WO2011043255A1 - Positive electrode material for lithium ion secondary battery, and process for production thereof - Google Patents

Positive electrode material for lithium ion secondary battery, and process for production thereof Download PDF

Info

Publication number
WO2011043255A1
WO2011043255A1 PCT/JP2010/067217 JP2010067217W WO2011043255A1 WO 2011043255 A1 WO2011043255 A1 WO 2011043255A1 JP 2010067217 W JP2010067217 W JP 2010067217W WO 2011043255 A1 WO2011043255 A1 WO 2011043255A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
electrode material
secondary battery
ion secondary
Prior art date
Application number
PCT/JP2010/067217
Other languages
French (fr)
Japanese (ja)
Inventor
剛 本間
高行 小松
拓也 富樫
Original Assignee
国立大学法人長岡技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人長岡技術科学大学 filed Critical 国立大学法人長岡技術科学大学
Priority to JP2011535366A priority Critical patent/JP5446017B2/en
Publication of WO2011043255A1 publication Critical patent/WO2011043255A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode material for lithium ion secondary batteries used in portable electronic devices and electric vehicles, and a method for producing the same. More specifically, the present invention relates to a phosphate-based positive electrode material that is inexpensive and effective for mass synthesis, and a method for producing the same, in place of conventional lithium cobalt oxide (LiCoO 2 ).
  • LiCoO 2 lithium cobalt oxide
  • Lithium ion secondary batteries have established themselves as high-capacity and light-weight power supplies essential for portable electronic terminals and electric vehicles.
  • inorganic metal oxides such as lithium cobaltate and lithium manganate (LiMnO 2 ) have been used as the positive electrode material of the lithium ion secondary battery.
  • LiMnO 2 lithium cobaltate and lithium manganate
  • the problem of depletion of cobalt resources has attracted attention, and from such a viewpoint, conversion to an inexpensive positive electrode material replacing LiCoO 2 is desired.
  • Li 3 Mn 2 (PO 4 ) 3 , LiMnPO 4 or the like in which iron is completely substituted with manganese, or partially substituted Li 3 (Mn x Fe 1-x ) 2 (PO 4 ) 3 or LiMn x Fe 1 -X PO 4 (0 ⁇ x ⁇ 1) or the like also has a function as a positive electrode material.
  • the characteristics required for the positive electrode material of the lithium ion secondary battery include high ionic conductivity and electronic conductivity.
  • the electronic conductivity of the lithium iron phosphate positive electrode material is usually higher than that of LiCoO 2. Low is reported as a problem.
  • Patent Document 2 a mixture containing a lithium-based oxide, an iron-based oxide, and a phosphate-based oxide in a reducing atmosphere.
  • a precursor glass body is prepared by melting and quenching in, and a method for producing lithium iron phosphate by applying a heat treatment in the vicinity of the crystallization temperature of the obtained precursor glass is proposed.
  • Patent Document 3 A precursor glass is prepared by melting, and after pulverizing the precursor glass, a carbon compound is mixed, and the precursor glass and the carbon compound are co-fired at around 500 to 700 ° C. to obtain an olivine type LiFePO 4 , or A method for synthesizing a solid solution of LiMn x Fe 1-x PO 4 has been proposed.
  • the target crystal can be synthesized by heat-treating glass (amorphous) powder with a uniform composition distribution, and the synthesis process is completed at a lower temperature and in a shorter time than conventional synthesis methods. It is a feature.
  • Patent Document 3 does not require the reduction melting step essential to the manufacturing method of Patent Document 2, but the step of subjecting the mixture of lithium, iron, and phosphoric acid oxide to normal atmospheric melting is still performed. is necessary.
  • the melting process of the mixture requires enormous energy and has problems such as corroding a noble metal container (for example, a container made of a platinum-based material) containing the mixture. That is, a melt containing a large amount of a transition metal oxide such as iron corrodes a noble metal, which may significantly reduce the life of a noble metal container.
  • a step of finely pulverizing a glass sample (precursor glass) once produced by this atmospheric melting step is also required. Therefore, there is room for further simplification of the manufacturing process, and for this purpose, it is necessary to overcome these problems.
  • the present invention has been made in view of such a situation, and a lithium ion secondary battery positive electrode material capable of efficiently imparting a conductive additive to the surface of the positive electrode material particles, further simplifying the manufacturing process, and its An object is to provide a manufacturing method.
  • the inventors of the present application prepared lithium metaphosphate (a composite oxide of phosphorus and lithium) and a transition metal compound as raw materials at a predetermined molar ratio, set in a reducing atmosphere, or If a reducing agent is added and calcined in a temperature range of 450 to 700 ° C., crystallized glass powder of olivine type LiMPO 4 crystal (M is at least one selected from Fe, Mn, Co, Ni) can be obtained. And that the glass powder can be efficiently combined with a conductive additive that improves electronic conductivity, and a positive electrode material for a lithium ion secondary battery with high conductivity can be obtained, and is proposed as the present invention. It is.
  • (1) powdered lithium metaphosphate LiPO 3 and chemical formula MO, MO 2 , M 3 O 4 , or M 2 O 3 (M is Fe, Mn, Co, A step of preparing a batch of a transition metal oxide represented by at least one selected from Ni) so that the molar ratio of lithium, phosphorus and transition metal is 1: 1: (0.8 to 1.2) And (2) a step of setting the ambient environment of the prepared batch under a reducing atmosphere, and (3) firing the obtained mixed powder, LiMPO 4 crystal (M is selected from Fe, Mn, Co, Ni) And a step of forming a crystal composed of a solid solution thereof, and a method for producing a positive electrode material for a lithium ion secondary battery.
  • lithium iron phosphate LiFePO 4 is characterized by abundant iron resources and low raw material costs.
  • LiMnPO 4 , LiCoPO 4 and LiNiPO 4 substituted with manganese, cobalt, or nickel instead of iron are superior materials from the viewpoint of higher output because they have a higher voltage than LiFePO 4 .
  • the second aspect of the present invention is as follows: (1) Powdered lithium metaphosphate LiPO 3 and chemical formula MO, MO 2 , M 3 O 4 , or M 2 O 3 (M is Fe, Mn, Co, A step of preparing a batch of a transition metal oxide represented by at least one selected from Ni) so that the molar ratio of lithium, phosphorus and transition metal is 1: 1: (0.8 to 1.2) And (2) a step of adding a reducing agent, and (3) firing the obtained mixed powder, LiMPO 4 crystals (M is at least one selected from Fe, Mn, Co, Ni) or a solid solution thereof. Forming a crystal composed of: a lithium ion secondary battery positive electrode material manufacturing method.
  • the difference between the second embodiment and the first embodiment is that the reducing agent is actually added to the prepared batch or the ambient environment of the prepared batch is subjected to a predetermined reducing atmosphere (for example, 7% hydrogen-93 % Argon).
  • a predetermined reducing atmosphere for example, 7% hydrogen-93 % Argon.
  • the production method of the first aspect is advantageous in that LiMPO 4 crystals (for example, LiFePO 4 ) can be formed by heat treatment in a predetermined reducing atmosphere without adding a reducing agent such as glucose.
  • the manufacturing method of the 2nd aspect is suitable.
  • the method for producing a positive electrode material for a lithium ion secondary battery according to the present invention is characterized in that the formed LiMPO 4 crystal is a LiMn x Fe 1-x PO 4 crystal (0 ⁇ x ⁇ 1).
  • LiMnPO 4 has a higher voltage than LiFePO 4 , but since lithium desorption is poor, a solid solution LiMn X Fe 1-x PO 4 crystal (0 ⁇ x ⁇ 1) mixed with iron and manganese is formed. Thus, lithium insertion / extraction is improved as compared with LiMnPO 4, and a positive electrode material having a higher voltage than LiFePO 4 can be synthesized.
  • the reducing agent is added in an amount of 0.1 to 50 parts by mass with respect to 100 parts by mass of the mixture prepared in the step (1). It is characterized by being. Thereby, the valence state of the transition metal ion is controlled, and the reduction is effectively promoted.
  • the method for producing a positive electrode material for a lithium ion secondary battery of the present invention is characterized in that the reducing agent is glucose.
  • glucose added as a reducing agent for crystal synthesis changes into a carbon-based substance (amorphous carbon) having conductivity during the heat treatment, so that the conductivity of the lithium ion secondary battery positive electrode material is improved. It is valid.
  • the method for producing a positive electrode material for a lithium ion secondary battery according to the present invention is characterized by further comprising (4) a step of adding a conductive additive containing a carbon-based compound.
  • a secondary battery positive electrode excellent in electron conductivity by coating the surface of the crystal with a carbon-containing conductive auxiliary agent for the purpose of supplementing the electron conductivity.
  • the material can be synthesized.
  • the addition of the reducing agent is effective in improving the conductivity because the predetermined reducing agent also changes to a carbonaceous material having conductivity during the heat treatment.
  • the conductive auxiliary agent May be added separately.
  • Carbon-based materials such as graphite, acetylene black, and amorphous carbon are chemically stable substances, and lithium ions having higher electrical conductivity can be obtained by coating the surface of LiMPO 4 powder with a carbon-based conductive additive.
  • a secondary battery positive electrode material can be synthesized.
  • the method for producing a positive electrode material for a lithium ion secondary battery of the present invention is characterized in that the firing temperature is in the range of 600 to 700 ° C.
  • the method for producing a positive electrode material for a lithium ion secondary battery according to the present invention comprises the step of melting lithium metaphosphate LiPO 3 at a temperature of 1000 to 1200 ° C. before the preparation step of (1). And a pretreatment step of pulverizing the lithium metaphosphate LiPO 3 in an amorphous state.
  • amorphous lithium metaphosphate as a raw material, firing in a lower temperature range is possible as described below.
  • the manufacturing method according to the eighth aspect is characterized in that the firing temperature is in a temperature range of 450 to 700 ° C.
  • the firing temperature is in a temperature range of 450 to 700 ° C.
  • the present invention relates to a powdered lithium metaphosphate LiPO 3 and a chemical formula MO, M 2 O, MO 2 , M 3 O 4 , or M 2 O 3 (M is Fe, Mn, Co, A transition metal oxide represented by at least one selected from Ni) is mixed so that the molar ratio of lithium, phosphorus and transition metal is 1: 1: (0.8 to 1.2).
  • the present invention relates to a positive electrode material for a lithium ion secondary battery, which is fired in an atmosphere.
  • the present invention relates to a powdered lithium metaphosphate LiPO 3 and a chemical formula MO, M 2 O, MO 2 , M 3 O 4 , or M 2 O 3 (M is Fe, Mn, Co). , At least one selected from Ni) and a molar ratio of lithium, phosphorus and transition metal is 1: 1: (0.8 to 1.2),
  • the present invention relates to a positive electrode material for a lithium ion secondary battery, which is fired by further adding a reducing agent.
  • the lithium ion secondary battery positive electrode material of the present invention is characterized in that the lithium metaphosphate LiPO 3 according to the tenth or eleventh aspect is in an amorphous state.
  • the lithium ion secondary battery positive electrode material of the present invention includes an inorganic oxide composed of phosphoric acid, lithium, and a transition metal in the fired product according to any of the tenth to twelfth aspects.
  • the amorphous phase of the product is contained, and the content is 0.01 to 20 parts by volume.
  • the electrical conductivity of the positive electrode material of the lithium ion secondary battery of the present invention is 4 to 5 digits relative to the value of the conventional product (usually on the order of 1.0 ⁇ 010 ⁇ 9 S ⁇ cm ⁇ 1 ). Improve with orders. This is presumably because many amorphous phases remain in the final fired product, which is excellent in ionic conductivity (that is, the amorphous phase behaves as a good ionic conductive phase).
  • a conductive additive is further contained.
  • the molar ratio of lithium to phosphorus is 1: 1, and a transition metal oxide is added to this to form lithium, phosphorus, transition, which is a composition of olivine crystals.
  • the molar ratio of metals can be easily set in the vicinity of 1: 1: 1.
  • the melting point of lithium metaphosphate is 640 ° C., which is lower than the melting point of lithium orthophosphate, 837 ° C., it is possible to synthesize olivine crystals at a low temperature.
  • a pretreatment process for melting and crushing a lithium-iron (transition metal) -phosphoric acid-based mixture is not required in producing a lithium ion secondary battery positive electrode material. Therefore, the manufacturing process can be further simplified, and it is possible to solve the problems of the conventional manufacturing method, such as requiring enormous energy and corroding the container containing the mixture.
  • lithium metaphosphate in order to obtain amorphous lithium metaphosphate, it is preferable to perform pretreatment by melting and pulverizing lithium metaphosphate itself, but lithium, iron (transition metal), and phosphoric acid.
  • lithium, iron (transition metal), and phosphoric acid There is no problem as in the conventional pretreatment process in which the mixture of the system oxides is melted and pulverized.
  • a melt containing a large amount of a transition metal oxide such as iron corrodes a noble metal, which may significantly reduce the life of a noble metal container (for example, a container made of a platinum-based material).
  • the melt containing lithium metaphosphate does not react with the container even if it is melted in a platinum-based container.
  • FIG. 1 It is a figure which shows the powder X-ray-diffraction pattern (in the case of reducing agent addition) of the sample produced in Example 1.
  • FIG. It is a figure which shows the powder X-ray-diffraction pattern (in the case of no addition of a reducing agent) of the sample produced in Example 1.
