WO2011042591A1 - Chassis - Google Patents

Chassis Download PDF

Info

Publication number
WO2011042591A1
WO2011042591A1 PCT/FI2009/050805 FI2009050805W WO2011042591A1 WO 2011042591 A1 WO2011042591 A1 WO 2011042591A1 FI 2009050805 W FI2009050805 W FI 2009050805W WO 2011042591 A1 WO2011042591 A1 WO 2011042591A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
transmitting
motion
axle
chassis
Prior art date
Application number
PCT/FI2009/050805
Other languages
French (fr)
Inventor
Hannu Knuutinen
Ismo Toivanen
Original Assignee
Chasswheel Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chasswheel Oy filed Critical Chasswheel Oy
Priority to AU2009353812A priority Critical patent/AU2009353812A1/en
Priority to PCT/FI2009/050805 priority patent/WO2011042591A1/en
Priority to US13/500,531 priority patent/US8528922B2/en
Priority to EP09850199.2A priority patent/EP2485907A4/en
Publication of WO2011042591A1 publication Critical patent/WO2011042591A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/06Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs with obstacle mounting facilities, e.g. for climbing stairs, kerbs or steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically

Definitions

  • the invention relates to a chassis according to the preamble of claim 1.
  • constructions for a chassis of a vehicle are known, which are equipped with axles movable in a way depending on each other and which can be used to resist the swaying of the vehicle when moving on uneven terrain.
  • the idea is that the sinking of one or some of the wheels of the vehicle into an indentation in the ground surface or the rising onto a bump will also affect the position of the other wheels in such a way that the tilting and swaying of the vehicle is damped and the road holding is improved.
  • Such a chassis structure is disclosed, for example, in Fl 73175.
  • the wheels of the vehicle are mounted on bearings on axle beams connected to the frame of the vehicle by means of a ball joint or another joint with a corresponding function in such a way that the axle can pivot in relation to two axes with respect to the frame of the vehicle.
  • the joints between the axle beams and the frame are arranged in the lower part of the axle beams.
  • second corresponding (ball) joints are provided in the same position as these joints.
  • a supporting arm or a supporting mechanism formed of supporting arms is connected to the frame in a swivelling manner.
  • the tilting movement of the first axle is transmitted to the sec- ond axle in such a way that the second axle tends to tilt in the opposite direction with respect to the first axle.
  • the supporting arm or mechanism will tilt the second axle in the opposite direction. Consequently, the chassis structure damps tilting and stabilizes the travel of the vehicle on uneven terrain.
  • the stabilization of the chassis functioning in this way can also be made suitably flexible and cushioned by applying supporting arms and other structures with a suitable rigidity in the frame of the chassis.
  • a steering mechanism formed of two tie rods and a steering-knuckle arm connected to them, for the purpose of adjusting the position of the axles with respect to a vertical axle, that is, to steer the vehicle in the travel direction.
  • This steering mechanism is provided at the lower ball joints in the vertical direction.
  • the tie rods are connected at their first end to the opposite ends of the successive axle beams in an articulated manner and are connected at their second end in an articulated manner to the steering-knuckle arm articulated at the centre of the frame.
  • the steering-knuckle arm By moving the steering-knuckle arm, it is possible to steer the chassis in the travel direction, that is, the wheels can be steered to be parallel or they can be turned in opposite directions with respect to each other, wherein the vehicle can be turned in a desired direction.
  • the above-described chassis structure is functional as such, and it can be used to stabilize the position of a vehicle or a working machine and to improve the road holding and the steerability on uneven terrain. Thanks to these good properties, such a chassis structure has been utilized, among other things, in a wheelchair developed by the applicant, which is suitable for moving on uneven terrain.
  • the supporting arm or supporting mechanism formed of supporting arms, applied to compensate for tilting must nevertheless, in a chassis like the one described in Fl 73175, be placed at a sufficient distance above the point of articulation of the axle beams so that the movement caused by the tilting of the axles can be transmitted from the first axle to the second axle.
  • the inventive idea of the chassis according to the invention is that for the transmission of the tilting motions and steering motions of the axles con- nected by a ball joint or a corresponding joint to the frame of the chassis, such motion transmitting mechanisms are used, in which the transfer of motions between the axles is arranged primarily by motion transfer members remaining parallel to the longitudinal direction of the frame of the chassis, which members can be placed, particularly in the area of the central sections of the frame, lower than the configuration presented in Fl 73175 and which do not require space in the central sections of the frame.
