WO2011037252A1 - Liposome preparation containing spicamycin derivative - Google Patents

Liposome preparation containing spicamycin derivative Download PDF

Info

Publication number
WO2011037252A1
WO2011037252A1 PCT/JP2010/066808 JP2010066808W WO2011037252A1 WO 2011037252 A1 WO2011037252 A1 WO 2011037252A1 JP 2010066808 W JP2010066808 W JP 2010066808W WO 2011037252 A1 WO2011037252 A1 WO 2011037252A1
Authority
WO
WIPO (PCT)
Prior art keywords
liposome
krn5500
preparation
phospholipid
liposome preparation
Prior art date
Application number
PCT/JP2010/066808
Other languages
French (fr)
Japanese (ja)
Inventor
恵子 山下
滋典 野沢
篤史 三輪
Original Assignee
テルモ株式会社
協和発酵キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社, 協和発酵キリン株式会社 filed Critical テルモ株式会社
Publication of WO2011037252A1 publication Critical patent/WO2011037252A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a liposome preparation containing a poorly water-soluble spicamycin derivative as a drug.
  • Anticancer agents used for cancer treatment are classified into DNA, RNA, and protein synthesis inhibitors based on the pattern of polymer synthesis inhibitory activity against cancer cells. Mainly, the development of anticancer agents acting on DNA and RNA synthesis is the mainstream. In this case, there are many cases where toxicity to limited organs such as myelosuppression becomes dose limiting toxicity (DLT). On the other hand, protein synthesis inhibitors are often toxic to organs that synthesize important proteins necessary for the maintenance of the body, including the liver. In many cases, clinical development is discontinued due to expression. For this reason, protein synthesis inhibitors are required to have higher selective toxicity between tumor cells and normal cells.
  • DLT dose limiting toxicity
  • a peculiar aminoheptose (hereinafter abbreviated as spicamine) binds to the amino group at the 6-position of purine, glycine binds to the amino group at the 4-position of the spicamine, and a fatty acid is attached to the amino group of the glycine. It has an amide-bonded structure.
  • the fatty acid side chain moieties differ for the purpose of providing a less toxic, higher therapeutic index, componentally singulated spicamycin compound Various spicamycin derivatives have been developed.
  • KRN5500 is a spicamycin derivative having the largest therapeutic index, and its effect is exerted by inhibiting protein synthesis of cancer cells. Therefore, it has been developed as a novel anticancer agent having a new antitumor mechanism.
  • Non-Patent Document 1 Since KRN5500 has strong interaction between the fatty acid side chain moiety and the cell, internalization easily occurs and is taken into the cell. When taken into cells, this fatty acid side chain is hydrolyzed only by the fatty acid moiety by an enzyme present in the cell membrane or the like to produce the active body SAN-Gly (4-N-glycylpicamicin aminoside) (Non-patent Document 2). ).
  • KRN5500 shows the same cytocidal effect on adriamycin, vincristine, and mitomycin C resistant cells as the parent strain, and is effective against multidrug resistant cells by avoiding the drug excretion mechanism by most P-glycoproteins. It has also been found.
  • KRN5500 has a new antitumor mechanism of protein synthesis inhibition and is expected to be highly effective against cancers that have acquired the resistance of existing anticancer agents.
  • Clinical trials were conducted both in Japan and in the United States (Non-Patent Document 4, Non-Patent Document 5, Non-Patent Document 6).
  • Non-Patent Document 6 Non-Patent Document 5
  • Phase I clinical trials in Japan and the United States, pulmonary disorders and liver disorders appeared, respectively.
  • One of the problems associated with the side effects of KRN5500 is its poor water solubility, and the use of organic solvents or polyoxyethylene castor oil (Cremophor EL) is unavoidable due to its extremely low solubility in water.
  • KRN5500 has a problem of toxicity due to a solubilizer in addition to the toxicity of the drug itself, and there are still many problems to be solved.
  • Non-patent Document 7 Non-patent Document 7
  • NK105 (nanocarrier), which is currently under development, and Abraxane that is already in clinical use fall under these categories.
