WO2011039469A1 - Method for producing a part including aluminium - Google Patents
Method for producing a part including aluminium Download PDFInfo
- Publication number
- WO2011039469A1 WO2011039469A1 PCT/FR2010/052045 FR2010052045W WO2011039469A1 WO 2011039469 A1 WO2011039469 A1 WO 2011039469A1 FR 2010052045 W FR2010052045 W FR 2010052045W WO 2011039469 A1 WO2011039469 A1 WO 2011039469A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alloy
- powder
- mixture
- aluminum
- polymer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/32—Process control of the atmosphere, e.g. composition or pressure in a building chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/34—Process control of powder characteristics, e.g. density, oxidation or flowability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/362—Process control of energy beam parameters for preheating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2200/00—Crystalline structure
- C22C2200/06—Quasicrystalline
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a process for producing functional parts comprising aluminum. It also relates to the parts obtained using the method.
- the parts When the mixture is sintered under the action of the laser, the parts have the disadvantage of having a high degree of porosity, and therefore not being sealed under pressure. It is thus necessary, in order to obtain a satisfactory seal, to cover the material with a layer of waterproof coating, typically with a layer of resin, which makes the process of making the pieces longer and more complex.
- the present invention aims to overcome these disadvantages.
- the invention proposes a simplified method, making it possible to quickly obtain functional parts of complex shape having a metallic appearance and which have a very good seal.
- the present invention thus relates to a process for producing a part comprising aluminum.
- the method according to the invention comprises a step of selective laser sintering of a mixture comprising a polymer powder and a powder of a quasi-crystalline aluminum alloy, the weight of the alloy not exceeding 80% of the total weight of the mixture.
- the weight of the alloy is less than or equal to 80% of the total weight of the mixture.
- the quantity of alloy powder is thus chosen so that the volume fraction of the alloy, after the sintering step, does not exceed 50% of the total volume of the workpiece.
- Selective laser sintering also known as Selective Laser Sintering (SLS)
- SLS Selective Laser Sintering
- This method uses a laser to transform a material in the form of powders, comprising a mixture of metal powders and polymer, into a solid object by selective sintering without external pressure.
- the Applicant has discovered that, surprisingly, when the process is carried out using a mixture of powders comprising a limited content of quasi-crystalline aluminum alloy, the part obtained had a very low porosity rate, and therefore a higher seal than when the process is implemented from crystalline aluminum powder. It has also found that by using a quasi-crystalline aluminum alloy the part obtained had improved mechanical properties, in particular of wear, friction and hardness.
- the powder mixture may be composed of polymer powder and quasi-crystalline aluminum alloy powder.
- the part obtained by the process of the invention is a composite material comprising a polymer matrix and an optionally multiphase complex mechanical alloy.
- the quasi-crystalline aluminum alloy may be a complex metal alloy comprising an atomic percentage of aluminum greater than 50%.
- quasicrystalline alloy refers to an alloy that includes one or more quasicrystalline phases that are either quasicrystalline phases in the strict sense or approximate phases.
- the quasicrystalline phases in the strict sense are phases exhibiting symmetries of rotation normally incompatible with the translational symmetry, that is to say rotational axis symmetries of order 5, 8, 10 or 12, these symmetries being revealed by diffraction techniques.
- the approximate phases or approximate compounds are true crystals insofar as their crystallographic structure remains compatible with symmetry of translation, but which exhibit, in the diffraction pattern of electrons, diffraction patterns whose symmetry is close to a symmetry of order 5, 8, 10 or 12.
- These are phases characterized by an elementary cell containing several tens, or even several hundred atoms, and whose local order presents arrangements of almost icosahedral or decagonal symmetry similar to the quasi-crystalline parent phases.
- This orthorhombic phase Oi is said to approximate the decagonal phase.
- the nature of the two phases can be identified by transmission electron microscopy.
- phase C of cubic structure, very often observed in coexistence with the approximate or quasi-crystalline phases true.
- a diffraction pattern of this cubic phase has been published for a pure cubic phase sample and atomic Al 65 Cu 20 Fei 5 atomic composition.
- This phase is isotype of a hexagonal phase, noted ⁇ , found in Al-Mn alloys containing 40% by weight of Mn.
- the cubic phase, its superstructures and the phases derived from them constitute a class of approximate phases of quasi-crystalline phases of neighboring compositions.
- the quasi-crystalline alloys of the Al-Cu-Fe system and the Al-Fe-Co-Cr system are particularly suitable for carrying out the process of the present invention. Mention may in particular be made of alloys which have one of the following atomic compositions: Al 62 Cu 25; Fei 2; 5, Al 59 Cu 2 5 , Fe 2, B 3 , Al 71 Cu 9, Fe 8 , 7 Cr 10 , 6 , and Al 71, Fe 8 , Co 2, 8 Cr 7, 8 . These alloys are marketed by Saint-Gobain.
- the alloy Al 59 Cu 25; Fei 2; 4 B 3 is marketed under the name Cristome Fl
- the alloy Al 71 Cu 9; 7 Fe 8 , 7 Cr 10 , 6 is marketed under the name Cristome Al
- the alloy is marketed under the name Cristome BT1.
- These complex alloys have the advantage of having tribological properties (friction and wear), surface (low surface energy), mechanical properties (hardness, yield strength and Young's modulus), thermal conductivity and electrical properties (high resistivity). , different from those of crystalline aluminum alloys.
- the polymer may for example be chosen from thermoplastic organic polymers such as polyamides (for example nylon 6, nylon 11, nylon 12), amide copolymers (for example nylon 6-12), polyacetates, polyethylenes, as well as polyetheretherketone, designated by the acronym PEEK (PolyEtherEtherKetone in English).
- thermoplastic organic polymers such as polyamides (for example nylon 6, nylon 11, nylon 12), amide copolymers (for example nylon 6-12), polyacetates, polyethylenes, as well as polyetheretherketone, designated by the acronym PEEK (PolyEtherEtherKetone in English).
- Preferred polymers are polyamides and polyetheretherketone.
- the mixture of quasi-crystalline aluminum alloy powder and polymer powder may contain from 4 to 80% by weight of alloy, more preferably from 30 to 65%.
- the volume fraction of the alloy can easily be calculated by those skilled in the art from the mass and density of the various constituents of the mixture.
- the alloy particles preferably have an average particle size of between 1 and 90 ⁇ , more particularly between 10 and 75 ⁇ , and the polymer particles preferably have a particle size distribution. average between 1 and 90 ⁇ , more particularly between 40 and 70 ⁇ .
- Selective laser sintering is preferably computer assisted.
- the mixture of powders is heated to a temperature of a few degrees Celsius lower than the melting temperature of the polymer, for example to a temperature of 1 to 10 ° C. lower than the melting point. of the polymer.
- the energy required for fusion is then provided by the laser.
- the invention also relates to a part comprising aluminum obtained by a method described above.
- the parts obtained may have a volume porosity of less than 5%, and especially less than 3%, and more particularly less than 1%.
- the apparent density equal to the mass / volume ratio of the part may be greater than or equal to 95% of the theoretical density of the part, and in particular greater than or equal to 97% of the theoretical density of the part, and more particularly greater than or equal to 99% of the theoretical density of the part.
- the method of the invention is particularly useful for the rapid prototyping of lightweight pieces with an apparent density of between 1 and 3 g / cm 3 and without any form stress.
- Selective laser sintering allows easy and nontoxic elaboration of parts that have the desired complex shape.
