WO2011040567A1 - Matrix resin composition for fiber-reinforced plastic and fiber-reinforced plastic structure - Google Patents

Matrix resin composition for fiber-reinforced plastic and fiber-reinforced plastic structure Download PDF

Info

Publication number
WO2011040567A1
WO2011040567A1 PCT/JP2010/067145 JP2010067145W WO2011040567A1 WO 2011040567 A1 WO2011040567 A1 WO 2011040567A1 JP 2010067145 W JP2010067145 W JP 2010067145W WO 2011040567 A1 WO2011040567 A1 WO 2011040567A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
resin
weight
parts
particles
Prior art date
Application number
PCT/JP2010/067145
Other languages
French (fr)
Japanese (ja)
Inventor
有 重成
裕之 佐藤
敬 原田
Original Assignee
株式会社Ihi
株式会社Ihiエアロスペース
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, 株式会社Ihiエアロスペース filed Critical 株式会社Ihi
Priority to JP2011513770A priority Critical patent/JPWO2011040567A1/en
Publication of WO2011040567A1 publication Critical patent/WO2011040567A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/44Resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced

Definitions

  • the present invention relates to a matrix resin composition that is applied to a fiber reinforced plastic structure to improve its shock absorption capacity and a fiber reinforced plastic structure having an improved shock absorption capacity.
  • An aircraft jet engine includes, as an example, a fan assembly, a compressor, a combustor, a turbine, and other assemblies. Energy is extracted from the combustion gas by the turbine to drive the fan assembly. A part of the outside air sucked in by the fan assembly is sent to the combustor, and the rest is pushed backward to contribute to thrust. All of these are housed and supported in a fan case.
  • Aluminum and titanium alloys are applied to the fan case to reduce the weight of the jet engine. Aircraft are required to have high safety, and it is necessary to maintain the structure even when a large impact is applied. Naturally, sufficient toughness is considered in the application of such an alloy.
  • a matrix resin composition for fiber-reinforced plastics is a group consisting of a resin containing a resin containing a bisphenol-based epoxy and a curing agent, a polybutadiene rubber, a styrene butadiene rubber, and a butyl rubber. Particles containing one or more selected elastomers and having an average particle diameter of 0.01 to 0.5 ⁇ m, mixed as much as possible in a ratio of 1 to 50 parts by weight with respect to 100 parts by weight of the resin. Particles primarily dispersed in the matrix.
  • the structure is made of a matrix resin that is impregnated with and bonded to fibers made of one or more substances selected from the group consisting of glass, carbon, aramid, alumina, and boron.
  • a composition comprising a matrix containing a resin containing a bisphenol-based epoxy and a curing agent, and one or more elastomers selected from the group consisting of polybutadiene rubber, styrene butadiene rubber and butyl rubber, and having an average particle size of 0
  • a matrix resin composition containing particles that are mixed in a ratio of 1 to 50 parts by weight with respect to 100 parts by weight of the resin and primarily dispersed in the matrix.
  • FIG. 1 is a partial cross-sectional plan view of a fan case of a jet engine according to an embodiment of the present invention.
  • FIG. 2 is a flying object impact test result regarding the fiber-reinforced plastic structure according to the present embodiment, and shows the relationship between the speed immediately after the penetration and the speed immediately before the collision.
  • FIG. 3 also shows the flying object impact test result, showing the relationship of the absorbed energy to the kinetic energy just before the collision.
  • the matrix resin composition for fiber reinforced plastic is composed of a matrix made of an appropriate resin and a curing agent, and in the matrix, appropriate particles for improving the impact absorbing ability of the fiber reinforced plastic are primarily dispersed. is doing.
  • the term “primary dispersion” is used in its ordinary sense as widely recognized by those skilled in the art. It should not be construed as introducing a definition different from the usual meaning, but it means that the particles are dispersed in the medium in the state of primary particles, i.e. the individual particles are independent of each other without agglomeration. It can be explained that it is.
  • a resin (component A) having high strength and small shrinkage upon curing is advantageous.
  • examples of such a resin include bisphenol epoxy resins containing bisphenol A or bisphenol F, but other resins may be used.
  • the additive component (component B) may be included in the resin.
  • a modified epoxy resin may be added for the purpose of improving heat resistance.
  • the modified epoxy resin include a bifunctional epoxy resin having a naphthalene skeleton and a phenoxy resin having a hydroxyl group in the molecule.
  • Component B may be a mixture of two or more modified epoxy resins. From the viewpoint of heat resistance, addition of 0% by weight or more of the modified epoxy resin is preferable, and addition of 2% by weight or more is more preferable with respect to the whole resin. However, from the viewpoint of toughness, the addition of 80% by weight or less is preferable, the addition of 50% by weight or less is more preferable, and the addition of 30% by weight or less is more preferable.
  • component C may be added instead of or in addition to the modified epoxy resin.
  • a polyfunctional epoxy resin can be mentioned, and specific examples thereof include, for example, triglycidylparaaminophenol as a trifunctional group, tetraglycidylparaaminomethane as a tetrafunctional group, and a novolac type.
  • An epoxy resin can be illustrated.
  • Component C may be a mixture of two or more of these. From the viewpoint of heat resistance, addition of 0% by weight or more of the polyfunctional epoxy resin is preferable, and addition of 2% by weight or more is more preferable with respect to the whole resin. However, from the viewpoint of toughness, the addition of 80% by weight or less is preferable, the addition of 50% by weight or less is more preferable, and the addition of 30% by weight or less is more preferable.
  • Component A is substantially the remainder excluding components B and C in the entire resin. From the viewpoint of imparting sufficient flexibility to the fiber reinforced plastic precursor before curing, the component A is preferably 20% by weight or more based on the entire resin.
  • a curing agent (component D) is usually added to the epoxy resin.
  • a curing agent suitable for the epoxy resin as is generally known, an amine curing agent, an acid anhydride curing agent, or a phenol curing agent can be used. Or a catalyst hardening
  • curing agent can be utilized and an imidazole and a boron trichloride type
  • group amine complex are mentioned as such an example. Alternatively, a mixture of two or more of these may be used.
  • amine-based curing agents such as benzenediamine, diaminodimethylmethane or methanephenylenediamine are advantageous from the viewpoint of toughness and impact absorption ability.
  • curing agent is added so that it may become an equivalent with respect to the epoxy group in an epoxy resin.
  • a small amount of salicylic acid or boron trifluoride ethylamine complex may be added for the purpose of adjusting the reaction rate during curing.
  • an elastomer having a deformability larger than that of the resin is suitable.
  • Such particles absorb the applied impact energy by deformation, thereby improving the toughness of the fiber reinforced plastic and taking away the kinetic energy from the impactor and reducing its velocity.
  • examples of such particles include polybutadiene rubber, styrene butadiene rubber, and butyl rubber. Alternatively, two or more of these may be applied.
  • particles having a so-called core-shell structure in which one or more kinds of these elastomers are used as a core and each core is included in a shell layer can be applied.
  • Vinyl chloride can be applied to the shell layer, but acrylic resin can be applied instead of or together with this.
  • the particle diameter is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more.
  • the particle diameter is preferably 0.5 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • other particle diameters can be used if possible.
  • the elastomer in the particles has an appropriate ratio with respect to the resin. That is, if the elastomer is 1 part by weight or more with respect to 100 parts by weight of the resin, improvement in impact absorbing ability can be expected, and more preferably 2 parts by weight or more. If the ratio of the elastomer is excessive, there will be a problem in dispersibility, so it is 50 parts by weight or less, more preferably 30 parts by weight or less, and even more preferably 25 parts by weight or less. However, a mixing ratio exceeding these ranges may be used if possible.
