WO2011040598A1 - Transmitter apparatus, receiver apparatus, communication system and transmission method - Google Patents

Transmitter apparatus, receiver apparatus, communication system and transmission method Download PDF

Info

Publication number
WO2011040598A1
WO2011040598A1 PCT/JP2010/067251 JP2010067251W WO2011040598A1 WO 2011040598 A1 WO2011040598 A1 WO 2011040598A1 JP 2010067251 W JP2010067251 W JP 2010067251W WO 2011040598 A1 WO2011040598 A1 WO 2011040598A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
amplifier
information
unit
allowable maximum
Prior art date
Application number
PCT/JP2010/067251
Other languages
French (fr)
Japanese (ja)
Inventor
理 中村
泰弘 浜口
昇平 山田
一成 横枕
淳悟 後藤
宏樹 高橋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011040598A1 publication Critical patent/WO2011040598A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the present invention relates to a wireless communication system that performs transmission power control efficiently while performing wireless communication using one or more carrier components.
  • the LTE (Long Term Evolution) system which is a wireless communication system for 3.9th generation mobile phones, can communicate using a maximum bandwidth of 20 MHz.
  • OFDM Orthogonal Frequency Division Multiplexing
  • PA Power Amplifier
  • transmission power control Transmit Power Control, TPC
  • TPC Transmission Power Control
  • PUSCH is an abbreviation for Physical Uplink Shared Channel, and indicates a physical channel that transmits uplink data.
  • P push (i) indicates a transmission power value in the i-th frame. min ⁇ X, Y ⁇ is a function for selecting the minimum value of X and Y.
  • P o_push (j) is a transmission power that is the basis of PUSCH, and j is a variable that represents a transmission mode, and is a value specified by an upper layer.
  • M push (i) indicates the number of resource blocks (RB: a unit by which a terminal accesses the base station) used for data channel transmission, and indicates that the transmission power increases as the number of RBs used increases. ing.
  • PL indicates a path loss
  • ⁇ (j) is a coefficient by which the path loss is multiplied, and is specified by an upper layer.
  • ⁇ TF (i) is an offset value based on a modulation scheme or the like
  • f (i) is an offset value (transmission power control value based on a closed loop) calculated by a control signal from the base station.
  • PCMAX is an allowable maximum transmission power value, which may be a physical maximum transmission power or may be specified from an upper layer.
  • PH power headroom
  • the PH is rounded to a value of ⁇ 23 dB to 40 dB in 1 dB increments, notified from the physical layer to the upper layer, and transmitted to the base station.
  • a positive PH indicates that there is a margin in the terminal PA (Power Amplifier), and a negative PH indicates that the terminal is requesting transmission power exceeding the maximum allowable transmission power from the base station.
  • the base station determines the bandwidth used by the terminal, the modulation method, and the like based on the PH.
  • LTE-A LTE-Advanced
  • SC-FDMA Clustered DFT-S-OFDM (Discrete-Fourier-Transform-Spread-Orthogonal-Frequency-Division-Multiplexing) that allows discrete arrangement of RBs.
  • LTE-A can perform communication using a maximum frequency band of 100 MHz while maintaining backward compatibility with LTE. Therefore, in LTE-A, up to five 20 MHz LTE systems are arranged on the frequency axis to support a frequency band of up to 100 MHz.
  • Each 20 MHz band is referred to as a carrier component (CC), and an LTE-A terminal using a frequency band of 20 MHz or more performs communication using a plurality (up to 5) CCs, and an LTE terminal includes a plurality of Communication is performed using one of the CCs. Furthermore, it is conceivable that transmission power control is performed independently for each CC. Note that communication using a plurality of CCs is referred to as carrier aggregation (Carrier-Aggregation, CA).
  • CA carrier aggregation
  • TPC may be performed for each CC, and PH may be notified to the base station for each CC.
  • the terminal when considering transmission signals of a plurality of CCs with one PA, if the terminal performs TPC for each CC and notifies PH to the base station, the PH value differs for each CC. This becomes a problem when the base station determines the bandwidth to be used, the modulation method, and the like. For example, when transmitting three or more CCs by two PAs, the base station needs to be able to recognize which CC is transmitted using the same PA.
  • An object of the present invention is to provide a transmission device, a reception device, a communication system, and a transmission method capable of performing highly efficient communication.
  • the transmission apparatus of the present invention is a transmission apparatus that transmits information using a plurality of carrier components, and calculates a smaller number of amplifiers than the number of carrier components and desired transmission power in each of the carrier components.
  • a required transmission power calculation unit, an allowable maximum transmission power setting unit that sets an allowable maximum transmission power, and a PH calculation unit that calculates a PH (Power Headroom) between the allowable maximum transmission power and the required transmission power is characterized by.
  • the transmission device calculates the desired transmission power in each carrier component, sets the allowable maximum transmission power, and calculates the PH (PowerroomHeadroom) between the allowable maximum transmission power and the required transmission power.
  • PH PowerroomHeadroom
  • a mismatch between actual transmission power and PH does not occur, and when the transmission apparatus performs transmission, power exceeding the performance of the PA is input, and distortion does not occur in the transmission signal. Further, it is possible to perform transmission in consideration of actual transmission power while maintaining compatibility with LTE.
  • the allowable maximum transmission power setting unit uniformly sets the allowable maximum transmission power in each carrier component according to the number of carrier components to be used.
  • the transmission apparatus uniformly sets the maximum allowable transmission power in each carrier component according to the number of carrier components to be used, the total transmission power required for all carrier components can be calculated with a relatively simple calculation method.
  • the carrier component allowable maximum transmission power can be set so as to be always below the allowable maximum transmission power.
  • the allowable maximum transmission power setting unit sets the allowable maximum transmission power for each carrier component according to QoS (QualityQualOf Service) of each carrier component.
  • the allowable maximum transmission power is set for each carrier component according to the QoS (Quality Of Service) of each carrier component, the desired communication quality can be satisfied even when the QoS of data handled by the carrier component differs.
  • the PH calculation unit further includes a required transmission power total unit that outputs the required transmission power total value by summing the required transmission power values output by the required transmission power calculation unit. Calculates the PH of the allowable maximum transmission power and the total required transmission power.
  • the transmission apparatus calculates the PH of the allowable maximum transmission power and the total required transmission power, even if the required transmission power is biased in each CC while maintaining compatibility with LTE, PA It is possible to perform communication using the performance of.
  • the transmission apparatus of the present invention is further characterized by further comprising an amplifier information adding unit for adding amplifier information for identifying the amplifier to information output from the PH calculating unit.
  • the transmitter apparatus adds amplifier information for identifying the amplifier to the PH information, so that the receiver apparatus can identify which CC is transmitted by the same PA while maintaining compatibility with LTE. become.
  • the TPC command notified from the receiving apparatus to the transmitting apparatus can be determined in consideration of the use of the same PA, so that efficient TPC is possible.
  • the PH calculation unit outputs 6-bit information indicating PH
  • the amplifier information addition unit adds the 6-bit information output from the PH calculation unit to the 6-bit information. Two-bit information for identifying an amplifier is added.
  • the transmission apparatus adds 2-bit information for identifying the amplifier to the 6-bit information about PH, PH can be maintained at 1 byte (8 bits). As a result, PA information can be added without increasing control information while maintaining compatibility with LTE.
  • the transmitting apparatus of the present invention is further characterized by further comprising a used amplifier determining unit that determines an amplifier to be used according to a propagation path state.
  • the transmission apparatus determines the amplifier to be used according to the propagation path state, it can adaptively cope with the case where the propagation state fluctuates over time.
  • the receiving device of the present invention receives the amplifier information from the transmitting device according to any one of (5) to (7), and the carrier components are transmitted based on the amplifier information. An amplifier is identified.
  • the receiving apparatus since the receiving apparatus identifies the amplifier to which each carrier component is transmitted based on the amplifier information, the receiving apparatus can determine which CC is transmitted by the same PA while maintaining compatibility with LTE. Can be identified. As a result, the receiving apparatus can determine the TPC command to be notified to the transmitting apparatus in consideration of the use of the same PA, thereby enabling efficient TPC.
  • the communication system of the present invention is a communication system including a transmission device that transmits information using a plurality of carrier components and a reception device that receives information transmitted from the transmission device,
  • the transmission device includes a smaller number of amplifiers than the number of carrier components, a required transmission power calculation unit that calculates desired transmission power in each carrier component, an allowable maximum transmission power setting unit that sets an allowable maximum transmission power, A PH calculation unit for calculating a PH (Power Headroom) between the allowable maximum transmission power and the required transmission power; an amplifier information addition unit for adding amplifier information for identifying the amplifier to information output from the PH calculation unit;
  • the receiving device receives the amplifier information from the transmitting device, and based on the amplifier information, Turbocharger rear component is characterized to identify the transmitted amplifier.
  • the transmitter apparatus adds amplifier information for identifying the amplifier to the information on PH
  • the receiver apparatus can identify which CC is transmitted by the same PA while maintaining compatibility with LTE. become.
  • the TPC command notified from the receiving apparatus to the transmitting apparatus can be determined in consideration of the use of the same PA, so that efficient TPC is possible.
  • the transmission method of the present invention is a transmission method of a transmission apparatus that has a smaller number of amplifiers than the number of carrier components and transmits information using a plurality of carrier components, and is a desired method in each of the carrier components.
  • a step of uniformly setting an allowable maximum transmission power in each of the carrier components in accordance with the number of carrier components to be used, and a PH of the allowable maximum transmission power and the required transmission power And calculating at least (Power Headroom).
  • the transmission apparatus uniformly sets the maximum allowable transmission power in each carrier component according to the number of carrier components to be used, and calculates the PH (PowerroomHeadroom) between the maximum allowable transmission power and the required transmission power.
  • the carrier component allowable maximum transmission power can be set by a relatively simple calculation method so that the total transmission power required for all carrier components is always lower than the allowable maximum transmission power.
  • an LTE-A terminal that performs CA has a smaller number of PAs than the number of CCs to be used, it is possible to perform highly efficient communication while maintaining compatibility with LTE.
  • FIG. 10 is a diagram showing which PA is used to transmit each CC at time t + T with respect to the fourth embodiment of the present invention (the required transmission power of CC # 3 increases and the most required transmission among three CCs) If power is high).
  • a single power amplifier PA: Power Amplifier
  • PA Power Amplifier
  • CCs abbreviation of Carrier Component, which will be described as five CCs in this embodiment
  • the PH notification method will be described.
  • FIG. 1 is a block diagram showing a mobile terminal configuration according to the first embodiment of the present invention.
  • control information such as a modulation scheme, coding rate, used RB information, and TPC command used for uplink communication is transmitted from a base station to a terminal using a PDCCH that is a downlink physical channel.
  • the receiving antenna unit 101 inputs the received PDCCH to the CC # 1 PDCCH receiving unit 103-1 to CC # 5 PDCCH receiving unit 103-5.
  • Each PDCCH receiving unit 103 inputs control information necessary for calculating the required transmission power to the required transmission power calculating unit 105 corresponding to each PDCCH receiving unit 103.
  • each required transmission power calculation section 105 the modulation scheme, the used bandwidth, the transmission scheme (SC-FDMA or Clustered DFT-S-OFDM), the TPC command, and the terminal, which are transmitted by PDCCH, are estimated from the downlink received power.
  • a transmission power P req for satisfying a predetermined communication quality in the base station is calculated based on the equation (1) by the path loss PL, the coefficient ⁇ multiplied by the path loss notified from the higher layer, and the like.
  • Preq output from each required transmission power calculation unit 105 is input to each PH calculation unit 107.
  • PH is calculated by equation (2).
  • the allowable maximum transmission power P CMAX is notified from the CC allowable maximum transmission power setting unit (allowable maximum transmission power setting unit) 109.
  • the CC allowable maximum transmission power setting unit allowable maximum transmission power setting unit
  • FIG. 2A is a diagram showing a relationship between transmission power and allowable maximum transmission power PCMAX in each CC.
  • the allowable maximum transmission power P CMAX when only one CC such as LTE is used is applied to a case where a plurality of CCs are used as they are, the transmission power becomes P CMAX in each CC.
  • TPC may be performed.
  • power exceeding the linear region of the PA is input to the PA, and the transmission signal is distorted, and interference with other cells is increased.
  • the used CC number notifying unit 111 in FIG. 1 notifies the CC allowable maximum transmission power setting unit 109 of the number of CCs supported by the PA, and the CC allowable maximum transmission power setting unit 109 calculates the expression (3). Based on this, the allowable maximum transmission power PCC for each CC is determined.
  • PCMAX is an allowable maximum transmission power value of all CCs in each terminal, and may be a physical maximum transmission power or may be designated from an upper layer.
  • X is a value determined by the number of used CCs notified from the used CC number notifying unit 111, and for example, the numerical values described in Table 1 are used.
  • FIG. 2B is a diagram illustrating a relationship between the transmission power in each CC and the corrected allowable maximum transmission power P CMAX in the first embodiment of the present invention.
  • the PH calculation unit 107 calculates PH (i) of the i-th frame based on the equation (4) using the allowable maximum transmission power P cc and the required transmission power P req for each CC input.
  • FIG. 3 is a flowchart showing a PH calculation method of the transmission apparatus according to the first embodiment of the present invention.
  • the desired transmission power in each component carrier is calculated (step S101).
  • the CC allowable maximum transmission power is uniformly set in each carrier component according to the number of carrier components to be used (step S102).
  • the PH of the CC allowable maximum transmission power and the required transmission power is calculated (step S103).
  • the mobile terminal transmits a PH report on the component carrier corresponding to the calculated PH report, and the base station identifies the component carrier corresponding to the PH report from the component carrier on which the PH report is transmitted. You may make it do.
  • the mobile terminal transmits a PH report including information indicating the component carrier to which the calculated PH report corresponds in the PH report, and the base station uses the information indicating the component carrier included in the PH report.
  • the PH report may identify the corresponding component carrier.
  • the mobile terminal transmits a PH report including PH reports of all component carriers to be calculated, and the base station acquires a PH report of each component carrier included in the PH report. May be.
  • the base station determines the allowable maximum transmission power for each CC in consideration of X (that is, P CC )
  • P CC the allowable maximum transmission power for each CC in consideration of X
  • a uniform correction value is given according to the CC to be used, it is not necessarily required to be uniform.
  • the frequency gain of the antenna is generally not constant, the required communication quality can be maintained at a high antenna gain frequency (CC) even if a large correction value X is given.
  • QoS quality of service
  • the desired communication quality can be satisfied by giving a small correction value X.
  • the correction value X is not constant for each CC, but may be a fixed value that differs for each CC or may be changed according to QoS.
  • each PH calculation unit 107 is input to CC # 1 PUSCH transmission unit 113-1 to CC # 5 PUSCH transmission unit 113-5, respectively.
  • the input PH is transmitted from the physical layer to the upper layer, and then transmitted to the base station using a PUSCH (Physical-Uplink-Shared-CHannel) that is a physical channel for transmitting uplink data.
  • the output (time signal) of each PUSCH transmission unit 113 is input to the synthesis unit 115, and synthesis (addition) is performed.
  • the processing of the combining unit 115 may be after D / A conversion or before.
  • the output of combining section 115 is transmitted from transmitting antenna section 117 to the base station. In this specification, it is assumed that the synthesis unit 115 includes an amplifier.
  • the base station can determine the number of RBs used in each CC of each terminal, the modulation scheme, and the transmission scheme (SC-FDMA or Clustered DFT-S-OFDM).
  • the PH calculation unit 107 of each CC of the terminal corrects the allowable maximum transmission power according to the number of CCs used in the uplink and the QoS of data handled in each CC. Therefore, transmission can be performed in consideration of actual transmission power while maintaining compatibility with LTE.
  • the terminal recognizes the number of CCs used in the uplink and determines the allowable maximum transmission power for each CC, thereby maintaining compatibility with LTE.
  • constant correction is applied to all CCs, there is a case where transmission power control is wasted. Therefore, in the present embodiment, a method for calculating PH in consideration of power actually used in each CC will be described.
  • FIG. 4 is a block diagram showing a mobile terminal configuration according to the second embodiment of the present invention.
  • the receiving antenna unit 101 inputs the received PDCCH signal to the CC # 1 PDCCH receiving unit 103-1 to CC # 5 PDCCH receiving unit 103-5.
  • Each PDCCH receiving unit 103 inputs control information necessary for calculating the required transmission power to each required transmission power calculating unit 105.
  • Each required transmission power calculation unit 105 calculates the required transmission power in each CC based on the input control information and notifies the required transmission power total unit 201.
  • the required transmission power total unit 201 performs a process of calculating the total power value P req input from each required transmission power calculation unit 105. If the required transmission power of the kth CC is P k (dBm), the total power P req (dBm) is expressed by equation (5).
  • the calculated required transmission power P req is input to the PH calculation unit 203.
  • the PH calculation unit 203 subtracts the input required transmission power P req from the allowable maximum transmission power P CMAX input from the allowable maximum transmission power setting unit 205 to calculate PH.
  • the obtained PH is input as a common value to CC # 1 PUSCH transmission section 113-1 to CC # 5 PUSCH transmission section 113-5.
  • Each PUSCH transmission unit 113 transmits the input PH from the physical layer to the upper layer, and then transmits the PH to the base station using the PUSCH.
  • the output (time signal) of each PUSCH transmission unit 113 is input to the synthesis unit 115, and synthesis (addition) is performed.
  • the processing of the combining unit 115 may be after D / A conversion or before.
  • the output of combining section 115 is transmitted from transmitting antenna section 117 to the base station.
  • the base station can determine the number of RBs used in each CC of each terminal, the modulation scheme, and the transmission scheme (SC-FDMA or Clustered DFT-S-OFDM).
  • a PH calculation unit 203 that sums the required transmission power of CCs to be used and subtracts it from the allowable maximum transmission power.
  • FIG. 5 is a block diagram showing a mobile terminal configuration according to the third embodiment of the present invention.
  • the receiving antenna unit 101 inputs the received PDCCH signal to the CC # 1 PDCCH receiving unit 103-1 to CC # 5 PDCCH receiving unit 103-5.
  • Each PDCCH receiving unit 103 inputs control information necessary for calculating the required transmission power to each required transmission power calculating unit 105.
  • Each required transmission power calculation unit 105 inputs the required transmission power in each CC to the PH calculation unit 301 based on the input control information.
  • FIG. 5 shows an example in which CC # 1 to # 3 use the first PA, and CC # 4 and # 5 use the second PA.
  • the outputs of CC # 1 required transmission power calculation unit 105-1 to CC # 3 required transmission power calculation unit 105-3 are input to PH calculation unit 301-1 of the first PA, and CC # 4 required transmission power calculation unit.
  • the outputs of 105-4 and CC # 5 required transmission power calculation section 105-5 are input to PH calculation section 301-2 of the second PA.
  • Each PH calculation unit 301 calculates PH according to the calculation method of the first embodiment or the calculation method of the second embodiment according to the required transmission power input from each required transmission power calculation unit 105. Since the PH value in LTE is rounded to the nearest value of ⁇ 23 to 40 dB in 1 dB steps, it becomes a 6-bit sequence.
  • the obtained PHs are respectively input to the first PA information adding unit (amplifier information adding unit) 303-1 and the second PA information adding unit 303-2.
  • PA information information indicating which PA is used to transmit the input PH.
  • LTE-A performs communication using a maximum of five CCs, considering that there are five PAs, it is necessary to add 3-bit control information to notify the PA information (5 ⁇ 2 3 ). If new control information is defined, there is a problem that compatibility with LTE is lost. Therefore, it is desired to add PA information while maintaining compatibility with LTE.
  • PH in LTE is -23 to 40 dB in 1 dB increments and is 64 values, so it is composed of 6 bits. However, since PH is defined by 1 byte (8 bits), the upper 2 bits of 1 byte including the PH of LTE are not used in LTE and are fixed to “00”.
  • Example 1 is a case where CC # 1 to CC # 3 are transmitted by the first PA and CC # 4 and CC # 5 are transmitted by the second PA as shown in FIG. In the section 303-1, "11” is added as the upper 2 bits, and "01” is added as the upper 2 bits in the second PA information adding section 303-2.
  • the base station receives the PH at each CC and checks the upper 2 bits to confirm that CC # 1 to CC # 3 are transmitted using the same PA, and that CC # 4 and CC # 5 have the same PA. Can be used to identify being transmitted.
  • the upper 2 bits of CC # 4 and CC # 5 may be “10”.
  • Example 2 when CC # 4 and CC # 5 are each transmitted by one PA as in Example 2, the upper 2 bits of each PH are “00”, and the base station has CC # 4 and CC # 5 respectively. It can be identified as being transmitted by a different PA. Also, when there are two PAs supporting two CCs as in Example 3 (in Example 3, the first PA and the third PA), the first PA information adding unit 303-1 sets “01”. In addition, the third PA information adding unit 303-3 adds “10” and transmits it. The base station checks the upper 2 bits of PH in each CC, so that CC # 1 and CC # 2 are transmitted using the same PA, and CC # 4 and CC # 5 are transmitted using the same PA. Can be identified. Furthermore, “11” is also added in a PA that supports 4CC or 5CC signals as in Example 4. Moreover, CC transmitted by the same PA like Example 5 does not necessarily need to be CC adjacent on a frequency axis.
  • 1-bit (8-bit) PH is configured by adding 2 bits as PA information to the 6-bit PH output from the PH calculation unit 301 as described above.
  • PA information can be added without increasing control information while maintaining compatibility with LTE.
  • the PH output from the first PA information adding unit 303-1 and the second PA information adding unit 303-2 is input to each PUSCH transmission unit 113.
  • FIG. 5 shows an example in which CCs # 1 to # 3 use the first PA and CCs # 4 and # 5 use the second PA, so the first PA information adding unit 303-1 outputs
  • the PH to be input is input to the CC # 1 PUSCH transmission unit 113-1 to CC # 3 PUSCH transmission unit 113-3
  • the PH output from the second PA information addition unit 303-2 is the CC # 4 PUSCH transmission unit 113-4, And CC # 5 PUSCH transmission section 113-5.
  • each PUSCH transmission unit 113 the input PH is transmitted from the physical layer to the upper layer, and then transmitted to the base station using a PUSCH (Physical-Uplink-Shared-CHannel) that is a physical channel for transmitting uplink data.
  • the output (time signal) of each PUSCH transmission unit 113 is input to the synthesis unit 115, and synthesis (addition) is performed.
  • the processing of the combining unit 115 may be after D / A conversion or before.
  • the output of combining section 115 is transmitted from transmitting antenna section 117 to the base station.
  • the unused upper 2 bits are used for the PA information, so that the base station can maintain compatibility with LTE. It becomes possible to identify which CC is transmitted by the same PA. As a result, the TPC command notified to the terminal by the base station can be determined in consideration of the fact that the same PA is used, so that efficient TPC is possible.
  • FIG. 6 is a block diagram showing a mobile terminal configuration according to the fourth embodiment of the present invention.
  • the receiving antenna unit 101 inputs the received PDCCH signal to the CC # 1 PDCCH receiving unit 103-1 to CC # 5 PDCCH receiving unit 103-5.
  • Each PDCCH receiving unit 103 inputs control information necessary for calculating the required transmission power to each required transmission power calculating unit 105.
  • Each required transmission power calculation unit 105 inputs the required transmission power in each CC to the used PA determination unit (used amplifier determination unit) 401 based on the input control information.
  • the process of the used PA determination unit 401 will be described. Which CC is transmitted by which PA should be determined in consideration of the required transmission power.
  • FIG. 7A is a diagram showing which PA each CC is transmitted at time t with respect to the fourth embodiment of the present invention (when the number of CCs is 3 and the number of PAs is 2).
  • the height of the spectrum indicates that the required transmission power is high.
  • CC # 1 has the highest required transmission power and CC # 3 has the lowest required transmission power.
  • CC # 2 and CC # 3 are transmitted by the same PA, and CC # 1 is transmitted from one PA. Is efficient. Therefore, the used PA determination unit 401 determines the combination of CCs supported by the PA so that the difference in the total transmission power supported by one PA is minimized among the PAs from the required transmission power of each CC.
  • FIG. 7B is a diagram showing which PA each CC is transmitted at time t + T with respect to the fourth embodiment of the present invention (required transmission power of CC # 3 increases, and among the three CCs). The highest required transmit power). In this case, it is very inefficient to transmit CC # 3 having the highest required transmission power and another CC from the same PA.
  • the used PA determination unit 401 adaptively changes the combination of CCs supported by one PA depending on the state of the propagation path. As a result, the PA information adding unit 303 changes the upper 2 bits according to the changed usage status of the PA. In this embodiment, it is assumed that there is no performance difference between PAs, but it is also possible to determine CCs supported by one PA in consideration of PA performance differences.
  • the CC supported by the PA in consideration of the required transmission power of each CC, it is possible to avoid the transmission power limitation by the PA as much as possible. It becomes difficult to receive power limitation, and TPC operates effectively. As a result, efficient transmission with reduced power consumption at the terminal becomes possible. Further, when the required transmission power varies, the combination of CCs supported by the PA is changed at the timing when the PH is notified to the base station, so that even when the propagation state varies with time, it can be adaptively handled.

