WO2011040802A1 - Architectonic spacer building system - Google Patents

Architectonic spacer building system Download PDF

Info

Publication number
WO2011040802A1
WO2011040802A1 PCT/MY2009/000203 MY2009000203W WO2011040802A1 WO 2011040802 A1 WO2011040802 A1 WO 2011040802A1 MY 2009000203 W MY2009000203 W MY 2009000203W WO 2011040802 A1 WO2011040802 A1 WO 2011040802A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
building
architectonic
building system
assembly
Prior art date
Application number
PCT/MY2009/000203
Other languages
French (fr)
Inventor
Rahinah Ibrahim
Siva Jaganathan
Original Assignee
Universiti Putra Malaysia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universiti Putra Malaysia filed Critical Universiti Putra Malaysia
Priority to EP09801576A priority Critical patent/EP2483484A1/en
Priority to IN2688DEN2012 priority patent/IN2012DN02688A/en
Priority to NZ599381A priority patent/NZ599381A/en
Priority to JP2012532029A priority patent/JP5775875B2/en
Priority to CN200980161702.5A priority patent/CN102639794B/en
Priority to AU2009353373A priority patent/AU2009353373B2/en
Publication of WO2011040802A1 publication Critical patent/WO2011040802A1/en
Priority to US13/436,144 priority patent/US9562351B2/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • E04B1/2604Connections specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/02Roofs; Roof construction with regard to insulation with plane sloping surfaces, e.g. saddle roofs
    • E04B7/028Roofs; Roof construction with regard to insulation with plane sloping surfaces, e.g. saddle roofs consisting of structures of pyramidal or conical shape
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • E04B1/2604Connections specially adapted therefor
    • E04B2001/262Connection node with interlocking of specially shaped wooden members, e.g. puzzle type connection

