium. An electrode base layer may be formed between the positive electrode mixture layer and the current collector or between the negative electrode mixture layer and the current collector.
 電極について、使用する集電体の材質や形状は特に限定されず、材質としては、アルミニウム、銅、ニッケル、チタン、又はステンレス等の金属や合金が用いられるが、特に正極材料としてはアルミニウムが、負極材料としては銅が、好ましい。又、形状としては、一般的には平板上の箔が用いられるが、表面を粗面化したものや、穴あき箔状のもの、及びメッシュ状のものも使用できる。 For the electrode, the material and shape of the current collector to be used are not particularly limited, and as the material, a metal or an alloy such as aluminum, copper, nickel, titanium, or stainless steel is used. Copper is preferred as the negative electrode material. As the shape, a flat plate foil is generally used, but a roughened surface, a perforated foil shape, and a mesh shape can also be used.
 集電体上に電極下地層を形成する方法としては、導電性材料であるカーボンブラックとバインダー成分を溶剤中に分散させた電極下地ペーストを電極集電体に塗布、乾燥する方法が挙げられる。電極下地層の膜厚としては、導電性及び密着性が保たれる範囲であれば特に制限されないが、一般的には0.05μm以上、20μm以下であり、好ましくは0.1μm以上、10μm以下である。 Examples of the method for forming the electrode base layer on the current collector include a method in which an electrode base paste in which carbon black as a conductive material and a binder component are dispersed in a solvent is applied to the electrode current collector and dried. The film thickness of the electrode underlayer is not particularly limited as long as the conductivity and adhesion are maintained, but is generally 0.05 μm or more and 20 μm or less, preferably 0.1 μm or more and 10 μm or less. It is.
 集電体上に電極合剤層を形成する方法としては、集電体上に上述の合剤ペーストを直接塗布し乾燥する方法、及び集電体上に電極下地層を形成した後に合剤ペーストを塗布し乾燥する方法等が挙げられる。又、電極下地層の上に電極合剤層を形成する場合、集電体上に電極下地ペーストを塗布した後、湿潤状態のうちに合剤ペーストを重ねて塗布し、乾燥を行っても良い。電極合剤層の厚みとしては、一般的には1μm以上、500μm以下であり、好ましくは10μm以上、300μm以下である。 As a method of forming an electrode mixture layer on a current collector, a method of directly applying and drying the above-mentioned mixture paste on the current collector, and a mixture paste after forming an electrode base layer on the current collector The method of apply | coating and drying is mentioned. When the electrode mixture layer is formed on the electrode underlayer, after applying the electrode undercoat paste on the current collector, the mixture paste may be applied in a wet state and dried. . The thickness of the electrode mixture layer is generally 1 μm or more and 500 μm or less, preferably 10 μm or more and 300 μm or less.
 塗布方法については、特に制限はなく公知の方法を用いることができる。具体的には、ダイコーティング法、ディップコーティング法、ロールコーティング法、ドクターコーティング法、スプレーコティング法、グラビアコーティング法、スクリーン印刷法、又は静電塗装法等が挙げられる。又、塗布後に平版プレスやカレンダーロール等による圧延処理を行っても良い。 The coating method is not particularly limited, and a known method can be used. Specific examples include a die coating method, a dip coating method, a roll coating method, a doctor coating method, a spray coating method, a gravure coating method, a screen printing method, and an electrostatic coating method. Moreover, you may perform the rolling process by a lithographic press, a calendar roll, etc. after application | coating.
<電解液>
 リチウム二次電池を構成する電解液としては、リチウムを含んだ電解質を非水系の溶剤に溶解したものを用いる。電解質としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiCFSO、Li(CFSON、LiCSO、Li(CFSOC、LiI、LiBr、LiCl、LiAlCl、LiHF、LiSCN、又はLiBPh等が挙げられるがこれらに限定されない。
<Electrolyte>
As an electrolytic solution constituting the lithium secondary battery, an electrolyte containing lithium is dissolved in a non-aqueous solvent. As the electrolyte, LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 3 C , LiI, LiBr, LiCl, LiAlCl , LiHF 2, LiSCN, or LiBPh 4 etc. but are not limited to.
 非水系の溶剤としては特に限定はされないが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、及びジエチルカーボネート等のカーボネート類;γ-ブチロラクトン、γ-バレロラクトン、及びγ-オクタノイックラクトン等のラクトン類;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,2-メトキシエタン、1,2-エトキシエタン、及び1,2-ジブトキシエタン等のグライム類;メチルフォルメート、メチルアセテート、及びメチルプロピオネート等のエステル類;ジメチルスルホキシド、及びスルホラン等のスルホキシド類;並びに、アセトニトリル等のニトリル類等が挙げられる。又、これらの溶剤は、それぞれ単独で使用しても良いが、2種以上を混合して使用しても良い。 The non-aqueous solvent is not particularly limited. For example, carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate; γ-butyrolactone, γ-valerolactone, and γ- Lactones such as octanoic lactone; tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-methoxyethane, 1,2-ethoxyethane, and 1,2 -Grimes such as dibutoxyethane; esters such as methyl formate, methyl acetate and methyl propionate; sulfoxides such as dimethyl sulfoxide and sulfolane; and nitriles such as acetonitrile. And the like. These solvents may be used alone or in combination of two or more.
 更に上記電解液を、ポリマーマトリクスに保持しゲル状とした高分子電解質とすることもできる。ポリマーマトリクスとしては、ポリアルキレンオキシドセグメントを有するアクリレート系樹脂、ポリアルキレンオキシドセグメントを有するポリホスファゼン系樹脂、及びポリアルキレンオキシドセグメントを有するポリシロキサン等が挙げられるがこれらに限定されない。 Furthermore, the above electrolyte solution can be held in a polymer matrix to form a gel polymer electrolyte. Examples of the polymer matrix include, but are not limited to, an acrylate resin having a polyalkylene oxide segment, a polyphosphazene resin having a polyalkylene oxide segment, and a polysiloxane having a polyalkylene oxide segment.
 リチウム二次電池の構造については特に限定されないが、通常、正極及び負極と、必要に応じて設けられるセパレータとから構成され、ペーパー型、円筒型、ボタン型、積層型等、使用する目的に応じた種々の形状とすることができる。 The structure of the lithium secondary battery is not particularly limited, but is usually composed of a positive electrode and a negative electrode, and a separator provided as necessary, depending on the purpose of use, such as paper type, cylindrical type, button type, laminated type, etc. Various shapes can be used.
 以下、実施例に基づき本発明を更に詳しく説明するが、本発明は、実施例に限定されるものではない。実施例中、部は重量部を、%は重量%をそれぞれ表す。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the examples. In the examples, “part” means “part by weight” and “%” means “% by weight”.
 リチウム二次電池用正極活物質材料の分析は、以下の測定機器を使用した。
・XRD(X線回折)測定;PANalytical社製 X‘Pert PRO MPD
・SEM(走査型電子顕微鏡);日立製作所社製 SEM S-4300
・CHN元素分析;パーキンエルマー社製 2400型CHN元素分析
The following measuring apparatus was used for the analysis of the positive electrode active material for a lithium secondary battery.
-XRD (X-ray diffraction) measurement; X'Pert PRO MPD made by PANalytical
SEM (scanning electron microscope): SEM S-4300 manufactured by Hitachi, Ltd.
-CHN elemental analysis; Model 2400 CHN elemental analysis manufactured by PerkinElmer
<リチウム二次電池用正極活物質材料の合成> <Synthesis of positive electrode active material for lithium secondary battery>
[実施例1;リチウムコバルト複合酸化物]
 酸化コバルト(CoO)、炭酸リチウム(LiCO)、及び天然ワックスであるカルナバ2号(東洋アドレ社製)とを、コバルトとリチウムの元素比率が1:1で、原料混合物中の天然ワックスの含有率が2.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて空気雰囲気下、850℃で10時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウムコバルト複合酸化物であるリチウム二次電池用正極活物質材料(1)を得た。
[Example 1; lithium cobalt composite oxide]
Cobalt oxide (CoO 2 ), lithium carbonate (Li 2 CO 3 ), and natural wax Carnauba No. 2 (manufactured by Toyo Adri Co., Ltd.), with an element ratio of cobalt to lithium being 1: 1, natural in the raw material mixture Weighed so that the wax content was 2.0%, pulverized and mixed in a mortar, filled in an alumina crucible, and baked in an electric furnace at 850 ° C. for 10 hours in an air atmosphere. The fired product was pulverized in a mortar to obtain a positive electrode active material (1) for a lithium secondary battery, which was a lithium cobalt composite oxide.
 得られたリチウムコバルト複合酸化物は、XRD(X線回折)測定よりLiCoOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は3.0~5.0μmであり、CHN元素分析より、炭素含有量が0.2%であった。 The obtained lithium cobalt composite oxide was identified as LiCoO 2 by XRD (X-ray diffraction) measurement. The primary particle diameter was 3.0 to 5.0 μm from SEM (scanning electron microscope) observation, and the carbon content was 0.2% from CHN elemental analysis.
[実施例2;リチウムマンガン複合酸化物]
 酸化マンガン(Mn)、硝酸リチウム(LiNO)、及び変性天然樹脂であるエステルガムHD(荒川化学工業社製)とを、マンガンとリチウムの元素比率が2:1で、原料混合物中の変性天然樹脂の含有率が2.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて空気雰囲気下、300℃で24時間焼成、冷却を行ったあと、乳鉢にて混合を行い、700℃で30時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウムマンガン複合酸化物であるリチウム二次電池用正極活物質材料(2)を得た。
[Example 2; lithium manganese composite oxide]
Manganese oxide (Mn 3 O 4 ), lithium nitrate (LiNO 3 ), and ester gum HD (manufactured by Arakawa Chemical Industry Co., Ltd.), which is a modified natural resin, have an element ratio of manganese to lithium of 2: 1 in the raw material mixture Weighed so that the modified natural resin content is 2.0%, pulverized and mixed in a mortar, filled in an alumina crucible, fired in an electric furnace at 300 ° C. for 24 hours in an air atmosphere, and cooled. After performing, it mixes with a mortar, baked at 700 degreeC for 30 hours, The obtained baked material is grind | pulverized in a mortar, and the positive electrode active material material for lithium secondary batteries which is a lithium manganese composite oxide (2) Got.
 得られたリチウムマンガン複合酸化物は、XRD(X線回折)測定よりLiMnと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は1.0~3.0μmであり、CHN元素分析より、炭素含有量が0.15%であった。 The obtained lithium manganese composite oxide was identified as LiMn 2 O 3 by XRD (X-ray diffraction) measurement. The primary particle diameter was 1.0 to 3.0 μm from SEM (scanning electron microscope) observation, and the carbon content was 0.15% from CHN elemental analysis.
