WO2011040519A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2011040519A1
WO2011040519A1 PCT/JP2010/067070 JP2010067070W WO2011040519A1 WO 2011040519 A1 WO2011040519 A1 WO 2011040519A1 JP 2010067070 W JP2010067070 W JP 2010067070W WO 2011040519 A1 WO2011040519 A1 WO 2011040519A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
conditioned air
air
wind direction
indoor unit
Prior art date
Application number
PCT/JP2010/067070
Other languages
French (fr)
Japanese (ja)
Inventor
正史 鎌田
亨 繁澤
隆造 外島
宜伸 津村
正弘 柱尾
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2011040519A1 publication Critical patent/WO2011040519A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air

Definitions

  • the present invention relates to an air conditioner, and more particularly, to a configuration for changing a wind direction in an air conditioner provided with a blow-out passage for blowing out conditioned air.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-145008
  • This air conditioner has a flap for changing the wind direction in the vertical direction of the conditioned air blown out through the blowout flow path.
  • An object of the present invention is to provide an air conditioner equipped with a blow-off channel for blowing out conditioned air, while suppressing an increase in pressure loss of the conditioned air and a complicated structure for changing the direction of the conditioned air, while reducing the air direction of the conditioned air.
  • the purpose is to ensure that the change can be made with a large turning angle.
  • An air conditioner is an air conditioner provided with a blow-off channel for blowing out conditioned air.
  • the blow-off channel has an upstream part and a downstream part with an enlarged flow path width in a sectional view. is doing.
  • the downstream portion includes a guide wall having a large degree of curvature and an opposing wall facing the guide wall and having a small degree of curvature.
  • This air conditioner has a projecting member that can project into the outlet channel from the opposing wall side.
  • the first blowing state in which the wind direction of the conditioned air is the wind direction along the guide wall and the wind direction of the conditioned air is the wind direction along the opposing wall by switching the projecting member to the projecting or non-projecting state.
  • the guide wall is curved in a convex shape toward the outlet channel.
  • the “curvature” in the facing wall includes not only a curved shape but also a straight shape.
  • this air conditioner when the projecting member is projected from the opposing wall side into the blowout flow path, the wind direction of the conditioned air flowing from the upstream portion to the downstream portion is deflected in a direction in which the projecting member peels from the opposing wall. It becomes easy to be done. For this reason, the conditioned air flowing from the upstream portion to the downstream portion tends to flow along the guide wall due to the Coanda effect, whereby the wind direction of the conditioned air becomes the first blowing state that is the wind direction along the guide wall. .
  • the wind direction changing structure used for this air conditioner since the projecting member as described above is used, it is difficult to affect the increase in the pressure loss of conditioned air, and the structure is simple. Compared to the wind direction change structure using the flaps of this type, it is possible to suppress the increase in the pressure loss of the conditioned air and the complexity of the structure for changing the conditioned air wind direction. Can be done at an angle.
  • the guide wall has a large degree of curvature
  • the opposing wall has a small degree of curvature. Therefore, when the projecting member is not projected into the outlet channel from the opposing wall side, the conditioned air flows from the upstream portion to the downstream portion. However, it is difficult to peel off from the opposing wall, and the second blowing state is easily maintained.
  • the guide wall is convexly curved toward the outlet flow path side, when the protruding member is protruded into the outlet flow path from the opposing wall side, the conditioned air deflected in the direction of peeling from the opposing wall is It is easy to get along the guide wall and the first blowing state is easily obtained.
  • An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the guide wall is larger than the radius of curvature at the portion near the boundary between the upstream portion and the downstream portion than at the portion near the boundary.
  • the radius of curvature in the downstream portion is formed to be large. Increasing the radius of curvature of the guide wall makes it easier for the conditioned air to adhere to the downstream side of the guide wall in the downstream portion, but the conditioned air is attracted to the guide wall by the Coanda effect without causing the protruding member to protrude. There is a possibility of being blown out. Further, the length of the downstream portion in the flow direction becomes longer.
  • the radius of curvature of the guide wall is reduced, the Coanda effect on the guide wall side when the projecting member is not projected is less likely to occur, so the switching between the first blowing state and the second blowing state can be performed reliably. And although the length of the flow direction of a downstream part becomes short, conditioned air becomes easy to peel from a guide wall as it goes downstream.
  • the guide wall is formed so that the radius of curvature in the portion near the boundary between the upstream portion and the downstream portion is larger than the radius of curvature in the portion near the boundary.
  • An air conditioner according to a third aspect is the air conditioner according to the first or second aspect, wherein the tangent line of the guide wall and the tangent line of the upstream portion connected to the guide wall at the boundary between the upstream portion and the downstream portion. Does not match. If the tangent of the guide wall and the tangent of the upstream wall connected to the guide wall coincide with each other at the boundary between the upstream part and the downstream part, the conditioned air can be guided by the Coanda effect without projecting the projecting member. There is a possibility of being drawn into the wall and becoming the first blowout state. Further, the length of the downstream portion in the flow direction becomes longer.
  • this air conditioner is configured such that the tangent of the guide wall does not coincide with the tangent of the upstream wall connected to the guide wall at the boundary between the upstream portion and the downstream portion.
  • An air conditioner according to a fourth aspect of the present invention is the air conditioner according to any one of the first to third aspects of the invention, wherein the projecting member is a boundary between the upstream portion and the downstream portion when projecting into the blowout flow path. It is provided to be arranged in the vicinity.
  • the airflow direction of the conditioned air by the projecting member can be deflected from the vicinity of the boundary between the upstream portion and the downstream portion, the airflow direction of the conditioned air by the projecting member can be changed. Deflection in the direction of peeling from the facing wall can be reliably performed.
  • the protrusion distance from the opposing wall side of a protrusion member can be made small, and the increase in the pressure loss of conditioned air can further be suppressed.
  • An air conditioner according to a fifth aspect of the present invention is the air conditioner according to any one of the first to fourth aspects of the present invention, wherein the outlet channel is upstream of the position where the protruding member protrudes into the outlet channel.
  • a rectifying member is provided on the surface.
  • the flow velocity distribution of the conditioned air in the upstream portion is a flow velocity distribution in which the flow velocity on the facing wall side is small, even if the protruding member protrudes from the facing wall side, the conditioned air wind direction is separated from the facing wall. It is difficult to be deflected and the wind direction of the conditioned air may be close to the second blowing state. Thus, the change in the wind direction of the conditioned air by the protruding member may be insufficient due to the influence of the wind direction and flow velocity distribution of the conditioned air in the upstream portion.
  • the rectifying member is provided in the outlet flow channel upstream of the position where the protruding member protrudes into the outlet flow channel.
  • the conditioned air can be rectified so that the air direction of the conditioned air is along the opposing wall and the velocity distribution of the conditioned air is a flow velocity distribution with less bias. The wind direction can be changed reliably.
  • FIG. 18 is an enlarged view of a portion A in FIGS. 1, 9, and 12 to 17 and is a cross-sectional view showing a protruding member and its driving mechanism.
  • It is a schematic diagram which shows the wind direction change structure using the protrusion member concerning this invention, Comprising: It is a figure which shows a 2nd blowing state.
  • It is a schematic diagram which shows the wind direction change structure using the protrusion member concerning this invention, Comprising: It is a figure which shows a 1st blowing state.
  • FIG. 1 is a cross-sectional view of a wall-mounted indoor unit 1 as a first embodiment of an air conditioner according to the present invention.
  • FIG. 2 is an enlarged view of a portion A in FIG. 1, and is a cross-sectional view showing the protruding member 6 and its driving mechanism 7.
  • FIG. 3 is a schematic view showing a wind direction changing structure using the protruding member 6 and is a view showing a second blowing state.
  • FIG. 4 is a schematic diagram showing a wind direction changing structure using the projecting member 6, and is a diagram showing a first blowing state.
  • the wall-hanging indoor unit 1 is installed on the wall surface of the air-conditioned room, and is a unit for cooling and heating the air-conditioned room.
  • the wall-mounted indoor unit 1 mainly includes a casing 2, a heat exchanger 3, and a blower fan 4.
  • a suction port 2 a for sucking air in the air-conditioned room is formed in the upper part of the casing 2.
  • a blower outlet 2b for blowing out conditioned air is formed in the lower part of the casing 2 so as to face substantially forward.
  • the heat exchanger 3 is a fin-and-tube heat exchanger having a substantially inverted V-shaped cross section, and is disposed in the casing 2. The heat exchanger 3 generates conditioned air by cooling the air sucked from the suction port 2a at the time of cooling and heating at the time of heating.
  • the blower fan 4 is a cross flow fan and is disposed in the casing 2. The blower fan 4 is disposed on the downstream side of the heat exchanger 3 with respect to the air flow from the suction port 2a to the blower port 2b.
  • the blower fan 4 sucks air into the casing 2 from the suction port 2a and generates an airflow that blows out from the blower outlet 2b.
  • the blower fan 4 blows out the conditioned air generated in the heat exchanger 3 from the blowout port 2 b through the blowout channel 5.
  • the blowout flow path 5 is a flow path for sending the conditioned air sent out by the blower fan 4 to the blowout port 2b.
  • the blowout flow path 5 has an upstream part 51 and a downstream part 52 in a sectional view.
  • the upstream portion 51 is a portion on the upstream side from the boundary points O1 and O2 between the upstream portion 51 and the downstream portion 52 in the blowout flow path 5.
  • the channel width at the boundary between the upstream portion 51 and the downstream portion 52 is defined as a channel width H.
  • the upstream portion 51 has substantially the same flow path width.
  • the downstream portion 52 is a portion of the outlet flow channel 5 where the downstream flow channel width is expanded from the boundary points O1 and O2 between the upstream portion 51 and the downstream portion 52.
  • the downstream portion 52 includes a guide wall 53 and an opposing wall 54 that faces the guide wall 53 in a cross-sectional view.
  • the guide wall 53 is a wall surface having a large degree of curvature, and extends from the substantially horizontal direction to the downward direction. It is curved in a convex shape toward the outlet channel 5 side. Further, the guide wall 53 is formed so that the radius of curvature in the downstream portion is larger than the portion in the vicinity of the boundary point O1 compared to the radius of curvature in the portion in the vicinity of the boundary point O1 between the upstream portion 51 and the downstream portion 52. Has been.
  • a portion of the guide wall 53 near the boundary point O1 between the upstream portion 51 and the downstream portion 52 is defined as a first wall portion 53a, and a curvature radius in the first wall portion 53a is defined as a curvature radius R1.
  • a portion downstream of the first wall portion 53a, which is a portion near the boundary point O1 is a second wall portion 53b, and a curvature radius at the second wall portion 53b is a curvature radius R2. That is, the curvature radius R2 is larger than the curvature radius R1.
  • the opposing wall 54 is a wall surface with a small degree of curvature and extends in a substantially horizontal direction.
  • the downstream portion 52 has a shape in which the channel width is increased by a convex curve of the one side wall surface (in this case, the guide wall 53) to the outlet channel side in a cross-sectional view.
  • the wall-mounted indoor unit 1 has a projecting member 6 that can project from the facing wall 54 side into the blowout flow path 5 in the vicinity of the boundary point O2 between the upstream portion 51 and the downstream portion 52.
  • the protruding member 6 is a plate-like member, and is inserted into a protruding hole 55 formed in the vicinity of the boundary point O2 between the upstream portion 51 and the downstream portion 52 of the blowout flow path 5 in a cross-sectional view.
  • the projecting member 6 can be switched between projecting into the blowout flow path 5 and non-projecting by a rack / pinion type drive mechanism 7.
  • the drive mechanism 7 includes a rack gear 61 formed on the protruding member 6, a pinion gear 62 that meshes with the rack gear 61, and a drive motor 63 that drives the pinion gear 62.
  • the projecting member 6 projects into the blowout flow path 5
  • the most downstream portions of the projecting member 6 and the projecting hole 55 are located between the upstream portion 51 and the downstream portion 52. It arrange
  • the wind direction changing structure using the projecting member 6 is employed, and the wind direction of the conditioned air is changed along the guide wall 53 by switching the projecting member 6 to project or not project. It is possible to switch between a first blowing state where Y is set and a second blowing state where the wind direction of the conditioned air is set as the wind direction X along the facing wall 54.
  • the protruding member 6 is protruded from the opposing wall 54 side so that the first blowing state that is the wind direction Y along the guide wall 53 is obtained. .
  • FIG. 5 is a schematic diagram illustrating a wind direction changing structure of a comparative example when the degree of curvature of the facing wall 54 is increased, and is a diagram illustrating a state in which the first blowing state and the second blowing state cannot be controlled.
  • FIG. 6 is a schematic diagram showing a wind direction changing structure of a comparative example when the degree of curvature of the opposing wall 54 is increased, and is a diagram showing a second blowing state (the protruding member 6 on the opposing wall 54 side and the guide wall 53 side). Is provided).
  • FIG. 5 is a schematic diagram illustrating a wind direction changing structure of a comparative example when the degree of curvature of the facing wall 54 is increased, and is a diagram illustrating a state in which the first blowing state and the second blowing state cannot be controlled.
  • FIG. 6 is a schematic diagram showing a wind direction changing structure of a comparative example when the degree of curvature of the opposing wall 54 is increased, and is a diagram showing a
  • FIG. 7 is a schematic diagram showing a wind direction changing structure using the projecting member 6 and showing a first blowing state (when the radius of curvature of the guide wall 53 is made single and small).
  • FIG. 8 is a schematic view showing a wind direction changing structure using the projecting member 6 and showing a first blowing state (when the radius of curvature of the guide wall 53 is made single and large).
  • the protruding member 6 as described above is used as the airflow direction changing structure of the conditioned air blown out through the blowout flow path 5, so that it is difficult to affect the increase in the pressure loss of the conditioned air.
  • the structure is simple, compared to the conventional wind direction changing structure using flaps, it is possible to suppress the increase in pressure loss of conditioned air and the complexity of the structure for changing the conditioned air wind direction.
  • the wind direction of conditioned air can be changed at a large turning angle.
  • the guide wall 53 has a large degree of curvature
  • the opposing wall 54 has a low degree of curvature. Therefore, when the projecting member 6 is not projected into the blowout flow path 5 from the opposing wall 54 side, the downstream side from the upstream portion 51 is provided. The conditioned air flowing into the portion 52 is difficult to peel off from the facing wall 54, and the second blowing state is easily maintained.
  • the guide wall 53 is curved in a convex shape toward the outlet flow path 5 side, when the protruding member 6 is protruded from the opposing wall 54 side into the outlet flow path 5, the guide wall 53 is peeled off from the opposing wall 54.
  • the deflected conditioned air is easy to follow along the guide wall 53, and the first blowing state is easily obtained.
  • the wall-mounted indoor unit 1 reliably changes the wind direction of the conditioned air at a large turning angle while suppressing an increase in the pressure loss of the conditioned air and a complicated structure for changing the wind direction of the conditioned air. be able to.
  • the curvature radius R1 in the portion near the boundary point O1 between the upstream portion 51 and the downstream portion 52 (here, the first wall portion 53a) is set.
  • the guide wall 53 is formed so that the radius of curvature R2 in the downstream portion (here, the second wall portion 53b) of the portion near the boundary point O1 is increased.
  • the point that the guide wall 53 is formed so that the radius of curvature in the downstream portion is larger is a preferable configuration from the viewpoint of increasing the turning angle of the conditioned air while shortening the length of the downstream portion 52.
  • the radius of curvature of the guide wall 53 is changed in two stages of the first wall 53a (curvature radius R1) and the second wall 53b (curvature radius R2), but the radius of curvature is further increased in multiple stages. It may be changed.
  • the protruding member 6 is provided so as to be disposed in the upstream portion 51 when protruding into the blowout flow path 5.
  • the conditioned air wind direction by the protruding member 6 can be deflected in the direction of peeling from the opposing wall 54 from the vicinity of the boundary between the upstream portion 51 and the downstream portion 52. Can be reliably deflected in the direction of peeling from the opposing wall 54.
  • the protruding distance h see FIG. 4 of the protruding member 6 from the opposing wall 54 side can be reduced, and an increase in the pressure loss of conditioned air can be further suppressed.
  • the protruding member 6 protrudes into the outlet channel 5 from the viewpoint of causing the conditioned air to be deflected in the direction in which the conditioned air is separated from the opposing wall 54 from the vicinity of the boundary between the upstream portion 51 and the downstream portion 52. It is only necessary that it be arranged near this boundary.
  • the curvature radius of the guide wall 53 is changed in multiple stages (here, two stages of the curvature radius R1 and the curvature radius R2).
  • the tangent line S of the guide wall 53 and the tangent line T of the wall surface of the upstream portion 51 connected to the guide wall 53 do not coincide with each other may be employed.
  • the wind direction of the conditioned air flowing from the upstream portion 51 to the downstream portion 52 is directed to the opposing wall 54. It is preferable that the wind direction is along, and the flow velocity distribution of the conditioned air flowing from the upstream portion 51 to the downstream portion 52 is preferably a non-biased flow velocity distribution.
  • the wall-mounted indoor unit 1 of the above embodiment as shown in FIG. 11, when the wind direction of the conditioned air Z in the upstream portion 51 is inclined obliquely toward the guide wall 53 with respect to the opposing wall 54.
  • the protruding member 6 does not protrude from the facing wall 54 side, the conditioned air tends to flow along the guide wall 53, and the wind direction of the conditioned air may be close to the first blowing state (that is, the wind direction Y). is there. Further, in the wall-mounted indoor unit 1 of the above embodiment, as shown in FIG. 12, when the flow velocity distribution of the conditioned air Z in the upstream portion 51 is a low flow velocity distribution on the opposite wall 54 side, the protruding member 6.
  • the air direction of the conditioned air is difficult to be deflected in the direction separating from the opposing wall 54, and the air direction of the conditioned air may become a wind direction close to the second blowing state (ie, the air direction X) is there.
  • the change in the conditioned air wind direction by the protruding member 6 may be insufficient due to the influence of the conditioned air wind direction and the flow velocity distribution in the upstream portion 51.
  • the outlet channel 6 is located upstream of the position where the protruding member 6 protrudes into the outlet channel 5.
  • the rectifying member 8 is provided on the front.
  • the rectifying member 8 is a plate-like member extending in a direction along the facing wall 54.
  • a plurality of rectifying members 8 are arranged side by side in a cross-sectional view of the blowout flow path 5.
  • the other structure is the same as that of the wall-mounted indoor unit 1 of the said embodiment and its modification 1, it abbreviate
  • the air outlet 2b for blowing out conditioned air is formed in the casing 2 so as to face substantially forward.
  • the air outlet 2b for blowing out conditioned air may be formed in the casing 2 so as to face substantially downward.
  • the guide wall 53 is formed so as to extend from the lower side to the substantially horizontal direction.
  • the opposing wall 54 is formed so as to extend substantially downward.
  • the protruding member 6 is protruded from the facing wall 54 side, so that a first blowing state that is the wind direction Y along the guide wall 53 is obtained. Further, during heating, in order to blow out conditioned air vertically downward, the protruding member 6 is not protruded from the facing wall 54 side, so that a second blowing state that is the wind direction X along the facing wall 54 is obtained. .
  • the same operational effects as those of the wall-hanging indoor unit 1 of the embodiment and the modification 1 can be obtained.
  • the suspended ceiling type indoor unit 101 is installed on the ceiling surface of the air conditioning room, and is a unit for cooling and heating the air conditioning room.
  • the ceiling suspended indoor unit 1 mainly includes a casing 102, a heat exchanger 103, and a blower fan 104.
  • a suction port 102 a for sucking air in the air-conditioned room is formed in the rear part of the casing 102.
  • a blower outlet 102b for blowing out conditioned air is formed at the front portion of the casing 102 so as to face substantially forward.
  • the blower fan 104 is a sirocco fan and is disposed in the casing 102.
  • the blower fan 104 is disposed on the upstream side of the heat exchanger 103 with respect to the air flow from the suction port 102a to the blower port 102b.
  • the blower fan 104 sucks air into the casing 102 from the suction port 102a, and generates an airflow that blows out from the blowout port 102b.
  • the blower fan 104 blows out the conditioned air generated in the heat exchanger 103 from the blower outlet 102 b through the blowout flow path 5.
  • the heat exchanger 103 is a fin-and-tube heat exchanger having a substantially rectangular cross section, and is disposed in the casing 102.
  • the heat exchanger 103 generates conditioned air by cooling the air sucked from the suction port 102a during cooling and heating it during heating.
  • the blowout flow path 5 is a flow path for sending the conditioned air generated by the heat exchanger 103 to the blowout opening 102b.
  • the blowout flow path 5 has an upstream part 51 and a downstream part 52 in a sectional view.
  • the structure of the blowing flow path 5 is the same as that of the blowing flow path 5 of the wall-mounted indoor unit 1 of the said 1st Embodiment, description is abbreviate
  • the ceiling-suspended indoor unit 101 has a projecting member 6 that can project into the outlet channel 5 from the opposing wall 54 side in the vicinity of the boundary point O2 between the upstream portion 51 and the downstream portion 52. Yes.
  • the structure of the protrusion member 6 and its periphery is the same as that of the protrusion member 6 of the wall-hanging type indoor unit 1 of the first embodiment and its periphery, the description thereof is omitted here.
  • the wind direction changing structure using the protruding member 6 is adopted for the wall-hanging indoor unit 1 and the ceiling suspended indoor unit 101. As shown in FIG. 17, a wind direction changing structure using the protruding member 6 may be employed in the ceiling-embedded indoor unit 201.
  • the ceiling-embedded indoor unit 201 is installed on the ceiling surface in the air conditioning room, and is a unit for cooling and heating the air conditioning room.
  • the ceiling-embedded indoor unit 201 mainly includes a casing 202, a heat exchanger 203, and a blower fan 204.
  • the casing 202 includes a casing main body 211 and a decorative panel 212 attached to the lower surface of the casing main body 211.
  • a suction port 202a for sucking air in the air-conditioned room is formed in the approximate center of the decorative panel 212 in plan view.
  • the decorative panel 212 is formed with an air outlet 202b for blowing out conditioned air so as to surround the air inlet 202a and face substantially downward.
  • the blower fan 204 is a turbo fan and is disposed in the casing 202.
  • the blower fan 204 is disposed on the upstream side of the heat exchanger 203 with respect to the air flow from the suction port 202a to the blowout port 202b.
  • the blower fan 204 sucks air into the casing 202 from the suction port 202a and generates an airflow that blows out from the blowout port 202b.
  • the blower fan 204 blows out conditioned air generated in the heat exchanger 203 from the blower outlet 202b through the blowout flow path 5.
  • the heat exchanger 203 is a fin-and-tube heat exchanger having a substantially rectangular cross section, and is arranged in the casing 202 so as to surround the blower fan 104.
  • the heat exchanger 203 generates conditioned air by cooling the air sucked from the suction port 202a at the time of cooling and heating at the time of heating.
  • the blowout flow path 5 is a flow path for sending conditioned air generated by the heat exchanger 203 to the blowout opening 202b.
  • the blowout flow path 5 has an upstream part 51 and a downstream part 52 in a sectional view.
  • the structure of the blowout flow path 5 is different in that the facing wall 54 is curved.
  • the ceiling-embedded indoor unit 201 has a projecting member 6 that can project into the outlet channel 5 from the opposing wall 54 side in the vicinity of the boundary point O2 between the upstream section 51 and the downstream section 52. Yes.
  • the structure of the protrusion member 6 and its periphery is the same as that of the protrusion member 6 of the wall-hanging type indoor unit 1 of the first embodiment and its periphery, the description thereof is omitted here.
  • the guide wall 53 is directed downward because it is the air outlet 202b facing substantially downward.
  • the opposing wall 54 is formed so as to extend substantially downward.
  • the protruding member 6 is protruded from the opposing wall 54 side so that the first blowing state that is the wind direction Y along the guide wall 53 is obtained.
  • the projecting member 6 is not projected from the facing wall 54 side so that the second blowing state that is the wind direction X along the facing wall 54 is obtained. ing.
  • the wall-hanging indoor unit 1 (see FIG. 10) of the second modification of the first embodiment and the above-mentioned The rectifying member 8 may be provided in the same manner as the ceiling-suspended indoor unit 101 (see FIG. 16) of the modification of the second embodiment. Also in the ceiling-embedded indoor unit 201 of this modified example, the wall-hanging indoor unit 1 of the modified example 2 of the first embodiment and the suspended ceiling indoor unit 101 of the modified example of the second embodiment are also included. Similar effects can be obtained.
  • the wind direction changing structure using the projecting member 6 is used as the wall-hanging indoor unit 1, the ceiling suspended indoor unit 101, the ceiling embedded indoors.
  • a wind direction changing structure using the protruding member 6 may be employed in a duct air-conditioning system 301 using a ceiling-embedded duct type indoor unit 301a.
  • the duct air-conditioning system 301 is installed in a ceiling space in the air-conditioned room, and mainly includes a ceiling-embedded duct type indoor unit 301a, a blowout duct 301b, and a blowout unit 301c.
  • the ceiling-embedded duct-type indoor unit 301a is a unit for cooling and heating the air-conditioning room, which is installed in a ceiling space (shown by a two-dot chain line in FIG. 19) in the air-conditioning room.
  • the ceiling-embedded duct type indoor unit 301a mainly includes a casing 302, a heat exchanger 303, and a blower fan 304.
  • a suction opening 302 a is formed in the rear portion of the casing 302 to be connected to a suction duct (not shown) and suck air in the air-conditioned room.
  • a blow-out opening 302c for blowing out conditioned air is formed in the front portion of the casing 302 so as to face substantially forward.
  • the blower fan 304 is a sirocco fan and is disposed in the casing 302.
  • the blower fan 304 is disposed on the upstream side of the heat exchanger 303 with respect to the air flow from the suction opening 302a to the blowout opening 302c.
  • the blower fan 304 sucks air into the casing 302 from the suction opening 302a, and generates an airflow that blows out from the blowout opening 302c.
  • the blower fan 304 blows out the conditioned air generated in the heat exchanger 303 from the blowout outlet 302b of the blowout unit 301c through the blowout flow path 5 formed by the blowout duct 301b connected to the blowout opening 302c and the blowout unit 301c.
  • the heat exchanger 303 is a fin-and-tube heat exchanger having a substantially rectangular cross section, and is disposed in the casing 302.
  • the heat exchanger 303 generates conditioned air by cooling the air sucked from the suction opening 302a during cooling and heating the air during heating.
  • the blowout flow path 5 is a flow path for sending conditioned air generated by the heat exchanger 303 to the blowout opening 302b, and is formed by the blowout duct 301b and the blowout unit 301c as described above. That is, here, the blowout flow path 5 is formed not in the unit 301a in which the heat exchanger 303 and the blower fan 304 are housed, but in the blowout duct 301b and the blowout unit 301c connected to the downstream side thereof.
  • the blowout flow path 5 has an upstream part 51 and a downstream part 52 in a sectional view.
  • the upstream portion 51 is formed with a contracted flow portion 51a having a curved cross-sectional shape so that the conditioned air flows toward the downstream.
  • the curved line of the contracted flow part 51a forms a sine curve or a cubic curve.
  • the structure of the blowout flow path 5 is formed in the blowout duct 301b and the blowout unit 301c connected to the downstream side of the ceiling-embedded duct type unit 301a, and the upstream portion 51 has a contracted portion 51a.
  • these points are the same as the outlet channel 5 of the wall-mounted indoor unit 1 of the first embodiment, the description thereof is omitted here.
  • blowout unit 301c of the duct air-conditioning system 301 has a projecting member 6 that can project into the blowout flow path 5 from the opposing wall 54 side in the vicinity of the boundary point O2 between the upstream portion 51 and the downstream portion 52. ing.
  • the structure of the protrusion member 6 and its periphery is the same as that of the protrusion member 6 of the wall-hanging type indoor unit 1 of the first embodiment and its periphery, the description thereof is omitted here.
  • the rectifying member 8 is the same as the wall-mounted indoor unit 1 (see FIG. 10) of the second modification of the first embodiment. May be provided.
  • the same effect as the wall-hanging indoor unit 1 of Modification 2 of the first embodiment can be obtained.
  • the wind direction change structure using the protrusion member 6 is employ
  • ⁇ B> In the said embodiment and its modification, although the wind direction change structure using the protrusion member 6 is employ
  • the rack / pinion type drive mechanism 7 is employed as the drive mechanism for driving the protruding member 6.
  • the present invention is not limited to this, and other types of drive mechanisms are employed. May be.
  • the present invention can be widely applied to an air conditioner having a blow-out flow path for blowing out conditioned air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Flow Control Members (AREA)
  • Duct Arrangements (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

