WO2011042659A1 - Eolienne a deflecteur interne - Google Patents

Eolienne a deflecteur interne Download PDF

Info

Publication number
WO2011042659A1
WO2011042659A1 PCT/FR2010/052104 FR2010052104W WO2011042659A1 WO 2011042659 A1 WO2011042659 A1 WO 2011042659A1 FR 2010052104 W FR2010052104 W FR 2010052104W WO 2011042659 A1 WO2011042659 A1 WO 2011042659A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
baffle
fluid stream
zone
blades
Prior art date
Application number
PCT/FR2010/052104
Other languages
English (en)
Inventor
Louis Bernard Claude Maurice
Original Assignee
Okwind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okwind filed Critical Okwind
Priority to EP10776787A priority Critical patent/EP2486268A1/fr
Publication of WO2011042659A1 publication Critical patent/WO2011042659A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/02Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/214Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to the general field of devices for capturing the energy of a fluid stream, such as turbines, and more particularly the field of wind turbines, and in particular vertical axis wind turbines.
  • the present invention relates to a device for collecting the energy of a fluid stream, said device comprising a rotor provided with at least one blade which enables said fluid stream to drive said rotor, said less a blade sweeping in space, when the rotor is driven, a sweeping path that substantially delimits an inner zone to the rotor, and an outer zone to the rotor.
  • the present invention also relates to a method for capturing the energy of a fluid stream.
  • wind turbines as drive means for mechanical or electromechanical devices of the alternator type.
  • baffles tend to increase the size of the wind turbine, and the visual and noise pollution created by it, especially when said baffles are integrated in a housing which completely envelops the rotor of the wind turbine.
  • deflectors can even be an obstacle to the flow of the engine wind, or even be the cause of turbulence likely to cause yield losses or noise.
  • the objects assigned to the present invention therefore aim to provide a new device for collecting the energy of a fluid stream which overcomes the aforementioned drawbacks and has an improved efficiency.
  • Another object assigned to the invention is to propose a new device for capturing the energy of a fluid stream that is particularly compact and compact.
  • Another object assigned to the invention is to propose a new device for capturing the energy of a fluid stream whose structure is particularly simple, light and resistant.
  • Another object assigned to the invention is to propose a new device for capturing the energy of a fluid stream requiring a low starting torque, having a wide range of operation, and having a regular operation.
  • Another object assigned to the invention is to propose a new type of wind turbine which has improved performance, great versatility of use, great ease of installation, and which causes little nuisance.
  • the present invention aims at providing a new method for capturing the energy of a fluid stream having an improved efficiency.
  • a device for collecting the energy of a fluid stream comprising a Darrieus type rotor provided with at least one substantially tangentially oriented blade. at the periphery of said rotor and which allows said fluid stream to drive said rotor, said at least one blade sweeping in space, when the rotor is driven, a scanning path which substantially delimits an area inside the rotor and a zone external to the rotor, said device being characterized in that it comprises at least one inner baffle and one outer baffle located opposite each other on either side of the scanning path, respectively in the inner zone and in the outer zone, so as to form a circulation channel directing the flow of fluid towards the scanning path and having at least one narrowing portion in which the internal deflector and the deflect
  • the outer baffle generally approaches one another to form a Venturi, the inner baffle having at least one centrifugal deflection portion which generally deviates from the center of the rotor toward the periphery of the rotor
  • the objects assigned to the invention are also achieved by means of a process for collecting the energy of a fluid stream, during which a device comprising a Darrieus type rotor provided in said fluid stream is provided. at least one blade disposed substantially tangential to the periphery of said rotor and which allows said fluid stream to drive said rotor, said at least one blade, sweeping in space, when the rotor is driven, a path of sweeping which substantially delimits an area internal to the rotor and an area external to the rotor, said method being characterized in that it comprises a step (a) of channeling the fluid stream, during which there is at least one internal baffle and an external deflector on both sides of the scanning path, respectively in the inner zone and in the outer zone, for directing the fluid stream to the scanning path, said channeling step (a) comprising a collection sub-step (a1) during which at least a portion of the fluid stream is collected incident that enters the inner zone to deport in the peripheral zone of the rotor in at least one
  • FIG. 1 shows, in a perspective view, an alternative embodiment of a power sensing device according to the invention.
  • FIG. 2 illustrates, in a view in projection in the vertical plane, the energy sensing device represented in FIG. 1.
  • FIG. 3 illustrates, in a view from above, the energy sensing device shown in Figures 1 and 2.
  • FIG. 4 illustrates, in a sectional top view, the device shown in Figures 1 to 3.
  • FIG. 5a, 5b and 5c show, in schematic sectional views projected in the vertical plane, three variants of embodiment a device for collecting the energy of a fluid stream according to the invention.
  • FIG. 6 illustrates, in a top view similar to that of Figure 3, an alternative embodiment of device 1 according to the invention.
  • the present invention generally relates to a device 1 for capturing the energy of a fluid stream F.
  • said device 1 comprises a rotor 2 provided with at least one blade 3 which allows the fluid stream F to drive said rotor 2.
  • said rotor 2 can be rotatably mounted about an axis of rotation ( ⁇ '), relative to a stator 4, which can advantageously comprise a base 5 provided with fixing means intended to fix the device 1 to a site of any implantation, called "reference", such as the ground, a building, a roof, a mast, a vehicle, etc.
  • the device 1 can be adapted to fluids of different natures, such as air (wind), liquid water (stream, marine currents) or any gas such as steam. water.
  • fluids of different natures such as air (wind), liquid water (stream, marine currents) or any gas such as steam. water.
  • fluid stream F may be both natural and artificially generated by any means.
  • the device 1 can thus be in the form of a rotating machine, of the turbine type, the rotor of which is capable of converting the pressure and / or the kinetic energy of the fluid stream F into a rotational speed movement.
  • the device can constitute a wind turbine or a hydroiienne.
  • the device 1 is preferably designed to be arranged transversely with respect to the fluid stream F so that said fluid stream F approaches the device 1 laterally and drives the rotor 2 substantially tangentially, by a driving force of the push and / or lift type which comprises at least one component substantially normal to the axis of rotation ( ⁇ ').
  • the device 1 can thus constitute a vertical axis machine, and in particular a Darrieus-type wind turbine, and will be assimilated in the following, for convenience of description, to such a wind turbine.
  • the device 1 in a plane normal to rotation axis ( ⁇ '), the device 1 is exposed to an incident fluid flow F oriented in a south-north direction.
  • the at least one blade 3 When the rotor 2 is driven in motion by the fluid flow F, the at least one blade 3 describes a path about the axis of rotation ( ⁇ '), preferably substantially circular, so that it sweeps through the space a scanning path 6 which substantially delimits an inner zone 7 to the rotor, and an outer zone 8 to the rotor.
  • Said scanning path 6 thus corresponds to the spatial volume generated by the set of successive positions occupied by the blade (s) when it (s) completes a complete revolution about the axis of rotation ( ⁇ ').
  • said scanning path 6 corresponds preferably to the imaginary volume of revolution that a blade 3 draws by rotating around the axis of rotation ( ⁇ '), c that is to say a hollow cylinder with an axis ( ⁇ '), of internal radius Ri corresponding to the smallest distance measured between the axis of rotation ( ⁇ ') and the surface of the blade 3, and radius external Re corresponding to the greatest distance measured between said axis ( ⁇ ') and said pay 3.
  • the closed volume occupied by scanning path 6 thus forms a separation zone in which the blade (s) 3 circulates. , and within which the volume corresponding to the internal zone 7 is inscribed, said internal zone 7 thus remaining advantageously 3, even when the rotor is rotated relative to the stator.
  • said inner zone 7 substantially forms the central zone of the rotor 2.
  • the outer zone 8 corresponds to the volume of the remainder of the space, which constitutes the environment of the rotor 2, beyond the scan path 6.
  • the scan path 6 is substantially defined axially by the lower ends 9 and 10 of the blades 3, said blades being respectively able to be held relative to each other and with respect to the axis of rotation ( ⁇ ') by means of end plates such as this is illustrated in Figure 5A, or by means of support arms 34 preferably arranged in a cross.
  • the scanning path 6 then corresponds substantially to a hollow cylinder section of axis ( ⁇ ') and of height h equal to that of the rotor 2.
  • the rotor comprises a plurality of blades. These are preferably substantially equi-distributed around Tax ( ⁇ '), and preferably substantially parallel to said axis, although it is conceivable to provide curved blades, including helical blades.
  • the rotor 2 is preferably a Darrieus-type rotor, whose blades 3 are driven by an aerodynamic phenomenon of lift and drag.
  • the invention is indeed particularly suitable for this type of rotor, although it can be adapted to other configurations.
  • the device 1 comprises at least one inner baffle 11 and at least one outer baffle 12, said inner baffle 11 and outer baffle 12 being located on either side of the scanning path 6, respectively in the inner zone 7 and in the outer zone 8.
  • the inner baffle 11 and the outer baffle 2 thus cooperate to direct the flow of fluid F towards the scanning path 6, which strengthens the driving capacity of the device 1.
  • the inner baffle 11 and the outer baffle 2 are located opposite each other, so as to overlap at least partially along a section of the scanning path 6, according to an angular sector of angular coverage around the axis of rotation ( ⁇ '), and thus form a circulation channel 14 which directs the flow of fluid F to the scanning path 6 and channels it substantially along the latter .
  • Said deflectors 11, 12 form members for modifying the direction of flow of the fluid stream F, and more particularly of the incident fluid stream, in order to channel said fluid stream F into the circulation channel 14 and directing said stream of fluid towards the scanning path 6 where it drives the blade or blades 3.
  • the inner and outer baffles 11 and 12 cooperate to create and reinforce a driving zone for driving the blades 3, said driving zone being substantially delimited by said baffles which form the radially inner wall and the radially outer wall of the circulation channel 14, wherein the blades engage in succession one after the other and are propelled by the flow of fluid F thus modeled.
  • the present invention therefore makes it possible to optimize the distribution and in particular the point of application of the flow of fluid incident on the rotor, and more particularly on the blade or blades 3, while allowing optimization of the number and size of the necessary blades, and therefore the weight and inertia at startup of the rotor.
  • the device 1 may be provided with an internal baffle 11 located substantially upstream of the fluid stream and an outer baffle 12 located substantially further downstream in the direction of flow of said flow of water. fluid, said cooperating baffles for directing, concentrating and / or maintaining said fluid stream on a path substantially corresponding to the scanning path 6 described by the blades 3.
  • the respective leading edges 11A, 12A of said inner and outer baffles 11 and 11 are disposed frontally. substantially at the same ordinate, as shown in Figure 6.
  • the line joining these two leading edges 11A, 12A, in a plane normal to the axis ( ⁇ ') is substantially perpendicular to the direction of the incident fluid stream and, in this case, substantially parallel to the west-east direction.