  • the particles are aggregated in the matrix, the distribution of the particles is biased, and the particles are preferentially broken at a dense portion, and as a result, sufficient toughness and shock absorbing ability may not be obtained. Therefore, in order to obtain a sufficient shock absorption capacity, it is preferable that the particles are primarily dispersed.
  • the particles containing the elastomer can be obtained by either wet or dry methods. However, when placed in a dry state, the particles aggregate with each other due to the inherent van der Waals force and electrostatic attraction, and the aggregated particles are difficult to be primarily dispersed. Therefore, it is preferable to introduce and disperse the particles into the matrix without passing through a dry state.
  • particles obtained in the form of an aqueous latex are mixed with an appropriate organic solvent, and the aqueous phase is separated and removed to obtain particles that are primarily dispersed in the organic solvent. This is mixed with the resin, and the organic solvent is separated and removed if necessary.
  • An organic solvent that can be mixed with an aqueous phase can be used.
  • Such organic solvents include alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone, ethers such as diethyl ether and dioxane, esters such as methyl acetate and ethyl acetate, aromatic hydrocarbons such as toluene, and chloroform. Examples thereof include halogenated hydrocarbons.
  • the aqueous phase may be separated and removed after further mixing with an organic solvent that is not mixed with the aqueous phase.
  • the primary dispersion may be by other methods if possible.
  • each component in the resin and the mixing of the particles into the resin may be performed in any order. That is, after mixing each component in resin, you may mix particle
  • particles may be mixed in advance with any of the above components, for example, an epoxy resin, and then the B and C components and the curing agent may be mixed therewith. Further, the mixing ratio may be adjusted by further mixing an epoxy resin with an epoxy resin in which particles are previously mixed. The above mixing ratio is the resulting mixing ratio.
  • the matrix resin composition prepared as described above is impregnated into an appropriate bundle of reinforcing fibers.
  • the reinforcing fiber may be any of glass, carbon, aramid, alumina, and boron, or other appropriate fiber.
  • Reinforcing fibers consist of long fibers oriented in one direction, a set of long fibers oriented and laminated in multiple directions, a set of long fibers laminated and stitched together, a two-dimensional fabric of long fibers, Any form of a three-dimensional textile fabric may be used. Further, short fibers may be randomly dispersed in the matrix resin composition.
  • a fiber-reinforced plastic precursor is constituted by the reinforcing fiber and the matrix resin composition impregnated therein.
  • the fiber reinforced plastic precursor is formed into a target structure by an appropriate means such as a press. After molding or simultaneously with molding, the fiber reinforced plastic precursor is pressurized and heated by means such as autoclave, and the resin is cured.
  • the pressurization is, for example, 0.5 to 1 MPa, but is not necessarily limited thereto.
  • the temperature rise is, for example, about 100 to 200 ° C. for several hours, but is not limited to this.
  • the matrix resin composition bonds the fibers to each other by curing, thereby completing the fiber-reinforced plastic structure.
  • the following epoxy resin was prepared as component A.
  • A-1 Bisphenol F type epoxy resin generally available from Mitsubishi Chemical Corporation under the trade name jer806 (A-2) Same jer807: Bisphenol A type epoxy resin (A-3) Same jer1001: Solid bisphenol A type Epoxy resin (A-4) Similarly jer4004P: Solid bisphenol F type epoxy resin As component B, the following modified epoxy resin was prepared.
  • D-1) Amine-based curing agent generally available from Mitsubishi Chemical Corporation under the trade name JerW (D-2) Diaminodiphenylmethane (DDM) generally available from Mitsubishi Chemical Corporation under the trade name EK150D As Component E, the following particles were prepared. In these, the particles are preliminarily dispersed in the epoxy resin in advance.
  • E-1 Bisphenol A type epoxy resin containing 25 wt% styrene butadiene rubber particles generally available from Kaneka Corporation
  • E-2 Containing 25 wt% polybutadiene rubber particles generally available from Kaneka Corporation
  • Bisphenol F type epoxy resin Bisphenol A type epoxy resin containing 25% by weight of polybutadiene rubber particles generally available from Kaneka Corporation
  • Hitachi Chemical Co., Ltd. under the trade name MHAC-P as a curing agent
  • EHC-30 as a commonly available acid anhydride curing agent (methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride) HUNTSMAN Co., Ltd.
  • the above components were mixed at the mixing ratios listed in Table 1 and Table 2, respectively, to prepare 17 types of matrix resin composition samples T-1 to T-12 and C-1 to C-5.
  • Each sample was impregnated by a solvent method into a carbon fiber sheet (generally available from Toray Industries, Inc. under the trade name T800S-24K) so that the resin content was 36% by mass.
  • Each of the carbon fiber sheets impregnated with the sample was further laminated to obtain a fiber reinforced plastic precursor.
  • the laminated layers are four layers, and the layers are oriented so that the orientations of the fibers are different from each other.
  • the orientations of the layers are 0 °, 90 °, 45 °, and ⁇ 45 ° with respect to the reference direction.
  • such a lamination method is referred to as pseudo-isotropic lamination.
  • each was introduced into an autoclave, applied with 0.6 MPa, heated at 100 ° C. for 2 hours, and subsequently heated at 120 ° C. for 1 hour, Furthermore, it heated at 180 degreeC continuously for 6 hours.
  • the dimension of the sample after curing is 200 mm long ⁇ 150 mm wide ⁇ 5 mm thick.
  • a titanium bullet with a diameter of 10 mm and a length of 12 mm was fired at 220 m / sec perpendicularly to the surface of these specimens, and shot with a high-speed camera before and after the impact. did.
  • the velocity immediately before and after the collision was calculated.
  • the impact absorption rate was calculated from the calculated speed by the following formula.
  • the value of the shock absorption rate increases as the speed after penetration is smaller than the speed before the collision (the degree of shock absorption is large).
  • Samples T-1 to T-12 containing particles containing primarily dispersed elastomer exhibit a higher impact absorption rate than samples C-1 to C-5 containing no particles. That is, they are excellent in terms of impact absorbing ability.
  • Samples T-1 to T-3, T-7 to T-9, T-11, T-12 and C-1 containing an amine-based curing agent are compared with samples not containing an amine-based curing agent. The impact absorption rate tends to be high.
  • C-6 Tetraglycidyldiaminodiphenylmethane (available from Sumitomo Chemical Co., Ltd. under the trade name ELM434) + 10 parts by weight of bisphenol F type epoxy resin (available from DIC Corporation under the trade name of Epicron 380) +4 4'-diaminodiphenylsulfone (available from Sumitomo Chemical Co., Ltd.
  • a cylindrical steel flying object having a diameter of 13 mm and a length of 13 mm was shot into these samples perpendicularly to the surface, and the flying object was I shot it with a high-speed camera before and after the collision. Unlike the above test, each test was performed at various flying object speeds. By measuring the position of the bullet from the image, the velocity immediately before and after the collision was calculated. Further, the kinetic energy of the flying object just before the collision and the energy absorbed by the sample were calculated from the calculated speed. Table 3 shows the measurement results.
  • the measurement results of speed are shown in FIG.
  • the critical speed is about 200 m / s for T-3, about 180 m / s for T-4, and about 150 m / s for C-4. That is, the samples T-3 and T-4 containing the particles containing the primary dispersed elastomer have higher performance to prevent the flying object from penetrating than the sample C-4 containing no particles.
  • Fig. 3 shows the measurement results of kinetic energy.
  • the energy Eab absorbed by the sample does not depend much on the kinetic energy Ei immediately before the collision, and is about 300 J for T-3, about 230 J for T-4, C-4 And in the case of C-6, it is about 180J.
  • the samples T-3 and T-4 containing the particles containing the primary dispersed elastomer are more capable of absorbing the kinetic energy of the flying object, that is, the shock absorbing ability than the samples C-4 and C-6 containing no particles. Is expensive.
  • the matrix resin composition and the fiber reinforced plastic of the present embodiment are lightweight and are suitable for structures that require toughness and shock absorption capability.
  • An example of such a structure is the fan case of the jet engine shown in FIG.
  • the application is not limited to this, and the fuel tank and the body of various transportation vehicles are widely used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