The outlet flow path (5) of a wall-hung indoor unit (1) has, in a cross-sectional view thereof, an upstream section (51) and a downstream section (52) which has an expanding flow path width. The downstream section (52) has a guide wall (53) which is curved to a large extent and a facing wall (54) which faces the guide wall (53) and is curved to a small extent. The wall-hung indoor unit (1) is provided with a protrusion member (6) which can be caused to protrude to the inside of the outlet flow path (5) from the facing wall (54) side. The switching between a first blowing state in which conditioned air is caused to flow in the direction along the guide wall (53) and a second blowing state in which the conditioned air is caused to flow in the direction along the facing wall (54) is performed by switching the protrusion member (6) between a protruding state and a non-protruding state. The guide wall (53) is convex to the outlet flow path (5) side.

Description

空気調和装置Air conditioner
 本発明は、空気調和装置、特に、調和空気を吹き出す吹出流路を備えた空気調和装置における風向変更のための構成に関する。 The present invention relates to an air conditioner, and more particularly, to a configuration for changing a wind direction in an air conditioner provided with a blow-out passage for blowing out conditioned air.
 従来より、特許文献1(特開2009-145008号公報)に示されるような壁掛型の空気調和装置がある。この空気調和装置は、吹出流路を通じて吹き出される調和空気の上下方向の風向を変更するためのフラップを有している。 Conventionally, there is a wall-hanging type air conditioner as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2009-145008). This air conditioner has a flap for changing the wind direction in the vertical direction of the conditioned air blown out through the blowout flow path.
 上記従来の空気調和装置では、空調室内のユーザにドラフト感を極力与えないようにするために、冷房時には調和空気を水平向きに吹き出し、暖房時には調和空気を鉛直下向きに吹き出す制御を行うことが要求されている。
 しかし、上記の制御要求は、調和空気の上下方向の転向角度が大きいことから、この制御要求をフラップの制御によって行うと、調和空気の圧力損失が大きくなり、また、フラップの形状等の工夫も必要になる。このため、調和空気を送風するためのファンの消費動力が増加し、また、調和空気の風向を変更するための構造が複雑化する。
 本発明の課題は、調和空気を吹き出す吹出流路を備えた空気調和装置において、調和空気の圧力損失の増大や調和空気の風向を変更するための構造の複雑化を抑えつつ、調和空気の風向変更を大きな転向角度で確実に行うことができるようにすることにある。
In the conventional air conditioner described above, in order to minimize the draft feeling to the user in the air-conditioned room, it is required to control the conditioned air to be blown out horizontally during cooling and to blow out the conditioned air vertically downward during heating. Has been.
However, since the above control request has a large turning angle in the vertical direction of the conditioned air, if this control request is performed by controlling the flap, the pressure loss of the conditioned air increases, and the shape of the flap, etc. can be improved. I need it. For this reason, the power consumption of the fan for blowing conditioned air increases, and the structure for changing the wind direction of conditioned air becomes complicated.
SUMMARY OF THE INVENTION An object of the present invention is to provide an air conditioner equipped with a blow-off channel for blowing out conditioned air, while suppressing an increase in pressure loss of the conditioned air and a complicated structure for changing the direction of the conditioned air, while reducing the air direction of the conditioned air. The purpose is to ensure that the change can be made with a large turning angle.
 第1の発明にかかる空気調和装置は、調和空気を吹き出す吹出流路を備えた空気調和装置において、吹出流路は、断面視において、上流部と、流路幅が拡大する下流部とを有している。下流部は、湾曲度合いが大きい案内壁と、案内壁に対向しており湾曲度合いが小さい対向壁とを有している。この空気調和装置は、対向壁側から吹出流路内に突出させることが可能な突出部材を有している。そして、この空気調和装置では、突出部材の突出又は非突出の切り換えによって、調和空気の風向を案内壁に沿う風向とする第1吹出状態と、調和空気の風向を対向壁に沿う風向とする第2吹出状態とに切り換えることができる。しかも、案内壁は、吹出流路側に凸状に湾曲している。尚、ここで、対向壁における「湾曲」とは、曲線状だけでなく直線状も含む。
 この空気調和装置では、突出部材を対向壁側から吹出流路内に突出させない場合には、上流部から下流部へ流入する調和空気が慣性により対向壁に付着するため、案内壁側に偏向されにくい。これにより、吹出流路から吹き出される調和空気の風向は、対向壁に沿う風向である第2吹出状態になる。一方、この空気調和装置では、突出部材を対向壁側から吹出流路内に突出させる場合には、上流部から下流部へ流入する調和空気の風向が突出部材によって対向壁から剥離する方向に偏向されやすくなる。このため、上流部から下流部へ流入する調和空気は、コアンダ効果によって、案内壁に沿って流れようとし、これにより、調和空気の風向は、案内壁に沿う風向である第1吹出状態になる。そして、この空気調和装置に用いられている風向変更構造では、上記のような突出部材を用いているため、調和空気の圧力損失の増大に影響しにくく、また、構造が簡単であるため、従来のフラップを用いた風向変更構造に比べて、調和空気の圧力損失の増大や調和空気の風向を変更するための構造の複雑化を抑えることができ、これにより、調和空気の風向変更を大きな転向角度で行うことができる。
An air conditioner according to a first aspect of the present invention is an air conditioner provided with a blow-off channel for blowing out conditioned air. The blow-off channel has an upstream part and a downstream part with an enlarged flow path width in a sectional view. is doing. The downstream portion includes a guide wall having a large degree of curvature and an opposing wall facing the guide wall and having a small degree of curvature. This air conditioner has a projecting member that can project into the outlet channel from the opposing wall side. In this air conditioning apparatus, the first blowing state in which the wind direction of the conditioned air is the wind direction along the guide wall and the wind direction of the conditioned air is the wind direction along the opposing wall by switching the projecting member to the projecting or non-projecting state. It is possible to switch between two blowout states. In addition, the guide wall is curved in a convex shape toward the outlet channel. Here, the “curvature” in the facing wall includes not only a curved shape but also a straight shape.
In this air conditioner, when the projecting member is not projected into the outlet channel from the opposing wall side, the conditioned air flowing from the upstream portion to the downstream portion adheres to the opposing wall due to inertia and is deflected to the guide wall side. Hateful. Thereby, the wind direction of the conditioned air blown out from the blow-out flow path becomes the second blow-out state that is the wind direction along the opposing wall. On the other hand, in this air conditioner, when the projecting member is projected from the opposing wall side into the blowout flow path, the wind direction of the conditioned air flowing from the upstream portion to the downstream portion is deflected in a direction in which the projecting member peels from the opposing wall. It becomes easy to be done. For this reason, the conditioned air flowing from the upstream portion to the downstream portion tends to flow along the guide wall due to the Coanda effect, whereby the wind direction of the conditioned air becomes the first blowing state that is the wind direction along the guide wall. . And in the wind direction changing structure used for this air conditioner, since the projecting member as described above is used, it is difficult to affect the increase in the pressure loss of conditioned air, and the structure is simple. Compared to the wind direction change structure using the flaps of this type, it is possible to suppress the increase in the pressure loss of the conditioned air and the complexity of the structure for changing the conditioned air wind direction. Can be done at an angle.
 しかも、案内壁は湾曲度合いが大きいのに対して対向壁は湾曲度合いが小さいため、突出部材を対向壁側から吹出流路内に突出させない場合には、上流部から下流部へ流入する調和空気が、対向壁から剥離しにくく、第2吹出状態が維持されやすくなっている。また、案内壁は吹出流路側に凸状に湾曲しているため、突出部材を対向壁側から吹出流路内に突出させる場合には、対向壁から剥離する方向に偏向された調和空気が、案内壁に沿いやすく、第1吹出状態が得られやすくなっている。このため、この空気調和装置に用いられている風向変更構造では、上記のような吹出流路を用いているため、第1吹出状態と第2吹出状態との切り換えを確実に行うことができる。
 このように、この空気調和装置では、調和空気の圧力損失の増大や調和空気の風向を変更するための構造の複雑化を抑えつつ、調和空気の風向変更を大きな転向角度で確実に行うことができる。
In addition, since the guide wall has a large degree of curvature, the opposing wall has a small degree of curvature. Therefore, when the projecting member is not projected into the outlet channel from the opposing wall side, the conditioned air flows from the upstream portion to the downstream portion. However, it is difficult to peel off from the opposing wall, and the second blowing state is easily maintained. In addition, since the guide wall is convexly curved toward the outlet flow path side, when the protruding member is protruded into the outlet flow path from the opposing wall side, the conditioned air deflected in the direction of peeling from the opposing wall is It is easy to get along the guide wall and the first blowing state is easily obtained. For this reason, in the wind direction changing structure used for this air conditioner, since the above-mentioned blowing flow path is used, switching between the first blowing state and the second blowing state can be performed reliably.
Thus, in this air conditioning apparatus, it is possible to reliably change the wind direction of the conditioned air at a large turning angle while suppressing an increase in the pressure loss of the conditioned air and a complicated structure for changing the wind direction of the conditioned air. it can.
 第2の発明にかかる空気調和装置は、第1の発明にかかる空気調和装置において、案内壁は、上流部と下流部との境界付近の部分における曲率半径に比べて、境界付近の部分よりも下流側の部分における曲率半径が大きくなるように形成されている。
 案内壁の曲率半径を大きくすると、下流部において調和空気が案内壁の下流側まで付着しやすくなるが、突出部材を突出させなくても、調和空気がコアンダ効果により案内壁に引き寄せられて第1吹出状態となってしまう可能性がある。また、下流部の流れ方向の長さが長くなる。一方、案内壁の曲率半径を小さくすると、突出部材を突出させない場合の案内壁側におけるコアンダ効果が生じにくくなるために、第1吹出状態と第2吹出状態との切り換えを確実に行うことができ、かつ下流部の流れ方向の長さが短くなるものの、下流側に向かうにつれて調和空気が案内壁から剥離しやすくなる。
An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the guide wall is larger than the radius of curvature at the portion near the boundary between the upstream portion and the downstream portion than at the portion near the boundary. The radius of curvature in the downstream portion is formed to be large.
Increasing the radius of curvature of the guide wall makes it easier for the conditioned air to adhere to the downstream side of the guide wall in the downstream portion, but the conditioned air is attracted to the guide wall by the Coanda effect without causing the protruding member to protrude. There is a possibility of being blown out. Further, the length of the downstream portion in the flow direction becomes longer. On the other hand, if the radius of curvature of the guide wall is reduced, the Coanda effect on the guide wall side when the projecting member is not projected is less likely to occur, so the switching between the first blowing state and the second blowing state can be performed reliably. And although the length of the flow direction of a downstream part becomes short, conditioned air becomes easy to peel from a guide wall as it goes downstream.
 そこで、この空気調和装置では、上流部と下流部との境界付近の部分における曲率半径に比べて、境界付近の部分よりも下流側の部分における曲率半径が大きくなるように案内壁を形成している。
 これにより、この空気調和装置では、調和空気が案内壁から剥離するのを抑えつつ、調和空気の風向の転向角度を大きくとることができ、下流部の流れ方向の長さを極力短くすることができる。
Therefore, in this air conditioner, the guide wall is formed so that the radius of curvature in the portion near the boundary between the upstream portion and the downstream portion is larger than the radius of curvature in the portion near the boundary. Yes.
As a result, in this air conditioner, it is possible to increase the turning angle of the conditioned air in the direction of flow while suppressing separation of the conditioned air from the guide wall, and to reduce the length of the downstream flow direction as much as possible. it can.
 第3の発明にかかる空気調和装置は、第1又は第2の発明にかかる空気調和装置において、上流部と下流部との境界において、案内壁の接線と案内壁につながる上流部の壁面の接線とは一致しない。
 上流部と下流部との境界において、案内壁の接線と案内壁につながる上流部の壁面の接線とが一致するように構成すると、突出部材を突出させなくても、調和空気がコアンダ効果により案内壁に引き寄せられて第1吹出状態となってしまう可能性がある。また、下流部の流れ方向の長さが長くなる。
 そこで、この空気調和装置では、上流部と下流部との境界において、案内壁の接線と案内壁につながる上流部の壁面の接線とが一致しないように構成している。
 これにより、この空気調和装置では、第1吹出状態と第2吹出状態との切り換えをより確実に行うことができ、下流部の調和空気の流れ方向の長さを短くすることができる。
An air conditioner according to a third aspect is the air conditioner according to the first or second aspect, wherein the tangent line of the guide wall and the tangent line of the upstream portion connected to the guide wall at the boundary between the upstream portion and the downstream portion. Does not match.
If the tangent of the guide wall and the tangent of the upstream wall connected to the guide wall coincide with each other at the boundary between the upstream part and the downstream part, the conditioned air can be guided by the Coanda effect without projecting the projecting member. There is a possibility of being drawn into the wall and becoming the first blowout state. Further, the length of the downstream portion in the flow direction becomes longer.
Therefore, this air conditioner is configured such that the tangent of the guide wall does not coincide with the tangent of the upstream wall connected to the guide wall at the boundary between the upstream portion and the downstream portion.
Thereby, in this air conditioning apparatus, switching between the first blowing state and the second blowing state can be performed more reliably, and the length of the downstream conditioned air in the flow direction can be shortened.
 第4の発明にかかる空気調和装置は、第1~第3の発明のいずれかにかかる空気調和装置において、突出部材は、吹出流路内に突出する際に、上流部と下流部との境界付近に配置されるように設けられている。
 この空気調和装置では、突出部材による調和空気の風向を対向壁から剥離する方向への偏向を、上流部と下流部との境界付近から生じさせることができるため、突出部材による調和空気の風向を対向壁から剥離する方向への偏向を確実に行うことができる。
 これにより、この空気調和装置では、突出部材の対向壁側からの突出距離を小さくすることができ、調和空気の圧力損失の増大をさらに抑えることができる。
An air conditioner according to a fourth aspect of the present invention is the air conditioner according to any one of the first to third aspects of the invention, wherein the projecting member is a boundary between the upstream portion and the downstream portion when projecting into the blowout flow path. It is provided to be arranged in the vicinity.
In this air conditioner, since the airflow direction of the conditioned air by the projecting member can be deflected from the vicinity of the boundary between the upstream portion and the downstream portion, the airflow direction of the conditioned air by the projecting member can be changed. Deflection in the direction of peeling from the facing wall can be reliably performed.
Thereby, in this air conditioning apparatus, the protrusion distance from the opposing wall side of a protrusion member can be made small, and the increase in the pressure loss of conditioned air can further be suppressed.
 第5の発明にかかる空気調和装置は、第1~第4の発明のいずれかにかかる空気調和装置において、吹出流路内には、突出部材が吹出流路内に突出する位置よりも上流側に整流部材が設けられている。
 上流部における調和空気の風向が対向壁に対して案内壁側に斜めに傾斜している場合には、突出部材を対向壁側から突出させなくても、調和空気が案内壁に沿って流れやすく、調和空気の風向が第1吹出状態に近い風向になるおそれがある。また、上流部における調和空気の流速分布が対向壁側の流速が小さい流速分布である場合には、突出部材を対向壁側から突出させても、調和空気の風向が対向壁から剥離する方向へ偏向されにくく、調和空気の風向が第2吹出状態に近い風向になるおそれがある。このように、上流部における調和空気の風向や流速分布の影響によって、突出部材による調和空気の風向変更が不十分になるおそれがある。
An air conditioner according to a fifth aspect of the present invention is the air conditioner according to any one of the first to fourth aspects of the present invention, wherein the outlet channel is upstream of the position where the protruding member protrudes into the outlet channel. A rectifying member is provided on the surface.