- the use of a quasi-crystalline aluminum alloy allows the development of parts having a greater seal than those obtained with crystalline aluminum.
- the parts obtained also have remarkable mechanical properties, and in particular the properties of wear, friction and hardness which are better than those of the parts obtained with crystalline aluminum. They are also easily recyclable.
- FIG. 1 schematically illustrates a device making it possible to implement the method according to FIG. 'invention.
- a composite powder comprising at least two different types of powder (polymer and complex metal alloy) was prepared. Each grade of powder is accurately weighed so as to obtain a volume fraction of complex metal alloy in the final composite part of 30%.
- the powders are preferably mixed homogeneously using a turbulat, which will obtain parts with homogeneous mechanical properties and sealing. About ten to fifteen minutes are needed to mix 20 kg of powders.
- composite parts were prepared by selectively laser sintering the powder mixture consisting of 65% by weight of a powder of an AlCuFeB alloy having a particle size of between 10 and 75 ⁇ and 35% by weight of a polyamide powder which is a nylon 12 powder having an average particle size of 60 ⁇ .
- the AlCuFeB alloy is a quasi-crystalline alloy of nominal atomic composition Al 59 Cu 2 5 ; 5Fei 2; 5 B3, sold under the name Cristome Fl by the company Saint-Gobain.
- This alloy consists of the phase of complex structure (icosahedral i) isostructural at the phase z-Al 62 Cu 2 5 ; 5 Fei 2; And from an isostructural cubic phase to -Al 50 (CuFe) 5 o.
- Selective laser sintering can be implemented using a device 1 as illustrated in FIG.
- the selective laser sintering device 1 comprises a powder supply tank 2 in which the mixture is placed, a powder supply and distribution roller 3, and a laser 4.
- the laser 4 is, for example, a CO 2 laser of power 35 W.
- the laser beam is directed via a mirror 5 towards the powder zone that it is desired to sinter, under a preferably neutral atmosphere, for example under a nitrogen atmosphere. .
- the process uses a manufacturing platform heated to a temperature close to the melting point of the polymer.
- the laser traces the layer-by-layer form and locally supplies, to each successive layer of the initial powder mixture, sufficient thermal energy to bring the polymer to a temperature causing it to melt.
- Unsintered powders naturally provide support for the following layers.
- the mobile work platform descends from the thickness of a layer, the displacement of the vertical part being provided by a piston 6.
- a new layer of powder is then spread by the roller 3 and the cycle starts again to build the part layer by layer from bottom to top.
- another mechanical system could be used, such as a scraper.
- the parts obtained after sintering have a homogeneous shrinkage of 2 ⁇ 0.2% along the horizontal x and y axes, and of 1.3 ⁇ 0.2% along the vertical axis z.
- the density Apparently measured by the mass / volume ratio of the workpiece is always greater than or equal to 99% of the theoretical density, which implies a porosity of less than 1% volume.
- the parts obtained are sealed under a minimum pressure of 8 bar, from room temperature up to 100 ° C.
- the gain in wear volume compared to the crystalline aluminum reinforced polyamide matrix is about 70%.
- the coefficient of friction measured using a pin-type tribometer on the disk shows a gain of the order of 30%.
- the average Shore D hardness is 79 ⁇ 1.
- Example 2 The procedure of Example 1 was repeated, but using a mixture of powders consisting of 52% by weight of a powder of crystalline aluminum alloy (1000 series aluminum) and 48% by weight of a polyamide powder which is a nylon 12 powder.
- the pieces obtained after sintering have a homogeneous shrinkage of 2 ⁇ 0.2% along the x and y axes and 1.3 ⁇ 0.2% along the z axis.
- the density measured is always less than or equal to 80% of the theoretical density, which implies a porosity rate greater than 20%.
- the parts are not waterproof without impregnation of resin on the surface.
- the tribological properties of abrasion-wear and friction are poor.
- the average Shore D hardness is 72 ⁇ 2.
- Example 1 The procedure of Example 1 was repeated, but each grade of powder was accurately weighed so as to obtain a volume fraction of complex metal alloy in the final composite part of 15%.
- the powder mixture consists of 44% by weight of a powder of AlCuFeB alloy of Example 1 and 56% by weight of a nylon powder which is a nylon 12 powder.
- the parts obtained after sintering have a homogeneous shrinkage of 2 ⁇ 0.2% along the x and y axes and 1.3 ⁇ 0.2% along the z axes.
- the density measured is always greater than or equal to 98% of the theoretical density, which implies a volume porosity rate of less than 2%.
- the pieces obtained are waterproof.
- the tribological and hardness properties are improved over those of the parts of Example 2.
- Example 4 The procedure of Example 1 was repeated, but using a mixture of powders consisting of 61.5% by weight of a powder of an AlCuFeCr alloy and 38.5% by weight of a polyamide powder which is a nylon 12 powder.
- AlCuFeCr alloy is a complex metal alloy of nominal atomic composition Al 71 Cu 9 FeioCr 10 . This alloy consists of the orthorhombic phase Ol-Al 65 Cu 2 oFeioCr 5 and an isostructural quadratic phase at the phase ⁇ -Al 7 oCu 2 oFe 10 .
- the pieces obtained after sintering have a homogeneous shrinkage of 2 ⁇ 0.2% along the x and y axes and 1.3 ⁇ 0.2% along the z axis.
- the density measured is always greater than or equal to 99% of the theoretical density, which implies a volume porosity of less than 1%.
- the pieces obtained are waterproof.
- the tribological and hardness properties are improved over those of the parts of Example 2.
- Example 5 The procedure of Example 1 was repeated, but using a mixture of powders consisting of 40% by weight of a powder of the AlCuFeCr alloy of Example 4 and 60% by weight of a powder.
- polyamide which is a nylon 12 powder.
- the pieces obtained after sintering have a homogeneous shrinkage of 2 ⁇ 0.2% in x and y and 1.3 ⁇ 0.2% in z.
- the density measured is always greater than or equal to 97% of the theoretical density, which implies a volume porosity of less than 3%.
- the pieces obtained are waterproof.
- the tribological and hardness properties are improved over those of the parts of Example 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Plasma & Fusion (AREA)
- Ceramic Engineering (AREA)
- Civil Engineering (AREA)
- Composite Materials (AREA)
- Structural Engineering (AREA)
- Optics & Photonics (AREA)
- Powder Metallurgy (AREA)
Abstract
The invention relates to a method for producing a part including aluminium, characterised in that the method includes a step of selective laser sintering a mixture including a polymer powder and a powder of a quasicrystalline aluminium alloy, the weight of the alloy not exceeding 80% of the overall weight of the mixture.
Description
PROCEDE D'ELABORATION D'UNE PIECE COMPRENANT DE PROCESS FOR PRODUCING A WORKPIECE COMPRISING
L'ALUMINIUM ALUMINUM
La présente invention concerne un procédé d'élaboration de pièces fonctionnelles comprenant de l'aluminium. Elle a également pour objet les pièces obtenues à l'aide du procédé. The present invention relates to a process for producing functional parts comprising aluminum. It also relates to the parts obtained using the method.
Il est connu, pour obtenir des pièces fonctionnelles rigides présentant un aspect métallique d'aluminium moulé, de soumettre un mélange de poudres d'aluminium cristallin et d'une matrice de polyamide à un procédé de frittage sélectif par laser. De telles pièces sont par exemples commercialisées sous la dénomination DuraForm® AF par la société 3D SYSTEMS ou encore sous la dénomination ALUMIDE® par la société EOS. It is known to obtain rigid functional parts having a cast aluminum metallic appearance, to subject a mixture of crystalline aluminum powders and a polyamide matrix to a selective laser sintering process. Such parts are, for example, sold under the name DuraForm® AF by the company 3D SYSTEMS or under the name ALUMIDE® by the company EOS.