  • 4 is a diagram showing a differential thermal analysis curve of lithium metaphosphate LiPO 3 glass produced in Example 3.
  • FIG. 6 is a diagram showing a powder X-ray diffraction pattern of a sample produced in Example 3.
  • the lithium ion secondary battery positive electrode material of the present invention includes lithium metaphosphate LiPO 3 and the chemical formula MO, MO 2 , M 3 O 4 , or M 2 O 3 (M is at least one selected from Fe, Mn, Co, Ni) ) In which the molar ratio of lithium, phosphorus and transition metal is close to 1: 1: 1 (that is, 0.8 to 1.2).
  • the body is used as a raw material.
  • the transition metal oxide is represented by the chemical formula MO, and examples thereof include Fe (II) O and NiO.
  • the transition metal oxide is represented by the chemical formula M 3 O 4 or M 2 O 3 , for example, hematite Fe 2 O 3 , magnetite Fe 3 O 4 , Co 3 O 4. , Mn 3 O 4 .
  • the transition metal oxide is represented by the chemical formula MO 2 , for example, MnO 2 .
  • Lithium metaphosphate is a composite oxide having a molar ratio of phosphorus to lithium of 1: 1.
  • the advantage of using lithium metaphosphate as a raw material is that the molar ratio of lithium and phosphorus is 1: 1, and by adding a transition metal oxide to this, the molar ratio of lithium, phosphorus, and transition metal, which is the composition of olivine crystals, is 1 1: 1 is easy.
  • lithium orthophosphate Li 3 PO 4
  • the ratio of phosphorus to lithium is 1: 3. It is necessary to add ammonium dihydrogen phosphate.
  • the melting point of lithium metaphosphate is 640 ° C., which is lower than the melting point of lithium orthophosphate, 837 ° C., it is suitable for low-temperature synthesis.
  • the lithium metaphosphate is preferably in an amorphous state.
  • Lithium metaphosphate itself easily exhibits an amorphous state (that is, a glass state) through melting and quenching. Since the glass transition temperature of the glassy lithium metaphosphate is as low as 329 ° C., even if it is not heated to 640 ° C., which is the melting point, if it is heated to 329 ° C. or higher, it becomes a supercooled liquid state and exhibits fluidity. For this reason, it can be predicted that the reaction with the transition metal compound occurs at a lower temperature than when crystalline lithium metaphosphate is used as a raw material.
  • the range of the average particle size of the lithium metaphosphate powder is preferably as small as possible (for example, 3 ⁇ m or less), but may be a relatively large size of about 20 ⁇ m in average particle size.
  • a desired crystallized glass can be obtained even if a powder having a relatively large average particle size of about 20 ⁇ m is used. Therefore, if lithium metaphosphate having such an average particle diameter is used, it is possible to reduce the labor required for pulverizing lithium metaphosphate.
  • the transition metal oxide represented by the chemical formula MO, MO 2 , M 3 O 4 , or M 2 O 3 is also a main component of the olivine type crystal. It is. Since the valence state of the transition metal ion M represented by the olivine crystal LiMPO 4 is +2, it is preferable that the valence of the transition metal ion in the raw material is +2 in order to precipitate this crystal. If the valence state becomes +2 in the course of firing due to the effect of the reducing agent, raw materials having other valence states may be used.
  • Fe (II) O is expensive if it is iron, it is not suitable for reducing raw material costs, but even if hematite Fe 2 O 3 or magnetite Fe 3 O 4 is used, the valence state can be easily reduced to +2 by reduction. Therefore, it is preferable to use these as raw materials. From the viewpoint of reducing raw material costs, it is preferable to select MnO 2 for other transition metal oxides, Co 3 O 4 for cobalt, NiO for nickel, etc. for cobalt.
  • MnO 2 for other transition metal oxides
  • Co 3 O 4 for cobalt for nickel, etc. for cobalt.
  • the average particle size is preferably 5 ⁇ m or less, preferably 1 ⁇ m or less. More preferably.
  • the transition metal ion M in the chemical formula LiMPO 4 forms a compound consisting of any one of Fe, Mn, Co, Ni, or a solid solution consisting of a combination of two or more.
  • the composition is not particularly limited, but lithium iron manganese lithium LiMn x Fe 1-x PO 4 crystals (0 ⁇ x ⁇ 1) form a solid solution at a total rate, so the composition of iron and manganese is changed. As a result, the value of x can be changed.
  • a reducing agent containing carbon such as glucose during heating is added in an amount of 0.1 to 50 parts by mass with respect to 100 parts by mass of the crystal constituent raw materials (lithium metaphosphate and transition metal oxide). It is preferable to add in a range.
  • the addition amount of the reducing agent is less than 0.1 parts by mass, effective reduction of the transition metal ion does not proceed, and there is a possibility that a heterogeneous phase such as Li 3 M 2 (PO 4 ) 3 is formed. Moreover, when it exceeds 50 mass parts, there exists a possibility that substantial battery capacity may fall when a battery is formed.
  • the crystal constituent raw material in the reaction container excellent in the airtightness filled with reducing gas.
  • the crystal constituent material may be heat-treated at a temperature range of 450 to 700 ° C. Preferably, this makes it possible to produce crystal powder consisting of LiMPO 4 alone.
  • the average particle size of the crystallized glass powder is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less. Although it does not specifically limit about a minimum, It is 0.05 micrometer or more actually.
  • a positive electrode material in which an amorphous phase of an oxide exhibiting isotropic ion conductivity remains is preferable.
  • the theoretical density of lithium iron phosphate LiFePO 4 is 3.5 to 3.6 g ⁇ cm ⁇ 3 , and when an amorphous phase remains to some extent, the density becomes lower than the theoretical density.
  • the preferred amorphous phase content is 0.01 to 20 parts by volume, which is the detection limit. If the amorphous phase exceeds 20 parts by volume, the charge / discharge capacity may be reduced.
  • the lithium secondary battery positive electrode material of the present invention preferably contains a conductive assistant having high electron conductivity and stability in order to improve conductivity with respect to the crystallized glass powder.
  • the conductive assistant as described later in the following examples, the reducing agent added before firing the crystal constituent raw material may serve as a conductive assistant after firing, or may be reduced. You may give the conductive support agent different from an agent before baking or after baking.
  • the conductive aid is preferably coated on the crystal powder interface.
  • the conductive assistant include carbon-based conductive assistants such as graphite, acetylene black, and amorphous carbon, and metallic conductive assistants such as metal powder.
  • carbon-based conductive assistants such as graphite, acetylene black, and amorphous carbon
  • metallic conductive assistants such as metal powder.
  • amorphous carbon those in which a CO bond peak and a CH bond peak causing a decrease in conductivity of the positive electrode material are not substantially detected in the FTIR analysis are preferable.
  • the particle diameter of the conductive assistant is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the lower limit is not particularly limited, but is actually 0.05 ⁇ m or more.
  • the content of the conductive assistant is preferably 0.1 to 50 parts by weight, preferably 2 to 40 parts by weight, and 3 to 30 parts by weight with respect to 100 parts by weight of the crystal powder. Is more preferable.
  • the content of the conductive assistant is less than 0.1 parts by mass, there is a tendency that the effect of imparting conductivity to the crystal cannot be sufficiently obtained.
  • the content of the conductive additive exceeds 50 parts by mass, the potential difference between the positive electrode and the negative electrode in the lithium ion secondary battery becomes small, and a desired electromotive force may not be obtained.
  • the electrical conductivity of the positive electrode material for a lithium ion secondary battery of the present invention is 1.0 ⁇ 10 ⁇ 8 S ⁇ cm ⁇ 1 or more, and is 1.0 ⁇ 10 ⁇ 6 S ⁇ cm ⁇ 1 or more. Preferably, it is 1.0 ⁇ 10 ⁇ 4 S ⁇ cm ⁇ 1 or more.
  • Example 1 Synthesis 1 of lithium iron phosphate LiFePO 4) Lithium metaphosphate LiPO 3, and a hematite Fe 2 O 3 having an average particle diameter of 1 [mu] m, lithium, molar ratio of phosphorus and hematite 1: 1: 1 so as to 10g (i.e., lithium metaphosphate 5.1831G, Hematite is weighed and mixed (4.8169 g), 10 parts by mass (ie, 1 g) of glucose as a reducing agent is added to 100 parts by mass of the mixed powder, alcohol is added and 5 minutes in an alumina mortar. Mixed.
  • the present inventors do not add glucose, which is a reducing agent, to the mixed powder, but simply put the surrounding environment of the mixed powder under the reducing atmosphere (7% hydrogen-93% argon). Whether the synthesis of lithium iron phosphate LiFePO 4 was possible or not was also tested.
  • FIG. 1 shows an X-ray diffraction pattern (in the case of addition of a reducing agent) of the synthetic powder after adding 10 parts by mass of glucose and heat treatment.
  • the diffraction pattern of LiPO 3 and Fe 3 O 4 was confirmed in the sample heat-treated at 500 ° C. Since the diffraction peaks of Fe 2 O 3 as the raw material and LiFePO 4 as the target crystal are not confirmed, iron reduction proceeds at 500 ° C., but no reaction with lithium metaphosphate has occurred. It is done. On the other hand, the diffraction peak derived from LiFePO 4 was confirmed in the samples heat-treated at 600 ° C. and 640 ° C.
  • FIG. 2 shows an X-ray diffraction pattern (in the case of no addition of a reducing agent) of the crystal powder obtained without addition of glucose. Similar to the result of FIG. 1, a diffraction pattern derived from LiFePO 4 was confirmed at 600 ° C. or higher.
  • the density of each of the fired products formed in the case of adding glucose in FIG. 1 and in the case of adding no glucose in FIG. 2 was measured and found to be 3.42 g ⁇ cm ⁇ 3 . This is a density that is about 3% lower than the theoretical density (3.5 to 3.6 g ⁇ cm ⁇ 3 ) shown in the conventional literature on LiFePO 4 .
  • the crystal powder obtained by the method of Example 1 was molded into a pellet shape so as to have a diameter of 13 mm ⁇ and a thickness of 0.5 mm by uniaxial pressure molding, and the electrical conductivity at room temperature was measured by an AC impedance method.
  • the sample without glucose showed 5 ⁇ 10 ⁇ 5 S ⁇ cm ⁇ 1
  • the sample added with only 10 parts by mass of glucose showed 4.8 ⁇ 10 ⁇ 4 S ⁇ cm ⁇ 1 .
  • This measured value is much higher than the reported conductivity of LiFePO 4 (approximately 1.0 ⁇ 10 ⁇ 9 S ⁇ cm ⁇ 1 ).
  • Example 2 Synthesis 2 of the lithium iron phosphate LiFePO 4
  • Example 2 is the same as the process of Example 1 except that the iron reagent used in Example 1 is magnetite Fe 3 O 4 having an average particle diameter of 1 ⁇ m instead of hematite Fe 2 O 3 .
  • the sample in which the formation of LiFePO 4 was confirmed by the X-ray diffraction method was a sample heat-treated at a firing temperature of 600 ° C. or higher.
  • Example 3 Synthesis method 3 of lithium iron phosphate LiFePO 4 using lithium metaphosphate LiPO 3 in an amorphous state
  • Lithium metaphosphate LiPO 3 was placed in a platinum crucible and melted in an electric furnace heated to 1100 ° C. for 10 minutes. The molten melt was poured onto an iron plate to obtain a glass body (amorphous lithium metaphosphate). The glass body was pulverized into a powder having an average particle size of 20 ⁇ m. The result of differential thermal analysis of this glass body is shown in FIG.
  • the glass transition temperature Tg of the glass body was 329 ° C.
  • the crystallization start temperature Tx was 440 ° C.
  • the crystallization peak temperature Tp was 482 ° C.
  • the melting point of the crystal was 640 ° C.
  • the formed crystal was confirmed to be LiPO 3 by X-ray diffraction.
  • FIG. 4 shows an X-ray diffraction pattern of the synthetic powder after the heat treatment.
  • the sample heat-treated at 340 ° C. only the diffraction peak derived from Fe 2 O 3 added as a raw material and the diffraction peak derived from reduced Fe 3 O 4 were confirmed. This shows that amorphous lithium metaphosphate remains in a glass state.
  • the sample heat-treated at 500 ° C. diffraction peaks derived from LiFePO 4 and LiPO 3 were confirmed. Compared to the case where the crystalline LiPO 3 shown in FIG. 1 was used as a raw material, it was confirmed that LiFePO 4 could be synthesized at a low temperature.
  • the glassy LiPO 3 exhibits fluidity when heated above the glass transition temperature, and covers the reduced Fe 3 O 4 particle surface, It is considered that LiFePO 4 is formed by the reaction between the supercooled liquid LiPO 3 and Fe 3 O 4 particles.
  • a part of LiPO 3 was crystallized, but in the vicinity of 640 ° C., which is the melting point of LiPO 3 , a liquid phase was obtained again, and completely single-phase LiFePO 4 was obtained.
  • Example 4 Production of lithium iron phosphate LiFePO 4 pellets
  • LiPO 3 glass powder having an average particle diameter of 20 ⁇ m and hematite Fe 2 O 3 having an average particle diameter of 1 ⁇ m are adjusted so that the molar ratio of lithium, phosphorus and hematite is 1: 1: 1.
  • 10 g that is, lithium metaphosphate 5.1831 g, hematite 4.8169 g
  • 10 parts by mass that is, 1 g
  • glucose is added to 100 parts by mass of the mixed powder
  • alcohol is added. In addition, it was mixed for 5 minutes in an alumina mortar.
  • the mixed powder was dried, the mixed powder was formed into pellets so as to have a diameter of 13 mm ⁇ and a thickness of 0.5 mm by uniaxial pressing. Thereafter, heat treatment was performed at 640 ° C. for 3 hours to obtain a pellet-shaped sintered body sample.
  • Example 4 When the pellet-like sintered body sample of Example 4 was evaluated by the X-ray diffraction method, it was confirmed that it was composed of single-phase LiFePO 4 . Further, when the Raman scattering spectrum of this pellet sample was measured, the presence of amorphous carbon was confirmed. Further, a gold electrode was formed on this pellet sample, and the electrical conductivity at room temperature was measured by the AC impedance method. As a result, it was 3.3 ⁇ 10 ⁇ 3 S ⁇ cm ⁇ 1, and the electrical conductivity of the sample of Example 1 Improved by an order of magnitude. From this, in this example, glucose added as a reducing agent is further changed to amorphous carbon, which is more effective not only for reducing Fe 2 O 3 but also for improving electrical conductivity as a conductive assistant. I found out.
  • the positive electrode material for a lithium ion secondary battery of the present invention is suitable for portable electronic devices such as notebook computers and mobile phones, and electric vehicles.