Disclosed is a fiber-reinforced plastic structure, comprising: fibers comprising one or more substances selected from a group consisting of glass, carbon, aramid, alumina, and boron; and a matrix resin composition with which the fibers are impregnated and bonded to one another. The matrix resin composition comprises: a matrix containing a bisphenol-based epoxy-containing resin and a curing agent; and particles containing one or more elastomers selected from a group consisting of polybutadiene rubber, styrene butadiene rubber, and butyl rubber, having an average particle diameter of from 0.01 to 0.5 μm, and primarily dispersed in the matrix by mixing with the matrix in an amount of from 1 to 50 parts by weight based on 100 parts by weight of the resin.

Description

繊維強化プラスチック用のマトリックス樹脂組成物及び繊維強化プラスチック構造体Matrix resin composition for fiber reinforced plastic and fiber reinforced plastic structure
 本発明は、繊維強化プラスチック構造体に適用されてその衝撃吸収能を改善するマトリックス樹脂組成物および改善された衝撃吸収能を有する繊維強化プラスチック構造体に関する。 The present invention relates to a matrix resin composition that is applied to a fiber reinforced plastic structure to improve its shock absorption capacity and a fiber reinforced plastic structure having an improved shock absorption capacity.
 航空機のジェットエンジンは、一例として、ファンアセンブリ、コンプレッサ、燃焼器、タービンおよびその他のアセンブリを備える。タービンにより燃焼ガスからエネルギが取り出されてファンアセンブリが駆動される。ファンアセンブリにより吸入された外気は、その一部が燃焼器に送られ、残りは後方に押し出されることで推力に寄与する。これらの全体はファンケースに収容されて支持される。 An aircraft jet engine includes, as an example, a fan assembly, a compressor, a combustor, a turbine, and other assemblies. Energy is extracted from the combustion gas by the turbine to drive the fan assembly. A part of the outside air sucked in by the fan assembly is sent to the combustor, and the rest is pushed backward to contribute to thrust. All of these are housed and supported in a fan case.
 ジェットエンジンの軽量化のために、アルミニウムやチタニウムの合金がファンケースに適用されている。航空機には高い安全性が要求され、大きな衝撃が印加される場合にも構造を維持することが必要であって、かかる合金の適用には当然に十分な靭性が考慮されている。 ∙ Aluminum and titanium alloys are applied to the fan case to reduce the weight of the jet engine. Aircraft are required to have high safety, and it is necessary to maintain the structure even when a large impact is applied. Naturally, sufficient toughness is considered in the application of such an alloy.
 近年、航空機のさらなる軽量化のために、繊維強化プラスチックをその素材として適用する試みが為されている。翼や胴体の一部に繊維強化プラスチックが適用可能であることが知られている。日本国特許公開2006-305867号は関連する技術を開示している。 In recent years, attempts have been made to apply fiber reinforced plastic as a material for further weight reduction of aircraft. It is known that a fiber reinforced plastic can be applied to a part of a wing or a fuselage. Japanese Patent Publication No. 2006-305867 discloses related technology.
 繊維強化プラスチックをファンケースに適用するには、安全性の点で靭性の他にもなお留意すべき特性があり、発明者らによる検討によれば、そのひとつは衝撃吸収能である。例えば内部の部材が破損して高速でファンケースに衝突した時に、かかる部材が高速なまま外部に脱出すると、他の構造部材をも破壊しかねない。すなわちファンケースは、かかる部材が外部に飛び出すことを妨げ、あるいはその運動エネルギを十分に吸収することが必要である。繊維強化プラスチックは、一般に靭性の点で懸念がある上、衝撃吸収能の点でもなお改善の余地がある。本発明は、繊維強化プラスチックの用途を拡大するべく、かかる課題に鑑みて為されたものである。 In applying a fiber reinforced plastic to a fan case, there are characteristics to be noted in addition to toughness in terms of safety, and according to studies by the inventors, one of them is shock absorbing ability. For example, when an internal member is damaged and collides with the fan case at a high speed, if the member escapes to the outside at a high speed, other structural members may be destroyed. That is, the fan case needs to prevent such a member from jumping out or to sufficiently absorb its kinetic energy. Fiber reinforced plastics are generally concerned about toughness and still have room for improvement in terms of impact absorption. The present invention has been made in view of such problems in order to expand the application of fiber-reinforced plastics.
 本発明の第1の局面によれば、繊維強化プラスチック用のマトリックス樹脂組成物は、ビスフェノール系エポキシを含む樹脂と、硬化剤と、を含むマトリックスと、ポリブタジエンゴム、スチレンブタジエンゴムおよびブチルゴムよりなる群より選択された一以上のエラストマを含み、平均粒子径において0.01乃至0.5μmである粒子であって、前記樹脂の100重量部に対して1乃至50重量部の割合となるべく混合されて前記マトリックス中に一次分散した粒子と、を備える。 According to the first aspect of the present invention, a matrix resin composition for fiber-reinforced plastics is a group consisting of a resin containing a resin containing a bisphenol-based epoxy and a curing agent, a polybutadiene rubber, a styrene butadiene rubber, and a butyl rubber. Particles containing one or more selected elastomers and having an average particle diameter of 0.01 to 0.5 μm, mixed as much as possible in a ratio of 1 to 50 parts by weight with respect to 100 parts by weight of the resin. Particles primarily dispersed in the matrix.
 本発明の第2の局面によれば、構造体は、ガラス、炭素、アラミド、アルミナおよびボロンよりなる群より選択された一以上の物質よりなる繊維と、前記繊維に含浸して結合するマトリックス樹脂組成物であって、ビスフェノール系エポキシを含む樹脂と、硬化剤と、を含むマトリックスと、ポリブタジエンゴム、スチレンブタジエンゴムおよびブチルゴムよりなる群より選択された一以上のエラストマを含み、平均粒子径において0.01乃至0.5μmであり、前記樹脂の100重量部に対して1乃至50重量部の割合で混合されて前記マトリックス中に一次分散した粒子と、を含むマトリックス樹脂組成物と、を備える。 According to the second aspect of the present invention, the structure is made of a matrix resin that is impregnated with and bonded to fibers made of one or more substances selected from the group consisting of glass, carbon, aramid, alumina, and boron. A composition comprising a matrix containing a resin containing a bisphenol-based epoxy and a curing agent, and one or more elastomers selected from the group consisting of polybutadiene rubber, styrene butadiene rubber and butyl rubber, and having an average particle size of 0 And a matrix resin composition containing particles that are mixed in a ratio of 1 to 50 parts by weight with respect to 100 parts by weight of the resin and primarily dispersed in the matrix.
図1は本発明の一実施形態によるジェットエンジンのファンケースの部分断面平面図である。FIG. 1 is a partial cross-sectional plan view of a fan case of a jet engine according to an embodiment of the present invention. 図2は本実施形態による繊維強化プラスチック構造体に関する飛翔体衝撃試験結果であって、衝突直前の速度に対する貫通直後の速度の関係を示している。FIG. 2 is a flying object impact test result regarding the fiber-reinforced plastic structure according to the present embodiment, and shows the relationship between the speed immediately after the penetration and the speed immediately before the collision. 図3も飛翔体衝撃試験結果であって、衝突直前の運動エネルギに対する吸収エネルギの関係を示している。FIG. 3 also shows the flying object impact test result, showing the relationship of the absorbed energy to the kinetic energy just before the collision.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本実施形態によれば、繊維強化プラスチック用のマトリックス樹脂組成物は、適宜の樹脂および硬化剤よりなるマトリックスよりなり、前記マトリックスには、繊維強化プラスチックの衝撃吸収能を高める適宜の粒子が一次分散している。本明細書および添付の請求の範囲を通して、「一次分散」なる語は当業者に広範に認められた通常の意味で使用される。通常の意味と異なる定義を導入するものと解釈すべきではないが、その意味は、粒子が一次粒子の状態、すなわち個々の粒子が互いに凝集せずに独立している状態で、媒体に分散していることであると説明できる。 According to the present embodiment, the matrix resin composition for fiber reinforced plastic is composed of a matrix made of an appropriate resin and a curing agent, and in the matrix, appropriate particles for improving the impact absorbing ability of the fiber reinforced plastic are primarily dispersed. is doing. Throughout this specification and the appended claims, the term “primary dispersion” is used in its ordinary sense as widely recognized by those skilled in the art. It should not be construed as introducing a definition different from the usual meaning, but it means that the particles are dispersed in the medium in the state of primary particles, i.e. the individual particles are independent of each other without agglomeration. It can be explained that it is.
 前記樹脂としては、高強度を有し、硬化時の収縮が小さい樹脂(成分A)が有利である。そのような樹脂としては、ビスフェノールAあるいはビスフェノールFを含むビスフェノール系エポキシ樹脂が例示できるが、他の樹脂でもよい。 As the resin, a resin (component A) having high strength and small shrinkage upon curing is advantageous. Examples of such a resin include bisphenol epoxy resins containing bisphenol A or bisphenol F, but other resins may be used.