[実施例3;リチウム鉄リン複合酸化物]←基礎特許の実施例3
 塩化鉄四水和物(FeCl・4HO)13.44部、塩化リチウム(LiCl)2.87部、リン酸(HPO)6.63部、及び尿素12.30部を蒸留水100部に溶解させ原料水溶液を調製した。この原料水溶液を耐圧容器内に仕込んだあと、電気炉にて300℃、5時間加熱を行い、室温まで冷却したあと、ろ過、水洗、乾燥によりリチウム鉄リン複合酸化物を生成した。
[Example 3: Lithium iron phosphorus composite oxide] <-Example 3 of basic patent
Distilling 13.44 parts of iron chloride tetrahydrate (FeCl 2 .4H 2 O), 2.87 parts of lithium chloride (LiCl), 6.63 parts of phosphoric acid (H 3 PO 4 ), and 12.30 parts of urea A raw material aqueous solution was prepared by dissolving in 100 parts of water. After this raw material aqueous solution was charged in a pressure vessel, it was heated in an electric furnace at 300 ° C. for 5 hours, cooled to room temperature, and then a lithium iron phosphorus composite oxide was produced by filtration, washing with water and drying.
 得られたリチウム鉄リン複合酸化物と、植物油である大豆油KT(丸正社製)とを、リチウム鉄リン複合酸化物と植物油の重量比が1:0.5となるように乳鉢にて混合し、電気炉にて窒素雰囲気下、600℃で10時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(3)を得た。 The obtained lithium iron phosphorus composite oxide and vegetable oil soybean oil KT (manufactured by Marusho Co., Ltd.) are mixed in a mortar so that the weight ratio of the lithium iron phosphorus composite oxide and vegetable oil is 1: 0.5. And calcination at 600 ° C. for 10 hours in a nitrogen atmosphere in an electric furnace. The obtained fired product is pulverized in a mortar and is a lithium iron phosphorus composite oxide positive electrode active material for lithium secondary battery (3) Got.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.8~1.5μmであり、CHN元素分析より、炭素含有量が5.5%であった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. The primary particle diameter was 0.8 to 1.5 μm from SEM (scanning electron microscope) observation, and the carbon content was 5.5% from CHN elemental analysis.
[実施例4;リチウム鉄リン複合酸化物]
 塩化鉄四水和物(FeCl・4HO)13.44部、塩化リチウム(LiCl)2.87部、リン酸(HPO)6.63部、及び尿素12.30部を蒸留水100部に溶解させ原料水溶液を調製した。この原料水溶液を耐圧容器内に仕込んだあと、電気炉にて300℃、5時間加熱を行い、室温まで冷却したあと、ろ過、水洗、乾燥によりリチウム鉄リン複合酸化物を生成した。
[Example 4; lithium iron phosphorus composite oxide]
Distilling 13.44 parts of iron chloride tetrahydrate (FeCl 2 .4H 2 O), 2.87 parts of lithium chloride (LiCl), 6.63 parts of phosphoric acid (H 3 PO 4 ), and 12.30 parts of urea A raw material aqueous solution was prepared by dissolving in 100 parts of water. After this raw material aqueous solution was charged in a pressure vessel, it was heated in an electric furnace at 300 ° C. for 5 hours, cooled to room temperature, and then a lithium iron phosphorus composite oxide was produced by filtration, washing with water and drying.
 得られたリチウム鉄リン複合酸化物と、植物油である大豆油KT(丸正社製)とを、リチウム鉄リン複合酸化物と植物油の重量比が1:0.15となるように乳鉢にて混合し、電気炉にて窒素雰囲気下、600℃で10時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(4)を得た。 The obtained lithium iron phosphorus composite oxide and vegetable oil soybean oil KT (manufactured by Marusho) were mixed in a mortar so that the weight ratio of lithium iron phosphorus composite oxide and vegetable oil was 1: 0.15. And calcination at 600 ° C. for 10 hours in a nitrogen atmosphere in an electric furnace, and the fired product obtained is pulverized in a mortar and is a lithium iron phosphorus composite oxide positive electrode active material for a lithium secondary battery (4) Got.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.4~1.0μmであり、CHN元素分析より、炭素含有量が5.0%であった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. The primary particle diameter was 0.4 to 1.0 μm from SEM (scanning electron microscope) observation, and the carbon content was 5.0% from CHN elemental analysis.
[実施例5;リチウム鉄リン複合酸化物]
 塩化鉄四水和物(FeCl・4HO)13.44部、塩化リチウム(LiCl)2.87部、リン酸(HPO)6.63部、及び尿素12.30部を蒸留水100部に溶解させ原料水溶液を調製した。この原料水溶液を耐圧容器内に仕込んだあと、電気炉にて300℃、5時間加熱を行い、室温まで冷却したあと、ろ過、水洗、乾燥によりリチウム鉄リン複合酸化物を生成した。
[Example 5: Lithium iron phosphorus composite oxide]
Distilling 13.44 parts of iron chloride tetrahydrate (FeCl 2 .4H 2 O), 2.87 parts of lithium chloride (LiCl), 6.63 parts of phosphoric acid (H 3 PO 4 ), and 12.30 parts of urea A raw material aqueous solution was prepared by dissolving in 100 parts of water. After this raw material aqueous solution was charged in a pressure vessel, it was heated in an electric furnace at 300 ° C. for 5 hours, cooled to room temperature, and then a lithium iron phosphorus composite oxide was produced by filtration, washing with water and drying.
 得られたリチウム鉄リン複合酸化物と、天然樹脂であるGSN(岐阜セラック製造所社製)とを、リチウム鉄リン複合酸化物と天然樹脂の重量比が1:0.2となるように乳鉢にて混合し、電気炉にて窒素雰囲気下、700℃で10時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(5)を得た。 The obtained lithium iron phosphorus composite oxide and natural resin GSN (manufactured by Gifu Shellac Manufacturing Co., Ltd.) are mortar so that the weight ratio of lithium iron phosphorus composite oxide and natural resin is 1: 0.2. , Baked at 700 ° C. for 10 hours in a nitrogen atmosphere in an electric furnace, and the fired product obtained was pulverized in a mortar to be a lithium iron phosphorus composite oxide positive electrode active material for a lithium secondary battery (5) was obtained.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.8~1.5μmであり、CHN元素分析より、炭素含有量が4.7%であった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. The primary particle diameter was 0.8 to 1.5 μm from SEM (scanning electron microscope) observation, and the carbon content was 4.7% from CHN elemental analysis.
[実施例6;リチウム鉄リン複合酸化物]
 塩化鉄四水和物(FeCl・4HO)13.44部、塩化リチウム(LiCl)2.87部、リン酸(HPO)6.63部、及び尿素12.30部を蒸留水100部に溶解させ原料水溶液を調製した。この原料水溶液を耐圧容器内に仕込んだあと、電気炉にて300℃、5時間加熱を行い、室温まで冷却したあと、ろ過、水洗、乾燥によりリチウム鉄リン複合酸化物を生成した。
[Example 6: Lithium iron phosphorus composite oxide]
Distilling 13.44 parts of iron chloride tetrahydrate (FeCl 2 .4H 2 O), 2.87 parts of lithium chloride (LiCl), 6.63 parts of phosphoric acid (H 3 PO 4 ), and 12.30 parts of urea A raw material aqueous solution was prepared by dissolving in 100 parts of water. After this raw material aqueous solution was charged in a pressure vessel, it was heated in an electric furnace at 300 ° C. for 5 hours, cooled to room temperature, and then a lithium iron phosphorus composite oxide was produced by filtration, washing with water and drying.
 得られたリチウム鉄リン複合酸化物と、天然ワックスであるライスワックス脱色品(東亜化成社製)とを、リチウム鉄リン複合酸化物と天然ワックスの重量比が1:0.15となるように乳鉢にて混合し、電気炉にて窒素雰囲気下、700℃で10時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(6)を得た。 The obtained lithium iron phosphorus composite oxide and the natural wax rice wax decolorized product (manufactured by Toa Kasei Co., Ltd.) are so prepared that the weight ratio of the lithium iron phosphorus composite oxide and the natural wax is 1: 0.15. Mixed in a mortar, fired at 700 ° C. for 10 hours in a nitrogen atmosphere in an electric furnace, and the fired product obtained was pulverized in a mortar to be a lithium iron phosphorus composite oxide positive electrode active material for a lithium secondary battery Material (6) was obtained.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.8~1.5μmであり、CHN元素分析より、炭素含有量が3.0%であった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. The primary particle diameter was 0.8 to 1.5 μm from SEM (scanning electron microscope) observation, and the carbon content was 3.0% from CHN elemental analysis.
[実施例7;リチウム鉄リン複合酸化物]
 リン酸第一鉄八水和物(Fe(PO・8HO)、リン酸リチウム(LiPO)、及び変性天然ワックスであるLUWAX-S(BASF社製)とを、鉄とリチウムの元素比率が1:1で、原料混合物中の天然ワックスの含有率が10.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、300℃で10時間焼成、冷却を行ったあと、乳鉢にて混合を行い、700℃で15時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(7)を得た。
[Example 7: Lithium iron phosphorus composite oxide]
Ferrous phosphate octahydrate (Fe 3 (PO 4 ) 2 · 8H 2 O), lithium phosphate (Li 3 PO 4 ), and modified natural wax LUWAX-S (manufactured by BASF) The element ratio of iron and lithium is 1: 1, and the natural wax content in the raw material mixture is weighed to 10.0%, pulverized and mixed in a mortar, then filled into an alumina crucible, and placed in an electric furnace. After baking and cooling at 300 ° C. for 10 hours in a nitrogen atmosphere, mixing in a mortar, baking at 700 ° C. for 15 hours, pulverizing the obtained fired product in a mortar and lithium iron phosphorus composite oxidation As a result, a positive electrode active material (7) for a lithium secondary battery was obtained.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.07~0.2μm(図1;30000倍)であり、CHN元素分析より、炭素含有量が4.5%であった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. In addition, the primary particle diameter was 0.07 to 0.2 μm (FIG. 1; 30000 times) from SEM (scanning electron microscope) observation, and the carbon content was 4.5% from CHN elemental analysis.
[実施例8;リチウム鉄リン複合酸化物]
 リン酸第一鉄八水和物(Fe(PO・8HO)、リン酸リチウム(LiPO)、及び変性天然ワックスであるLUWAX-S(BASF社製)とを、鉄とリチウムの元素比率が1:1で、原料混合物中の変性天然ワックスの含有率が5.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、300℃で10時間焼成、冷却を行ったあと、乳鉢にて混合を行い、700℃で15時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(8)を得た。