Abstract

Even when a terminal, which is to perform CA, transmits a transport signal having a plurality of CCs by use of PAs the number of which is smaller than that of those CCs, a high-efficiency communication can be achieved with the compatibility with LTE being maintained. A transmitter apparatus, which uses a plurality of carrier components to transmit information, comprises: a combining unit (115) including amplifiers the number of which is smaller than that of carrier components; required transmission power calculating units (105-1 to 105-5) each for calculating a desired transmission power for a respective one of the carrier components; a maximum permissible transmission power setting unit (109) for setting the maximum permissible transmission power; and PH calculating units (107-1 to 107-5) each for calculating a PH (Power Headroom) between the maximum permissible transmission power and the respective required transmission power.

Description

送信装置、受信装置、通信システムおよび送信方法Transmission device, reception device, communication system, and transmission method
 本発明は、1つ以上のキャリアコンポーネントを用いて無線通信を行ないつつ、効率的に送信電力制御をする無線通信システムに関する。 The present invention relates to a wireless communication system that performs transmission power control efficiently while performing wireless communication using one or more carrier components.
 第3.9世代の携帯電話の無線通信システムであるLTE(Long Term Evolution)システムでは、最大20MHzの帯域を利用して通信を行なうことが可能である。 The LTE (Long Term Evolution) system, which is a wireless communication system for 3.9th generation mobile phones, can communicate using a maximum bandwidth of 20 MHz.
 伝送方式としては、OFDM(直交周波数分割多重、Orthogonal Frequency Division Multiplexing)が採用されている。OFDMは、PAPR(Peak-to-Average Power Ratio:ピーク電力対平均電力比)の高い通信方式であり、送信機にA級電力増幅器(Power Amplifier、PA)が必要となるが、基地局は送信機の規模をそれほど考慮する必要がないため、LTEの下りリンクにおいて採用が決まっている。一方、LTEの上りリンク(端末から基地局への通信)では、端末のコストや規模が重要であるため、PAPRが低く、周波数スケジューリングによるマルチユーザダイバーシチ効果が得られるSC-FDMA(Single Carrier Frequency Division Multiple Access)が採用されている。 As the transmission method, OFDM (Orthogonal Frequency Division Multiplexing) is adopted. OFDM is a communication system with a high PAPR (Peak-to-Average Power Ratio), and a transmitter requires a class A power amplifier (Power Amplifier, PA), but the base station transmits it. Since it is not necessary to consider the scale of the machine so much, the adoption is decided in the downlink of LTE. On the other hand, in LTE uplink (communication from a terminal to a base station), since the cost and scale of the terminal are important, the PAPR is low, and a multi-user diversity effect by frequency scheduling can be obtained. SC-FDMA (Single-Carrier-Frequency-Division) Multiple Access) is adopted.
 また上りリンクでは、端末の消費電力を抑えることや、他セルへの与干渉を低減することを目的として、送信電力制御(Transmit Power Control、TPC)を行なう。非特許文献1に規定される上りリンクのデータ通信に使用される送信電力値を決定するために用いられる式を示す。 Also, in the uplink, transmission power control (Transmit Power Control, TPC) is performed for the purpose of suppressing power consumption of the terminal and reducing interference with other cells. The formula used in order to determine the transmission power value used for the uplink data communication prescribed | regulated to a nonpatent literature 1 is shown.
Figure JPOXMLDOC01-appb-M000001
 (1)式において、PUSCHとはPhysical Uplink Shared CHannelの略であり、上りリンクのデータを送信する物理チャネルを示す。Ppusch(i)は、第iフレームにおける送信電力値を示す。min{X,Y}はX、Yのうち最小値を選択するための関数である。Po_pusch(j)は、PUSCHの基本となる送信電力、jは伝送モードを表す変数であり、上位層から指定される値である。Mpusch(i)はデータチャネルの送信に使用されるリソースブロック(RB:端末が基地局にアクセスする単位)数を示し、使用されるRB数が多くなるに従って、送信電力が大きくなることを示している。また、PLはパスロスを示し、α(j)はパスロスに乗算する係数であり、上位層により指定される。ΔTF(i)は変調方式等によるオフセット値であり、f(i)は基地局から制御信号で算出されるオフセット値(閉ループによる送信電力制御値)である。また、PCMAXは許容最大送信電力値であり、物理的な最大送信電力である場合や、上位層から指定される場合がある。
Figure JPOXMLDOC01-appb-M000001
In Equation (1), PUSCH is an abbreviation for Physical Uplink Shared Channel, and indicates a physical channel that transmits uplink data. P push (i) indicates a transmission power value in the i-th frame. min {X, Y} is a function for selecting the minimum value of X and Y. P o_push (j) is a transmission power that is the basis of PUSCH, and j is a variable that represents a transmission mode, and is a value specified by an upper layer. M push (i) indicates the number of resource blocks (RB: a unit by which a terminal accesses the base station) used for data channel transmission, and indicates that the transmission power increases as the number of RBs used increases. ing. Further, PL indicates a path loss, and α (j) is a coefficient by which the path loss is multiplied, and is specified by an upper layer. Δ TF (i) is an offset value based on a modulation scheme or the like, and f (i) is an offset value (transmission power control value based on a closed loop) calculated by a control signal from the base station. Further, PCMAX is an allowable maximum transmission power value, which may be a physical maximum transmission power or may be specified from an upper layer.
 また、端末が許容最大送信電力PCMAXに対してどの程度の余裕を持って送信を行なっているかを基地局が認識するために、端末はパワーヘッドルーム(Power Headroom、PH)と呼ばれる、端末の許容最大送信電力から所要送信電力を減算した値を、端末は基地局に通知するシステムになっている。PHは非特許文献1において(2)式で定義される。 In addition, in order for the base station to recognize how much margin the terminal is transmitting with respect to the allowable maximum transmission power P CMAX , the terminal is called a power headroom (PH). The terminal notifies the base station of a value obtained by subtracting the required transmission power from the maximum allowable transmission power. PH is defined by the formula (2) in Non-Patent Document 1.
Figure JPOXMLDOC01-appb-M000002
 PHは1dB刻みの-23dB~40dBの値に丸め込まれ、物理層から上位層へ通知され、基地局に送信される。PHが正ということは、端末のPA(Power Amplifier)に余裕があることを示し、PHが負ということは、端末が許容最大送信電力を超える送信電力を基地局から要求されているが、端末は許容最大送信電力で送信している状態を示している。基地局はPHによって、端末が使用する帯域幅や、変調方式等を決定する。
Figure JPOXMLDOC01-appb-M000002
The PH is rounded to a value of −23 dB to 40 dB in 1 dB increments, notified from the physical layer to the upper layer, and transmitted to the base station. A positive PH indicates that there is a margin in the terminal PA (Power Amplifier), and a negative PH indicates that the terminal is requesting transmission power exceeding the maximum allowable transmission power from the base station. Indicates a state in which transmission is performed with an allowable maximum transmission power. The base station determines the bandwidth used by the terminal, the modulation method, and the like based on the PH.
 さらに近年、LTEシステムを発展させたLTE-Advanced(LTE-A)システムの標準化が開始されている。LTE-Aでは、SC-FDMAに加えて、RBの離散配置を許容するClustered DFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing)の採用も決まっている。またLTE-Aでは、LTEとの後方互換性を保ちつつ、最大100MHzの周波数帯域を用いて通信を行なうことが可能となる。そのためLTE-Aでは、20MHzのLTEシステムを最大5つ周波数軸に並べて最大100MHzの周波数帯域をサポートすることになっている。各20MHz帯域は、キャリアコンポーネント(Carrier component、CC)と呼ばれ、20MHz以上の周波数帯域を用いるLTE-A端末は、複数(最大5つ)のCCを用いて通信を行ない、LTE端末は複数のCCのうち、1つを用いて通信を行なうことになる。さらに、送信電力制御はCC毎に独立して行なわれることが考えられる。なお、複数のCCを用いて通信を行なうことをキャリアアグリゲーション(Carrier Aggregation、CA)と呼ぶ。CAを行なう際、CC毎にPAを持つ場合、CC毎にTPCを行なえばよく、CC毎にPHを基地局に通知すればよいため、問題は生じない。 In recent years, standardization of the LTE-Advanced (LTE-A) system, which has been developed from the LTE system, has started. In LTE-A, in addition to SC-FDMA, the adoption of Clustered DFT-S-OFDM (Discrete-Fourier-Transform-Spread-Orthogonal-Frequency-Division-Multiplexing) that allows discrete arrangement of RBs is also decided. In addition, LTE-A can perform communication using a maximum frequency band of 100 MHz while maintaining backward compatibility with LTE. Therefore, in LTE-A, up to five 20 MHz LTE systems are arranged on the frequency axis to support a frequency band of up to 100 MHz. Each 20 MHz band is referred to as a carrier component (CC), and an LTE-A terminal using a frequency band of 20 MHz or more performs communication using a plurality (up to 5) CCs, and an LTE terminal includes a plurality of Communication is performed using one of the CCs. Furthermore, it is conceivable that transmission power control is performed independently for each CC. Note that communication using a plurality of CCs is referred to as carrier aggregation (Carrier-Aggregation, CA). When performing CA, if there is a PA for each CC, TPC may be performed for each CC, and PH may be notified to the base station for each CC.
 しかしながら、複数のCCの送信信号を一つのPAで送信することを考えた場合、端末がCC毎にTPCを行ない、PHを基地局に通知すると、各CCでPHの値が異なるため、端末が使用する帯域幅や、変調方式等を基地局が決定する際に問題となる。また、例えば3つ以上のCCを2つのPAによって送信することを考えた場合、どのCCが同一のPAを用いて送信されているかを基地局が認識できる必要がある。 However, when considering transmission signals of a plurality of CCs with one PA, if the terminal performs TPC for each CC and notifies PH to the base station, the PH value differs for each CC. This becomes a problem when the base station determines the bandwidth to be used, the modulation method, and the like. For example, when transmitting three or more CCs by two PAs, the base station needs to be able to recognize which CC is transmitted using the same PA.
 本発明は、このような事情に鑑みてなされたものであり、CAを行なう端末が、複数のCCの送信信号をCCの数よりも少ないPAで送信する場合でも、LTEとの互換性を保ちつつ効率の高い通信を行なうことができる送信装置、受信装置、通信システムおよび送信方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and maintains compatibility with LTE even when a terminal that performs CA transmits a plurality of CC transmission signals with a PA that is smaller than the number of CCs. An object of the present invention is to provide a transmission device, a reception device, a communication system, and a transmission method capable of performing highly efficient communication.
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の送信装置は、複数のキャリアコンポーネントを用いて情報を送信する送信装置であって、前記キャリアコンポーネント数よりも少数の増幅器と、前記各キャリアコンポーネントにおける所望の送信電力をそれぞれ算出する所要送信電力算出部と、許容最大送信電力を設定する許容最大送信電力設定部と、前記許容最大送信電力と前記所要送信電力とのPH(Power Headroom)を算出するPH算出部と、を備えることを特徴とする。 (1) In order to achieve the above object, the present invention has taken the following measures. That is, the transmission apparatus of the present invention is a transmission apparatus that transmits information using a plurality of carrier components, and calculates a smaller number of amplifiers than the number of carrier components and desired transmission power in each of the carrier components. A required transmission power calculation unit, an allowable maximum transmission power setting unit that sets an allowable maximum transmission power, and a PH calculation unit that calculates a PH (Power Headroom) between the allowable maximum transmission power and the required transmission power. It is characterized by.
 このように、送信装置は、各キャリアコンポーネントにおける所望の送信電力をそれぞれ算出するとともに、許容最大送信電力を設定し、許容最大送信電力と所要送信電力とのPH(Power Headroom)を算出するので、実際の送信電力とPHのミスマッチが生じることがなくなり、送信装置が送信を行なう際、PAの性能を超えた電力が入力され、送信信号に歪みが生じることがなくなる。また、LTEとの互換性を保ちつつ、実際の送信電力を考慮した送信を行なうことができる。 In this way, the transmission device calculates the desired transmission power in each carrier component, sets the allowable maximum transmission power, and calculates the PH (PowerroomHeadroom) between the allowable maximum transmission power and the required transmission power. A mismatch between actual transmission power and PH does not occur, and when the transmission apparatus performs transmission, power exceeding the performance of the PA is input, and distortion does not occur in the transmission signal. Further, it is possible to perform transmission in consideration of actual transmission power while maintaining compatibility with LTE.