Definitions

  • the present invention generally relates to a spacer building system and more particularly to an architectonic spacer building system which allows flexibility in form of design and flexibility in assembly of physical building components using pre-cut materials.
  • IBS Industrialised Building System
  • IBS construction is a preferred construction method in developing countries.
  • the targeted benefit of IBS implementation is its objective to minimise dependency on foreign labour in construction projects.
  • IBS implementation meets the supply demand barrier. Economic volume, general readiness and social acceptability of IBS make the construction technology less appealing (Zuhairi 2008).
  • prefabrication building process puts emphasis on the mass production, repetitive design layout is blamed for causing monotonous barrack-liked complex (Thanoon 2003).
  • Gib's concepts are applied into prefabricated house design in term of architectural perspective, there is a miss-coordination between the spatial dimensioning of physical building element and the functional building design element therefore making it not appropriately moulded into fabrication of the house's space design.
  • Yet Gib's system also did not address the assembly and disassembly of industrialised building systems. It is also noted that there is no timber building system existing for prefabrication since the conventional wooden construction joints have been used in the prefabrication process.
  • a modular building system which includes a prefabricated desk system having a plurality of rectangular flooring modules.
  • the system is modular form but not in the form of building component assembly.
  • the floor modules of this prior art are sandwiched with joist and connector.
  • Another prior art discloses a joint connector device and a method for assembling prefabricated building panels.
  • This prior art invention includes an L- shaped cove channel joint connector device for joining prefabricated structural building panel and its method of assembly. However, it does not have flexibility for angular or radial walls construction.
  • the invention of this study focused on the design assembly for an industrialised building system in which degree of flexibility in design form can be rejuvenated.
  • This invention stating the prefabricated building assembly is not only an engineering process. It is an amalgamation of both design cum engineering methods and mechanics.
  • the present invention relates to an architectonic spacer building system which allows flexibility in form design and flexibility in the assembly of prefabricated modular components using pre-cut building materials. Accordingly, it relates to physical building components design assembly principle for industrialised building system.
  • the architectonic spacer building system for skeleton construction which is used for developing design assembly for physical building components in a modular industrialised building system (IBS), characterised in that the architectonic spacer building system includes spacer having predetermined shape for use in formulated modular form of building component; wherein the spacer is a piece of physical building assembly component to integrate with various physical building components in prefabrication.
  • IBS modular industrialised building system
  • the spacer can be of rectangular, square, triangular or polygonal in shape.
  • the spacer is preferably has a length of at least 0.1m (100mm) used to formulate modular floor joist and corner, crisscross junction, angular and radiated walls.
  • the spacer is also preferably has a thickness of at least 0.001m (1mm).
  • the spacer is a floor joist dowel connector, composite key roof connector, a bracing of adjoining and / or intersecting wall panel.
  • the composite key roof connector includes of modular hip rafter, key bracket spacers, key plate spacers and key ties.
  • the spacer is used to attain a required cross section for structural stability in vertical and horizontal physical building components such as floor joist, wall panel, and roof truss formation. Accordingly, the spacer can also be used to extend the length or a connector for making long span horizontal physical building components such as beam or joist. Moreover, the spacer can further be used in modular panel having a predetermined size to form a "flexi-shape" of angular or radiated wall. It will also be appreciated that the spacer can be served as an interlocking jigsaw piece in method of playing with the modular physical building components to knit the armature of sub- and super-structure of prefabricated building structures. The spacer also tends to act as a shock absorber for any structural mechanisms of the building such as impact load, lateral movement or floor vibration of the building structure.
  • the spacer used in modular wall panel creates slit between two sectional building materials while joining at corner or crisscross junction of the wall panel that allow conduit of services to be accommodated thereof.
  • the spacer can be in multi dimensional shape to form an angular and polygonal wall panel.
  • the spacer can also be develop as principle for flexible assembly of roof, such as pyramid roof, mansard roof (double slope) and cone roof by using the composite key roof connector to hold the main rafters and it also can form longer span truss.
  • Said composite key roof connector can easily form a two-tier roofing and cupola on top for admitting light.
  • Utilisation of architectonic spacer building system would save the volume of materials used in prefabricated industrialised building system such as wood, metal, etc.
  • FIGS. 1(a) - 1(e) show various geometrical shapes of spacer and interlocking spacer used in architectonic spacer building system in accordance with preferred embodiment of present invention, and the spacers may be hollowed, solid or extruded in its form;
  • FIGS. 2(a) - 2(c) show the examples of various assemblies of wall panels that are formed by different architectonic spacers, whereby the spacers are used as bracing for adjoining wall panel;
  • FIG. 3 shows an example of grid modular floor joist assembly, whereby the spacers are used as anchorage dowel connector at upper and lower layers of modular floor joist assembly;
  • FIG. 4 shows an example of wall panel corner assembly and crisscross junction assembly, whereby the spacers are used to create a corner or wall junction assembly in a prefabrication wall panel;
  • FIGS. 5(a) - 5(b) show the assembly of key roof connector for the pyramid roof, whereby the spacers are used as composite key roof connector;
  • FIG. 6(a) - 6(d) show physical building components of key roof connector, which includes key bracket spacers, key plate spacers and key ties respectively.