  • the deflectors are preferably arranged so that the incident fluid flow substantially simultaneously crosses the leading edges of the two deflectors when it enters the circuiation channel 14.
  • the integration of the internal deflector 1 in the inner zone 7 to the rotor makes it possible to gain compactness and to reduce the overall bulk, as well as the aesthetic impact, of the device 1.
  • the inner baffle 11 is housed in the inner zone 7 at least in part, preferably a majority, and particularly preferably contained completely within said inner zone 7 which is large enough to allow its installation .
  • Said device 1 according to the invention therefore has an improved efficiency, a low starting torque, as well as a reduced aesthetic and environmental impact.
  • inner baffle 11 and the outer baffle 12 are advantageously separate blades 3 themselves.
  • said inner and outer baffles 11 and 11 are dissociated from the drive movement, here in rotation, of the rotor 2.
  • the rotor 2 can advantageously be driven in relative movement with respect to said inner and outer baffles, and more particularly be driven by a speed rotation movement ⁇ with respect to the stator 4 while the internal baffle 11 and / or the baffle internal 12 remains (s) substantially immobile (s) relative to the stator, or at least with respect to the F1 direction of the fluid flow F incident as long as it remains substantially constant.
  • the device 1 further comprises orientation means 13 able to modify the angular orientation of the inner baffle 11 and / or that of the outer baffle 12 relative to the rotor 3, with respect to the stator 4, and which are more particularly designed to properly orient the deflectors 11, 12 with respect to the overall direction of the incident fluid stream F1.
  • the device 1 therefore has a great versatility of use in that it is able to adapt to the direction of the incident fluid flow, and thus to capture the energy said fluid stream in multiple exposure configurations.
  • the operation of the orientation means may have an automatic character or, on the contrary, require manual intervention by the operator of the device.
  • the orientation means 13 may include an automatic aerodynamic orientation system, similar to that of a wind vane, provided with a fin forming a rudder.
  • This rudder can either be placed directly at the top of the device 1, directly above the rotor, on a deflector support 17 which holds the deflector concerned to the axis ( ⁇ '), and preferably on the support of the outer deflector 12 is deported at the end of a radial rod, itself for example mounted to project externally from said outer baffle 12.
  • the orientation means 13 may comprise motorized azimuth position control means, by means of for example, a toothed crown system associated with the support of the deflector concerned and controlled in position by an electric motor, whose setpoint is provided by separate means for detecting the orientation of the fluid stream.
  • Such a motorized servocontrol advantageously makes it possible to envisage the implementation of the invention within high-power wind turbines, particularly in the power range of 10 kW to 20 kW, since it makes it possible to overcome the use of a large rudder which would otherwise be necessary to balance the torque exerted by the fluid stream on the deflector set 11, 12.
  • the inner baffle 11 and the outer baffle 12 can be moved relative to each other by means of appropriate adjustment means.
  • such an arrangement makes it possible to modify the configuration of the circulation channel 14, for example by modifying the length of said channel by adjusting the degree of overlap between the internal baffle and the outer baffle, or by modifying the width of said channel , measured radially with respect to the axis of rotation ( ⁇ '), bringing the outer baffle 11 and the outer baffle 12 closer radially away from each other;
  • the inner baffles 11 and outer 12 are integral with each other, at least in normal operation of the device.
  • the inner baffle 11 and the outer baffle 12 are advantageously distinct from the blades 3, of the shaft 29 embodying the axis of rotation ( ⁇ '), and more generally of the rotor 2, and advantageously adjustable at least in azimuth with respect to the stator 4 and independently of the position and speed of the rotor 2.
  • the device 1 may also comprise guide walls 15, 16 arranged between the internal deflector 11 and the deflector external 12, transversely to these, so as to participate in the delimitation of the circulation channel 14.
  • the device 1 will preferably comprise a guide wall. lower 15 and an upper guide wall 16 which extend substantially horizontally so as to connect the inner baffle 11 to the outer baffle 12 on either side of the blades 3.
  • the guide walls 15, 16 may advantageously be material with one or other of the inner and outer baffles, or with the baffle support 17. They can also advantageously form spacers which help to stiffen the assembly of the baffles and maintain their spacing.
  • guide walls 15, 16 advantageously makes it possible to create, according to a characteristic which can constitute an entirely separate invention, a covered circulation channel 14 forming a real chamber for circulating the fluid of the nozzle type. which is delimited substantially in all directions transverse to the direction of flow of the fluid stream F.
  • the inner baffle 11 has at least one centrifugal deflection portion 18 which generally deviates from the center ⁇ of the rotor 2 towards the periphery 19 of the rotor 2.
  • this centrifugal deflection portion 18 forms a profile which deviates in a global and progressive manner from the axis of rotation (ZZ) in order to deflect, in at least one radial component oriented from the center towards the periphery of the rotor 2, the fluid flow F.
  • this arrangement allows to deport the incident fluid stream to concentrate it and apply it to the blades 3 in a peripheral zone 19 of the rotor, which allows to benefit from a maximum lever with respect to the axis (ZZ) and therefore to optimize the motor torque applied to said rotor 2,
  • the internal arrangement of the inner baffle 11, interposed between the center of the rotor and all or part of the incident fluid stream, makes it possible to recover at least in part the secondary fluid stream F 2 which has entered the internal zone 7 after passing substantially frontally the scanning path 6.
  • the arrangement of the device 1 makes it possible to print a first drive force to the blades 3 exposed frontally to the incident fluid current F1, in an upstream zone 6A of the scanning path, and then to recover the secondary fluid flow F2, which would otherwise be lost, and to redirect it to a downstream portion 6B of the scanning path 6, which is contained in the circulation channel 14, so that this secondary fluid stream F2, advantageously joined by a part of the incident fluid flow F1 , participates in a second driving force of the blades 3 when they are engaged in said circulation channel 14.
  • This dual use of the incident fluid stream F1 advantageously makes it possible to substantially capture the entire fluid stream and to extract a maximum of energy, even when the cumulative surface area of the blades has a reduced value, while avoiding that said fluid stream crosses the rotor without effectively and efficiently contributing to blade driving 3.
  • the circulation channel 14 has at least one narrowing portion 20 in which the internal deflector 1 1 and the outer baffle 12 approach globally to form a Venturi.
  • this arrangement also makes it possible to converge the fluid stream F towards the scanning path 6, and even substantially on said scanning path 6.
  • the transverse section, and more particularly the width Lu of the circulation channel 14 that is to say the substantially radially measured distance which separates the wall of the inner baffle 11 facing the scanning path 6 and that corresponding to the deflector external 12, reduced overall in the narrowing portion 20, in the direction of circulation of the fluid and blades 3, between the intake zone 21 and the exhaust zone 22 of the channel.
  • the inner and outer baffles 11 and 11 have corrugated profiles or move toward each other in discontinuous steps.
  • the circulation channel 14 is preferably even continuously convergent, and does not present a sudden setback.
  • the tightening of the circulation channel 14 makes it possible to concentrate and accelerate the captive fluid flow by a Venturi effect at the sweeping path 6 traversed by the blades 3.
  • the drive conditions of said payrolls are optimized, especially if it is a wind turbine, in the event of a weak wind.
  • the inner and outer baffles 11 and 12 advantageously can form a kind of horn or funnel threaded on the scanning path 6 and having a large intake zone 21 which collects and converges, by a progressive throttle materialized by the vertical walls of said deflectors, the fluid flow to an exhaust zone 22 which substantially encloses or coincides with the scanning path 6
  • a substantially closed channel 14 on all its lateral edges makes it possible to create a true Venturi effect chamber forming an acceleration tunnel for the blades 3.
  • the circulation channel 14 may have, downstream of the narrowing portion 20 in the flow direction of the fluid stream F, a circulation portion 23 of substantially constant width L23, and preferably substantially equal to the minimum width L 2 o of the narrowing portion, along which the inner and outer baffles 11 and 12 extend substantially parallel to each other and to the scanning path 6.
  • transverse section of the circulation channel 14 will preferably be adapted proportionally to the dimensions and the geometry of the blades 3.
  • the outer baffle 12 it would also be possible for the outer baffle 12 to be inclined relative to the rotor 2, that is to say to have a variation in its distance from the axis ( ⁇ '), so that its leading edge 12A is further radially away from the scanning path 6, and its trailing edge 12B substantially closer to said scanning path 6, and said outer deflector preferably joins the rotor 2 substantially tangentially thereto.
  • the outer baffle 12 has a profile that substantially follows that of the rotor, substantially parallel to the scanning path 6 and at a substantially constant distance from the latter.
  • the convergent nature of the narrowing portion 20 is thus mainly, if not exclusively, conferred by the internal deflector 11, and more particularly by all or part of the centrifugal deflection portion 18.
  • said outer baffle 12 forms a cylinder portion whose base is an arc of circle whose radius, which is substantially constant, is slightly greater than the external radius Re of the scanning path 6.
  • said outer baffle is formed in a curved plate of small thickness and substantially constant, so as to substantially follow the contour of the scanning path, which contributes to improving the compactness of the device 1, to lighten it, and to give it a good aerodynamic behavior that does not need to wind up unnecessarily.
  • the overall radial space requirement of the outer baffle 12, and more generally of the rotor equipped with its internal and external baffles, can be substantially comprised within a circular base cylinder whose radius diameter does not exceed 1, 05 to 1, 15 times, or even 1, 10 times the outer radius Re of the scan path
  • the inner baffle 11 has a generally convex curved profile, and may in particular have, in a plane normal to the axis of rotation ( ⁇ '), a first upstream portion 24 substantially corresponding to the narrowing portion 20 and of which the curvature preferably varies so as to be more and more pronounced, then a second substantially constant downstream portion of curvature substantially corresponding to the circulation portion 23.
  • the internal deflector 11 may be formed by a rigid or semi-rigid element -Ridge of low thickness, substantially constant, and of reduced mass, for example by a simple bent sheet or a thermoformed plate, or a succession of two curved sheets respectively corresponding to the first and the second portion 24, 25 and joined edge on board.
  • the sheet or sheets may be held rigidly, for example by bolting or riveting, to fixing spokes 27 connected to the axis ( ⁇ ') and forming the deflector support 17.
  • the leading edge 1 A of the internal deflector 11 is advantageously eccentric, at an eccentric distance e, with respect to the axis of rotation ( ⁇ '), substantially between said axis of rotation ( ⁇ ') and the upstream portion 6A of the scanning path 6 which frontally receives the incident fluid stream. Its trailing edge 11 B is then preferably located at an intermediate radius greater than said eccentricity e but less than the internal radius of the scanning path 6.