 (2)また、本発明の送信装置において、前記許容最大送信電力設定部は、使用するキャリアコンポーネント数に応じて、前記各キャリアコンポーネントにおいて一律に許容最大送信電力を設定することを特徴とする。 (2) Further, in the transmission device of the present invention, the allowable maximum transmission power setting unit uniformly sets the allowable maximum transmission power in each carrier component according to the number of carrier components to be used.
 このように、送信装置は、使用するキャリアコンポーネント数に応じて、各キャリアコンポーネントにおいて一律に許容最大送信電力を設定するので、比較的単純な計算方法で、全てのキャリアコンポーネント所要送信電力の合計が許容最大送信電力を必ず下回るように、キャリアコンポーネント許容最大送信電力を設定することができる。 In this way, since the transmission apparatus uniformly sets the maximum allowable transmission power in each carrier component according to the number of carrier components to be used, the total transmission power required for all carrier components can be calculated with a relatively simple calculation method. The carrier component allowable maximum transmission power can be set so as to be always below the allowable maximum transmission power.
 (3)また、本発明の送信装置において、前記許容最大送信電力設定部は、前記各キャリアコンポーネントのQoS(Quality Of Service)に応じて、前記キャリアコンポーネント毎に許容最大送信電力を設定することを特徴とする。 (3) In the transmission apparatus of the present invention, the allowable maximum transmission power setting unit sets the allowable maximum transmission power for each carrier component according to QoS (QualityQualOf Service) of each carrier component. Features.
 このように、各キャリアコンポーネントのQoS(Quality Of Service)に応じて、キャリアコンポーネント毎に許容最大送信電力を設定するので、キャリアコンポーネントによって扱うデータのQoSが異なる場合でも所望の通信品質を満足できる。 Thus, since the allowable maximum transmission power is set for each carrier component according to the QoS (Quality Of Service) of each carrier component, the desired communication quality can be satisfied even when the QoS of data handled by the carrier component differs.
 (4)また、本発明の送信装置において、前記所要送信電力算出部が出力する所要送信電力値を合計して所要送信電力合計値を出力する所要送信電力合計部をさらに備え、前記PH算出部は、前記許容最大送信電力と前記所要送信電力合計値とのPHを算出することを特徴とする。 (4) In the transmission apparatus of the present invention, the PH calculation unit further includes a required transmission power total unit that outputs the required transmission power total value by summing the required transmission power values output by the required transmission power calculation unit. Calculates the PH of the allowable maximum transmission power and the total required transmission power.
 このように、送信装置は、許容最大送信電力と所要送信電力合計値とのPHを算出するので、LTEとの互換性を保ちつつ、各CCにおいて所要送信電力に偏りがある場合においても、PAの性能を効率的に用いた通信を行なうことができる。 In this way, since the transmission apparatus calculates the PH of the allowable maximum transmission power and the total required transmission power, even if the required transmission power is biased in each CC while maintaining compatibility with LTE, PA It is possible to perform communication using the performance of.
 (5)また、本発明の送信装置において、前記PH算出部が出力する情報に、前記増幅器を識別する増幅器情報を付加する増幅器情報付加部をさらに備えることを特徴とする。 (5) The transmission apparatus of the present invention is further characterized by further comprising an amplifier information adding unit for adding amplifier information for identifying the amplifier to information output from the PH calculating unit.
 このように、送信装置が、PHに関する情報に、増幅器を識別する増幅器情報を付加するので、LTEとの互換性を保ちつつ、受信装置がどのCCが同一のPAによって送信されたかを識別できるようになる。この結果、受信装置が送信装置に通知するTPCコマンドを、同一のPAが用いられていることを考慮して決定できるため、効率的なTPCが可能となる。 As described above, the transmitter apparatus adds amplifier information for identifying the amplifier to the PH information, so that the receiver apparatus can identify which CC is transmitted by the same PA while maintaining compatibility with LTE. become. As a result, the TPC command notified from the receiving apparatus to the transmitting apparatus can be determined in consideration of the use of the same PA, so that efficient TPC is possible.
 (6)また、本発明の送信装置において、前記PH算出部は、PHを示す6ビットの情報を出力し、前記増幅器情報付加部は、前記PH算出部が出力する6ビットの情報に、前記増幅器を識別する2ビットの情報を付加することを特徴とする。 (6) In the transmission device of the present invention, the PH calculation unit outputs 6-bit information indicating PH, and the amplifier information addition unit adds the 6-bit information output from the PH calculation unit to the 6-bit information. Two-bit information for identifying an amplifier is added.
 このように、送信装置は、PHに関する6ビットの情報に、増幅器を識別する2ビットの情報を付加するので、PHを1バイト(8ビット)に保つことができる。この結果、LTEとの互換性を保ちつつ、制御情報も増加させることなく、PA情報を付加できることになる。 As described above, since the transmission apparatus adds 2-bit information for identifying the amplifier to the 6-bit information about PH, PH can be maintained at 1 byte (8 bits). As a result, PA information can be added without increasing control information while maintaining compatibility with LTE.
 (7)また、本発明の送信装置において、伝搬路状態に応じて使用する増幅器を決定する使用増幅器決定部をさらに備えることを特徴とする。 (7) Further, the transmitting apparatus of the present invention is further characterized by further comprising a used amplifier determining unit that determines an amplifier to be used according to a propagation path state.
 このように、送信装置は、伝搬路状態に応じて使用する増幅器を決定するので、伝搬状態が時間変動した場合においても、適応的に対応できる。 Thus, since the transmission apparatus determines the amplifier to be used according to the propagation path state, it can adaptively cope with the case where the propagation state fluctuates over time.
 (8)また、本発明の受信装置は、(5)から(7)のいずれかに記載の送信装置から前記増幅器情報を受信し、前記増幅器情報に基づいて、前記各キャリアコンポーネントが送信された増幅器を識別することを特徴とする。 (8) Further, the receiving device of the present invention receives the amplifier information from the transmitting device according to any one of (5) to (7), and the carrier components are transmitted based on the amplifier information. An amplifier is identified.
 このように、受信装置は、増幅器情報に基づいて、各キャリアコンポーネントが送信された増幅器を識別するので、LTEとの互換性を保ちつつ、受信装置は、どのCCが同一のPAによって送信されたかを識別できるようになる。この結果、受信装置は、送信装置に通知するTPCコマンドを、同一のPAが用いられていることを考慮して決定できるため、効率的なTPCが可能となる。 In this way, since the receiving apparatus identifies the amplifier to which each carrier component is transmitted based on the amplifier information, the receiving apparatus can determine which CC is transmitted by the same PA while maintaining compatibility with LTE. Can be identified. As a result, the receiving apparatus can determine the TPC command to be notified to the transmitting apparatus in consideration of the use of the same PA, thereby enabling efficient TPC.
 (9)また、本発明の通信システムは、複数のキャリアコンポーネントを用いて情報を送信する送信装置および前記送信装置から送信された情報を受信する受信装置から構成される通信システムであって、前記送信装置は、前記キャリアコンポーネント数よりも少数の増幅器と、前記各キャリアコンポーネントにおける所望の送信電力をそれぞれ算出する所要送信電力算出部と、許容最大送信電力を設定する許容最大送信電力設定部と、前記許容最大送信電力と前記所要送信電力とのPH(Power Headroom)を算出するPH算出部と、前記PH算出部が出力する情報に、前記増幅器を識別する増幅器情報を付加する増幅器情報付加部と、を備え、前記受信装置は、前記送信装置から前記増幅器情報を受信し、前記増幅器情報に基づいて、前記各キャリアコンポーネントが送信された増幅器を識別することを特徴とする。 (9) The communication system of the present invention is a communication system including a transmission device that transmits information using a plurality of carrier components and a reception device that receives information transmitted from the transmission device, The transmission device includes a smaller number of amplifiers than the number of carrier components, a required transmission power calculation unit that calculates desired transmission power in each carrier component, an allowable maximum transmission power setting unit that sets an allowable maximum transmission power, A PH calculation unit for calculating a PH (Power Headroom) between the allowable maximum transmission power and the required transmission power; an amplifier information addition unit for adding amplifier information for identifying the amplifier to information output from the PH calculation unit; The receiving device receives the amplifier information from the transmitting device, and based on the amplifier information, Turbocharger rear component is characterized to identify the transmitted amplifier.
 このように、送信装置は、PHに関する情報に、増幅器を識別する増幅器情報を付加するので、LTEとの互換性を保ちつつ、受信装置がどのCCが同一のPAによって送信されたかを識別できるようになる。この結果、受信装置が送信装置に通知するTPCコマンドを、同一のPAが用いられていることを考慮して決定できるため、効率的なTPCが可能となる。 As described above, since the transmitter apparatus adds amplifier information for identifying the amplifier to the information on PH, the receiver apparatus can identify which CC is transmitted by the same PA while maintaining compatibility with LTE. become. As a result, the TPC command notified from the receiving apparatus to the transmitting apparatus can be determined in consideration of the use of the same PA, so that efficient TPC is possible.
 (10)また、本発明の送信方法は、キャリアコンポーネント数よりも少数の増幅器を有し、複数のキャリアコンポーネントを用いて情報を送信する送信装置の送信方法であって、前記各キャリアコンポーネントにおける所望の送信電力をそれぞれ算出するステップと、使用するキャリアコンポーネント数に応じて、前記各キャリアコンポーネントにおいて一律に許容最大送信電力を設定するステップと、前記許容最大送信電力と前記所要送信電力とのPH(Power Headroom)を算出するステップと、を少なくとも含むことを特徴とする。 (10) Further, the transmission method of the present invention is a transmission method of a transmission apparatus that has a smaller number of amplifiers than the number of carrier components and transmits information using a plurality of carrier components, and is a desired method in each of the carrier components. Respectively, a step of uniformly setting an allowable maximum transmission power in each of the carrier components in accordance with the number of carrier components to be used, and a PH of the allowable maximum transmission power and the required transmission power ( And calculating at least (Power Headroom).
 このように、送信装置は、使用するキャリアコンポーネント数に応じて、各キャリアコンポーネントにおいて一律に許容最大送信電力を設定し、許容最大送信電力と所要送信電力とのPH(Power Headroom)を算出するので、比較的単純な計算方法で、全てのキャリアコンポーネント所要送信電力の合計が許容最大送信電力を必ず下回るように、キャリアコンポーネント許容最大送信電力を設定することができる。 In this way, the transmission apparatus uniformly sets the maximum allowable transmission power in each carrier component according to the number of carrier components to be used, and calculates the PH (PowerroomHeadroom) between the maximum allowable transmission power and the required transmission power. The carrier component allowable maximum transmission power can be set by a relatively simple calculation method so that the total transmission power required for all carrier components is always lower than the allowable maximum transmission power.
 本発明によれば、CAするLTE-A端末が、使用するCC数よりもPAの数が少ない場合においても、LTEとの互換性を保ちつつ、効率の高い通信を行なうことができる。 According to the present invention, even when an LTE-A terminal that performs CA has a smaller number of PAs than the number of CCs to be used, it is possible to perform highly efficient communication while maintaining compatibility with LTE.