  • NK105 is a polymeric micelle preparation produced by mixing paclitaxel with a block copolymer in which a hydrophilic polyethylene glycol (PEG) chain and a polyaspartic acid chain that is a hydrophobic group are bonded in a chain form, Since the solubility of paclitaxel can be drastically improved without using Cremophor EL, it is possible to provide an injection solution that avoids solvent toxicity.
  • PEG polyethylene glycol
  • Non-patent Document 8 Abraxane, which is also a paclitaxel DDS formulation, is a uniform nanoparticle formulation with human serum albumin as an additive. Like NK105, Cremophor EL and ethanol are not used as solvents, so the risk of solvent toxicity can be avoided, and a high dose of paclitaxel can be administered in a short time without the need for pre-administration. Patent Document 9). Thus, since a poorly water-soluble drug can be freed from the risk of side effects due to solvent toxicity by being converted to DDS, the safety range of the preparation can be expanded. Furthermore, the DDS preparation is expected to maintain or enhance the antitumor effect while reducing the toxicity inherent in the drug due to its characteristics.
  • KRN5500 it is required to enhance the effect while reducing the side effects due to solvent toxicity, and further, the toxicity of KRN5500 itself. Therefore, in order to solve these problems, studies have been made on micellization of KRN5500 (Patent Document 3, Non-Patent Document 10, Non-Patent Document 11) and liposome formation.
  • the micelleization of KRN5500 is achieved by converting a block copolymer having a hydrophilic polymer segment and a hydrophobic polymer segment (PEG-P (C 16 , BLA)) and KRN5500 into N, N-dimethylformamide (DMF) or dimethyl sulfoxide (DMSO), respectively.
  • Non-patent Document 12 It is obtained by dissolving, mixing and stirring them, and then performing dialysis and sonication (Non-patent Document 12).
  • the toxicity and antitumor effect of this KRN5500 micelle are evaluated, and the toxicity is reported to be reduced compared with the single substance in pulmonary toxicity in the bleomycin (BLM) model in rats.
  • the antitumor effect is almost the same as that of KRN5500 alone in a system in which human gastric cancer cell line MKN-45 cells are transplanted into nude mice, and an effect exceeding that of the single body is not obtained.
  • the particle size of these micelles has two peaks detected according to the scattering intensity, and it is difficult to control the particle size.
  • the particle size distribution is as wide as 81 nm to 390 nm, which is not preferable as a practical injection solution. Furthermore, it is not a production method suitable for scale-up, such as using an organic solvent or using a production method that requires dialysis or ultrasonic treatment. As described above, KRN5500 micelles still have many problems such as medicinal efficacy, production method, particle size, etc., and have not reached the level that can be clinically endured. Therefore, in order to obtain the effectiveness of KRN5500, it is desired to develop a preparation that can be solubilized without using an organic solvent or Cremophor EL and can reduce the original toxicity of KRN5500 and side effects due to solvent toxicity.
  • JP 59-161396 A Japanese Patent Laid-Open No. 5-186494 JP-A-11-335267
  • the poorly water-soluble spicamycin derivative (KRN5500) can be solubilized without using an organic solvent or Cremophor EL, thereby avoiding the risk of side effects due to solvent toxicity, and increasing the drug concentration in the blood for a long time after administration.
  • An object of the present invention is to provide a KRN5500 formulation that can be maintained and can maintain or enhance the effect while reducing the toxicity of KRN5500 itself. Moreover, it is desired that this KRN5500 preparation is very excellent in stability in a vial.
  • the poorly water-soluble spicamycin derivative (KRN5500) can be made into a liposome by controlling the lipid composition ratio of phospholipid and cholesterol, which are the lipid membrane components of the liposome. I found it. Moreover, while examining the antitumor effect of this KRN5500 liposome preparation, it was found that the antitumor effect can be enhanced by using a phospholipid having a short acyl chain length (myristoyl, C 14 ) (in this case, however) About half of the cholesterol as a lipid membrane component).