  • the internal deflector 11 could be active and mounted movable at in the rotor, said deflector being moved differential relative to the rotor in the same direction as the latter, and forming for example a cylinder eccentric differential rotation, so as to form a "treadmill” or a “crawler” tending to driving the incident fluid stream to the outer baffle 12.
  • the internal baffle 11 will preferably be passive, that is to say not animated with a proper movement, except as the case may be, as regards its orientation with respect to the direction of the dominant incident fluid current, which makes it possible in particular to simplify and lighten the structure of the device 1.
  • the internal baffle 11 will preferably be passive, that is to say not animated with a proper movement, except as the case may be, as regards its orientation with respect to the direction of the dominant incident fluid current, which makes it possible in particular to simplify and lighten the structure of the device 1.
  • those skilled in the art will be able to appreciate the dimensions and proportions of the various constituent elements of the device 1 in order to optimize their operation, for example through test campaigns.
  • a dimensioning criterion may be that the quotient of the cumulative driving surface of the blades 3 by the surface of the sagittal section of the rotor 2 is substantially between 0.1 and 0.5, and preferably substantially equal to 0.2.
  • the sagittal section of the rotor 3 corresponds to the rectangle obtained by projection of the rotor in a plane parallel to the axis of rotation ( ⁇ ') and substantially normal to the direction of the current of the rotor. fluid F incident. Its surface therefore corresponds to the product of the diameter D of the rotor by the height h thereof measured parallel to the axis of rotation ( ⁇ ') between the lower and upper ends 9 and 10 of the blades 3.
  • the cumulative driving surface of the blades 3 corresponds to the product of the number of blades 3 by the width L p of each blade and by the height of each of the blades, which is substantially equal to the height h of the rotor 2.
  • this blade width L p represents the radial size measured with respect to the axis of rotation ( ⁇ '), and corresponds substantially at length L 6 of the baiayage road 6.
  • the upstream blades that is to say situated in the portion of the rotor 2 which is driven in a direction opposite to that of the incident fluid flow, substantially in the northwestern and southwestern quadrants , may be masked by means of a suitable screen 40, shown in phantom in FIGS. 2 and 3.
  • the width L of the circulation channel 14 may be substantially less than or equal to 30% of the diameter D of the rotor.
  • these ratios and proportions can be optimized according to the geometry of the deflectors, that of the blades 3, or the nature of the rotor 2, for example if it is a Darrieus type and that it is appropriate to leave a sufficient clearance of flow between the edges of the blades and the walls of the circulation channel 14, in particular on both sides of the blade vis-à-vis the inner and outer side walls.
  • the angular coverage g of the circulation channel 14, measured around the axis of rotation ( ⁇ '), is preferably substantially between 20 degrees and 90 degrees, and for example substantially between 30 degrees and 80 degrees.
  • this angular coverage g will correspond to the angular sector defined by the arc according to which the internal baffle and the outer baffle overlap.
  • other values of angular coverage are possible, depending on the rate of overlap between the baffles.
  • this angular coverage will correspond substantially to two-thirds or more, indeed to the entire angular sector covered by the internal deflector 11 and / or the arc formed by the outer deflector 12 around the axis ( ⁇ ').
  • the number and the dimension of the blades 3 will be defined with respect to the angular coverage a of the circulation channel 14, so that there is always at least one blade 3, or at least two blades, engaged ( s) in said circulation channel 14, regardless of the relative angular position of the rotor relative to the baffles.
  • the rotor 2 preferably comprises a plurality of blades 3 substantially equi-distributed and in sufficient number so that there is systematically at least one blade 3 engaged in the circulation channel 14.
  • the device will present smooth operation, smoothly, thanks to the regular application of a driving force on the rotor 2.
  • the rotor 2 may be formed by the axial stack, along the axis of rotation ( ⁇ '), of at least a first elementary rotor 2A and a second elementary rotor 2B.
  • said elementary rotors 2A, 2B are separated, at their respective blades 3, by an interstice 31 which allows the passage of a connection 32 between the inner baffle 11 and the outer baffle 12, as shown in particular in Figures 5A and 5C.
  • the first and second elementary rotors 2A, 2B are substantially identical in their shapes and dimensions, and secured to the same shaft 29.
  • the gap 31 can be formed by a ring-shaped passageway between the blades, while the device comprises an integral inner baffle 11, and an outer baffle 12 also monobloc.
  • the blades 3 being held by attachment arms 34, preferably substantially radial, the inner baffle 11 may be split by one or more passage zones 33 allowing the circulation of said arms 34 during the implementation. rotor rotation 2.
  • FIG. 5B schematically illustrates an embodiment substantially corresponding to that of FIGS. 1 and 2 and having a single rotor whose blades 3 are connected to the shaft 29 substantially in their middle, by means of arms 34 forming a cross, while the inner baffle 11 is subdivided transversely to the axis ( ⁇ ') into two half-deflectors separated by a substantially annular passage zone 33.
  • FIG. 5C represents a third variant embodiment in which the rotor and the internal deflector are both fractionated.
  • this third variant makes it possible to build a wind turbine of large height and diameter while balancing the operation of the stepped elementary rotors, and by limiting the load attached to the end of the arms 34 so as to reduce the bending or vibration phenomena. .
  • the blades 3 of the first elementary rotor 2A are offset angularly with respect to those of the second elementary rotor 2B, preferably of a value equal to the half-angle between two successive blades.
  • the blades 3 of the first elementary rotor 2A are offset angularly with respect to those of the second elementary rotor 2B, preferably of a value equal to the half-angle between two successive blades.
  • the device 1 is then oriented so that the inner baffle 11 extends from the southeast quadrant to the northeast quadrant, preferably substantially half in each of said quadrants.
  • the outer baffle 12 preferably extends substantially in the northeast quadrant, and partly, for example, 20% to 40%, in the southeast quadrant.
  • the south-west quadrant may be masked, at least in part or in whole, by a screen 40 which protects the upstream 3 blades from said fluid stream.
  • the screen 40 may be formed by a substantially vertical sheet bent in an arc around the axis ( ⁇ ').
  • said screen 40 may be formed by a second external deflector implemented, in combination with a second internal deflector, substantially symmetrically to the first set of internal deflectors and external device described above, and more particularly located substantially in the south-west quadrant diametrically opposite to the axis of rotation ( ⁇ '), so that the turbine can indifferently operate under a south-oriented fluid flow. north or, conversely, north-south, and, where appropriate, self-orientate more rapidly relative to the dominant fluid stream, regardless of the variations of the approach angle of said dominant fluid stream.
  • Such an arrangement can also help to balance the structure of the device.
  • the incident fluid current F1 drives the device 1 by approaching the scanning path 6, substantially perpendicular to it and substantially facing the first portion 24 of the internal deflector 11.
  • the secondary fluid stream F2 is thus re-injected, from inside the rotor, into the circulation channel 14 which surrounds the downstream portion 6B of the scanning path 6, and more particularly in the upstream portion 24 forming Venturi then in the circulation portion 23 located in the northeast quadrant of said circulation channel, where said secondary fluid stream contributes again to exert a motor force on the rotor, and more particularly to drive and accelerate the blades circulating in said circulation channel 14.
  • the secondary fluid stream abuts against the first portion 24 of the inner baffle 11 and moves along said deflector, here substantially in the east-north-east direction, to join, within the channel of circulation 14, the part of the incident flow which reaches directly into said channel 14 from the outside, in particular by following the external deflector.
  • the method according to the invention therefore comprises at least one step (a) for channeling the fluid stream during which there is at least one internal baffle 11 and an outer baffle 12 on either side of the scanning path, respectively in the inner zone and in the outer zone, in order to direct the flow of fluid towards the scanning path 6.
  • the step (a) of channeling comprises a substep (a1) of collection during which the incident fluid stream is collected, and in particular the portion F2 of this incident fluid stream which enters the internal zone 7. and a sub-step (a2) of acceleration, during which said fluid stream is passed through a narrowing portion 20 so as to accelerate it by Venturi effect.
  • said fluid stream has, when it comes into contact with the blades 3 which are in the circulation channel 14, a speed greater than that the incident fluid stream and can therefore potentially cause said blades 3 more effectively than known devices, at a higher speed.
  • the channeling step (a) comprises a third maintenance sub-step (a3) during which the accelerated fluid current is confined within a circulation portion 23 of substantially constant cross section in order to be able to maintain a training effort on the blades that are engaged in it.
  • a3 a third maintenance sub-step during which the accelerated fluid current is confined within a circulation portion 23 of substantially constant cross section in order to be able to maintain a training effort on the blades that are engaged in it.
  • this substep (a3) of maintenance can be implemented substantially in the first half of the northeast quadrant.
  • the channeling step (a) then preferably comprises an exhaust substep (a4) during which the fluid stream escapes from the wind turbine, at the outlet of the circulation channel 14, after having substantially circumvented the central part of the rotor by passing through said lateral peripheral channel 14. This escape occurs from preferably substantially in the vicinity of the northern region of the device 1, substantially opposite the point of entry of the fluid stream.
  • the present device has a high efficiency, since it is capable of capturing and exploiting most of the energy of almost all of the current. fluid that reaches it, on the one hand by concentrating and accelerating said flow of fluid in the peripheral zone of the rotor having the best motor capabilities, but also by recycling and accelerating the secondary fluid stream having already contributed a first time to give energy to the blades and having penetrated into the inner zone of the rotor.
  • Venturi effect chamber which, for a given sensing surface, increases the speed, if not the flow rate, of the fluid flow and increases both the thrust generated by the dynamic pressure and the aerodynamic drive forces of the blade.
  • the device 1 may advantageously have blades of reduced dimensions without losing efficiency and torque, which can significantly limit the inertia of the rotor and its weight.
  • the combination of a light rotor and a large fluid flow sensing area enables the device to start even under very low fluid flow conditions.
  • the device adapts readily, and advantageously automatically, to the instantaneous direction of the incident fluid stream, which allows it to exploit the energy substantially regardless of the conditions of exposure to said fluid stream.
  • an internal baffle 11 allows for a convergent flow and acceleration channel without requiring bulky external means to the rotor.
  • the reduced size of the device also limits the visual disturbances that it is likely to cause because of its implementation, and also allows to easily isolate the rotor behind a protective grid.
  • the present device is therefore particularly safe and adapted to a particular use, in residential areas, commercial areas or even business areas.
  • the present invention finds particular industrial application in the design and operation of wind turbines or tidal turbines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