  • the chassis according to the invention is characterized in what will be presented in the characterizing part of claim 1.
  • the chassis according to the invention provides significant advantages to the prior art.
  • the chassis according to the invention can be made lower than before, wherein the centre of gravity of the vehicle can also be arranged lower than before. Thanks to this, the ground clearance of the vehicle can be increased without raising the centre of gravity too high. This improves the possibilities of moving and riding comfort on uneven terrain. Furthermore, in the chassis according to the invention, no supporting arms or other parts needed for steering the axles are needed in the central section of the chassis; consequently, other parts of the vehicle can placed in this space, if desired. For example, when such a chassis is used in an electrically driven wheelchair, a battery used as the source of energy for the wheelchair can be placed under the seat. In the case of a wheelchair, the sitting height can also be arranged lower than before.
  • FIG. 1 seen from the front, shows the frame, axles and mechanism for transmitting the tilting motion in the chassis of the preceding figures, seen from the side, shows the frame, axles, and mechanism for transmitting the swivelling motions in a chassis according to the preceding figures, seen from below, shows the frame, axles, and mechanism for transmitting the swivelling motions in a chassis according to the preceding figures, seen from the front, and shows the frame, axles, and mechanism for transmitting the swivelling motions in a chassis according to the preceding figures, seen from the side.
  • the frame 1 of the chassis has the shape of a box-like piece, to which other parts of the chassis are connected.
  • the axles 2 and 2' belonging to the chassis are connected outside the first and second end of the frame by ball joints or other joints at the centre points of the axles 2 and 2', enabling the corresponding movements of the axles.
  • This mounting is not shown in Figs. 1 to 6, to facilitate the illustration of the principles of operation of the mechanisms 3 and 4 for transmitting motion.
  • Figs. 1 to 3 which show the mechanism 3 for transmitting the tilting motion of the axles, do not show the mechanism 4 for transmitting the swivelling motions illustrated in Figs.
  • Figs. 4 to 6 which show the mechanism 4 for transmitting the swivelling motions, do not illustrate the mechanism 3 for transmitting the tilting motions illus- trated in Figs. 1 to 3. Both mechanisms 3 and 4 for transmitting motions, illustrated in Figs. 1 to 6, can, however, be installed in the same chassis.
  • the mechanism 3 for transmitting tilting motions comprises a vertical arm 6 fixed at its first end in a stationary manner in the vertical position to the centre point of the first axle 2. Furthermore, the mechanism 3 for transmitting tilting motions comprises a wishbone arm 7 connected at its first end in an articulated manner to the second, free end of the vertical arm and connected at its second end in an articulated manner to the frame 1 , and to whose third end is connected, in an articulated manner, the first end of the transmission arm 8 of the tilting motion also belonging to this mechanism. As shown in Figs.
  • both axles 2 of the chassis comprise separate vertical arms 6 and 6' as well as wishbone arms 7 and 7', but the transmission arm 8 of the tilting motion is a common part between the third ends of the wishbone arms 7 and 7'.
  • the vertical arms 6 and 6' must be capable of swivelling with respect to the wishbone arms 7 and T and, to some extent, also slightly with respect to the longitudinal axis of the frame 1 (so that the connecting points between the vertical arms 6 and 6' and the wishbone arms 7 and T can move to some extent also in the vertical direction, thanks to the curved motion path of the second end of the vertical arms), the joints 9 and 9' between the second end of the vertical arms 6 and 6' and the first end of the wishbone arms 7 and 7' have to be joints capable of swivelling with respect to two axes, that is, for example ball joints.
  • the joints 10 and 10' between the frame 1 and the second end of the wishbone arms 7 and 7', as well as the joints 11 and 11' between the third end of the wishbone arms 7 and T and the first and second ends of the arm 8 for transmitting the tilting motion have to be joints that allow a pivoting movement with respect to two axles, that is, for example ball joints.
  • the connecting points between the joints 11 and 11' at both ends of the arm 8 for transmitting the tilting motion and the third end of the wishbone arms 7 and T have been made, as shown in Fig. 1 , adjustable by means of adjustable fixing means.