When the wind direction of the conditioned air in the upstream portion is inclined obliquely toward the guide wall with respect to the opposing wall, the conditioned air easily flows along the guide wall without causing the protruding member to protrude from the opposing wall. The wind direction of the conditioned air may become a wind direction close to the first blowing state. Further, when the flow velocity distribution of the conditioned air in the upstream portion is a flow velocity distribution in which the flow velocity on the facing wall side is small, even if the protruding member protrudes from the facing wall side, the conditioned air wind direction is separated from the facing wall. It is difficult to be deflected and the wind direction of the conditioned air may be close to the second blowing state. Thus, the change in the wind direction of the conditioned air by the protruding member may be insufficient due to the influence of the wind direction and flow velocity distribution of the conditioned air in the upstream portion.
 そこで、この空気調和装置では、吹出流路内に、突出部材が吹出流路内に突出する位置よりも上流側に整流部材を設けるようにしている。
 これにより、この空気調和装置では、調和空気の風向が対向壁に沿うように、また、調和空気の速度分布が偏りの少ない流速分布になるように整流することができ、突出部材による調和空気の風向変更を確実に行うことができる。
Therefore, in this air conditioner, the rectifying member is provided in the outlet flow channel upstream of the position where the protruding member protrudes into the outlet flow channel.
Thus, in this air conditioner, the conditioned air can be rectified so that the air direction of the conditioned air is along the opposing wall and the velocity distribution of the conditioned air is a flow velocity distribution with less bias. The wind direction can be changed reliably.
本発明にかかる空気調和装置の第1実施形態としての壁掛型室内ユニットの断面図である。It is sectional drawing of the wall-hanging type indoor unit as 1st Embodiment of the air conditioning apparatus concerning this invention. 図1、図9及び図12~図17のA部の拡大図であって、突出部材及びその駆動機構を示す断面図である。FIG. 18 is an enlarged view of a portion A in FIGS. 1, 9, and 12 to 17 and is a cross-sectional view showing a protruding member and its driving mechanism. 本発明にかかる突出部材を用いた風向変更構造を示す模式図であって、第2吹出状態を示す図である。It is a schematic diagram which shows the wind direction change structure using the protrusion member concerning this invention, Comprising: It is a figure which shows a 2nd blowing state. 本発明にかかる突出部材を用いた風向変更構造を示す模式図であって、第1吹出状態を示す図である。It is a schematic diagram which shows the wind direction change structure using the protrusion member concerning this invention, Comprising: It is a figure which shows a 1st blowing state. 対向壁の湾曲度合いを大きくした場合における比較例の風向変更構造を示す模式図であって、第1吹出状態と第2吹出状態が制御できない状態を示す図である。It is a schematic diagram which shows the wind direction change structure of the comparative example when the curvature degree of an opposing wall is enlarged, Comprising: It is a figure which shows the state which cannot control a 1st blowing state and a 2nd blowing state. 対向壁の湾曲度合いを大きくした場合における比較例の風向変更構造を示す模式図であって、第2吹出状態を示す図(対向壁側及び案内壁側に突出部材を設けた場合)である。It is a schematic diagram which shows the wind direction change structure of the comparative example in the case of increasing the degree of curvature of the opposing wall, and is a diagram showing a second blowing state (when projecting members are provided on the opposing wall side and the guide wall side). 本発明にかかる突出部材を用いた風向変更構造を示す模式図であって、第1吹出状態を示す図(案内壁の曲率半径を単一にし、かつ、小さくした場合)である。It is a schematic diagram which shows the wind direction change structure using the protrusion member concerning this invention, Comprising: It is a figure which shows a 1st blowing state (when the curvature radius of a guide wall is made into single and made small). 本発明にかかる突出部材を用いた風向変更構造を示す模式図であって、第1吹出状態を示す図(案内壁の曲率半径を単一にし、かつ、大きくした場合)である。It is a schematic diagram which shows the wind direction change structure using the protrusion member concerning this invention, Comprising: It is a figure which shows a 1st blowing state (when the curvature radius of a guide wall is made single and enlarged). 第1実施形態の変形例1の壁掛型室内ユニットを示す図であって、図3に相当する図である。It is a figure which shows the wall-hanging type indoor unit of the modification 1 of 1st Embodiment, Comprising: It is a figure equivalent to FIG. 第1実施形態の変形例2の壁掛型室内ユニットの断面図である。It is sectional drawing of the wall-hanging type indoor unit of the modification 2 of 1st Embodiment. 本発明にかかる突出部材を用いた風向変更構造を示す模式図であって、第2吹出状態を示す図(整流部材を設けた場合)である。It is a schematic diagram which shows the wind direction change structure using the protrusion member concerning this invention, Comprising: It is a figure which shows a 2nd blowing state (when a rectification | straightening member is provided). 本発明にかかる突出部材を用いた風向変更構造を示す模式図であって、第1吹出状態を示す図(整流部材を設けた場合)である。It is a schematic diagram which shows the wind direction change structure using the protrusion member concerning this invention, Comprising: It is a figure which shows a 1st blowing state (when a rectification member is provided). 第1実施形態の変形例3の壁掛型室内ユニットの断面図である。It is sectional drawing of the wall-hanging type indoor unit of the modification 3 of 1st Embodiment. 第1実施形態の変形例4の壁掛型室内ユニットの断面図である。It is sectional drawing of the wall-hanging type indoor unit of the modification 4 of 1st Embodiment. 本発明にかかる空気調和装置の第2実施形態としての天井吊下型室内ユニットの断面図である。It is sectional drawing of the ceiling suspension type indoor unit as 2nd Embodiment of the air conditioning apparatus concerning this invention. 第2実施形態の変形例の天井吊下型室内ユニットの断面図である。It is sectional drawing of the ceiling suspended | suspended type indoor unit of the modification of 2nd Embodiment. 本発明にかかる空気調和装置の第3実施形態としての天井埋込型室内ユニットの断面図である。It is sectional drawing of the ceiling embedded type indoor unit as 3rd Embodiment of the air conditioning apparatus concerning this invention. 第3実施形態の変形例の天井埋込型室内ユニットの断面図である。It is sectional drawing of the ceiling embedded type indoor unit of the modification of 3rd Embodiment. 本発明にかかる空気調和装置の第4実施形態としてのダクト空調システムの断面図である。It is sectional drawing of the duct air conditioning system as 4th Embodiment of the air conditioning apparatus concerning this invention. 第4実施形態の変形例のダクト空調システムの断面図である。It is sectional drawing of the duct air conditioning system of the modification of 4th Embodiment.
 以下、本発明にかかる空気調和装置としての室内ユニットの実施形態について、図面に基づいて説明する。
 (1)第1実施形態
 <構成>
 図1は、本発明にかかる空気調和装置の第1実施形態としての壁掛型室内ユニット1の断面図である。図2は、図1のA部の拡大図であって、突出部材6及びその駆動機構7を示す断面図である。図3は、突出部材6を用いた風向変更構造を示す模式図であって、第2吹出状態を示す図である。図4は、突出部材6を用いた風向変更構造を示す模式図であって、第1吹出状態を示す図である。
 壁掛型室内ユニット1は、空調室内の壁面に設置されており、空調室の冷房や暖房を行うためのユニットである。壁掛型室内ユニット1は、主として、ケーシング2と、熱交換器3と、送風ファン4とを有している。
Hereinafter, an embodiment of an indoor unit as an air conditioner according to the present invention will be described based on the drawings.
(1) First Embodiment <Configuration>
FIG. 1 is a cross-sectional view of a wall-mounted indoor unit 1 as a first embodiment of an air conditioner according to the present invention. FIG. 2 is an enlarged view of a portion A in FIG. 1, and is a cross-sectional view showing the protruding member 6 and its driving mechanism 7. FIG. 3 is a schematic view showing a wind direction changing structure using the protruding member 6 and is a view showing a second blowing state. FIG. 4 is a schematic diagram showing a wind direction changing structure using the projecting member 6, and is a diagram showing a first blowing state.
The wall-hanging indoor unit 1 is installed on the wall surface of the air-conditioned room, and is a unit for cooling and heating the air-conditioned room. The wall-mounted indoor unit 1 mainly includes a casing 2, a heat exchanger 3, and a blower fan 4.
 ケーシング2の上部には、空調室内の空気を吸い込むための吸込口2aが形成されている。ケーシング2の下部には、調和空気を吹き出すための吹出口2bが略前方を向くように形成されている。
 熱交換器3は、略逆V字の断面を有するフィンアンドチューブ型の熱交換器であり、ケーシング2内に配置されている。熱交換器3は、吸込口2aから吸い込まれる空気を冷房時には冷却し、暖房時には加熱することによって、調和空気を生成する。
 送風ファン4は、クロスフローファンであり、ケーシング2内に配置されている。送風ファン4は、吸込口2aから吹出口2bに至る空気の流れに対して、熱交換器3の下流側に配置されている。送風ファン4は、吸込口2aから空気をケーシング2内に吸い込んで、吹出口2bから吹き出す気流を生成する。送風ファン4は、熱交換器3において生成した調和空気を吹出流路5を通じて吹出口2bから吹き出す。
A suction port 2 a for sucking air in the air-conditioned room is formed in the upper part of the casing 2. A blower outlet 2b for blowing out conditioned air is formed in the lower part of the casing 2 so as to face substantially forward.
The heat exchanger 3 is a fin-and-tube heat exchanger having a substantially inverted V-shaped cross section, and is disposed in the casing 2. The heat exchanger 3 generates conditioned air by cooling the air sucked from the suction port 2a at the time of cooling and heating at the time of heating.
The blower fan 4 is a cross flow fan and is disposed in the casing 2. The blower fan 4 is disposed on the downstream side of the heat exchanger 3 with respect to the air flow from the suction port 2a to the blower port 2b. The blower fan 4 sucks air into the casing 2 from the suction port 2a and generates an airflow that blows out from the blower outlet 2b. The blower fan 4 blows out the conditioned air generated in the heat exchanger 3 from the blowout port 2 b through the blowout channel 5.
 吹出流路5は、送風ファン4によって送り出された調和空気を吹出口2bに送るための流路である。吹出流路5は、断面視において、上流部51と、下流部52とを有している。
 上流部51は、吹出流路5のうち、上流部51と下流部52との境界点O1、O2から上流側の部分である。ここで、上流部51の下流部52との境界における流路幅を流路幅Hとする。また、ここでは、上流部51は、略同一の流路幅を有している。
 下流部52は、吹出流路5のうち、上流部51と下流部52との境界点O1、O2から下流側の流路幅が拡大する部分である。下流部52は、断面視において、案内壁53と、案内壁53に対向する対向壁54とを有している。
 案内壁53は、湾曲度合いが大きい壁面であり、略水平方向から下方向に向かって延びている。吹出流路5側に凸状に湾曲している。また、案内壁53は、上流部51と下流部52との境界点O1付近の部分における曲率半径に比べて、境界点O1付近の部分よりも下流側の部分における曲率半径が大きくなるように形成されている。ここで、案内壁53のうち上流部51と下流部52との境界点O1付近の部分を第1壁部53aとし、第1壁部53aにおける曲率半径を曲率半径R1とする。また、境界点O1付近の部分である第1壁部53aよりも下流側の部分を第2壁部53bとし、第2壁部53bにおける曲率半径を曲率半径R2とする。すなわち、曲率半径R2は、曲率半径R1よりも大きくなっている。
The blowout flow path 5 is a flow path for sending the conditioned air sent out by the blower fan 4 to the blowout port 2b. The blowout flow path 5 has an upstream part 51 and a downstream part 52 in a sectional view.
The upstream portion 51 is a portion on the upstream side from the boundary points O1 and O2 between the upstream portion 51 and the downstream portion 52 in the blowout flow path 5. Here, the channel width at the boundary between the upstream portion 51 and the downstream portion 52 is defined as a channel width H. Here, the upstream portion 51 has substantially the same flow path width.
The downstream portion 52 is a portion of the outlet flow channel 5 where the downstream flow channel width is expanded from the boundary points O1 and O2 between the upstream portion 51 and the downstream portion 52. The downstream portion 52 includes a guide wall 53 and an opposing wall 54 that faces the guide wall 53 in a cross-sectional view.
The guide wall 53 is a wall surface having a large degree of curvature, and extends from the substantially horizontal direction to the downward direction. It is curved in a convex shape toward the outlet channel 5 side. Further, the guide wall 53 is formed so that the radius of curvature in the downstream portion is larger than the portion in the vicinity of the boundary point O1 compared to the radius of curvature in the portion in the vicinity of the boundary point O1 between the upstream portion 51 and the downstream portion 52. Has been. Here, a portion of the guide wall 53 near the boundary point O1 between the upstream portion 51 and the downstream portion 52 is defined as a first wall portion 53a, and a curvature radius in the first wall portion 53a is defined as a curvature radius R1. Further, a portion downstream of the first wall portion 53a, which is a portion near the boundary point O1, is a second wall portion 53b, and a curvature radius at the second wall portion 53b is a curvature radius R2. That is, the curvature radius R2 is larger than the curvature radius R1.
 対向壁54は、湾曲度合いが小さい壁面であり、略水平方向に向かって延びている。このため、下流部52は、断面視において、片側の壁面(ここでは、案内壁53)が吹出流路側に凸状に湾曲することによって流路幅が拡大する形状を有していることになる。
 また、壁掛型室内ユニット1は、上流部51と下流部52との境界点O2付近において、対向壁54側から吹出流路5内に突出させることが可能な突出部材6を有している。突出部材6は、板状の部材であり、断面視において、吹出流路5の上流部51と下流部52との境界点O2付近に形成された突出孔55に挿入されている。ここでは、突出部材6は、ラック/ピニオン方式の駆動機構7によって、吹出流路5内への突出又は非突出の切り換えを行うことができるようになっている。この駆動機構7は、突出部材6に形成されたラックギア61と、ラックギア61に噛み合うピニオンギア62と、ピニオンギア62を駆動する駆動モータ63とを有している。また、突出部材6及び突出孔55は、突出部材6が吹出流路5内に突出する際に、突出部材6及び突出孔55の最も下流側の部分が、上流部51と下流部52との境界点O2に位置するように配置されている。すなわち、ここでは、突出部材6が、吹出流路5内に突出する際に、上流部51に配置されるように設けられている。
The opposing wall 54 is a wall surface with a small degree of curvature and extends in a substantially horizontal direction. For this reason, the downstream portion 52 has a shape in which the channel width is increased by a convex curve of the one side wall surface (in this case, the guide wall 53) to the outlet channel side in a cross-sectional view. .
Further, the wall-mounted indoor unit 1 has a projecting member 6 that can project from the facing wall 54 side into the blowout flow path 5 in the vicinity of the boundary point O2 between the upstream portion 51 and the downstream portion 52. The protruding member 6 is a plate-like member, and is inserted into a protruding hole 55 formed in the vicinity of the boundary point O2 between the upstream portion 51 and the downstream portion 52 of the blowout flow path 5 in a cross-sectional view. Here, the projecting member 6 can be switched between projecting into the blowout flow path 5 and non-projecting by a rack / pinion type drive mechanism 7. The drive mechanism 7 includes a rack gear 61 formed on the protruding member 6, a pinion gear 62 that meshes with the rack gear 61, and a drive motor 63 that drives the pinion gear 62. Further, when the projecting member 6 projects into the blowout flow path 5, the most downstream portions of the projecting member 6 and the projecting hole 55 are located between the upstream portion 51 and the downstream portion 52. It arrange | positions so that it may be located in the boundary point O2. That is, here, the projecting member 6 is provided so as to be disposed in the upstream portion 51 when projecting into the blowout flow path 5.
 <動作>
 本実施形態の壁掛型室内ユニット1の動作について、図1~図4を用いて説明する。
 まず、本実施形態の壁掛型室内ユニット1の風向変更構造について説明する。
 この壁掛型室内ユニット1では、突出部材6を対向壁54側から吹出流路5内に突出させない場合には、上流部51から下流部52へ流入する調和空気が慣性により対向壁に付着するため、案内壁53側に偏向されにくい。これにより、吹出流路5から吹き出される調和空気の風向は、対向壁54に沿う風向Xである第2吹出状態になる。一方、この壁掛型室内ユニット1では、突出部材6を対向壁54側から吹出流路5内に突出させる場合には、上流部51から下流部52へ流入する調和空気の風向が突出部材6によって対向壁54から剥離する方向に偏向されやすくなる。このため、上流部51から下流部52へ流入する調和空気は、コアンダ効果によって、案内壁53に沿って流れようとし、これにより、調和空気の風向は、案内壁53に沿う風向Yである第1吹出状態になる。
 このように、この壁掛型室内ユニット1では、突出部材6を用いた風向変更構造が採用されており、突出部材6の突出又は非突出の切り換えによって、調和空気の風向を案内壁53に沿う風向Yとする第1吹出状態と、調和空気の風向を対向壁54に沿う風向Xとする第2吹出状態とに切り換えることができるようになっている。