  • FIGS. 1-10 A detailed description of preferred embodiments of the invention is disclosed herein. It should be understood, however, the disclosed preferred embodiments are merely exemplary of the invention, which may be embodied in various forms. Each assembly form may be fastened together with a preferred method of fastening such as with nails, screws, caulking, etc. Therefore, the details disclosed herein are not to be interpreted as limiting, but merely as the basis for the claims and for teaching one skilled in the art of the invention.
  • the invention relates to physical building components design assembly principle for industrialised building system. This system uses various geometrical shapes of spacer such as rectangle, square, triangular or polygon in shape for construction of flexible design form. For instance, FIGS.
  • spacers 2, 4, 6, 10) and interlocking spacer (8, 10) used in architectonic spacer building system The space can be of, but not limited to rectangular, square, triangular or polygonal in shape either as a single part or two separate interlocking parts, depending on the use of the spacer.
  • FIGS. 2(a) - 2(c) show the examples of various possible assemblies of wall panels that can be formed by different spacers (2, 4, 6, 8), whereby the spacers are used as bracing for adjoining wall panel (12).
  • FIG. 3 shows an example of grid modular floor joist assembly whereby the spacers (2, 10) are used as anchored dowel connector at upper and lower layers (14, 16) of modular floor joist assembly (18).
  • FIGS. 5(a) - 5(b) show the assembly of key roof connector for the pyramid roof (20), whereby the spacers (22, 24, 26) are used as composite key roof connector.
  • the physical building components for key roof connector includes key bracket spacers (22), key plate spacers (24) and key ties (26) as respectively shown in FIG. 6(a) - 6(d).
  • the length of the spacer should not be less then 0.1 m (100mm) with minimum thickness of at least 0.001m (1mm) to make negligible slit for the conduit of services to run in between and also to allow flexible rotation and tolerance for wall panels and roof connection.
  • the span For spacers interval based on the span, it requires minimum of two spacers for span of 1.8 m (1800 mm) centre to centre of the two spacers.
  • Spacers or anchorage dowels are used to anchor the grid type modular spacer floor joist, wall panel and key roof connector. It will also be appreciated that the spacer can be used to fill up the residual length left over by modular wall panel due to dimensional variation of the functional space.
  • the spacer also enables to attain a required cross section for structural stability in vertical and horizontal physical building components such as floor joist, wall panel, roof like truss formation, etc. Said spacer added engineering advantage to optimise the use of heavy cross section of building material used in prefabricated building construction.
  • the spacer can also served as a modular or pre-cut physical building component which can be used as a development length or a connector for making long span of building components such as beam, joist or rafter.
  • Said spacer enables to modularise the physical building components as an assembly parts for easy handling and mobilisation.
  • various shapes of the spacer such as rectangle, square, triangular or polygon whose profile can be hollowed, extruded or solid can be used in modular wall panel of predetermined size, preferably of 1.8 m x 2.7m (1800mm x 2700mm) to form "flexi-shape" of angular or radiated wall.
  • the spacer can be served as an interlocking jigsaw piece in method of playing with the modular physical building components to knit the armature of sub- and super-structure of prefabricated building structures.
  • the spacer may also tend to act as a shock absorber for any structural mechanisms of the building such as impact load, lateral movement or floor vibration of the building structure.
  • the spacer used in modular wall panel creates slit between two sectional elements while joining at corner or crisscross junction of the wall panel that allow conduit of services to be accommodated thereof.
  • spacer system By the implementation of spacer system, it enables to eliminate complex conventional joints and thus improves the efficiency and precision in constructability.
  • the spacer can be in multi dimensional shape (e.g. triangle, polygon, rectangular ⁇ and square) to form an angular and polygonal wall panel. Therefore, the degree of flexibility in form of the industrialised building system is increased.
  • the spacer system also develop principle for flexible assembly of roof, such as pyramid roof, mansard roof (double slope) and cone roof by using the composite key roof connector to hold the main rafters and it also can form longer span truss.
  • the spacer system for roof principle in the composite key roof connector can easily form a two-tier roofing and cupola on top for admitting light.
  • composite key roof connector which includes of modular hip rafter, key bracket spacers (22), key plate spacers (24) are held with four vertical key ties (26) to keep the pyramid roof (20) in intact.
  • the architectonic spacer building system provides modular assembly system that allows flexibility in design form and flexibility in the assembly of physical building components using pre-cut materials.
  • Architectonic spacer building system supports a design assembly for physical building components in a modular industrialised building system.
  • spacer is a key physical building component for assembly system to integrate the various physical building components in prefabrication and on-site installation, which is termed as architectonic.
  • the architectonic is defined as a blend of organised structure and form in which physical building component are knitted by spacer.
  • the knitting design assemble is the key invention for various physical building component such as grid modular joist, slit wall panel and composite key roof connector. It will also be appreciated that the architectonic spacer building system is complete pre made assembly of flexible design integrated industrialised building system.
  • spacer used as key accessories for various physical building components such as anchorage dowel for floor joist, development length-connector for long span beams, corner and crisscross junction wall panel, unique roof assembly system using long span truss, pyramid roof and their derivatives.
  • the spacer-designed assembly system has not used any complex conventional joints for the assembly and disassembly.
  • the use of spacer system optimises utilisation of materials (such as lumber was reduced by 25%) as compared to conventional prefabrication method such as post and beam. This spacer system lightens the weight of the building. It also claims that in the super structure, one type of cross sectional building material can be used all over, and it achieves required cross section by spacer for the structural stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Tents Or Canopies (AREA)
  • Floor Finish (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