  • the arm 8 for transmitting the tilting motion is connected in an articulated manner at its both ends to the wishbone arms 7 and 7'.
  • the second wishbone arm 7', to which the second end of the arm 8 for transmitting the tilting motion is connected, is a wishbone arm connected to the second axle 2' (fully corresponding and parallel to the wishbone arm 7 in connection with the first axle 2).
  • the mechanism 3 for transmitting the tilting motions corresponds, in its operation, fully to the operation of the mechanism for transmitting the tilting motion disclosed in Fl 73175.
  • the tilting in the vertical direction of the first axle 2 of a vehicle equipped with such a chassis for example when one wheel mounted on this axle meets an indentation or a bump in the ground surface, will cause in the second axle 2' a tilting motion of corresponding magnitude but opposite direction, to balance the travel of the vehicle.
  • the situation is the same if also the wheel on the side of the second axle, opposite to the first axle, meets simultaneously an indentation or a bump.
  • the mechanism 4 for transmitting the swivelling motion comprises a swivelling arm 12 fixed at its first end to the axle 2 in a stationary manner and extending (when the axle is straight as shown in Fig. 1 ) to a distance from the axle along the longitudinal direction of the frame 1 (in the direction of the frame).
  • the mechanism 4 for transmitting the swivelling motion comprises a transfer arm 13 connected at its first end to the second end of the swivelling arm 12 in an articulated manner, and a pivoting arm 14 connected at its first end to the second end of the transfer arm 13 in an articulated manner and connected to an arm 15 for transmitting the swivelling motion, mounted on bearings to pivot around its longitudinal axis.
  • the arm 15 for transmitting the swivelling motion is parallel to the longitudinal direction of the frame and is placed, for example, to one side of the frame 1 with respect to the arm 9 for transmitting the tilting motion.
  • the joints 16 and 17 between the swivelling arm 12 and the transfer arm 13 and between the transfer arm 13 and the pivoting arm 14 are joints that are capable of pivoting with respect to two axes, that is, for example ball joints, because when the axle turns, the transfer arm 13 will turn in relation to two axes with respect to the swivelling arm 12 and the pivoting arm 14.
  • the swivelling arm 12, the transfer arm 13 and the pivoting arm 14 of the first axle 2 of the chassis, as well as the swivelling arm 12', the transfer arm 13' and the pivoting arm 14' of the second axle 2 are identical and parallel to each other when the axles are straight, that is when the wheels mounted on the axles 2 and 2' are aligned.
  • the second axle there are also ball joints 16' and 17' corresponding to the ball joints 16 and 17 in connection with the first axle.
  • both the transfer arms 13 and 13' are made to be adjustable in length so that the axles 2 and 2' can be adjusted to be precisely parallel when they are in a position transverse to the longitudinal direction of the frame.
  • the chassis equipped with the mechanisms 3 and 4 for transmitting motion shown in Figs.
  • a linear actuator may be configured to be controlled by means of, for example, a control lever (such as a joystick).
  • the mechanical control lever in turn, can be moved by means of, for example, a steering wheel or rod.
  • the steering may also be implemented by means of both of these so that the actuator is only configured to assist in the implementation of the manual steering movements, in other words, it is used as a power steering.
  • the chassis according to the invention can be imple- mented in a way different from the above-presented example embodiment.
  • one embodiment could comprise a fourth end on the side opposite to the third end.
  • a second transmitting arm could be included in the mechanism for transmitting the tilting motion, to increase the rigidity of the transmitting mechanism.
  • Such a configuration could be applied, for example, in a heavy-duty vehicle, in which the axles are subjected to very high forces.
  • many structural details of the mechanisms for transmitting motion can be implemented in a variety of ways.
  • the structure of the different joints as well as the materials, lengths, thicknesses, shapes, and ways of fixing of the supporting and transmitting arms may vary in different embodiments of the chassis according to the invention.
  • the supporting arms in connection with the different axles do not necessarily need to be identical.
  • the suitable movement lengths can be, for example, proportioned to the length of the axles.
  • this can be utilized to turn, for example, one end (e.g. the front end) of the vehicle more abruptly than the other end (e.g. the rear end) by a steering movement of a given magnitude.
  • the invention is not limited to the above-presented example embodiments, but it may vary within the scope of the inventive idea presented in the appended claims.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