L'invention concerne un dispositif (1) de captage de l'énergie d'un courant de fluide (F) comprenant un rotor (2) de type Darrieus pourvu d'au moins une pale (3) orientée de façon sensiblement tangentielle à la périphérie dudit rotor et balayant un chemin de balayage (6) qui délimite une zone interne (7) et une zone externe (8), ledit dispositif (1) comportant au moins un déflecteur interne (11) et un déflecteur externe (12) situés en vis-à-vis l'un de l'autre de part et d'autre du chemin de balayage (6), de sorte à former un canal de circulation (14) présentant au moins une portion de rétrécissement (20) formant un Venturi, le déflecteur interne (11) présentant au moins une portion de déviation centrifuge (18) qui s'écarte globalement du centre du rotor vers ia périphérie (19) du rotor (2) afin de récupérer au moins en partie le courant de fluide qui a pénétré dans la zone interne (7) puis de l'accélérer par le Venturi. Eoliennes.

Description

EOLIENNE A DEFLECTEUR INTERNE
DOMAINE TECHNIQUE
La présente invention concerne le domaine général des dispositifs de captage de l'énergie d'un courant de fluide, tels que les turbines, et plus particulièrement le domaine des éoliennes, et notamment des éoliennes à axe vertical.
Plus particulièrement, la présente invention se rapporte à un dispositif de captage de l'énergie d'un courant de fluide, ledit dispositif comprenant un rotor pourvu d'au moins une pale qui permet audit courant de fluide d'entraîner ledit rotor, ladite au moins une pale balayant dans l'espace, lorsque le rotor est entraîné, un chemin de balayage qui délimite sensiblement une zone interne au rotor, et une zone externe au rotor.
La présente invention concerne également un procédé de captage de l'énergie d'un courant de fluide.
TECHNIQUE ANTERIEURE
Il est connu d'utiliser des machines tournantes, du genre turbines ou éoliennes, afin de convertir en énergie mécanique et/ou électrique l'énergie d'un fluide en mouvement, tel que l'eau, l'air ou la vapeur.
En particulier, il est connu d'employer des éoliennes comme moyen d'entraînement de dispositifs mécaniques ou électromécaniques du type alternateur.
Bien qu'ils procurent des résultats indéniables en matière de production d'énergie, et notamment d'exploitation d'énergies renouvelables, de tels dispositifs souffrent parfois de certains inconvénients, liés notamment à leur inertie au démarrage, à leur encombrement, ou à leur rendement.
Tel est notamment le cas des éoliennes, et plus particulièrement des éoliennes à axe vertical qui nécessitent parfois des vents de vitesse relativement importante pour pouvoir démarrer et n'extraient généralement qu'une partie relativement faible de l'énergie cinétique du vent.
Afin d'améliorer ie rendement de telles éoliennes, et notamment des éoliennes de type Savonius, il a été envisagé de munir celles-ci de déflecteurs disposés en amont du rotor, afin de diriger le vent incident vers les aubes motrices dudit rotor, et, le cas échéant, de masquer les aubes remontantes.
Toutefois, de tels déflecteurs tendent à augmenter l'encombrement de l'éolienne, ainsi que les nuisances visuelles et sonores créées par celle-ci, en particulier lorsque lesdits déflecteurs sont intégrés à un carter qui enveloppe entièrement le rotor de l'éolienne.
Parfois, de tels déflecteurs peuvent même constituer une gêne à l'écoulement du vent moteur, voire être à l'origine de turbulences susceptibles de provoquer des pertes de rendement ou des nuisances sonores.
EXPOSE DE L'INVENTION
Les objets assignés à la présente invention visent par conséquence à proposer un nouveau dispositif de captage de l'énergie d'un courant de fluide qui remédie aux inconvénients susmentionnés et présente un rendement amélioré.
Un autre objet assigné à l'invention vise à proposer un nouveau dispositif de captage de l'énergie d'un courant de fluide qui soit particulièrement compact et peu encombrant.
Un autre objet assigné à l'invention vise à proposer un nouveau dispositif de captage de l'énergie d'un courant de fluide dont la structure soit particulièrement simple, légère et résistante.
Un autre objet assigné à l'invention vise à proposer un nouveau dispositif de captage de l'énergie d'un courant de fluide nécessitant un faible couple de démarrage, possédant une large plage de fonctionnement, et présentant un fonctionnement régulier. Un autre objet assigné à l'invention vise à proposer un nouveau type d'éolienne qui présente des performances améliorées, une grande polyvalence d'utilisation, une grande facilité d'installation, et qui occasionne peu de nuisances.
Enfin, la présente invention vise à proposer un nouveau procédé de captage de l'énergie d'un courant de fluide présentant un rendement amélioré.
Les objets assignés à l'invention sont atteints à l'aide d'un dispositif de captage de l'énergie d'un courant de fluide, ledit dispositif comprenant un rotor de type Darrieus pourvu d'au moins une pale orientée de façon sensiblement tangentielle à la périphérie dudit rotor et qui permet audit courant de fluide d'entraîner ledit rotor, ladite au moins une pale balayant dans l'espace, lorsque le rotor est entraîné, un chemin de balayage qui délimite sensiblement une zone interne au rotor et une zone externe au rotor, ledit dispositif étant caractérisé en ce qu'il comporte au moins un déflecteur interne et un déflecteur externe situés en vis-à-vis l'un de l'autre de part et d'autre du chemin de balayage, respectivement dans la zone interne et dans la zone externe, de sorte à former un canal de circulation dirigeant le courant de fluide vers le chemin de balayage et présentant au moins une portion de rétrécissement dans laquelle le déflecteur interne et le déflecteur externe se rapprochent globalement l'un de l'autre pour former un Venturi, le déflecteur interne présentant au moins une portion de déviation centrifuge qui s'écarte globalement du centre du rotor vers la périphérie du rotor afin de récupérer au moins en partie le courant de fluide qui a pénétré dans la zone interne puis de l'accélérer par ie Venturi.
Les objets assignés à l'invention sont également atteints à l'aide d'un procédé de captage de l'énergie d'un courant de fluide, au cours duquel on dispose dans ledit courant de fluide un dispositif comprenant un rotor de type Darrieus pourvu d'au moins une pale disposée de façon sensiblement tangentielle à la périphérie dudit rotor et qui permet audit courant de fluide d'entraîner ledit rotor, ladite au moins une pale, balayant dans l'espace, lorsque ie rotor est entraîné, un chemin de balayage qui délimite sensiblement une zone interne au rotor et une zone externe au rotor, ledit procédé étant caractérisé en ce qu'il comporte une étape (a) de canalisation du courant de fluide, au cours de laquelle on dispose au moins un déflecteur interne et un déflecteur externe de part et d'autre du chemin de balayage, respectivement dans la zone interne et dans la zone externe, afin de diriger le courant de fluide vers le chemin de balayage, ladite étape (a) de canalisation comprenant une sous-étape (a1 ) de collecte au cours de laquelle on collecte au moins en partie le courant de fluide incident qui pénètre dans la zone interne pour le déporter dans la zone périphérique du rotor selon au moins une composante radiale orientée du centre vers la périphérie dudtt rotor, puis une sous étape (a2) d'accélération, au cours de laquelle on fait passer ledit courant de fluide à travers une portion de rétrécissement de sorte à l'accélérer par effet Venturi.
DESCRIPTIF SOMMAIRE DES DESSINS
D'autres objets, caractéristiques et avantages de l'invention apparaîtront plus en détails à la lecture de la description qui suit, ainsi qu'à l'aide des dessins annexés, fournis à titre purement illustratif et non limitatif, parmi lesquels :
- La figure 1 représente, selon une vue en perspective, une variante de réalisation d'un dispositif de captage d'énergie conforme à l'invention.
- La figure 2 illustre, selon une vue en projection dans le plan vertical, le dispositif de captage d'énergie représenté sur la figure 1.
- La figure 3 illustre, selon une vue de dessus, le dispositif de captage d'énergie représenté sur les figures 1 et 2.
- La figure 4 illustre, selon une vue de dessus en coupe, le dispositif représenté sur les figures 1 à 3. - Les figures 5a, 5b et 5c représentent, selon des vues schématiques en coupe projetées dans le plan vertical, trois variantes de réalisation d'un dispositif de captage de l'énergie d'un courant de fluide conforme à l'invention.
- La figure 6 illustre, selon une vue de dessus analogue à celle de la figure 3, une variante de réalisation de dispositif 1 conforme à l'invention. MEILLEURE MANIERE DE REALISER L'INVENTION
La présente invention concerne de manière générale un dispositif 1 de captage de l'énergie d'un courant de fluide F.
A cet effet, ledit dispositif 1 comprend un rotor 2 pourvu d'au moins une pale 3 qui permet au courant de fluide F d'entraîner ledit rotor 2.
Plus particulièrement, ledit rotor 2 peut être monté mobile à rotation autour d'un axe de rotation (ΖΖ'), par rapport à un stator 4, lequel peut avantageusement comporter une embase 5 pourvue de moyens de fixation destinés à fixer le dispositif 1 à un site d'implantation quelconque, dit « référentiel », tel que le sol, un bâtiment, une toiture, un mât, un véhicule, etc.
Bien entendu, le dispositif 1 peut être adapté à des fluides de différentes natures, tel que l'air (vent), l'eau liquide (cours d'eau, courants marins) ou encore un gaz quelconque tel que de ia vapeur d'eau.
En outre, le courant de fluide F, peut aussi bien être naturel que généré artificiellement par un moyen quelconque.
Avantageusement, le dispositif 1 peut ainsi se présenter sous la forme d'une machine tournante, du genre turbine, dont le rotor est apte à convertir la pression et/ou l'énergie cinétique du courant de fluide F en un mouvement de rotation de vitesse ω autour de l'axe de rotation (ΖΖ'). En particulier, le dispositif peut constituer une éolienne ou une hydroiienne.
En outre, le dispositif 1 conforme à l'invention est de préférence conçu pour être disposé transversalement par rapport au courant de fluide F de telle sorte que ledit courant de fluide F aborde le dispositif 1 latéralement et entraîne le rotor 2 de manière sensiblement tangentielle, par un effort d'entraînement de type poussée et/ou portance qui comporte au moins une composante sensiblement normale à l'axe de rotation (ΖΖ'). De façon particulièrement préférentielle, le dispositif 1 peut ainsi constituer une éoiienne à axe vertical, et notamment une éolienne de type Darrieus, et sera assimilé dans ce qui suit, par commodité de description, à une telle éolienne.
En outre, par simple commodité de description, on considérera par convention que, dans un plan normal à Taxe de rotation (ΖΖ'), le dispositif 1 est exposé à un courant de fluide F incident orienté selon une direction sud-nord.
Dans ce même plan, on peut ainsi définir un repère cartésien dont l'origine est située sur l'axe de rotation (ΖΖ'), dont l'axe des ordonnées est formé par la direction Sud-Nord (S-N), donc l'axe des abscisses est formé par la direction Ouest-Est (W-E), et qui divise l'espace et le rotor en quatre quadrants.
Lorsque le rotor 2 est entraîné en mouvement par le courant de fluide F, l'au moins une pale 3 décrit une trajectoire autour de l'axe de rotation (ΖΖ'), de préférence sensiblement circulaire, de telle sorte qu'elle balaye dans l'espace un chemin de balayage 6 qui délimite sensiblement une zone interne 7 au rotor, et une zone externe 8 au rotor.
Ledit chemin de balayage 6 correspond ainsi au volume spatial généré par l'ensemble des positions successives qu'occupe(nt) la ou les pales 3 lorsqu'elle(s) accomplisse(nt) une révolution complète autour de l'axe de rotation (ΖΖ').
Plus particulièrement, tel que cela est illustré en pointillé sur les figures 1 et 4, ledit chemin de balayage 6 correspond de préférence au volume de révolution fictif que dessine une pale 3 en tournant autour de l'axe de rotation (ΖΖ'), c'est-à-dire à un cylindre creux d'axe (ΖΖ'), de rayon interne Ri correspondant à la plus petite distance mesurée entre l'axe de rotation (ΖΖ') et la surface de la pale 3, et de rayon externe Re correspondant à la plus grande distance mesurée entre ledit axe (ΖΖ') et ladite paie 3. Le volume fermé occupé par chemin de balayage 6 forme ainsi une zone de séparation dans laquelle circule(nt) la ou les pale(s) 3, et à l'intérieur duquel s'inscrit le volume correspondant à la zone interne 7, ladite zone interne 7 restant donc avantageusement vide de pa!es 3, y compris lorsque le rotor est entraîné en rotation par rapport au stator. De préférence, ladite zone interne 7 forme sensiblement la zone centrale du rotor 2.
La zone externe 8 correspond quant à elle au volume du reste de l'espace, qui constitue l'environnement du rotor 2, au-delà du chemin de balayage 6. Selon les variantes de réalisation préférentielles de l'invention représentées sur les figures, le chemin de balayage 6 est sensiblement délimité axialement par les extrémités inférieures 9 et supérieures 10 des pales 3, lesdites pales pouvant respectivement être maintenues entre elles et par rapport à l'axe de rotation (ΖΖ') au moyen de flasques terminaux tel que cela est illustré sur la figure 5A, ou au moyen de bras de support 34 de préférence agencés en croisillon. Le chemin de balayage 6 correspond alors sensiblement à un tronçon de cylindre creux d'axe (ΖΖ') et de hauteur h égale à celle du rotor 2.