Lorsque le mélange est fritté sous l'action du laser, les pièces ont l'inconvénient de présenter un taux de porosité élevé, et donc de ne pas être étanches sous pression. Il est ainsi nécessaire, si l'on veut obtenir une étanchéité satisfaisante, de recouvrir le matériau d'une couche de revêtement étanche, typiquement d'une couche de résine, ce qui rend le procédé de fabrication des pièces plus long et plus complexe. When the mixture is sintered under the action of the laser, the parts have the disadvantage of having a high degree of porosity, and therefore not being sealed under pressure. It is thus necessary, in order to obtain a satisfactory seal, to cover the material with a layer of waterproof coating, typically with a layer of resin, which makes the process of making the pieces longer and more complex.
La présente invention a pour objectif de remédier à ces inconvénients. The present invention aims to overcome these disadvantages.
L'invention propose un procédé simplifié, permettant d'obtenir rapidement des pièces fonctionnelles de forme complexe présentant un aspect métallique et qui possèdent une très bonne étanchéité. The invention proposes a simplified method, making it possible to quickly obtain functional parts of complex shape having a metallic appearance and which have a very good seal.
La présente invention a ainsi pour objet un procédé d'élaboration d'une pièce comprenant de l'aluminium. The present invention thus relates to a process for producing a part comprising aluminum.
Le procédé selon l'invention comprend une étape de frittage sélectif par laser d'un mélange comprenant une poudre de polymère et une poudre d'un alliage d'aluminium quasi-cristallin, le poids de l'alliage n'excédant pas 80% du poids total du mélange. The method according to the invention comprises a step of selective laser sintering of a mixture comprising a polymer powder and a powder of a quasi-crystalline aluminum alloy, the weight of the alloy not exceeding 80% of the total weight of the mixture.
Le poids de l'alliage est inférieur ou égal à 80 % du poids total du mélange. La quantité de poudre d'alliage est ainsi choisie de manière à ce que la fraction volumique de l'alliage, après l'étape de frittage, n'excède pas 50 % du volume total de la pièce.
Le frittage sélectif par laser, également appelé Sélective Laser Sintering (SLS) en langue anglaise, est un procédé permettant la mise en forme d'une pièce par apports successifs de matière sous forme de poudres. The weight of the alloy is less than or equal to 80% of the total weight of the mixture. The quantity of alloy powder is thus chosen so that the volume fraction of the alloy, after the sintering step, does not exceed 50% of the total volume of the workpiece. Selective laser sintering (SLS), also known as Selective Laser Sintering (SLS), is a process that allows a part to be shaped by successive additions of material in the form of powders.
Ce procédé utilise un laser pour transformer un matériau sous forme de poudres, comprenant un mélange de poudres métalliques et de polymère, en un objet solide par frittage sélectif sans pression extérieure. This method uses a laser to transform a material in the form of powders, comprising a mixture of metal powders and polymer, into a solid object by selective sintering without external pressure.
Il est connu que le frittage sélectif par laser permet de réaliser des pièces sans contrainte de forme, avec une grande précision (±0.2 mm), mais avec un taux de porosité important. It is known that selective sintering by laser makes it possible to produce parts without form stress, with a high accuracy (± 0.2 mm), but with a high degree of porosity.
La demanderesse a découvert que, de manière surprenante, lorsque le procédé est mis en œuvre à partir d'un mélange de poudres comprenant une teneur limitée en alliage d'aluminium quasi-cristallin, la pièce obtenue présentait un très faible taux de porosité, et donc une étanchéité plus élevée que lorsque le procédé est mis en œuvre à partir de poudre d'aluminium cristallin. Elle a également constaté qu'en utilisant un alliage d'aluminium quasi-cristallin la pièce obtenue présentait des propriétés mécaniques, notamment d'usure, de frottement et de dureté, améliorées. The Applicant has discovered that, surprisingly, when the process is carried out using a mixture of powders comprising a limited content of quasi-crystalline aluminum alloy, the part obtained had a very low porosity rate, and therefore a higher seal than when the process is implemented from crystalline aluminum powder. It has also found that by using a quasi-crystalline aluminum alloy the part obtained had improved mechanical properties, in particular of wear, friction and hardness.
Le mélange de poudres peut être constitué de poudre de polymère et de poudre d'alliage d'aluminium quasi-cristallin. The powder mixture may be composed of polymer powder and quasi-crystalline aluminum alloy powder.
La pièce obtenue par le procédé de l'invention est un matériau composite comprenant une matrice de polymère et un alliage mécanique complexe éventuellement multi-phasé. The part obtained by the process of the invention is a composite material comprising a polymer matrix and an optionally multiphase complex mechanical alloy.
L'alliage d'aluminium quasi-cristallin peut être un alliage métallique complexe comprenant un pourcentage atomique d'aluminium supérieur à 50%. The quasi-crystalline aluminum alloy may be a complex metal alloy comprising an atomic percentage of aluminum greater than 50%.
Le procédé de l'invention est mis en œuvre à partir d'une poudre d'un alliage d'aluminium quasi-cristallin. Dans le présent texte, "alliage quasi-cristallin" désigne un alliage qui comprend une ou plusieurs phases quasi-cristallines qui sont soit des phases quasi-cristallines au sens strict, soit des phases approximantes. Les phases quasi-cristallines au sens strict sont des phases présentant des symétries de rotation normalement incompatibles avec la symétrie de translation, c'est-à-dire des symétries d'axe de rotation d'ordre 5, 8, 10 ou 12, ces symétries étant révélées par les techniques de diffraction. A titre d'exemple, on peut citer la phase icosaédrique de groupe ponctuel m3 5 et la phase décagonale de groupe ponctuel 10/mmm. The process of the invention is carried out from a powder of a quasi-crystalline aluminum alloy. In the present text, "quasicrystalline alloy" refers to an alloy that includes one or more quasicrystalline phases that are either quasicrystalline phases in the strict sense or approximate phases. The quasicrystalline phases in the strict sense are phases exhibiting symmetries of rotation normally incompatible with the translational symmetry, that is to say rotational axis symmetries of order 5, 8, 10 or 12, these symmetries being revealed by diffraction techniques. By way of example, mention may be made of the icosahedral moment group phase m3 5 and the phase group decagonal phase 10 / mmm.
Les phases approximantes ou composés approximants sont des cristaux vrais dans la mesure où leur structure cristallographique reste compatible avec la symétrie
de translation, mais qui présentent, dans le cliché de diffraction d'électrons, des figures de diffraction dont la symétrie est proche d'une symétrie d'ordre 5, 8, 10 ou 12. Ce sont des phases caractérisées par une maille élémentaire contenant plusieurs dizaines, voir plusieurs centaines d'atomes, et dont l'ordre local présente des arrangements de symétrie presque icosaédrique ou décagonale similaire aux phases quasi-cristallines parentes. The approximate phases or approximate compounds are true crystals insofar as their crystallographic structure remains compatible with symmetry of translation, but which exhibit, in the diffraction pattern of electrons, diffraction patterns whose symmetry is close to a symmetry of order 5, 8, 10 or 12. These are phases characterized by an elementary cell containing several tens, or even several hundred atoms, and whose local order presents arrangements of almost icosahedral or decagonal symmetry similar to the quasi-crystalline parent phases.