The invention relates to a chassis for a vehicle, the chassis comprising a frame (1 ) as well as a first axle (2) and a second axle (2'), on which the wheels of the vehicle are mounted on bearings and which axles (2, 2') are connected to the frame (1 ) to swivel at least with respect to a vertical axis and a longitudinal axis, and in which chassis the axles (2, 2') are connected to each other by means of mechanisms (3, 4) for transmitting motion in such a way that the movements of the first axle (2) are transmitted to the second axle (2'), and vice versa. In the chassis according to the invention, the mechanisms (3, 4) for transmitting the motion comprise arms (8, 15) for transmitting motion between the axles (2, 2'), which arms are configured to remain primarily parallel to the longitudinal direction of the frame (1 ), irrespective of the movements of the axles (2, 2').

Description

CHASSIS
The invention relates to a chassis according to the preamble of claim 1. At present, constructions for a chassis of a vehicle are known, which are equipped with axles movable in a way depending on each other and which can be used to resist the swaying of the vehicle when moving on uneven terrain. In such a chassis, the idea is that the sinking of one or some of the wheels of the vehicle into an indentation in the ground surface or the rising onto a bump will also affect the position of the other wheels in such a way that the tilting and swaying of the vehicle is damped and the road holding is improved.
Such a chassis structure is disclosed, for example, in Fl 73175. In said publi- cation, the wheels of the vehicle are mounted on bearings on axle beams connected to the frame of the vehicle by means of a ball joint or another joint with a corresponding function in such a way that the axle can pivot in relation to two axes with respect to the frame of the vehicle. The joints between the axle beams and the frame are arranged in the lower part of the axle beams. In the upper part of the axle beams, second corresponding (ball) joints are provided in the same position as these joints. Between these upper joints, a supporting arm or a supporting mechanism formed of supporting arms is connected to the frame in a swivelling manner. Thanks to this supporting arm or mechanism, the tilting movement of the first axle is transmitted to the sec- ond axle in such a way that the second axle tends to tilt in the opposite direction with respect to the first axle. Thus, when the wheel of the vehicle passes over an indentation or a bump in the ground surface, that is, when the axle is tilting, the supporting arm or mechanism will tilt the second axle in the opposite direction. Consequently, the chassis structure damps tilting and stabilizes the travel of the vehicle on uneven terrain. The stabilization of the chassis functioning in this way can also be made suitably flexible and cushioned by applying supporting arms and other structures with a suitable rigidity in the frame of the chassis. In the chassis structure according to Fl 73175, there is also a steering mechanism formed of two tie rods and a steering-knuckle arm connected to them, for the purpose of adjusting the position of the axles with respect to a vertical axle, that is, to steer the vehicle in the travel direction. This steering mechanism is provided at the lower ball joints in the vertical direction. The tie rods are connected at their first end to the opposite ends of the successive axle beams in an articulated manner and are connected at their second end in an articulated manner to the steering-knuckle arm articulated at the centre of the frame. Thus, by moving the steering-knuckle arm, it is possible to steer the chassis in the travel direction, that is, the wheels can be steered to be parallel or they can be turned in opposite directions with respect to each other, wherein the vehicle can be turned in a desired direction.
The above-described chassis structure is functional as such, and it can be used to stabilize the position of a vehicle or a working machine and to improve the road holding and the steerability on uneven terrain. Thanks to these good properties, such a chassis structure has been utilized, among other things, in a wheelchair developed by the applicant, which is suitable for moving on uneven terrain. As described above, the supporting arm or supporting mechanism formed of supporting arms, applied to compensate for tilting must nevertheless, in a chassis like the one described in Fl 73175, be placed at a sufficient distance above the point of articulation of the axle beams so that the movement caused by the tilting of the axles can be transmitted from the first axle to the second axle. In the configuration presented in Fl 73175, the result is that the supporting arm or the mechanism formed of supporting arms must always be placed at some distance above the point of bearing of the axle beams. This increases the need of space for the chassis structure in the height direction of the vehicle, which, among other things, moves the centre of gravity of the vehicle slightly higher than in vehicles with a conventional chassis structure. For example, in wheelchairs intended for use on terrain, this means that the sitting height in a wheelchair with such a chassis structure will be slightly greater than normally. Furthermore, because of the supporting arms, no space is left under the seat of the wheelchair for other purposes, for example for placing a battery under the seat as is conventional in an electric wheelchair.
It is an aim of the present invention to disclose a novel chassis for stabilizing the moving of a vehicle on uneven terrain and for improving its road holding, to eliminate the above-mentioned drawbacks involved in the prior art. In particular, it is an aim of the invention to introduce a chassis that requires less space than before in the height direction of the vehicle. Furthermore, it is an aim of the invention to disclose a chassis that functions in the above- described manner and also takes less space in the central parts of the chassis so that more space than before is left in the central sections of the lower part of the chassis, wherein, for example in the case of an electrically driven wheelchair, a battery can be placed under the seat.
