WO2011039587A2 - Extrémité de colonne montante - Google Patents

Extrémité de colonne montante Download PDF

Info

Publication number
WO2011039587A2
WO2011039587A2 PCT/IB2010/002297 IB2010002297W WO2011039587A2 WO 2011039587 A2 WO2011039587 A2 WO 2011039587A2 IB 2010002297 W IB2010002297 W IB 2010002297W WO 2011039587 A2 WO2011039587 A2 WO 2011039587A2
Authority
WO
WIPO (PCT)
Prior art keywords
riser
floating unit
termination
vessel
top termination
Prior art date
Application number
PCT/IB2010/002297
Other languages
English (en)
Other versions
WO2011039587A3 (fr
Inventor
Goof Zijderveld
Laurens Cornelis Claassen
Original Assignee
Gusto B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gusto B.V. filed Critical Gusto B.V.
Publication of WO2011039587A2 publication Critical patent/WO2011039587A2/fr
Publication of WO2011039587A3 publication Critical patent/WO2011039587A3/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/002Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling
    • E21B19/004Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling supporting a riser from a drilling or production platform

Definitions

  • vessel to describe any type of structure that floats at the surface of a body of water.
  • sua to refer to any salt or fresh water body of water.
  • meon pool to describe a space at the height of a vessel hull where work can be done, which is usually a space surrounded by the hull but which can lie outside the hull.
  • a drill string or other string (group of series connected devices), extends down from a vessel or other structure that floats at the sea surface, and through a riser that extends vertically to the sea floor.
  • the string may be hollow to carry fluid such as drilling mud down to a drill bit or other tool at the bottom of the string. Used fluids such as drilling mud then passes up through an annular space between the outside of the string and the inside of the riser, to a top termination at the top of the riser, that connects to the vessel where the fluids are processed for reuse.
  • the top termination preferably lies in a vessel moon pool, with a work floor at the top of the moon pool.
  • heave was accommodated by the vessel being connected to the top termination through a telescoping joint.
  • the telescoping joint included a long inner pipe hanging from the vessel, that telescoped into a tall outer pipe extending upward from the top termination.
  • the telescoping joint typically accommodates vertical heave of up to about 50 feet (15 meters) or more, and could be of a multi-barrel type.
  • a taller space is required to accommodate the telescoping joint because one pipe must lie within the other pipe along a considerable length to produce a long stroke telescoping joint with limited function.
  • the long length of telescoping pipes resulted in the need to leave a tall vertical space in the vessel (or outside it) between the water level and the underside of the work floor or the like, resulting in the need to locate the work floor (from which a string such as a drill string or other parts are launched) high above the vessel main deck.
  • an offshore hydrocarbon or other development system that connects a top termination that lies at the top of a riser, to a floating unit such as a vessel, in a connection that avoids the need for a telescoping joint to accommodate motions of the vessel, especially heave.
  • the system includes a plurality of flexible jumper hoses that each extends in a U-shaped or other curve between the top termination and a tank on the vessel in which fluid is collected. When the vessel translates and pivots, the jumper hose flexes to accommodate such motions.
  • the vessel supports the weight of the riser string through flexible tension lines or other means of tensioning that extend from the vessel to the top terminal. Except for the flexible lines and the jumper hoses, the top termination is free of connections to the vessel. This allows the vessel to undergo motion (e.g. roll and pitch) without comparable motions of the top termination, to minimize the need for flexible joints to connect the top termination to the vessel.
  • motion e.g. roll and pitch
  • Fig. 1 is a side elevation view of a prior art offshore hydrocarbon or other development system which has a telescoping joint.
  • Fig. 1 A is a sectional view of a drill string penetrating the sea floor.
  • Fig. 2 is a side elevation view of an upper portion of an offshore development system of the present invention.
  • Fig. 3 is a side elevation view of the top termination of the riser and adjacent portion of the system of Fig. 2.
  • Fig. 1 shows an offshore development system 10 of the prior art, such as a hydrocarbon development system, which includes a floating unit, or vessel 12 that floats at the sea surface 14 and connects to a riser 20 that extends from near (within 20% of the sea height) or at the sea floor 22 up to the vessel.
  • the system can be used in a construction phase (to drill holes in the sea bed) as well as in a testing and maintenance phase (well services, workover, intervention) and an abandonment phase.
  • the system also can be used for the development of mineral deposits or entities requiring a fixed connection between a location near the sea floor and the vessel.
  • a variety of different types of floating units can be used, all of which are sometimes referred to herein as a vessel.
  • Fig. 1 shows an offshore development system 10 of the prior art, such as a hydrocarbon development system, which includes a floating unit, or vessel 12 that floats at the sea surface 14 and connects to a riser 20 that extends from near (within 20% of the sea height)
  • the system includes a derrick 24 or other means of hoisting a string, that supports a string within the riser, to drill or service a well in the sea floor.