Parmi ces phases, on peut citer à titre d'exemple la phase orthorhombique Ol 5 caractéristique d'un alliage ayant la composition atomique Al65Cu2oFei0Cr5, dont les paramètres de maille en nm sont : a0 (1) = 2,366, b0 (1) = 1 ,267, c0 (1) = 3,252. Cette phase orthorhombique Oi est dite approximante de la phase décagonale. La nature des deux phases peut être identifiée par microscopie électronique en transmission. Among these phases, there may be mentioned by way of example the orthorhombic phase O l 5 characteristic of an alloy having the atomic composition Al 65 Cu 2 O Fei 0 Cr 5 , whose parameters of mesh in nm are: a 0 (1) = 2.366, b 0 (1) = 1, 267, c 0 (1) = 3.252. This orthorhombic phase Oi is said to approximate the decagonal phase. The nature of the two phases can be identified by transmission electron microscopy.
On peut également citer la phase rhomboédrique de paramètres aR = 3,208 nm, a = 36°, présente dans les alliages de composition atomique voisine de Al64Cu24Fei2. Cette phase est une phase approximante de la phase icosaédrique. We can also mention the rhombohedral phase of parameters at R = 3.208 nm, a = 36 °, present in the alloys of atomic composition close to Al 64 Cu 24 Fei 2 . This phase is an approximate phase of the icosahedral phase.
On peut aussi citer des phases O2 et O3 orthorhombiques de paramètres respectifs en nm a0 (2) = 3,83 ; b0 (2) = 0,41 ; c0 (2) = 5,26 ainsi que a0 (3) = 3,25 ; b0 (3) = 0,41 ; c0 (3) = 9,8, présentes dans un alliage de composition atomique Al63Cui7;5Coi7;5Si2 ou encore la phase orthorhombique O4 de paramètres en nm a0 (4) = 1 ,46 ; b0 (4) = 1 ,23 ; c0 (4) = 1 ,24, qui se forme dans l'alliage dont la composition atomique est Al63Cu8Fei2Cr17. There may also be mentioned orthorhombic O 2 and O 3 phases of respective parameters in nm at 0 (2) = 3.83; b 0 (2) = 0.41; c 0 (2) = 5.26 and 0 (3) = 3.25; b 0 (3) = 0.41; c 0 (3) = 9.8, present in an alloy of atomic composition Al 63 Cui 7; 5 Coi 7; 5 Si 2 or the orthorhombic phase O4 of parameters in nm at 0 (4) = 1, 46; b 0 (4) = 1, 23; c 0 (4) = 1, 24, which is formed in the alloy whose atomic composition is Al 63 Cu 8 Fei 2 Cr 17 .
On peut encore citer une phase C, de structure cubique, très souvent observée en coexistence avec les phases approximantes ou quasi-cristallines vraies. Cette phase, qui se forme dans certains alliages Al-Cu-Fe et Al-Cu-Fe-Cr, consiste en une surstructure, par effet d'ordre chimique des éléments d'alliage par rapport aux sites d'aluminium, d'une phase de structure type Cs-Cl et de paramètre de réseau ai = 0,297 nm. Un diagramme de diffraction de cette phase cubique a été publié pour un échantillon de phase cubique pure et de composition atomique Al65Cu20Fei5 en nombre d'atomes. We can also mention a phase C, of cubic structure, very often observed in coexistence with the approximate or quasi-crystalline phases true. This phase, which is formed in certain Al-Cu-Fe and Al-Cu-Fe-Cr alloys, consists of a super-structure, by the chemical effect of the alloying elements with respect to the aluminum sites, of a typical Cs-Cl structure phase and lattice parameter ai = 0.297 nm. A diffraction pattern of this cubic phase has been published for a pure cubic phase sample and atomic Al 65 Cu 20 Fei 5 atomic composition.
On peut aussi citer une phase H de structure hexagonale qui dérive directement de la phase C comme le démontrent les relations d'épitaxie observées par microscopie électronique entre cristaux des phases C et H et les relations simples qui relient les paramètres des réseaux cristallins, à savoir aH =
(à 4,5 % près) et cH = 3-j a l (à 2,5 % près). Cette phase est isotype d'une phase hexagonale, notée ΦΑΙΜη, découverte dans des alliages Al-Mn contenant 40% en poids de Mn.
La phase cubique, ses surstructures et les phases qui en dérivent, constituent une classe de phases approximantes des phases quasi-cristallines de compositions voisines. We can also mention a phase H of hexagonal structure which derives directly from the phase C as demonstrated by the epitaxial relationships observed by electron microscopy between crystals of the C and H phases and the simple relations that link the parameters of the crystal lattices, namely a H = (to within 4.5%) and c H = 3-jal (to within 2.5%). This phase is isotype of a hexagonal phase, noted ΦΑΙΜη, found in Al-Mn alloys containing 40% by weight of Mn. The cubic phase, its superstructures and the phases derived from them constitute a class of approximate phases of quasi-crystalline phases of neighboring compositions.
Les alliages quasi-cristallins du système Al-Cu-Fe et du système Al-Fe-Co-Cr sont particulièrement appropriés pour la mise en œuvre du procédé de la présente invention. On peut citer en particulier les alliages qui ont l'une des compositions atomiques suivantes : Al62Cu25;5Fei2;5, Al59Cu25;5Fei2;5B3, Al71Cu9;7Fe8,7Cr10,6, et Al71;3Fe8,iCoi2;8Cr7;8. Ces alliages sont commercialisés par la société Saint-Gobain. En particulier, l'alliage Al59Cu25;5Fei2;4B3 est commercialisé sous la dénomination Cristome Fl , l'alliage Al71Cu9;7Fe8,7Cr10,6 est commercialisé sous la dénomination Cristome Al , et l'alliage
est commercialisé sous la dénomination Cristome BT1. Ces alliages complexes ont pour avantage de posséder des propriétés tribologiques (frottement et usure), de surface (faible énergie de surface), mécaniques (dureté, limite d'élasticité et module d'Young), de conductivité thermique et électriques (résistivité élevée), différentes de celles des alliages d'aluminium cristallins. The quasi-crystalline alloys of the Al-Cu-Fe system and the Al-Fe-Co-Cr system are particularly suitable for carrying out the process of the present invention. Mention may in particular be made of alloys which have one of the following atomic compositions: Al 62 Cu 25; Fei 2; 5, Al 59 Cu 2 5 , Fe 2, B 3 , Al 71 Cu 9, Fe 8 , 7 Cr 10 , 6 , and Al 71, Fe 8 , Co 2, 8 Cr 7, 8 . These alloys are marketed by Saint-Gobain. In particular, the alloy Al 59 Cu 25; Fei 2; 4 B 3 is marketed under the name Cristome Fl, the alloy Al 71 Cu 9; 7 Fe 8 , 7 Cr 10 , 6 is marketed under the name Cristome Al , and the alloy is marketed under the name Cristome BT1. These complex alloys have the advantage of having tribological properties (friction and wear), surface (low surface energy), mechanical properties (hardness, yield strength and Young's modulus), thermal conductivity and electrical properties (high resistivity). , different from those of crystalline aluminum alloys.