[Example 8: Lithium iron phosphorus composite oxide]
Ferrous phosphate octahydrate (Fe 3 (PO 4 ) 2 · 8H 2 O), lithium phosphate (Li 3 PO 4 ), and modified natural wax LUWAX-S (manufactured by BASF) The element ratio of iron and lithium is 1: 1, and the content of the modified natural wax in the raw material mixture is weighed to be 5.0%, pulverized and mixed in a mortar, then filled into an alumina crucible, and an electric furnace After baking and cooling at 300 ° C. for 10 hours in a nitrogen atmosphere, mixing in a mortar, baking at 700 ° C. for 15 hours, and pulverizing the obtained fired product in a mortar and lithium iron phosphorus composite A positive electrode active material (8) for a lithium secondary battery, which was an oxide, was obtained.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.1~1.0μmであり、CHN元素分析より、炭素含有量が4.0%であった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. The primary particle diameter was 0.1 to 1.0 μm from SEM (scanning electron microscope) observation, and the carbon content was 4.0% from CHN elemental analysis.
[実施例9;リチウム鉄リン複合酸化物]
 シュウ酸鉄二水和物(FeC・2HO)、リン酸二水素アンモニウム(NHPO)、炭酸リチウム(LiCO)、及び植物油であるTEXAPRINTSDCE(コグニスジャパン社製)とを、鉄とリンとリチウムの元素比率が1:1:1で、原料混合物中の植物油の含有率が40.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、300℃で10時間焼成、冷却を行ったあと、乳鉢にて混合を行い、700℃で15時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(9)を得た。
[Example 9: Lithium iron phosphorus composite oxide]
Iron Oxalate Dihydrate (FeC 2 O 4 .2H 2 O), Ammonium Dihydrogen Phosphate (NH 4 H 2 PO 4 ), Lithium Carbonate (Li 2 CO 3 ), and Vegetable Oil TEXAPRINTSDCE (manufactured by Cognis Japan) ), The element ratio of iron, phosphorus and lithium is 1: 1: 1, and the content of vegetable oil in the raw material mixture is 40.0%. After pulverizing and mixing in a mortar, the alumina crucible , Baked at 300 ° C. for 10 hours in an electric furnace in a nitrogen atmosphere, cooled, then mixed in a mortar, baked at 700 ° C. for 15 hours, and the resulting fired product in a mortar The positive electrode active material (9) for lithium secondary batteries which is a pulverized lithium iron phosphorus composite oxide was obtained.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.2~0.5μmであり、CHN元素分析より、炭素含有量が6.4%であった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. The primary particle diameter was 0.2 to 0.5 μm from SEM (scanning electron microscope) observation, and the carbon content was 6.4% from CHN elemental analysis.
[実施例10;リチウム鉄リン複合酸化物]
 シュウ酸鉄二水和物(FeC・2HO)、リン酸二水素アンモニウム(NHPO)、炭酸リチウム(LiCO)、及び植物油であるTEXAPRINTSDCE(コグニスジャパン社製)とを、鉄とリンとリチウムの元素比率が1:1:1で、原料混合物中の植物油の含有率が20.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、300℃で10時間焼成、冷却を行ったあと、乳鉢にて混合を行い、700℃で15時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(10)を得た。
[Example 10: Lithium iron phosphorus composite oxide]
Iron Oxalate Dihydrate (FeC 2 O 4 .2H 2 O), Ammonium Dihydrogen Phosphate (NH 4 H 2 PO 4 ), Lithium Carbonate (Li 2 CO 3 ), and Vegetable Oil TEXAPRINTSDCE (manufactured by Cognis Japan) ), The element ratio of iron, phosphorus and lithium is 1: 1: 1, and the content of vegetable oil in the raw material mixture is 20.0%. After being pulverized and mixed in a mortar, the alumina crucible , Baked at 300 ° C. for 10 hours in an electric furnace in a nitrogen atmosphere, cooled, then mixed in a mortar, baked at 700 ° C. for 15 hours, and the resulting fired product in a mortar The positive electrode active material (10) for lithium secondary batteries which is a pulverized lithium iron phosphorus composite oxide was obtained.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.2~0.5μmであり、CHN元素分析より、炭素含有量が5.8%であった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. The primary particle diameter was 0.2 to 0.5 μm from SEM (scanning electron microscope) observation, and the carbon content was 5.8% from CHN elemental analysis.
[実施例11;リチウム鉄リン複合酸化物]
 リン酸鉄二水和物(FePO・2HO)、酢酸リチウム(CHCOOLi)、及び天然樹脂であるトールロジンR-X(ハリマ化成社製)とを、鉄とリチウムの元素比率が1:1で、原料混合物中の天然樹脂の含有率が30.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、300℃で10時間焼成、冷却を行ったあと、乳鉢にて混合を行い、700℃で15時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(11)を得た。
[Example 11: Lithium iron phosphorus composite oxide]
Iron phosphate dihydrate (FePO 4 .2H 2 O), lithium acetate (CH 3 COOLi), and natural resin tall rosin RX (manufactured by Harima Chemical Co., Ltd.) have an iron to lithium element ratio of 1: 1, the content of the natural resin in the raw material mixture was weighed so as to be 30.0%, pulverized and mixed in a mortar, filled in an alumina crucible, and 10% at 300 ° C. in a nitrogen atmosphere in an electric furnace. After time firing and cooling, mixing in a mortar, firing at 700 ° C. for 15 hours, and pulverizing the obtained fired product in a mortar to form a lithium iron phosphorus composite oxide positive electrode for a lithium secondary battery An active material (11) was obtained.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.1~0.5μmであり、CHN元素分析より、炭素含有量が5.0%であった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. The primary particle size was 0.1 to 0.5 μm from SEM (scanning electron microscope) observation, and the carbon content was 5.0% from CHN elemental analysis.
[実施例12;リチウム鉄リン複合酸化物]
 リン酸鉄二水和物(FePO・2HO)、酢酸リチウム(CHCOOLi)、及び天然樹脂であるトールロジンR-X(ハリマ化成社製)とを、鉄とリチウムの元素比率が1:1で、原料混合物中の天然樹脂の含有率が15.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、300℃で10時間焼成、冷却を行ったあと、乳鉢にて混合を行い、700℃で15時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(12)を得た。
[Example 12: Lithium iron phosphorus composite oxide]
Iron phosphate dihydrate (FePO 4 .2H 2 O), lithium acetate (CH 3 COOLi), and natural resin tall rosin RX (manufactured by Harima Chemical Co., Ltd.) have an iron to lithium element ratio of 1: 1, the content of the natural resin in the raw material mixture was weighed so as to be 15.0%, pulverized and mixed in a mortar, filled in an alumina crucible, and 10% at 300 ° C. in a nitrogen atmosphere in an electric furnace. After time firing and cooling, mixing in a mortar, firing at 700 ° C. for 15 hours, and pulverizing the obtained fired product in a mortar to form a lithium iron phosphorus composite oxide positive electrode for a lithium secondary battery An active material (12) was obtained.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.1~0.6μmであり、CHN元素分析より、炭素含有量が4.3%であった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. The primary particle diameter was 0.1 to 0.6 μm from SEM (scanning electron microscope) observation, and the carbon content was 4.3% from CHN elemental analysis.
[実施例13;リチウム鉄リン複合酸化物]
 リン酸鉄無水和物(α-FePO)、炭酸リチウム(LiCO)、及び天然樹脂である中国ロジンX(荒川化学工業社製)とを、鉄とリチウムの元素比率が1:1で、原料混合物中の天然樹脂の含有率が10.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、700℃で15時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(13)を得た。
[Example 13: Lithium iron phosphorus composite oxide]
An iron phosphate anhydrate (α-FePO 4 ), lithium carbonate (Li 2 CO 3 ), and Chinese rosin X (manufactured by Arakawa Chemical Industries), which is a natural resin, have an element ratio of iron to lithium of 1: 1. And weighed so that the content of the natural resin in the raw material mixture would be 10.0%, pulverized and mixed in a mortar, filled in an alumina crucible, and then in an electric furnace under nitrogen atmosphere at 700 ° C. for 15 hours. Firing was performed, and the obtained fired product was pulverized in a mortar to obtain a positive electrode active material (13) for a lithium secondary battery, which is a lithium iron phosphorus composite oxide.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.05~0.2μm(図2;20000倍、図3;50000倍)であり、CHN元素分析より、炭素含有量が4.8%であった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. Further, the primary particle diameter is 0.05 to 0.2 μm (FIG. 2; 20000 times, FIG. 3; 50000 times) from SEM (scanning electron microscope) observation, and the carbon content is 4. It was 8%.
[実施例14;リチウム鉄リン複合酸化物]
 リン酸鉄無水和物(α-FePO)、酢酸リチウム(CHCOOLi)、及び天然ワックスであるカルナバ2号(東洋アドレ社製)とを、鉄とリチウムの元素比率が1:1で、原料混合物中の天然ワックスの含有率が7.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、700℃で15時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(14)を得た。
[Example 14: Lithium iron phosphorus composite oxide]
Iron phosphate anhydrate (α-FePO 4 ), lithium acetate (CH 3 COOLi), and natural wax Carnauba No. 2 (manufactured by Toyo Adre Co., Ltd.) with an iron to lithium element ratio of 1: 1, Weighing so that the content of natural wax in the raw material mixture is 7.0%, pulverizing and mixing in a mortar, filling in an alumina crucible, and baking in an electric furnace at 700 ° C. for 15 hours in a nitrogen atmosphere. The obtained fired product was pulverized in a mortar to obtain a positive electrode active material (14) for a lithium secondary battery, which is a lithium iron phosphorus composite oxide.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.1~0.3μmであり、CHN元素分析より、炭素含有量が3.2%であった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. The primary particle diameter was 0.1 to 0.3 μm from SEM (scanning electron microscope) observation, and the carbon content was 3.2% from CHN elemental analysis.