Abstract

Disclosed are: a positive electrode material for a lithium ion secondary battery, which can be produced by a more simplified production process and in which an electrically conductive auxiliary agent can be attached on the surface of particles of the positive electrode material with high efficiency; and a process for producing the positive electrode material. The process for producing a positive electrode material for a lithium ion secondary battery is characterized by comprising the steps of: (1) preparing a batch which comprises lithium methaphosphate (LiPO3) powder and a transition metal oxide represented by chemical formula MO, MO2, M3O4 or M2O3 (wherein M represents at least one element selected from Fe, Mn, Co and Ni) in such a manner that the molar ratio among lithium, phosphorus and a transition metal is 1:1:(0.8-1.2); (2) adding a reducing agent to prepare a mixed powder; and (3) burning the mixed powder to form crystals of LiMPO4 (wherein M represents at least one element selected from Fe, Mn, Co and Ni) or crystals composed of a solid solution of the aforementioned LiMPO4.

Description

リチウムイオン二次電池用正極材料およびその製造方法Positive electrode material for lithium ion secondary battery and method for producing the same
 本発明は、携帯型電子機器や電気自動車に用いられるリチウムイオン二次電池正極材料およびその製造方法に関する。詳細には、従来のコバルト酸リチウム(LiCoO)に代わる、安価かつ大量合成に効果的なリン酸塩系正極材料およびその製造方法に関する。 The present invention relates to a positive electrode material for lithium ion secondary batteries used in portable electronic devices and electric vehicles, and a method for producing the same. More specifically, the present invention relates to a phosphate-based positive electrode material that is inexpensive and effective for mass synthesis, and a method for producing the same, in place of conventional lithium cobalt oxide (LiCoO 2 ).
 リチウムイオン二次電池は、携帯電子端末や電気自動車に不可欠な高容量で軽量な電源としての地位を確立している。このリチウムイオン二次電池の正極材料には、これまでコバルト酸リチウムやマンガン酸リチウム(LiMnO)等の無機金属酸化物が用いられてきている。近年の電子機器の高性能化による消費電力の増大に伴い、更なるリチウムイオン二次電池の高容量化が要求されている。また、環境保全問題やエネルギー問題の観点から、CoやMnなどの環境負荷の大きい材料からより環境調和型の材料への転換が求められている。さらに近年、コバルト資源の枯渇問題が注目されており、そのような観点からもLiCoOに代わる安価な正極材料への転換が望まれている。 Lithium ion secondary batteries have established themselves as high-capacity and light-weight power supplies essential for portable electronic terminals and electric vehicles. In the past, inorganic metal oxides such as lithium cobaltate and lithium manganate (LiMnO 2 ) have been used as the positive electrode material of the lithium ion secondary battery. With the recent increase in power consumption due to higher performance of electronic devices, further increase in capacity of lithium ion secondary batteries is required. In addition, from the viewpoint of environmental conservation problems and energy problems, there is a demand for switching from materials with a large environmental load such as Co and Mn to more environmentally conscious materials. Further, in recent years, the problem of depletion of cobalt resources has attracted attention, and from such a viewpoint, conversion to an inexpensive positive electrode material replacing LiCoO 2 is desired.
 近年、コストおよび資源などの面で有利なことから、鉄を含有するリチウム化合物の中で、マンガン系スピネル型、NASICON型LiFe(POおよびオリビン型LiFePO結晶が注目されており、種々、研究および開発が進められている(例えば、特許文献1参照)。中でもオリビン型LiFePO結晶はLiCoOに比べて温度安定性に優れ、高温での安全な動作が期待される。また、リン酸を骨格とする構造ゆえに、充放電反応による構造劣化への耐性に優れるという特徴を有する。 In recent years, manganese-based spinel, NASICON-type Li 3 Fe 2 (PO 4 ) 3 and olivine-type LiFePO 4 crystals have attracted attention among iron-containing lithium compounds because they are advantageous in terms of cost and resources. Various researches and developments are underway (see, for example, Patent Document 1). Among them, the olivine type LiFePO 4 crystal is superior in temperature stability to LiCoO 2 and is expected to operate safely at high temperatures. Further, because of the structure having phosphoric acid as a skeleton, it has a feature of excellent resistance to structural deterioration due to charge / discharge reaction.
 なお、マンガン系スピネル型、NASICON型LiFe(POおよびオリビン型LiFePO結晶の鉄サイトは、種々の遷移金属イオンで置換可能であることが知られている。例えば、完全に鉄をマンガンで置換した、LiMn(PO、LiMnPOなどや、部分置換したLi(MnFe1-x(PO、LiMnFe1-xPO(0<x<1)なども正極材料としての機能を有する。 It is known that the iron sites of manganese spinel type, NASICON type Li 3 Fe 2 (PO 4 ) 3 and olivine type LiFePO 4 crystals can be replaced with various transition metal ions. For example, Li 3 Mn 2 (PO 4 ) 3 , LiMnPO 4 or the like in which iron is completely substituted with manganese, or partially substituted Li 3 (Mn x Fe 1-x ) 2 (PO 4 ) 3 or LiMn x Fe 1 -X PO 4 (0 <x <1) or the like also has a function as a positive electrode material.
 また、リチウムイオン二次電池の正極材料に要求される特性としてイオン伝導度および電子伝導度が高いことが挙げられるが、リン酸鉄リチウム正極材料の電子伝導度は、通常、LiCoOと比べて低いことが問題点として報告されている。 In addition, the characteristics required for the positive electrode material of the lithium ion secondary battery include high ionic conductivity and electronic conductivity. However, the electronic conductivity of the lithium iron phosphate positive electrode material is usually higher than that of LiCoO 2. Low is reported as a problem.
 また、リン酸鉄リチウムの合成手法として、二価の原子価を持つ鉄原料を低温で熱処理してナノメートルオーダーの結晶粒を得る水熱法や熱分解法などが提案されている(例えば、非特許文献1参照)が、二価の鉄を含む原料試薬は高価であり、ひいては製造コストの上昇をもたらしてしまう。従って、安価な製造コストでリン酸鉄リチウムの大量合成を実現するためには製造工程は簡便であることが望まれる。 In addition, as a method for synthesizing lithium iron phosphate, a hydrothermal method or a thermal decomposition method for obtaining nanometer-order crystal grains by heat-treating an iron raw material having a divalent valence at a low temperature has been proposed (for example, However, a raw material reagent containing divalent iron is expensive, which leads to an increase in manufacturing cost. Therefore, it is desirable that the production process be simple in order to realize large-scale synthesis of lithium iron phosphate at a low production cost.
 これらの課題を解決するために、現在までに本願発明者らは、特許文献2に示すように、リチウム系酸化物、鉄系酸化物、及びリン酸系酸化物を含んだ混合物を還元雰囲気中で溶融・急冷することで前駆体ガラス体を作製し、得られる前駆体ガラスの結晶化温度近傍で熱処理を施すことでリン酸鉄リチウムを製造する手法を提案している。 In order to solve these problems, the inventors of the present invention have, as far as shown in Patent Document 2, a mixture containing a lithium-based oxide, an iron-based oxide, and a phosphate-based oxide in a reducing atmosphere. A precursor glass body is prepared by melting and quenching in, and a method for producing lithium iron phosphate by applying a heat treatment in the vicinity of the crystallization temperature of the obtained precursor glass is proposed.
 しかしながら、特許文献2に記載の製造方法における還元溶融工程は複雑なプロセスであり、当該工程の雰囲気制御は実用上難しいため、より簡便な合成方法が望まれている。 However, the reducing and melting step in the production method described in Patent Document 2 is a complicated process, and the atmosphere control in the step is difficult in practice, so a simpler synthesis method is desired.
 特許文献2の上記課題を解決するために、本願発明者らは、特許文献3に示すように、リチウム系酸化物、鉄系酸化物、及びリン酸系酸化物を含んだ混合物を大気中で溶融することで前駆体ガラスを作製し、この前駆体ガラスを粉砕した後に炭素化合物を混ぜて、前駆体ガラスと炭素化合物とを500~700℃近傍で同時焼成することでオリビン型LiFePO、またはLiMnFe1-xPOの固溶体を合成する方法を提案している。なお、この手法は均一な組成分布をもつガラス(非晶質)粉体に熱処理を施すことで目的結晶の合成が可能であり、従来の合成法に比べて低温かつ短時間で合成プロセスが完了するのが特徴である。 In order to solve the above-mentioned problem of Patent Document 2, the inventors of the present application disclosed a mixture containing a lithium-based oxide, an iron-based oxide, and a phosphate-based oxide in the atmosphere, as shown in Patent Document 3. A precursor glass is prepared by melting, and after pulverizing the precursor glass, a carbon compound is mixed, and the precursor glass and the carbon compound are co-fired at around 500 to 700 ° C. to obtain an olivine type LiFePO 4 , or A method for synthesizing a solid solution of LiMn x Fe 1-x PO 4 has been proposed. In this method, the target crystal can be synthesized by heat-treating glass (amorphous) powder with a uniform composition distribution, and the synthesis process is completed at a lower temperature and in a shorter time than conventional synthesis methods. It is a feature.
 しかしながら、特許文献3に記載の製造方法では、特許文献2の製造方法に必須の還元溶融工程を要しないが、リチウム・鉄・リン酸系酸化物の混合物に通常の大気溶融を施す工程はなお必要である。上記混合物の溶融工程は、膨大なエネルギーを要するとともに、混合物を収容する貴金属製容器(例えば、白金系材料からなる容器)を腐食させてしまうなどの問題がある。すなわち、鉄などの遷移金属酸化物を多量に含有する融液は貴金属を腐食させるため、貴金属製容器の寿命を著しく低下させる恐れがある。また、この大気溶融工程により一旦作製されたガラス試料(前駆体ガラス)を細かく粉砕する工程も必要となる。従って、製造工程の更なる簡略化の余地があり、そのためには、これらの問題を克服する必要がある。 However, the manufacturing method described in Patent Document 3 does not require the reduction melting step essential to the manufacturing method of Patent Document 2, but the step of subjecting the mixture of lithium, iron, and phosphoric acid oxide to normal atmospheric melting is still performed. is necessary. The melting process of the mixture requires enormous energy and has problems such as corroding a noble metal container (for example, a container made of a platinum-based material) containing the mixture. That is, a melt containing a large amount of a transition metal oxide such as iron corrodes a noble metal, which may significantly reduce the life of a noble metal container. In addition, a step of finely pulverizing a glass sample (precursor glass) once produced by this atmospheric melting step is also required. Therefore, there is room for further simplification of the manufacturing process, and for this purpose, it is necessary to overcome these problems.
特開平9-134725号公報JP-A-9-134725 特開2008-047412号公報JP 2008-047412 A 特開2009-087933号公報JP 2009-087933 A
 このように低温でのリチウム二次電池用正極材料の合成法がいくつか提案されているが、高価な遷移金属化合物を出発原料とし、この出発原料に対して溶融・粉砕工程等の前処理を含んだ複雑な製造プロセスとなっている。 Several methods of synthesizing positive electrode materials for lithium secondary batteries at low temperatures have been proposed in this way, but expensive transition metal compounds are used as starting materials, and the starting materials are subjected to pretreatment such as melting and grinding processes. It is a complicated manufacturing process.
 本発明はこのような状況に鑑みてなされたものであり、製造プロセスが一層簡略化され、正極材料粒子表面に効率よく導電助剤を付与することが可能なリチウムイオン二次電池正極材料及びその製造方法を提供することを目的とする。 The present invention has been made in view of such a situation, and a lithium ion secondary battery positive electrode material capable of efficiently imparting a conductive additive to the surface of the positive electrode material particles, further simplifying the manufacturing process, and its An object is to provide a manufacturing method.
 本願発明者らは前記課題を解決すべく検討した結果、メタリン酸リチウム(リンとリチウムとの複合酸化物)と遷移金属化合物を原料として所定のモル比で調合し、還元雰囲気下に設定し又は還元剤を添加した上で450~700℃の温度領域で焼成すれば、オリビン型LiMPO結晶(MはFe,Mn,Co,Niから選ばれる少なくとも1つ以上)の結晶化ガラス粉末を得ることができること、及び当該ガラス粉末には電子伝導性を向上させる導電助剤を効率よく複合化でき、導電性の高いリチウムイオン二次電池正極材料を得ることができることを見出し、本発明として提案するものである。 As a result of studying to solve the above problems, the inventors of the present application prepared lithium metaphosphate (a composite oxide of phosphorus and lithium) and a transition metal compound as raw materials at a predetermined molar ratio, set in a reducing atmosphere, or If a reducing agent is added and calcined in a temperature range of 450 to 700 ° C., crystallized glass powder of olivine type LiMPO 4 crystal (M is at least one selected from Fe, Mn, Co, Ni) can be obtained. And that the glass powder can be efficiently combined with a conductive additive that improves electronic conductivity, and a positive electrode material for a lithium ion secondary battery with high conductivity can be obtained, and is proposed as the present invention. It is.
 すなわち、本発明の第一の態様は、(1)粉体状のメタリン酸リチウムLiPOと、化学式MO、MO、M、又はM(MはFe,Mn,Co,Niから選ばれる少なくとも1種)で表される遷移金属酸化物とを、リチウム、リン及び遷移金属のモル比が1:1:(0.8~1.2)になるようバッチを調合する工程と、(2)調合されたバッチの周囲環境を還元雰囲気下に設定する工程と、(3)得られた混合粉体を焼成し、LiMPO結晶(MはFe,Mn,Co,Niから選ばれる少なくとも1種)またはそれらの固溶体から構成される結晶を形成する工程と、を含むことを特徴とするリチウムイオン二次電池正極材料の製造方法に関する。 That is, according to the first aspect of the present invention, (1) powdered lithium metaphosphate LiPO 3 and chemical formula MO, MO 2 , M 3 O 4 , or M 2 O 3 (M is Fe, Mn, Co, A step of preparing a batch of a transition metal oxide represented by at least one selected from Ni) so that the molar ratio of lithium, phosphorus and transition metal is 1: 1: (0.8 to 1.2) And (2) a step of setting the ambient environment of the prepared batch under a reducing atmosphere, and (3) firing the obtained mixed powder, LiMPO 4 crystal (M is selected from Fe, Mn, Co, Ni) And a step of forming a crystal composed of a solid solution thereof, and a method for producing a positive electrode material for a lithium ion secondary battery.
 なお、遷移金属イオンを種々のイオンで置換することで電気化学特性が変化する。例えば、リン酸鉄リチウムLiFePOは鉄資源が豊富であり原材料コストが安価であるという特徴がある。また、鉄の代わりにマンガンやコバルトあるいはニッケルで置換したLiMnPO、LiCoPO及びLiNiPOは、LiFePOよりも電圧が高いため、高出力化の観点から優位な材料である。 In addition, electrochemical characteristics change by substituting transition metal ions with various ions. For example, lithium iron phosphate LiFePO 4 is characterized by abundant iron resources and low raw material costs. In addition, LiMnPO 4 , LiCoPO 4 and LiNiPO 4 substituted with manganese, cobalt, or nickel instead of iron are superior materials from the viewpoint of higher output because they have a higher voltage than LiFePO 4 .