The inventive idea of the chassis according to the invention is that for the transmission of the tilting motions and steering motions of the axles con- nected by a ball joint or a corresponding joint to the frame of the chassis, such motion transmitting mechanisms are used, in which the transfer of motions between the axles is arranged primarily by motion transfer members remaining parallel to the longitudinal direction of the frame of the chassis, which members can be placed, particularly in the area of the central sections of the frame, lower than the configuration presented in Fl 73175 and which do not require space in the central sections of the frame. To put it more precisely, the chassis according to the invention is characterized in what will be presented in the characterizing part of claim 1. The chassis according to the invention provides significant advantages to the prior art. The chassis according to the invention can be made lower than before, wherein the centre of gravity of the vehicle can also be arranged lower than before. Thanks to this, the ground clearance of the vehicle can be increased without raising the centre of gravity too high. This improves the possibilities of moving and riding comfort on uneven terrain. Furthermore, in the chassis according to the invention, no supporting arms or other parts needed for steering the axles are needed in the central section of the chassis; consequently, other parts of the vehicle can placed in this space, if desired. For example, when such a chassis is used in an electrically driven wheelchair, a battery used as the source of energy for the wheelchair can be placed under the seat. In the case of a wheelchair, the sitting height can also be arranged lower than before. This makes it easier for the user of the wheelchair to move onto and off the seat of the wheelchair. In the following, the invention will be described in more detail with reference to the appended drawings, in which shows the frame, axles, and mechanism for transmitting the tilting motion in a chassis according to the invention, seen from below, shows the frame, axles, and mechanism for transmitting the tilting motion in the chassis of Fig. 1 , seen from the front, shows the frame, axles and mechanism for transmitting the tilting motion in the chassis of the preceding figures, seen from the side, shows the frame, axles, and mechanism for transmitting the swivelling motions in a chassis according to the preceding figures, seen from below, shows the frame, axles, and mechanism for transmitting the swivelling motions in a chassis according to the preceding figures, seen from the front, and shows the frame, axles, and mechanism for transmitting the swivelling motions in a chassis according to the preceding figures, seen from the side.
In the application of a chassis according to the invention, shown in Figs. 1 to 6, the frame 1 of the chassis has the shape of a box-like piece, to which other parts of the chassis are connected. For example, the axles 2 and 2' belonging to the chassis are connected outside the first and second end of the frame by ball joints or other joints at the centre points of the axles 2 and 2', enabling the corresponding movements of the axles. This mounting, known as such, is not shown in Figs. 1 to 6, to facilitate the illustration of the principles of operation of the mechanisms 3 and 4 for transmitting motion. Furthermore, Figs. 1 to 3, which show the mechanism 3 for transmitting the tilting motion of the axles, do not show the mechanism 4 for transmitting the swivelling motions illustrated in Figs. 4 to 6. In a corresponding manner, Figs. 4 to 6, which show the mechanism 4 for transmitting the swivelling motions, do not illustrate the mechanism 3 for transmitting the tilting motions illus- trated in Figs. 1 to 3. Both mechanisms 3 and 4 for transmitting motions, illustrated in Figs. 1 to 6, can, however, be installed in the same chassis.
The mechanism 3 for transmitting tilting motions, illustrated in Figs. 1 to 3, comprises a vertical arm 6 fixed at its first end in a stationary manner in the vertical position to the centre point of the first axle 2. Furthermore, the mechanism 3 for transmitting tilting motions comprises a wishbone arm 7 connected at its first end in an articulated manner to the second, free end of the vertical arm and connected at its second end in an articulated manner to the frame 1 , and to whose third end is connected, in an articulated manner, the first end of the transmission arm 8 of the tilting motion also belonging to this mechanism. As shown in Figs. 1 to 3, both axles 2 of the chassis comprise separate vertical arms 6 and 6' as well as wishbone arms 7 and 7', but the transmission arm 8 of the tilting motion is a common part between the third ends of the wishbone arms 7 and 7'. Because the vertical arms 6 and 6' must be capable of swivelling with respect to the wishbone arms 7 and T and, to some extent, also slightly with respect to the longitudinal axis of the frame 1 (so that the connecting points between the vertical arms 6 and 6' and the wishbone arms 7 and T can move to some extent also in the vertical direction, thanks to the curved motion path of the second end of the vertical arms), the joints 9 and 9' between the second end of the vertical arms 6 and 6' and the first end of the wishbone arms 7 and 7' have to be joints capable of swivelling with respect to two axes, that is, for example ball joints. For this reason, the joints 10 and 10' between the frame 1 and the second end of the wishbone arms 7 and 7', as well as the joints 11 and 11' between the third end of the wishbone arms 7 and T and the first and second ends of the arm 8 for transmitting the tilting motion have to be joints that allow a pivoting movement with respect to two axles, that is, for example ball joints. Furthermore, it should be noted that in this embodiment, the connecting points between the joints 11 and 11' at both ends of the arm 8 for transmitting the tilting motion and the third end of the wishbone arms 7 and T have been made, as shown in Fig. 1 , adjustable by means of adjustable fixing means. Thanks to them, small position errors of the axles, caused by dimensional variance or defects in form in the frame 1 of the chassis, in the axles 2, and/or in the parts of the mechanism 3 for transmitting the tilting motions, can be easily corrected by adjusting the fixing point between the wishbone arm 7 and/or T and the arm 8 for transmitting the tilting motion. As mentioned above, the arm 8 for transmitting the tilting motion is connected in an articulated manner at its both ends to the wishbone arms 7 and 7'. The second wishbone arm 7', to which the second end of the arm 8 for transmitting the tilting motion is connected, is a wishbone arm connected to the second axle 2' (fully corresponding and parallel to the wishbone arm 7 in connection with the first axle 2). Consequently, the swivelling of the vertical arm 6 in the side direction of the frame, caused by the tilting motion of the first axle 2, causes a corresponding movement in the wishbone arm T in connection with the second axle 2'. This wishbone arm T in connection with the second axle, in turn, causes a movement, corresponding in its magnitude to the movement of the first axle, in the vertical arm 6' connected to it at its second end (and having the size and shape fully corresponding to the vertical arm 6 in connection with the first axle). However, because