 そして、この壁掛型室内ユニット1では、冷房時には、調和空気を水平向きに吹き出すことが好ましいため、突出部材6を対向壁54側から突出させないようにして、対向壁54に沿う風向Xである第2吹出状態が得られるようにしている。また、暖房時には、調和空気を鉛直下向きに吹き出すことが好ましいため、突出部材6を対向壁54側から突出させて、案内壁53に沿う風向Yである第1吹出状態が得られるようにしている。
<Operation>
The operation of the wall-mounted indoor unit 1 according to this embodiment will be described with reference to FIGS.
First, the wind direction changing structure of the wall-mounted indoor unit 1 of the present embodiment will be described.
In this wall-hanging indoor unit 1, conditioned air flowing from the upstream portion 51 to the downstream portion 52 adheres to the opposing wall due to inertia when the protruding member 6 is not protruded from the opposing wall 54 side into the blowout flow path 5. It is difficult to be deflected toward the guide wall 53 side. Thereby, the wind direction of the conditioned air blown out from the blow-out flow path 5 becomes the second blow-out state in which the wind direction X is along the facing wall 54. On the other hand, in this wall-hanging indoor unit 1, when the protruding member 6 is protruded from the facing wall 54 into the blowout flow path 5, the air flow direction of the conditioned air flowing from the upstream portion 51 to the downstream portion 52 is caused by the protruding member 6. It tends to be deflected in the direction of peeling from the facing wall 54. Therefore, the conditioned air flowing from the upstream portion 51 to the downstream portion 52 tends to flow along the guide wall 53 due to the Coanda effect, whereby the wind direction of the conditioned air is the wind direction Y along the guide wall 53. 1 blows out.
Thus, in this wall-hanging indoor unit 1, the wind direction changing structure using the projecting member 6 is employed, and the wind direction of the conditioned air is changed along the guide wall 53 by switching the projecting member 6 to project or not project. It is possible to switch between a first blowing state where Y is set and a second blowing state where the wind direction of the conditioned air is set as the wind direction X along the facing wall 54.
In the wall-hanging indoor unit 1, it is preferable to blow out conditioned air in the horizontal direction during cooling. Therefore, the projecting member 6 is not projected from the facing wall 54 side, and the airflow direction X along the facing wall 54 is the first. Two blowing states are obtained. Moreover, since it is preferable to blow out conditioned air vertically downward at the time of heating, the protruding member 6 is protruded from the opposing wall 54 side so that the first blowing state that is the wind direction Y along the guide wall 53 is obtained. .
 <特徴>
 本実施形態の壁掛型室内ユニット1の特徴について、図1~図8を用いて説明する。ここで、図5は、対向壁54の湾曲度合いを大きくした場合における比較例の風向変更構造を示す模式図であって、第1吹出状態と第2吹出状態が制御できない状態を示す図である。図6は、対向壁54の湾曲度合いを大きくした場合における比較例の風向変更構造を示す模式図であって、第2吹出状態を示す図(対向壁54側及び案内壁53側に突出部材6を設けた場合)である。図7は、突出部材6を用いた風向変更構造を示す模式図であって、第1吹出状態を示す図(案内壁53の曲率半径を単一にし、かつ、小さくした場合)である。図8は、突出部材6を用いた風向変更構造を示す模式図であって、第1吹出状態を示す図(案内壁53の曲率半径を単一にし、かつ、大きくした場合)である。
 この壁掛型室内ユニット1では、吹出流路5を通じて吹き出される調和空気の風向変更構造として、上記のような突出部材6を用いているため、調和空気の圧力損失の増大に影響しにくく、また、構造が簡単であるため、従来のフラップを用いた風向変更構造に比べて、調和空気の圧力損失の増大や調和空気の風向を変更するための構造の複雑化を抑えることができ、これにより、調和空気の風向変更を大きな転向角度で行うことができる。
 しかも、案内壁53は湾曲度合いが大きいのに対して対向壁54は湾曲度合いが小さいため、突出部材6を対向壁54側から吹出流路5内に突出させない場合には、上流部51から下流部52へ流入する調和空気が、対向壁54から剥離しにくく、第2吹出状態が維持されやすくなっている。また、案内壁53は吹出流路5側に凸状に湾曲しているため、突出部材6を対向壁54側から吹出流路5内に突出させる場合には、対向壁54から剥離する方向に偏向された調和空気が、案内壁53に沿いやすく、第1吹出状態が得られやすくなっている。
<Features>
Features of the wall-mounted indoor unit 1 of the present embodiment will be described with reference to FIGS. Here, FIG. 5 is a schematic diagram illustrating a wind direction changing structure of a comparative example when the degree of curvature of the facing wall 54 is increased, and is a diagram illustrating a state in which the first blowing state and the second blowing state cannot be controlled. . FIG. 6 is a schematic diagram showing a wind direction changing structure of a comparative example when the degree of curvature of the opposing wall 54 is increased, and is a diagram showing a second blowing state (the protruding member 6 on the opposing wall 54 side and the guide wall 53 side). Is provided). FIG. 7 is a schematic diagram showing a wind direction changing structure using the projecting member 6 and showing a first blowing state (when the radius of curvature of the guide wall 53 is made single and small). FIG. 8 is a schematic view showing a wind direction changing structure using the projecting member 6 and showing a first blowing state (when the radius of curvature of the guide wall 53 is made single and large).
In this wall-hanging indoor unit 1, the protruding member 6 as described above is used as the airflow direction changing structure of the conditioned air blown out through the blowout flow path 5, so that it is difficult to affect the increase in the pressure loss of the conditioned air. Since the structure is simple, compared to the conventional wind direction changing structure using flaps, it is possible to suppress the increase in pressure loss of conditioned air and the complexity of the structure for changing the conditioned air wind direction. The wind direction of conditioned air can be changed at a large turning angle.
In addition, since the guide wall 53 has a large degree of curvature, the opposing wall 54 has a low degree of curvature. Therefore, when the projecting member 6 is not projected into the blowout flow path 5 from the opposing wall 54 side, the downstream side from the upstream portion 51 is provided. The conditioned air flowing into the portion 52 is difficult to peel off from the facing wall 54, and the second blowing state is easily maintained. Further, since the guide wall 53 is curved in a convex shape toward the outlet flow path 5 side, when the protruding member 6 is protruded from the opposing wall 54 side into the outlet flow path 5, the guide wall 53 is peeled off from the opposing wall 54. The deflected conditioned air is easy to follow along the guide wall 53, and the first blowing state is easily obtained.
 ここで、例えば、図5に示すように、対向壁54の湾曲度合いを案内壁53と同様の湾曲度合いにした場合には、突出部材6を対向壁54側から吹出流路5内に突出させないとき、調和空気が対向壁54に沿うのか(図5の破線で示された空気流を参照)、案内壁53に沿うのか(図5の実線で示された空気流を参照)が制御できなくなる。このような状態を防ぐためには、図6に示すように、突出部材6を対向壁54と案内壁53側に設ける必要があるが、これにより、構造が複雑になる。このため、突出部材6を用いた風向変更構造において、案内壁53の湾曲度合いを大きくし、かつ、対向壁54の湾曲度合いを小さくする点、及び、案内壁53が吹出流路5側に凸状に湾曲している点は、調和空気の風向変更を確実に行うために重要である。
 このように、この壁掛型室内ユニット1では、調和空気の圧力損失の増大や調和空気の風向を変更するための構造の複雑化を抑えつつ、調和空気の風向変更を大きな転向角度で確実に行うことができる。
Here, for example, as shown in FIG. 5, when the bending degree of the facing wall 54 is set to the same bending degree as that of the guide wall 53, the protruding member 6 is not protruded from the facing wall 54 side into the blowout flow path 5. When the conditioned air is along the opposing wall 54 (see the air flow shown by the broken line in FIG. 5) or along the guide wall 53 (see the air flow shown by the solid line in FIG. 5), it becomes impossible to control. . In order to prevent such a state, as shown in FIG. 6, it is necessary to provide the protruding member 6 on the opposing wall 54 and the guide wall 53 side, but this makes the structure complicated. For this reason, in the wind direction changing structure using the protruding member 6, the degree of bending of the guide wall 53 is increased and the degree of bending of the opposing wall 54 is decreased, and the guide wall 53 protrudes toward the outlet flow path 5. The curved point is important for reliably changing the direction of the conditioned air.
As described above, the wall-mounted indoor unit 1 reliably changes the wind direction of the conditioned air at a large turning angle while suppressing an increase in the pressure loss of the conditioned air and a complicated structure for changing the wind direction of the conditioned air. be able to.
 また、この壁掛型室内ユニット1では、図3及び図4に示すように、上流部51と下流部52との境界点O1付近の部分(ここでは、第1壁部53a)における曲率半径R1に比べて、境界点O1付近の部分よりも下流側の部分(ここでは、第2壁部53b)における曲率半径R2が大きくなるように案内壁53を形成している。これにより、この壁掛型室内ユニット1では、調和空気が案内壁53からの剥離するのを抑えつつ、下流部52の調和空気の流れ方向の長さLを極力短くすることができ、調和空気の風向の転向角度を大きくすることができる。
 ここで、例えば、図8に示すように、案内壁53の曲率半径を大きくすると(図8では、案内壁53を曲率半径R2の壁部だけにしている)、下流部52において調和空気が案内壁53の下流側まで付着しやすくなるが、突出部材6を突出させなくても、調和空気がコアンダ効果により案内壁53に引き寄せられて第1吹出状態となってしまう可能性がある。また、下流部52の流れ方向の長さLが長くなる。
Further, in this wall-hanging indoor unit 1, as shown in FIGS. 3 and 4, the curvature radius R1 in the portion near the boundary point O1 between the upstream portion 51 and the downstream portion 52 (here, the first wall portion 53a) is set. In comparison, the guide wall 53 is formed so that the radius of curvature R2 in the downstream portion (here, the second wall portion 53b) of the portion near the boundary point O1 is increased. Thereby, in this wall-hanging type indoor unit 1, the length L of the downstream portion 52 in the flow direction of the conditioned air can be reduced as much as possible while suppressing separation of the conditioned air from the guide wall 53. The turning angle of the wind direction can be increased.
Here, for example, as shown in FIG. 8, when the curvature radius of the guide wall 53 is increased (in FIG. 8, the guide wall 53 is only the wall portion having the curvature radius R <b> 2), the conditioned air is guided in the downstream portion 52. Although it tends to adhere to the downstream side of the wall 53, even if the protruding member 6 is not protruded, there is a possibility that the conditioned air is attracted to the guide wall 53 due to the Coanda effect and enters the first blowing state. Further, the length L in the flow direction of the downstream portion 52 is increased.
 一方、図7に示すように、案内壁53の曲率半径を小さくすると(図7では、案内壁53を曲率半径R1の壁部だけにしている)、突出部材6を突出させない場合の案内壁53側におけるコアンダ効果が生じにくくなるために、第1吹出状態と第2吹出状態との切り換えを確実に行うことができ、かつ下流部52の流れ方向の長さLが短くなるものの、下流側に向かうにつれて調和空気が案内壁53から剥離しやすくなる。
 このため、突出部材6を用いた風向変更構造において、図3、4のように、上流部51と下流部52との境界点O1付近の部分における曲率半径に比べて、境界点O1付近の部分よりも下流側の部分における曲率半径が大きくなるように案内壁53を形成する点は、下流部52の長さを短くしつつ、調和空気の転向角度を大きくするという観点で好ましい構成である。尚、ここでは、案内壁53の曲率半径を第1壁部53a(曲率半径R1)と第2壁部53b(曲率半径R2)の2段階に変化させているが、さらに多段階に曲率半径を変化させるようにしてもよい。
On the other hand, as shown in FIG. 7, when the radius of curvature of the guide wall 53 is reduced (in FIG. 7, the guide wall 53 is only the wall portion of the radius of curvature R1), the guide wall 53 when the projecting member 6 is not projected. Since the Coanda effect is less likely to occur on the side, the switching between the first blowing state and the second blowing state can be performed reliably, and the length L in the flow direction of the downstream portion 52 is shortened, but on the downstream side As it goes, conditioned air becomes easy to peel off from the guide wall 53.
Therefore, in the wind direction changing structure using the projecting member 6, as shown in FIGS. 3 and 4, the portion near the boundary point O <b> 1 compared to the radius of curvature in the portion near the boundary point O <b> 1 between the upstream portion 51 and the downstream portion 52. The point that the guide wall 53 is formed so that the radius of curvature in the downstream portion is larger is a preferable configuration from the viewpoint of increasing the turning angle of the conditioned air while shortening the length of the downstream portion 52. Here, the radius of curvature of the guide wall 53 is changed in two stages of the first wall 53a (curvature radius R1) and the second wall 53b (curvature radius R2), but the radius of curvature is further increased in multiple stages. It may be changed.
 また、この壁掛型室内ユニット1では、突出部材6が、吹出流路5内に突出する際に、上流部51に配置されるように設けられている。これにより、突出部材6による調和空気の風向を対向壁54から剥離する方向への偏向を上流部51と下流部52との境界付近から生じさせることができるため、突出部材6による調和空気の風向を対向壁54から剥離する方向への偏向を確実に行うことができる。そして、この壁掛型室内ユニット1では、突出部材6の対向壁54側からの突出距離h(図4参照)を小さくすることができ、調和空気の圧力損失の増大をさらに抑えることができる。尚、調和空気の風向を対向壁54から剥離する方向への偏向を上流部51と下流部52との境界付近から生じさせるという観点から見て、突出部材6が、吹出流路5内に突出する際に、この境界付近に配置されていればよい。 Further, in the wall-hanging indoor unit 1, the protruding member 6 is provided so as to be disposed in the upstream portion 51 when protruding into the blowout flow path 5. Thus, the conditioned air wind direction by the protruding member 6 can be deflected in the direction of peeling from the opposing wall 54 from the vicinity of the boundary between the upstream portion 51 and the downstream portion 52. Can be reliably deflected in the direction of peeling from the opposing wall 54. In this wall-hanging indoor unit 1, the protruding distance h (see FIG. 4) of the protruding member 6 from the opposing wall 54 side can be reduced, and an increase in the pressure loss of conditioned air can be further suppressed. Note that the protruding member 6 protrudes into the outlet channel 5 from the viewpoint of causing the conditioned air to be deflected in the direction in which the conditioned air is separated from the opposing wall 54 from the vicinity of the boundary between the upstream portion 51 and the downstream portion 52. It is only necessary that it be arranged near this boundary.
 <変形例1>
 上記実施形態の壁掛型室内ユニット1(図1、図3及び図4参照)において、図9に示すように、上流部51と下流部52との境界点O1において、案内壁53の接線Sと案内壁53につながる上流部51の壁面の接線Tとが一致しないように構成してもよい。
 これにより、本変形例の壁掛型室内ユニット1では、下流部52の調和空気の流れ方向の長さLを短くすることができる。尚、本変形例では、上記実施形態の壁掛型室内ユニット1の構成を前提としているため、案内壁53の曲率半径を多段階(ここでは、曲率半径R1と曲率半径R2の2段階)に変化させる構成も併せて採用しているが、案内壁53の接線Sと案内壁53につながる上流部51の壁面の接線Tとが一致しない構成だけを採用してもよい。
<Modification 1>
In the wall-hanging indoor unit 1 (see FIGS. 1, 3 and 4) of the above embodiment, as shown in FIG. 9, the tangent line S of the guide wall 53 at the boundary point O1 between the upstream portion 51 and the downstream portion 52 You may comprise so that the tangent T of the wall surface of the upstream part 51 connected to the guide wall 53 may not correspond.
Thereby, in the wall-hanging indoor unit 1 of the present modification, the length L of the downstream portion 52 in the flow direction of the conditioned air can be shortened. In addition, in this modification, since the structure of the wall-hanging indoor unit 1 of the above embodiment is assumed, the curvature radius of the guide wall 53 is changed in multiple stages (here, two stages of the curvature radius R1 and the curvature radius R2). However, only the configuration in which the tangent line S of the guide wall 53 and the tangent line T of the wall surface of the upstream portion 51 connected to the guide wall 53 do not coincide with each other may be employed.