 また、本発明の第二の態様は、(1)粉体状のメタリン酸リチウムLiPOと、化学式MO、MO、M、又はM(MはFe,Mn,Co,Niから選ばれる少なくとも1種)で表される遷移金属酸化物とを、リチウム、リン及び遷移金属のモル比が1:1:(0.8~1.2)になるようバッチを調合する工程と、(2)還元剤を添加する工程と、(3)得られた混合粉体を焼成し、LiMPO結晶(MはFe,Mn,Co,Niから選ばれる少なくとも1種)またはそれらの固溶体から構成される結晶を形成する工程と、を含むことを特徴とするリチウムイオン二次電池正極材料の製造方法に関する。 The second aspect of the present invention is as follows: (1) Powdered lithium metaphosphate LiPO 3 and chemical formula MO, MO 2 , M 3 O 4 , or M 2 O 3 (M is Fe, Mn, Co, A step of preparing a batch of a transition metal oxide represented by at least one selected from Ni) so that the molar ratio of lithium, phosphorus and transition metal is 1: 1: (0.8 to 1.2) And (2) a step of adding a reducing agent, and (3) firing the obtained mixed powder, LiMPO 4 crystals (M is at least one selected from Fe, Mn, Co, Ni) or a solid solution thereof. Forming a crystal composed of: a lithium ion secondary battery positive electrode material manufacturing method.
 本第二の態様と第一の態様との違いは、調合されたバッチに還元剤を実際に添加するか、調合されたバッチの周囲環境を所定の還元雰囲気下(例えば、7%水素-93%アルゴン)に設定するかの点にある。第一の態様の製造方法では、グルコース等の還元剤を添加せずとも所定の還元雰囲気下で熱処理するとLiMPO結晶(例えば、LiFePO)が形成できることが長所であるが、より高い還元力を付与するためには第二の態様の製造方法が好適である。 The difference between the second embodiment and the first embodiment is that the reducing agent is actually added to the prepared batch or the ambient environment of the prepared batch is subjected to a predetermined reducing atmosphere (for example, 7% hydrogen-93 % Argon). The production method of the first aspect is advantageous in that LiMPO 4 crystals (for example, LiFePO 4 ) can be formed by heat treatment in a predetermined reducing atmosphere without adding a reducing agent such as glucose. In order to give, the manufacturing method of the 2nd aspect is suitable.
 第三の態様として、本発明のリチウムイオン二次電池正極材料の製造方法は、形成されたLiMPO結晶が、LiMnFe1-xPO結晶(0<x<1)であることを特徴とする。 As a third aspect, the method for producing a positive electrode material for a lithium ion secondary battery according to the present invention is characterized in that the formed LiMPO 4 crystal is a LiMn x Fe 1-x PO 4 crystal (0 <x <1). And
 なお、LiMnPOはLiFePOよりも高電圧であるが、リチウムの脱挿入が乏しいため、鉄とマンガンの混合した固溶体LiMnFe1-xPO結晶(0<x<1)を形成することでLiMnPOよりもリチウムの脱挿入が改善し、LiFePOよりも高電圧な正極材料が合成可能となる。 LiMnPO 4 has a higher voltage than LiFePO 4 , but since lithium desorption is poor, a solid solution LiMn X Fe 1-x PO 4 crystal (0 <x <1) mixed with iron and manganese is formed. Thus, lithium insertion / extraction is improved as compared with LiMnPO 4, and a positive electrode material having a higher voltage than LiFePO 4 can be synthesized.
 第四の態様として、本発明のリチウムイオン二次電池正極材料の製造方法は、還元剤の添加量が、(1)工程で調合された混合物100質量部に対して0.1~50質量部であることを特徴とする。これにより、遷移金属イオンの原子価状態が制御され、効果的に還元が促進する。 As a fourth aspect, in the method for producing a lithium ion secondary battery positive electrode material of the present invention, the reducing agent is added in an amount of 0.1 to 50 parts by mass with respect to 100 parts by mass of the mixture prepared in the step (1). It is characterized by being. Thereby, the valence state of the transition metal ion is controlled, and the reduction is effectively promoted.
 第五の態様として、本発明のリチウムイオン二次電池正極材料の製造方法は、還元剤がグルコースであることを特徴とする。 As a fifth aspect, the method for producing a positive electrode material for a lithium ion secondary battery of the present invention is characterized in that the reducing agent is glucose.
 ここで、結晶合成のための還元剤として添加したグルコースは、熱処理中に導電性を有する炭素系物質(アモルファスカーボン)に変化するため、リチウムイオン二次電池正極材料の導電性を向上させる点で有効である。 Here, glucose added as a reducing agent for crystal synthesis changes into a carbon-based substance (amorphous carbon) having conductivity during the heat treatment, so that the conductivity of the lithium ion secondary battery positive electrode material is improved. It is valid.
 第六の態様として、本発明のリチウムイオン二次電池正極材料の製造方法は、(4)炭素系化合物を含んだ導電助剤を添加する工程をさらに含むことを特徴とする。 As a sixth aspect, the method for producing a positive electrode material for a lithium ion secondary battery according to the present invention is characterized by further comprising (4) a step of adding a conductive additive containing a carbon-based compound.
 オリビン型LiMPOは結晶単体での電子伝導性が無いため、電子伝導性を補うことを目的として炭素を含有する導電助剤を結晶表面にコーティングすることで電子伝導性に優れた二次電池正極材が合成可能となる。上述の通り、所定の還元剤も熱処理中に導電性を有する炭素系物質に変化するため還元剤の添加も導電性の向上に有効であるが、電子伝導性を増大させるために、導電助剤を別途加えてもよい。なお、グラファイトやアセチレンブラック、アモルファスカーボンなどの炭素系材料は化学的に安定な物質であり、LiMPO粉体の表面を炭素系導電助剤でコーティングすることによりさらに高い電気伝導性を有するリチウムイオン二次電池正極材料の合成が可能となる。 Since olivine-type LiMPO 4 has no electron conductivity in a single crystal, a secondary battery positive electrode excellent in electron conductivity by coating the surface of the crystal with a carbon-containing conductive auxiliary agent for the purpose of supplementing the electron conductivity. The material can be synthesized. As described above, the addition of the reducing agent is effective in improving the conductivity because the predetermined reducing agent also changes to a carbonaceous material having conductivity during the heat treatment. However, in order to increase the electron conductivity, the conductive auxiliary agent May be added separately. Carbon-based materials such as graphite, acetylene black, and amorphous carbon are chemically stable substances, and lithium ions having higher electrical conductivity can be obtained by coating the surface of LiMPO 4 powder with a carbon-based conductive additive. A secondary battery positive electrode material can be synthesized.
 第七の態様として、本発明のリチウムイオン二次電池正極材料の製造方法は、焼成温度が600~700℃の範囲であることを特徴とする。 As a seventh aspect, the method for producing a positive electrode material for a lithium ion secondary battery of the present invention is characterized in that the firing temperature is in the range of 600 to 700 ° C.
 第八の態様として、本発明のリチウムイオン二次電池正極材料の製造方法は、(1)の調合工程前に、メタリン酸リチウムLiPOを1000~1200℃の温度で溶融して非晶質状態にさせ、非晶質状態のメタリン酸リチウムLiPOを粉砕する前処理工程をさらに含むことを特徴とする。非晶質状態のメタリン酸リチウムを原料とすることで、下記のように更に低温域での焼成が可能となる。 As an eighth aspect, the method for producing a positive electrode material for a lithium ion secondary battery according to the present invention comprises the step of melting lithium metaphosphate LiPO 3 at a temperature of 1000 to 1200 ° C. before the preparation step of (1). And a pretreatment step of pulverizing the lithium metaphosphate LiPO 3 in an amorphous state. By using amorphous lithium metaphosphate as a raw material, firing in a lower temperature range is possible as described below.
 第九の態様として、第八の態様に記載の製造方法は、焼成温度が450~700℃の温度範囲であることを特徴とする。つまり、第八の態様に記載の前処理工程で得られた非晶質状態のメタリン酸リチウムを原料とすることで、結晶性メタリン酸リチウムを原料とする場合よりも更に低温の焼成温度でリン酸鉄リチウムを合成することが可能となる。 As a ninth aspect, the manufacturing method according to the eighth aspect is characterized in that the firing temperature is in a temperature range of 450 to 700 ° C. In other words, by using the amorphous lithium metaphosphate obtained in the pretreatment step described in the eighth aspect as a raw material, phosphorous can be produced at a lower firing temperature than when crystalline lithium metaphosphate is used as the raw material. It becomes possible to synthesize lithium iron oxide.
 第十の態様として、本発明は、粉体状のメタリン酸リチウムLiPOと、化学式MO、MO、MO、M、又はM(MはFe,Mn,Co,Niから選ばれる少なくとも1種)で表される遷移金属酸化物とを、リチウム、リン及び遷移金属のモル比が1:1:(0.8~1.2)になるように混合し、還元雰囲気下にて焼成されたことを特徴とするリチウムイオン二次電池正極材料に関する。 As a tenth aspect, the present invention relates to a powdered lithium metaphosphate LiPO 3 and a chemical formula MO, M 2 O, MO 2 , M 3 O 4 , or M 2 O 3 (M is Fe, Mn, Co, A transition metal oxide represented by at least one selected from Ni) is mixed so that the molar ratio of lithium, phosphorus and transition metal is 1: 1: (0.8 to 1.2). The present invention relates to a positive electrode material for a lithium ion secondary battery, which is fired in an atmosphere.
 第十一の態様として、本発明は、粉体状のメタリン酸リチウムLiPOと、化学式MO、MO、MO、M、又はM(MはFe,Mn,Co,Niから選ばれる少なくとも1種)で表される遷移金属酸化物とを、リチウム、リン及び遷移金属のモル比が1:1:(0.8~1.2)になるように混合し、還元剤をさらに添加して焼成されたことを特徴とするリチウムイオン二次電池正極材料に関する。 As an eleventh aspect, the present invention relates to a powdered lithium metaphosphate LiPO 3 and a chemical formula MO, M 2 O, MO 2 , M 3 O 4 , or M 2 O 3 (M is Fe, Mn, Co). , At least one selected from Ni) and a molar ratio of lithium, phosphorus and transition metal is 1: 1: (0.8 to 1.2), The present invention relates to a positive electrode material for a lithium ion secondary battery, which is fired by further adding a reducing agent.
 第十二の態様として、本発明のリチウムイオン二次電池正極材料は、第十又は第十一の態様に記載のメタリン酸リチウムLiPOが非晶質状態であることを特徴とする。 As a twelfth aspect, the lithium ion secondary battery positive electrode material of the present invention is characterized in that the lithium metaphosphate LiPO 3 according to the tenth or eleventh aspect is in an amorphous state.
 第十三の態様として、本発明のリチウムイオン二次電池正極材料は、第十~十二の態様のいずれかに記載の焼成物には、リン酸、リチウム、遷移金属から構成された無機酸化物の非晶質相が含まれ、その含有量が0.01~20容量部であることを特徴とする。 As a thirteenth aspect, the lithium ion secondary battery positive electrode material of the present invention includes an inorganic oxide composed of phosphoric acid, lithium, and a transition metal in the fired product according to any of the tenth to twelfth aspects. The amorphous phase of the product is contained, and the content is 0.01 to 20 parts by volume.
 後述するように本発明のリチウムイオン二次電池正極材料の電気伝導度は、従来品の値(通常、1.0×010-9S・cm-1のオーダー)に対して4~5桁のオーダーで向上する。これは、最終的な焼成物内に非晶質相が多く残存し、これがイオン伝導性に優れている(つまり、非晶質相が良イオン伝導相として振る舞う)ためであると考えられる。 As will be described later, the electrical conductivity of the positive electrode material of the lithium ion secondary battery of the present invention is 4 to 5 digits relative to the value of the conventional product (usually on the order of 1.0 × 010 −9 S · cm −1 ). Improve with orders. This is presumably because many amorphous phases remain in the final fired product, which is excellent in ionic conductivity (that is, the amorphous phase behaves as a good ionic conductive phase).
 第十四の態様として、第十~十三の態様のいずれかに記載の焼成物に加え、導電助剤がさらに含有されることを特徴とする。 As a fourteenth aspect, in addition to the fired product according to any one of the tenth to thirteenth aspects, a conductive additive is further contained.
 本発明によれば、メタリン酸リチウムを原料とするため、リチウムとリンのモル比が1:1であり、これに遷移金属酸化物を加えることでオリビン型結晶の組成であるリチウム、リン、遷移金属のモル比を容易に1:1:1近傍に設定することができる。また、メタリン酸リチウムの融点は640℃で、オルトリン酸リチウムの融点837℃より低温であることから、オリビン型結晶の低温合成が可能になる。 According to the present invention, since lithium metaphosphate is used as a raw material, the molar ratio of lithium to phosphorus is 1: 1, and a transition metal oxide is added to this to form lithium, phosphorus, transition, which is a composition of olivine crystals. The molar ratio of metals can be easily set in the vicinity of 1: 1: 1. Moreover, since the melting point of lithium metaphosphate is 640 ° C., which is lower than the melting point of lithium orthophosphate, 837 ° C., it is possible to synthesize olivine crystals at a low temperature.
 本発明によれば、リチウムイオン二次電池正極材料の製造にあたって、リチウム・鉄(遷移金属)・リン酸系の混合物に対して溶融・粉砕を行う前処理プロセスを必要としない。従って、製造プロセスが一層簡略化できるとともに、膨大なエネルギーを要しかつ混合物を収容する容器を腐食させてしまうなどの従来の製造方法の課題を解決することが可能となる。 According to the present invention, a pretreatment process for melting and crushing a lithium-iron (transition metal) -phosphoric acid-based mixture is not required in producing a lithium ion secondary battery positive electrode material. Therefore, the manufacturing process can be further simplified, and it is possible to solve the problems of the conventional manufacturing method, such as requiring enormous energy and corroding the container containing the mixture.
 なお、本発明の一態様においては、非晶質状態メタリン酸リチウムを得るために、メタリン酸リチウム自体を溶融・粉砕する前処理を施すことが好ましいが、リチウム・鉄(遷移金属)・リン酸系酸化物の混合物に対して溶融・粉砕を行う従来の前処理プロセスのような問題を生ずることはない。鉄などの遷移金属酸化物を多量に含有する融液は、貴金属を腐食するため貴金属製容器(例えば白金系材料からなる容器)の寿命を著しく低下させる恐れがある。これに対して本発明で採用するメタリン酸リチウムの場合は、白金系の容器中で溶融を行ってもメタリン酸リチウムを含んだ融液は該容器と反応を起こさない。 In one embodiment of the present invention, in order to obtain amorphous lithium metaphosphate, it is preferable to perform pretreatment by melting and pulverizing lithium metaphosphate itself, but lithium, iron (transition metal), and phosphoric acid. There is no problem as in the conventional pretreatment process in which the mixture of the system oxides is melted and pulverized. A melt containing a large amount of a transition metal oxide such as iron corrodes a noble metal, which may significantly reduce the life of a noble metal container (for example, a container made of a platinum-based material). On the other hand, in the case of the lithium metaphosphate employed in the present invention, the melt containing lithium metaphosphate does not react with the container even if it is melted in a platinum-based container.
 また、本発明の上記態様によれば、平均粒径は比較的大きいメタリン酸リチウム粉体を使用しても高品質のオリビン型結晶を得ることができるため、メタリン酸リチウムの粉砕プロセスに要する時間や労力は少なくて済む。 Further, according to the above aspect of the present invention, since a high-quality olivine-type crystal can be obtained even when a lithium metaphosphate powder having a relatively large average particle size is used, the time required for the lithium metaphosphate grinding process And less effort.