Le polymère peut être par exemple choisi parmi les polymères organiques thermoplastiques tels que les polyamides (par exemple de type Nylon 6, Nylon 1 1 , Nylon 12), les copolymères d'amide (par exemple le nylon 6-12), les polyacétates, les polyéthylènes, ainsi que le polyétheréthercétone, désigné par le sigle PEEK (PolyEtherEtherKetone en langue anglaise). The polymer may for example be chosen from thermoplastic organic polymers such as polyamides (for example nylon 6, nylon 11, nylon 12), amide copolymers (for example nylon 6-12), polyacetates, polyethylenes, as well as polyetheretherketone, designated by the acronym PEEK (PolyEtherEtherKetone in English).
Les polymères préférés sont les polyamides et le polyétheréthercétone. Preferred polymers are polyamides and polyetheretherketone.
Le mélange de poudre d'alliage d'aluminium quasi-cristallin et de poudre de polymère peut contenir de 4 à 80 % en poids d'alliage, plus particulièrement de 30 à 65 %. The mixture of quasi-crystalline aluminum alloy powder and polymer powder may contain from 4 to 80% by weight of alloy, more preferably from 30 to 65%.
La fraction volumique de l'alliage pourra facilement être calculée par l'homme du métier à partir de la masse et de la masse volumique des différents constituants du mélange. The volume fraction of the alloy can easily be calculated by those skilled in the art from the mass and density of the various constituents of the mixture.
Dans le mélange de poudres utilisé pour la mise en œuvre du procédé, les particules d'alliages ont de préférence une granulométrie moyenne comprise entre 1 et 90 μηι, plus particulièrement entre 10 et 75 μηι, et les particules de polymère ont de préférence une granulométrie moyenne comprise entre 1 et 90 μηι, plus particulièrement entre 40 et 70 μηι. In the mixture of powders used for carrying out the process, the alloy particles preferably have an average particle size of between 1 and 90 μηι, more particularly between 10 and 75 μηι, and the polymer particles preferably have a particle size distribution. average between 1 and 90 μηι, more particularly between 40 and 70 μηι.
Le frittage sélectif par laser est de préférence assisté par ordinateur.
Dans un mode de réalisation particulier, le mélange de poudres est chauffé jusqu'à une température inférieure de quelques degrés Celsius à la température de fusion du polymère, par exemple jusqu'à une température inférieure de 1 à 10 °C à la température de fusion du polymère. L'énergie nécessaire à la fusion est ensuite apportée par le laser. Selective laser sintering is preferably computer assisted. In a particular embodiment, the mixture of powders is heated to a temperature of a few degrees Celsius lower than the melting temperature of the polymer, for example to a temperature of 1 to 10 ° C. lower than the melting point. of the polymer. The energy required for fusion is then provided by the laser.
L'invention a également pour objet une pièce comprenant de l'aluminium obtenue par un procédé décrit ci-dessus. Les pièces obtenues peuvent présenter un taux de porosité volumique inférieur à 5 %, et notamment inférieur à 3 %, et plus particulièrement inférieur à 1 %. The invention also relates to a part comprising aluminum obtained by a method described above. The parts obtained may have a volume porosity of less than 5%, and especially less than 3%, and more particularly less than 1%.
De manière équivalente, la densité apparente égale au rapport masse/volume de la pièce peut être supérieure ou égale à 95 % de la densité théorique de la pièce, et notamment supérieure ou égale à 97 % de la densité théorique de la pièce, et plus particulièrement supérieure ou égale à 99 % de la densité théorique de la pièce. Equivalently, the apparent density equal to the mass / volume ratio of the part may be greater than or equal to 95% of the theoretical density of the part, and in particular greater than or equal to 97% of the theoretical density of the part, and more particularly greater than or equal to 99% of the theoretical density of the part.
Le procédé de l'invention est particulièrement utile pour l'élaboration par prototypage rapide de pièces légères de densité apparente comprise entre 1 et 3 g/cm3 et sans contrainte de forme. Le frittage sélectif par laser permet une élaboration aisée et non toxique de pièces qui ont la forme complexe souhaitée. L'utilisation d'un alliage d'aluminium quasi-cristallin permet l'élaboration de pièces présentant une étanchéité supérieure à celle des pièces obtenues avec de l'aluminium cristallin. The method of the invention is particularly useful for the rapid prototyping of lightweight pieces with an apparent density of between 1 and 3 g / cm 3 and without any form stress. Selective laser sintering allows easy and nontoxic elaboration of parts that have the desired complex shape. The use of a quasi-crystalline aluminum alloy allows the development of parts having a greater seal than those obtained with crystalline aluminum.
Les pièces obtenues présentent en outre des propriétés mécaniques remarquables, et notamment des propriétés d'usure, de frottement et de dureté qui sont meilleures que celles des pièces obtenues avec de l'aluminium cristallin. Elles sont en outre facilement recyclables. The parts obtained also have remarkable mechanical properties, and in particular the properties of wear, friction and hardness which are better than those of the parts obtained with crystalline aluminum. They are also easily recyclable.
La présente invention sera décrite plus en détail à l'aide des exemples suivants, auxquels elle n'est cependant pas limitée, la description étant faite en référence à la figure 1 , qui illustre schématiquement un dispositif permettant de mettre en œuvre le procédé selon l'invention. The present invention will be described in more detail by means of the following examples, to which it is however not limited, the description being made with reference to FIG. 1, which schematically illustrates a device making it possible to implement the method according to FIG. 'invention.
Exemple 1 Example 1
Préparation de la poudre Preparation of the powder
On a préparé une poudre composite comprenant au moins deux natures de poudre différentes (polymère et alliage métallique complexe). Chaque nuance de poudre est pesée avec précision de sorte à obtenir une fraction volumique d'alliage métallique complexe dans la pièce composite finale de 30 %. Les poudres sont de
préférence mélangées de façon homogène à l'aide d'un turbulat, ce qui permettra d'obtenir des pièces présentant des propriétés mécaniques et d'étanchéité homogènes. Environ dix à quinze minutes sont nécessaires pour mélanger 20 kg de poudres. A composite powder comprising at least two different types of powder (polymer and complex metal alloy) was prepared. Each grade of powder is accurately weighed so as to obtain a volume fraction of complex metal alloy in the final composite part of 30%. The powders are preferably mixed homogeneously using a turbulat, which will obtain parts with homogeneous mechanical properties and sealing. About ten to fifteen minutes are needed to mix 20 kg of powders.
Fabrication des pièces en matériau composite Manufacture of composite parts
On a préparé plusieurs pièces composites en soumettant à un frittage sélectif par laser le mélange de poudres constitué par 65 % en poids d'une poudre d'un alliage AlCuFeB ayant une granulométrie comprise entre 10 et 75 μηι et 35 % en poids d'une poudre de polyamide qui est une poudre de Nylon 12 ayant une granulométrie moyenne de 60 μηι. L'alliage AlCuFeB est un alliage quasi-cristallin de composition atomique nominale Al59Cu25;5Fei2;5B3, commercialisé sous la dénomination Cristome Fl par la société Saint-Gobain. Cet alliage est constitué de la phase de structure complexe (icosaédrique i) isostructurale à la phase z-Al62Cu25;5Fei2;5 et d'une phase cubique isostructurale à la phase -Al50(CuFe)5o. Several composite parts were prepared by selectively laser sintering the powder mixture consisting of 65% by weight of a powder of an AlCuFeB alloy having a particle size of between 10 and 75 μηι and 35% by weight of a polyamide powder which is a nylon 12 powder having an average particle size of 60 μηι. The AlCuFeB alloy is a quasi-crystalline alloy of nominal atomic composition Al 59 Cu 2 5 ; 5Fei 2; 5 B3, sold under the name Cristome Fl by the company Saint-Gobain. This alloy consists of the phase of complex structure (icosahedral i) isostructural at the phase z-Al 62 Cu 2 5 ; 5 Fei 2; And from an isostructural cubic phase to -Al 50 (CuFe) 5 o.