  • a phospholipid having a short acyl chain length myristoyl, C 14
  • KRN5500 is a fat-soluble drug, it is considered that it is encapsulated in the lipid membrane due to its characteristics, but by shortening the chain length of the acyl chain of phospholipid, the chain length of the acyl chain and the fatty acid side chain of KRN5500 This is probably because KRN5500 can be efficiently released in the affected area while maintaining the drug concentration for a long time in the blood.
  • the antitumor effect is also enhanced in a membrane formulation not containing cholesterol as a lipid membrane constituent. From these results, it can be seen that, in order to obtain a high antitumor effect, the balance between stability in blood and release of KRN5500 in the affected area is very important.
  • a liposome containing 100 to 50 mol% of phospholipid which is an acyl chain of a saturated fatty acid having a cholesterol chain length of 0 to 50 mol% and an acyl chain of C 14 to C 18 is represented by the chemical formula (I)
  • the lipid membrane of the liposome contains phospholipids whose acyl chains are acyl chains of saturated fatty acids having an average chain length of more than 14 to 16 and cholesterol as main components, and the molar ratio of both components is 80: 20-50
  • the acyl chain is dipalmitoyl or palmitoyl myristoyl or myristoyl palmitoyl.
  • the lipid membrane of the liposome contains a phospholipid whose acyl chain is an acyl chain of a saturated fatty acid having an average chain length of 14 and cholesterol as main components, and the molar ratio of both components is 60:40 to 50:50 It is preferred that the acyl chain is dimyristoyl.
  • the content of the main constituent component with respect to the total lipid of the lipid membrane of the liposome is 50% by mass or more, preferably 80% by mass or more.
  • the chain length of the acyl chain means the carbon number of the acyl chain.
  • the average chain length means the carbon number obtained by averaging the carbon numbers of the fatty acids constituting the phospholipid.
  • the constituent fatty acids may be the same or different.
  • the lipid membrane of the liposome contains, as a main component, a phospholipid whose acyl chain is an acyl chain of a saturated fatty acid having a chain length of 18.
  • the lipid membrane of the liposome contains a phospholipid whose acyl chain is an acyl chain of a saturated fatty acid having a chain length of 16 and cholesterol as main components, and the molar ratio of both components is 80:20 to 50:50 is there.
  • the lipid membrane of the liposome contains a phospholipid whose acyl chain is an acyl chain of a saturated fatty acid having a chain length of 14 and cholesterol as main components, and the molar ratio of both components is 60:40 to 50:50 is there.
  • the content of the main constituent component with respect to the total lipid of the lipid membrane of the liposome is 50% by mass or more, preferably 80% by mass or more.
  • the above-described liposome preparation according to the present invention can stably retain, for example, a poorly water-soluble spicamycin derivative (KRN5500), the composition ratio of phospholipids and other lipids, which are membrane constituents, and acyl of phospholipids.
  • KRN5500 a poorly water-soluble spicamycin derivative
  • the chain length it is possible to efficiently release KRN5500 in the affected area while being excellent in retention in blood, and can further enhance the original antitumor effect of KRN5500, and side effects due to drug toxicity Can be reduced.
  • PEG chain length molecular weight of polyethylene glycol
  • the amount of PEG modification side effects can be further reduced while maintaining a strong antitumor action.
  • the KRN5500 preparation of the present invention has good stability in a vial.
  • FIG. 1 is a graph showing the amount of liposome drug loaded relative to the amount of drug charged.
  • FIG. 2 is a graph showing the efficiency of drug encapsulation in liposomes with respect to the amount of drug charged.
  • FIG. 3 is a graph in which a liposome preparation or the like was administered to a rat, and the KRN5500 concentration in plasma after the lapse of a predetermined time after the administration was quantified by absorbance measurement.
  • FIG. 4 is a graph showing the in vitro cell-killing effect (Colo205) of KRN5500 liposome preparations having different lipid compositions.
  • FIG. 5 is a graph showing the tumor volume over the elapsed days after administration of a liposome preparation or the like to mice (human colon cancer cells (CoL-1)).