実施例1で作製した試料の粉末X線回折パターン(還元剤添加の場合)を示す図である。It is a figure which shows the powder X-ray-diffraction pattern (in the case of reducing agent addition) of the sample produced in Example 1. FIG. 実施例1で作製した試料の粉末X線回折パターン(還元剤無添加の場合)を示す図である。It is a figure which shows the powder X-ray-diffraction pattern (in the case of no addition of a reducing agent) of the sample produced in Example 1. 実施例3で作製したメタリン酸リチウムLiPOガラスの示差熱分析曲線を示す図である。4 is a diagram showing a differential thermal analysis curve of lithium metaphosphate LiPO 3 glass produced in Example 3. FIG. 実施例3で作製した試料の粉末X線回折パターンを示す図である。6 is a diagram showing a powder X-ray diffraction pattern of a sample produced in Example 3. FIG.
 本発明のリチウムイオン二次電池正極材料は、メタリン酸リチウムLiPOと化学式MO、MO、M、又はM(MはFe,Mn,Co,Niから選ばれる少なくとも1種)で表される遷移金属酸化物とをリチウム、リン及び遷移金属のモル比(molar ratio)が1:1:1近傍(つまり、0.8~1.2)になるように混合された粉体を原料とすることを特徴とする。 The lithium ion secondary battery positive electrode material of the present invention includes lithium metaphosphate LiPO 3 and the chemical formula MO, MO 2 , M 3 O 4 , or M 2 O 3 (M is at least one selected from Fe, Mn, Co, Ni) ) In which the molar ratio of lithium, phosphorus and transition metal is close to 1: 1: 1 (that is, 0.8 to 1.2). The body is used as a raw material.
 ここで、遷移金属イオンMの原子価が2価の場合、遷移金属酸化物は化学式MOで表され、例えばFe(II)OやNiOが挙げられる。遷移金属イオンMの原子価が3価の場合、遷移金属酸化物は化学式M、又はMで表され、例えばヘマタイトFe、マグネタイトFe、Co、Mnが挙げられる。遷移金属イオンMの原子価が4価の場合、遷移金属酸化物は化学式MOで表され、例えば、MnOが挙げられる。 Here, when the valence of the transition metal ion M is divalent, the transition metal oxide is represented by the chemical formula MO, and examples thereof include Fe (II) O and NiO. When the valence of the transition metal ion M is trivalent, the transition metal oxide is represented by the chemical formula M 3 O 4 or M 2 O 3 , for example, hematite Fe 2 O 3 , magnetite Fe 3 O 4 , Co 3 O 4. , Mn 3 O 4 . When the valence of the transition metal ion M is tetravalent, the transition metal oxide is represented by the chemical formula MO 2 , for example, MnO 2 .
 次に、組成を上記のように限定した理由を以下に説明する。 Next, the reason for limiting the composition as described above will be described below.
 メタリン酸リチウムはリンとリチウムのモル比が1:1の複合酸化物である。メタリン酸リチウムを原料とする利点は、リチウムとリンのモル比が1:1であり、これに遷移金属酸化物を加えることでオリビン型結晶の組成であるリチウム、リン、遷移金属のモル比1:1:1とすることが容易である。例えば他のリチウムリン酸塩でオルトリン酸リチウム(LiPO)を原料とする場合はリンとリチウムとの比が1:3となってしまうため、不足するリン酸を補うためにオルトリン酸や、リン酸二水素アンモニウムなどを添加する必要がある。またメタリン酸リチウムの融点は640℃で、オルトリン酸リチウムの融点837℃より低温であることから、低温合成に好適である。 Lithium metaphosphate is a composite oxide having a molar ratio of phosphorus to lithium of 1: 1. The advantage of using lithium metaphosphate as a raw material is that the molar ratio of lithium and phosphorus is 1: 1, and by adding a transition metal oxide to this, the molar ratio of lithium, phosphorus, and transition metal, which is the composition of olivine crystals, is 1 1: 1 is easy. For example, when lithium orthophosphate (Li 3 PO 4 ) is used as a raw material for other lithium phosphates, the ratio of phosphorus to lithium is 1: 3. It is necessary to add ammonium dihydrogen phosphate. Moreover, since the melting point of lithium metaphosphate is 640 ° C., which is lower than the melting point of lithium orthophosphate, 837 ° C., it is suitable for low-temperature synthesis.
 メタリン酸リチウムは非晶質状態であることが好ましい。メタリン酸リチウムはそれ自体が溶融急冷を経ることで容易に非晶質状態(つまりガラス状態)を示す。ガラス状メタリン酸リチウムのガラス転移温度は329℃と極めて低温であることから、融点である640℃まで加熱しなくとも、329℃以上に加熱すれば過冷却液体状態となり流動性を呈する。このため結晶性メタリン酸リチウムを原料とした場合よりも一層低温で遷移金属化合物との反応が起こると予測できる。 The lithium metaphosphate is preferably in an amorphous state. Lithium metaphosphate itself easily exhibits an amorphous state (that is, a glass state) through melting and quenching. Since the glass transition temperature of the glassy lithium metaphosphate is as low as 329 ° C., even if it is not heated to 640 ° C., which is the melting point, if it is heated to 329 ° C. or higher, it becomes a supercooled liquid state and exhibits fluidity. For this reason, it can be predicted that the reaction with the transition metal compound occurs at a lower temperature than when crystalline lithium metaphosphate is used as a raw material.
 メタリン酸リチウム粉体の平均粒径の範囲は、小さければ小さい程(例えば3μm以下)好ましいが、平均粒径20μm程度と比較的大きな寸法であってもよい。なお、メタリン酸リチウムは結晶化の手前で液相になるので、寸法が比較的大きい平均粒径20μm程度の粉体を用いても所望の結晶化ガラスを得ることができる。従って、この程度の平均粒径のメタリン酸リチウムを用いれば、メタリン酸リチウムの粉砕に要する手間を低減することが可能になる。 The range of the average particle size of the lithium metaphosphate powder is preferably as small as possible (for example, 3 μm or less), but may be a relatively large size of about 20 μm in average particle size. In addition, since lithium metaphosphate becomes a liquid phase before crystallization, a desired crystallized glass can be obtained even if a powder having a relatively large average particle size of about 20 μm is used. Therefore, if lithium metaphosphate having such an average particle diameter is used, it is possible to reduce the labor required for pulverizing lithium metaphosphate.
 化学式MO、MO、M、又はM(Mは、Fe,Mn,Co,Niから選ばれる少なくとも1種)で表される遷移金属酸化物も、オリビン型結晶の主成分である。オリビン結晶LiMPOで示される遷移金属イオンMの原子価状態は+2であることから、この結晶を析出するためには原料中の遷移金属イオンの原子価が+2であることが好ましいが、後述の還元剤の効果により焼成の過程で原子価状態が+2となるのであれば、その他の原子価状態をもつ原料を用いてもよい。鉄であればFe(II)Oは高価であるため、原材料コストの低減には向かないが、ヘマタイトFeやマグネタイトFeを用いても還元により容易に原子価状態を+2にすることができるので、これらを原料とすることが好ましい。原材料コストの低減という観点から、その他の遷移金属酸化物も同様にマンガンであればMnO,コバルトであればCo,ニッケルはNiOなどを選択することが好ましい。遷移金属酸化物の粒径は小さい方が反応性に富んでおり、得られるオリビン型結晶の粗大化防止に効果的であることから、具体的には平均粒径5μm以下が好ましく、1μm以下であればさらに好ましい。 The transition metal oxide represented by the chemical formula MO, MO 2 , M 3 O 4 , or M 2 O 3 (M is at least one selected from Fe, Mn, Co, Ni) is also a main component of the olivine type crystal. It is. Since the valence state of the transition metal ion M represented by the olivine crystal LiMPO 4 is +2, it is preferable that the valence of the transition metal ion in the raw material is +2 in order to precipitate this crystal. If the valence state becomes +2 in the course of firing due to the effect of the reducing agent, raw materials having other valence states may be used. Since Fe (II) O is expensive if it is iron, it is not suitable for reducing raw material costs, but even if hematite Fe 2 O 3 or magnetite Fe 3 O 4 is used, the valence state can be easily reduced to +2 by reduction. Therefore, it is preferable to use these as raw materials. From the viewpoint of reducing raw material costs, it is preferable to select MnO 2 for other transition metal oxides, Co 3 O 4 for cobalt, NiO for nickel, etc. for cobalt. The smaller the particle size of the transition metal oxide, the richer the reactivity, and the more effective the prevention of coarsening of the resulting olivine-type crystal. Specifically, the average particle size is preferably 5 μm or less, preferably 1 μm or less. More preferably.
 本発明のリチウムイオン二次電池正極材料において、化学式LiMPO中の遷移金属イオンMはFe、Mn,Co、Niのいずれか1つからなる化合物、あるいは二つ以上の組み合わせからなる固溶体を形成する組成であれば特に限定されるものではないが、リチウム鉄マンガンリチウムLiMnFe1-xPO結晶(0<x<1)は全率で固溶体を形成するため、鉄とマンガンの配合を変えることによりxの値を変化させることができる。 In the lithium ion secondary battery positive electrode material of the present invention, the transition metal ion M in the chemical formula LiMPO 4 forms a compound consisting of any one of Fe, Mn, Co, Ni, or a solid solution consisting of a combination of two or more. The composition is not particularly limited, but lithium iron manganese lithium LiMn x Fe 1-x PO 4 crystals (0 <x <1) form a solid solution at a total rate, so the composition of iron and manganese is changed. As a result, the value of x can be changed.
 なお、オリビン型LiMPO中の遷移金属イオンMの原子価は+2価であるため、大気開放中で熱処理すると酸化還元平衡の関係から+3価に酸化されナシコン類似構造のLi(POを形成しやすい。そこで、原子価状態を制御するために、加熱時にグルコースなどの炭素を含有する還元剤を結晶構成原料(メタリン酸リチウムと遷移金属酸化物)100質量部に対して0.1~50質量部の範囲で添加することが好ましい。還元剤の添加量が0.1質量部よりも少ないと遷移金属イオンの効果的な還元が進まず、Li(POなどの異相を形成する恐れがある。また、50質量部よりも多いと電池を形成した際に実質的な電池容量が低下してしまう恐れがある。 In addition, since the valence of the transition metal ion M in the olivine-type LiMPO 4 is +2, it is oxidized to +3 due to oxidation-reduction equilibrium when subjected to heat treatment in the open atmosphere, and Li 3 M 2 (PO 4 having a Nasicon-like structure). 3 ) is easy to form. Therefore, in order to control the valence state, a reducing agent containing carbon such as glucose during heating is added in an amount of 0.1 to 50 parts by mass with respect to 100 parts by mass of the crystal constituent raw materials (lithium metaphosphate and transition metal oxide). It is preferable to add in a range. When the addition amount of the reducing agent is less than 0.1 parts by mass, effective reduction of the transition metal ion does not proceed, and there is a possibility that a heterogeneous phase such as Li 3 M 2 (PO 4 ) 3 is formed. Moreover, when it exceeds 50 mass parts, there exists a possibility that substantial battery capacity may fall when a battery is formed.
 また、還元性ガスを充満させた気密性に優れた反応容器中で結晶構成原料を熱処理することも好ましい。さらに、水素、アンモニア、一酸化炭素などの還元雰囲気中にて熱処理する等、遷移金属酸化物の価数状態を一旦制御した後に、結晶構成原料を450~700℃の温度範囲で熱処理することも好ましく、これによりLiMPO単一からなる結晶粉を作製することができる。 Moreover, it is also preferable to heat-process the crystal | crystallization constituent raw material in the reaction container excellent in the airtightness filled with reducing gas. Furthermore, after the valence state of the transition metal oxide is once controlled, such as by heat treatment in a reducing atmosphere of hydrogen, ammonia, carbon monoxide, etc., the crystal constituent material may be heat-treated at a temperature range of 450 to 700 ° C. Preferably, this makes it possible to produce crystal powder consisting of LiMPO 4 alone.
 なお、焼成温度が450℃よりも低温では遷移金属イオンの還元は進行するがLiMPOが形成するための反応は進行しない恐れがある。また焼成温度が700℃を超えると粒成長および焼結が起こり粗大な結晶が形成し、充放電反応に重要な比表面積が低下する恐れがある。 Note that when the firing temperature is lower than 450 ° C., reduction of transition metal ions proceeds, but the reaction for forming LiMPO 4 may not proceed. On the other hand, when the firing temperature exceeds 700 ° C., grain growth and sintering occur to form coarse crystals, which may reduce the specific surface area important for the charge / discharge reaction.
 形成されたオリビン型LiMPO結晶粉末の粒径は小さい程、正極材料全体としての表面積が大きくなり、イオンや電子の交換がより行いやすくなるため好ましい。具体的には、結晶化ガラス粉末の平均粒径は50μm以下であることが好ましく、30μm以下であることがより好ましく、20μm以下であることがさらに好ましい。下限については特に限定されないが、現実的には0.05μm以上である。 The smaller the particle size of the formed olivine-type LiMPO 4 crystal powder, the larger the surface area of the positive electrode material as a whole, and the easier exchange of ions and electrons is preferable. Specifically, the average particle size of the crystallized glass powder is preferably 50 μm or less, more preferably 30 μm or less, and even more preferably 20 μm or less. Although it does not specifically limit about a minimum, It is 0.05 micrometer or more actually.
 イオン伝導性を向上させるには結晶中のイオン伝導の方位依存性を解消することが重要である。このため等方的なイオン伝導性を示す酸化物の非晶質相が残留した正極材料であることが好ましい。通常、リン酸鉄リチウムLiFePOの理論密度は3.5~3.6g・cm-3であり、非晶質相がある程度、残留すると理論密度よりも低密度となる。好適な非晶質相の含有量は、検出限界である0.01容量部から20容量部である。非晶質相が20容量部以上となると充放電容量が低下する恐れがある。 In order to improve ionic conductivity, it is important to eliminate the orientation dependence of ionic conduction in the crystal. Therefore, a positive electrode material in which an amorphous phase of an oxide exhibiting isotropic ion conductivity remains is preferable. Usually, the theoretical density of lithium iron phosphate LiFePO 4 is 3.5 to 3.6 g · cm −3 , and when an amorphous phase remains to some extent, the density becomes lower than the theoretical density. The preferred amorphous phase content is 0.01 to 20 parts by volume, which is the detection limit. If the amorphous phase exceeds 20 parts by volume, the charge / discharge capacity may be reduced.
 本発明のリチウム二次電池正極材料は、結晶化ガラス粉末に対して、導電性を向上させるために、電子伝導性が高く安定な導電助剤を含有していることが好ましい。なお、導電助剤に関しては、以下の実施例にて後述するように結晶構成原料の焼成前に添加された還元剤が焼成後に導電助剤としての役目を果たすものであってもよいし、還元剤とは別の導電助剤を焼成前あるいは焼成後に付与してもよい。 The lithium secondary battery positive electrode material of the present invention preferably contains a conductive assistant having high electron conductivity and stability in order to improve conductivity with respect to the crystallized glass powder. Regarding the conductive assistant, as described later in the following examples, the reducing agent added before firing the crystal constituent raw material may serve as a conductive assistant after firing, or may be reduced. You may give the conductive support agent different from an agent before baking or after baking.
 また、導電助剤は結晶粉末界面にコーティングされてなることが好ましい。導電助剤としては、グラファイト、アセチレンブラック、アモルファスカーボンなどの炭素系導電助剤や金属粉末などの金属系導電助剤などが挙げられる。アモルファスカーボンとしては、FTIR分析において、正極材料の導電性低下の原因となるC-O結合ピークやC-H結合ピークが実質的に検出されないものが好ましい。 Further, the conductive aid is preferably coated on the crystal powder interface. Examples of the conductive assistant include carbon-based conductive assistants such as graphite, acetylene black, and amorphous carbon, and metallic conductive assistants such as metal powder. As the amorphous carbon, those in which a CO bond peak and a CH bond peak causing a decrease in conductivity of the positive electrode material are not substantially detected in the FTIR analysis are preferable.