De préférence, le rotor comporte une pluralité de pales. Celles-ci sont de préférence sensiblement équi-réparties autour de Taxe (ΖΖ'), et préférentiellement sensiblement parallèles audit axe, bien qu'il soit envisageable de prévoir des pales incurvées, notamment hélicoïdales.
Par ailleurs, le rotor 2 constitue de préférence un rotor de type Darrieus, dont les pales 3 sont entraînées par un phénomène aérodynamique de portance et de traînée. L'invention est en effet particulièrement adaptée à ce type de rotor, bien qu'elle puisse être adaptée à d'autres configurations.
Selon une caractéristique importante de l'invention, le dispositif 1 comporte au moins un déflecteur interne 11 ainsi qu'au moins un déflecteur externe 12, lesdits déflecteurs interne 11 et externe 12 étant situés de part et d'autre du chemin de balayage 6, respectivement dans la zone interne 7 et dans la zone externe 8. Avantageusement, le déflecteur interne 11 et le déflecteur externe 2 coopèrent ainsi pour diriger le courant de fluide F vers le chemin de balayage 6, ce qui renforce la capacité motrice du dispositif 1. De façon particulièrement préférentielle, le déflecteur interne 11 et le déflecteur externe 2 sont situés en vis-à-vis l'un de l'autre, de manière à se chevaucher au moins partiellement le long d'un tronçon du chemin de balayage 6, selon un secteur angulaire de couverture angulaire a autour de l'axe de rotation (ΖΖ'), et forment ainsi un canal de circulation 14 qui dirige le courant de fluide F vers le chemin de balayage 6 et le canalise sensiblement le long de ce dernier.
Lesdits déflecteurs 11 , 12, forment des organes permettant de modifier la direction de l'écoulement du courant de fluide F, et plus particulièrement du courant de fluide incident, afin de canaliser ledit courant de fluide F dans le canal de circulation 14 et d'orienter ledit courant de fluide vers le chemin de balayage 6 où il entraîne la ou les pales 3.
Ainsi, les déflecteurs interne 11 et externe 12 coopèrent pour créer et renforcer une zone motrice d'entraînement des pales 3, ladite zone motrice étant sensiblement délimitée par lesdits déflecteurs qui forment la paroi radialement interne et ia paroi radialement externe du canal de circulation 14, dans lequel les pales s'engagent en enfilade l'une après l'autre et sont propulsées par le courant de fluide F ainsi modelé.
Avantageusement, la présente invention permet donc d'optimiser la répartition et notamment le point d'application du courant de fluide incident sur le rotor, et plus particulièrement sur la ou les pales 3, tout en permettant une optimisation du nombre et de la taille des pales nécessaires, et par conséquent du poids et de l'inertie au démarrage du rotor.
Par ailleurs, selon une variante de réalisation, le dispositif 1 peut être pourvu d'un déflecteur interne 11 situé sensiblement en amont du courant de fluide et d'un déflecteur externe 12 situé sensiblement plus en aval dans le sens d'écoulement dudit courant de fluide, lesdits déflecteurs coopérants pour diriger, concentrer et/ou maintenir ledit courant de fluide sur une trajectoire correspondant sensiblement au chemin de balayage 6 décrit par les pales 3.
Toutefois, de façon particulièrement préférentielle, les bords d'attaque 11 A, 12A respectifs desdits déflecteur interne 11 et externe 12 sont disposés frontalement sensiblement à la même ordonnée, tel que cela est illustré sur la figure 6. De la sorte, lorsque le dispositif est convenablement orienté en fonctionnement normal, la droite qui joint ces deux bords d'attaque 11 A, 12A, dans un plan normal à l'axe (ΖΖ'), est sensiblement perpendiculaire à la direction du courant de fluide incident et, en l'espèce, sensiblement parallèle à la direction Ouest-Est. En d'autres termes, les déflecteurs sont de préférence agencés pour que le courant de fluide incident franchisse sensiblement simultanément les bords d'attaque des deux déflecteurs lorsqu'il pénètre dans ie canal de circuiation 14.
Par ailleurs, l'intégration du déflecteur interne 1 dans la zone interne 7 au rotor permet de gagner en compacité et de réduire l'encombrement hors-tout, ainsi que l'impact esthétique, du dispositif 1.
A ce titre, le déflecteur interne 11 est logé dans la zone interne 7 au moins en partie, de préférence en majorité, et de façon particulièrement préférentielle contenu en totalité à l'intérieur de ladite zone interne 7 qui est suffisamment vaste pour permettre son installation.
Ledit dispositif 1 conforme à l'invention présente donc un rendement amélioré, un faible couple de démarrage, ainsi qu'un impact esthétique et environnemental réduit.
Il est remarquable que le déflecteur interne 11 , ainsi que le déflecteur externe 12 sont avantageusement distincts des pales 3 elles-mêmes. De façon particulièrement préférentielle, lesdits déflecteurs interne 11 et externe 12 sont dissociés du mouvement d'entraînement, ici en rotation, du rotor 2.
Ainsi, le rotor 2 peut avantageusement être entraîné en mouvement relatif par rapport auxdits déflecteurs interne et externe, et plus particulièrement être animé d'un mouvement de rotation de vitesse ω par rapport au stator 4 tandis que le déflecteur interne 11 et/ou le déflecteur interne 12 reste(nt) sensiblement immobile(s) par rapport au stator, ou à tout le moins par rapport à la direction F1 du courant de fluide F incident tant que celle-ci reste sensiblement constante. De préférence, le dispositif 1 comprend en outre des moyens d'orientation 13 aptes à modifier l'orientation angulaire du déflecteur interne 11 et/ou celle du déflecteur externe 12 par rapport au rotor 3, par rapport au stator 4, et qui sont plus particulièrement conçus pour orienter convenablement les déflecteurs 11 , 12 par rapport à la direction globale du courant de fluide incident F1.
Ainsi, il est possible de modifier, de régler et de maintenir, notamment en fonction de la direction principale du courant de fluide incident F1 dominant, l'orientation des déflecteurs 11 , 12 en azimut par rapport à l'axe de rotation (ΖΖ'), et ce librement par rapport au rotor 2. Le dispositif 1 présente par conséquent une grande polyvalence d'utilisation en ce qu'il est capable de s'adapter à la direction du courant de fluide incident, et ainsi de capter l'énergie dudit courant de fluide dans de multiples configurations d'exposition.
Plus particulièrement, le fonctionnement des moyens d'orientation pourra présenter un caractère automatique ou au contraire nécessiter une intervention manuelle de l'exploitant du dispositif.
Bien entendu, les solutions techniques susceptibles d'être mises en œuvre pour constituer de tels moyens d'orientation ne sont nullement limitées, et peuvent notamment dépendre du degré de sophistication de la gestion de l'éolienne ou encore de la valeur du couple à compenser pour maintenir l'orientation des déflecteurs. Selon une variante de réalisation particulièrement simple et peu onéreuse à fabriquer, correspondant aux figures 1 à 3, les moyens d'orientation 13 pourront notamment comprendre un système d'orientation aérodynamique automatique, analogue à celui d'une girouette, pourvu d'une ailette formant un gouvernail. Ce gouvernail pourra être soit disposé directement au sommet du dispositif 1 , à l'aplomb du rotor, sur un support de déflecteur 17 qui maintient le déflecteur concerné à l'axe (ΖΖ'), et de préférence sur le support du déflecteur externe 12, soit déporté à l'extrémité d'une tige radiale, elle- même par exemple montée en saillie externe à partir dudit déflecteur externe 12.
Selon une autre variante de réalisation, les moyens d'orientation 13 pourront comprendre des moyens d'asservissement en position azimutale motorisés, par exemple un système de couronne dentée associée au support du déflecteur concerné et asservie en position par un moteur électrique, dont la consigne est fournie par des moyens séparés de détection de l'orientation du courant de fluide.
Un tel asservissement motorisé permet avantageusement d'envisager la mise en œuvre de l'invention au sein d'éoliennes de grande puissance, notamment dans la gamme de puissance de 10 kW à 20 kW, puisqu'il permet de s'affranchir de l'utilisation d'un gouvernail de grandes dimensions qui serait sinon nécessaire à l'équilibrage du couple exercé par le courant de fluide sur le jeu de déflecteurs 11 , 12.
Selon une variante de réalisation non représentée, le déflecteur interne 11 et le déflecteur externe 12 peuvent être déplacés relativement l'un par rapport à l'autre à l'aide de moyens de réglage appropriés.
Avantageusement, une telle disposition permet de modifier la configuration du canal de circulation 14, par exemple en modifiant la longueur dudit canal en procédant à un réglage du degré de chevauchement entre le déflecteur interne et le déflecteur externe, ou encore en modifiant la largueur dudit canal, mesuré radialement par rapport à l'axe de rotation (ΖΖ'), en rapprochant ou au contraire en éloignant radialement l'un de l'autre le déflecteur interne 11 et le déflecteur externe 12.
Toutefois, selon une variante de réalisation préférentielle, tel que cela est illustré sur les figures, les déflecteurs interne 11 et externe 12 sont solidaires l'un de l'autre, à tout le moins en fonctionnement normal du dispositif.
En d'autres termes, ils sont de préférence fixés l'un à l'autre de sorte à être associés en un sous-ensemble cinématique propre, avantageusement indépendant du rotor 2 et du stator 4.
Ils conservent ainsi l'un par rapport à l'autre leur position angulaire relative, et accessoirement leurs dispositions axiale et radiale relatives, de telle sorte que la géométrie et les dimensions du canal de circulation 14 sont sensiblement invariantes. Il est remarquable que Ton pourra en particulier envisager de procéder à un réglage statique, par construction en usine, de la position et de l'orientation du déflecteur interne 11 par rapport au déflecteur externe 12, de sorte à conférer par fabrication au dispositif 1 un rendement optimisé eu égard aux conditions prévisibles d'implantation de celui-ci, et autoriser ensuite, en fonctionnement normal, seulement l'orientation simultanée du déflecteur interne 11 et du déflecteur externe 12, selon un réglage azimutal dynamique en bloc, lorsqu'il est nécessaire de (re)configurer le dispositif 1 pour placer les pales motrices et le canal de circulation 14 sensiblement face au courant de fluide incident. Ainsi que cela a déjà été précisé, le déflecteur interne 11 et le déflecteur externe 12 sont avantageusement distincts des pales 3, de l'arbre 29 matérialisant l'axe de rotation (ΖΖ'), et plus globalement du rotor 2, et avantageusement réglables, à tout le moins en azimut, par rapport au stator 4 et indépendamment de la position et de la vitesse du rotor 2. Avantageusement, le dispositif 1 peut également comprendre des parois de guidage 15, 16 disposées entre le déflecteur interne 11 et le déflecteur externe 12, transversalement à ces derniers, de sorte à participer à la délimitation du canal de circulation 14.
Plus particulièrement, le canal de circulation 14 étant de préférence délimité latéralement par les déflecteurs interne 11 et externe 12 qui forment les parois verticales d'une sorte de couloir traversé par le courant de fluide F, le dispositif 1 comprendra de préférence une paroi de guidage inférieure 15 et une paroi de guidage supérieure 16 qui s'étendent sensiblement à l'horizontale de sorte à relier le déflecteur interne 11 au déflecteur externe 12 de part et d'autre des pales 3. Les parois de guidage 15, 16 peuvent avantageusement être venues de matière avec l'un ou l'autre des déflecteurs interne et externe, ou avec le support 17 de déflecteur. Elles peuvent en outre avantageusement former des entretoises qui contribuent à rigidifier l'assemblage des déflecteurs et à maintenir leur écartement. La mise en œuvre de parois de guidage 15, 16 conformes à l'invention permet avantageusement de créer, selon une caractéristique qui peut constituer une invention à part entière, un canal de circulation 14 capoté formant une véritable chambre de circulation du fluide de type tuyère, laquelle est délimitée sensiblement dans toutes les directions transverses au sens d'écoulement du courant de fluide F.
En bordant ainsi la section du canal d'écoulement 14 sensiblement sur tous les côtés par un contour sensiblement fermé, à l'exception des zones de dégagement nécessaire au mouvement des pales 3, on limite avantageusement les perturbations de l'écoulement du courant de fluide dans ledit canal ainsi que les pertes de charges dues à d'éventuelles fuites dudit fluide.
De préférence, selon une caractéristique qui peut constituer une invention à part entière, indépendamment ou en combinaison avec l'une quelconque des caractéristiques mentionnées précédemment, le déflecteur interne 1 1 présente au moins une portion de déviation centrifuge 18 qui s'écarte globalement du centre Ω du rotor 2 vers ia périphérie 19 du rotor 2.
Avantageusement, cette portion de déviation centrifuge 18 forme un profil qui s'écarte de manière globale et progressive de l'axe de rotation (ZZ) afin de dévier, selon au moins une composante radiale orientée du centre vers la périphérie du rotor 2, le courant de fluide F. Avantageusement, cette disposition permet de déporter le courant de fluide incident pour le concentrer et l'appliquer aux pales 3 dans une zone périphérique 19 du rotor, ce qui permet de bénéficier d'un bras de levier maximal par rapport à l'axe (ZZ) et donc d'optimiser le couple moteur appliqué audit rotor 2,