  • the figure shows a subsea stack 30 at the sea floor, that includes a disconnection section 32 comprising a well control and (dis)connection system, and a blowout prevention section comprising a well control section and a connection/disconnection section 34.
  • Fig. A shows an assembly 112 that lies in the riser 20 and that is drilling a hole in the sea floor 22. Drilling fluid is pumped down through the hollow center 36 of the string. Used fluid then flows upward through an annular region 38 for processing and reuse.
  • the riser 20 extends primarily vertically from the sea floor up to a coupling 40 that includes a riser tensioning ring that lies in a vessel moonpool 42 (in or beside a side or end of the vessel).
  • the moonpool provides access to the riser bore.
  • a moonpool in the vessel hull comprises an opening (usually square or otherwise rectangular) extending through the height of the vessel hull, that provides room for working around systems such as the upper part of the riser, and that extends up through the height of the bottom of the hull.
  • a plurality of wires 44 or other means of tensioning extend up from a tensioning ring 46 to an upper portion of the vessel, to support the riser.
  • the vessel undergoes motion (e.g. pitch and roll), but the riser is isolated from them by flexible couplings 40, 52 at the top of the telescopic joint and at the bottom of the riser.
  • the vessel 12 undergoes heave motion that may move the vessel vertically up or down by up to 15 meters or more.
  • a TJ telescopic joint
  • a long vertical inner pipe hangs from the vessel and extends into a long vertical outer pipe that lies in the tensioning ring.
  • the TJ must be about 20% longer than the vertical movement. This is necessary so that adequate lengths of interfitting pipes remain even when the vessel is at its highest or lowest.
  • the long lengths required result in the work floor 64 where the supported part of the derrick or other hoisting means lies and where string sections, tools, etc. are lowered into or retrieved from the riser, lying high above the bottom 66 of the moon pool.
  • seals that seal pipes that slide one within the other are more difficult to access and maintain than devices that do not require seals to accommodate movement.
  • Fig. 2 shows a portion of a vessel 12A of the present invention, and the upper portion of a riser 22A of the present invention.
  • the vessel 12A is similar to that of Fig. 1.
  • the top of the riser has a top termination 70 that lies on the rest of a riser and at or near the riser vertical axis 73.
  • the vessel has at least one fluid collecting tank 72 that receives used fluids (e.g. drilling mud) from the riser through a plurality of jumper hoses 74 that connect to the top termination 70.
  • the fluid passes to a fluid treatment module 41 that processes the fluid for reuse.
  • Each jumper hose 74 has one rigid pipe section 76 with an inner end that connects to the upper end of the riser and with an outer end 82 that extends downward.
  • Each jumper hose has an opposite rigid pipe section 84 with an inner end that connects to the collecting tank 72 and an outer end 85 that extends downward.
  • Each jumper hose also has a flexible hose portion 90 with ends 86 that extend downward from the rigid pipe sections, and has a middle 87 that extends primarily in a half circle, or 180° loop. When the vessel and its collecting tanks move up and down during vessel heave, the flexible hose portion 90 bends to maintain the fluid connection.
  • the top termination 70 of the riser is supported by flexible tension lines 44A that extend from a tensioning ring 46A around sheaves to a tensioner 92.
  • the tension lines support the riser to locate it within the moonpool 66A, and the tensioner elongates and shortens the tension lines when the vessel moves up and down.
  • Other means of tensioning also can be used to support the upper end of the riser.
  • the riser 20A terminates at the top termination 70 and is not connected to the vessel except through the flexible jumper hoses 74 and the flexible tension lines 44A.
  • Other means for tensioning the riser upper end preferably provide tension while allowing movement of the riser upper end.
  • similar jumper hoses and flexible tensioning means can be used when the moonpool lies at or beyond the bow, stern, or side of the vessel instead of in a pool surrounded by the hull.
  • Fig. 3 shows additional details of the system of Fig. 2, showing that the top termination 70 can support blowout preventers, including double ram preventers 100, single ram preventers 102 and annular preventers 104.
  • a rotating head blowout preventer 106 lies near the top of the termination.
  • a dedicated flow divider 108 divides fluid flow between the two jumper hoses, and is used to change vertical flow to horizontal flow.
  • a collector funnel 110 lies at the very top of the termination, and serves to guide components such as a drill string 112 into the riser 20A.
  • the invention provides a hydrocarbon, mineral, or other development system which includes a riser that extends up from the sea floor to a top termination that lies in a space (e.g. moonpool) in a vessel hull or beside the hull, which allows the vessel to move relative to the riser and relative to a termination at the top of the riser, in a system of high reliability.
  • the top termination is connected to one or more fluid collecting tanks on the vessel, through one or more jumper hoses that include flexible hose sections that maintain fluid connections of the riser to the vessel despite motions of the vessel. Such fluid connections are maintained without the need for a telescoping sliding connection.
  • the top termination is connected to the vessel only through the jumper hoses or other fluid connection means and through flexible tension lines or other tensioning means, so the vessel can execute motions, especially heave and tilt (roll and pitch) without requiring the riser to execute corresponding motions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