 導電助剤の粒子径は小さいほど、各結晶粉末粒子界面に均一に分散させることができる。具体的には、導電助剤の粒子径は、50μm以下であることが好ましく、30μm以下であることがより好ましい。導電助剤の粒子径が50μmより大きいと、各結晶化ガラス粉末粒子界面に均一に分散させることが困難になる傾向がある。下限については特に限定されないが、現実的には0.05μm以上である。 The smaller the particle size of the conductive additive, the more uniformly it can be dispersed at each crystal powder particle interface. Specifically, the particle diameter of the conductive assistant is preferably 50 μm or less, and more preferably 30 μm or less. When the particle diameter of the conductive auxiliary agent is larger than 50 μm, it tends to be difficult to uniformly disperse at each crystallized glass powder particle interface. The lower limit is not particularly limited, but is actually 0.05 μm or more.
 導電助剤の含有量としては、結晶粉末100質量部に対して、0.1~50質量部であることが好ましく、2~40質量部であることが好ましく、3~30質量部であることがさらに好ましい。導電助剤の含有量が0.1質量部未満であると、結晶に対する導電性付与の効果が十分に得られない傾向がある。導電助剤の含有量が50質量部を超えると、リチウムイオン二次電池において正極と負極の電位差が小さくなり、所望の起電力が得られなくなるおそれがある。 The content of the conductive assistant is preferably 0.1 to 50 parts by weight, preferably 2 to 40 parts by weight, and 3 to 30 parts by weight with respect to 100 parts by weight of the crystal powder. Is more preferable. When the content of the conductive assistant is less than 0.1 parts by mass, there is a tendency that the effect of imparting conductivity to the crystal cannot be sufficiently obtained. When the content of the conductive additive exceeds 50 parts by mass, the potential difference between the positive electrode and the negative electrode in the lithium ion secondary battery becomes small, and a desired electromotive force may not be obtained.
 本発明のリチウムイオン二次電池用正極材料の電気伝導度は、1.0×10-8S・cm-1以上であり、1.0×10-6S・cm-1以上であることが好ましく、1.0×10-4S・cm-1以上であることがより好ましい。 The electrical conductivity of the positive electrode material for a lithium ion secondary battery of the present invention is 1.0 × 10 −8 S · cm −1 or more, and is 1.0 × 10 −6 S · cm −1 or more. Preferably, it is 1.0 × 10 −4 S · cm −1 or more.
 以下、本発明を実施例に基づいて詳細に説明するが、本発明はかかる実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to such examples.
(実施例1:リン酸鉄リチウムLiFePOの合成法1)
 メタリン酸リチウムLiPOと、平均粒径1μmのヘマタイトFeとを、リチウム、リン及びヘマタイトのモル比が1:1:1となるように10g(つまり、メタリン酸リチウムが5.1831g、ヘマタイトが4.8169g)秤量・混合し、それらの混合粉体100質量部に対して10質量部(つまり、1g)の還元剤であるグルコースを添加し、アルコールを加えてアルミナ乳鉢にて5分間混合した。乾燥後アルミナボートに移し、7%水素‐93%アルゴンで満たした管状炉に導入し、所定の温度条件で3時間熱処理を行った。ここで、焼成温度の比較のために500℃、600℃、及び640℃の各温度で熱処理した。
(Example 1: Synthesis 1 of lithium iron phosphate LiFePO 4)
Lithium metaphosphate LiPO 3, and a hematite Fe 2 O 3 having an average particle diameter of 1 [mu] m, lithium, molar ratio of phosphorus and hematite 1: 1: 1 so as to 10g (i.e., lithium metaphosphate 5.1831G, Hematite is weighed and mixed (4.8169 g), 10 parts by mass (ie, 1 g) of glucose as a reducing agent is added to 100 parts by mass of the mixed powder, alcohol is added and 5 minutes in an alumina mortar. Mixed. After drying, it was transferred to an alumina boat, introduced into a tubular furnace filled with 7% hydrogen-93% argon, and heat-treated at a predetermined temperature condition for 3 hours. Here, it heat-processed at each temperature of 500 degreeC, 600 degreeC, and 640 degreeC for the comparison of baking temperature.
 また、本発明者らは、還元剤であるグルコースを混合粉体に添加せずとも、この混合粉体の周囲環境を前述の還元雰囲気下(7%水素-93%アルゴン)に置くだけの状態で熱処理した場合にも、リン酸鉄リチウムLiFePOの合成が可能か否かについても試験した。 In addition, the present inventors do not add glucose, which is a reducing agent, to the mixed powder, but simply put the surrounding environment of the mixed powder under the reducing atmosphere (7% hydrogen-93% argon). Whether the synthesis of lithium iron phosphate LiFePO 4 was possible or not was also tested.
 図1にグルコースを10質量部添加し、熱処理後の合成粉末のエックス線回折パターン(還元剤添加の場合)を示す。図1に示すように500℃で熱処理した試料はLiPOとFeの回折パターンが確認された。原料であるFeおよび目的結晶であるLiFePOの回折ピークが確認されないことから、500℃においては鉄の還元が進行してはいるが、メタリン酸リチウムとの反応は起こっていないと考えられる。一方、600℃および640℃で熱処理した試料はLiFePO由来の回折ピークが確認された。 FIG. 1 shows an X-ray diffraction pattern (in the case of addition of a reducing agent) of the synthetic powder after adding 10 parts by mass of glucose and heat treatment. As shown in FIG. 1, the diffraction pattern of LiPO 3 and Fe 3 O 4 was confirmed in the sample heat-treated at 500 ° C. Since the diffraction peaks of Fe 2 O 3 as the raw material and LiFePO 4 as the target crystal are not confirmed, iron reduction proceeds at 500 ° C., but no reaction with lithium metaphosphate has occurred. It is done. On the other hand, the diffraction peak derived from LiFePO 4 was confirmed in the samples heat-treated at 600 ° C. and 640 ° C.
 グルコース無添加で得られた結晶粉体のエックス線回折パターン(還元剤無添加の場合)を図2に示す。図1の結果と同様に600℃以上でLiFePO由来の回折パターンが確認された。 FIG. 2 shows an X-ray diffraction pattern (in the case of no addition of a reducing agent) of the crystal powder obtained without addition of glucose. Similar to the result of FIG. 1, a diffraction pattern derived from LiFePO 4 was confirmed at 600 ° C. or higher.
 図1のグルコース添加の場合と図2のグルコース無添加の場合とにおいて形成された焼成物のそれぞれの密度を測定したところ、いずれも3.42g・cm-3であった。これは、LiFePOに関する従来の文献等に示される理論密度(3.5~3.6g・cm-3)に比べて約3%程度低い密度であった。 The density of each of the fired products formed in the case of adding glucose in FIG. 1 and in the case of adding no glucose in FIG. 2 was measured and found to be 3.42 g · cm −3 . This is a density that is about 3% lower than the theoretical density (3.5 to 3.6 g · cm −3 ) shown in the conventional literature on LiFePO 4 .
 実施例1の方法により得られた結晶粉末を、一軸加圧成形により直径13mmφ、厚さ0.5mmとなるようにペレット状に成形し、交流インピーダンス法により室温での電気伝導度を測定した。その結果、グルコース無添加の試料では5×10-5S・cm-1を示し、一方、グルコースを10質量部だけ添加した試料では4.8×10-4S・cm-1を示した。この実測値は報告されているLiFePOの伝導度(およそ1.0×10-9S・cm-1)よりも遙かに高い伝導度である。 The crystal powder obtained by the method of Example 1 was molded into a pellet shape so as to have a diameter of 13 mmφ and a thickness of 0.5 mm by uniaxial pressure molding, and the electrical conductivity at room temperature was measured by an AC impedance method. As a result, the sample without glucose showed 5 × 10 −5 S · cm −1 , while the sample added with only 10 parts by mass of glucose showed 4.8 × 10 −4 S · cm −1 . This measured value is much higher than the reported conductivity of LiFePO 4 (approximately 1.0 × 10 −9 S · cm −1 ).
(実施例2:リン酸鉄リチウムLiFePOの合成法2)
 実施例2では、実施例1で使用した鉄の試薬をヘマタイトFeの代わりに平均粒径1μmのマグネタイトFeとした以外は実施例1の工程と同じである。この実施例2の工程で合成粉体を作製した場合においても、エックス線回折法でLiFePOの形成が確認された試料は、焼成温度600℃以上で熱処理した試料であった。
(Example 2: Synthesis 2 of the lithium iron phosphate LiFePO 4)
Example 2 is the same as the process of Example 1 except that the iron reagent used in Example 1 is magnetite Fe 3 O 4 having an average particle diameter of 1 μm instead of hematite Fe 2 O 3 . Even when the synthetic powder was produced in the process of Example 2, the sample in which the formation of LiFePO 4 was confirmed by the X-ray diffraction method was a sample heat-treated at a firing temperature of 600 ° C. or higher.
(実施例3:非晶質状態のメタリン酸リチウムLiPOを用いたリン酸鉄リチウムLiFePOの合成法3)
 メタリン酸リチウムLiPOを白金ルツボに入れ1100℃に加熱した電気炉中で10分間溶融した。溶融した融液を鉄板上に流し出すことでガラス体(非晶質状態のメタリン酸リチウム)を得た。このガラス体を粉砕し、平均粒径20μmの粉末にした。このガラス体の示差熱分析結果を図3に示す。ガラス体のガラス転移温度Tgは329℃、結晶化開始温度Txは440℃、結晶化ピーク温度Tpは482℃、結晶の融点は640℃であった。形成された結晶はエックス線回折法によりLiPOであることが確認された。
(Example 3: Synthesis method 3 of lithium iron phosphate LiFePO 4 using lithium metaphosphate LiPO 3 in an amorphous state)
Lithium metaphosphate LiPO 3 was placed in a platinum crucible and melted in an electric furnace heated to 1100 ° C. for 10 minutes. The molten melt was poured onto an iron plate to obtain a glass body (amorphous lithium metaphosphate). The glass body was pulverized into a powder having an average particle size of 20 μm. The result of differential thermal analysis of this glass body is shown in FIG. The glass transition temperature Tg of the glass body was 329 ° C., the crystallization start temperature Tx was 440 ° C., the crystallization peak temperature Tp was 482 ° C., and the melting point of the crystal was 640 ° C. The formed crystal was confirmed to be LiPO 3 by X-ray diffraction.
 その後、粉砕された非晶質メタリン酸リチウム粉体と平均粒径1μmのヘマタイトFeとを、リチウム、リン及びヘマタイトのモル比が1:1:1となるように10g(つまり、メタリン酸リチウムが5.1831g、ヘマタイトが4.8169g)秤量・混合し、それらの混合粉体100質量部に対して10質量部(つまり、1g)のグルコースを添加し、アルコールを加えてアルミナ乳鉢にて5分間混合した。乾燥後アルミナボートに移し、7%水素-93%アルゴンで満たした管状炉に導入し、所定の温度条件に設定して3時間熱処理を行った。なお、焼成温度の影響を検討するために、設定した温度条件は、それぞれ340℃、500℃、及び640℃である。 Thereafter, 10 g of pulverized amorphous lithium metaphosphate powder and hematite Fe 2 O 3 having an average particle diameter of 1 μm are mixed so that the molar ratio of lithium, phosphorus and hematite is 1: 1: 1 (that is, metalin Weigh and mix lithium acid (5.1831 g, hematite 4.8169 g), add 10 parts by mass (ie, 1 g) of glucose to 100 parts by mass of the mixed powder, add alcohol, and add to the alumina mortar. And mixed for 5 minutes. After drying, it was transferred to an alumina boat, introduced into a tubular furnace filled with 7% hydrogen-93% argon, set to a predetermined temperature condition, and heat-treated for 3 hours. In order to examine the influence of the firing temperature, the set temperature conditions are 340 ° C., 500 ° C., and 640 ° C., respectively.
 図4に熱処理後の合成粉末のエックス線回折パターンを示す。340℃で熱処理した試料においては、原料として添加したFe由来の回折ピークと還元されたFe由来の回折ピークのみが確認された。このことから非晶質メタリン酸リチウムはガラス状態のままであることが分かる。500℃で熱処理を施した試料においては、LiFePOとLiPO由来の回折ピークが確認された。図1に示した結晶性LiPOを原料とした場合と比較して、LiFePOが低温で合成できることを確認した。この現象(結果)を生ずるメカニズムは完全に明らかになっていないが、ガラス状LiPOがガラス転移温度以上に加熱されることにより流動性を示し、還元されたFe粒子表面を覆い、過冷却液体状のLiPOとFe粒子との反応によりLiFePOが形成するものと考えられる。500℃で熱処理を施した試料においては一部LiPOが結晶化したが、LiPOの融点である640℃近傍では再び液相となり、完全に単相のLiFePOが得られた。 FIG. 4 shows an X-ray diffraction pattern of the synthetic powder after the heat treatment. In the sample heat-treated at 340 ° C., only the diffraction peak derived from Fe 2 O 3 added as a raw material and the diffraction peak derived from reduced Fe 3 O 4 were confirmed. This shows that amorphous lithium metaphosphate remains in a glass state. In the sample heat-treated at 500 ° C., diffraction peaks derived from LiFePO 4 and LiPO 3 were confirmed. Compared to the case where the crystalline LiPO 3 shown in FIG. 1 was used as a raw material, it was confirmed that LiFePO 4 could be synthesized at a low temperature. Although the mechanism that causes this phenomenon (result) is not completely clarified, the glassy LiPO 3 exhibits fluidity when heated above the glass transition temperature, and covers the reduced Fe 3 O 4 particle surface, It is considered that LiFePO 4 is formed by the reaction between the supercooled liquid LiPO 3 and Fe 3 O 4 particles. In the sample subjected to heat treatment at 500 ° C., a part of LiPO 3 was crystallized, but in the vicinity of 640 ° C., which is the melting point of LiPO 3 , a liquid phase was obtained again, and completely single-phase LiFePO 4 was obtained.
(実施例4:リン酸鉄リチウムLiFePOペレットの作製)
 実施例3と同様の方法で、平均粒径20μmのLiPOガラス粉末と平均粒径1μmのヘマタイトFeとを、リチウム、リン及びヘマタイトのモル比が1:1:1となるように10g(つまり、メタリン酸リチウムが5.1831g、ヘマタイトが4.8169g)秤量・混合し、それらの混合粉体100質量部に対して10質量部(つまり、1g)のグルコースを添加し、アルコールを加えてアルミナ乳鉢にて5分間混合した。混合粉末を乾燥させた後、一軸加圧成形により直径13mmφ、厚さ0.5mmとなるように混合粉末をペレット状に成形した。その後640℃で3時間熱処理を施すことで、ペレット状の焼結体試料を得た。
(Example 4: Production of lithium iron phosphate LiFePO 4 pellets)
In the same manner as in Example 3, LiPO 3 glass powder having an average particle diameter of 20 μm and hematite Fe 2 O 3 having an average particle diameter of 1 μm are adjusted so that the molar ratio of lithium, phosphorus and hematite is 1: 1: 1. 10 g (that is, lithium metaphosphate 5.1831 g, hematite 4.8169 g) is weighed and mixed, 10 parts by mass (that is, 1 g) of glucose is added to 100 parts by mass of the mixed powder, and alcohol is added. In addition, it was mixed for 5 minutes in an alumina mortar. After the mixed powder was dried, the mixed powder was formed into pellets so as to have a diameter of 13 mmφ and a thickness of 0.5 mm by uniaxial pressing. Thereafter, heat treatment was performed at 640 ° C. for 3 hours to obtain a pellet-shaped sintered body sample.
 実施例4のペレット状の焼結体試料をエックス線回折法により評価したところ、単相のLiFePOから構成されていることを確認した。また、このペレット試料のラマン散乱分光スペクトルを測定したところ、アモルファスカーボンの存在が確認された。さらに、このペレット試料に金電極を形成し、交流インピーダンス法により、室温での電気伝導度を測定したところ3.3×10-3S・cm-1を示し、実施例1の試料の電気伝導度よりも一桁向上した。このことから、本実施例においては、還元剤として添加したグルコースはアモルファスカーボンに一層変化しており、Feの還元のみならず、導電助剤として電気伝導度の向上に一層効果的であることがわかった。 When the pellet-like sintered body sample of Example 4 was evaluated by the X-ray diffraction method, it was confirmed that it was composed of single-phase LiFePO 4 . Further, when the Raman scattering spectrum of this pellet sample was measured, the presence of amorphous carbon was confirmed. Further, a gold electrode was formed on this pellet sample, and the electrical conductivity at room temperature was measured by the AC impedance method. As a result, it was 3.3 × 10 −3 S · cm −1, and the electrical conductivity of the sample of Example 1 Improved by an order of magnitude. From this, in this example, glucose added as a reducing agent is further changed to amorphous carbon, which is more effective not only for reducing Fe 2 O 3 but also for improving electrical conductivity as a conductive assistant. I found out.
 本発明のリチウムイオン二次電池用正極材料は、ノートパソコンや携帯電話等の携帯型電子機器や電気自動車などに好適である。 The positive electrode material for a lithium ion secondary battery of the present invention is suitable for portable electronic devices such as notebook computers and mobile phones, and electric vehicles.