 <変形例2>
 上記実施形態及びその変形例1の壁掛型室内ユニット1(図1、図3、図4及び図9参照)において、上流部51から下流部52へ流入する調和空気の風向は、対向壁54に沿う風向であることが好ましく、また、上流部51から下流部52へ流入する調和空気の流速分布は、偏りのない流速分布であることが好ましい。
 しかし、上記実施形態の壁掛型室内ユニット1において、図11に示すように、上流部51における調和空気Zの風向が対向壁54に対して案内壁53側に斜めに傾斜している場合には、突出部材6を対向壁54側から突出させなくても、調和空気が案内壁53に沿って流れやすく、調和空気の風向が第1吹出状態(すなわち、風向Y)に近い風向になるおそれがある。また、上記実施形態の壁掛型室内ユニット1において、図12に示すように、上流部51における調和空気Zの流速分布が対向壁54側の流速が小さい流速分布である場合には、突出部材6を対向壁54側から突出させても、調和空気の風向が対向壁54から剥離する方向へ偏向されにくく、調和空気の風向が第2吹出状態(すなわち、風向X)に近い風向になるおそれがある。このように、上記実施形態の壁掛型室内ユニット1においては、上流部51における調和空気の風向や流速分布の影響によって、突出部材6による調和空気の風向変更が不十分になるおそれがある。
<Modification 2>
In the wall-mounted indoor unit 1 (see FIGS. 1, 3, 4, and 9) of the above embodiment and the modification 1 thereof, the wind direction of the conditioned air flowing from the upstream portion 51 to the downstream portion 52 is directed to the opposing wall 54. It is preferable that the wind direction is along, and the flow velocity distribution of the conditioned air flowing from the upstream portion 51 to the downstream portion 52 is preferably a non-biased flow velocity distribution.
However, in the wall-mounted indoor unit 1 of the above embodiment, as shown in FIG. 11, when the wind direction of the conditioned air Z in the upstream portion 51 is inclined obliquely toward the guide wall 53 with respect to the opposing wall 54. Even if the protruding member 6 does not protrude from the facing wall 54 side, the conditioned air tends to flow along the guide wall 53, and the wind direction of the conditioned air may be close to the first blowing state (that is, the wind direction Y). is there. Further, in the wall-mounted indoor unit 1 of the above embodiment, as shown in FIG. 12, when the flow velocity distribution of the conditioned air Z in the upstream portion 51 is a low flow velocity distribution on the opposite wall 54 side, the protruding member 6. Even if the air is projected from the opposing wall 54 side, the air direction of the conditioned air is difficult to be deflected in the direction separating from the opposing wall 54, and the air direction of the conditioned air may become a wind direction close to the second blowing state (ie, the air direction X) is there. As described above, in the wall-mounted indoor unit 1 of the above-described embodiment, the change in the conditioned air wind direction by the protruding member 6 may be insufficient due to the influence of the conditioned air wind direction and the flow velocity distribution in the upstream portion 51.
 そこで、本変形例の壁掛型室内ユニット1では、図10、図11及び図12に示すように、吹出流路5内に、突出部材6が吹出流路5内に突出する位置よりも上流側に整流部材8を設けるようにしている。ここで、整流部材8は、対向壁54に沿う方向に延びる板状の部材である。整流部材8は、吹出流路5の断面視において、複数並んで配置されている。尚、その他の構成は、上記実施形態及びその変形例1の壁掛型室内ユニット1と同様であるため、ここでは、説明を省略する。
 これにより、本変形例の壁掛型室内ユニット1では、上流部51における調和空気の風向が対向壁54に沿うように、また、調和空気の速度分布が偏りの少ない流速分布になるように整流することができ、突出部材6による調和空気の風向変更を確実に行うことができる。
Therefore, in the wall-hanging indoor unit 1 of this modification, as shown in FIGS. 10, 11, and 12, the outlet channel 6 is located upstream of the position where the protruding member 6 protrudes into the outlet channel 5. The rectifying member 8 is provided on the front. Here, the rectifying member 8 is a plate-like member extending in a direction along the facing wall 54. A plurality of rectifying members 8 are arranged side by side in a cross-sectional view of the blowout flow path 5. In addition, since the other structure is the same as that of the wall-mounted indoor unit 1 of the said embodiment and its modification 1, it abbreviate | omits description here.
Thereby, in the wall-hanging indoor unit 1 of the present modification, rectification is performed so that the wind direction of the conditioned air in the upstream portion 51 is along the opposing wall 54 and the velocity distribution of the conditioned air is a flow velocity distribution with little bias. It is possible to change the wind direction of the conditioned air by the protruding member 6 with certainty.
 <変形例3>
 上記実施形態及びその変形例1の壁掛型室内ユニット1(図1、図3、図4及び図9参照)では、調和空気を吹き出すための吹出口2bを略前方を向くようにケーシング2に形成しているが、調和空気を吹き出すための吹出口2bを略下方を向くようにケーシング2に形成してもよい。
 本変形例の壁掛型室内ユニット1では、図13に示すように、略下方を向く吹出口2bであることから、案内壁53が下方向から略水平方向に向かって延びるように形成されており、対向壁54が略下方向に延びるように形成されている。そして、冷房時には、調和空気を水平向きに吹き出すために、突出部材6を対向壁54側から突出させて、案内壁53に沿う風向Yである第1吹出状態が得られるようにしている。また、暖房時には、調和空気を鉛直下向きに吹き出すために、突出部材6を対向壁54側から突出しないようにして、対向壁54に沿う風向Xである第2吹出状態が得られるようにしている。
 このような本変形例の壁掛型室内ユニット1においても、上記実施形態及びその変形例1の壁掛型室内ユニット1と同様の作用効果を得ることができる。
<Modification 3>
In the above-described embodiment and the wall-mounted indoor unit 1 of the modified example 1 (see FIGS. 1, 3, 4, and 9), the air outlet 2b for blowing out conditioned air is formed in the casing 2 so as to face substantially forward. However, the air outlet 2b for blowing out conditioned air may be formed in the casing 2 so as to face substantially downward.
In the wall-hanging indoor unit 1 of this modification, as shown in FIG. 13, since the outlet 2b faces substantially downward, the guide wall 53 is formed so as to extend from the lower side to the substantially horizontal direction. The opposing wall 54 is formed so as to extend substantially downward. During cooling, in order to blow out conditioned air in a horizontal direction, the protruding member 6 is protruded from the facing wall 54 side, so that a first blowing state that is the wind direction Y along the guide wall 53 is obtained. Further, during heating, in order to blow out conditioned air vertically downward, the protruding member 6 is not protruded from the facing wall 54 side, so that a second blowing state that is the wind direction X along the facing wall 54 is obtained. .
In the wall-hanging indoor unit 1 of the present modification as described above, the same operational effects as those of the wall-hanging indoor unit 1 of the embodiment and the modification 1 can be obtained.
 <変形例4>
 また、変形例3の壁掛型室内ユニット1(図13参照)において、図14に示すように、変形例2の壁掛型室内ユニット1(図10参照)と同様、整流部材8を設けるようにしてもよい。
 このような本変形例の壁掛型室内ユニット1においても、上記変形例2の壁掛型室内ユニット1と同様の作用効果を得ることができる。
<Modification 4>
Further, in the wall-hanging indoor unit 1 (see FIG. 13) of the modification 3, as shown in FIG. 14, the rectifying member 8 is provided in the same manner as the wall-hanging indoor unit 1 (see FIG. 10) of the modification 2. Also good.
Also in the wall-hanging indoor unit 1 of this modification, the same operational effects as those of the wall-hanging indoor unit 1 of the modification 2 can be obtained.
 (2)第2実施形態
 上記第1実施形態及びその変形例では、突出部材6を用いた風向変更構造を壁掛型室内ユニット1に採用しているが、図15に示すように、突出部材6を用いた風向変更構造を天井吊下型室内ユニット101に採用してもよい。
(2) Second Embodiment In the first embodiment and the modification thereof, the wind direction changing structure using the protruding member 6 is adopted in the wall-mounted indoor unit 1, but as shown in FIG. You may employ | adopt for the ceiling direction hanging type | mold indoor unit 101 the wind direction change structure using.
 <構成>
 天井吊下型室内ユニット101は、空調室内の天井面に設置されており、空調室の冷房や暖房を行うためのユニットである。天井吊下型室内ユニット1は、主として、ケーシング102と、熱交換器103と、送風ファン104とを有している。
 ケーシング102の後方部には、空調室内の空気を吸い込むための吸込口102aが形成されている。ケーシング102の前方部には、調和空気を吹き出すための吹出口102bが略前方を向くように形成されている。
 送風ファン104は、シロッコファンであり、ケーシング102内に配置されている。送風ファン104は、吸込口102aから吹出口102bに至る空気の流れに対して、熱交換器103の上流側に配置されている。送風ファン104は、吸込口102aから空気をケーシング102内に吸い込んで、吹出口102bから吹き出す気流を生成する。送風ファン104は、熱交換器103において生成した調和空気を吹出流路5を通じて吹出口102bから吹き出す。
<Configuration>
The suspended ceiling type indoor unit 101 is installed on the ceiling surface of the air conditioning room, and is a unit for cooling and heating the air conditioning room. The ceiling suspended indoor unit 1 mainly includes a casing 102, a heat exchanger 103, and a blower fan 104.
A suction port 102 a for sucking air in the air-conditioned room is formed in the rear part of the casing 102. A blower outlet 102b for blowing out conditioned air is formed at the front portion of the casing 102 so as to face substantially forward.
The blower fan 104 is a sirocco fan and is disposed in the casing 102. The blower fan 104 is disposed on the upstream side of the heat exchanger 103 with respect to the air flow from the suction port 102a to the blower port 102b. The blower fan 104 sucks air into the casing 102 from the suction port 102a, and generates an airflow that blows out from the blowout port 102b. The blower fan 104 blows out the conditioned air generated in the heat exchanger 103 from the blower outlet 102 b through the blowout flow path 5.
 熱交換器103は、略矩形状の断面を有するフィンアンドチューブ型の熱交換器であり、ケーシング102内に配置されている。熱交換器103は、吸込口102aから吸い込まれる空気を冷房時には冷却し、暖房時には加熱することによって、調和空気を生成する。
 吹出流路5は、熱交換器103によって生成した調和空気を吹出口102bに送るための流路である。吹出流路5は、断面視において、上流部51と、下流部52とを有している。尚、吹出流路5の構成は、上記第1実施形態の壁掛型室内ユニット1の吹出流路5と同様であるため、ここでは、説明を省略する。
 また、天井吊下型室内ユニット101は、上流部51と下流部52との境界点O2付近において、対向壁54側から吹出流路5内に突出させることが可能な突出部材6を有している。尚、突出部材6及びその周辺の構成は、上記第1実施形態の壁掛型室内ユニット1の突出部材6及びその周辺の構成と同様であるため、ここでは、説明を省略する。
The heat exchanger 103 is a fin-and-tube heat exchanger having a substantially rectangular cross section, and is disposed in the casing 102. The heat exchanger 103 generates conditioned air by cooling the air sucked from the suction port 102a during cooling and heating it during heating.
The blowout flow path 5 is a flow path for sending the conditioned air generated by the heat exchanger 103 to the blowout opening 102b. The blowout flow path 5 has an upstream part 51 and a downstream part 52 in a sectional view. In addition, since the structure of the blowing flow path 5 is the same as that of the blowing flow path 5 of the wall-mounted indoor unit 1 of the said 1st Embodiment, description is abbreviate | omitted here.
The ceiling-suspended indoor unit 101 has a projecting member 6 that can project into the outlet channel 5 from the opposing wall 54 side in the vicinity of the boundary point O2 between the upstream portion 51 and the downstream portion 52. Yes. In addition, since the structure of the protrusion member 6 and its periphery is the same as that of the protrusion member 6 of the wall-hanging type indoor unit 1 of the first embodiment and its periphery, the description thereof is omitted here.
 <動作>
 本実施形態の天井吊下型室内ユニット101では、上記第1実施形態の壁掛型室内ユニット1と同様に、冷房時には、調和空気を水平向きに吹き出すことが好ましいため、突出部材6を対向壁54側から突出させないようにして、対向壁54に沿う風向Xである第2吹出状態が得られるようにしている。また、暖房時には、調和空気を鉛直下向きに吹き出すことが好ましいため、突出部材6を対向壁54側から突出させて、案内壁53に沿う風向Yである第1吹出状態が得られるようにしている。
<Operation>
In the ceiling-suspended indoor unit 101 of the present embodiment, as in the wall-mounted indoor unit 1 of the first embodiment, it is preferable to blow out conditioned air in the horizontal direction during cooling. It is made not to protrude from the side, and the 2nd blowing state which is the wind direction X along the opposing wall 54 is obtained. Moreover, since it is preferable to blow out conditioned air vertically downward at the time of heating, the protruding member 6 is protruded from the opposing wall 54 side so that the first blowing state that is the wind direction Y along the guide wall 53 is obtained. .
 <特徴>
 このような本実施形態の天井吊下型室内ユニット101においても、上記第1実施形態の壁掛型室内ユニット1と同様の作用効果を得ることができる。
<Features>
Also in the ceiling suspended indoor unit 101 of this embodiment, the same operational effects as those of the wall-hanging indoor unit 1 of the first embodiment can be obtained.
 <変形例>
 また、上記実施形態の天井吊下型室内ユニット101(図15参照)において、図16に示すように、上記第1実施形態の変形例2の壁掛型室内ユニット1(図10参照)と同様、整流部材8を設けるようにしてもよい。
 このような本変形例の天井吊下型室内ユニット101においても、上記第1実施形態の変形例2の壁掛型室内ユニット1と同様の作用効果を得ることができる。
<Modification>
Further, in the ceiling-suspended indoor unit 101 (see FIG. 15) of the above embodiment, as shown in FIG. 16, as with the wall-hanging indoor unit 1 (see FIG. 10) of Modification 2 of the first embodiment, A rectifying member 8 may be provided.
In such a ceiling-suspended indoor unit 101 of this modified example, it is possible to obtain the same functions and effects as those of the wall-mounted indoor unit 1 of modified example 2 of the first embodiment.
 (3)第3実施形態
 上記第1、第2実施形態及びその変形例では、突出部材6を用いた風向変更構造を壁掛型室内ユニット1や天井吊下型室内ユニット101に採用しているが、図17に示すように、突出部材6を用いた風向変更構造を天井埋込型室内ユニット201に採用してもよい。
(3) Third Embodiment In the first and second embodiments and the modifications thereof, the wind direction changing structure using the protruding member 6 is adopted for the wall-hanging indoor unit 1 and the ceiling suspended indoor unit 101. As shown in FIG. 17, a wind direction changing structure using the protruding member 6 may be employed in the ceiling-embedded indoor unit 201.
 <構成>
 天井埋込型室内ユニット201は、空調室内の天井面に設置されており、空調室の冷房や暖房を行うためのユニットである。天井埋込型室内ユニット201は、主として、ケーシング202と、熱交換器203と、送風ファン204とを有している。
 ケーシング202は、ケーシング本体211と、ケーシング本体211の下面に装着される化粧パネル212とを有している。化粧パネル212の平面視略中央には、空調室内の空気を吸い込むための吸込口202aが形成されている。化粧パネル212には、調和空気を吹き出すための吹出口202bが、吸込口202aを取り囲み、かつ、略下方を向くように形成されている。
 送風ファン204は、ターボファンであり、ケーシング202内に配置されている。送風ファン204は、吸込口202aから吹出口202bに至る空気の流れに対して、熱交換器203の上流側に配置されている。送風ファン204は、吸込口202aから空気をケーシング202内に吸い込んで、吹出口202bから吹き出す気流を生成する。送風ファン204は、熱交換器203において生成した調和空気を吹出流路5を通じて吹出口202bから吹き出す。
<Configuration>
The ceiling-embedded indoor unit 201 is installed on the ceiling surface in the air conditioning room, and is a unit for cooling and heating the air conditioning room. The ceiling-embedded indoor unit 201 mainly includes a casing 202, a heat exchanger 203, and a blower fan 204.
The casing 202 includes a casing main body 211 and a decorative panel 212 attached to the lower surface of the casing main body 211. A suction port 202a for sucking air in the air-conditioned room is formed in the approximate center of the decorative panel 212 in plan view. The decorative panel 212 is formed with an air outlet 202b for blowing out conditioned air so as to surround the air inlet 202a and face substantially downward.
The blower fan 204 is a turbo fan and is disposed in the casing 202. The blower fan 204 is disposed on the upstream side of the heat exchanger 203 with respect to the air flow from the suction port 202a to the blowout port 202b. The blower fan 204 sucks air into the casing 202 from the suction port 202a and generates an airflow that blows out from the blowout port 202b. The blower fan 204 blows out conditioned air generated in the heat exchanger 203 from the blower outlet 202b through the blowout flow path 5.
 熱交換器203は、略矩形状の断面を有するフィンアンドチューブ型の熱交換器であり、ケーシング202内に送風ファン104を取り囲むように配置されている。熱交換器203は、吸込口202aから吸い込まれる空気を冷房時には冷却し、暖房時には加熱することによって、調和空気を生成する。
 吹出流路5は、熱交換器203によって生成した調和空気を吹出口202bに送るための流路である。吹出流路5は、断面視において、上流部51と、下流部52とを有している。尚、吹出流路5の構成は、対向壁54が湾曲している点に違いがあるが、この点を除いては、上記第1実施形態の壁掛型室内ユニット1の吹出流路5と同様であるため、ここでは、説明を省略する。