the wishbone arm T and the vertical arm 6' in connection with the second axle are mirror images of the wishbone arm and the vertical arm in connection with the first axle, this tilting motion of the second axle 2' has a direction opposite to that of the tilting motion of the first axle 2. Consequently, the mechanism 3 for transmitting the tilting motions corresponds, in its operation, fully to the operation of the mechanism for transmitting the tilting motion disclosed in Fl 73175. Thus, the tilting in the vertical direction of the first axle 2 of a vehicle equipped with such a chassis, for example when one wheel mounted on this axle meets an indentation or a bump in the ground surface, will cause in the second axle 2' a tilting motion of corresponding magnitude but opposite direction, to balance the travel of the vehicle. The situation is the same if also the wheel on the side of the second axle, opposite to the first axle, meets simultaneously an indentation or a bump. However, the present mechanism 3 for transmitting the tilting motion does not comprise such supporting arms which would require as much space in the vertical direction of the chassis and have supporting or transmitting arms in the central part of the frame as in the solution of prior art disclosed in Fl 73175. In other words, with the novel solution according to Figs. 1 to 3, the above-mentioned drawbacks involved in the chassis structure according to Fl 73175 are avoided. The mechanism 4 for transmitting the swivelling motion, disclosed in Figs. 4 to 6, comprises a swivelling arm 12 fixed at its first end to the axle 2 in a stationary manner and extending (when the axle is straight as shown in Fig. 1 ) to a distance from the axle along the longitudinal direction of the frame 1 (in the direction of the frame). Furthermore, the mechanism 4 for transmitting the swivelling motion comprises a transfer arm 13 connected at its first end to the second end of the swivelling arm 12 in an articulated manner, and a pivoting arm 14 connected at its first end to the second end of the transfer arm 13 in an articulated manner and connected to an arm 15 for transmitting the swivelling motion, mounted on bearings to pivot around its longitudinal axis. The arm 15 for transmitting the swivelling motion is parallel to the longitudinal direction of the frame and is placed, for example, to one side of the frame 1 with respect to the arm 9 for transmitting the tilting motion. The joints 16 and 17 between the swivelling arm 12 and the transfer arm 13 and between the transfer arm 13 and the pivoting arm 14 are joints that are capable of pivoting with respect to two axes, that is, for example ball joints, because when the axle turns, the transfer arm 13 will turn in relation to two axes with respect to the swivelling arm 12 and the pivoting arm 14.
Also in this mechanism for transmitting motion, the swivelling arm 12, the transfer arm 13 and the pivoting arm 14 of the first axle 2 of the chassis, as well as the swivelling arm 12', the transfer arm 13' and the pivoting arm 14' of the second axle 2 are identical and parallel to each other when the axles are straight, that is when the wheels mounted on the axles 2 and 2' are aligned. In connection with the second axle, there are also ball joints 16' and 17' corresponding to the ball joints 16 and 17 in connection with the first axle. Thus, the swivelling motion of the first axle 2 will cause a swivelling motion of equal magnitude in the second axle 2'. However, the direction of this swivelling motion will be opposite, because the swivelling arm 12, the transfer arm 13 and the pivoting arm 14 of the first axle 2 are mirror images of the swivelling arm 12', the transfer arm 13' and the pivoting arm 14' of the second axle. Furthermore, it should be noted that in the mechanism for transmitting the swivelling motion, shown in Figs. 4 to 6, both the transfer arms 13 and 13' are made to be adjustable in length so that the axles 2 and 2' can be adjusted to be precisely parallel when they are in a position transverse to the longitudinal direction of the frame. Thus, the chassis equipped with the mechanisms 3 and 4 for transmitting motion, shown in Figs. 1 to 6, also corresponds to the chassis presented in Fl 73175, with respect to the operation of the mechanism 4 for transmitting the swivelling motion. Thanks to the mechanism for transmitting the swivelling motion, the wheels of a vehicle equipped with such a chassis always turn equally in opposite directions. Thus, the movements of turning all the wheels can be controlled simultaneously, for example, by connecting a linear actuator or a mechanical steering-knuckle arm, for example, to one of the pivoting arms 14 or 14'. A linear actuator may be configured to be controlled by means of, for example, a control lever (such as a joystick). The mechanical control lever, in turn, can be moved by means of, for example, a steering wheel or rod. The steering may also be implemented by means of both of these so that the actuator is only configured to assist in the implementation of the manual steering movements, in other words, it is used as a power steering.
In many respects, the chassis according to the invention can be imple- mented in a way different from the above-presented example embodiment. For example, in the wishbone arms of the mechanism for transmitting the tilting motions, one embodiment could comprise a fourth end on the side opposite to the third end. Thus, a second transmitting arm could be included in the mechanism for transmitting the tilting motion, to increase the rigidity of the transmitting mechanism. Such a configuration could be applied, for example, in a heavy-duty vehicle, in which the axles are subjected to very high forces. It should also be noted that in many respects, many structural details of the mechanisms for transmitting motion can be implemented in a variety of ways. For example, the structure of the different joints as well as the materials, lengths, thicknesses, shapes, and ways of fixing of the supporting and transmitting arms may vary in different embodiments of the chassis according to the invention. Furthermore, the supporting arms in connection with the different axles do not necessarily need to be identical. The suitable movement lengths can be, for example, proportioned to the length of the axles. In some cases, it is also possible to produce motions of different magnitudes, for example in different axles. For instance, in the mechanism for transmitting the swivelling motion, this can be utilized to turn, for example, one end (e.g. the front end) of the vehicle more abruptly than the other end (e.g. the rear end) by a steering movement of a given magnitude. The invention is not limited to the above-presented example embodiments, but it may vary within the scope of the inventive idea presented in the appended claims.