Le frittage sélectif par laser peut être mis en œuvre à l'aide d'un dispositif 1 tel qu'illustré à la figure 1. Selective laser sintering can be implemented using a device 1 as illustrated in FIG.
Le dispositif 1 de frittage sélectif par laser comprend un réservoir 2 d'alimentation de poudre dans lequel est placé le mélange, un rouleau 3 d'apport et de répartition de poudre, ainsi qu'un laser 4. The selective laser sintering device 1 comprises a powder supply tank 2 in which the mixture is placed, a powder supply and distribution roller 3, and a laser 4.
Le laser 4 est par exemple un laser CO2 de puissance 35 W. Le faisceau laser est dirigé via un miroir 5 vers la zone de poudre que l'on souhaite fritter, sous une atmosphère de préférence neutre, par exemple sous atmosphère d'azote. The laser 4 is, for example, a CO 2 laser of power 35 W. The laser beam is directed via a mirror 5 towards the powder zone that it is desired to sinter, under a preferably neutral atmosphere, for example under a nitrogen atmosphere. .
Le procédé utilise une plate-forme de fabrication chauffée à une température proche de la température de fusion du polymère. Le laser trace la forme couche par couche et fournit localement, à chaque strate successive du mélange initial de poudres, l'énergie thermique suffisante pour amener le polymère à une température entraînant sa fusion. Les poudres non frittées assurent naturellement le support des couches suivantes. La plate-forme de travail mobile descend de l'épaisseur d'une couche, le déplacement de la pièce verticale étant assuré par un piston 6. Une nouvelle couche de poudre est ensuite étalée par le rouleau 3 et le cycle recommence pour construire la pièce couche par couche de bas en haut. A la place du rouleau 3, on pourrait également utiliser un autre système mécanique comme par exemple un racleur. The process uses a manufacturing platform heated to a temperature close to the melting point of the polymer. The laser traces the layer-by-layer form and locally supplies, to each successive layer of the initial powder mixture, sufficient thermal energy to bring the polymer to a temperature causing it to melt. Unsintered powders naturally provide support for the following layers. The mobile work platform descends from the thickness of a layer, the displacement of the vertical part being provided by a piston 6. A new layer of powder is then spread by the roller 3 and the cycle starts again to build the part layer by layer from bottom to top. Instead of the roller 3, another mechanical system could be used, such as a scraper.
Propriétés des pièces obtenues Properties of the obtained parts
Les pièces obtenues après frittage présentent un retrait homogène de 2 ± 0,2 % selon les axes horizontaux x et y, et de 1 ,3 ± 0,2 % selon l'axe vertical z. La densité
apparente mesurée par le rapport masse/volume de la pièce est toujours supérieure ou égale à 99 % de la densité théorique, ce qui implique un taux de porosité volumique inférieur à 1 %. Les pièces obtenues sont étanches sous une pression minimale de 8 bars, de la température ambiante jusqu'à 100 °C. Le gain en volume d'usure apporté par rapport à la matrice de polyamide renforcée par de l'aluminium cristallin est d'environ 70%. Le coefficient de frottement mesuré à l'aide d'un tribomètre de type pion sur disque (charge 10N, vitesse de glissement 16cm/s, diamètre de l'empreinte lcm) montre un gain de l'ordre de 30 %. La dureté Shore D moyenne est de 79±1. The parts obtained after sintering have a homogeneous shrinkage of 2 ± 0.2% along the horizontal x and y axes, and of 1.3 ± 0.2% along the vertical axis z. The density Apparently measured by the mass / volume ratio of the workpiece is always greater than or equal to 99% of the theoretical density, which implies a porosity of less than 1% volume. The parts obtained are sealed under a minimum pressure of 8 bar, from room temperature up to 100 ° C. The gain in wear volume compared to the crystalline aluminum reinforced polyamide matrix is about 70%. The coefficient of friction measured using a pin-type tribometer on the disk (load 10N, sliding speed 16cm / s, cavity diameter lcm) shows a gain of the order of 30%. The average Shore D hardness is 79 ± 1.
Exemple 2 On a reproduit le mode opératoire de l'exemple 1 , mais en utilisant un mélange de poudres constitué par 52 % en poids d'une poudre d'alliage d'aluminium cristallin (aluminium de série 1000) et 48 % en poids d'une poudre de polyamide qui est une poudre de Nylon 12. EXAMPLE 2 The procedure of Example 1 was repeated, but using a mixture of powders consisting of 52% by weight of a powder of crystalline aluminum alloy (1000 series aluminum) and 48% by weight of a polyamide powder which is a nylon 12 powder.
Les pièces obtenues après frittage présentent un retrait homogène de 2 ± 0,2% selon les axes x et y et de 1,3 ± 0,2 % selon l'axe z. La densité mesurée est toujours inférieure ou égale à 80 % de la densité théorique, ce qui implique un taux de porosité volumique supérieur à 20 %. Les pièces ne sont pas étanches sans imprégnation de résine en surface. Les propriétés tribologiques d'abrasion-usure et de frottement sont médiocres. La dureté Shore D moyenne est de 72±2. Exemple 3 The pieces obtained after sintering have a homogeneous shrinkage of 2 ± 0.2% along the x and y axes and 1.3 ± 0.2% along the z axis. The density measured is always less than or equal to 80% of the theoretical density, which implies a porosity rate greater than 20%. The parts are not waterproof without impregnation of resin on the surface. The tribological properties of abrasion-wear and friction are poor. The average Shore D hardness is 72 ± 2. Example 3
On a reproduit le mode opératoire de l'exemple 1, mais chaque nuance de poudre est pesée avec précision de sorte à obtenir une fraction volumique d'alliage métallique complexe dans la pièce composite finale de 15 %. Le mélange de poudres est constitué par 44 % en poids d'une poudre de l'alliage AlCuFeB de l'exemple 1 et 56 % en poids d'une poudre de polyamide qui est une poudre de Nylon 12. The procedure of Example 1 was repeated, but each grade of powder was accurately weighed so as to obtain a volume fraction of complex metal alloy in the final composite part of 15%. The powder mixture consists of 44% by weight of a powder of AlCuFeB alloy of Example 1 and 56% by weight of a nylon powder which is a nylon 12 powder.
Les pièces obtenues après frittage présentent un retrait homogène de 2 ± 0,2 % selon les axes x et y et de 1,3 ± 0,2 % selon les axes z. La densité mesurée est toujours supérieure ou égale à 98 % de la densité théorique, ce qui implique un taux de porosité volumique inférieur à 2 %. Les pièces obtenues sont étanches. Les propriétés tribologiques et de dureté sont améliorées par rapport à celles des pièces de l'exemple 2. The parts obtained after sintering have a homogeneous shrinkage of 2 ± 0.2% along the x and y axes and 1.3 ± 0.2% along the z axes. The density measured is always greater than or equal to 98% of the theoretical density, which implies a volume porosity rate of less than 2%. The pieces obtained are waterproof. The tribological and hardness properties are improved over those of the parts of Example 2.