 また、天井埋込型室内ユニット201は、上流部51と下流部52との境界点O2付近において、対向壁54側から吹出流路5内に突出させることが可能な突出部材6を有している。尚、突出部材6及びその周辺の構成は、上記第1実施形態の壁掛型室内ユニット1の突出部材6及びその周辺の構成と同様であるため、ここでは、説明を省略する。
The heat exchanger 203 is a fin-and-tube heat exchanger having a substantially rectangular cross section, and is arranged in the casing 202 so as to surround the blower fan 104. The heat exchanger 203 generates conditioned air by cooling the air sucked from the suction port 202a at the time of cooling and heating at the time of heating.
The blowout flow path 5 is a flow path for sending conditioned air generated by the heat exchanger 203 to the blowout opening 202b. The blowout flow path 5 has an upstream part 51 and a downstream part 52 in a sectional view. The structure of the blowout flow path 5 is different in that the facing wall 54 is curved. Except for this point, it is the same as the blowout flow path 5 of the wall-mounted indoor unit 1 of the first embodiment. Therefore, the description is omitted here.
The ceiling-embedded indoor unit 201 has a projecting member 6 that can project into the outlet channel 5 from the opposing wall 54 side in the vicinity of the boundary point O2 between the upstream section 51 and the downstream section 52. Yes. In addition, since the structure of the protrusion member 6 and its periphery is the same as that of the protrusion member 6 of the wall-hanging type indoor unit 1 of the first embodiment and its periphery, the description thereof is omitted here.
 <動作>
 本実施形態の天井埋込型室内ユニット201では、上記第1実施形態の変形例3の壁掛型室内ユニット1と同様に、略下方を向く吹出口202bであることから、案内壁53が下方向から略水平方向に向かって延びるように形成されており、対向壁54が略下方向に延びるように形成されている。そして、冷房時には、調和空気を水平向きに吹き出すことが好ましいため、突出部材6を対向壁54側から突出させて、案内壁53に沿う風向Yである第1吹出状態が得られるようにしている。また、暖房時には、調和空気を鉛直下向きに吹き出すことが好ましいため、突出部材6を対向壁54側から突出させないようにして、対向壁54に沿う風向Xである第2吹出状態が得られるようにしている。
<Operation>
In the ceiling-embedded indoor unit 201 of the present embodiment, as with the wall-hanging indoor unit 1 of the third modification of the first embodiment, the guide wall 53 is directed downward because it is the air outlet 202b facing substantially downward. And the opposing wall 54 is formed so as to extend substantially downward. And since it is preferable to blow out conditioned air in the horizontal direction during cooling, the protruding member 6 is protruded from the opposing wall 54 side so that the first blowing state that is the wind direction Y along the guide wall 53 is obtained. . Moreover, since it is preferable that the conditioned air be blown vertically downward during heating, the projecting member 6 is not projected from the facing wall 54 side so that the second blowing state that is the wind direction X along the facing wall 54 is obtained. ing.
 <特徴>
 このような本実施形態の天井埋込型室内ユニット201においても、上記第1、第2実施形態の壁掛型室内ユニット1や天井吊下型室内ユニット101と同様の作用効果を得ることができる。
<Features>
Also in the ceiling-embedded indoor unit 201 of this embodiment, the same operational effects as those of the wall-mounted indoor unit 1 and the ceiling-suspended indoor unit 101 of the first and second embodiments can be obtained.
 <変形例>
 また、上記実施形態の天井埋込型室内ユニット201(図17参照)において、図18に示すように、上記第1実施形態の変形例2の壁掛型室内ユニット1(図10参照)や上記第2実施形態の変形例の天井吊下型室内ユニット101(図16参照)と同様、整流部材8を設けるようにしてもよい。
 このような本変形例の天井埋込型室内ユニット201においても、上記第1実施形態の変形例2の壁掛型室内ユニット1や上記第2実施形態の変形例の天井吊下型室内ユニット101と同様の作用効果を得ることができる。
<Modification>
In the ceiling-embedded indoor unit 201 (see FIG. 17) of the above embodiment, as shown in FIG. 18, the wall-hanging indoor unit 1 (see FIG. 10) of the second modification of the first embodiment and the above-mentioned The rectifying member 8 may be provided in the same manner as the ceiling-suspended indoor unit 101 (see FIG. 16) of the modification of the second embodiment.
Also in the ceiling-embedded indoor unit 201 of this modified example, the wall-hanging indoor unit 1 of the modified example 2 of the first embodiment and the suspended ceiling indoor unit 101 of the modified example of the second embodiment are also included. Similar effects can be obtained.
 (4)第4実施形態
 上記第1~第3実施形態及びその変形例では、突出部材6を用いた風向変更構造を壁掛型室内ユニット1や天井吊下型室内ユニット101、天井埋込型室内ユニット201に採用しているが、図19に示すように、突出部材6を用いた風向変更構造を、天井埋込ダクト型室内ユニット301aを使用したダクト空調システム301に採用してもよい。
(4) Fourth Embodiment In the first to third embodiments and the modifications thereof, the wind direction changing structure using the projecting member 6 is used as the wall-hanging indoor unit 1, the ceiling suspended indoor unit 101, the ceiling embedded indoors. Although employed in the unit 201, as shown in FIG. 19, a wind direction changing structure using the protruding member 6 may be employed in a duct air-conditioning system 301 using a ceiling-embedded duct type indoor unit 301a.
 <構成>
 ダクト空調システム301は、空調室内の天井裏空間に設置されており、主として、天井埋込ダクト型室内ユニット301aと、吹出ダクト301bと、吹出ユニット301cとを有している。
 天井埋込ダクト型室内ユニット301aは、空調室内の天井裏空間(図19に二点鎖線で図示)に設置されており、空調室の冷房や暖房を行うためのユニットである。天井埋込ダクト型室内ユニット301aは、主として、ケーシング302と、熱交換器303と、送風ファン304とを有している。
 ケーシング302の後方部には、図示しない吸込ダクトに接続されて空調室内の空気を吸い込むための吸込開口302aが形成されている。ケーシング302の前方部には、調和空気を吹き出すための吹出開口302cが略前方を向くように形成されている。
<Configuration>
The duct air-conditioning system 301 is installed in a ceiling space in the air-conditioned room, and mainly includes a ceiling-embedded duct type indoor unit 301a, a blowout duct 301b, and a blowout unit 301c.
The ceiling-embedded duct-type indoor unit 301a is a unit for cooling and heating the air-conditioning room, which is installed in a ceiling space (shown by a two-dot chain line in FIG. 19) in the air-conditioning room. The ceiling-embedded duct type indoor unit 301a mainly includes a casing 302, a heat exchanger 303, and a blower fan 304.
A suction opening 302 a is formed in the rear portion of the casing 302 to be connected to a suction duct (not shown) and suck air in the air-conditioned room. A blow-out opening 302c for blowing out conditioned air is formed in the front portion of the casing 302 so as to face substantially forward.
 送風ファン304は、シロッコファンであり、ケーシング302内に配置されている。送風ファン304は、吸込開口302aから吹出開口302cに至る空気の流れに対して、熱交換器303の上流側に配置されている。送風ファン304は、吸込開口302aから空気をケーシング302内に吸い込んで、吹出開口302cから吹き出す気流を生成する。送風ファン304は、熱交換器303において生成した調和空気を、吹出開口302cに接続された吹出ダクト301b及び吹出ユニット301cによって形成される吹出流路5を通じて吹出ユニット301cの吹出口302bから吹き出す。
 熱交換器303は、略矩形状の断面を有するフィンアンドチューブ型の熱交換器であり、ケーシング302内に配置されている。熱交換器303は、吸込開口302aから吸い込まれる空気を冷房時には冷却し、暖房時には加熱することによって、調和空気を生成する。
The blower fan 304 is a sirocco fan and is disposed in the casing 302. The blower fan 304 is disposed on the upstream side of the heat exchanger 303 with respect to the air flow from the suction opening 302a to the blowout opening 302c. The blower fan 304 sucks air into the casing 302 from the suction opening 302a, and generates an airflow that blows out from the blowout opening 302c. The blower fan 304 blows out the conditioned air generated in the heat exchanger 303 from the blowout outlet 302b of the blowout unit 301c through the blowout flow path 5 formed by the blowout duct 301b connected to the blowout opening 302c and the blowout unit 301c.
The heat exchanger 303 is a fin-and-tube heat exchanger having a substantially rectangular cross section, and is disposed in the casing 302. The heat exchanger 303 generates conditioned air by cooling the air sucked from the suction opening 302a during cooling and heating the air during heating.
 吹出流路5は、熱交換器303によって生成した調和空気を吹出口302bに送るための流路であり、上記のように、吹出ダクト301b及び吹出ユニット301cによって形成されている。すなわち、ここでは、熱交換器303や送風ファン304が収容されたユニット301a内ではなく、その下流側に接続された吹出ダクト301b及び吹出ユニット301cに吹出流路5が形成されている。吹出流路5は、断面視において、上流部51と、下流部52とを有している。上流部51には、調和空気が下流に向かうにつれて縮流するように湾曲した断面形状をなす縮流部51aが形成されている。縮流部51aの湾曲線は、正弦曲線や3次曲線をなしている。このように、吹出流路5の構成は、天井埋込ダクト型ユニット301aの下流側に接続された吹出ダクト301b及び吹出ユニット301cに形成されている点、及び、上流部51に縮流部51aを有する点に違いがあるが、これらの点を除いては、上記第1実施形態の壁掛型室内ユニット1の吹出流路5と同様であるため、ここでは、説明を省略する。 The blowout flow path 5 is a flow path for sending conditioned air generated by the heat exchanger 303 to the blowout opening 302b, and is formed by the blowout duct 301b and the blowout unit 301c as described above. That is, here, the blowout flow path 5 is formed not in the unit 301a in which the heat exchanger 303 and the blower fan 304 are housed, but in the blowout duct 301b and the blowout unit 301c connected to the downstream side thereof. The blowout flow path 5 has an upstream part 51 and a downstream part 52 in a sectional view. The upstream portion 51 is formed with a contracted flow portion 51a having a curved cross-sectional shape so that the conditioned air flows toward the downstream. The curved line of the contracted flow part 51a forms a sine curve or a cubic curve. Thus, the structure of the blowout flow path 5 is formed in the blowout duct 301b and the blowout unit 301c connected to the downstream side of the ceiling-embedded duct type unit 301a, and the upstream portion 51 has a contracted portion 51a. However, since these points are the same as the outlet channel 5 of the wall-mounted indoor unit 1 of the first embodiment, the description thereof is omitted here.
 また、ダクト空調システム301の吹出ユニット301cは、上流部51と下流部52との境界点O2付近において、対向壁54側から吹出流路5内に突出させることが可能な突出部材6を有している。尚、突出部材6及びその周辺の構成は、上記第1実施形態の壁掛型室内ユニット1の突出部材6及びその周辺の構成と同様であるため、ここでは、説明を省略する。 Further, the blowout unit 301c of the duct air-conditioning system 301 has a projecting member 6 that can project into the blowout flow path 5 from the opposing wall 54 side in the vicinity of the boundary point O2 between the upstream portion 51 and the downstream portion 52. ing. In addition, since the structure of the protrusion member 6 and its periphery is the same as that of the protrusion member 6 of the wall-hanging type indoor unit 1 of the first embodiment and its periphery, the description thereof is omitted here.
 <動作>
 本実施形態のダクト空調システム301では、上記第1実施形態の壁掛型室内ユニット1と同様に、冷房時には、調和空気を水平向きに吹き出すことが好ましいため、突出部材6を対向壁54側から突出させないようにして、対向壁54に沿う風向Xである第2吹出状態が得られるようにしている。また、暖房時には、調和空気を鉛直下向きに吹き出すことが好ましいため、突出部材6を対向壁54側から突出させて、案内壁53に沿う風向Yである第1吹出状態が得られるようにしている。
<Operation>
In the duct air-conditioning system 301 of the present embodiment, as in the wall-mounted indoor unit 1 of the first embodiment, it is preferable to blow out conditioned air in the horizontal direction during cooling, so that the protruding member 6 protrudes from the opposing wall 54 side. In this way, the second blowing state that is the wind direction X along the facing wall 54 is obtained. Moreover, since it is preferable to blow out conditioned air vertically downward at the time of heating, the protruding member 6 is protruded from the opposing wall 54 side so that the first blowing state that is the wind direction Y along the guide wall 53 is obtained. .
 <特徴>
 このような本実施形態のダクト空調システム301においても、上記第1実施形態の壁掛型室内ユニット1と同様の作用効果を得ることができる。
<Features>
Also in the duct air conditioning system 301 of this embodiment, the same operational effects as those of the wall-mounted indoor unit 1 of the first embodiment can be obtained.
 <変形例>
 また、上記実施形態のダクト空調システム301(図19参照)において、図20に示すように、上記第1実施形態の変形例2の壁掛型室内ユニット1(図10参照)と同様、整流部材8を設けるようにしてもよい。
 このような本変形例のダクト空調システム301においても、上記第1実施形態の変形例2の壁掛型室内ユニット1と同様の作用効果を得ることができる。
<Modification>
In the duct air-conditioning system 301 (see FIG. 19) of the above embodiment, as shown in FIG. 20, the rectifying member 8 is the same as the wall-mounted indoor unit 1 (see FIG. 10) of the second modification of the first embodiment. May be provided.
In such a duct air conditioning system 301 of this modification, the same effect as the wall-hanging indoor unit 1 of Modification 2 of the first embodiment can be obtained.
 (5)他の実施形態
 以上、本発明の実施形態及びその変形例について図面に基づいて説明したが、具体的な構成は、これらの実施形態及びその変形例に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
(5) Other Embodiments Although the embodiments of the present invention and the modifications thereof have been described with reference to the drawings, the specific configuration is not limited to these embodiments and the modifications thereof, and Changes can be made without departing from the scope of the invention.
 <A>
 上記実施形態及びその変形例では、壁掛型室内ユニット1、天井吊下型室内ユニット101、天井埋込型室内ユニット201及びダクト空調システム301に突出部材6を用いた風向変更構造を採用しているが、これに限定されず、他の型式の空気調和装置や空調システムに突出部材6を用いた風向変更構造を採用してもよい。
 <B>
 上記実施形態及びその変形例では、調和空気の上下方向の風向変更構造として、突出部材6を用いた風向変更構造を採用しているが、これに限定されず、上下方向以外の風向変更構造として、突出部材6を用いた風向変更構造を採用してもよい。
 <C>
 上記実施形態及びその変形例では、突出部材6を駆動するための駆動機構として、ラック/ピニオン方式の駆動機構7を採用しているが、これに限定されず、他の方式の駆動機構を採用してもよい。
<A>
In the said embodiment and its modification, the wind direction change structure using the protrusion member 6 is employ | adopted for the wall-hanging type indoor unit 1, the ceiling suspended type indoor unit 101, the ceiling embedded type indoor unit 201, and the duct air conditioning system 301. However, it is not limited to this, You may employ | adopt the wind direction change structure which used the protrusion member 6 for the air conditioning apparatus of another type, or an air conditioning system.
<B>
In the said embodiment and its modification, although the wind direction change structure using the protrusion member 6 is employ | adopted as a wind direction change structure of the up-down direction of conditioned air, it is not limited to this, As a wind direction change structure other than an up-down direction A wind direction changing structure using the protruding member 6 may be employed.
<C>
In the above embodiment and its modification, the rack / pinion type drive mechanism 7 is employed as the drive mechanism for driving the protruding member 6. However, the present invention is not limited to this, and other types of drive mechanisms are employed. May be.
 <D>
 上記実施形態及びその変形例では、突出部材6を用いた風向変更構造を空気調和装置に採用しているが、ダクトの吹出口にも採用可能である。
<D>
In the said embodiment and its modification, although the wind direction change structure using the protrusion member 6 is employ | adopted for the air conditioning apparatus, it is employable also at the blower outlet of a duct.
 本発明は、調和空気を吹き出す吹出流路を備えた空気調和装置に広く適用可能である。 The present invention can be widely applied to an air conditioner having a blow-out flow path for blowing out conditioned air.
 1 壁掛型室内ユニット(空気調和装置)
 5 吹出流路
 6 突出部材
 8 整流部材
 51 上流部
 52 下流部
 53 案内壁
 54 対向壁
 101 天井吊下型室内ユニット(空気調和装置)
 201 天井埋込型室内ユニット(空気調和装置)
 301 ダクト空調システム(空気調和装置)
1 Wall-mounted indoor unit (air conditioner)
DESCRIPTION OF SYMBOLS 5 Outflow flow path 6 Protruding member 8 Rectification member 51 Upstream part 52 Downstream part 53 Guide wall 54 Opposite wall 101 Ceiling suspended type indoor unit (air conditioner)
201 Ceiling-embedded indoor unit (air conditioner)
301 Duct air conditioning system (air conditioner)
特開2009-145008号公報JP 2009-145008 A