本発明の第1の実施形態に係る移動端末構成を示すブロック図である。It is a block diagram which shows the mobile terminal structure which concerns on the 1st Embodiment of this invention. 各CCにおける送信電力と許容最大送信電力PCMAXの関係を示した図である。It is the figure which showed the relationship between the transmission power in each CC, and permissible maximum transmission power PCMAX . 本発明の第1の実施形態において、各CCにおける送信電力と補正した許容最大送信電力PCMAXの関係を示した図である。In the 1st Embodiment of this invention, it is the figure which showed the relationship between the transmission power in each CC, and the corrected permissible maximum transmission power PCMAX . 本発明の第1の実施形態に係る送信装置のPH算出方法を示すフローチャートである。It is a flowchart which shows the PH calculation method of the transmitter which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る移動端末構成を示すブロック図である。It is a block diagram which shows the mobile terminal structure which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る移動端末構成を示すブロック図である。It is a block diagram which shows the mobile terminal structure which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る移動端末構成を示すブロック図である。It is a block diagram which shows the mobile terminal structure which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に関して、時刻tにおいて、各CCがどのPAで送信されるかを示す図である(CC数が3、PA数が2の場合)。It is a figure which shows which CC each CC is transmitted at the time t regarding the 4th Embodiment of this invention (when the number of CCs is 3 and the number of PAs is 2). 本発明の第4の実施形態に関して、時刻t+Tにおいて、各CCがどのPAで送信されるかを示す図である(CC#3の所要送信電力が増加し、3つのCCの中で最も所要送信電力が高くなった場合)。FIG. 10 is a diagram showing which PA is used to transmit each CC at time t + T with respect to the fourth embodiment of the present invention (the required transmission power of CC # 3 increases and the most required transmission among three CCs) If power is high).
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 [第1の実施形態]
 第1の実施形態として、1つの電力増幅器(PA:Power Amplifier)が複数のCC(Carrier Componentの略であり、本実施形態ではCC数を5として説明する)の信号を増幅して送信する場合のPHの通知方法について説明を行なう。
[First Embodiment]
As a first embodiment, a single power amplifier (PA: Power Amplifier) amplifies and transmits signals of a plurality of CCs (abbreviation of Carrier Component, which will be described as five CCs in this embodiment) The PH notification method will be described.
 図1は、本発明の第1の実施形態に係る移動端末構成を示すブロック図である。通常、上りリンクの通信に使用する変調方式、符号化率、使用RB情報、TPCコマンド等の制御情報は、下りリンクの物理チャネルであるPDCCHを用いて基地局から端末へ送信される。受信アンテナ部101では、受信したPDCCHをCC#1PDCCH受信部103-1~CC#5PDCCH受信部103-5に入力する。各PDCCH受信部103は、所要送信電力の算出に必要な制御情報をそれぞれのPDCCH受信部103に対応する所要送信電力算出部105に入力する。各所要送信電力算出部105では、PDCCHによって送信される、変調方式や使用帯域幅、伝送方式(SC-FDMAまたはClustered DFT-S-OFDM)、TPCコマンド、端末が下りリンクの受信電力から推定するパスロスPL、上位層から通知されるパスロスに乗算する係数α等によって、基地局において所定の通信品質を満たすための送信電力Preqが(1)式に基づいて算出される。各所要送信電力算出部105の出力するPreqは、各PH算出部107に入力される。 FIG. 1 is a block diagram showing a mobile terminal configuration according to the first embodiment of the present invention. Normally, control information such as a modulation scheme, coding rate, used RB information, and TPC command used for uplink communication is transmitted from a base station to a terminal using a PDCCH that is a downlink physical channel. The receiving antenna unit 101 inputs the received PDCCH to the CC # 1 PDCCH receiving unit 103-1 to CC # 5 PDCCH receiving unit 103-5. Each PDCCH receiving unit 103 inputs control information necessary for calculating the required transmission power to the required transmission power calculating unit 105 corresponding to each PDCCH receiving unit 103. In each required transmission power calculation section 105, the modulation scheme, the used bandwidth, the transmission scheme (SC-FDMA or Clustered DFT-S-OFDM), the TPC command, and the terminal, which are transmitted by PDCCH, are estimated from the downlink received power. A transmission power P req for satisfying a predetermined communication quality in the base station is calculated based on the equation (1) by the path loss PL, the coefficient α multiplied by the path loss notified from the higher layer, and the like. Preq output from each required transmission power calculation unit 105 is input to each PH calculation unit 107.
 ここで各PH算出部107の処理について説明する。LTEにおいてPHは(2)式によって算出される。本実施形態において、許容最大送信電力PCMAXはCC許容最大送信電力設定部(許容最大送信電力設定部)109から通知される。ここで、各CCにおいて許容最大送信電力PCMAXで送信を行なうと、合計として許容最大送信電力を上回ってしまうという問題がある。 Here, the processing of each PH calculation unit 107 will be described. In LTE, PH is calculated by equation (2). In the present embodiment, the allowable maximum transmission power P CMAX is notified from the CC allowable maximum transmission power setting unit (allowable maximum transmission power setting unit) 109. Here, if transmission is performed with the maximum allowable transmission power P CMAX in each CC, there is a problem that the total allowable maximum transmission power is exceeded.
 図2Aは、各CCにおける送信電力と許容最大送信電力PCMAXの関係を示した図である。例えば図2Aのように、LTEのようなCCを1つしか用いない場合の許容最大送信電力PCMAXを、そのまま複数のCCを使用する場合に適用すると、各CCで送信電力がPCMAXとなるようにTPCが行なわれる可能性がある。その結果、PAの持つ線形領域を超えた電力がPAに入力され、送信信号が歪んでしまう上、他セルへの与干渉を増大させてしまう。 FIG. 2A is a diagram showing a relationship between transmission power and allowable maximum transmission power PCMAX in each CC. For example, as shown in FIG. 2A, when the allowable maximum transmission power P CMAX when only one CC such as LTE is used is applied to a case where a plurality of CCs are used as they are, the transmission power becomes P CMAX in each CC. Thus, TPC may be performed. As a result, power exceeding the linear region of the PA is input to the PA, and the transmission signal is distorted, and interference with other cells is increased.
 そこで本実施形態では、図1の使用CC数通知部111がPAのサポートするCCの数をCC許容最大送信電力設定部109に通知し、CC許容最大送信電力設定部109は(3)式を基に、CC毎の許容最大送信電力PCCを決定する。 Therefore, in the present embodiment, the used CC number notifying unit 111 in FIG. 1 notifies the CC allowable maximum transmission power setting unit 109 of the number of CCs supported by the PA, and the CC allowable maximum transmission power setting unit 109 calculates the expression (3). Based on this, the allowable maximum transmission power PCC for each CC is determined.
Figure JPOXMLDOC01-appb-M000003
 ここでPCMAXは各端末における全CC合計の許容最大送信電力値であり、物理的な最大送信電力である場合や、上位層から指定される場合がある。またXは、使用CC数通知部111から通知される使用CC数によって決定される値であり、例えば表1に記載している数値を用いる。
Figure JPOXMLDOC01-appb-M000003
Here, PCMAX is an allowable maximum transmission power value of all CCs in each terminal, and may be a physical maximum transmission power or may be designated from an upper layer. X is a value determined by the number of used CCs notified from the used CC number notifying unit 111, and for example, the numerical values described in Table 1 are used.
Figure JPOXMLDOC01-appb-T000004
 図2Bは、本発明の第1の実施形態において、各CCにおける送信電力と補正した許容最大送信電力PCMAXの関係を示した図である。図2Bは、3つのCCを1つのPAで送信する例を示している。3つのCCを用いているため、表1より、X=4.77を用いる。この結果、CC許容最大送信電力設定部109では、PCMAX-Xを許容最大送信電力として各PH算出部107に許容最大送信電力を通知することになる。各CCの送信電力はPCMAX-4.77(=PCMAX/3)を超えることがなくなるため、3つのCCを合計した送信電力はPCMAXを必ず下回ることになる。その結果、PAの出力信号を歪ませることなく、信号の送信が可能となる。
Figure JPOXMLDOC01-appb-T000004
FIG. 2B is a diagram illustrating a relationship between the transmission power in each CC and the corrected allowable maximum transmission power P CMAX in the first embodiment of the present invention. FIG. 2B shows an example in which three CCs are transmitted by one PA. Since three CCs are used, X = 4.77 is used from Table 1. As a result, CC allowable maximum transmission power setting section 109 notifies each PH calculation section 107 of the allowable maximum transmission power with P CMAX -X as the allowable maximum transmission power. Since the transmission power of each CC does not exceed P CMAX -4.77 (= P CMAX / 3), the total transmission power of the three CCs is necessarily lower than P CMAX . As a result, the signal can be transmitted without distorting the output signal of the PA.
 PH算出部107では、入力されたCC毎の許容最大送信電力Pccと所要送信電力Preqを用いて、第iフレームのPH(i)を(4)式に基づいて算出する。 The PH calculation unit 107 calculates PH (i) of the i-th frame based on the equation (4) using the allowable maximum transmission power P cc and the required transmission power P req for each CC input.
Figure JPOXMLDOC01-appb-M000005
 図3は、本発明の第1の実施形態に係る送信装置のPH算出方法を示すフローチャートである。まず、各コンポーネントキャリアにおける所望の送信電力をそれぞれ算出する(ステップS101)。次に、使用するキャリアコンポーネント数に応じて、各キャリアコンポーネントにおいて一律にCC許容最大送信電力を設定する(ステップS102)。続いて、CC許容最大送信電力と所要送信電力とのPHを算出する(ステップS103)。
Figure JPOXMLDOC01-appb-M000005
FIG. 3 is a flowchart showing a PH calculation method of the transmission apparatus according to the first embodiment of the present invention. First, the desired transmission power in each component carrier is calculated (step S101). Next, the CC allowable maximum transmission power is uniformly set in each carrier component according to the number of carrier components to be used (step S102). Subsequently, the PH of the CC allowable maximum transmission power and the required transmission power is calculated (step S103).
 移動端末は、PHのレポートの際には、算出したPHレポートが対応するコンポーネントキャリアでPHレポートを送信し、基地局は、PHレポートが送信されたコンポーネントキャリアからPHレポートが対応するコンポーネントキャリアを識別するようにしてもよい。または、移動端末は、PHのレポートの際には、算出したPHレポートが対応するコンポーネントキャリアを示す情報を含めてPHレポートを送信し、基地局は、PHレポートに含まれるコンポーネントキャリアを示す情報からPHレポートが対応するコンポーネントキャリアを識別するようにしてもよい。または、移動端末は、PHのレポートの際には、算出すべきすべてのコンポーネントキャリアのPHレポートを含めて送信し、基地局は、PHレポートに含まれる各コンポーネントキャリアのPHレポートを取得するようにしてもよい。 In the case of PH report, the mobile terminal transmits a PH report on the component carrier corresponding to the calculated PH report, and the base station identifies the component carrier corresponding to the PH report from the component carrier on which the PH report is transmitted. You may make it do. Alternatively, the mobile terminal transmits a PH report including information indicating the component carrier to which the calculated PH report corresponds in the PH report, and the base station uses the information indicating the component carrier included in the PH report. The PH report may identify the corresponding component carrier. Alternatively, the mobile terminal transmits a PH report including PH reports of all component carriers to be calculated, and the base station acquires a PH report of each component carrier included in the PH report. May be.
 なお本実施形態では、Xは移動端末において決定し、PHの算出に使用する場合について説明したが、基地局が、Xを考慮したCC毎の許容最大送信電力(つまり、PCC)を端末に通知する場合も、本質的に同様である。 In this embodiment, the case where X is determined in the mobile terminal and used for calculating PH has been described. However, the base station determines the allowable maximum transmission power for each CC in consideration of X (that is, P CC ) The notification is essentially the same.
 このように使用するCCの数に応じて、許容最大送信電力に補正を行なうことによって、実際の送信電力とPHのミスマッチが生じることがなくなるため、端末が送信を行なう際、PAの性能を超えた電力が入力され、送信信号に歪みが生じることがなくなる。 By correcting the allowable maximum transmission power according to the number of CCs used in this way, there is no mismatch between the actual transmission power and the PH. Therefore, when the terminal performs transmission, it exceeds the PA performance. Thus, no distortion occurs in the transmission signal.
 また、図1では使用するCCに応じて一律の補正値を与えたが、必ずしも一律である必要はない。例えば、一般にアンテナの周波数利得は一定ではないため、アンテナ利得の高い周波数(CC)では、大きな補正値Xを与えても、所要の通信品質を保つことができる。またCCによって扱うデータのQoS(Quality Of Service)が異なる可能性がある。QoSが高いCCでは、小さな補正値Xを与えることで、所望の通信品質を満足できる。このように、補正値Xは各CCで一定ではなく、CC毎に異なる固定値である場合や、QoSに応じて、変更される場合もある。 In FIG. 1, although a uniform correction value is given according to the CC to be used, it is not necessarily required to be uniform. For example, since the frequency gain of the antenna is generally not constant, the required communication quality can be maintained at a high antenna gain frequency (CC) even if a large correction value X is given. In addition, there is a possibility that the quality of service (QoS) of data handled by the CC is different. In a CC having a high QoS, the desired communication quality can be satisfied by giving a small correction value X. Thus, the correction value X is not constant for each CC, but may be a fixed value that differs for each CC or may be changed according to QoS.