Claims (14)

  1.  (1)粉体状のメタリン酸リチウムLiPOと、化学式MO、MO、M、又はM(MはFe,Mn,Co,Niから選ばれる少なくとも1種)で表される遷移金属酸化物とを、リチウム、リン及び遷移金属のモル比が1:1:(0.8~1.2)になるようバッチを調合する工程と、(2)調合されたバッチの周囲環境を還元雰囲気下に設定する工程と、(3)得られた混合粉体を焼成し、LiMPO結晶(MはFe,Mn,Co,Niから選ばれる少なくとも1種)またはそれらの固溶体から構成される結晶を形成する工程と、を含むことを特徴とするリチウムイオン二次電池正極材料の製造方法。 (1) Represented by powdered lithium metaphosphate LiPO 3 and chemical formula MO, MO 2 , M 3 O 4 , or M 2 O 3 (M is at least one selected from Fe, Mn, Co, Ni) Preparing a batch of a transition metal oxide with a molar ratio of lithium, phosphorus and transition metal of 1: 1: (0.8 to 1.2), and (2) surrounding the prepared batch A step of setting the environment in a reducing atmosphere; and (3) the obtained mixed powder is fired, and is composed of LiMPO 4 crystals (M is at least one selected from Fe, Mn, Co, Ni) or a solid solution thereof. Forming a crystal to be produced, and a method for producing a positive electrode material for a lithium ion secondary battery.
  2.  (1)粉体状のメタリン酸リチウムLiPOと、化学式MO、MO、M、又はM(MはFe,Mn,Co,Niから選ばれる少なくとも1種)で表される遷移金属酸化物とを、リチウム、リン及び遷移金属のモル比が1:1:(0.8~1.2)になるようバッチを調合する工程と、(2)還元剤を添加する工程と、(3)得られた混合粉体を焼成し、LiMPO結晶(MはFe,Mn,Co,Niから選ばれる少なくとも1種)またはそれらの固溶体から構成される結晶を形成する工程と、を含むことを特徴とするリチウムイオン二次電池正極材料の製造方法。 (1) Represented by powdered lithium metaphosphate LiPO 3 and chemical formula MO, MO 2 , M 3 O 4 , or M 2 O 3 (M is at least one selected from Fe, Mn, Co, Ni) A step of preparing a batch of a transition metal oxide so that the molar ratio of lithium, phosphorus and transition metal is 1: 1: (0.8 to 1.2); and (2) a step of adding a reducing agent. And (3) firing the obtained mixed powder to form a LiMPO 4 crystal (M is at least one selected from Fe, Mn, Co, Ni) or a crystal composed of a solid solution thereof, The manufacturing method of the lithium ion secondary battery positive electrode material characterized by including.
  3.  形成されたLiMPO結晶が、LiMnFe1-xPO結晶(0<x<1)であることを特徴とする請求項1又は2に記載のリチウムイオン二次電池正極材料の製造方法。 3. The method for producing a positive electrode material for a lithium ion secondary battery according to claim 1, wherein the formed LiMPO 4 crystal is a LiMn x Fe 1-x PO 4 crystal (0 <x <1). 4.
  4.  還元剤の添加量が、(1)工程で調合された混合物100質量部に対して0.1~50質量部であることを特徴とする請求項2又は3に記載のリチウムイオン二次電池正極材料の製造方法。 The positive electrode for a lithium ion secondary battery according to claim 2 or 3, wherein the addition amount of the reducing agent is 0.1 to 50 parts by mass with respect to 100 parts by mass of the mixture prepared in the step (1). Material manufacturing method.
  5.  還元剤がグルコースであることを特徴とする請求項2~4のいずれかに記載のリチウムイオン二次電池正極材料の製造方法。 The method for producing a positive electrode material for a lithium ion secondary battery according to any one of claims 2 to 4, wherein the reducing agent is glucose.
  6.  (4)炭素系化合物を含んだ導電助剤を添加する工程をさらに含むことを特徴とする請求項1~5のいずれかに記載のリチウムイオン二次電池正極材料の製造方法。 (4) The method for producing a positive electrode material for a lithium ion secondary battery according to any one of claims 1 to 5, further comprising a step of adding a conductive additive containing a carbon-based compound.
  7.  焼成温度が600~700℃の範囲であることを特徴とする請求項1~6のいずれかに記載のリチウムイオン二次電池正極材料の製造方法。 The method for producing a positive electrode material for a lithium ion secondary battery according to any one of claims 1 to 6, wherein the firing temperature is in the range of 600 to 700 ° C.
  8.  (1)の調合工程前に、メタリン酸リチウムLiPOを1000~1200℃の温度で溶融して非晶質状態にさせ、非晶質状態のメタリン酸リチウムLiPOを粉砕する前処理工程をさらに含むことを特徴とする請求項1~7のいずれかに記載のリチウムイオン二次電池正極材料の製造方法。 Before the blending step of (1), a pretreatment step of melting lithium metaphosphate LiPO 3 at a temperature of 1000 to 1200 ° C. to make it amorphous and further crushing amorphous lithium metaphosphate LiPO 3 The method for producing a positive electrode material for a lithium ion secondary battery according to any one of claims 1 to 7, further comprising:
  9.  焼成温度が450~700℃の温度範囲であることを特徴とする請求項8に記載のリチウムイオン二次電池正極材料の製造方法。 The method for producing a positive electrode material for a lithium ion secondary battery according to claim 8, wherein the firing temperature is in a temperature range of 450 to 700 ° C.
  10.  粉体状のメタリン酸リチウムLiPOと、化学式MO、MO、MO、M、又はM(MはFe,Mn,Co,Niから選ばれる少なくとも1種)で表される遷移金属酸化物とを、リチウム、リン及び遷移金属のモル比が1:1:(0.8~1.2)になるように混合し、還元雰囲気下にて焼成されたことを特徴とするリチウムイオン二次電池正極材料。 Powdered lithium metaphosphate LiPO 3 and the chemical formula MO, M 2 O, MO 2 , M 3 O 4 , or M 2 O 3 (M is at least one selected from Fe, Mn, Co, Ni) The transition metal oxide is mixed so that the molar ratio of lithium, phosphorus and transition metal is 1: 1: (0.8 to 1.2), and is fired in a reducing atmosphere. Lithium ion secondary battery positive electrode material.
  11.  粉体状のメタリン酸リチウムLiPOと、化学式MO、MO、MO、M、又はM(MはFe,Mn,Co,Niから選ばれる少なくとも1種)で表される遷移金属酸化物とを、リチウム、リン及び遷移金属のモル比が1:1:(0.8~1.2)になるように混合し、還元剤をさらに添加して焼成されたことを特徴とするリチウムイオン二次電池正極材料。 Powdered lithium metaphosphate LiPO 3 and the chemical formula MO, M 2 O, MO 2 , M 3 O 4 , or M 2 O 3 (M is at least one selected from Fe, Mn, Co, Ni) The transition metal oxide to be mixed was mixed so that the molar ratio of lithium, phosphorus and transition metal was 1: 1: (0.8 to 1.2), and a reducing agent was further added and calcined. Lithium ion secondary battery positive electrode material characterized by the above.
  12.  請求項10又は11に記載のメタリン酸リチウムLiPOが非晶質状態であることを特徴とするリチウムイオン二次電池正極材料。 A lithium ion secondary battery positive electrode material, wherein the lithium metaphosphate LiPO 3 according to claim 10 or 11 is in an amorphous state.
  13.  請求項10~12のいずれかに記載の焼成物には、リン酸、リチウム、遷移金属から構成された無機酸化物の非晶質相が含まれ、その含有量が0.01~20容量部であることを特徴とするリチウムイオン二次電池正極材料。 The fired product according to any one of claims 10 to 12 includes an amorphous phase of an inorganic oxide composed of phosphoric acid, lithium, and a transition metal, and the content thereof is 0.01 to 20 parts by volume. A lithium ion secondary battery positive electrode material, characterized in that
  14.  請求項10~13のいずれかに記載の焼成物に加え、導電助剤がさらに含有されることを特徴とするリチウムイオン二次電池正極材料。 14. A positive electrode material for a lithium ion secondary battery, further comprising a conductive additive in addition to the fired product according to any one of claims 10 to 13.
PCT/JP2010/067217 2009-10-06 2010-10-01 Positive electrode material for lithium ion secondary battery, and process for production thereof WO2011043255A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011535366A JP5446017B2 (en) 2009-10-06 2010-10-01 Positive electrode material for lithium ion secondary battery and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009232705 2009-10-06
JP2009-232705 2009-10-06