The architectonic spacer building system is a simplified prefabrication assembly using industrialised building system concept in the construction industry. Accordingly, the architectonic spacer building system for skeleton construction which used for developing design assembly for physical building components in a modular industrialised building system (IBS), characterised in that the architectonic spacer building system includes spacer having predetermined shape for use in formulate modular form of building component; wherein the spacer is a piece of physical building assembly component to integrate with various physical building components in prefabrication. The use of the spacer system can increase the degree of flexibility in obtaining multi dimensional building forms (e.g. shape) such as rectangular, square, polygon, triangle, etc. Accordingly, the spacer can be a designed principle for flexible assembly of roof such as pyramid roof, mansard roof (double slope), cone roof by using the composite key roof connector. Said spacer is a key designed assembly system that supports flexible assembly of design-integrated industrialised building system made up of pre-assembled and standardised physical building component for sub- and super-structures. This spacer-designed assembly system completes the assembly of industrialised components. The same spacer-designed assembly system can also be used in other engineering or industrial applications such as furniture, etc.

Description

ARCHITECTONIC SPACER BUILDING SYSTEM
FIELD OF INVENTION
The present invention generally relates to a spacer building system and more particularly to an architectonic spacer building system which allows flexibility in form of design and flexibility in assembly of physical building components using pre-cut materials.
BACKGROUND OF INVENTION
Prefabricated or Industrialised Building System (IBS) component has been widely used in the housing construction sector that facilitates mass production. An IBS building uses ingredients like prefabrication, standardisation, methods of production and quality control (Gann, 1996). The engineering advantageous in using IBS in construction include elimination of waste, precision and quality control in production, optimisation of time and sustaining and protecting the environment during construction. These benefits encourage IBS as a construction technique and this factor is one of the prime factors for promoting the IBS building system around the world. Unfortunately, designers still have problem to creatively experiment with IBS components during a building project's design phase and prefabrication.
The level of standardisation and prefabrication process is considered very low (Noguchi, 2003). Despite its premature growth in the construction industry, IBS construction is a preferred construction method in developing countries. The targeted benefit of IBS implementation is its objective to minimise dependency on foreign labour in construction projects. However, IBS implementation meets the supply demand barrier. Economic volume, general readiness and social acceptability of IBS make the construction technology less appealing (Zuhairi 2008). Moreover, although the prefabrication building process puts emphasis on the mass production, repetitive design layout is blamed for causing monotonous barrack-liked complex (Thanoon 2003).
Gib (1999) identified three categories of offsite prefabrication; namely, non- volumetric, volumetric, and modular building, but he argued that the line dividing each type is flexible. When Gib's concepts are applied into prefabricated house design in term of architectural perspective, there is a miss-coordination between the spatial dimensioning of physical building element and the functional building design element therefore making it not appropriately moulded into fabrication of the house's space design. Yet Gib's system also did not address the assembly and disassembly of industrialised building systems. It is also noted that there is no timber building system existing for prefabrication since the conventional wooden construction joints have been used in the prefabrication process. Additionally, there is nil assembly of industrialised building system in the form of non-volumetric pre assembly for volumetric pre assembly and / or modular building. Schindler was reported attempting to develop new construction system for housing whereby the construction system enables to reduce construction cost, improve in building efficiency, increase speed of fabrication interchangeability of parts, reduce number of labours, provide durability and provide better design (Jon Ho Park 2004). Schindler had identified the needs of building assembly in prefabrication but his construction system was complicated that it reduced prefabrication flexibility of the designed assembly. To date, there is a lack of pre assembly system that is flexible enough to simplify the assembly in prefabricated timber building construction, especially when the assembly system is applicable only in precast concrete panel systems and more so in the less developed timber building assembly.
Historically those taking standardisation seriously have always struggled to resolve the conflict between uniformity and variation, between standardisation and flexibility (Gibb 2004). This conflict still not been solved.
In one of the prior art, it discloses a modular building system which includes a prefabricated desk system having a plurality of rectangular flooring modules. However, the system is modular form but not in the form of building component assembly. Moreover, the floor modules of this prior art are sandwiched with joist and connector.
Another prior art discloses a joint connector device and a method for assembling prefabricated building panels. This prior art invention includes an L- shaped cove channel joint connector device for joining prefabricated structural building panel and its method of assembly. However, it does not have flexibility for angular or radial walls construction.
The invention of this study focused on the design assembly for an industrialised building system in which degree of flexibility in design form can be rejuvenated. This invention stating the prefabricated building assembly is not only an engineering process. It is an amalgamation of both design cum engineering methods and mechanics.
SUMMARY OF INVENTION
The present invention relates to an architectonic spacer building system which allows flexibility in form design and flexibility in the assembly of prefabricated modular components using pre-cut building materials. Accordingly, it relates to physical building components design assembly principle for industrialised building system.
In accordance with preferred embodiments of the present invention, the architectonic spacer building system for skeleton construction which is used for developing design assembly for physical building components in a modular industrialised building system (IBS), characterised in that the architectonic spacer building system includes spacer having predetermined shape for use in formulated modular form of building component; wherein the spacer is a piece of physical building assembly component to integrate with various physical building components in prefabrication.
Accordingly, the spacer can be of rectangular, square, triangular or polygonal in shape. The spacer is preferably has a length of at least 0.1m (100mm) used to formulate modular floor joist and corner, crisscross junction, angular and radiated walls. The spacer is also preferably has a thickness of at least 0.001m (1mm).
Accordingly, the spacer is a floor joist dowel connector, composite key roof connector, a bracing of adjoining and / or intersecting wall panel. The composite key roof connector includes of modular hip rafter, key bracket spacers, key plate spacers and key ties.
It will be appreciated that the spacer is used to attain a required cross section for structural stability in vertical and horizontal physical building components such as floor joist, wall panel, and roof truss formation. Accordingly, the spacer can also be used to extend the length or a connector for making long span horizontal physical building components such as beam or joist. Moreover, the spacer can further be used in modular panel having a predetermined size to form a "flexi-shape" of angular or radiated wall. It will also be appreciated that the spacer can be served as an interlocking jigsaw piece in method of playing with the modular physical building components to knit the armature of sub- and super-structure of prefabricated building structures. The spacer also tends to act as a shock absorber for any structural mechanisms of the building such as impact load, lateral movement or floor vibration of the building structure.
Accordingly, the spacer used in modular wall panel creates slit between two sectional building materials while joining at corner or crisscross junction of the wall panel that allow conduit of services to be accommodated thereof.
Accordingly, the spacer can be in multi dimensional shape to form an angular and polygonal wall panel. The spacer can also be develop as principle for flexible assembly of roof, such as pyramid roof, mansard roof (double slope) and cone roof by using the composite key roof connector to hold the main rafters and it also can form longer span truss. Said composite key roof connector can easily form a two-tier roofing and cupola on top for admitting light. Utilisation of architectonic spacer building system would save the volume of materials used in prefabricated industrialised building system such as wood, metal, etc.
BRIEF DESCRIPTION OF DRAWINGS