[実施例15;リチウム鉄リン複合酸化物]
 リン酸鉄無水和物(α-FePO)、炭酸リチウム(LiCO)、及び変性天然樹脂であるリカロジンPR-110(荒川化学工業社製)とを、鉄とリチウムの元素比率が1:1で、原料混合物中の変性天然樹脂の含有率が10.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、700℃で15時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(15)を得た。
[Example 15: Lithium iron phosphorus composite oxide]
An iron phosphate anhydrate (α-FePO 4 ), lithium carbonate (Li 2 CO 3 ), and a modified natural resin, licarrodin PR-110 (manufactured by Arakawa Chemical Industries Ltd.), an element ratio of iron to lithium is 1 1 and weighed so that the content of the modified natural resin in the raw material mixture was 10.0%, pulverized and mixed in a mortar, filled in an alumina crucible, and 700 ° C. in a nitrogen atmosphere in an electric furnace. The resulting fired product was pulverized in a mortar to obtain a positive electrode active material (15) for a lithium secondary battery, which is a lithium iron-phosphorus composite oxide.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.05~0.3μm(図4;20000倍、図5;50000倍)であり、CHN元素分析より、炭素含有量が3.5%であった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. Further, the primary particle diameter is 0.05 to 0.3 μm (FIG. 4; 20000 times, FIG. 5; 50000 times) from SEM (scanning electron microscope) observation, and the carbon content is 3. It was 5%.
[実施例16;リチウム鉄リン複合酸化物]
 リン酸鉄n水和物(FePO・nHO)、炭酸リチウム(LiCO)、及び天然樹脂である中国ロジンX(荒川化学工業社製)とを、鉄とリチウムの元素比率が1:1で、原料混合物中の天然樹脂の含有率が5.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、300℃で10時間焼成、冷却を行ったあと、乳鉢にて混合を行い、700℃で15時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(16)を得た。
[Example 16: Lithium iron phosphorus composite oxide]
Iron phosphate n hydrate (FePO 4 · nH 2 O), lithium carbonate (Li 2 CO 3 ), and natural resin China rosin X (Arakawa Chemical Industries, Ltd.) 1: 1, the raw material mixture is weighed so that the content of the natural resin is 5.0%, pulverized and mixed in a mortar, then filled into an alumina crucible, and 300 ° C. in a nitrogen atmosphere in an electric furnace. After baking for 10 hours and cooling, mixing in a mortar, baking at 700 ° C. for 15 hours, pulverizing the obtained fired product in a mortar and lithium lithium phosphorus composite oxide lithium secondary battery A positive electrode active material (16) was obtained.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.05~0.4μmであり、CHN元素分析より、炭素含有量が2.0%であった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. The primary particle diameter was 0.05 to 0.4 μm from SEM (scanning electron microscope) observation, and the carbon content was 2.0% from CHN elemental analysis.
[実施例17;リチウム鉄リン複合酸化物]
 リン酸鉄n水和物(FePO・nHO)、酢酸リチウム(CHCOOLi)、及び変性天然樹脂であるエステルガムAA-L(荒川化学工業社製)とを、鉄とリチウムの元素比率が1:1で、原料混合物中の変性天然樹脂の含有率が7.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、300℃で10時間焼成、冷却を行ったあと、乳鉢にて混合を行い、700℃で15時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(17)を得た。
[Example 17; lithium iron phosphorus composite oxide]
Iron phosphate lithium hydrate (FePO 4 .nH 2 O), lithium acetate (CH 3 COOLi), and modified natural resin ester gum AA-L (Arakawa Chemical Industries, Ltd.), iron and lithium elements The ratio is 1: 1, the modified natural resin content in the raw material mixture is weighed to 7.0%, pulverized and mixed in a mortar, then filled into an alumina crucible, and in an electric furnace under a nitrogen atmosphere After baking and cooling at 300 ° C. for 10 hours, mixing in a mortar, baking at 700 ° C. for 15 hours, and pulverizing the obtained fired product in a mortar to obtain lithium iron phosphorus composite oxide lithium A positive electrode active material (17) for secondary batteries was obtained.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.05~0.3μmであり、CHN元素分析より、炭素含有量が3.5%であった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. The primary particle diameter was 0.05 to 0.3 μm from SEM (scanning electron microscope) observation, and the carbon content was 3.5% from CHN elemental analysis.
[実施例18;リチウムマンガンリン複合酸化物]
 酸化マンガン(Mn)、五酸化二リン(P)、炭酸リチウム(LiCO)、及び天然ワックスであるビーズワックス(三木化学工業社製)とを、マンガンとリンとリチウムの元素比率が1:1:1で、原料混合物中の天然ワックスの含有率が40.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、400℃で15時間焼成、冷却を行ったあと、乳鉢にて混合を行い、800℃で20時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウムマンガンリン複合酸化物であるリチウム二次電池用正極活物質材料(18)を得た。
[Example 18: Lithium manganese phosphorus composite oxide]
Manganese oxide (Mn 3 O 4 ), diphosphorus pentoxide (P 2 O 5 ), lithium carbonate (Li 2 CO 3 ), and bead wax (manufactured by Miki Chemical Industry Co., Ltd.), natural wax, manganese and phosphorus The element ratio of lithium is 1: 1: 1, and the natural wax content in the raw material mixture is weighed so as to be 40.0%, pulverized and mixed in a mortar, then filled into an alumina crucible, and placed in an electric furnace. Then, after baking and cooling at 400 ° C. for 15 hours in a nitrogen atmosphere, mixing in a mortar, baking at 800 ° C. for 20 hours, and pulverizing the obtained fired product in a mortar and lithium manganese phosphorus composite oxidation As a result, a positive electrode active material (18) for a lithium secondary battery was obtained.
 得られたリチウムマンガンリン複合酸化物は、XRD(X線回折)測定よりLiMnPOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.8~1.5μmであり、CHN元素分析より、炭素含有量が6.8%であった。 The obtained lithium manganese phosphorus composite oxide was identified as LiMnPO 4 by XRD (X-ray diffraction) measurement. The primary particle diameter was 0.8 to 1.5 μm from SEM (scanning electron microscope) observation, and the carbon content was 6.8% from CHN elemental analysis.
[実施例19;リチウムマンガンリン複合酸化物]
 酸化マンガン(Mn)、五酸化二リン(P)、炭酸リチウム(LiCO)、及び天然ワックスであるビーズワックス(三木化学工業社製)とを、マンガンとリンとリチウムの元素比率が1:1:1で、原料混合物中の天然ワックスの含有率が20.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、400℃で15時間焼成、冷却を行ったあと、乳鉢にて混合を行い、800℃で20時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウムマンガンリン複合酸化物であるリチウム二次電池用正極活物質材料(19)を得た。
[Example 19: lithium manganese phosphorus composite oxide]
Manganese oxide (Mn 3 O 4 ), diphosphorus pentoxide (P 2 O 5 ), lithium carbonate (Li 2 CO 3 ), and bead wax (manufactured by Miki Chemical Industry Co., Ltd.), natural wax, manganese and phosphorus The element ratio of lithium is 1: 1: 1, and the natural wax content in the raw material mixture is weighed to 20.0%, pulverized and mixed in a mortar, then filled into an alumina crucible, and placed in an electric furnace. Then, after baking and cooling at 400 ° C. for 15 hours in a nitrogen atmosphere, mixing in a mortar, baking at 800 ° C. for 20 hours, and pulverizing the obtained fired product in a mortar and lithium manganese phosphorus composite oxidation As a result, a positive electrode active material (19) for a lithium secondary battery was obtained.
 得られたリチウムマンガンリン複合酸化物は、XRD(X線回折)測定よりLiMnPOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.5~1.2μmであり、CHN元素分析より、炭素含有量が4.5%であった。 The obtained lithium manganese phosphorus composite oxide was identified as LiMnPO 4 by XRD (X-ray diffraction) measurement. The primary particle diameter was 0.5 to 1.2 μm from SEM (scanning electron microscope) observation, and the carbon content was 4.5% from CHN elemental analysis.
[実施例20;リチウムマンガンリン複合酸化物]
 酸化マンガン(Mn)、五酸化二リン(P)、炭酸リチウム(LiCO)、及び変性天然樹脂であるハリマックT-80(ハリマ化成社製)とを、マンガンとリンとリチウムの元素比率が1:1:1で、原料混合物中の天然樹脂の含有率が40.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、400℃で15時間焼成、冷却を行ったあと、乳鉢にて混合を行い、800℃で20時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウムマンガンリン複合酸化物であるリチウム二次電池用正極活物質材料(20)を得た。
[Example 20: Lithium manganese phosphorus composite oxide]
Manganese oxide (Mn 3 O 4 ), diphosphorus pentoxide (P 2 O 5 ), lithium carbonate (Li 2 CO 3 ), and a modified natural resin, Harimac T-80 (manufactured by Harima Chemical Co., Ltd.), The element ratio of phosphorus and lithium is 1: 1: 1, and the natural resin content in the raw material mixture is weighed to be 40.0%, pulverized and mixed in a mortar, then filled into an alumina crucible, After firing and cooling at 400 ° C. for 15 hours in a nitrogen atmosphere in a furnace, mixing in a mortar, firing at 800 ° C. for 20 hours, and pulverizing the obtained fired product in a mortar to obtain lithium manganese phosphorus A positive electrode active material (20) for a lithium secondary battery, which was a composite oxide, was obtained.
 得られたリチウムマンガンリン複合酸化物は、XRD(X線回折)測定よりLiMnPOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は1.0~1.5μmであり、CHN元素分析より、炭素含有量が7.5%であった。 The obtained lithium manganese phosphorus composite oxide was identified as LiMnPO 4 by XRD (X-ray diffraction) measurement. The primary particle size was 1.0 to 1.5 μm from SEM (scanning electron microscope) observation, and the carbon content was 7.5% from CHN elemental analysis.