 前記樹脂には、添加成分(成分B)が含まれていてもよい。例えば耐熱性を向上せしめる等の目的で、変性エポキシ樹脂が添加されていてもよい。変性エポキシ樹脂としては、ナフタレン骨格を有する2官能型エポキシ樹脂や、分子内に水酸基を有するフェノキシ樹脂等を例示することができる。成分Bは、2種以上の変性エポキシ樹脂の混合物であってもよい。耐熱性の観点から変性エポキシ樹脂の0重量%以上の添加は好ましく、樹脂の全体に対して2重量%以上の添加がより好ましい。ただし靭性の観点からは、樹脂の全体に対して80重量%以下の添加が好ましく、50重量%以下の添加がより好ましく、30重量%以下の添加はさらに好ましい。 The additive component (component B) may be included in the resin. For example, a modified epoxy resin may be added for the purpose of improving heat resistance. Examples of the modified epoxy resin include a bifunctional epoxy resin having a naphthalene skeleton and a phenoxy resin having a hydroxyl group in the molecule. Component B may be a mixture of two or more modified epoxy resins. From the viewpoint of heat resistance, addition of 0% by weight or more of the modified epoxy resin is preferable, and addition of 2% by weight or more is more preferable with respect to the whole resin. However, from the viewpoint of toughness, the addition of 80% by weight or less is preferable, the addition of 50% by weight or less is more preferable, and the addition of 30% by weight or less is more preferable.
 同様に耐熱性を向上せしめる等の目的で、変性エポキシ樹脂に代えて、あるいは加えて、他の成分(成分C)が添加されていてもよい。そのような例として多官能型エポキシ樹脂が挙げられ、その具体例としては、例えば3官能基のものとしてトリグリシジルパラアミノフェノール、4官能基のものとしてテトラグリシジルパラアミノメタンが例示でき、またノボラック型のエポキシ樹脂が例示できる。あるいは成分Cは、これらの2種以上の混合物であってもよい。耐熱性の観点から多官能型エポキシ樹脂の0重量%以上の添加は好ましく、樹脂の全体に対して2重量%以上の添加がより好ましい。ただし靭性の観点からは、樹脂の全体に対して80重量%以下の添加が好ましく、50重量%以下の添加がより好ましく、30重量%以下の添加はさらに好ましい。 Similarly, for the purpose of improving the heat resistance, other components (component C) may be added instead of or in addition to the modified epoxy resin. As such an example, a polyfunctional epoxy resin can be mentioned, and specific examples thereof include, for example, triglycidylparaaminophenol as a trifunctional group, tetraglycidylparaaminomethane as a tetrafunctional group, and a novolac type. An epoxy resin can be illustrated. Alternatively, Component C may be a mixture of two or more of these. From the viewpoint of heat resistance, addition of 0% by weight or more of the polyfunctional epoxy resin is preferable, and addition of 2% by weight or more is more preferable with respect to the whole resin. However, from the viewpoint of toughness, the addition of 80% by weight or less is preferable, the addition of 50% by weight or less is more preferable, and the addition of 30% by weight or less is more preferable.
 成分Aは、樹脂の全体において、成分B,Cを除く実質的に残部である。硬化前の繊維強化プラスチック前駆体に十分な柔軟性を付与する観点からは、成分Aは樹脂の全体に対して20重量%以上であることが好ましい。 Component A is substantially the remainder excluding components B and C in the entire resin. From the viewpoint of imparting sufficient flexibility to the fiber reinforced plastic precursor before curing, the component A is preferably 20% by weight or more based on the entire resin.
 エポキシ樹脂には、通常、硬化剤(成分D)が添加される。エポキシ樹脂に好適な硬化剤としては、一般に知られているように、アミン系硬化剤、酸無水物系硬化剤、あるいはフェノール系硬化剤が利用できる。あるいは触媒硬化剤を利用することができ、そのような例としてイミダゾール、三塩化ホウ素系アミン錯体が挙げられる。あるいはこれらの2種以上の混合物であってもよい。これらの中で、アミン系硬化剤、例えばベンゼンジアミン、ジアミノジメチルメタンあるいはメタンフェニレンジアミンは、靭性および衝撃吸収能の観点から有利である。通常、エポキシ樹脂中のエポキシ基に対して当量となるように硬化剤を添加する。また硬化の際の反応速度を調整する目的で、サリチル酸あるいは三フッ化ホウ素エチルアミン錯体等が微量添加されてもよい。 A curing agent (component D) is usually added to the epoxy resin. As a curing agent suitable for the epoxy resin, as is generally known, an amine curing agent, an acid anhydride curing agent, or a phenol curing agent can be used. Or a catalyst hardening | curing agent can be utilized and an imidazole and a boron trichloride type | system | group amine complex are mentioned as such an example. Alternatively, a mixture of two or more of these may be used. Among these, amine-based curing agents such as benzenediamine, diaminodimethylmethane or methanephenylenediamine are advantageous from the viewpoint of toughness and impact absorption ability. Usually, a hardening | curing agent is added so that it may become an equivalent with respect to the epoxy group in an epoxy resin. A small amount of salicylic acid or boron trifluoride ethylamine complex may be added for the purpose of adjusting the reaction rate during curing.
 繊維強化プラスチックの衝撃吸収能を高める粒子としては、前記樹脂よりも大きな変形能を有するエラストマが好適である。かかる粒子は、印加された衝撃エネルギを変形により吸収し、以って繊維強化プラスチックの靭性を改善すると共に、衝突体から運動エネルギを奪ってその速度を減ずる。そのような粒子の例としては、ポリブタジエンゴム、スチレンブタジエンゴム、ブチルゴムを列挙することができる。あるいはこれらの2種以上を適用してもよい。 As the particles for enhancing the impact absorbing ability of the fiber reinforced plastic, an elastomer having a deformability larger than that of the resin is suitable. Such particles absorb the applied impact energy by deformation, thereby improving the toughness of the fiber reinforced plastic and taking away the kinetic energy from the impactor and reducing its velocity. Examples of such particles include polybutadiene rubber, styrene butadiene rubber, and butyl rubber. Alternatively, two or more of these may be applied.
 あるいはこれらの1種以上のエラストマをコアとして、コアがそれぞれシェル層に包含された、所謂コアシェル構造の粒子を適用することもできる。シェル層には、塩化ビニルが適用できるが、これに代えて、またはこれと共に、アクリル樹脂が適用できる。 Alternatively, particles having a so-called core-shell structure in which one or more kinds of these elastomers are used as a core and each core is included in a shell layer can be applied. Vinyl chloride can be applied to the shell layer, but acrylic resin can be applied instead of or together with this.
 ハンドリングの容易さの点から、粒子の径は好ましくは0.01μm以上であり、より好ましくは0.05μm以上である。一方、均一な分散を促す点から、粒子の径は小さいほうが有利であり、粒子径は好ましくは0.5μm以下、より好ましくは0.2μm以下である。もちろん可能ならばこれ以外の粒子径を採用することができる。 From the viewpoint of ease of handling, the particle diameter is preferably 0.01 μm or more, more preferably 0.05 μm or more. On the other hand, from the viewpoint of promoting uniform dispersion, it is advantageous that the particle diameter is small, and the particle diameter is preferably 0.5 μm or less, more preferably 0.2 μm or less. Of course, other particle diameters can be used if possible.
 粒子中のエラストマは、樹脂に対して適宜の比となることが好ましい。すなわち樹脂の100重量部に対してエラストマが1重量部以上であれば、衝撃吸収能の改善が期待でき、より好ましくは2重量部以上である。エラストマの比が過大であると分散性に問題が生ずるので、50重量部以下、より好ましくは30重量部以下、さらに好ましくは25重量部以下である。ただし、可能ならばこれらの範囲を越える混合比であってもよい。 It is preferable that the elastomer in the particles has an appropriate ratio with respect to the resin. That is, if the elastomer is 1 part by weight or more with respect to 100 parts by weight of the resin, improvement in impact absorbing ability can be expected, and more preferably 2 parts by weight or more. If the ratio of the elastomer is excessive, there will be a problem in dispersibility, so it is 50 parts by weight or less, more preferably 30 parts by weight or less, and even more preferably 25 parts by weight or less. However, a mixing ratio exceeding these ranges may be used if possible.
 マトリックス中において粒子が凝集していると、粒子の分布に偏りが生じ、粒子が密な部分において優先して破壊が起こり、結果的に十分な靭性や衝撃吸収能が得られない虞がある。従って十分な衝撃吸収能を得るためには、粒子は一次分散していることが好ましい。 If the particles are aggregated in the matrix, the distribution of the particles is biased, and the particles are preferentially broken at a dense portion, and as a result, sufficient toughness and shock absorbing ability may not be obtained. Therefore, in order to obtain a sufficient shock absorption capacity, it is preferable that the particles are primarily dispersed.
 エラストマを含む粒子は、湿式と乾式の何れでも得ることができる。しかし乾燥状態におかれると、固有のファンデルワールス力や静電引力によって粒子は互いに凝集し、一旦凝集した粒子は一次分散し難い。そこで、乾燥状態を経ることなく粒子をマトリックス中に導入し、分散せしめることが好ましい。例えば、水性ラテックスの状態で得られた粒子を、適宜の有機溶媒に混合し、水相を分離除去することにより、有機溶媒中に一次分散した粒子を得る。これを樹脂と混合し、必要ならば有機溶媒を分離除去する。有機溶媒は水相との混合が可能であるものが利用できる。そのような有機溶媒としては、メタノールやエタノールのごときアルコール、アセトンやメチルエチルケトンのごときケトン、ジエチルエーテルやジオキサンのごときエーテル、酢酸メチルや酢酸エチルのごときエステル、トルエンのごとき芳香族炭化水素、クロロホルムのごときハロゲン化炭化水素が例示できる。さらに、水相との混合が可能な有機溶媒と混合した後、水相と混合されない有機溶媒とさらに混合した後、水相を分離除去してもよい。あるいは可能ならば、一次分散は他の方法によってもよい。 The particles containing the elastomer can be obtained by either wet or dry methods. However, when placed in a dry state, the particles aggregate with each other due to the inherent van der Waals force and electrostatic attraction, and the aggregated particles are difficult to be primarily dispersed. Therefore, it is preferable to introduce and disperse the particles into the matrix without passing through a dry state. For example, particles obtained in the form of an aqueous latex are mixed with an appropriate organic solvent, and the aqueous phase is separated and removed to obtain particles that are primarily dispersed in the organic solvent. This is mixed with the resin, and the organic solvent is separated and removed if necessary. An organic solvent that can be mixed with an aqueous phase can be used. Such organic solvents include alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone, ethers such as diethyl ether and dioxane, esters such as methyl acetate and ethyl acetate, aromatic hydrocarbons such as toluene, and chloroform. Examples thereof include halogenated hydrocarbons. Furthermore, after mixing with an organic solvent that can be mixed with the aqueous phase, the aqueous phase may be separated and removed after further mixing with an organic solvent that is not mixed with the aqueous phase. Alternatively, the primary dispersion may be by other methods if possible.