Claims (5)

  1.  調和空気を吹き出す吹出流路(5)を備えた空気調和装置において、
     前記吹出流路は、断面視において、上流部(51)と、流路幅が拡大する下流部(52)とを有し、
     前記下流部は、湾曲度合いが大きい案内壁(53)と、前記案内壁に対向しており湾曲度合いが小さい対向壁(54)とを有し、
     前記対向壁側から前記吹出流路内に突出させることが可能な突出部材(6)を有し、
     前記突出部材の突出又は非突出の切り換えによって、前記調和空気の風向を前記案内壁に沿う風向とする第1吹出状態と、前記調和空気の風向を前記対向壁に沿う風向とする第2吹出状態とに切り換えることができ、
     前記案内壁は、前記吹出流路側に凸状に湾曲している、
    空気調和装置(1、101、201、301)。
    In the air conditioning apparatus provided with the blowout flow path (5) for blowing out conditioned air,
    The blowout flow path has an upstream part (51) and a downstream part (52) in which the flow path width is enlarged in a cross-sectional view,
    The downstream portion includes a guide wall (53) having a large degree of curvature, and an opposing wall (54) facing the guide wall and having a small degree of curvature,
    A projecting member (6) capable of projecting into the outlet channel from the opposing wall side;
    A first blowing state in which the wind direction of the conditioned air is a wind direction along the guide wall and a second blowing state in which the wind direction of the conditioned air is a wind direction along the opposing wall by switching between the protruding and non-projecting of the protruding member. Can be switched to
    The guide wall is curved in a convex shape toward the blowing channel side,
    Air conditioner (1, 101, 201, 301).
  2.  前記案内壁(53)は、前記上流部(51)と前記下流部(52)との境界付近の部分における曲率半径に比べて、前記境界付近の部分よりも下流側の部分における曲率半径が大きくなるように形成されている、請求項1に記載の空気調和装置(1、101、201、301)。 The guide wall (53) has a larger radius of curvature in the downstream portion than the portion near the boundary, compared to the radius of curvature in the portion near the boundary between the upstream portion (51) and the downstream portion (52). The air conditioner (1, 101, 201, 301) according to claim 1, wherein the air conditioner is formed to be.
  3.  前記上流部(51)と前記下流部(52)との境界において、前記案内壁(53)の接線と前記案内壁につながる前記上流部の壁面の接線とは一致しない、請求項1又は2に記載の空気調和装置(1、101、201、301)。 The boundary between the upstream part (51) and the downstream part (52), the tangent of the guide wall (53) and the tangent of the wall of the upstream part connected to the guide wall do not coincide with each other. The air conditioning apparatus described (1, 101, 201, 301).
  4.  突出部材(6)は、吹出流路(5)内に突出する際に、前記上流部(51)と前記下流部(52)との境界付近に配置されるように設けられている、請求項1~3のいずれかに記載の空気調和装置(1、101、201、301)。 The projecting member (6) is provided so as to be disposed in the vicinity of a boundary between the upstream portion (51) and the downstream portion (52) when projecting into the blowout flow path (5). The air conditioner (1, 101, 201, 301) according to any one of 1 to 3.
  5.  前記吹出流路(5)内には、前記突出部材(6)が前記吹出流路内に突出する位置よりも上流側に整流部材(8)が設けられている、請求項1~4のいずれかに記載の空気調和装置(1、101、201、301)。 The rectifying member (8) is provided in the outlet channel (5) upstream of a position where the protruding member (6) protrudes into the outlet channel. An air conditioner (1, 101, 201, 301) according to any one of the above.
PCT/JP2010/067070 2009-09-30 2010-09-30 Air conditioning device WO2011040519A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009226634 2009-09-30
JP2009-226634 2009-09-30