[実施例21;リチウムマンガンリン複合酸化物]
 酸化マンガン(Mn)、五酸化二リン(P)、炭酸リチウム(LiCO)、及び変性天然樹脂であるハリマックT-80(ハリマ化成社製)とを、マンガンとリンとリチウムの元素比率が1:1:1で、原料混合物中の変性天然樹脂の含有率が20.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、400℃で15時間焼成、冷却を行ったあと、乳鉢にて混合を行い、800℃で20時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウムマンガンリン複合酸化物であるリチウム二次電池用正極活物質材料(21)を得た。
[Example 21: lithium manganese phosphorus composite oxide]
Manganese oxide (Mn 3 O 4 ), diphosphorus pentoxide (P 2 O 5 ), lithium carbonate (Li 2 CO 3 ), and a modified natural resin, Harimac T-80 (manufactured by Harima Chemical Co., Ltd.), The element ratio of phosphorus and lithium is 1: 1: 1, and weighed so that the content of the modified natural resin in the raw material mixture is 20.0%, pulverized and mixed in a mortar, and then filled into an alumina crucible, After firing and cooling at 400 ° C. for 15 hours in a nitrogen atmosphere in an electric furnace, mixing in a mortar, firing at 800 ° C. for 20 hours, and pulverizing the obtained fired product in a mortar, lithium manganese A positive electrode active material (21) for a lithium secondary battery, which was a phosphorus composite oxide, was obtained.
 得られたリチウムマンガンリン複合酸化物は、XRD(X線回折)測定よりLiMnPOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は1.2~1.8μmであり、CHN元素分析より、炭素含有量が5.8%であった。 The obtained lithium manganese phosphorus composite oxide was identified as LiMnPO 4 by XRD (X-ray diffraction) measurement. The primary particle diameter was 1.2 to 1.8 μm from SEM (scanning electron microscope) observation, and the carbon content was 5.8% from CHN elemental analysis.
[比較例1;リチウムコバルト複合酸化物]
 酸化コバルト(CoO)、炭酸リチウム(LiCO)、及びスクロースとを、コバルトとリチウムの元素比率が1:1で、原料混合物中のスクロースの含有率が2.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて空気雰囲気下、850℃で10時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウムコバルト複合酸化物であるリチウム二次電池用正極活物質材料(22)を得た。
[Comparative Example 1; lithium cobalt composite oxide]
Cobalt oxide (CoO 2 ), lithium carbonate (Li 2 CO 3 ), and sucrose so that the elemental ratio of cobalt to lithium is 1: 1 and the sucrose content in the raw material mixture is 2.0%. After weighing and mixing in a mortar, filling in an alumina crucible, firing in an electric furnace in an air atmosphere at 850 ° C. for 10 hours, and pulverizing the obtained fired product in a mortar to obtain a lithium cobalt composite oxide Thus, a positive electrode active material (22) for a lithium secondary battery was obtained.
 得られたリチウムコバルト複合酸化物は、XRD(X線回折)測定よりLiCoOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は1.0~8.0μmであり、CHN元素分析より、炭素含有量が0.3%であった。 The obtained lithium cobalt composite oxide was identified as LiCoO 2 by XRD (X-ray diffraction) measurement. The primary particle diameter was 1.0 to 8.0 μm from SEM (scanning electron microscope) observation, and the carbon content was 0.3% from CHN elemental analysis.
[比較例2;リチウムマンガン複合酸化物]
 酸化マンガン(Mn)、硝酸リチウム(LiNO)、及びスクロースとを、マンガンとリチウムの元素比率が2:1で、原料混合物中のスクロースの含有率が2.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて空気雰囲気下、300℃で24時間焼成、冷却を行ったあと、乳鉢にて混合を行い、700℃で30時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウムマンガン複合酸化物であるリチウム二次電池用正極活物質材料(23)を得た。
[Comparative Example 2; lithium manganese composite oxide]
Manganese oxide (Mn 3 O 4 ), lithium nitrate (LiNO 3 ), and sucrose so that the element ratio of manganese to lithium is 2: 1 and the sucrose content in the raw material mixture is 2.0%. After weighing and mixing in a mortar, filling into an alumina crucible, baking and cooling in an electric furnace in an air atmosphere at 300 ° C. for 24 hours, mixing in a mortar, and 700 ° C. for 30 hours Baking was performed, and the obtained fired product was pulverized in a mortar to obtain a positive electrode active material (23) for a lithium secondary battery, which is a lithium manganese composite oxide.
 得られたリチウムマンガン複合酸化物は、XRD(X線回折)測定よりLiMnと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.8~6.0μmであり、CHN元素分析より、炭素含有量が0.25%であった。 The obtained lithium manganese composite oxide was identified as LiMn 2 O 3 by XRD (X-ray diffraction) measurement. The primary particle size was 0.8 to 6.0 μm from SEM (scanning electron microscope) observation, and the carbon content was 0.25% from CHN elemental analysis.
[比較例3;リチウム鉄リン複合酸化物]
 リン酸第一鉄八水和物(Fe(PO・8HO)、リン酸リチウム(LiPO)、及びスクロースとを、鉄とリチウムの元素比率が1:1で、原料混合物中のスクロースの含有率が10.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、300℃で10時間焼成、冷却を行ったあと、乳鉢にて混合を行い、700℃で15時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(24)を得た。
[Comparative Example 3; lithium iron phosphorus composite oxide]
Ferrous phosphate octahydrate (Fe 3 (PO 4 ) 2 · 8H 2 O), lithium phosphate (Li 3 PO 4 ), and sucrose with an elemental ratio of iron to lithium of 1: 1, Weigh so that the content of sucrose in the raw material mixture is 10.0%, pulverize and mix in a mortar, fill in an alumina crucible, and calcinate and cool in an electric furnace at 300 ° C. for 10 hours in a nitrogen atmosphere. After that, the mixture was mixed in a mortar, fired at 700 ° C. for 15 hours, and the fired product obtained was pulverized in a mortar to be a lithium iron phosphorus composite oxide positive electrode active material for lithium secondary battery ( 24) was obtained.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.05~1.0μm(図6;30000倍)で、粒子同士の融着により大きな凝集粒子が多数確認された。更に、CHN元素分析より、炭素含有量が5.8%であった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. Further, from SEM (scanning electron microscope) observation, the primary particle diameter was 0.05 to 1.0 μm (FIG. 6; 30000 times), and many large aggregated particles were confirmed by the fusion of the particles. Furthermore, the carbon content was 5.8% from CHN elemental analysis.
[比較例4;リチウム鉄リン複合酸化物]
 リン酸鉄無水和物(α-FePO)、炭酸リチウム(LiCO)、及びスクロースとを、鉄とリチウムの元素比率が1:1で、原料混合物中のスクロースの含有率が10.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、700℃で15時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(25)を得た。
[Comparative Example 4: Lithium iron phosphorus composite oxide]
An iron phosphate anhydrate (α-FePO 4 ), lithium carbonate (Li 2 CO 3 ), and sucrose have an element ratio of iron to lithium of 1: 1, and the sucrose content in the raw material mixture is 10. Weighed to 0%, pulverized and mixed in a mortar, filled in an alumina crucible, baked at 700 ° C. for 15 hours in a nitrogen atmosphere in an electric furnace, and pulverized the resulting baked product in a mortar Then, a positive electrode active material (25) for a lithium secondary battery, which is a lithium iron phosphorus composite oxide, was obtained.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.05~2.0μm(図7;20000倍、図8;50000倍)と粒子径のバラツキが大きく、粒子同士の融着も多数確認された。更に、CHN元素分析より、炭素含有量は1.8%と少ないものであった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. In addition, as observed by SEM (scanning electron microscope), the primary particle size is 0.05 to 2.0 μm (FIG. 7; 20000 times, FIG. 8; 50000 times), and the particle size varies greatly. Many were confirmed. Furthermore, the carbon content was as low as 1.8% by CHN elemental analysis.
[比較例5;リチウム鉄リン複合酸化物]
 リン酸鉄無水和物(α-FePO)、炭酸リチウム(LiCO)、及びポリエチレングリコール(分子量20000;和光純薬社製)とを、鉄とリチウムの元素比率が1:1で、原料混合物中のポリエチレングリコールの含有率が10.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、700℃で15時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(26)を得た。
[Comparative Example 5: Lithium iron phosphorus composite oxide]
An iron phosphate anhydrate (α-FePO 4 ), lithium carbonate (Li 2 CO 3 ), and polyethylene glycol (molecular weight 20000; manufactured by Wako Pure Chemical Industries, Ltd.), the element ratio of iron and lithium being 1: 1, Weighing so that the polyethylene glycol content in the raw material mixture is 10.0%, pulverizing and mixing in a mortar, filling in an alumina crucible, and baking in an electric furnace at 700 ° C. for 15 hours in a nitrogen atmosphere The obtained fired product was pulverized in a mortar to obtain a positive electrode active material (26) for a lithium secondary battery, which is a lithium iron phosphorus composite oxide.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.1~0.4μmと粒子径のバラツキは小さいものであったが、CHN元素分析より、炭素含有量が0.5%と非常に少ないものであった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. In addition, from the observation with SEM (scanning electron microscope), the primary particle size was 0.1 to 0.4 μm and the variation in the particle size was small, but from CHN elemental analysis, the carbon content was 0.5%. Very few.
[比較例6;リチウム鉄リン複合酸化物]
 リン酸鉄無水和物(α-FePO)、炭酸リチウム(LiCO)、及びポリ(1,4-ブチレンテレフタレート)(アルドリッチケミカル社製)とを、鉄とリチウムの元素比率が1:1で、原料混合物中のポリ(1,4-ブチレンテレフタレート)の含有率が10.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、700℃で15時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウム鉄リン複合酸化物であるリチウム二次電池用正極活物質材料(27)を得た。
[Comparative Example 6; lithium iron phosphorus composite oxide]