 樹脂中の各成分の混合と、樹脂への粒子の混合とは、何れの順で実行してもよい。すなわち、樹脂中の各成分を互いに混合した後に、かかる樹脂に粒子を混合してもよい。あるいは、上記成分の何れか、例えばエポキシ樹脂に予め粒子を混合し、その後にこれにB,C成分や硬化剤を混合してもよい。また、予め粒子を混合したエポキシ樹脂に更にエポキシ樹脂を混合することにより、その混合比を調整してもよい。上述の混合比は、結果としての混合比である。 The mixing of each component in the resin and the mixing of the particles into the resin may be performed in any order. That is, after mixing each component in resin, you may mix particle | grains in this resin. Alternatively, particles may be mixed in advance with any of the above components, for example, an epoxy resin, and then the B and C components and the curing agent may be mixed therewith. Further, the mixing ratio may be adjusted by further mixing an epoxy resin with an epoxy resin in which particles are previously mixed. The above mixing ratio is the resulting mixing ratio.
 上述により調製されたマトリックス樹脂組成物は、適宜の強化繊維の束に含浸させる。強化繊維は、ガラス、炭素、アラミド、アルミナおよびボロンの何れでもよく、また他の適宜の繊維でもよい。 The matrix resin composition prepared as described above is impregnated into an appropriate bundle of reinforcing fibers. The reinforcing fiber may be any of glass, carbon, aramid, alumina, and boron, or other appropriate fiber.
 強化繊維は、一方向に配向した長繊維、複数の方向にそれぞれ配向して積層された長繊維の組、積層されて互いに縫い合わされた長繊維の組、長繊維の2次元的な織物、長繊維の3次元的な織物の何れの形態でもよい。また、マトリックス樹脂組成物中に、短繊維をランダムに分散させてもよい。強化繊維と、これに含浸したマトリックス樹脂組成物とにより、繊維強化プラスチック前駆体が構成される。 Reinforcing fibers consist of long fibers oriented in one direction, a set of long fibers oriented and laminated in multiple directions, a set of long fibers laminated and stitched together, a two-dimensional fabric of long fibers, Any form of a three-dimensional textile fabric may be used. Further, short fibers may be randomly dispersed in the matrix resin composition. A fiber-reinforced plastic precursor is constituted by the reinforcing fiber and the matrix resin composition impregnated therein.
 繊維強化プラスチック前駆体は、プレス等の適宜の手段により、目的の構造体の形状に成形される。成形後、あるいは成形と同時に、オートクレーブ等の手段により繊維強化プラスチック前駆体は加圧され昇温され、以って樹脂が硬化する。加圧は例えば0.5ないし1MPaだが、必ずしもこれに限られない。また昇温は、例えば100ないし200℃で数時間の程度だが、必ずしもこれに限られない。マトリックス樹脂組成物は、硬化により繊維間を互いに結合し、以って繊維強化プラスチック構造体が完成する。 The fiber reinforced plastic precursor is formed into a target structure by an appropriate means such as a press. After molding or simultaneously with molding, the fiber reinforced plastic precursor is pressurized and heated by means such as autoclave, and the resin is cured. The pressurization is, for example, 0.5 to 1 MPa, but is not necessarily limited thereto. The temperature rise is, for example, about 100 to 200 ° C. for several hours, but is not limited to this. The matrix resin composition bonds the fibers to each other by curing, thereby completing the fiber-reinforced plastic structure.
 効果を検証するために、下記の各例について衝撃試験を実施した。 In order to verify the effect, impact tests were conducted on the following examples.
 成分Aとして、下記のエポキシ樹脂を用意した。 The following epoxy resin was prepared as component A.
 (A-1)jer806の商品名で三菱化学株式会社より一般に入手可能なビスフェノールF型エポキシ樹脂
 (A-2)同じくjer807:ビスフェノールA型エポキシ樹脂
 (A-3)同じくjer1001:固形のビスフェノールA型エポキシ樹脂
 (A-4)同じくjer4004P:固形のビスフェノールF型エポキシ樹脂
 成分Bとして、下記の変性エポキシ樹脂を用意した。
(A-1) Bisphenol F type epoxy resin generally available from Mitsubishi Chemical Corporation under the trade name jer806 (A-2) Same jer807: Bisphenol A type epoxy resin (A-3) Same jer1001: Solid bisphenol A type Epoxy resin (A-4) Similarly jer4004P: Solid bisphenol F type epoxy resin As component B, the following modified epoxy resin was prepared.
 (B)HP4032の商品名でDIC株式会社より一般に入手可能なナフタレン骨格含有エポキシ樹脂
 成分Cとして、下記の多官能型エポキシ樹脂を用意した。
(B) Naphthalene skeleton-containing epoxy resin generally available from DIC Corporation under the trade name of HP4032 As Component C, the following polyfunctional epoxy resin was prepared.
 (C)jer604の商品名で三菱化学株式会社より一般に入手可能な4官能基型エポキシ樹脂
 成分Dとして、下記の硬化剤を用意した。
(C) Tetrafunctional epoxy resin generally available from Mitsubishi Chemical Corporation under the trade name of jer604 As Component D, the following curing agent was prepared.
 (D-1)JerWの商品名で三菱化学株式会社より一般に入手可能なアミン系硬化剤
 (D-2)EK150Dの商品名で三菱化学株式会社より一般に入手可能なジアミノジフェニルメタン(DDM)
 成分Eとして、下記の粒子を用意した。これらにおいて、粒子は予めエポキシ樹脂に一次分散された状態である。
(D-1) Amine-based curing agent generally available from Mitsubishi Chemical Corporation under the trade name JerW (D-2) Diaminodiphenylmethane (DDM) generally available from Mitsubishi Chemical Corporation under the trade name EK150D
As Component E, the following particles were prepared. In these, the particles are preliminarily dispersed in the epoxy resin in advance.
 (E-1)株式会社カネカより一般に入手可能な25重量%のスチレンブタジエンゴム粒子を含むビスフェノールA型エポキシ樹脂
 (E-2)株式会社カネカより一般に入手可能な25重量%のポリブタジエンゴム粒子を含むビスフェノールF型エポキシ樹脂
 (E-3)株式会社カネカより一般に入手可能な25重量%のポリブタジエンゴム粒子を含むビスフェノールA型エポキシ樹脂
 さらに、硬化剤としてMHAC-Pの商品名で日立化成工業株式会社より一般に入手可能な酸無水物硬化剤(メチル-3,6-エンドメチレン-1,2,3,6-テトラヒドロ無水フタル酸)と、触媒としてEHC-30の商品名で株式会社ADEKAより一般に入手可能な三級アミンと、潜在性硬化剤としてDY9577の商品名でHUNTSMAN株式会社より一般に入手可能な三塩化ホウ素アミン錯体および2E4MZの商品名で四国化成工業株式会社より一般に入手可能な2-エチル-4-メチルイミダゾールとを用意した。
(E-1) Bisphenol A type epoxy resin containing 25 wt% styrene butadiene rubber particles generally available from Kaneka Corporation (E-2) Containing 25 wt% polybutadiene rubber particles generally available from Kaneka Corporation Bisphenol F type epoxy resin (E-3) Bisphenol A type epoxy resin containing 25% by weight of polybutadiene rubber particles generally available from Kaneka Corporation In addition, Hitachi Chemical Co., Ltd. under the trade name MHAC-P as a curing agent Generally available from ADEKA Corporation under the trade name of EHC-30 as a commonly available acid anhydride curing agent (methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride) HUNTSMAN Co., Ltd. under the trade name DY9577 as a latent tertiary curing agent Generally it was prepared and commonly available 2-ethyl-4-methylimidazole from Shikoku Chemicals Corporation under the trade name boron trichloride amine complexes and 2E4MZ available from the company.
 上述の成分を表1および表2に挙げた混合比にてそれぞれ混合し、T-1からT-12およびC-1からC-5の17種類のマトリックス樹脂組成物の試料を作製した。樹脂含有率36質量%になるよう、試料をそれぞれ炭素繊維のシート(T800S-24Kの商品名で東レ株式会社より一般に入手可能)に溶剤法により含浸させた。試料の含浸した炭素繊維のシートをそれぞれさらに積層することにより、繊維強化プラスチック前駆体とした。なお積層は4層であって、繊維の配向が相互に異なるように各層を向けており、各層の配向は基準の向きに対してそれぞれ0°、90°、45°、-45°である。以下、かかる積層の方法を擬似等方積層と呼称する。 The above components were mixed at the mixing ratios listed in Table 1 and Table 2, respectively, to prepare 17 types of matrix resin composition samples T-1 to T-12 and C-1 to C-5. Each sample was impregnated by a solvent method into a carbon fiber sheet (generally available from Toray Industries, Inc. under the trade name T800S-24K) so that the resin content was 36% by mass. Each of the carbon fiber sheets impregnated with the sample was further laminated to obtain a fiber reinforced plastic precursor. The laminated layers are four layers, and the layers are oriented so that the orientations of the fibers are different from each other. The orientations of the layers are 0 °, 90 °, 45 °, and −45 ° with respect to the reference direction. Hereinafter, such a lamination method is referred to as pseudo-isotropic lamination.