The accompanied drawings constitute part of this specification and include an exemplary or preferred embodiment of the invention, which may be embodied in various forms. It should be understood, however, the disclosed preferred embodiments are merely exemplary of the invention. Each assembly form may be fastened together with a preferred method of fastening such as with nails, screws, caulking, etc. Therefore, the figures disclosed herein are not to be interpreted as limiting, but merely as the basis for the claims and for teaching one skilled in the art of the invention.
In the appended drawings:
FIGS. 1(a) - 1(e) show various geometrical shapes of spacer and interlocking spacer used in architectonic spacer building system in accordance with preferred embodiment of present invention, and the spacers may be hollowed, solid or extruded in its form;
FIGS. 2(a) - 2(c) show the examples of various assemblies of wall panels that are formed by different architectonic spacers, whereby the spacers are used as bracing for adjoining wall panel;
FIG. 3 shows an example of grid modular floor joist assembly, whereby the spacers are used as anchorage dowel connector at upper and lower layers of modular floor joist assembly; FIG. 4 shows an example of wall panel corner assembly and crisscross junction assembly, whereby the spacers are used to create a corner or wall junction assembly in a prefabrication wall panel;
FIGS. 5(a) - 5(b) show the assembly of key roof connector for the pyramid roof, whereby the spacers are used as composite key roof connector;
FIG. 6(a) - 6(d) show physical building components of key roof connector, which includes key bracket spacers, key plate spacers and key ties respectively. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
A detailed description of preferred embodiments of the invention is disclosed herein. It should be understood, however, the disclosed preferred embodiments are merely exemplary of the invention, which may be embodied in various forms. Each assembly form may be fastened together with a preferred method of fastening such as with nails, screws, caulking, etc. Therefore, the details disclosed herein are not to be interpreted as limiting, but merely as the basis for the claims and for teaching one skilled in the art of the invention. The invention relates to physical building components design assembly principle for industrialised building system. This system uses various geometrical shapes of spacer such as rectangle, square, triangular or polygon in shape for construction of flexible design form. For instance, FIGS. 1(a) - 1(e) show various possible geometrical shapes of spacer (2, 4, 6, 10) and interlocking spacer (8, 10) used in architectonic spacer building system. The space can be of, but not limited to rectangular, square, triangular or polygonal in shape either as a single part or two separate interlocking parts, depending on the use of the spacer.
It is to be noted that the spacer works as key accessories in physical building components such as bracing of adjoining wall panel (12), dowel connector (2, 10) and also composite key roof connector (22, 24, 26). FIGS. 2(a) - 2(c) show the examples of various possible assemblies of wall panels that can be formed by different spacers (2, 4, 6, 8), whereby the spacers are used as bracing for adjoining wall panel (12). FIG. 3 shows an example of grid modular floor joist assembly whereby the spacers (2, 10) are used as anchored dowel connector at upper and lower layers (14, 16) of modular floor joist assembly (18). FIG. 4 shows an example of wall panel corner assembly and crisscross junction assembly whereby the spacers (2) are used to create a corner or wall junction assembly in a prefabricated wall panel. FIGS. 5(a) - 5(b) show the assembly of key roof connector for the pyramid roof (20), whereby the spacers (22, 24, 26) are used as composite key roof connector. Accordingly, the physical building components for key roof connector includes key bracket spacers (22), key plate spacers (24) and key ties (26) as respectively shown in FIG. 6(a) - 6(d). It will be appreciated that the length of the spacer should not be less then 0.1 m (100mm) with minimum thickness of at least 0.001m (1mm) to make negligible slit for the conduit of services to run in between and also to allow flexible rotation and tolerance for wall panels and roof connection. For spacers interval based on the span, it requires minimum of two spacers for span of 1.8 m (1800 mm) centre to centre of the two spacers. Spacers or anchorage dowels are used to anchor the grid type modular spacer floor joist, wall panel and key roof connector. It will also be appreciated that the spacer can be used to fill up the residual length left over by modular wall panel due to dimensional variation of the functional space. In addition, the spacer also enables to attain a required cross section for structural stability in vertical and horizontal physical building components such as floor joist, wall panel, roof like truss formation, etc. Said spacer added engineering advantage to optimise the use of heavy cross section of building material used in prefabricated building construction.
The spacer can also served as a modular or pre-cut physical building component which can be used as a development length or a connector for making long span of building components such as beam, joist or rafter. Said spacer enables to modularise the physical building components as an assembly parts for easy handling and mobilisation. Preferably, various shapes of the spacer such as rectangle, square, triangular or polygon whose profile can be hollowed, extruded or solid can be used in modular wall panel of predetermined size, preferably of 1.8 m x 2.7m (1800mm x 2700mm) to form "flexi-shape" of angular or radiated wall. Accordingly, the spacer can be served as an interlocking jigsaw piece in method of playing with the modular physical building components to knit the armature of sub- and super-structure of prefabricated building structures. The spacer may also tend to act as a shock absorber for any structural mechanisms of the building such as impact load, lateral movement or floor vibration of the building structure. The spacer used in modular wall panel creates slit between two sectional elements while joining at corner or crisscross junction of the wall panel that allow conduit of services to be accommodated thereof.
By the implementation of spacer system, it enables to eliminate complex conventional joints and thus improves the efficiency and precision in constructability. The spacer can be in multi dimensional shape (e.g. triangle, polygon, rectangular θ and square) to form an angular and polygonal wall panel. Therefore, the degree of flexibility in form of the industrialised building system is increased. The spacer system also develop principle for flexible assembly of roof, such as pyramid roof, mansard roof (double slope) and cone roof by using the composite key roof connector to hold the main rafters and it also can form longer span truss. Moreover, the spacer system for roof principle in the composite key roof connector can easily form a two-tier roofing and cupola on top for admitting light.
To make crisscross junction, radiated walls and angular wall, various shapes of spacers and interlocking spacer can be placed in any angular degree to sides of wall panel. Accordingly, this spacer system helps to provide assembly of the wall panel that obtains appropriate right angle clear corner for mounting any type of cladding. In addition, composite key roof connector which includes of modular hip rafter, key bracket spacers (22), key plate spacers (24) are held with four vertical key ties (26) to keep the pyramid roof (20) in intact.
It will be appreciated that, the architectonic spacer building system provides modular assembly system that allows flexibility in design form and flexibility in the assembly of physical building components using pre-cut materials. Architectonic spacer building system supports a design assembly for physical building components in a modular industrialised building system. Accordingly, spacer is a key physical building component for assembly system to integrate the various physical building components in prefabrication and on-site installation, which is termed as architectonic. The architectonic is defined as a blend of organised structure and form in which physical building component are knitted by spacer. The knitting design assemble is the key invention for various physical building component such as grid modular joist, slit wall panel and composite key roof connector. It will also be appreciated that the architectonic spacer building system is complete pre made assembly of flexible design integrated industrialised building system. In this design assembly system, spacer used as key accessories for various physical building components such as anchorage dowel for floor joist, development length-connector for long span beams, corner and crisscross junction wall panel, unique roof assembly system using long span truss, pyramid roof and their derivatives. The spacer-designed assembly system has not used any complex conventional joints for the assembly and disassembly. The use of spacer system optimises utilisation of materials (such as lumber was reduced by 25%) as compared to conventional prefabrication method such as post and beam. This spacer system lightens the weight of the building. It also claims that in the super structure, one type of cross sectional building material can be used all over, and it achieves required cross section by spacer for the structural stability.
While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation and various changes may be made without departing from the scope of the invention.