An iron phosphate lithium (α-FePO 4 ), lithium carbonate (Li 2 CO 3 ), and poly (1,4-butylene terephthalate) (manufactured by Aldrich Chemical Co., Ltd.) having an element ratio of iron to lithium of 1: 1 and weighed so that the content of poly (1,4-butylene terephthalate) in the raw material mixture is 10.0%, pulverized and mixed in a mortar, filled in an alumina crucible, and then nitrogened in an electric furnace. Firing was performed at 700 ° C. for 15 hours in an atmosphere, and the obtained fired product was pulverized in a mortar to obtain a positive electrode active material (27) for a lithium secondary battery, which is a lithium iron-phosphorus composite oxide.
 得られたリチウム鉄リン複合酸化物は、XRD(X線回折)測定よりLiFePOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.05~0.3μmと粒子径のバラツキは小さいものであったが、CHN元素分析より、炭素含有量が1.0%と非常に少ないものであった。 The obtained lithium iron phosphorus composite oxide was identified as LiFePO 4 by XRD (X-ray diffraction) measurement. In addition, the SEM (scanning electron microscope) observation showed that the primary particle size was 0.05 to 0.3 μm and the variation in particle size was small, but the CHN elemental analysis showed that the carbon content was 1.0%. Very few.
[比較例7;リチウムマンガンリン複合酸化物]
 酸化マンガン(Mn)、五酸化二リン(P)、炭酸リチウム(LiCO)、及びスクロースとを、マンガンとリンとリチウムの元素比率が1:1:1で、原料混合物中のスクロースの含有率が20.0%となるように秤量し、乳鉢で粉砕混合したあと、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、400℃で15時間焼成、冷却を行ったあと、乳鉢にて混合を行い、800℃で20時間焼成を行い、得られた焼成物を乳鉢にて粉砕しリチウムマンガンリン複合酸化物であるリチウム二次電池用正極活物質材料(28)を得た。
[Comparative Example 7; lithium manganese phosphorus composite oxide]
Manganese oxide (Mn 3 O 4 ), diphosphorus pentoxide (P 2 O 5 ), lithium carbonate (Li 2 CO 3 ), and sucrose with an element ratio of manganese, phosphorus, and lithium of 1: 1: 1, Weigh so that the sucrose content in the raw material mixture is 20.0%, pulverize and mix in a mortar, fill into an alumina crucible, and calcinate and cool in an electric furnace at 400 ° C. for 15 hours in a nitrogen atmosphere. After that, the mixture was mixed in a mortar, baked at 800 ° C. for 20 hours, and the fired product obtained was pulverized in a mortar to be a lithium manganese phosphorus composite oxide positive electrode active material for lithium secondary battery ( 28) was obtained.
 得られたリチウムマンガンリン複合酸化物は、XRD(X線回折)測定よりLiMnPOと同定された。また、SEM(走査型電子顕微鏡)観察より、一次粒子径は0.2~2.0μmと粒子径のバラツキが大きく、CHN元素分析より、炭素含有量が2.2%と少ないものであった。 The obtained lithium manganese phosphorus composite oxide was identified as LiMnPO 4 by XRD (X-ray diffraction) measurement. In addition, the primary particle size was 0.2-2.0 μm as observed by SEM (scanning electron microscope), and the particle size variation was large, and the carbon content was as low as 2.2% by CHN elemental analysis. .
<リチウム二次電池用正極合剤ペーストの調製>
 表1に示すように、リチウム二次電池用正極活物質材料(1)~(28)に対して、カーボンブラック(デンカブラックHS-100;電気化学工業社製)、ポリフッ化ビニリデンPVDF(KFポリマーW#1100;クレハ社製)、N-メチル-2-ピロリドン(NMP)を加え、プラネタリーミキサーで混練し、正極合剤ペースト(1)~(28)を調製した。
<Preparation of positive electrode mixture paste for lithium secondary battery>
As shown in Table 1, carbon black (Denka Black HS-100; manufactured by Denki Kagaku Kogyo Co., Ltd.), polyvinylidene fluoride PVDF (KF polymer) with respect to the positive electrode active material materials (1) to (28) for lithium secondary batteries. W # 1100 (manufactured by Kureha) and N-methyl-2-pyrrolidone (NMP) were added and kneaded with a planetary mixer to prepare positive electrode mixture pastes (1) to (28).
 各正極合剤ペーストの固形分組成重量比は以下のように調整した。
 正極合剤ペースト(1)、(22);正極活物質材料/カーボンブラック/PVDF=90/5/5。
 正極合剤ペースト(2)、(23);正極活物質材料/カーボンブラック/PVDF=90/5/5。
 正極合剤ペースト(3)~(21)、(24)~(28);正極活物質材料/カーボンブラック/PVDF=91/4/5。
The solid content composition weight ratio of each positive electrode mixture paste was adjusted as follows.
Positive electrode mixture paste (1), (22); positive electrode active material / carbon black / PVDF = 90/5/5.
Positive electrode mixture paste (2), (23); positive electrode active material / carbon black / PVDF = 90/5/5.
Positive electrode mixture pastes (3) to (21), (24) to (28); positive electrode active material / carbon black / PVDF = 91/4/5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中、略称は以下に示す通りである。
・NMP:N-メチル-2-ピロリドン
・PVDF:ポリフッ化ビニリデン(KFポリマーW#1100、クレハ社製)
In Table 1, abbreviations are as shown below.
NMP: N-methyl-2-pyrrolidone PVDF: polyvinylidene fluoride (KF polymer W # 1100, manufactured by Kureha)
<リチウム二次電池用正極の作製>
[実施例1~21、比較例1~7]
 先に調製した正極合剤ペースト(1)~(28)を、集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥し、ロールプレス等による圧延処理を行い、厚さ50μmの正極合剤層を作製した。
<Preparation of positive electrode for lithium secondary battery>
[Examples 1 to 21, Comparative Examples 1 to 7]
The positive electrode mixture pastes (1) to (28) prepared above are applied onto a 20 μm-thick aluminum foil serving as a current collector using a doctor blade, dried by heating under reduced pressure, and rolled by a roll press or the like. Then, a positive electrode mixture layer having a thickness of 50 μm was produced.
<リチウム二次電池正極評価用セルの組み立て>
 先に作製した正極を、直径9mmに打ち抜き作用極とし、金属リチウム箔(厚さ0.15mm)を対極として、作用極及び対極の間に多孔質ポリプロピレンフィルムからなるセパレーター(セルガード社製 #2400)を挿入積層し、電解液(エチレンカーボネートとジエチルカーボネートを1:1に混合した混合溶媒にLiPFを1Mの濃度で溶解させた非水電解液)を満たして二極密閉式金属セル(宝仙社製 HSフラットセル)を組み立てた。セルの組み立てはアルゴンガス置換したグロ-ボックス内で行い、セル組み立て後、所定の電池特性評価を行った。
<Assembly of lithium secondary battery positive electrode evaluation cell>
A separator made of a porous polypropylene film between the working electrode and the counter electrode (# 2400, manufactured by Celgard Co., Ltd.) with the positive electrode fabricated previously punched out to a diameter of 9 mm and used as a working electrode and a metal lithium foil (thickness 0.15 mm) as a counter electrode Are inserted and laminated, filled with an electrolyte (nonaqueous electrolyte in which LiPF 6 is dissolved at a concentration of 1 M in a mixed solvent of ethylene carbonate and diethyl carbonate in a ratio of 1: 1), and a bipolar metal cell (Hosen) (HS flat cell). The cell was assembled in a glow box substituted with argon gas, and after the cell was assembled, predetermined battery characteristics were evaluated.
<リチウム二次電池正極特性評価>
[充放電サイクル特性 実施例1、2、比較例1、2]
 作製した電池評価用セルを室温(25℃)で、充電レート0.2C、2.0Cの定電流定電圧充電(上限電圧4.2V)で満充電とし、充電時と同じレートの定電流で放電下限電圧3.0Vまで放電を行う充放電を1サイクル(充放電間隔休止時間30分)とし、このサイクルを合計20サイクル行い、充放電サイクル特性評価(評価装置:北斗電工社製SM-8)を行った。充電レート0.2Cでの初期容量に対する充電レート2.0Cでの初期容量の割合を高レート放電容量維持率とした。評価結果を表2に示した。
<Characteristic evaluation of lithium secondary battery positive electrode>
[Charge / Discharge Cycle Characteristics Examples 1 and 2 and Comparative Examples 1 and 2]
The battery evaluation cell thus prepared was fully charged at a constant current and constant voltage charge (upper limit voltage 4.2 V) at room temperature (25 ° C.) with a charge rate of 0.2 C and 2.0 C, and at a constant current at the same rate as during charging. Charging / discharging for discharging to a discharge lower limit voltage of 3.0V is defined as one cycle (charging / discharging interval rest time 30 minutes). ) The ratio of the initial capacity at a charge rate of 2.0 C to the initial capacity at a charge rate of 0.2 C was defined as a high rate discharge capacity maintenance rate. The evaluation results are shown in Table 2.
[充放電サイクル特性 実施例3~21、比較例3~7]
 作製した電池評価用セルを室温(25℃)で、充電レート0.2C、2.0Cの定電流定電圧充電(上限電圧4.5V)で満充電とし、充電時と同じレートの定電流で放電下限電圧2.0Vまで放電を行う充放電を1サイクル(充放電間隔休止時間30分)とし、このサイクルを合計20サイクル行い、充放電サイクル特性評価(評価装置:北斗電工社製SM-8)を行った。充電レート0.2Cでの初期容量に対する充電レート2.0Cでの初期容量の割合を高レート放電容量維持率とした。評価結果を表2に示した。
[Charge / Discharge Cycle Characteristics Examples 3 to 21, Comparative Examples 3 to 7]
The battery evaluation cell thus prepared was fully charged at a constant current and constant voltage charge (upper limit voltage 4.5 V) at a room temperature (25 ° C.) with a charge rate of 0.2 C and 2.0 C, and at a constant current at the same rate as during charging. Charging / discharging for discharging to a discharge lower limit voltage of 2.0 V is defined as one cycle (charging / discharging interval rest time 30 minutes), and this cycle is performed for a total of 20 cycles. ) The ratio of the initial capacity at a charge rate of 2.0 C to the initial capacity at a charge rate of 0.2 C was defined as a high rate discharge capacity maintenance rate. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、実施例では正極活物質材料の粒子径が狭い範囲で揃っているため、比較例に比べて電極塗膜中での正極活物質材料の充填密度がより高いものとなり、電極塗膜中の導電性が向上し、0.2Cでの初期放電容量が向上した。又、高レート放電容量維持率においても、実施例の正極活物質材料の方が比較例に比べて高い傾向にあった。 As can be seen from Table 2, in the examples, the particle diameter of the positive electrode active material is uniform in a narrow range, so that the packing density of the positive electrode active material in the electrode coating film is higher than in the comparative example, The conductivity in the electrode coating was improved, and the initial discharge capacity at 0.2C was improved. Also, in the high rate discharge capacity maintenance rate, the positive electrode active material of the example tended to be higher than the comparative example.