 擬似等方積層された繊維強化プラスチック前駆体の試料を硬化させるべく、それぞれオートクレーブ中に導入し、0.6MPaを印加して、100℃で2時間加熱し、引き続き120℃で1時間加熱し、さらに引き続き180℃で6時間加熱した。硬化後の試料の寸法は、縦200mm×横150mm×厚さ5mmである。 In order to cure the pseudo-isotropic laminated fiber reinforced plastic precursor sample, each was introduced into an autoclave, applied with 0.6 MPa, heated at 100 ° C. for 2 hours, and subsequently heated at 120 ° C. for 1 hour, Furthermore, it heated at 180 degreeC continuously for 6 hours. The dimension of the sample after curing is 200 mm long × 150 mm wide × 5 mm thick.
 狩猟用の銃により、これら試料にその表面に対して垂直に、直径10mm×長さ12mmのチタン製弾丸を220m/secにて発射し、弾丸をその衝突前から貫通後にかけて高速度カメラにより撮影した。映像から弾丸の位置を計測することにより、衝突直前および貫通直後の速度を算出した。さらに算出された速度から、以下の式により衝撃吸収率を算出した。 Using a hunting gun, a titanium bullet with a diameter of 10 mm and a length of 12 mm was fired at 220 m / sec perpendicularly to the surface of these specimens, and shot with a high-speed camera before and after the impact. did. By measuring the position of the bullet from the image, the velocity immediately before and after the collision was calculated. Further, the impact absorption rate was calculated from the calculated speed by the following formula.
式1Formula 1
Figure JPOXMLDOC01-appb-I000001
 前記式より理解されるように、貫通後の速度が衝突前の速度に比して小さい(衝撃吸収の程度が大きい)ほど、衝撃吸収率の値は大きくなる。
Figure JPOXMLDOC01-appb-I000001
As understood from the above equation, the value of the shock absorption rate increases as the speed after penetration is smaller than the speed before the collision (the degree of shock absorption is large).
 測定結果を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
The measurement results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 一次分散したエラストマを含む粒子を含む試料T-1ないしT-12は、粒子を含まない試料C-1ないしC-5に比べ、高い衝撃吸収率を呈している。すなわち、これらは衝撃吸収能の点で優れている。またアミン系硬化剤を含む試料T-1ないしT-3、T-7ないしT-9、T-11、T-12およびC-1は、アミン系硬化剤を含まない試料と比較して、衝撃吸収率が高くなる傾向を有する。 Samples T-1 to T-12 containing particles containing primarily dispersed elastomer exhibit a higher impact absorption rate than samples C-1 to C-5 containing no particles. That is, they are excellent in terms of impact absorbing ability. Samples T-1 to T-3, T-7 to T-9, T-11, T-12 and C-1 containing an amine-based curing agent are compared with samples not containing an amine-based curing agent. The impact absorption rate tends to be high.
 上述の試料T-3,T-4,C-1,C-4および下記の組成を有する試料C-6について、さらなる衝撃吸収試験を実施した。 Further shock absorption tests were performed on the samples T-3, T-4, C-1, C-4 and the sample C-6 having the following composition.
C-6:テトラグリシジルジアミノジフェニルメタン(ELM434の商品名で住友化学株式会社より入手可能)90重量部+ビスフェノールF型エポキシ樹脂(エピクロン380の商品名でDIC株式会社より入手可能)10重量部+4,4’-ジアミノジフェニルスルホン(スミキュアSの商品名で住友化学株式会社より入手可能)35重量部+ポリエーテルスルホン(5003Pの商品名でICI株式会社より入手可能)15重量部
 試料の寸法は、T-3,T-4,C-1,C-4、C-6すべて共通で、縦200mm×横200mm×厚さ5mm、各層の配向は基準の向きに対してそれぞれ0°、45°、0°、-45°である。
C-6: Tetraglycidyldiaminodiphenylmethane (available from Sumitomo Chemical Co., Ltd. under the trade name ELM434) + 10 parts by weight of bisphenol F type epoxy resin (available from DIC Corporation under the trade name of Epicron 380) +4 4'-diaminodiphenylsulfone (available from Sumitomo Chemical Co., Ltd. under the trade name of Sumicure S) + 15 parts by weight of polyethersulfone (available from ICI Corporation under the trade name of 5003P) −3, T-4, C-1, C-4, C-6 are all common, the length is 200 mm × width 200 mm × thickness 5 mm, and the orientation of each layer is 0 °, 45 °, 0 with respect to the reference direction, respectively. °, -45 °.
 加圧したガスにより駆動されるガス銃により、これら試料にその表面に対して垂直に、直径13mm×長さ13mm(質量約13.3g)の円筒形の鋼製飛翔体を撃ち込み、飛翔体をその衝突前から貫通後にかけて高速度カメラにより撮影した。上述の試験と異なり、種々の飛翔体の速度で、それぞれ試験を行った。映像から弾丸の位置を計測することにより、衝突直前および貫通直後の速度を算出した。さらに算出された速度から、衝突直前の飛翔体の運動エネルギと、試料により吸収されたエネルギを算出した。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
Using a gas gun driven by pressurized gas, a cylindrical steel flying object having a diameter of 13 mm and a length of 13 mm (mass: about 13.3 g) was shot into these samples perpendicularly to the surface, and the flying object was I shot it with a high-speed camera before and after the collision. Unlike the above test, each test was performed at various flying object speeds. By measuring the position of the bullet from the image, the velocity immediately before and after the collision was calculated. Further, the kinetic energy of the flying object just before the collision and the energy absorbed by the sample were calculated from the calculated speed. Table 3 shows the measurement results.
Figure JPOXMLDOC01-appb-T000004
 速度の測定結果を図2に示す。何れの試料の場合でも、衝突直前の速度Vpがある程度小さければ、飛翔体は試料を貫通できない(貫通直後の速度Vrは0)。速度Vpがある程度大きければ、飛翔体は試料を貫通して、貫通直後の速度Vrが測定される。限界速度以上においては、VrはVpとともに鋭く増大するので、Vr/VpのグラフとVr=0との交点からこの限界速度を見積もることができる。限界速度は、T-3の場合で約200m/s、T-4の場合で約180m/s、C-4の場合で約150m/sである。すなわち、一次分散したエラストマを含む粒子を含む試料T-3およびT-4は、粒子を含まない試料C-4よりも、飛翔体の貫通を防ぐ性能が高い。 The measurement results of speed are shown in FIG. In any sample, if the velocity Vp immediately before the collision is somewhat small, the flying object cannot penetrate the sample (the velocity Vr immediately after penetration is 0). If the velocity Vp is large to some extent, the flying object penetrates the sample, and the velocity Vr immediately after the penetration is measured. Above the limit speed, Vr increases sharply with Vp, so this limit speed can be estimated from the intersection of the Vr / Vp graph and Vr = 0. The critical speed is about 200 m / s for T-3, about 180 m / s for T-4, and about 150 m / s for C-4. That is, the samples T-3 and T-4 containing the particles containing the primary dispersed elastomer have higher performance to prevent the flying object from penetrating than the sample C-4 containing no particles.
 運動エネルギの測定結果を図3に示す。グラフの横軸は衝突直前の飛翔体の運動エネルギEiであり、縦軸は試料により吸収されたエネルギEabである。限界速度以下では運動エネルギの全てが試料により吸収されるので、プロットされた点は、Ei=Eabである右上がりの直線上に並ぶ。この直線よりも右方に離れた点の群は、飛翔体が試料を貫通した場合のものである。飛翔体が貫通した場合においては、試料により吸収されたエネルギEabは衝突直前の運動エネルギEiにあまり依存せず、T-3の場合は300J程度、T-4の場合は230J程度、C-4およびC-6の場合は180J程度である。すなわち、一次分散したエラストマを含む粒子を含む試料T-3およびT-4は、粒子を含まない試料C-4およびC-6よりも、飛翔体の運動エネルギを吸収する能力、すなわち衝撃吸収能が高い。 Fig. 3 shows the measurement results of kinetic energy. The horizontal axis of the graph is the kinetic energy Ei of the flying object immediately before the collision, and the vertical axis is the energy Eab absorbed by the sample. Since all of the kinetic energy is absorbed by the sample below the critical speed, the plotted points are arranged on a straight line going up to the right where Ei = Eab. The group of points separated to the right of this straight line is the case where the flying object penetrates the sample. When the flying object penetrates, the energy Eab absorbed by the sample does not depend much on the kinetic energy Ei immediately before the collision, and is about 300 J for T-3, about 230 J for T-4, C-4 And in the case of C-6, it is about 180J. That is, the samples T-3 and T-4 containing the particles containing the primary dispersed elastomer are more capable of absorbing the kinetic energy of the flying object, that is, the shock absorbing ability than the samples C-4 and C-6 containing no particles. Is expensive.
 本実施形態のマトリックス樹脂組成物および繊維強化プラスチックは、軽量であり、靭性と衝撃吸収能を必要とする構造物に好適である。そのような構造物としては、例えば図1に示したジェットエンジンのファンケースを挙げることができる。もちろん用途はこれに限られず、燃料タンクや各種の輸送機関の胴体など広範である。 The matrix resin composition and the fiber reinforced plastic of the present embodiment are lightweight and are suitable for structures that require toughness and shock absorption capability. An example of such a structure is the fan case of the jet engine shown in FIG. Of course, the application is not limited to this, and the fuel tank and the body of various transportation vehicles are widely used.
 好適な実施形態により本発明を説明したが、本発明は上記実施形態に限定されるものではない。上記開示内容に基づき、当該技術分野の通常の技術を有する者が、実施形態の修正ないし変形により本発明を実施することが可能である。 Although the present invention has been described with reference to preferred embodiments, the present invention is not limited to the above embodiments. Based on the above disclosure, a person having ordinary skill in the art can implement the present invention by modifying or modifying the embodiment.
 衝撃吸収能に優れた繊維強化プラスチックが提供される。 Supplied with fiber reinforced plastic with excellent shock absorption capability.