En outre, de façon particulièrement avantageuse, la disposition interne du déflecteur interne 1 1 , interposé entre le centre du rotor et tout ou partie du courant de fluide incident, permet de récupérer au moins en partie ie courant de fluide secondaire F2 qui a pénétré dans la zone interne 7 après avoir traversé sensiblement frontalement le chemin de balayage 6. Ainsi, l'agencement du dispositif 1 permet d'imprimer un premier effort d'entraînement aux pales 3 exposés frontaiement au courant de fluide incident F1 , dans une zone amont 6A du chemin de balayage, puis de récupérer le courant de fluide secondaire F2, qui serait autrement perdu, et de le rediriger vers une portion aval 6B du chemin de balayage 6, qui est contenue dans le canal de circulation 14, afin que ce courant de fluide secondaire F2, avantageusement rejoint par une partie du courant de fluide incident F1 , participe à un second effort d'entraînement des pales 3 lorsque celles-ci sont engagées dans ledit canal de circulation 14.
Cette double exploitation du courant de fluide incident F1 permet avantageusement de capter sensiblement tout le courant de fluide et d'en extraire un maximum d'énergie, même lorsque la surface cumulée des pales présente une valeur réduite, en évitant que ledit courant de fluide ne traverse le rotor sans contribuer effectivement et efficacement à l'entraînement des pales 3.
De préférence, selon une caractéristique qui peut également constituer une invention à part entière, seule ou en combinaison avec l'une ou l'autre des caractéristiques susmentionnées, le canal de circulation 14 présente au moins une portion de rétrécissement 20 dans laquelle le déflecteur interne 1 1 et le déflecteur externe 12 se rapprochent globalement l'un de l'autre pour former un Venturi.
Avantageusement, cette disposition permet en outre de faire converger le courant de fluide F vers le chemin de balayage 6, et même sensiblement sur ledit chemin de balayage 6.
Ainsi, la section transverse, et plus particulièrement la largeur Lu du canal de circulation 14, c'est-à-dire la distance mesurée sensiblement radialement qui sépare la paroi du déflecteur interne 11 faisant face au chemin de balayage 6 et celle correspondante du déflecteur externe 12, réduit globalement dans la portion de rétrécissement 20, dans le sens de circulation du fluide et des pales 3, entre la zone d'admission 21 et la zone d'échappement 22 du canal.
Par « se rapprocher globalement », on indique que ladite largueur réduit globalement sur la portion de rétrécissement considérée, même s'il est envisageable que les déflecteurs interne 11 et externe 12 présentent des profils ondulés ou se rapprochent i'un de l'autre par paliers discontinus.
Toutefois, le canal de circulation 14 est de préférence voire continûment convergent, et ne présente pas de décrochement brusque. Avantageusement, le resserrement du canal de circulation 14 permet de concentrer et d'accélérer le courant de fluide captif par un effet Venturi au niveau du chemin de balayage 6 que parcourent les pales 3.
Ainsi, on optimise les conditions d'entraînement desdites paies, notamment, s'il s'agit d'une éolienne, en cas de vent faible. En particulier, il est possible, le cas échéant, d'améliorer aussi bien la portance que la poussée exercée par pression dynamique sur les pales 3, en particulier pour une éolienne de type Darrieus, et ainsi de cumuler et d'augmenter les efforts d'entraînement moteurs.
A ce titre, il est remarquable que, dans le cas de certaines éoliennes de type Darrieus connues, il est possible de laisser simplement le courant de fluide secondaire F2 traverser le rotor de part en part, et en ressortir en traversant le chemin de balayage sensiblement à l'opposé de son point d'entrée, ce qui lui permet éventuellement d'exercer un léger effort moteur secondaire au niveau des pales qui sont situées à l'opposé du point d'entrée du courant de fluide. Au contraire, dans le dispositif conforme à l'invention, on récupère bien plus efficacement l'énergie du vent, et plus particulièrement l'énergie du courant de fluide secondaire F2, en interceptant ce dernier au moyen du déflecteur interne 11 avant qu'il n'ait complètement traversé le rotor 2, puis en l'accélérant par les déflecteurs formant Venturi avant de l'appliquer aux pales, ce qui génère un effort de propulsion secondaire d'intensité bien supérieure.
Selon l'invention, les déflecteurs interne 11 et externe 12 peuvent avantageusement former une sorte de cornet ou d'entonnoir enfilé sur le chemin de balayage 6 et présentant une large zone d'admission 21 qui collecte et fait converger, par un étranglement progressif matérialisé par les parois verticales desdits déflecteurs, le courant de fluide vers une zone d'échappement 22 qui encadre, voire coïncide sensiblement, avec le chemin de balayage 6. De façon particulièrement avantageuse, la mise en œuvre d'un canal 14 sensiblement fermé sur tous ses bords latéraux permet de créer une véritable chambre à effet Venturi formant un tunnel d'accélération des pales 3.
Bien entendu, le canal de circulation 14 pourra présenter, en aval de la portion de rétrécissement 20 dans le sens de l'écoulement du courant de fluide F, une portion de circulation 23 de largeur L23 sensiblement constante, et de préférence sensiblement égale à la largeur minimale L2o de la portion de rétrécissement, le long de laquelle les déflecteurs interne 11 et externe 12 s'étendent sensiblement parallèlement l'un à l'autre et au chemin de balayage 6.
Bien entendu, la section transverse du canal de circulation 14 sera de préférence adaptée proportionnellement aux dimensions et à la géométrie des pales 3.
Il serait également envisageable que le déflecteur externe 12 soit incliné par rapport au rotor 2, c'est-à-dire présente une variation de sa distance à l'axe (ΖΖ'), de sorte notamment que son bord d'attaque 12A soit plus éloigné radialement du chemin de balayage 6, et son bord de fuite 12B sensiblement plus proche dudit chemin de balayage 6, et que ledit déflecteur externe rejoigne de préférence îe rotor 2 sensiblement tangentiellement à celui-ci.
Toutefois, de façon préférentielle, le déflecteur externe 12 présente un profil qui suit sensiblement celui de rotor, de façon sensiblement parallèle au chemin de balayage 6 et à distance sensiblement constante de ce dernier. Le caractère convergent de la portion de rétrécissement 20 est ainsi conféré principalement, voire exclusivement par le déflecteur interne 11 , et plus particulièrement par tout ou partie de la portion de déviation centrifuge 18. De préférence, tel que cela est illustré sur les figures, ledit déflecteur externe 12 forme une portion de cylindre dont la base est un arc de cercle dont le rayon, sensiblement constant, est légèrement supérieur au rayon externe Re du chemin de balayage 6.
De préférence, ledit déflecteur externe est formé dans une plaque incurvée d'épaisseur faible et sensiblement constante, de sorte à épouser sensiblement le contour du chemin de balayage, ce qui contribue à améliorer la compacité du dispositif 1 , à l'alléger, et à lui conférer un bon comportement aérodynamique n'offrant pas inutilement de prise au vent.
A titre d'exemple, l'encombrement radial hors-tout du déflecteur externe 12, et plus globalement du rotor équipé de ses déflecteurs interne et externe, peut être sensiblement compris à l'intérieur d'un cylindre de base circulaire dont le rayon diamètre n'excède pas 1 ,05 à 1 ,15 fois, voire 1 ,10 fois le rayon externe Re du chemin de balayage
De préférence, le déflecteur interne 11 présente un profil incurvé globalement convexe, et peut en particulier présenter, dans un plan normal à l'axe de rotation (ΖΖ'), une première portion 24 amont correspondant sensiblement à la portion de rétrécissement 20 et dont la courbure varie de préférence de sorte à être de plus en plus prononcée, puis une seconde portion 25 aval de courbure sensiblement constante et correspondant sensiblement à ia portion de circulation 23. Avantageusement, le déflecteur interne 11 peut être formé par un élément rigide ou semi-rigide d'épaisseur faible, sensiblement constante, et de masse réduite, par exemple par une simple tôle cintrée ou une plaque thermoformée, ou une succession de deux tôles incurvées correspondant respectivement à la première et à la seconde portion 24, 25 et jointes bord à bord. La ou les tôles peuvent être maintenues de façon rigide, par exemple par boulonnage ou rivetage, à des rayons de fixation 27 reliés à l'axe (ΖΖ') et formant le support 17 de déflecteur.
Tel que cela est illustré notamment sur les figures 3 et 4, le bord d'attaque 1 A du déflecteur interne 11 est avantageusement excentré, à une distance d'excentration e, par rapport à l'axe de rotation (ΖΖ'), sensiblement entre ledit axe de rotation (ΖΖ') et la portion amont 6A du chemin de balayage 6 qui reçoit frontaiement le courant de fluide incident. Son bord de fuite 11 B est alors de préférence situé à un rayon intermédiaire supérieur à ladite excentration e mais inférieur au rayon interne du chemin de balayage 6. Selon une variante de réalisation non représentée, le déflecteur interne 11 pourrait être actif et monté mobile au sein du rotor, ledit déflecteur étant mis en mouvement différentiel par rapport au rotor dans le même sens que ce dernier, et formant par exemple un cylindre excentré en rotation différentielle, de sorte à former un « tapis roulant » ou une « chenille » tendant à entraîner le courant de fluide incident vers le déflecteur externe 12.
Toutefois, le déflecteur interne 11 sera de préférence passif, c'est-à-dire non animé d'un mouvement propre, excepté le cas échéant, en ce qui concerne son orientation par rapport à la direction du courant de fluide incident dominant, ce qui permet notamment de simplifier et d'alléger la structure du dispositif 1. Bien entendu, l'homme du métier sera à même d'apprécier les dimensions et proportions des différents éléments constitutifs du dispositif 1 afin d'en optimiser le fonctionnement, par exemple au moyen de campagnes d'essais.
A titre indicatif, on pourra toutefois considérer les critères de dimensionnement qui suivent. Un critère de dimensionnement peut être que le quotient de la surface motrice cumulée des pales 3 par la surface de la section sagittale du rotor 2 est sensiblement compris entre 0,1 et 0,5, et de préférence sensiblement égaie à 0,2.
Sur la variante de réalisation préférentielle présentée notamment à la figure 1 , la section sagittale du rotor 3 correspond au rectangle obtenu par projection du rotor dans un plan parallèle à l'axe de rotation (ΖΖ') et sensiblement normal à la direction du courant de fluide F incident. Sa surface correspond donc au produit du diamètre D du rotor par la hauteur h de celui-ci mesurée parallèlement à Taxe de rotation (ΖΖ') entre les extrémités inférieure 9 et supérieure 10 des pales 3. La surface motrice cumulée des pales 3 correspond au produit du nombre de pales 3 par la largeur Lp de chaque pale et par la hauteur de chacune des pales, laquelle est sensiblement égaie à la hauteur h du rotor 2.
De préférence, et plus particulièrement lorsque les pales 3 sont disposées de façon sensiblement tangentielle à la périphérie du rotor, cette largeur de pale Lp représente l'encombrement radial mesuré par rapport à l'axe de rotation (ΖΖ'), et correspond sensiblement à la iargueur L6 du chemin de baiayage 6.
De préférence, les pales remontantes, c'est-à-dire situées dans la portion du rotor 2 qui est animée d'un mouvement de sens contraire à celui du courant de fluide incident, sensiblement dans les quadrants nord-ouest et sud-ouest, peuvent être masquées au moyen d'un écran 40 approprié, illustré en trait mixte sur les figures 2 et 3.
De préférence, on cherchera à réduire le plus possible la Iargueur minimaie L2o du canal de circulation 14, en fonction de la géométrie et du format des pales, afin d'augmenter et de maximiser la puissance et le couple générés par le rotor 2. A titre d'exemple, largeur L du canal de circulation 14 pourra être sensiblement inférieure ou égale à 30 % du diamètre D du rotor.
Bien entendu, ces rapports et proportions pourront être optimisés en fonction de la géométrie des déflecteurs, de celle des pales 3, ou de la nature du rotor 2, par exemple s'il s'agit d'un type Darrieus et qu'il convient de laisser un jeu d'écoulement j suffisant entre les bords des pales et les parois du canal de circulation 14, notamment de part et d'autre de la pale vis-à-vis des parois latérales interne et externe.
Par ailleurs, la couverture angulaire g du canal de circulation 14, mesurée autour de l'axe de rotation (ΖΖ'), est de préférence sensiblement comprise entre 20 degrés et 90 degrés, et par exemple sensiblement comprise entre 30 degrés et 80 degrés. Avantageusement, cette couverture angulaire g correspondra au secteur angulaire défini par l'arc selon lequel le déflecteur interne et le déflecteur externe se chevauchent. Bien entendu, d'autres valeurs de couverture angulaire sont envisageables, selon le taux de chevauchement entre les déflecteurs.
Selon une variante de réalisation, cette couverture angulaire a correspondra sensiblement aux deux tiers ou plus, voire à la totalité du secteur angulaire couvert par le déflecteur interne 11 et/ou de l'arc de cercle formé par le déflecteur externe 12 autour de l'axe (ΖΖ').