 次に、各PH算出部107で算出されたPHはそれぞれCC#1PUSCH送信部113-1~CC#5PUSCH送信部113-5に入力される。各PUSCH送信部113では、入力されたPHを物理層から上位層に伝達した後、上りリンクのデータを伝送するための物理チャネルであるPUSCH(Physical Uplink Shared CHannel)を用いて基地局に伝送される。各PUSCH送信部113の出力(時間信号)は合成部115に入力され、合成(加算)が行なわれる。合成部115の処理はD/A変換後でもよいし、前であってもよい。合成部115の出力は送信アンテナ部117から、基地局へ送信される。なお、本明細書では、合成部115は、増幅器を有しているものとする。 Next, the PH calculated by each PH calculation unit 107 is input to CC # 1 PUSCH transmission unit 113-1 to CC # 5 PUSCH transmission unit 113-5, respectively. In each PUSCH transmission unit 113, the input PH is transmitted from the physical layer to the upper layer, and then transmitted to the base station using a PUSCH (Physical-Uplink-Shared-CHannel) that is a physical channel for transmitting uplink data. The The output (time signal) of each PUSCH transmission unit 113 is input to the synthesis unit 115, and synthesis (addition) is performed. The processing of the combining unit 115 may be after D / A conversion or before. The output of combining section 115 is transmitted from transmitting antenna section 117 to the base station. In this specification, it is assumed that the synthesis unit 115 includes an amplifier.
 基地局は受信したPHによって、各端末の各CCにおける使用RB数や変調方式、さらには伝送方式(SC-FDMAあるいはClustered DFT-S-OFDM)を決定することができる。 Based on the received PH, the base station can determine the number of RBs used in each CC of each terminal, the modulation scheme, and the transmission scheme (SC-FDMA or Clustered DFT-S-OFDM).
 このように、複数のCCをサポートするPAがある場合の端末の各CCのPH算出部107において、上りリンクで使用するCCの数や、各CCで扱うデータのQoSによって許容最大送信電力に補正をつけることによって、LTEとの互換性を保ちつつ、実際の送信電力を考慮した送信を行なうことができる。 As described above, when there is a PA that supports a plurality of CCs, the PH calculation unit 107 of each CC of the terminal corrects the allowable maximum transmission power according to the number of CCs used in the uplink and the QoS of data handled in each CC. Therefore, transmission can be performed in consideration of actual transmission power while maintaining compatibility with LTE.
 [第2の実施形態]
 第1の実施形態は、各CCのPH算出部107において、上りリンクで使用するCCの数を端末が認識し、CC毎に許容最大送信電力を決定することによって、LTEとの互換性を保ちつつ、全CC合計の許容最大送信電力を考慮した通信が可能となる。しかしながら、すべてのCCに一定の補正を加えるため、送信電力制御に無駄が生じる場合がある。そこで本実施形態では、実際に各CCで用いる電力を考慮してPHを算出する方法について示す。
[Second Embodiment]
In the first embodiment, in the PH calculation unit 107 of each CC, the terminal recognizes the number of CCs used in the uplink and determines the allowable maximum transmission power for each CC, thereby maintaining compatibility with LTE. However, it is possible to perform communication in consideration of the allowable maximum transmission power of all CCs. However, since constant correction is applied to all CCs, there is a case where transmission power control is wasted. Therefore, in the present embodiment, a method for calculating PH in consideration of power actually used in each CC will be described.
 図4は、本発明の第2の実施形態に係る移動端末構成を示すブロック図である。受信アンテナ部101では、受信したPDCCHの信号をCC#1PDCCH受信部103-1~CC#5PDCCH受信部103-5に入力する。各PDCCH受信部103は、所要送信電力の算出に必要な制御情報を各所要送信電力算出部105に入力する。各所要送信電力算出部105では、入力された制御情報を基に、各CCにおける所要送信電力を算出し、所要送信電力合計部201に通知する。 FIG. 4 is a block diagram showing a mobile terminal configuration according to the second embodiment of the present invention. The receiving antenna unit 101 inputs the received PDCCH signal to the CC # 1 PDCCH receiving unit 103-1 to CC # 5 PDCCH receiving unit 103-5. Each PDCCH receiving unit 103 inputs control information necessary for calculating the required transmission power to each required transmission power calculating unit 105. Each required transmission power calculation unit 105 calculates the required transmission power in each CC based on the input control information and notifies the required transmission power total unit 201.
 所要送信電力合計部201では、各所要送信電力算出部105から入力された電力の合計値Preqを算出する処理が行なわれる。k番目のCCの所要送信電力がP(dBm)であったとすると、合計電力Preq(dBm)は(5)式で表わされる。 The required transmission power total unit 201 performs a process of calculating the total power value P req input from each required transmission power calculation unit 105. If the required transmission power of the kth CC is P k (dBm), the total power P req (dBm) is expressed by equation (5).
Figure JPOXMLDOC01-appb-M000006
 算出した所要送信電力Preqは、PH算出部203に入力される。PH算出部203は、許容最大送信電力設定部205から入力される許容最大送信電力PCMAXから、入力された所要送信電力Preqを減算し、PHを算出する。得られたPHは、共通の値として、CC#1PUSCH送信部113-1~CC#5PUSCH送信部113-5に入力される。
Figure JPOXMLDOC01-appb-M000006
The calculated required transmission power P req is input to the PH calculation unit 203. The PH calculation unit 203 subtracts the input required transmission power P req from the allowable maximum transmission power P CMAX input from the allowable maximum transmission power setting unit 205 to calculate PH. The obtained PH is input as a common value to CC # 1 PUSCH transmission section 113-1 to CC # 5 PUSCH transmission section 113-5.
 各PUSCH送信部113は、入力されたPHを物理層から上位層に伝達した後、PUSCHを用いて基地局に伝送される。各PUSCH送信部113の出力(時間信号)は合成部115に入力され、合成(加算)が行なわれる。合成部115の処理はD/A変換後でもよいし、前であってもよい。合成部115の出力は送信アンテナ部117から、基地局へ送信される。 Each PUSCH transmission unit 113 transmits the input PH from the physical layer to the upper layer, and then transmits the PH to the base station using the PUSCH. The output (time signal) of each PUSCH transmission unit 113 is input to the synthesis unit 115, and synthesis (addition) is performed. The processing of the combining unit 115 may be after D / A conversion or before. The output of combining section 115 is transmitted from transmitting antenna section 117 to the base station.
 基地局は受信したPHによって、各端末の各CCにおける使用RB数や変調方式や、伝送方式(SC-FDMAあるいはClustered DFT-S-OFDM)を決定することができる。 Based on the received PH, the base station can determine the number of RBs used in each CC of each terminal, the modulation scheme, and the transmission scheme (SC-FDMA or Clustered DFT-S-OFDM).
 このように、複数のCCをサポートするPAがある場合の端末において、使用するCCの所要送信電力を合計し、許容最大送信電力から減算するPH算出部203を設け、各CCで同一のPHを用いることによって、LTEとの互換性を保ちつつ、各CCにおいて所要送信電力に偏りがある場合においても、PAの性能を効率的に用いた通信を行なうことができる。 In this way, in a terminal when there is a PA that supports a plurality of CCs, a PH calculation unit 203 is provided that sums the required transmission power of CCs to be used and subtracts it from the allowable maximum transmission power. By using this, it is possible to perform communication using the performance of the PA efficiently even when the required transmission power is biased in each CC while maintaining compatibility with LTE.
 [第3の実施形態]
 上記実施形態では、端末がPAを一つ持ち、使用するすべてのCCを一つのPAでサポートすることを前提に説明を行なったが、実際には、端末が複数のPAを持つものの、使用するCCの数よりPAの数の方が少ない場合が考えられる。この時、基地局がどのCCが同じPAによって送信されているかを認識できないと、適切な制御ができない可能性が生じる。しかし、移動端末がどのCCが同じPAによって送信するのかを基地局に通知するための制御情報を改めて定義すると、制御情報が増加してしまうため、上りリンクの周波数利用効率が低下してしまう。そこで、本実施形態では、LTEの制御情報量を増加させることなく、使用PAに関する情報を端末が基地局に通知する方法を示す。
[Third Embodiment]
In the above embodiment, the description has been made on the assumption that the terminal has one PA and all the CCs to be used are supported by one PA. However, although the terminal actually has a plurality of PAs, it is used. A case where the number of PAs is smaller than the number of CCs is conceivable. At this time, if the base station cannot recognize which CC is transmitted by the same PA, there is a possibility that appropriate control cannot be performed. However, if the control information for notifying the base station which CC is transmitted by the same PA from the mobile terminal is defined again, the control information increases, so that the uplink frequency utilization efficiency is lowered. Therefore, this embodiment shows a method in which the terminal notifies the base station of information on the used PA without increasing the amount of LTE control information.
 図5は、本発明の第3の実施形態に係る移動端末構成を示すブロック図である。受信アンテナ部101では、受信したPDCCHの信号をCC#1PDCCH受信部103-1~CC#5PDCCH受信部103-5に入力する。各PDCCH受信部103は、所要送信電力の算出に必要な制御情報を各所要送信電力算出部105に入力する。各所要送信電力算出部105では、入力された制御情報を基に、各CCにおける所要送信電力をPH算出部301に入力する。図5ではCC#1~#3は第1のPAを用い、CC#4、#5は第2のPAを用いる例を示している。したがってCC#1所要送信電力算出部105-1~CC#3所要送信電力算出部105-3の出力は第1のPAのPH算出部301-1に入力され、CC#4所要送信電力算出部105-4およびCC#5所要送信電力算出部105-5の出力は第2のPAのPH算出部301-2に入力される。 FIG. 5 is a block diagram showing a mobile terminal configuration according to the third embodiment of the present invention. The receiving antenna unit 101 inputs the received PDCCH signal to the CC # 1 PDCCH receiving unit 103-1 to CC # 5 PDCCH receiving unit 103-5. Each PDCCH receiving unit 103 inputs control information necessary for calculating the required transmission power to each required transmission power calculating unit 105. Each required transmission power calculation unit 105 inputs the required transmission power in each CC to the PH calculation unit 301 based on the input control information. FIG. 5 shows an example in which CC # 1 to # 3 use the first PA, and CC # 4 and # 5 use the second PA. Therefore, the outputs of CC # 1 required transmission power calculation unit 105-1 to CC # 3 required transmission power calculation unit 105-3 are input to PH calculation unit 301-1 of the first PA, and CC # 4 required transmission power calculation unit. The outputs of 105-4 and CC # 5 required transmission power calculation section 105-5 are input to PH calculation section 301-2 of the second PA.
 各PH算出部301では、各所要送信電力算出部105から入力される所要送信電力によって、第1の実施形態の算出法、あるいは第2の実施形態の算出法によってPHを算出する。LTEにおけるPHの値は、1dB刻みの-23~40dBの最も近い値に四捨五入されるため、6ビットの系列となる。得られたPHはそれぞれ第1のPA情報付加部(増幅器情報付加部)303-1、第2のPA情報付加部303-2に入力される。第1のPA情報付加部303-1および第2のPA情報付加部303-2では、入力されたPHに対して、どのPAによって、送信されるかという情報(以下、PA情報と呼ぶ)を付加する処理が行なわれる。たとえばLTE-Aでは最大5つのCCを用いて通信を行なうため、PAが5つあることを考えると、PA情報を通知するのに、3ビットの制御情報を付加する必要がある(5≦2)。新たな制御情報を定義すると、LTEとの互換性が損なわれるという問題も生じてしまう。したがって、LTEとの互換性を維持しつつ、PA情報を付加することが望まれる。 Each PH calculation unit 301 calculates PH according to the calculation method of the first embodiment or the calculation method of the second embodiment according to the required transmission power input from each required transmission power calculation unit 105. Since the PH value in LTE is rounded to the nearest value of −23 to 40 dB in 1 dB steps, it becomes a 6-bit sequence. The obtained PHs are respectively input to the first PA information adding unit (amplifier information adding unit) 303-1 and the second PA information adding unit 303-2. In the first PA information adding unit 303-1 and the second PA information adding unit 303-2, information indicating which PA is used to transmit the input PH (hereinafter referred to as PA information) is provided. An additional process is performed. For example, since LTE-A performs communication using a maximum of five CCs, considering that there are five PAs, it is necessary to add 3-bit control information to notify the PA information (5 ≦ 2 3 ). If new control information is defined, there is a problem that compatibility with LTE is lost. Therefore, it is desired to add PA information while maintaining compatibility with LTE.