Claims (10)

  1.  ビスフェノール系エポキシを含む樹脂と、硬化剤と、を含むマトリックスと、
     ポリブタジエンゴム、スチレンブタジエンゴムおよびブチルゴムよりなる群より選択された一以上のエラストマを含み、平均粒子径において0.01乃至0.5μmである粒子であって、前記樹脂の100重量部に対して1乃至50重量部の割合となるべく混合されて前記マトリックス中に一次分散した粒子と、
     を備えた繊維強化プラスチック用のマトリックス樹脂組成物。
    A matrix containing a resin containing a bisphenol-based epoxy and a curing agent;
    Particles containing one or more elastomers selected from the group consisting of polybutadiene rubber, styrene butadiene rubber and butyl rubber and having an average particle diameter of 0.01 to 0.5 μm, and 1 per 100 parts by weight of the resin Particles mixed as much as possible in a proportion of 50 parts by weight and primarily dispersed in the matrix;
    A matrix resin composition for fiber-reinforced plastics.
  2.  請求項1のマトリックス樹脂組成物において、前記粒子は、前記エラストマを囲み、塩化ビニルおよびアクリル樹脂よりなる群より選択された一以上の樹脂よりなるシェルを備える。 2. The matrix resin composition according to claim 1, wherein the particle includes a shell made of one or more resins selected from the group consisting of vinyl chloride and acrylic resin, surrounding the elastomer.
  3.  請求項1のマトリックス樹脂組成物において、前記粒子は前記樹脂の100重量部に対して2乃至30重量部である。 2. The matrix resin composition according to claim 1, wherein the particles are 2 to 30 parts by weight with respect to 100 parts by weight of the resin.
  4.  請求項1のマトリックス樹脂組成物において、前記粒子は前記樹脂の100重量部に対して2.5乃至15重量部である。 2. The matrix resin composition according to claim 1, wherein the particles are 2.5 to 15 parts by weight with respect to 100 parts by weight of the resin.
  5.  請求項1のマトリックス樹脂組成物において、前記マトリックスは、ナフタレン骨格を有する2官能型エポキシ樹脂、分子内に水酸基を有するフェノキシ樹脂、トリグリシジルパラアミノフェノール、テトラグリシジルパラアミノメタン、およびノボラック型のエポキシ樹脂よりなる群より選択された何れかを、前記マトリックスの全体に対して0重量%を越えて30重量%以下でさらに含む。 2. The matrix resin composition according to claim 1, wherein the matrix includes a bifunctional epoxy resin having a naphthalene skeleton, a phenoxy resin having a hydroxyl group in the molecule, triglycidylparaaminophenol, tetraglycidylparaaminomethane, and a novolac type epoxy resin. Any one selected from the group consisting of more than 0 wt% and not more than 30 wt% with respect to the entire matrix is further included.
  6.  ガラス、炭素、アラミド、アルミナおよびボロンよりなる群より選択された一以上の物質よりなる繊維と、
     前記繊維に含浸して結合するマトリックス樹脂組成物であって、
     ビスフェノール系エポキシを含む樹脂と、硬化剤と、を含むマトリックスと、
     ポリブタジエンゴム、スチレンブタジエンゴムおよびブチルゴムよりなる群より選択された一以上のエラストマを含み、平均粒子径において0.01乃至0.5μmであり、前記樹脂の100重量部に対して1乃至50重量部の割合で混合されて前記マトリックス中に一次分散した粒子と、を含むマトリックス樹脂組成物と、
     を備えた構造体。
    A fiber made of one or more substances selected from the group consisting of glass, carbon, aramid, alumina and boron;
    A matrix resin composition impregnated and bonded to the fibers,
    A matrix containing a resin containing a bisphenol-based epoxy and a curing agent;
    It contains one or more elastomers selected from the group consisting of polybutadiene rubber, styrene butadiene rubber and butyl rubber, has an average particle diameter of 0.01 to 0.5 μm, and 1 to 50 parts by weight with respect to 100 parts by weight of the resin A matrix resin composition comprising particles dispersed in the matrix and primarily dispersed in the matrix,
    A structure with
  7.  請求項6の構造体において、前記粒子は、前記エラストマを囲み、塩化ビニルおよびアクリル樹脂よりなる群より選択された一以上の樹脂よりなるシェルを備える。 7. The structure according to claim 6, wherein the particle includes a shell made of one or more resins selected from the group consisting of vinyl chloride and an acrylic resin, surrounding the elastomer.
  8.  請求項6の構造体において、前記粒子は前記樹脂の100重量部に対して2乃至30重量部である。 7. The structure according to claim 6, wherein the particles are 2 to 30 parts by weight with respect to 100 parts by weight of the resin.
  9.  請求項6の構造体において、前記粒子は前記樹脂の100重量部に対して2.5乃至15重量部である。 7. The structure according to claim 6, wherein the particles are 2.5 to 15 parts by weight with respect to 100 parts by weight of the resin.
  10.  請求項6の構造体において、前記マトリックスは、前記マトリックスは、ナフタレン骨格を有する2官能型エポキシ樹脂、分子内に水酸基を有するフェノキシ樹脂、トリグリシジルパラアミノフェノール、テトラグリシジルパラアミノメタン、およびノボラック型のエポキシ樹脂よりなる群より選択された何れかを、前記マトリックスの全体に対して0重量%を越えて30重量%以下でさらに含む。 7. The structure according to claim 6, wherein the matrix is a bifunctional epoxy resin having a naphthalene skeleton, a phenoxy resin having a hydroxyl group in the molecule, triglycidyl paraaminophenol, tetraglycidyl paraaminomethane, and a novolac type epoxy. Any one selected from the group consisting of resins is further included in an amount of more than 0% by weight and not more than 30% by weight based on the entire matrix.
PCT/JP2010/067145 2009-10-01 2010-09-30 Matrix resin composition for fiber-reinforced plastic and fiber-reinforced plastic structure WO2011040567A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011513770A JPWO2011040567A1 (en) 2009-10-01 2010-09-30 Matrix resin composition for fiber reinforced plastic and fiber reinforced plastic structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/067147 WO2011039879A1 (en) 2009-10-01 2009-10-01 Matrix resin composition for fiber-reinforced plastics, and fiber-reinforced plastic structures
JPPCT/JP2009/067147 2009-10-01