Publications (1)

Publication Number Publication Date
WO2011040519A1 true WO2011040519A1 (en) 2011-04-07

Family

ID=43826331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067070 WO2011040519A1 (en) 2009-09-30 2010-09-30 Air conditioning device

Country Status (2)

Country Link
JP (1) JP5011427B2 (en)
WO (1) WO2011040519A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3017977A1 (en) * 2014-10-31 2016-05-11 Howa Plastics Co., Ltd. Air blowing device
EP2918936A4 (en) * 2012-10-30 2016-07-27 Mitsubishi Electric Corp Air conditioner
CN107074075A (en) * 2014-10-31 2017-08-18 丰和化成株式会社 Air blowing device
EP3396268A1 (en) * 2017-04-28 2018-10-31 Mitsubishi Heavy Industries Thermal Systems, Ltd. Indoor unit of air conditioner
CN109974091A (en) * 2019-04-29 2019-07-05 广东美的制冷设备有限公司 Wall-hanging air conditioner indoor unit and air conditioner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6634799B2 (en) * 2015-12-01 2020-01-22 株式会社デンソー Air blowing device for vehicles
JP2017100553A (en) * 2015-12-01 2017-06-08 株式会社デンソー Air blowout device for vehicle
JP6924608B2 (en) * 2017-04-26 2021-08-25 日立ジョンソンコントロールズ空調株式会社 Indoor unit of air conditioner

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101314U (en) * 1984-12-10 1986-06-28
JPS6343033U (en) * 1986-09-03 1988-03-22
JPH06193958A (en) * 1992-12-22 1994-07-15 Matsushita Seiko Co Ltd Air conditioning blowing device
JPH08313042A (en) * 1995-05-16 1996-11-29 Daikin Ind Ltd Air direction-adjusting structure of ceiling-buried air-conditioner
JPH11118239A (en) * 1997-10-13 1999-04-30 Daikin Ind Ltd Outlet structure and air conditioner having this outlet structure
JP2000111131A (en) * 1998-10-08 2000-04-18 Daikin Ind Ltd Air blowoff port structure of blower device
JP2001194000A (en) * 1999-11-05 2001-07-17 Daikin Ind Ltd Ceiling embedded type air conditioner
JP2002257372A (en) * 2001-02-27 2002-09-11 Sharp Corp Air conditioner
JP2007024345A (en) * 2005-07-12 2007-02-01 Mitsubishi Electric Corp Air conditioner
JP2008122054A (en) * 2006-11-09 2008-05-29 Samsung Electronics Co Ltd Blowoff guide device and air conditioner provided therewith

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101314A (en) * 1984-10-19 1986-05-20 Iseki & Co Ltd Selection device for fruits etc.
JPS6383549A (en) * 1986-09-25 1988-04-14 Mitsubishi Electric Corp Control device for room heater
JPH033660A (en) * 1989-05-31 1991-01-09 Nec Corp Switching power circuit
JPH11141967A (en) * 1997-11-13 1999-05-28 Mitsubishi Electric Corp Wind direction unit for air conditioner
JP2007040575A (en) * 2005-08-02 2007-02-15 Matsushita Electric Ind Co Ltd Wind direction changing device for air conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101314U (en) * 1984-12-10 1986-06-28
JPS6343033U (en) * 1986-09-03 1988-03-22
JPH06193958A (en) * 1992-12-22 1994-07-15 Matsushita Seiko Co Ltd Air conditioning blowing device
JPH08313042A (en) * 1995-05-16 1996-11-29 Daikin Ind Ltd Air direction-adjusting structure of ceiling-buried air-conditioner
JPH11118239A (en) * 1997-10-13 1999-04-30 Daikin Ind Ltd Outlet structure and air conditioner having this outlet structure
JP2000111131A (en) * 1998-10-08 2000-04-18 Daikin Ind Ltd Air blowoff port structure of blower device
JP2001194000A (en) * 1999-11-05 2001-07-17 Daikin Ind Ltd Ceiling embedded type air conditioner
JP2002257372A (en) * 2001-02-27 2002-09-11 Sharp Corp Air conditioner
JP2007024345A (en) * 2005-07-12 2007-02-01 Mitsubishi Electric Corp Air conditioner
JP2008122054A (en) * 2006-11-09 2008-05-29 Samsung Electronics Co Ltd Blowoff guide device and air conditioner provided therewith

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2918936A4 (en) * 2012-10-30 2016-07-27 Mitsubishi Electric Corp Air conditioner
US9995504B2 (en) 2012-10-30 2018-06-12 Mitsubishi Electric Corporation Air conditioner having air outlet louver with varying curvature
EP3017977A1 (en) * 2014-10-31 2016-05-11 Howa Plastics Co., Ltd. Air blowing device
CN107074075A (en) * 2014-10-31 2017-08-18 丰和化成株式会社 Air blowing device
EP3213946A4 (en) * 2014-10-31 2018-05-30 Howa Plastics Co., Ltd. Air discharge device
EP3396268A1 (en) * 2017-04-28 2018-10-31 Mitsubishi Heavy Industries Thermal Systems, Ltd. Indoor unit of air conditioner
CN109974091A (en) * 2019-04-29 2019-07-05 广东美的制冷设备有限公司 Wall-hanging air conditioner indoor unit and air conditioner
CN109974091B (en) * 2019-04-29 2024-04-30 广东美的制冷设备有限公司 Wall-mounted air conditioner indoor unit and air conditioner

Also Published As

Publication number Publication date
JP5011427B2 (en) 2012-08-29
JP2011094948A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP5011427B2 (en) Air conditioner
US9488381B2 (en) Air-conditioning indoor unit
JP3624813B2 (en) Air conditioner decorative panel, air outlet unit, and air conditioner
KR100408598B1 (en) Cross blower
KR20060021888A (en) Ceiling-embedded air conditioner and method of controlling the same
JP2007024345A (en) Air conditioner
JPH109657A (en) Indoor machine of air conditioner
JP5640738B2 (en) Air outlet structure for air conditioner
JP2002061944A (en) Decoration panel of air conditioner, supply opening unit, and air conditioner
WO2017043479A1 (en) Air-conditioning indoor unit
JP3302895B2 (en) Embedded air conditioner
JP4897379B2 (en) Air conditioner
JP2009168323A (en) High place installation type air conditioner
JP2008057843A (en) Air conditioner
JP2002081683A (en) Decorative panel and air outlet unit of air conditioner as well as air conditioner
JP3285023B2 (en) Ceiling-mounted air conditioner
JP4980440B2 (en) Air conditioner
WO2020039492A1 (en) Indoor unit for air conditioner
JP2001248853A (en) Indoor unit for air conditioner
JP6956794B2 (en) Indoor unit of air conditioner
JP2017116145A (en) Indoor unit of air conditioner
JP2007078285A (en) Indoor unit for air conditioner
JP2008157514A (en) Air conditioner
JP6153141B2 (en) Air conditioner
JP2004218877A (en) Air blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820634

Country of ref document: EP

Kind code of ref document: A1