Claims

Claims:
1. A chassis for a vehicle, the chassis comprising a frame (1 ) as well as a first axle (2) and a second axle (2'), to which the wheels of the vehicle are mounted on bearings, and which axles (2, 2') are connected to the frame (1 ) to swivel with respect to at least a vertical axis and a longitudinal axis in relation to it, and in which chassis the axles (2, 2') are connected to each other by mechanisms (3, 4) for transmitting motion in such a way that the movements of the first axle (2) are transmitted to the second axle (2') and wee versa, characterized in that the mechanisms (3, 4) for transmitting motion comprise arms (8, 5) for transmitting motion, provided between the axles (2, 2') and configured to remain primarily parallel to the longitudinal direction of the frame (1 ) in spite of the movements of the axles (2, 2'). 2. A chassis according to claim 1 , characterized in that other arms (6, 6', 7, 7', 12-14, 12'— 14') are provided between the arms (8, 15) for transmitting motion and the axles (2, 2'), arranged to convert the movements of the axles (2,
2') of the chassis to primarily linear movements parallel to the longitudinal direction of the frame (1 ), or to primarily pivoting movements with respect to the longitudinal axis of the frame (1 ).
3. The chassis according to claim 1 or 2, characterized in that the arms (8, 15) for transmitting motion are placed on the side of the frame (1 ).
4. The chassis according to any of the claims 1 to 3, characterized in that the chassis comprises a mechanism (3) for transmitting a tilting motion to transmit the tilting motion of the axles (2, 2'), and a mechanism (4) for transmitting a swivelling motion, to transmit the swivelling motion of the axles (2,
2').
5. The chassis according to claim 4, characterized in that the mechanism (3) for transmitting the tilting motion comprises an arm (8) for transmitting the tilting motion, arranged to move primarily in the longitudinal direction of the frame (1 ) and coupled at its first end by means of arms (6, 7) to the first axle (2) and at its second end by means of arms (6', T) to the second axle (2').
6. The chassis according to claim 5, characterized in that the mechanism for transmitting the tilting motion comprises a vertical arm (6, 6') extending primarily in the vertical direction to a distance away from its fixing point, as well as a wishbone arm (7, 1 ') whose first end is connected in an articulated manner to the second end of the vertical arm (6, 6'), the second end to the frame (1 ) and the third end to the arm (8) for transmitting the tilting motion, wherein when the axle tilts, the vertical arm (6, 6') turns the wishbone arm (7, 7') and the wishbone arm (7, 7') moves the arm (8) for transmitting the tilting motion, connected to the same, primarily in its longitudinal direction.
7. The chassis according to claim 4, characterized in that the mechanism (4) for transmitting the swivelling motion comprises an arm (15) for transmitting the swivelling motion, arranged to pivot with respect to its longitudinal axis and coupled at its first end by means of arms (12 to 14) to the first axle (2) and at its second end by means of arms (12' to 14') to the second axle (2').
8. The chassis according to claim 7, characterized in that the mechanism (4) for transmitting the swivelling motion comprises a swivelling arm (12, 12') extending in the longitudinal direction of the frame to a distance away from the fixing point of the axle (2, 2'), a transfer arm (13, 13') articulated at the end of the swivelling arm, and a pivoting arm (14, 14') articulated at the first end of the transfer arm (13, 13') and connected at its second end to the arm (15) for transmitting the swivelling motion, mounted on bearings with respect to its longitudinal axis on the frame (1 ) and having a pivoting motion, wherein when the axle (2, 2') is swivelled, the swivelling arm (12, 13') moves the transfer arm (13, 13'), and the transfer arm (13, 13') pivots the arm (15) for transmitting the swivelling motion, by means of the pivoting arm (14, 14').
PCT/FI2009/050805 2009-10-09 2009-10-09 Chassis WO2011042591A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2009353812A AU2009353812A1 (en) 2009-10-09 2009-10-09 Chassis
PCT/FI2009/050805 WO2011042591A1 (en) 2009-10-09 2009-10-09 Chassis
US13/500,531 US8528922B2 (en) 2009-10-09 2009-10-09 Chassis
EP09850199.2A EP2485907A4 (en) 2009-10-09 2009-10-09 Chassis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FI2009/050805 WO2011042591A1 (en) 2009-10-09 2009-10-09 Chassis