 LTEにおけるPHの値は、1dB刻みの-23~40dBであり、64値であるため、6ビットで構成されている。しかしながらPHは、1バイト(8ビット)で定義されるため、LTEのPHを含む1バイトのうち上位2ビットは、LTEでは使用せず、“00”に固定されている。 The value of PH in LTE is -23 to 40 dB in 1 dB increments and is 64 values, so it is composed of 6 bits. However, since PH is defined by 1 byte (8 bits), the upper 2 bits of 1 byte including the PH of LTE are not used in LTE and are fixed to “00”.
 そこで、未使用の2ビットをPA情報に用いることを考える。1つのPAで1つのCCを送信する場合には、上位2ビットとして“00”を送信する。また1つのPAで3つ以上のCCを送信する場合には、上位2ビットとして“11”を送信する。1つのPAで2つのCCを送信する場合には、上位2ビットとして“01”あるいは“10”を送信する。上記の考えの例を表2に示す。例1は図5のように、CC#1~CC#3を第1のPAによって送信し、CC#4およびCC#5を第2のPAによって送信する場合であり、第1のPA情報付加部303-1において上位2ビットとして“11”を付加し、第2のPA情報付加部303-2において上位2ビットとして“01”を付加することを示している。基地局は各CCにおいてPHを受信し、上位2ビットをチェックすることでCC#1~CC#3が同じPAを用いて送信されていることと、CC#4およびCC#5が同じPAを用いて送信されていることを識別できる。なお、CC#4およびCC#5の上位2ビットは“10”であってもよい。 Therefore, consider using two unused bits for PA information. When one CC is transmitted by one PA, “00” is transmitted as the upper 2 bits. When transmitting three or more CCs with one PA, “11” is transmitted as the upper 2 bits. When two CCs are transmitted with one PA, “01” or “10” is transmitted as the upper 2 bits. An example of the above idea is shown in Table 2. Example 1 is a case where CC # 1 to CC # 3 are transmitted by the first PA and CC # 4 and CC # 5 are transmitted by the second PA as shown in FIG. In the section 303-1, "11" is added as the upper 2 bits, and "01" is added as the upper 2 bits in the second PA information adding section 303-2. The base station receives the PH at each CC and checks the upper 2 bits to confirm that CC # 1 to CC # 3 are transmitted using the same PA, and that CC # 4 and CC # 5 have the same PA. Can be used to identify being transmitted. The upper 2 bits of CC # 4 and CC # 5 may be “10”.
 また例2のようにCC#4およびCC#5がそれぞれ1つのPAで送信されている場合は、各PHの上位2ビットは“00”となり、基地局はCC#4およびCC#5はそれぞれ異なるPAによって送信されていると識別できる。また例3のように2つのCCをサポートするPAが2つ存在する場合(例3では、第1のPAと第3のPA)、第1のPA情報付加部303-1では“01”を付加し、第3のPA情報付加部303-3では“10”を付加し送信する。基地局はそれぞれのCCでPHの上位2ビットをチェックすることで、CC#1およびCC#2が同じPAを用いて送信され、CC#4およびCC#5が同じPAを用いて送信されていることを識別可能となる。さらに、例4のように4CCまたは5CCの信号をサポートするPAにおいても“11”が付加される。また例5のように同じPAで送信されるCCは必ずしも周波数軸上で隣り合うCCでなくても構わない。 In addition, when CC # 4 and CC # 5 are each transmitted by one PA as in Example 2, the upper 2 bits of each PH are “00”, and the base station has CC # 4 and CC # 5 respectively. It can be identified as being transmitted by a different PA. Also, when there are two PAs supporting two CCs as in Example 3 (in Example 3, the first PA and the third PA), the first PA information adding unit 303-1 sets “01”. In addition, the third PA information adding unit 303-3 adds “10” and transmits it. The base station checks the upper 2 bits of PH in each CC, so that CC # 1 and CC # 2 are transmitted using the same PA, and CC # 4 and CC # 5 are transmitted using the same PA. Can be identified. Furthermore, “11” is also added in a PA that supports 4CC or 5CC signals as in Example 4. Moreover, CC transmitted by the same PA like Example 5 does not necessarily need to be CC adjacent on a frequency axis.
Figure JPOXMLDOC01-appb-T000007
 このように、PH算出部301が出力する6ビットのPHに、上述のように2ビットをPA情報として付加することによって、1バイト(8ビット)のPHを構成する。この結果、LTEとの互換性を保ちつつ、制御情報も増加させることなく、PA情報を付加できることになる。
Figure JPOXMLDOC01-appb-T000007
In this manner, 1-bit (8-bit) PH is configured by adding 2 bits as PA information to the 6-bit PH output from the PH calculation unit 301 as described above. As a result, PA information can be added without increasing control information while maintaining compatibility with LTE.
 第1のPA情報付加部303-1および第2のPA情報付加部303-2が出力するPHは、各PUSCH送信部113に入力される。図5は、CC#1~#3は第1のPAを用い、CC#4、#5は第2のPAを用いる例を示しているため、第1のPA情報付加部303-1が出力するPHは、CC#1PUSCH送信部113-1~CC#3PUSCH送信部113-3に入力され、第2のPA情報付加部303-2が出力するPHは、CC#4PUSCH送信部113-4、およびCC#5PUSCH送信部113-5に入力される。各PUSCH送信部113では、入力されたPHを物理層から上位層に伝達した後、上りリンクのデータを伝送するための物理チャネルであるPUSCH(Physical Uplink Shared CHannel)を用いて基地局に伝送される。各PUSCH送信部113の出力(時間信号)は合成部115に入力され、合成(加算)が行なわれる。合成部115の処理はD/A変換後でもよいし、前であってもよい。合成部115の出力は送信アンテナ部117から、基地局へ送信される。 The PH output from the first PA information adding unit 303-1 and the second PA information adding unit 303-2 is input to each PUSCH transmission unit 113. FIG. 5 shows an example in which CCs # 1 to # 3 use the first PA and CCs # 4 and # 5 use the second PA, so the first PA information adding unit 303-1 outputs The PH to be input is input to the CC # 1 PUSCH transmission unit 113-1 to CC # 3 PUSCH transmission unit 113-3, and the PH output from the second PA information addition unit 303-2 is the CC # 4 PUSCH transmission unit 113-4, And CC # 5 PUSCH transmission section 113-5. In each PUSCH transmission unit 113, the input PH is transmitted from the physical layer to the upper layer, and then transmitted to the base station using a PUSCH (Physical-Uplink-Shared-CHannel) that is a physical channel for transmitting uplink data. The The output (time signal) of each PUSCH transmission unit 113 is input to the synthesis unit 115, and synthesis (addition) is performed. The processing of the combining unit 115 may be after D / A conversion or before. The output of combining section 115 is transmitted from transmitting antenna section 117 to the base station.
 このように、LTEにおいてPH通知のために確保してある8ビットの制御情報のうち、未使用の上位2ビットをPA情報に使用することで、LTEとの互換性を保ちつつ、基地局がどのCCが同一のPAによって送信されたかを識別できるようになる。この結果、基地局が端末に通知するTPCコマンドを、同一のPAが用いられていることを考慮して決定できるため、効率的なTPCが可能となる。 In this way, among the 8-bit control information reserved for PH notification in LTE, the unused upper 2 bits are used for the PA information, so that the base station can maintain compatibility with LTE. It becomes possible to identify which CC is transmitted by the same PA. As a result, the TPC command notified to the terminal by the base station can be determined in consideration of the fact that the same PA is used, so that efficient TPC is possible.
 [第4の実施形態]
 本実施形態では、第3の実施形態のPA情報付加部303において付加するPA情報ビット系列を適応的に更新する場合について図面を用いて説明する。
[Fourth Embodiment]
In the present embodiment, the case of adaptively updating the PA information bit sequence added by the PA information adding unit 303 of the third embodiment will be described with reference to the drawings.
 図6は、本発明の第4の実施形態に係る移動端末構成を示すブロック図である。受信アンテナ部101では、受信したPDCCHの信号をCC#1PDCCH受信部103-1~CC#5PDCCH受信部103-5に入力する。各PDCCH受信部103は、所要送信電力の算出に必要な制御情報を各所要送信電力算出部105に入力する。各所要送信電力算出部105では、入力された制御情報を基に、各CCにおける所要送信電力を使用PA決定部(使用増幅器決定部)401に入力する。ここで使用PA決定部401の処理について説明を行なう。どのCCがどのPAで送信されるかは、所要送信電力を考慮して決定されるべきである。 FIG. 6 is a block diagram showing a mobile terminal configuration according to the fourth embodiment of the present invention. The receiving antenna unit 101 inputs the received PDCCH signal to the CC # 1 PDCCH receiving unit 103-1 to CC # 5 PDCCH receiving unit 103-5. Each PDCCH receiving unit 103 inputs control information necessary for calculating the required transmission power to each required transmission power calculating unit 105. Each required transmission power calculation unit 105 inputs the required transmission power in each CC to the used PA determination unit (used amplifier determination unit) 401 based on the input control information. Here, the process of the used PA determination unit 401 will be described. Which CC is transmitted by which PA should be determined in consideration of the required transmission power.
 図7Aは、本発明の第4の実施形態に関して、時刻tにおいて、各CCがどのPAで送信されるかを示す図である(CC数が3、PA数が2の場合)。スペクトルの高さは、所要送信電力が高いことを示している。図7Aのように時刻tにおいて、CC#1は、所要送信電力が最も高く、CC#3は所要送信電力が最も低い状況となっている。このような状況下においては、PAへの入力電力に制限があることを考慮すると、CC#2およびCC#3を同じPAによって送信し、CC#1は1つのPAから送信する方が、PAの効率が良い。そこで、使用PA決定部401では、各CCの所要送信電力から、1つのPAがサポートする総送信電力の差が、PA間で最小になるように、PAがサポートするCCの組み合わせを決定する。 FIG. 7A is a diagram showing which PA each CC is transmitted at time t with respect to the fourth embodiment of the present invention (when the number of CCs is 3 and the number of PAs is 2). The height of the spectrum indicates that the required transmission power is high. As shown in FIG. 7A, at time t, CC # 1 has the highest required transmission power and CC # 3 has the lowest required transmission power. Under such circumstances, considering that the input power to the PA is limited, CC # 2 and CC # 3 are transmitted by the same PA, and CC # 1 is transmitted from one PA. Is efficient. Therefore, the used PA determination unit 401 determines the combination of CCs supported by the PA so that the difference in the total transmission power supported by one PA is minimized among the PAs from the required transmission power of each CC.
 図7Bは、本発明の第4の実施形態に関して、時刻t+Tにおいて、各CCがどのPAで送信されるかを示す図である(CC#3の所要送信電力が増加し、3つのCCの中で最も所要送信電力が高くなった場合)。この場合、最も所要送信電力の高いCC#3と他のCCを同一のPAから送信することは、非常に効率が悪い。この場合使用PA決定部401は、伝搬路の状態によって1つのPAがサポートするCCの組み合わせを、適応的に変更する。この結果、PA情報付加部303では、変更されたPAの使用状況に応じて上位2ビットを変更する。なお、本実施形態ではPA間の性能差がないものとしたが、PAの性能差を考慮して、1つのPAがサポートするCCを決定することも可能である。 FIG. 7B is a diagram showing which PA each CC is transmitted at time t + T with respect to the fourth embodiment of the present invention (required transmission power of CC # 3 increases, and among the three CCs). The highest required transmit power). In this case, it is very inefficient to transmit CC # 3 having the highest required transmission power and another CC from the same PA. In this case, the used PA determination unit 401 adaptively changes the combination of CCs supported by one PA depending on the state of the propagation path. As a result, the PA information adding unit 303 changes the upper 2 bits according to the changed usage status of the PA. In this embodiment, it is assumed that there is no performance difference between PAs, but it is also possible to determine CCs supported by one PA in consideration of PA performance differences.
 このように、各CCの所要送信電力を考慮して、PAがサポートするCCを決定することで、PAによる送信電力制限を受けることを極力避けることができるようになるため、PAの性能による送信電力の制限を受けにくくなり、TPCが効果的に動作する。この結果、端末での消費電力を抑えた、効率的な伝送が可能となる。また、所要送信電力に変動あった場合、PHを基地局へ通知するタイミングで、PAがサポートするCCの組み合わせを変更することで、伝搬状況が時間変動した場合においても、適応的に対応できる。 Thus, by determining the CC supported by the PA in consideration of the required transmission power of each CC, it is possible to avoid the transmission power limitation by the PA as much as possible. It becomes difficult to receive power limitation, and TPC operates effectively. As a result, efficient transmission with reduced power consumption at the terminal becomes possible. Further, when the required transmission power varies, the combination of CCs supported by the PA is changed at the timing when the PH is notified to the base station, so that even when the propagation state varies with time, it can be adaptively handled.
105-1~105-5 所要送信電力算出部
107-1~107-5、203、301-1~301-2 PH算出部
109 CC許容最大送信電力設定部
115 合成部
201 所要送信電力合計部
205 許容最大送信電力設定部
303-1~303-2 PA情報付加部
401 使用PA決定部
105-1 to 105-5 Required transmission power calculation units 107-1 to 107-5, 203, 301-1 to 301-2 PH calculation unit 109 CC allowable maximum transmission power setting unit 115 Combining unit 201 Required transmission power totaling unit 205 Allowable maximum transmission power setting sections 303-1 and 303-2 PA information adding section 401 PA used determining section