Exemple 4
On a reproduit le mode opératoire de l'exemple 1 , mais en utilisant un mélange de poudres constitué par 61,5 % en poids d'une poudre d'un alliage AlCuFeCr et 38,5 % en poids d'une poudre de polyamide qui est une poudre de Nylon 12. L'alliage AlCuFeCr est un alliage métallique complexe de composition atomique nominale Al71Cu9FeioCr10. Cet alliage est constitué de la phase approximante orthorhombique Ol-Al65Cu2oFeioCr5 et d'une phase quadratique isostructurale à la phase ω- Al7oCu2oFe10. Example 4 The procedure of Example 1 was repeated, but using a mixture of powders consisting of 61.5% by weight of a powder of an AlCuFeCr alloy and 38.5% by weight of a polyamide powder which is a nylon 12 powder. AlCuFeCr alloy is a complex metal alloy of nominal atomic composition Al 71 Cu 9 FeioCr 10 . This alloy consists of the orthorhombic phase Ol-Al 65 Cu 2 oFeioCr 5 and an isostructural quadratic phase at the phase ω-Al 7 oCu 2 oFe 10 .
Les pièces obtenues après frittage présentent un retrait homogène de 2 ± 0,2 % selon les axes x et y et de 1,3 ± 0,2 % selon l'axe z. La densité mesurée est toujours supérieure ou égale à 99 % de la densité théorique, ce qui implique un taux de porosité volumique inférieur à 1%. Les pièces obtenues sont étanches. Les propriétés tribologiques et de dureté sont améliorées par rapport à celles des pièces de l'exemple 2. The pieces obtained after sintering have a homogeneous shrinkage of 2 ± 0.2% along the x and y axes and 1.3 ± 0.2% along the z axis. The density measured is always greater than or equal to 99% of the theoretical density, which implies a volume porosity of less than 1%. The pieces obtained are waterproof. The tribological and hardness properties are improved over those of the parts of Example 2.
Exemple 5 On a reproduit le mode opératoire de l'exemple 1 , mais en utilisant un mélange de poudres constitué par 40 % en poids d'une poudre de l'alliage AlCuFeCr de l'exemple 4 et 60 % en poids d'une poudre de polyamide qui est une poudre de Nylon 12. EXAMPLE 5 The procedure of Example 1 was repeated, but using a mixture of powders consisting of 40% by weight of a powder of the AlCuFeCr alloy of Example 4 and 60% by weight of a powder. polyamide which is a nylon 12 powder.
Les pièces obtenues après frittage présentent un retrait homogène de 2 ± 0,2 % en x et y et de 1,3 ± 0,2 % en z. La densité mesurée est toujours supérieure ou égale à 97 % de la densité théorique, ce qui implique un taux de porosité volumique inférieur à 3 %. Les pièces obtenues sont étanches. Les propriétés tribologiques et de dureté sont améliorées par rapport à celles des pièces de l'exemple 2.
The pieces obtained after sintering have a homogeneous shrinkage of 2 ± 0.2% in x and y and 1.3 ± 0.2% in z. The density measured is always greater than or equal to 97% of the theoretical density, which implies a volume porosity of less than 3%. The pieces obtained are waterproof. The tribological and hardness properties are improved over those of the parts of Example 2.
Claims
1. Procédé d'élaboration d'une pièce comprenant de l'aluminium, caractérisé en ce qu'il comprend une étape de frittage sélectif par laser d'un mélange comprenant une poudre de polymère et une poudre d'un alliage d'alu- minium quasi-cristallin, le poids de l'alliage n'excédant pas 80 % du poids total du mélange. 1. A process for producing a part comprising aluminum, characterized in that it comprises a step of selective laser sintering of a mixture comprising a polymer powder and a powder of an alloy of aluminum. quasi-crystalline minium, the weight of the alloy not exceeding 80% of the total weight of the mixture.
2. Procédé selon la revendication 1 , caractérisé en ce que l'alliage d'aluminium quasi-cristallin est un alliage métallique complexe comprenant un pourcentage atomique d'aluminium supérieur à 50%. 2. Method according to claim 1, characterized in that the quasi-crystalline aluminum alloy is a complex metal alloy comprising an atomic percentage of aluminum greater than 50%.
3. Procédé selon la revendication 2, caractérisé en ce que l'alliage d'aluminium quasi-cristallin est choisi parmi Al62Cu25;5Fei2;5, Al59Cu25,5Fe12;5B3, Al71Cu9,7Fe8;7Cr10,6 et Al71;3Fe8;1Co12;8Cr7;8. 3. Method according to claim 2, characterized in that the quasi-crystalline aluminum alloy is selected from Al 62 Cu 25; Fei 2; 5 Al 59 Cu 2 of 5, Fe 12 5; 5 B3, Al 71 Cu 9 Fe 7 8; 10 7 Cr, Al 6 and 71; 3 8 Fe, Co 1 12; 8 Cr 7; 8.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le polymère est un polymère organique thermoplastique choisi parmi les polyamides, les copolymères d'amide, les polyacétates, les polyéthylènes, le polyétheréthercétone. 4. Method according to one of claims 1 to 3, characterized in that the polymer is a thermoplastic organic polymer selected from polyamides, amide copolymers, polyacetates, polyethylenes, polyetheretherketone.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le mélange de poudre d'alliage quasi-cristallin et de polymère contient de 4 à 80 % en poids d'alliage. 5. Method according to one of claims 1 to 4, characterized in that the mixture of quasi-crystalline alloy powder and polymer contains from 4 to 80% by weight of alloy.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que les particules d'alliage ont une granulométrie moyenne comprise entre 1 et 90 μηι, et les particules de polymère ont une granulométrie moyenne comprise entre 1 et 90 μηι. 6. Method according to one of claims 1 to 5, characterized in that the alloy particles have a mean particle size of between 1 and 90 μηι, and the polymer particles have a mean particle size of between 1 and 90 μηι.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le frittage sélectif par laser est assisté par ordinateur. 7. Method according to one of claims 1 to 6, characterized in that the selective laser sintering is computer assisted.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que le mélange de poudres est chauffé jusqu'à une température inférieure de 1 à 10 °C à la température de fusion du polymère, puis en ce que l'énergie nécessaire à la fusion est apportée par le laser. 8. Method according to one of claims 1 to 7, characterized in that the mixture of powders is heated to a temperature of 1 to 10 ° C below the melting temperature of the polymer, and in that the energy necessary for fusion is provided by the laser.
9. Pièce comprenant de l'aluminium, caractérisée en ce qu'elle est obtenue par un procédé selon l'une des revendications 1 à 8. 9. Part comprising aluminum, characterized in that it is obtained by a method according to one of claims 1 to 8.