Publications (1)

Publication Number Publication Date
WO2011042591A1 true WO2011042591A1 (en) 2011-04-14

Family

ID=43856400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI2009/050805 WO2011042591A1 (en) 2009-10-09 2009-10-09 Chassis

Country Status (4)

Country Link
US (1) US8528922B2 (en)
EP (1) EP2485907A4 (en)
AU (1) AU2009353812A1 (en)
WO (1) WO2011042591A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3656364A1 (en) * 2018-11-22 2020-05-27 Invacare International GmbH Motorized wheelchair chassis and motorized wheelchair comprising the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190316378A (en) * 1903-07-24 1904-07-23 Adolf Hochegger Improvements in and relating to Motor Vehicles.
US2598863A (en) * 1948-12-17 1952-06-03 Emmitt M Tucker Drive axle mounted for swinging and rocking motion
US3055520A (en) * 1959-12-23 1962-09-25 Cranes & Shovels Proprietary L Tractors or like vehicles
DE2256934A1 (en) * 1971-11-23 1973-05-30 Smallfry Ltd VEHICLE SUSPENSION, IN PARTICULAR FOR A MOTOR VEHICLE
US4688811A (en) * 1984-06-21 1987-08-25 Hannu Knuutinen Chassis structure of vehicle
US5772237A (en) * 1996-05-21 1998-06-30 Teftec Corporation Suspension system for powered wheelchair

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2029540A (en) * 1935-10-01 1936-02-04 Porteous William Trailer
US3367437A (en) * 1965-08-20 1968-02-06 Garrett Enumclaw Co Twin-pivot articulating-frame wheeled vehicle
US3504928A (en) * 1968-08-26 1970-04-07 Walter E Reimer Suspension system for vehicles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190316378A (en) * 1903-07-24 1904-07-23 Adolf Hochegger Improvements in and relating to Motor Vehicles.
US2598863A (en) * 1948-12-17 1952-06-03 Emmitt M Tucker Drive axle mounted for swinging and rocking motion
US3055520A (en) * 1959-12-23 1962-09-25 Cranes & Shovels Proprietary L Tractors or like vehicles
DE2256934A1 (en) * 1971-11-23 1973-05-30 Smallfry Ltd VEHICLE SUSPENSION, IN PARTICULAR FOR A MOTOR VEHICLE
US4688811A (en) * 1984-06-21 1987-08-25 Hannu Knuutinen Chassis structure of vehicle
US5772237A (en) * 1996-05-21 1998-06-30 Teftec Corporation Suspension system for powered wheelchair

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2485907A4 *

Also Published As

Publication number Publication date
US20120217732A1 (en) 2012-08-30
AU2009353812A1 (en) 2012-05-31
EP2485907A4 (en) 2013-11-06
US8528922B2 (en) 2013-09-10
EP2485907A1 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP7092436B2 (en) Vehicle suspension system
CN110001324B (en) Wheel steering device
US7793946B2 (en) Vehicle suspension device
US4153272A (en) Torsion rod stabilizer assemblies for vehicular steerable front wheels
EP1627798B1 (en) Tractor suspension system
AU2007331881A1 (en) Wheel suspension
JP4939310B2 (en) Strut suspension system
JPH05162518A (en) Suspension device for vehicle
EP0887212B1 (en) Off-road vehicle front wheel suspension
JP2001071729A (en) Double wishbone type suspension
US8528922B2 (en) Chassis
AU741618B2 (en) Front axle suspension
CN111660752A (en) Torsion beam axle for an electrically driven motor vehicle
US11299200B1 (en) Steering systems for vehicles
JP4366822B2 (en) Trailing arm type rear suspension
EP3953241B1 (en) Tilting motor vehicle with tilting locking device
CN112918207B (en) All-terrain vehicle
CN215153746U (en) All-terrain vehicle
CN215153743U (en) All-terrain vehicle
CN214688901U (en) All-terrain vehicle
CN112918208B (en) All-terrain vehicle
JP4900107B2 (en) Suspension device
Beylin et al. AFW-5” suspension for a means of transportation
EP1561611A1 (en) Trailing arm suspension for motor-vehicles with rocking and steering support for the wheel hub
JPH10226210A (en) Suspension device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850199

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009353812

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009850199

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13500531

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009353812

Country of ref document: AU

Date of ref document: 20091009

Kind code of ref document: A