Claims

1. An architectonic spacer building system for skeleton construction which used for developing designed assembly for physical building components in a modular industrialised building system (IBS), characterised in that the architectonic spacer building system includes:
i) spacer having predetermined shape for use in formulate modular form of building component;
wherein the spacer is also a piece of physical building assembly component to integrate with various physical building components in prefabrication.
2. An architectonic spacer building system according to Claim 1 , wherein the spacer is of rectangular, square, triangular or polygonal in shape.
3. An architectonic spacer building system according to Claim 1 , wherein the spacer is a solid, hollowed or extruded form in the different shape profile.
4. An architectonic spacer building system according to Claim 1 , wherein the spacer has a length of at least 0.1m (100mm) used to formulate modular floor joist, corner and crisscross junctions, angular and radiated walls.
5. An architectonic spacer building system according to Claim 1 , wherein the spacer has a thickness of at least 0 001m (1mm).
6. An architectonic spacer building system according to Claim 1 , wherein the spacer is an anchored dowel connector, composite key roof connector and/or a bracing of adjoining wall panel.
7. An architectonic spacer building system according to Claim 5, wherein the composite key roof connector includes of modular hip rafter, key bracket spacers, key plate spacers and key ties.
8. An architectonic spacer building system according to Claim 1 , wherein the spacer used to attain a required cross section for structural stability in vertical and horizontal physical building components such as floor joist, wall panel, roof truss formation, etc. An architectonic spacer building system according to Claim 1 , wherein the spacer can be used as extender of length or a connector for making long span horizontal physical building components such as beam, joist, or rafter.
An architectonic spacer building system according to Claim 1 , wherein the spacer can be used in modular wall panel having a predetermined size to form a "flexi-shape" of angular, radiated wall, or polygonal wall.
An architectonic spacer building system according to Claim 1 , wherein the spacer can be served as a jigsaw piece in method of playing with the modular physical building components to knit the armature of sub- and super- structure of prefabricated skeleton for building.
An architectonic spacer building system according to Claim 1 , wherein the spacer tends to act as a shock absorber for any loading mechanisms of the building such as impact load, lateral movement or floor vibration of the building structure.
An architectonic spacer building system according to Claim 1 , wherein the spacer used in modular wall panel creates slit between two sectional elements while joining at corner or crisscross junction of the wall panel, and within the wall panel that allow conduit of services to be accommodated thereof.
An architectonic spacer building system according to Claim 1 , wherein the spacer can be in multi dimensional shape to form an angular and polygonal wall panel assembly.
An architectonic spacer building system according to Claim 1 , wherein the spacer can also be developed principle for flexible assembly of roof, such as pyramid roof, mansard roof (double slope) and cone roof by using the composite key roof connector to hold the main rafters and it also can form longer span truss. An architectonic spacer building system according to Claim 14, wherein the composite key roof connector can easily form a two-tier roofing and cupola on top for admitting light. 17. An architectonic spacer building system according to Claim 1, wherein the system lightens the weight of the building, whereby in the super structure, one type of cross sectional elements can be used all over, and it achieves required cross section by spacer for the structural stability. 18. An architectonic spacer building system according to Claim 1 , can be extended to non-building systems such as engineering joints or extensions, furniture assembly.
PCT/MY2009/000203 2009-10-01 2009-12-04 Architectonic spacer building system WO2011040802A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP09801576A EP2483484A1 (en) 2009-10-01 2009-12-04 Architectonic spacer building system
IN2688DEN2012 IN2012DN02688A (en) 2009-10-01 2009-12-04
NZ599381A NZ599381A (en) 2009-10-01 2009-12-04 Architectonic spacer building system
JP2012532029A JP5775875B2 (en) 2009-10-01 2009-12-04 Structural system spacer construction system
CN200980161702.5A CN102639794B (en) 2009-10-01 2009-12-04 Architectonic spacer building system
AU2009353373A AU2009353373B2 (en) 2009-10-01 2009-12-04 Architectonic spacer building system
US13/436,144 US9562351B2 (en) 2009-10-01 2012-03-30 Architectonic spacer building system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MYPI20097019 2009-10-01
MYPI20097019A MY158546A (en) 2009-10-01 2009-10-01 Architectonic spacer building system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/436,144 Continuation-In-Part US9562351B2 (en) 2009-10-01 2012-03-30 Architectonic spacer building system