Claims (9)

  1.  リチウム遷移金属複合酸化物の粒子表面の一部または全部が導電性炭素で被覆されてなり、前記導電性炭素が、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料の加熱分解物であることを特徴とする、リチウム二次電池用正極活物質材料。 Part or all of the particle surface of the lithium transition metal composite oxide is coated with conductive carbon, and the conductive carbon is selected from the group consisting of unmodified or modified natural wax, natural resin, and vegetable oil. A positive electrode active material for a lithium secondary battery, characterized by being a thermal decomposition product of a natural material.
  2.  導電性炭素の含有率は、リチウム二次電池用正極活物質材料全体に対して、0.1重量%以上かつ30重量%以下であることを特徴とする、請求項1に記載のリチウム二次電池用正極活物質材料。 2. The lithium secondary according to claim 1, wherein a content of the conductive carbon is 0.1 wt% or more and 30 wt% or less with respect to the whole positive electrode active material for a lithium secondary battery. Positive electrode active material for batteries.
  3.  リチウム遷移金属複合酸化物が、オリビン構造を有するリチウム遷移金属リン複合酸化物であることを特徴とする、請求項1または2に記載のリチウム二次電池用正極活物質材料。 3. The positive electrode active material for a lithium secondary battery according to claim 1, wherein the lithium transition metal composite oxide is a lithium transition metal phosphorus composite oxide having an olivine structure.
  4.  リチウム含有化合物と、遷移金属含有化合物と、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料とを混合物とする工程と、前記混合物を200~1100℃で加熱する工程とを含むことを特徴とする、リチウム二次電池用正極活物質材料の製造方法。 A step of mixing a lithium-containing compound, a transition metal-containing compound, and a natural material selected from the group consisting of an unmodified or modified natural wax, natural resin, and vegetable oil; and heating the mixture at 200 to 1100 ° C. The manufacturing method of the positive electrode active material material for lithium secondary batteries characterized by including the process to carry out.
  5.  リチウム含有化合物と、遷移金属含有化合物と、リン含有化合物と、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料とを混合物とする工程と、前記混合物を200~1100℃で加熱する工程とを含むことを特徴とする、リチウム二次電池用正極活物質材料の製造方法。 A step of mixing a lithium-containing compound, a transition metal-containing compound, a phosphorus-containing compound, and a natural material selected from the group consisting of an unmodified or modified natural wax, natural resin, and vegetable oil; And a method of producing a positive electrode active material for a lithium secondary battery, comprising a step of heating at ˜1100 ° C.
  6.  リチウム遷移金属複合酸化物と、未変性または変性の、天然ワックス、天然樹脂、および植物油からなる群から選ばれる天然材料とを混合物とする工程と、前記混合物を200~1100℃で加熱する工程とを含むことを特徴とする、リチウム二次電池用正極活物質材料の製造方法。 A step of mixing a lithium transition metal composite oxide with a natural material selected from the group consisting of an unmodified or modified natural wax, natural resin, and vegetable oil; and heating the mixture at 200 to 1100 ° C. The manufacturing method of the positive electrode active material material for lithium secondary batteries characterized by including this.
  7.  請求項4~6のいずれかに記載の製造方法を用いて製造されることを特徴とする、リチウム二次電池用正極活物質材料。 A positive electrode active material for a lithium secondary battery, wherein the positive electrode active material is manufactured by using the manufacturing method according to any one of claims 4 to 6.
  8.  請求項1~3、7のいずれかに記載のリチウム二次電池用正極活物質材料を含有することを特徴とする、電極。 An electrode comprising the positive electrode active material for a lithium secondary battery according to any one of claims 1 to 3 and 7.
  9.  請求項8に記載の電極を正極として備えることを特徴とする、リチウム二次電池。 A lithium secondary battery comprising the electrode according to claim 8 as a positive electrode.
PCT/JP2010/067647 2009-10-09 2010-10-07 Positive electrode active material for lithium secondary battery, process for production of same, and lithium secondary battery utilizing same WO2011043419A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080045624.5A CN102576873B (en) 2009-10-09 2010-10-07 Positive active material for lithium secondary battery material, its manufacture method and use its lithium secondary battery
JP2011535452A JP5640987B2 (en) 2009-10-09 2010-10-07 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009234883 2009-10-09
JP2009-234883 2009-10-09