Claims (10)

  1.  複数のキャリアコンポーネントを用いて情報を送信する送信装置であって、
     前記キャリアコンポーネント数よりも少数の増幅器と、
     前記各キャリアコンポーネントにおける所望の送信電力をそれぞれ算出する所要送信電力算出部と、
     許容最大送信電力を設定する許容最大送信電力設定部と、
     前記許容最大送信電力と前記所要送信電力とのPH(Power Headroom)を算出するPH算出部と、を備えることを特徴とする送信装置。
    A transmission device that transmits information using a plurality of carrier components,
    A smaller number of amplifiers than the number of carrier components;
    A required transmission power calculation unit for calculating desired transmission power in each of the carrier components;
    An allowable maximum transmission power setting section for setting an allowable maximum transmission power; and
    A PH calculation unit that calculates a PH (Power Headroom) between the allowable maximum transmission power and the required transmission power.
  2.  前記許容最大送信電力設定部は、使用するキャリアコンポーネント数に応じて、前記各キャリアコンポーネントにおいて一律に許容最大送信電力を設定することを特徴とする請求項1記載の送信装置。 The transmission apparatus according to claim 1, wherein the allowable maximum transmission power setting unit uniformly sets the allowable maximum transmission power in each of the carrier components according to the number of carrier components to be used.
  3.  前記許容最大送信電力設定部は、前記各キャリアコンポーネントのQoS(Quality Of Service)に応じて、前記キャリアコンポーネント毎に許容最大送信電力を設定することを特徴とする請求項1記載の送信装置。 The transmission apparatus according to claim 1, wherein the allowable maximum transmission power setting unit sets an allowable maximum transmission power for each carrier component according to a QoS (Quality Of Service) of each carrier component.
  4.  前記所要送信電力算出部が出力する所要送信電力値を合計して所要送信電力合計値を出力する所要送信電力合計部をさらに備え、
     前記PH算出部は、
     前記許容最大送信電力と前記所要送信電力合計値とのPHを算出することを特徴とする請求項1記載の送信装置。
    A required transmission power total unit that outputs the required transmission power total value by summing the required transmission power values output by the required transmission power calculation unit;
    The PH calculation unit
    The transmission apparatus according to claim 1, wherein a PH of the allowable maximum transmission power and the total required transmission power is calculated.
  5.  前記PH算出部が出力する情報に、前記増幅器を識別する増幅器情報を付加する増幅器情報付加部をさらに備えることを特徴とする請求項1記載の送信装置。 The transmission apparatus according to claim 1, further comprising an amplifier information adding unit that adds amplifier information for identifying the amplifier to information output from the PH calculating unit.
  6.  前記PH算出部は、PHを示す6ビットの情報を出力し、
     前記増幅器情報付加部は、前記PH算出部が出力する6ビットの情報に、前記増幅器を識別する2ビットの情報を付加することを特徴とする請求項5記載の送信装置。
    The PH calculation unit outputs 6-bit information indicating PH,
    6. The transmission apparatus according to claim 5, wherein the amplifier information adding unit adds 2-bit information for identifying the amplifier to the 6-bit information output from the PH calculating unit.
  7.  伝搬路状態に応じて使用する増幅器を決定する使用増幅器決定部をさらに備えることを特徴とする請求項5記載の送信装置。 6. The transmission apparatus according to claim 5, further comprising a use amplifier determining unit that determines an amplifier to be used in accordance with a propagation path state.
  8.  請求項5から請求項7のいずれかに記載の送信装置から前記増幅器情報を受信し、前記増幅器情報に基づいて、前記各キャリアコンポーネントが送信された増幅器を識別することを特徴とする受信装置。 8. A receiver that receives the amplifier information from the transmitter according to claim 5 and identifies the amplifier to which each carrier component is transmitted based on the amplifier information.
  9.  複数のキャリアコンポーネントを用いて情報を送信する送信装置および前記送信装置から送信された情報を受信する受信装置から構成される通信システムであって、
     前記送信装置は、
     前記キャリアコンポーネント数よりも少数の増幅器と、
     前記各キャリアコンポーネントにおける所望の送信電力をそれぞれ算出する所要送信電力算出部と、
     許容最大送信電力を設定する許容最大送信電力設定部と、
     前記許容最大送信電力と前記所要送信電力とのPH(Power Headroom)を算出するPH算出部と、
     前記PH算出部が出力する情報に、前記増幅器を識別する増幅器情報を付加する増幅器情報付加部と、を備え、
     前記受信装置は、 
     前記送信装置から前記増幅器情報を受信し、
     前記増幅器情報に基づいて、前記各キャリアコンポーネントが送信された増幅器を識別することを特徴とする通信システム。
    A communication system including a transmission device that transmits information using a plurality of carrier components and a reception device that receives information transmitted from the transmission device,
    The transmitter is
    A smaller number of amplifiers than the number of carrier components;
    A required transmission power calculation unit for calculating desired transmission power in each of the carrier components;
    An allowable maximum transmission power setting section for setting an allowable maximum transmission power; and
    A PH calculator that calculates a PH (Power Headroom) between the allowable maximum transmission power and the required transmission power;
    An amplifier information adding unit for adding amplifier information for identifying the amplifier to the information output by the PH calculating unit;
    The receiving device is:
    Receiving the amplifier information from the transmitter;
    A communication system, wherein an amplifier to which each carrier component is transmitted is identified based on the amplifier information.
  10.  キャリアコンポーネント数よりも少数の増幅器を有し、複数のキャリアコンポーネントを用いて情報を送信する送信装置の送信方法であって、
     前記各キャリアコンポーネントにおける所望の送信電力をそれぞれ算出するステップと、
     使用するキャリアコンポーネント数に応じて、前記各キャリアコンポーネントにおいて一律に許容最大送信電力を設定するステップと、
     前記許容最大送信電力と前記所要送信電力とのPH(Power Headroom)を算出するステップと、を少なくとも含むことを特徴とする送信方法。
    A transmission method of a transmission apparatus having a smaller number of amplifiers than the number of carrier components and transmitting information using a plurality of carrier components,
    Calculating each desired transmission power in each of the carrier components;
    In accordance with the number of carrier components to be used, uniformly setting the maximum allowable transmission power in each of the carrier components;
    And calculating a PH (Power Headroom) between the allowable maximum transmission power and the required transmission power.
PCT/JP2010/067251 2009-10-01 2010-10-01 Transmitter apparatus, receiver apparatus, communication system and transmission method WO2011040598A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-229551 2009-10-01
JP2009229551A JP2011077996A (en) 2009-10-01 2009-10-01 Transmitting apparatus, receiving device, communication system and transmitting method