De façon préférentielle, le nombre et la dimension des pales 3 seront définies par rapport à la couverture angulaire a du canal de circulation 14, de telle sorte qu'il y ait toujours au moins une pale 3, voire au moins deux pales, engagée(s) dans ledit canal de circulation 14, quelle que soit la position angulaire relative du rotor par rapport aux déflecteurs.
En d'autres termes, le rotor 2 comporte de préférence une pluralité de pales 3 sensiblement équi-réparties et en nombre suffisant pour qu'il y ait systématiquement au moins une pale 3 engagée dans le canal de circulation 14. Ainsi, le dispositif présentera un fonctionnement régulier, sans à-coup, grâce à l'application régulière d'une force motrice sur le rotor 2.
Le choix approprié du nombre de pales permettra de limiter les vibrations et les secousses au niveau du rotor 2, de son arbre 29, et par conséquent de la charge 30, telle qu'une génératrice, qui est entraînée par ledit arbre. En outre, ta présence permanente d'une paie 3 dans !e canal de circulation 14, c'est-à- dire dans la zone du dispositif qui possède la meilleure capacité motrice, garantit le démarrage de l'éolienne à de faibles vitesses de vent.
Par ailleurs, le rotor 2 peut être formé par l'empilement axial, selon l'axe de rotation (ΖΖ'), d'au moins un premier rotor élémentaire 2A et un second rotor élémentaire 2B.
De préférence, lesdits rotors élémentaires 2A, 2B sont séparés, au niveau de leurs pales 3 respectives, par un interstice 31 qui permet le passage d'un organe de liaison 32 entre ie déflecteur interne 11 et le déflecteur externe 12, tel que cela est notamment illustré sur les figures 5A et 5C.
De préférence, les premier et second rotors élémentaires 2A, 2B sont sensiblement identiques dans leurs formes et dimensions, et solidarisés au même arbre 29. Tel que cela est illustré sur la figure 5A, l'interstice 31 peut être formé par un passage annulaire ménagé entre les pales, tandis que le dispositif comporte un déflecteur interne 11 monobloc, ainsi qu'un déflecteur externe 12 également monobloc.
Selon une autre variante de réalisation, les pales 3 étant maintenues par des bras de fixation 34, de préférence sensiblement radiaux, le déflecteur interne 11 peut être fractionné par une ou plusieurs zones de passage 33 permettant la circulation desdits bras 34 lors de la mise en rotation du rotor 2.
Ainsi, la figure 5B illustre schématiquement une variante de réalisation correspondant sensiblement à celle des figures 1 et 2 et possédant un unique rotor dont les pales 3 sont reliés à l'arbre 29 sensiblement en leur milieu, au moyen de bras 34 formant un croisillon, tandis que le déflecteur interne 11 est subdivisé transversalement à l'axe (ΖΖ') en deux demi-défiecteurs séparés par une zone de passage 33 sensiblement annulaire.
La figure 5C représente une troisième variante de réalisation selon laquelle le rotor et le déflecteur interne sont tous deux fractionnés. Avantageusement, cette troisième variante permet de bâtir une éolienne de hauteur et de diamètre importants tout en équilibrant le fonctionnement des rotors élémentaires étagés, et en limitant la charge fixée à l'extrémité des bras 34 de sorte à réduire les phénomènes de flexion ou de vibration.
Selon une variante de réalisation préférentielle, les pales 3 du premier rotor élémentaire 2A sont décalées angulairement par rapport à celles du second rotor élémentaire 2B, de préférence d'une valeur égale au demi-angle séparant deux pales successives. Ainsi, en utilisant un même profil de canal de circulation 14, mais en déphasant chacun des rotors élémentaires, il est possible d'obtenir un fonctionnement régulier du rotor 2 dans son ensemble, même dans le cas où chaque rotor élémentaire comporte un nombre réduit de pales 3. Plus particulièrement, un tel agencement permettra de compenser une réduction de la densité des pales par rotor élémentaire en multipliant le nombre d'étages de rotors élémentaires de telle sorte que, bien que le pas angulaire, c'est-à-dire l'espacement entre les pales, d'un même rotor élémentaire puisse être plus important que la longueur du canal de circulation, on conserve malgré tout à tout moment au moins une pale 3, appartenant à l'un des rotors élémentaires de l'ensemble, engagée dans ledit canal de circulation 14.
Bien entendu, la présente invention n'est nullement limitée aux variantes de réalisation décrites ci-dessus.
Le fonctionnement d'un dispositif 1 conforme à l'invention va maintenant être décrit, en référence d'un procédé de captage de l'énergie d'un courant de fluide.
Le dispositif 1 est alors orienté de telle sorte que le déflecteur interne 11 s'étend depuis le quadrant sud-est jusqu'au quadrant nord-est, de préférence sensiblement pour moitié dans chacun desdits quadrants.
Le déflecteur externe 12 s'étend quant à lut de préférence essentiellement dans le quadrant nord-est, et pour partie, par exemple 20 % à 40 %, dans le quadrant sud-est.
Avantageusement, le quadrant sud-ouest peut être masqué, au moins en partie voire en totalité, par un écran 40 qui protège dudit courant de fluide les pales 3 remontantes.
L'écran 40 pourra être formé par une tôle sensiblement verticale cintrée en arc de cercle autour de l'axe (ΖΖ'). Selon une variante de réalisation non représentée, ledit écran 40 peut être formé par un second déflecteur externe mis en œuvre, en combinaison avec un second déflecteur interne, de façon sensiblement symétrique au premier jeu de déflecteurs interne et externe décrit dans ce qui précède, et plus particulièrement situé sensiblement dans le quadrant Sud-Ouest diamétralement opposé par rapport à l'axe de rotation (ΖΖ'), de telle sorte que la turbine puisse indifféremment fonctionner sous un courant de fluide orienté sud-nord ou, inversement, nord-sud, et, le cas échéant, s'auto-orienter plus rapidement par rapport au courant de fluide dominant, quelles que soient les variations de l'angle d'approche dudit courant de fluide dominant.
Une telle disposition peut également contribuer à équilibrer la structure du dispositif.
Le courant de fluide incident F1 attaque le dispositif 1 en abordant frontalement le chemin de balayage 6, sensiblement perpendiculairement à celui-ci et sensiblement en vis-à-vis de la première portion 24 du déflecteur interne 11.
De la sorte, une partie de l'énergie de ce courant de fluide incident est transmise aux pales 3 contenues dans le quadrant sud-est, lorsque ledit courant de fluide incident franchit sensiblement transversalement le chemin de balayage 6 et pénètre à travers ce dernier dans la zone interne 7 du rotor 2. Une partie dudit courant de fluide traverse ainsi le chemin de balayage 6 de façon sensiblement radiale et forme un courant de fluide secondaire F2 qui est ensuite réceptionné, dans la zone interne 7, par le déflecteur interne 11 le long duquel il s'écoule en étant progressivement dévié vers la périphérie du rotor 2.
Le courant de fluide secondaire F2 est ainsi ré-injecté, depuis l'intérieur du rotor, au sein du canal de circulation 14 qui encadre la portion aval 6B du chemin de balayage 6, et plus particulièrement dans la portion amont 24 formant Venturi puis dans la portion de circulation 23 située dans le quadrant nord-est dudit canal de circulation, où ledit courant de fluide secondaire contribue de nouveau à exercer un effort moteur sur le rotor, et plus particulièrement à entraîner et accélérer les pales circulant dans ledit canal de circulation 14.
Plus particulièrement, le courant de fluide secondaire vient buter contre la première portion 24 du déflecteur interne 11 et se déporte le long dudit déflecteur, ici sensiblement en direction est-nord-est, jusqu'à rejoindre, au sein du canal de circulation 14, la partie du flux incident qui parvient directement dans ledit canal 14 par l'extérieur, notamment en suivant le déflecteur externe.
Le procédé conforme à l'invention comporte donc au moins une étape (a) de canalisation du courant de fluide au cours de laquelle on dispose au moins un déflecteur interne 11 et un déflecteur externe 12 de part et d'autre du chemin de balayage, respectivement dans la zone interne et dans la zone externe, afin de diriger ie courant de fluide vers le chemin de balayage 6.
Avantageusement, l'étape (a) de canalisation comprend une sous-étape (a1 ) de collecte au cours de laquelle on collecte le courant de fluide incident, et notamment la partie F2 de ce courant de fluide incident qui pénètre dans la zone interne 7, ainsi qu'une sous étape (a2) d'accélération, au cours de laquelle on fait passer ledit courant de fluide à travers une portion de rétrécissement 20 de sorte à l'accélérer par effet Venturi.
Potentiellement, du fait de l'accroissement de la vitesse du courant de fluide par effet Venturi, ledit courant de fluide possède, lorsqu'il entre en contact avec les pales 3 qui se trouvent dans le canal de circulation 14, une vitesse supérieure à celle du courant de fluide incident et peut donc potentiellement entraîner lesdites les pales 3 plus efficacement que les dispositifs connus, à une vitesse supérieure.
De préférence, l'étape (a) de canalisation comporte une troisième sous-étape (a3) de maintien au cours de laquelle on confine le courant de fluide accéléré au sein d'une portion de circulation 23 de section sensiblement constante afin de pouvoir maintenir un effort d'entraînement sur les pales qu'y s'y trouvent engagées.
A titre d'exemple, cette sous-étape (a3) de maintien peut être mis en œuvre sensiblement dans la première moitié du quadrant nord-est. L'étape (a) de canalisation comprend ensuite de préférence une sous-étape (a4) d'échappement au cours de laquelle le courant de fluide s'échappe de l'éolienne, en sortie du canal de circulation 14, après avoir sensiblement contourné la partie centrale du rotor en empruntant ledit canal 14 périphérique latéral. Cet échappement s'opère de préférence sensiblement au voisinage de !a zone nord du dispositif 1 , sensiblement à l'opposé du point d'entrée du courant de fluide.
Ainsi, grâce à l'agencement particulier de ses déflecteurs interne 11 et externe 12, le présent dispositif présente un rendement élevé, puisqu'il est capable de capter et d'exploiter l'essentiel de l'énergie de la quasi-totalité du courant de fluide qui l'atteint, d'une part en concentrant et en accélérant ledit courant de fluide dans la zone périphérique du rotor présentant les meilleures capacités motrices, mais également en recyclant et en accélérant le courant de fluide secondaire ayant déjà contribué une première fois à conférer de l'énergie aux pales et ayant pénétré dans la zone interne du rotor.
En utilisant une chambre à effet Venturi qui, pour une surface de captage donnée, augmente la vitesse, sinon le débit, du courant de fluide et accroît tant la poussée engendrée par la pression dynamique que les efforts d'entraînement aérodynamique de la pale, on peut non seulement démarrer l'éolienne conforme à l'invention à de faibles vitesses de vent, mais encore, à une vitesse de vent donnée, conférer au rotor une vitesse de rotation plus importante que sur les éoliennes existantes, et ainsi obtenir un meilleur rendement et une puissance supérieure.
Ainsi, pour un volume total donné qu'occupe le rotor, il est possible d'extraire et de restituer, au moyen d'un dispositif 1 particulièrement compact, plus de puissance que les dispositifs connus, et notamment que les éoliennes de type Darrieus classiques. Cette augmentation de la « densité de puissance » que peut fournir le dispositif 1 conforme à l'invention pour un encombrement et un poids donné permet d'envisager notamment la mise en œuvre d'éoliennes de type Darrieus dont la puissance nominale dépasse largement les valeurs usuelles. De surcroît, le dispositif 1 peut avantageusement présenter des pales de dimensions réduites sans pour autant perdre en efficacité et en couple, ce qui permet de limiter considérablement l'inertie du rotor ainsi que son poids. De surcroît, la combinaison d'un rotor léger et d'une large surface de captage utile du courant de fluide permet au dispositif de démarrer même dans des conditions de très faible vitesse de courant de fluide.
En outre, le dispositif s'adapte aisément, et avantageusement de manière automatique, à la direction instantanée du courant de fluide incident, ce qui lui permet d'exploiter l'énergie sensiblement quelles que soient les conditions d'exposition audit courant de fluide.
Par ailleurs, la mise en œuvre d'un déflecteur interne 11 permet de réaliser un canal de circulation et d'accélération convergent sans requérir d'encombrants moyens externes au rotor.
L'encombrement réduit du dispositif limite également les nuisances visuelles que celui- ci est susceptible d'occasionner du fait de son implantation, et permet en outre d'isoler facilement le rotor derrière une grille de protection.
Le présent dispositif est donc particulièrement sûr et adapté à un usage particulier, dans des zones d'habitation, des zones commerciales ou encore des zones d'activité.
Enfin, sa fabrication requiert peu de matière première, ne met en œuvre que des opérations d'assemblage relativement simples, et présente par conséquent un coût relativement réduit.
POSSIBILITE D'APPLICATION INDUSTRIELLE La présente invention trouve notamment son application industrielle dans la conception et l'exploitation d'éoliennes ou d'hydroliennes.