Publications (1)

Publication Number Publication Date
WO2011040567A1 true WO2011040567A1 (en) 2011-04-07

Family

ID=43825733

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/067147 WO2011039879A1 (en) 2009-10-01 2009-10-01 Matrix resin composition for fiber-reinforced plastics, and fiber-reinforced plastic structures
PCT/JP2010/067145 WO2011040567A1 (en) 2009-10-01 2010-09-30 Matrix resin composition for fiber-reinforced plastic and fiber-reinforced plastic structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067147 WO2011039879A1 (en) 2009-10-01 2009-10-01 Matrix resin composition for fiber-reinforced plastics, and fiber-reinforced plastic structures

Country Status (2)

Country Link
JP (1) JPWO2011040567A1 (en)
WO (2) WO2011039879A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087124A (en) * 2011-10-13 2013-05-13 Mitsubishi Rayon Co Ltd Epoxy resin composition
WO2013183667A1 (en) * 2012-06-05 2013-12-12 三菱レイヨン株式会社 Epoxy resin composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201217226D0 (en) * 2012-09-26 2012-11-07 Hexcel Composites Ltd Resin composition and composite structure containing resin
WO2018125692A1 (en) * 2016-12-29 2018-07-05 3M Innovative Properties Company Curable compositions
TWI787295B (en) * 2017-06-29 2022-12-21 日商昭和電工材料股份有限公司 Resin composition for encapsulation, semiconductor package and method of producing semiconductor package
WO2022138343A1 (en) * 2020-12-22 2022-06-30 旭化成株式会社 Epoxy resin composition, adhesive film, printed wiring board, semiconductor chip package, semiconductor device, and method for using adhesive film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925393A (en) * 1995-05-09 1997-01-28 Toray Ind Inc Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JPH0995599A (en) * 1995-09-29 1997-04-08 Nippon Zeon Co Ltd Epoxy resin composition, and prepreg and molded product produced using the same
JPH09137044A (en) * 1995-11-17 1997-05-27 Mitsubishi Rayon Co Ltd Epoxy resin composition
JPH09157498A (en) * 1995-12-12 1997-06-17 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
WO1997028210A1 (en) * 1996-02-02 1997-08-07 Toray Industries, Inc. Resin compositions for fiber-reinforced composite materials and processes for producing the same, prepregs, fiber-reinforced composite materials, and honeycomb structures
WO2003040206A1 (en) * 2001-11-07 2003-05-15 Toray Industries, Inc. Epoxy resin compositions for fiber-reinforced composite materials, process for production of the materials and fiber-reinforced composite materials
JP2003277471A (en) * 2002-03-27 2003-10-02 Toray Ind Inc Epoxy resin composition, prepreg and carbon fiber- reinforced composite material
JP2009280669A (en) * 2008-05-21 2009-12-03 Toray Ind Inc Rtm fiber-reinforced composite material and process for producing it

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315572A (en) * 2003-04-11 2004-11-11 Kanegafuchi Chem Ind Co Ltd Method for producing epoxy resin composition
CA2538698A1 (en) * 2003-09-18 2005-03-31 Kaneka Corporation Process for producing rubbery polymer particle and process for producing resin composition containing the same
JP2005255822A (en) * 2004-03-11 2005-09-22 Kaneka Corp Rubber-reinforced epoxy resin product
JP5544162B2 (en) * 2007-02-28 2014-07-09 株式会社カネカ Rubber-like polymer particle-dispersed thermosetting resin composition and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925393A (en) * 1995-05-09 1997-01-28 Toray Ind Inc Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JPH0995599A (en) * 1995-09-29 1997-04-08 Nippon Zeon Co Ltd Epoxy resin composition, and prepreg and molded product produced using the same
JPH09137044A (en) * 1995-11-17 1997-05-27 Mitsubishi Rayon Co Ltd Epoxy resin composition
JPH09157498A (en) * 1995-12-12 1997-06-17 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
WO1997028210A1 (en) * 1996-02-02 1997-08-07 Toray Industries, Inc. Resin compositions for fiber-reinforced composite materials and processes for producing the same, prepregs, fiber-reinforced composite materials, and honeycomb structures
WO2003040206A1 (en) * 2001-11-07 2003-05-15 Toray Industries, Inc. Epoxy resin compositions for fiber-reinforced composite materials, process for production of the materials and fiber-reinforced composite materials
JP2003277471A (en) * 2002-03-27 2003-10-02 Toray Ind Inc Epoxy resin composition, prepreg and carbon fiber- reinforced composite material
JP2009280669A (en) * 2008-05-21 2009-12-03 Toray Ind Inc Rtm fiber-reinforced composite material and process for producing it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087124A (en) * 2011-10-13 2013-05-13 Mitsubishi Rayon Co Ltd Epoxy resin composition
WO2013183667A1 (en) * 2012-06-05 2013-12-12 三菱レイヨン株式会社 Epoxy resin composition
CN104379629A (en) * 2012-06-05 2015-02-25 三菱丽阳株式会社 Epoxy resin composition
US20150148451A1 (en) * 2012-06-05 2015-05-28 Mitsubishi Rayon Co., Ltd. Epoxy resin composition
JP5737408B2 (en) * 2012-06-05 2015-06-17 三菱レイヨン株式会社 Tow prepreg and composite reinforced pressure vessel
CN104379629B (en) * 2012-06-05 2017-04-26 三菱丽阳株式会社 Epoxy resin composition
US10233324B2 (en) 2012-06-05 2019-03-19 Mitsubishi Chemical Corporation Epoxy resin composition

Also Published As

Publication number Publication date
WO2011039879A1 (en) 2011-04-07
JPWO2011040567A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
WO2011040567A1 (en) Matrix resin composition for fiber-reinforced plastic and fiber-reinforced plastic structure
JP4829766B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2010059225A (en) Epoxy resin composition for carbon fiber-reinforced composite material, prepreg, and carbon fiber-reinforced composite material
WO2009119467A1 (en) Epoxy resin composition, fiber-reinforced composite material and method for producing the same
JP5023498B2 (en) Resin composition for prepreg sheet and prepreg sheet
JP5617171B2 (en) Fiber-reinforced composite material and method for producing the same
JP6210007B2 (en) Prepreg, method for producing the same, and carbon fiber reinforced composite material
WO2005113652A2 (en) Self-adhesive prepreg
JP5929046B2 (en) Carbon fiber fabric prepreg and carbon fiber reinforced composite material
CA2683073A1 (en) Resin composition, and prepreg
US7041740B2 (en) Heat-settable resins
JP2009280669A (en) Rtm fiber-reinforced composite material and process for producing it
JP4475880B2 (en) Epoxy resin composition
JP4910684B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2009227907A (en) Epoxy resin composition and fiber reinforced composite material containing it
JP2006219513A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
Miller et al. Impact behavior of composite fan blade leading edge subcomponent with thermoplastic polyurethane interleave
JP5716190B2 (en) Forms for flying objects or windmills
US11746183B2 (en) Durable contamination resistant coatings
JP2906083B2 (en) Lightweight heat-insulating resin composition
JP2010059300A (en) Carbon fiber reinforced composite material and method for producing the same
JP5716193B2 (en) Prepreg sheets for objects other than flying objects or windmills
CN112679908A (en) Prepreg toughening material, high-toughness prepreg and preparation method thereof
JP2006241308A (en) Fiber-reinforced composite material
CN114479358B (en) Prepreg toughening resin, prepreg toughening layer and prepreg as well as preparation method and application thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011513770

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820682

Country of ref document: EP

Kind code of ref document: A1