10. Pièce selon la revendication 9, caractérisée en ce que la densité apparente égale au rapport masse/volume de la pièce est supérieure ou égale à 95 % de la densité théorique de la pièce. 10. Part according to claim 9, characterized in that the apparent density equal to the mass / volume ratio of the workpiece is greater than or equal to 95% of the theoretical density of the workpiece.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0956875 | 2009-10-02 | ||
FR0956875A FR2950826B1 (en) | 2009-10-02 | 2009-10-02 | PROCESS FOR PRODUCING A WORKPIECE COMPRISING ALUMINUM |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011039469A1 true WO2011039469A1 (en) | 2011-04-07 |
Family
ID=42199361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2010/052045 WO2011039469A1 (en) | 2009-10-02 | 2010-09-29 | Method for producing a part including aluminium |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2950826B1 (en) |
WO (1) | WO2011039469A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013017144A1 (en) * | 2011-08-01 | 2013-02-07 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. . | Method for manufacturing a mirror comprising at least one cavity and optical mirror |
WO2014131586A1 (en) * | 2013-02-26 | 2014-09-04 | Universite De Lorraine | Electrolyte-separating membrane for selective transfer of cations through the membrane and process for manufacturing said membrane |
WO2016156288A1 (en) * | 2015-03-31 | 2016-10-06 | Struers A/S | A mounting medium for embedding a sample material and a method of mounting a sample material in a mounting medium |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2979269B1 (en) | 2011-08-24 | 2014-05-16 | Lorraine Inst Nat Polytech | PROCESS FOR MANUFACTURING A WORKPIECE COMPRISING ALUMINUM |
FR2990375B1 (en) * | 2012-05-11 | 2014-05-23 | Univ Lorraine | USE OF A COMPLEX ALUMINUM METAL ALLOY FOR STEREOLITHOGRAPHY |
FR3098741B1 (en) | 2019-07-18 | 2021-07-30 | Centre Nat Rech Scient | Manufacturing process of a part comprising aluminum |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070110608A1 (en) * | 2003-12-01 | 2007-05-17 | Jianxin Liu | Processes for sintering aluminum and aluminum alloy components |
FR2929541A1 (en) * | 2008-04-07 | 2009-10-09 | Cini Sa Atel | PROCESS FOR PREPARING ALUMINUM ALLOY PARTS |
-
2009
- 2009-10-02 FR FR0956875A patent/FR2950826B1/en active Active
-
2010
- 2010-09-29 WO PCT/FR2010/052045 patent/WO2011039469A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070110608A1 (en) * | 2003-12-01 | 2007-05-17 | Jianxin Liu | Processes for sintering aluminum and aluminum alloy components |
FR2929541A1 (en) * | 2008-04-07 | 2009-10-09 | Cini Sa Atel | PROCESS FOR PREPARING ALUMINUM ALLOY PARTS |
Non-Patent Citations (2)
Title |
---|
FLEURY E ET AL: "Spark plasma sintering of Al-Si-Cu-Fe quasi-crystalline powder", METALLURGICAL AND MATERIALS TRANSACTIONS A: PHYSICAL METALLURGY AND MATERIALS SCIENCE 2003 SPRINGER BOSTON US LNKD- DOI:10.1007/S11661-003-1011-2, vol. 34, no. 13, 2003, pages 841 - 849, XP002585206 * |
QUIVY A ET AL: "A cubic approximant of the icosahedral phase in the (Al-Si)-Cu-Fe system", JOURNAL OF PHYSICS: CONDENSED MATTER IOP PUBLISHING UK LNKD- DOI:10.1088/0953-8984/8/23/014, vol. 8, no. 23, 3 June 1996 (1996-06-03), pages 4223 - 4234, XP002585207, ISSN: 0953-8984 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013017144A1 (en) * | 2011-08-01 | 2013-02-07 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. . | Method for manufacturing a mirror comprising at least one cavity and optical mirror |
US9599756B2 (en) | 2011-08-01 | 2017-03-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for manufacturing a mirror comprising at least one cavity and optical mirror |
WO2014131586A1 (en) * | 2013-02-26 | 2014-09-04 | Universite De Lorraine | Electrolyte-separating membrane for selective transfer of cations through the membrane and process for manufacturing said membrane |
CN105026319A (en) * | 2013-02-26 | 2015-11-04 | 洛林大学 | Electrolyte-separating membrane for selective transfer of cations through the membrane and process for manufacturing said membrane |
JP2016515037A (en) * | 2013-02-26 | 2016-05-26 | ユニベルシテ ド ロレーヌUniversite De Lorraine | Electrolyte separation membrane for transmembrane cation transfer and method for producing said membrane |
CN105026319B (en) * | 2013-02-26 | 2017-07-11 | 洛林大学 | Cation, which is transmitted, for selectivity passes through the electrolyte separating film of film and the technique for manufacturing film |
US9925495B2 (en) | 2013-02-26 | 2018-03-27 | Centre National De La Recherche Scientifique | Electrolyte-separating membrane for selective transfer of cations through the membrane and process for manufacturing said membrane |
WO2016156288A1 (en) * | 2015-03-31 | 2016-10-06 | Struers A/S | A mounting medium for embedding a sample material and a method of mounting a sample material in a mounting medium |
US10605709B2 (en) | 2015-03-31 | 2020-03-31 | Struers ApS | Mounting medium for embedding a sample material and a method of mounting a sample material in a mounting medium |
Also Published As
Publication number | Publication date |
---|---|
FR2950826B1 (en) | 2013-04-05 |
FR2950826A1 (en) | 2011-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011039469A1 (en) | Method for producing a part including aluminium | |
EP2747916B1 (en) | Methods for the production of a part comprising aluminium | |
EP3914746B1 (en) | Method for manufacturing an aluminum alloy part | |
FR3066129B1 (en) | PROCESS FOR MANUFACTURING ALUMINUM ALLOY PIECE | |
LU84034A1 (en) | CEMENTED CARBIDE BODY PREFERENTIALLY ENRICHED WITH A BINDER AND THEIR MANUFACTURING METHOD | |
Wang et al. | Intermetallic compound formation at Sn–3.0 Ag–0.5 Cu–1.0 Zn lead-free solder alloy/Cu interface during as-soldered and as-aged conditions | |
EP2591133A2 (en) | Potassium / molybdenum composite metal powders, powder blends, products thereof, and methods for producing photovoltaic cells | |
WO2020165542A1 (en) | Method for manufacturing an aluminum alloy part | |
EP0502900B1 (en) | Preparation of sintered composite materials | |
CH664379A5 (en) | METHOD FOR MANUFACTURING A CONSUMABLE ELECTRODE, FOR THE PRODUCTION OF NB-TI ALLOYS, AND CONSUMABLE ELECTRODE OBTAINED BY THIS PROCESS. | |
EP4149703B1 (en) | Method for producing an aluminium alloy part | |
EP3810817A1 (en) | Process for manufacturing an aluminum alloy part | |
EP2943598B1 (en) | Method for producing an al-tic nanocomposite materia | |
WO2020095009A2 (en) | Method for manufacturing an aluminum alloy part | |
WO2009144405A1 (en) | Method for producing aluminum alloy parts | |
WO2013167448A1 (en) | Use of a complex metal alloy containing aluminum for stereolithography | |
FR2658183A1 (en) | COPPER MOLDED CERAMIC ARTICLE AND PROCESS FOR PRODUCING THE SAME | |
WO2012107683A1 (en) | Method for coating a sample | |
EP2592667B1 (en) | Thermoelectric hybrid composite material | |
EP3999264A1 (en) | Process for manufacturing a part comprising aluminium | |
WO2015042622A1 (en) | Copper-gallium sputtering target | |
Han et al. | Effect of Ni-coated carbon nanotubes on the microstructure and properties of a Sn-Ag-Cu solder | |
US9150958B1 (en) | Apparatus and method of forming a sputtering target | |
RU2413781C1 (en) | Procedure for production of composite material on metal matrix reinforced with quazi-crystals | |
FR2841804A1 (en) | PROCESS FOR THE SYNTHESIS OF A COMPOSITE METAL-CERAMIC MATERIAL WITH REINFORCED HARDNESS AND MATERIAL OBTAINED BY THIS PROCESS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10773656 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10773656 Country of ref document: EP Kind code of ref document: A1 |