Claims

REVENDICATIONS
Dispositif (1 ) de captage de l'énergie d'un courant de fluide (F), ledit dispositif comprenant un rotor (2) de type Darrieus pourvu d'au moins une pale (3) orientée de façon sensiblement tangentielle à la périphérie dudit rotor et qui permet audit courant de fluide d'entraîner ledit rotor, ladite au moins une pale (3) balayant dans l'espace, lorsque le rotor est entraîné, un chemin de balayage (6) qui délimite sensiblement une zone interne (7) au rotor et une zone externe (8) au rotor, ledit dispositif (1 ) étant caractérisé en ce qu'il comporte au moins un déflecteur interne (1 1 ) et un déflecteur externe (12) situés en vis-à-vis l'un de l'autre de part et d'autre du chemin de balayage (6), respectivement dans fa zone interne (7) et dans la zone externe (8), de sorte à former un canal de circulation (14) dirigeant le courant de fluide (F) vers le chemin de balayage (6) et présentant au moins une portion de rétrécissement (20) dans laquelle le déflecteur interne (1 1 ) et le déflecteur externe (12) se rapprochent globalement l'un de l'autre pour former un Venturi, le déflecteur interne (1 1 ) présentant au moins une portion de déviation centrifuge (18) qui s'écarte globalement du centre (Ω) du rotor vers la périphérie (19) du rotor (2) afin de récupérer au moins en partie le courant de fluide qui a pénétré dans la zone interne (7) puis de l'accélérer par le Venturi.
Dispositif selon la revendication 1 caractérisé en ce que le caractère convergent de la portion de rétrécissement (20) est conféré principalement, et de préférence exclusivement, par le déflecteur interne (1 1 ).
Dispositif selon la revendication 1 ou 2 caractérisé en ce que les pales (3) remontantes sont masquées au moyen d'un écran (40) formé par un second déflecteur externe mis en œuvre, en combinaison avec un second déflecteur interne, de façon sensiblement symétrique au premier jeu de déflecteurs interne et externe (11 , 12), de telle sorte que le dispositif puisse indifféremment fonctionner sous un courant de fluide orienté sud-nord ou, inversement, nord-sud. - Dispositif selon l'une des revendications précédentes caractérisé en ce que les déflecteurs internes (11 ) et externe (12) sont dissociés du mouvement d'entraînement du rotor (2). - Dispositif selon la revendication 4 caractérisé en ce que, le rotor (2) étant monté mobile par rapport à un stator (4), ledit dispositif comprend des moyens d'orientation aptes à modifier l'orientation angulaire azimutale du déflecteur interne (11) et/ou celle du déflecteur externe (12) par rapport au rotor (2) et par rapport au stator (4). - Dispositif selon l'une des revendications précédentes caractérisé en ce que les déflecteurs interne (11 ) et externe (12) sont solidaires l'un de l'autre. - Dispositif selon la revendication 6 caractérisé en ce que le rotor est formé par l'empilement axial d'au moins un premier rotor élémentaire (2A) et un second rotor élémentaire (2B), et en ce que lesdits rotors élémentaires (2A), (2B) sont séparés, au niveau de leurs pales (3) respectives, par un interstice (31 ) permettant le passage d'un organe de liaison (32) entre le déflecteur interne (11 ) et le déflecteur externe (12). - Dispositif selon l'une des revendications précédentes caractérisé en ce que le rotor est formé par l'empilement axial d'au moins un premier rotor élémentaire (2A) et un second rotor élémentaire (2B) solidarisés au même arbre (29), et en ce que les pales (3) du premier rotor élémentaire (2A) sont décalées angulairement par rapport à celles du second rotor élémentaire (2B). - Dispositif selon l'une des revendications précédentes caractérisé en ce que, les pales (3) étant maintenues par des bras de fixation (34), le déflecteur interne (11 ) est fractionné par une ou plusieurs zones de passage (33) permettant la circulation desdits bras (34) lors de la mise en rotation du rotor (2). - Dispositif selon l'une des revendications précédentes caractérisées en ce que le quotient de la surface motrice cumulée des pales (3) par la surface de la section sagittale du rotor (2) est sensiblement compris entre 0,1 et 0,5, et de préférence sensiblement égale à 0,2. - Dispositif selon l'une des revendications précédentes caractérisé en ce que ie rotor comporte une pluralité de pales (3) disposées de façon sensiblement tangentielle à la périphérie dudit rotor et sensiblement équi-réparties en nombre suffisant pour qu'il y ait systématiquement au moins une pale (3) engagée dans le canal de circulation (14). - Dispositif selon l'une des revendications précédentes caractérisé en ce que le déflecteur interne (11) et le déflecteur externe (12) sont situés en vis-à-vis l'un de l'autre de sorte à former un canal de circulation (14) dont la couverture angulaire (a) autour de l'axe de rotation (ΖΖ') du rotor (2) est sensiblement comprise entre 20 degrés et 90 degrés. - Dispositif selon l'une des revendications précédentes caractérisé en ce qu'il constitue une éolienne à axe vertical. - Procédé de captage de l'énergie d'un courant de fluide au cours duquel on dispose dans ledit courant de fluide (F) un dispositif (1 ) comprenant un rotor (2) de type Darrieus pourvu d'au moins une pale (3) disposée de façon sensiblement tangentielle à la périphérie dudit rotor et qui permet audit courant de fluide d'entraîner ledit rotor, ladite au moins une pale, balayant dans l'espace, lorsque le rotor est entraîné, un chemin de balayage qui délimite sensiblement une zone interne (7) au rotor et une zone externe (8) au rotor, ledit procédé étant caractérisé en ce qu'il comporte une étape (a) de canalisation du courant de fluide, au cours de laquelle on dispose au moins un déflecteur interne (11 ) et un déflecteur externe (12) de part et d'autre du chemin de balayage, respectivement dans la zone interne et dans la zone externe, afin de diriger le courant de fluide vers le chemin de balayage (6), ladite étape (a) de canalisation comprenant une sous- étape (a1 ) de collecte au cours de laquelle on collecte au moins en partie le courant de fluide incident qui pénètre dans la zone interne (7) pour le déporter dans la zone périphérique du rotor selon au moins une composante radiale orientée du centre vers la périphérie dudit rotor, puis une sous étape (a2) d'accélération, au cours de laquelle on fait passer ledit courant de fluide à travers une portion de rétrécissement (20) de sorte à l'accélérer par effet Venturi.
PCT/FR2010/052104 2009-10-07 2010-10-06 Eolienne a deflecteur interne WO2011042659A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10776787A EP2486268A1 (fr) 2009-10-07 2010-10-06 Eolienne a deflecteur interne

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0956998 2009-10-07
FR0956998A FR2950937A1 (fr) 2009-10-07 2009-10-07 Eolienne a deflecteur interne

Publications (1)

Publication Number Publication Date
WO2011042659A1 true WO2011042659A1 (fr) 2011-04-14

Family

ID=42224517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052104 WO2011042659A1 (fr) 2009-10-07 2010-10-06 Eolienne a deflecteur interne

Country Status (3)

Country Link
EP (1) EP2486268A1 (fr)
FR (1) FR2950937A1 (fr)
WO (1) WO2011042659A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110296042A (zh) * 2019-06-28 2019-10-01 徐州工程学院 一种自动调节迎风面积的风力发电机叶轮
CN114776520A (zh) * 2022-05-19 2022-07-22 兰州理工大学 一种savonius透平增压泵

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102705181B (zh) * 2012-05-31 2014-04-02 上海大学 垂直轴风力发电机启动装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038049A (en) * 1990-09-12 1991-08-06 Shuichi Kato Vertical axis wind powered generator
US6158953A (en) * 1998-12-04 2000-12-12 Lamont; John S Wind turbine with variable position blades
DE202007004034U1 (de) * 2007-03-22 2007-05-24 Freimund, Wolfgang Wirbelwindturbine
CA2569386A1 (fr) * 2006-11-30 2008-05-30 Frederick Churchill Eolienne
WO2009106923A2 (fr) * 2008-02-29 2009-09-03 Hopewell Wind Power Limited Déflecteur d'air destiné à une éolienne et éolienne comprenant un tel déflecteur

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038049A (en) * 1990-09-12 1991-08-06 Shuichi Kato Vertical axis wind powered generator
US6158953A (en) * 1998-12-04 2000-12-12 Lamont; John S Wind turbine with variable position blades
CA2569386A1 (fr) * 2006-11-30 2008-05-30 Frederick Churchill Eolienne
DE202007004034U1 (de) * 2007-03-22 2007-05-24 Freimund, Wolfgang Wirbelwindturbine
WO2009106923A2 (fr) * 2008-02-29 2009-09-03 Hopewell Wind Power Limited Déflecteur d'air destiné à une éolienne et éolienne comprenant un tel déflecteur

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110296042A (zh) * 2019-06-28 2019-10-01 徐州工程学院 一种自动调节迎风面积的风力发电机叶轮
CN114776520A (zh) * 2022-05-19 2022-07-22 兰州理工大学 一种savonius透平增压泵

Also Published As

Publication number Publication date
FR2950937A1 (fr) 2011-04-08
EP2486268A1 (fr) 2012-08-15

Similar Documents

Publication Publication Date Title
EP1907696B1 (fr) Dispositif eolien
EP3426917B1 (fr) Eolienne flottante a turbines jumelles a axe vertical a rendement ameliore
WO2000070219A1 (fr) Eolienne a pales obliques
EP1961956A1 (fr) Eolienne d'axe vertical
WO2012059697A1 (fr) Hydrolienne a flux transverse a etages autonomes
WO2012143518A1 (fr) Roue pour machine hydraulique, machine hydraulique équipée d'une telle roue et installation de conversion d'énergie comprenant une telle machine hydraulique
EP3325771B1 (fr) Aeronef comportant deux soufflantes contrarotatives a l'arriere d'un fuselage avec calage des aubes de la soufflante aval
WO2011042659A1 (fr) Eolienne a deflecteur interne
WO2004099607A2 (fr) Eolienne carenee auto-orientable
WO2013131688A1 (fr) Dispositif de conversion de l'energie cinetique d'un fluide en energie mecanique, a regulation de la puissance captee
FR2965592A1 (fr) Eolienne
FR2902157A1 (fr) Eolienne a axe vertical comprenant une turbine et une gaine co-axiale a ladite turbine et enveloppant cette derniere
FR2901580A1 (fr) Rotor prefectionne et eolienne
EP2529108A2 (fr) Eolienne a venturi multiple
FR2488337A1 (fr) Eolienne a roues multiples d'axe horizontal, carenees et juxtaposees
FR2859247A1 (fr) Eolienne a axe vertical
EP3314117A1 (fr) Turbine à portance active à déplacement contrôlé
EP3870842B1 (fr) Turbine aeraulique a flux traversant
WO2019197733A1 (fr) Engin volant a voilure tournante comprenant un systeme d'orientation integre dans un carenage et procede de pilotage dudit engin volant
BE1016501A6 (fr) Nouveau systeme d'aerogenerateur a axe vertical.
EP3983669B1 (fr) Éolienne et installation de conversion d'énergie comprenant une telle éolienne
BE1018135A3 (fr) Nouveau systeme d'aerogenerateur a axe vertical.
FR3112818A1 (fr) Turbine a axe vertical pour la production d’une force motrice extraite de l’energie d’origine eolienne.
FR2936026A1 (fr) Machine hydraulique a aubes a performance optimisee
FR2940821A1 (fr) Regulateur pour eolienne

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10776787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010776787

Country of ref document: EP