Une extrémité supérieure (70, figure 2) repose au sommet d'une colonne montante (22A) qui s'étend verticalement depuis le fond de la mer jusque dans un puits central d'une unité flottante, ou d'un navire (12) destiné au forage ou à l'entretien d'un puits de forage, la colonne montante transférant des fluides comme des fluides de forage usagés jusqu'au navire. Le navire peut se déplacer verticalement dans la houle et s'incliner sans qu'il soit nécessaire que l'extrémité supérieure ne suive lesdits mouvements. L'extrémité supérieure transporte un fluide vers le navire au moyen de tuyaux de raccordement (74) qui se courbent pour adopter le mouvement vertical et l'inclinaison du navire. Le poids de l'extrémité supérieure est supporté par le navire au moyen de conduites flexibles (44A) qui s'étendent depuis un point proche de l'extrémité supérieure jusqu'au navire.
PCT/IB2010/002297 2009-09-29 2010-09-10 Extrémité de colonne montante WO2011039587A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24691609P 2009-09-29 2009-09-29
US61/246,916 2009-09-29

Publications (2)

Publication Number Publication Date
WO2011039587A2 true WO2011039587A2 (fr) 2011-04-07
WO2011039587A3 WO2011039587A3 (fr) 2011-07-14

Family

ID=43779012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/002297 WO2011039587A2 (fr) 2009-09-29 2010-09-10 Extrémité de colonne montante

Country Status (2)

Country Link
US (1) US20110073314A1 (fr)
WO (1) WO2011039587A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK178777B1 (en) * 2014-03-04 2017-01-16 Maersk Drilling As Conductor pipe support system for an off-shore platform

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO331541B1 (no) * 2009-11-10 2012-01-23 Future Production As Sammenkoblingsinnretning for drepe/strupe-linjer mellom et stigeror og et flytende borefartoy
KR101783054B1 (ko) * 2011-12-12 2017-09-28 현대중공업 주식회사 드릴쉽 문풀 호스 설치방법
KR101271134B1 (ko) 2011-12-27 2013-06-04 삼성중공업 주식회사 문풀호스 이송장치 및 이를 포함하는 시추선

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2929610A (en) * 1954-12-27 1960-03-22 Shell Oil Co Drilling
US3252528A (en) * 1956-12-21 1966-05-24 Chevron Res Method of drilling from a fully floating platform
FR2401307A1 (fr) * 1977-07-01 1979-03-23 Petroles Cie Francaise Colonne montante deconnectable pour puits petroliers sous-marins
US4234047A (en) * 1977-10-14 1980-11-18 Texaco Inc. Disconnectable riser for deep water operation
US4367055A (en) * 1980-12-29 1983-01-04 Mobil Oil Corporation Subsea flowline connection yoke assembly and installation method
US4423983A (en) * 1981-08-14 1984-01-03 Sedco-Hamilton Production Services Marine riser system
NL1007798C2 (nl) * 1997-12-15 1999-06-23 Huisman Spec Lifting Equip Bv Riser-tensioner.
US6913092B2 (en) * 1998-03-02 2005-07-05 Weatherford/Lamb, Inc. Method and system for return of drilling fluid from a sealed marine riser to a floating drilling rig while drilling
US6824330B2 (en) * 2002-09-19 2004-11-30 Coflexip S.A. Constant tension steel catenary riser system
US7237623B2 (en) * 2003-09-19 2007-07-03 Weatherford/Lamb, Inc. Method for pressurized mud cap and reverse circulation drilling from a floating drilling rig using a sealed marine riser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK178777B1 (en) * 2014-03-04 2017-01-16 Maersk Drilling As Conductor pipe support system for an off-shore platform

Also Published As

Publication number Publication date
WO2011039587A3 (fr) 2011-07-14
US20110073314A1 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
US10703448B2 (en) Offshore drilling system, vessel and method
AU2005202612B2 (en) Dry tree subsea well communications apparatus and method using variable tension large offset risers
US7438505B2 (en) Heave compensated snubbing system and method
US7748464B2 (en) Subsea well communications apparatus and method using variable tension large offset risers
US7225877B2 (en) Subsea intervention fluid transfer system
US7658228B2 (en) High pressure system
US9562403B2 (en) Riser tensioner conductor for dry-tree semisubmersible
US20130098627A1 (en) Method and Apparatus for Drilling Multiple Subsea Wells From an Offshore Platform at a Single Site
US20190195032A1 (en) Riser gas handling system and method of use
US20110073314A1 (en) Riser termination
GB2412130A (en) Arrangement and method for integrating a high pressure riser sleeve within a low pressure riser
US20130284447A1 (en) Dry Tree Semi-Submersible With Reduced-Height Drilling Floor
US20190284912A1 (en) Buoyant system and method with buoyant extension and guide tube
NL2023279B1 (en) Offshore drilling system and method
US11808096B2 (en) Offshore drilling system, vessel and method
KR101711471B1 (ko) 시추 장치
GB2344841A (en) Self-supporting riser system with flexible vessel-connecting section

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10763428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10763428

Country of ref document: EP

Kind code of ref document: A2