Publications (1)

Publication Number Publication Date
WO2011043255A1 true WO2011043255A1 (en) 2011-04-14

Family

ID=43856713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067217 WO2011043255A1 (en) 2009-10-06 2010-10-01 Positive electrode material for lithium ion secondary battery, and process for production thereof

Country Status (2)

Country Link
JP (1) JP5446017B2 (en)
WO (1) WO2011043255A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013518023A (en) * 2010-01-28 2013-05-20 ズード−ケミー アーゲー Substituted lithium metal phosphate
JP5836461B1 (en) * 2014-09-29 2015-12-24 太平洋セメント株式会社 Positive electrode material for lithium secondary battery
WO2016021068A1 (en) * 2014-08-08 2016-02-11 株式会社パワージャパンプリュス Method for producing lithium composite metal phosphate compound, method for producing olivine-type lithium iron phosphate, olivine-type lithium iron phosphate, and secondary battery
CN111816851A (en) * 2020-06-22 2020-10-23 南昌大学 Hierarchical porous LiMnxFe1-xPO4Template-free hydrothermal preparation method of/C composite microsphere cathode material
CN113745500A (en) * 2021-08-03 2021-12-03 湖北融通高科先进材料有限公司 Preparation method of high-nickel ternary cathode material
WO2022239684A1 (en) * 2021-05-13 2022-11-17 日本化学工業株式会社 Method for producing transition-metal-containing lithium-phosphorus-based composite oxide, and method for producing transition-metal-containing lithium-phosphorus-based composite oxide carbon complex

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101616900B1 (en) * 2014-06-30 2016-05-02 재단법인 포항산업과학연구원 Mehod of preparing olivine positive active material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066019A (en) * 2006-09-05 2008-03-21 Sumitomo Osaka Cement Co Ltd Manufacturing method of electrode material, recovery method for lithium, positive electrode material, electrode, and battery
JP2009054576A (en) * 2007-07-27 2009-03-12 Nippon Chem Ind Co Ltd Manufacturing method of lithium-iron-phosphorus compound oxide carbon complex and manufacturing method of coprecipitate containing lithium, iron, and phosphorus
JP2009081002A (en) * 2007-09-26 2009-04-16 Furukawa Battery Co Ltd:The Manufacturing method of positive electrode active material for lithium secondary battery, positive electrode active material, and lithium secondary battery
JP2009087933A (en) * 2007-09-11 2009-04-23 Nagaoka Univ Of Technology Positive electrode material for lithium ion secondary battery and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4483253B2 (en) * 2003-09-30 2010-06-16 三菱化学株式会社 Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2006066019A (en) * 2004-08-30 2006-03-09 Nippon Hoso Kyokai <Nhk> Recording medium
JP2008081002A (en) * 2006-09-28 2008-04-10 Takata Corp Airbag and airbag device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066019A (en) * 2006-09-05 2008-03-21 Sumitomo Osaka Cement Co Ltd Manufacturing method of electrode material, recovery method for lithium, positive electrode material, electrode, and battery
JP2009054576A (en) * 2007-07-27 2009-03-12 Nippon Chem Ind Co Ltd Manufacturing method of lithium-iron-phosphorus compound oxide carbon complex and manufacturing method of coprecipitate containing lithium, iron, and phosphorus
JP2009087933A (en) * 2007-09-11 2009-04-23 Nagaoka Univ Of Technology Positive electrode material for lithium ion secondary battery and method of manufacturing the same
JP2009081002A (en) * 2007-09-26 2009-04-16 Furukawa Battery Co Ltd:The Manufacturing method of positive electrode active material for lithium secondary battery, positive electrode active material, and lithium secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013518023A (en) * 2010-01-28 2013-05-20 ズード−ケミー アーゲー Substituted lithium metal phosphate
WO2016021068A1 (en) * 2014-08-08 2016-02-11 株式会社パワージャパンプリュス Method for producing lithium composite metal phosphate compound, method for producing olivine-type lithium iron phosphate, olivine-type lithium iron phosphate, and secondary battery
JPWO2016021068A1 (en) * 2014-08-08 2017-04-27 株式会社パワージャパンプリュス Method for producing lithium composite metal phosphate compound and olivine-type lithium iron phosphate, said olivine-type lithium iron phosphate, and secondary battery
JP5836461B1 (en) * 2014-09-29 2015-12-24 太平洋セメント株式会社 Positive electrode material for lithium secondary battery
JP2016072029A (en) * 2014-09-29 2016-05-09 太平洋セメント株式会社 Positive electrode material for lithium secondary battery
CN111816851A (en) * 2020-06-22 2020-10-23 南昌大学 Hierarchical porous LiMnxFe1-xPO4Template-free hydrothermal preparation method of/C composite microsphere cathode material
WO2022239684A1 (en) * 2021-05-13 2022-11-17 日本化学工業株式会社 Method for producing transition-metal-containing lithium-phosphorus-based composite oxide, and method for producing transition-metal-containing lithium-phosphorus-based composite oxide carbon complex
CN113745500A (en) * 2021-08-03 2021-12-03 湖北融通高科先进材料有限公司 Preparation method of high-nickel ternary cathode material

Also Published As

Publication number Publication date
JPWO2011043255A1 (en) 2013-03-04
JP5446017B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5331419B2 (en) Positive electrode material for lithium ion secondary battery and method for producing the same
Higuchi et al. Synthesis of LiFePO4 cathode material by microwave processing
Minakshi et al. Synthesis and characterization of olivine LiNiPO4 for aqueous rechargeable battery
Zhang et al. Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes
JP5446017B2 (en) Positive electrode material for lithium ion secondary battery and method for producing the same
JP5158008B2 (en) All solid battery
Nytén et al. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material
CA2790806C (en) Process for preparing electroactive insertion compounds and electrode materials obtained therefrom
WO2009139415A1 (en) Crystallized glass and method for producing the same
KR101003136B1 (en) Synthesis of low cost LiFePO4 cathode material for Lithium secondary battery using sol-gel method
Gangulibabu et al. CAM sol–gel synthesized LiMPO 4 (M= Co, Ni) cathodes for rechargeable lithium batteries
TW200805734A (en) The preparation and application of the LiFePO4/Li3V2(PO4)3 composite cathode materials for lithium ion batteries
EP2546194A1 (en) Phosphate compound, positive electrode for secondary battery and method for producing secondary battery
US20120112379A1 (en) Process for producing positive electrode material for secondary cell and positive electrode for secondary cell
Nanthagopal et al. An encapsulation of nitrogen and sulphur dual-doped carbon over Li [Ni0. 8Co0. 1Mn0. 1] O2 for lithium-ion battery applications
JP2010521395A (en) Method for synthesizing LiMPO4 compound and use of this compound as an electrode material for a lithium storage battery
JPWO2011138964A1 (en) Silicic acid-phosphoric acid compound, positive electrode for secondary battery, and method for producing secondary battery
Yang et al. Synthesis of LiFePO4/polyacenes using iron oxyhydroxide as an iron source
CN102339999B (en) Polyanion composite material, its preparation method and application
US20120217451A1 (en) Process for producing phosphate compound and method for producing secondary battery
Dong et al. Crystal structure and lithium electrochemical extraction properties of olivine type LiFePO4
CN101944615B (en) Lithium-manganese phosphate anode material for lithium ion battery and preparation method thereof
JP2011165461A (en) Lithium ion secondary battery positive electrode material
Yang et al. The study on synthesis and modification for iron phosphate
US20120228561A1 (en) Production method for lithium ion secondary battery positive electrode material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821926

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011535366

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10821926

Country of ref document: EP

Kind code of ref document: A1