Publications (1)

Publication Number Publication Date
WO2011040598A1 true WO2011040598A1 (en) 2011-04-07

Family

ID=43826403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067251 WO2011040598A1 (en) 2009-10-01 2010-10-01 Transmitter apparatus, receiver apparatus, communication system and transmission method

Country Status (2)

Country Link
JP (1) JP2011077996A (en)
WO (1) WO2011040598A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10057862B2 (en) * 2010-08-17 2018-08-21 Lg Electronics Inc. Apparatus and method for transmitting a power headroom report in a wireless communication system supporting multi-carriers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9059749B2 (en) * 2009-10-02 2015-06-16 Sharp Kabushiki Kaisha Antenna port mode and transmission mode transitions
WO2013137291A1 (en) * 2012-03-15 2013-09-19 京セラ株式会社 Wireless device and wireless transmission method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007760A (en) * 1999-06-18 2001-01-12 Matsushita Electric Ind Co Ltd Cdma communications equipment
JP2001136152A (en) * 1999-11-08 2001-05-18 Denso Corp Communication unit at mobile station side employing cdma system
WO2006082664A1 (en) * 2005-02-01 2006-08-10 Mitsubishi Denki Kabushiki Kaisha Transmission control method, mobile station, and communication system
WO2008052195A2 (en) * 2006-10-26 2008-05-02 Qualcomm Incorporated Subband scheduling and adjusting power amplifier backoff

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007760A (en) * 1999-06-18 2001-01-12 Matsushita Electric Ind Co Ltd Cdma communications equipment
JP2001136152A (en) * 1999-11-08 2001-05-18 Denso Corp Communication unit at mobile station side employing cdma system
WO2006082664A1 (en) * 2005-02-01 2006-08-10 Mitsubishi Denki Kabushiki Kaisha Transmission control method, mobile station, and communication system
WO2008052195A2 (en) * 2006-10-26 2008-05-02 Qualcomm Incorporated Subband scheduling and adjusting power amplifier backoff

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10057862B2 (en) * 2010-08-17 2018-08-21 Lg Electronics Inc. Apparatus and method for transmitting a power headroom report in a wireless communication system supporting multi-carriers
US10595285B2 (en) 2010-08-17 2020-03-17 Lg Electronics Inc. Apparatus and method for transmitting a power headroom report in a wireless communication system supporting multi-carriers
US11363541B2 (en) 2010-08-17 2022-06-14 Lg Electronics Inc. Apparatus and method for transmitting a power headroom report in a wireless communication system supporting multi-carriers

Also Published As

Publication number Publication date
JP2011077996A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP6155317B2 (en) Apparatus and method for uplink power control of a radio transceiver unit using multiple carriers
US11838872B2 (en) Systems and method of power control for uplink transmissions
CN114389664B (en) Wireless communication method, wireless communication device, and storage medium
US8812040B2 (en) Communication system, user equipment, base station, transmit power deciding method, and program
CN110731104A (en) Method and apparatus for controlling transmission power of terminal in wireless communication system
US20100246705A1 (en) Method and apparatus for uplink power control in multiple-input multiple-output
WO2011010618A1 (en) Radio communication system, base station device and mobile station device
CN108282856B (en) Uplink power control method and communication equipment
JP5522835B2 (en) Wireless communication system, wireless transmission device, and wireless transmission method
US20130083767A1 (en) Wireless transmission apparatus, control program, and integrated circuit
WO2012111417A1 (en) Wireless control device, wireless communication system, control program and integrated circuit
WO2015135427A1 (en) Power control method and device
CN102149179B (en) Method and device for controlling power
JP2012191666A (en) Radio communication device and control method
US10973005B2 (en) Methods and related devices for resource allocation
WO2011040598A1 (en) Transmitter apparatus, receiver apparatus, communication system and transmission method
WO2012114830A1 (en) Wireless control device, wireless communication system, control program, and integrated circuit
US10085222B1 (en) Wireless communication system to control transmit power for a wireless repeater chain

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820712

Country of ref document: EP

Kind code of ref document: A1