Publications (1)

Publication Number Publication Date
WO2011043419A1 true WO2011043419A1 (en) 2011-04-14

Family

ID=43856869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067647 WO2011043419A1 (en) 2009-10-09 2010-10-07 Positive electrode active material for lithium secondary battery, process for production of same, and lithium secondary battery utilizing same

Country Status (4)

Country Link
JP (1) JP5640987B2 (en)
KR (1) KR20120079125A (en)
CN (1) CN102576873B (en)
WO (1) WO2011043419A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030422A (en) * 2011-07-29 2013-02-07 Toyota Motor Corp Lithium secondary battery
CN104167550A (en) * 2014-07-28 2014-11-26 北京万源工业有限公司 Nano solid-core iron phosphate-carbon source-graphene composite material and preparation method thereof
US10622670B2 (en) * 2017-02-14 2020-04-14 Lg Chem, Ltd. Positive electrode active material for secondary battery and method for preparing the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104603992B (en) * 2012-08-28 2018-08-21 电化株式会社 Electrode for lithium ion secondary battery material, its manufacturing method and lithium rechargeable battery
KR101475922B1 (en) * 2012-12-27 2014-12-23 전자부품연구원 Positive active material coated with manganese phosphate for rechargeable lithium battery and process for preparing the same
US11302919B2 (en) 2016-07-20 2022-04-12 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US11569503B2 (en) 2016-07-20 2023-01-31 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US11456458B2 (en) 2016-12-08 2022-09-27 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
US11309542B2 (en) 2016-12-08 2022-04-19 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, preparing method thereof, and lithium secondary battery including positive electrode including the same
CN106784735A (en) * 2017-02-06 2017-05-31 安徽鹰龙工业设计有限公司 A kind of lithium battery composite positive pole and preparation method thereof
TW202036966A (en) * 2019-03-22 2020-10-01 宏總科技股份有限公司 Preparation method of cathode material of secondary battery
CN115172718A (en) * 2022-08-01 2022-10-11 湖北万润新能源科技股份有限公司 Method for preparing lithium iron manganese phosphate by solid-phase coating method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228194A (en) * 1999-02-04 2000-08-15 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery and lithium secondary battery
JP2003100293A (en) * 2001-09-25 2003-04-04 Showa Denko Kk Carbon material and manufacturing method and usage thereof
JP2004509447A (en) * 2000-09-26 2004-03-25 ハイドロ−ケベック Method for the synthesis of redox materials coated with carbon of controlled size
WO2007034821A1 (en) * 2005-09-21 2007-03-29 Kanto Denka Kogyo Co., Ltd. Positive electrode active material, method for producing same, and nonaqueous electrolyte battery having positive electrode containing positive electrode active material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289012A (en) * 1996-04-22 1997-11-04 Pilot Precision Co Ltd Film electrode and manufacture thereof
CA2569991A1 (en) * 2006-12-07 2008-06-07 Michel Gauthier C-treated nanoparticles and agglomerate and composite thereof as transition metal polyanion cathode materials and process for making

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228194A (en) * 1999-02-04 2000-08-15 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery and lithium secondary battery
JP2004509447A (en) * 2000-09-26 2004-03-25 ハイドロ−ケベック Method for the synthesis of redox materials coated with carbon of controlled size
JP2003100293A (en) * 2001-09-25 2003-04-04 Showa Denko Kk Carbon material and manufacturing method and usage thereof
WO2007034821A1 (en) * 2005-09-21 2007-03-29 Kanto Denka Kogyo Co., Ltd. Positive electrode active material, method for producing same, and nonaqueous electrolyte battery having positive electrode containing positive electrode active material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENG-ZHANG LUA ET AL.: "Study of LiFeP04 cathode materials coated with high surface area carbon", JOURNAL OF POWER SOURCES, vol. 189, 2008, pages 155 - 162, XP025982680, DOI: doi:10.1016/j.jpowsour.2008.10.015 *
KETACK KIM ET AL.: "Carbon coatings with olive oil, soybean oil and butter on nano-LiFeP04", JOURNAL OF POWER SOURCES, vol. 167, 2007, pages 524 - 528, XP022032237, DOI: doi:10.1016/j.jpowsour.2007.01.097 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030422A (en) * 2011-07-29 2013-02-07 Toyota Motor Corp Lithium secondary battery
CN104167550A (en) * 2014-07-28 2014-11-26 北京万源工业有限公司 Nano solid-core iron phosphate-carbon source-graphene composite material and preparation method thereof
US10622670B2 (en) * 2017-02-14 2020-04-14 Lg Chem, Ltd. Positive electrode active material for secondary battery and method for preparing the same

Also Published As

Publication number Publication date
JPWO2011043419A1 (en) 2013-03-04
KR20120079125A (en) 2012-07-11
CN102576873B (en) 2016-05-11
CN102576873A (en) 2012-07-11
JP5640987B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5640987B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
KR101300304B1 (en) Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
KR100952277B1 (en) Composition for battery
JP2012195156A (en) Positive electrode active material substance for lithium secondary battery, method for manufacturing the same, and lithium secondary battery using the same
JP6284037B2 (en) Granulated particles for positive electrode of lithium secondary battery and manufacturing method thereof, composite ink and lithium secondary battery
JP5589338B2 (en) Method for producing positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
EP2811550B1 (en) Composition for forming secondary cell electrode, secondary cell electrode, and secondary cell
JP6205981B2 (en) Lithium secondary battery electrode forming composition, electrode and lithium secondary battery
US9653727B2 (en) Metal tin-carbon composites, method for producing said composites, anode active material for non-aqueous lithium secondary batteries which is produced using said composites, anode for non-aqueous lithium secondary batteries which comprises said anode active material, and non-aqueous lithium secondary battery
JP7358967B2 (en) Carbon nanotubes, carbon nanotube dispersions and their uses
JP2012195158A (en) Method for manufacturing positive electrode active material substance for lithium secondary battery, and lithium secondary battery using the same
JP5736865B2 (en) Method for producing positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP2020021629A (en) Carbon black dispersion composition for battery and use thereof
JP5824723B2 (en) Method for producing positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP2018063755A (en) Stabilized lithium powder and lithium ion secondary battery using the same
CN114902446A (en) Slurry containing low-oxygen-type nano-silicon particles, negative electrode active material, negative electrode, and lithium ion secondary battery
JP2017149920A (en) Conductive composition, collector with base layer for power storage device, electrode for power storage device and power storage device
WO2020261879A1 (en) Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2014199803A (en) Negative electrode active material for nonaqueous lithium secondary battery, negative electrode for nonaqueous lithium secondary battery containing the same, and nonaqueous lithium secondary battery
WO2021153007A1 (en) Active material for secondary battery electrodes and secondary battery using same
JP2019117725A (en) Conductive composition, power collector with ground layer for electricity storage device, electrode for electricity storage device, and electricity storage device
JP2017224408A (en) Conductive composition, backing-attached current collector for power storage device, electrode for power storage device, and power storage device
JP6760034B2 (en) Conductive composition, current collector with base layer for power storage device, electrode for power storage device, and power storage device
JP2023092639A (en) Carbon material resin composite for non-aqueous electrolyte secondary battery, and dispersion liquid for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP2019212518A (en) Negative electrode material, production method thereof, and production method of negative electrode sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080045624.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10822089

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011535452

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127010830

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10822089

Country of ref document: EP

Kind code of ref document: A1