Publications (1)

Publication Number Publication Date
WO2011040802A1 true WO2011040802A1 (en) 2011-04-07

Family

ID=42288877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MY2009/000203 WO2011040802A1 (en) 2009-10-01 2009-12-04 Architectonic spacer building system

Country Status (9)

Country Link
US (1) US9562351B2 (en)
EP (1) EP2483484A1 (en)
JP (1) JP5775875B2 (en)
CN (1) CN102639794B (en)
AU (1) AU2009353373B2 (en)
IN (1) IN2012DN02688A (en)
MY (1) MY158546A (en)
NZ (1) NZ599381A (en)
WO (1) WO2011040802A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210141955A1 (en) * 2019-11-07 2021-05-13 Consulting Engineers, Corp. Method and system for identifying conflicts in a roof truss to wall vertical interface
CN115907446A (en) * 2022-12-24 2023-04-04 众芯汉创(北京)科技有限公司 Intelligent management and control evaluation system for construction progress of infrastructure project

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103334528B (en) * 2013-06-26 2015-07-29 杨凤杰 Multifunction structure combination roof
US10837167B2 (en) * 2016-05-25 2020-11-17 Libere NITUNGA Construction of the prefabricated column and beam type
CA3013892C (en) * 2016-11-30 2021-03-30 Iida Sangyo Co., Ltd. Building framework and method for constructing same
US11155977B2 (en) * 2017-04-27 2021-10-26 Simpson Strong-Tie Company, Inc. Portal frame with lap joint for moment resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3633325A (en) * 1970-06-01 1972-01-11 Guy A Bartoli Building structure cantilevered from vertical central support
FR2355630A1 (en) * 1976-04-28 1978-01-20 Chedeau Philippe Prefabricated wooden building structure - has composite uprights and floor units bolted to foundation and covered by similar roof
EP0063662A1 (en) * 1981-04-24 1982-11-03 Jean Martin Prefabricated unit for the realization of a construction frame
DE19705141A1 (en) * 1997-02-11 1999-08-05 Ulrich Wohlgemuth Frame structure assembled from battens with triangular tips

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3008195A (en) * 1954-09-16 1961-11-14 Contemporary Structures Inc Building frame unit
US3683569A (en) * 1970-06-09 1972-08-15 Burton J Holm Structural connections for building constructions
US4114333A (en) * 1977-04-05 1978-09-19 Jones Harold E Wall panel unit
JPH01174751A (en) * 1987-12-28 1989-07-11 Ooshika Shinko Kk Pillar or beam constitution member and connecting method
DE9214307U1 (en) * 1992-10-23 1993-03-04 Lorenzhaus Hans-Peter Lorenz, 7597 Rheinau, De
US5572841A (en) * 1995-04-10 1996-11-12 Buster; Robert W. Modular wall panel assembly
US5566523A (en) * 1995-06-20 1996-10-22 Ozanne; Leroy Wall panel construction
US5927036A (en) * 1997-06-30 1999-07-27 Perf-X-Dek, L.L.C. Floor joist system
US6145261A (en) * 1998-03-20 2000-11-14 Weyerhaeuser Company Limited Tongue and groove board including a water drainage system
JP2001090189A (en) * 1999-09-21 2001-04-03 Mitsui Wood Systems Inc Joint structure of wooden building
JP2001317127A (en) * 2000-03-01 2001-11-16 Sekisui Chem Co Ltd Connecting structure for wall panel and unit building
WO2003069083A1 (en) * 2002-02-18 2003-08-21 Timberfix Limited Construction system
JP2003301557A (en) * 2002-04-05 2003-10-24 Koichi Takahashi Long building material member, method of manufacturing long building material member, and method of manufacturing long building material
DE10218597C2 (en) * 2002-04-25 2003-07-31 Heike Wallner Automation Gmbh System, method and device for the production of a structure or framework
JP2005240385A (en) * 2004-02-25 2005-09-08 Inax Corp Wall structure
US20050284081A1 (en) * 2004-06-25 2005-12-29 Porter William H Building structure with purlin to beam connection
US7168343B2 (en) * 2005-03-09 2007-01-30 Simpson Strong-Tie Company, Inc. Limited access building connection
JP3111286U (en) * 2005-04-12 2005-07-14 康夫 福田 Damping reinforcement wall panel
US20070004251A1 (en) * 2005-07-01 2007-01-04 Borrowed Spaces, Inc. Post top connector and modular architectural garden assembly comprising same
US20110120049A1 (en) * 2008-01-08 2011-05-26 Ano Leo Prefabricated Building Components and Assembly Equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3633325A (en) * 1970-06-01 1972-01-11 Guy A Bartoli Building structure cantilevered from vertical central support
FR2355630A1 (en) * 1976-04-28 1978-01-20 Chedeau Philippe Prefabricated wooden building structure - has composite uprights and floor units bolted to foundation and covered by similar roof
EP0063662A1 (en) * 1981-04-24 1982-11-03 Jean Martin Prefabricated unit for the realization of a construction frame
DE19705141A1 (en) * 1997-02-11 1999-08-05 Ulrich Wohlgemuth Frame structure assembled from battens with triangular tips

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210141955A1 (en) * 2019-11-07 2021-05-13 Consulting Engineers, Corp. Method and system for identifying conflicts in a roof truss to wall vertical interface
US11657192B2 (en) * 2019-11-07 2023-05-23 Consulting Engineers, Corp. Method and system for identifying conflicts in a roof truss to wall vertical interface
CN115907446A (en) * 2022-12-24 2023-04-04 众芯汉创(北京)科技有限公司 Intelligent management and control evaluation system for construction progress of infrastructure project
CN115907446B (en) * 2022-12-24 2023-10-03 众芯汉创(北京)科技有限公司 Intelligent management and control evaluation system for construction progress of foundation engineering

Also Published As

Publication number Publication date
AU2009353373B2 (en) 2016-11-24
MY158546A (en) 2016-10-14
EP2483484A1 (en) 2012-08-08
CN102639794B (en) 2015-05-27
NZ599381A (en) 2015-05-29
CN102639794A (en) 2012-08-15
US20120304562A1 (en) 2012-12-06
AU2009353373A1 (en) 2012-05-03
IN2012DN02688A (en) 2015-09-04
JP5775875B2 (en) 2015-09-09
JP2013506776A (en) 2013-02-28
US9562351B2 (en) 2017-02-07

Similar Documents

Publication Publication Date Title
US9562351B2 (en) Architectonic spacer building system
JP6946350B2 (en) Multi-storey building construction method using stackable structural steel wall trusses
EP3047078B1 (en) A construction system of wooden load-bearing structures for buildings and a structure thus obtained
WO2013032349A2 (en) Monolithic- precast housing construction system
CN101086186A (en) Modular dwelling design and manufacture and fabrication method
WO2010128956A2 (en) Innovation in building construction technology with pre-fabricated elements
EP4206412A1 (en) Self-supporting structural panels and respective system of self-supporting structural panels
CN110965635B (en) Supporting structure and layering industrialization building of building
JP2012031677A (en) Wall repair structure
RU101464U1 (en) TRIMMING BEAM (OPTIONS) AND FRAME BUILDING ASSEMBLY (OPTIONS)
JP5926840B2 (en) Wall renovation method
JPH0925667A (en) Building frame structure
CN217517797U (en) Fully-assembled multi-layer bent frame building
JP2005207217A (en) Steel house
Carsten Hein Developing hybrid timber construction for sustainable tall buildings
JP5762188B2 (en) Simple building structure
JP2011144509A (en) Structure for joining building structural members together
US20200002934A1 (en) Super shear panels
Palomäki et al. How to construct a portable building?
CN112779991A (en) Prefabricated light steel wallboard assembled house
EP2295657A1 (en) Modular building system
D’aponte et al. Bringing Fabric Forming to the Market with Composite Structures in North America
WO2010097819A1 (en) Prefabricated dwelling structure and method of construction of said structure
KOVÁĆ INFLUENCE OF ARCHITECTURE ON WOODEN HORIZONTAL CONSTRUCTION ISLUTATED BY STRAW BALES
Lee et al. An analysis of CO2 reduction effect of the composite precast concrete structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161702.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09801576

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012532029

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2688/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009801576

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009353373

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12012500858

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2009353373

Country of ref document: AU

Date of ref document: 20091204

Kind code of ref document: A