  • FIG. 6 is a graph showing the tumor volume when a liposome preparation or the like is repeatedly administered to mice (human lung cancer cell line PC-9).
  • FIG. 7 is a graph showing the weight change rate of mice when a liposome preparation or the like is repeatedly administered to mice (human lung cancer cell line PC-9).
  • FIG. 8 is a graph in which liposome preparations having different PEG modification amounts and PEG chain lengths were administered to rats, and the KRN5500 concentration in plasma after lapse of a predetermined time after the administration was quantified by absorbance measurement.
  • FIG. 9 is a graph showing the in vitro cell killing effect (Colo205) of a KRN5500 liposome formulation containing PEG 2000 -DSPE.
  • FIG. 10 is a graph showing the in vitro cell killing effect (HT-29) of a KRN5500 liposome preparation containing PEG 2000 -DSPE.
  • FIG. 11 is a graph showing the tumor volume over the elapsed days after administration of a liposome preparation or the like to mice (human colon cancer cells (CoL-1)).
  • FIG. 12 is a graph showing the relative tumor volume with respect to the Control group in the number of days after administration of a liposome preparation or the like to mice (human colon cancer cells (CoL-1)).
  • FIG. 13 is a graph showing changes in the body weight of mice after administration of a liposome preparation or the like to mice (human colon cancer cells (CoL-1)).
  • FIG. 14 is a graph showing the tumor volume over the elapsed days when a liposome preparation or the like was administered to mice (human colon cancer cells (CoL-1)) three times in total at 4-day intervals.
  • FIG. 15 is a graph showing the relative tumor volume with respect to the Control group in the elapsed days when a liposome preparation or the like was administered to mice (human colorectal cancer cells (CoL-1)) three times at intervals of 4 days.
  • FIG. 16 is a graph showing the change in body weight of mice over the elapsed days when a liposome preparation or the like was administered to mice (human colon cancer cells (CoL-1)) three times in total at 4-day intervals.
  • FIG. 17 is a graph showing the tumor volume over the elapsed days when a liposome preparation or the like was administered to mice (human colon cancer cells (CoL-1)) twice at a total interval of 6 days.
  • FIG. 18 is a graph showing the relative tumor volume with respect to the Control group in the elapsed days when a liposome preparation or the like was administered to mice (human colon cancer cells (CoL-1)) twice at a total interval of 6 days.
  • FIG. 19 is a graph showing changes in the body weight of mice over the elapsed days when a liposome preparation or the like was administered to mice (human colon cancer cells (CoL-1)) twice at a 6-day interval.
  • the poorly water-soluble spicamycin derivative is a prodrug of the active form SAN-Gly (4-N-glycylspicamycinamine amineside). It is considered that the fatty acid side chain of the prodrug is necessary for permeation of the cell membrane of cancer cells and is hydrolyzed and cleaved by an enzyme between the fatty acid and glycine when permeating the cell membrane.
  • the resulting SAN-Gly acts on the intracellular protein synthesis system and exhibits a cytocidal effect on cancer cells. It has been reported that an amide bond between glycine and a fatty acid is important in the process of synthesizing this prodrug derivative, and the antitumor activity disappears when this part is chemically converted.
  • a liposome preparation containing the poorly water-soluble spicamycin derivative (for example, KRN5500) is provided.
  • Liposomes are aqueous dispersions of closed vesicles composed of a phospholipid bilayer membrane and having a structure that forms a space separated from the outside by a membrane formed based on the polarity of the hydrophobic and hydrophilic groups of the lipid. .
  • the aqueous phases inside and outside the closed vesicle across the membrane are called the inner aqueous phase and the outer aqueous phase, respectively.
  • the liposome preparation refers to a preparation in which a liposome is used as a carrier and a drug is supported thereon. In the present invention, this liposome is loaded with a poorly water-soluble spicamycin derivative (for example, KRN5500) as a drug.
  • Phospholipid which is one of the main components of the lipid membrane of liposomes carrying the drug, is a main component of biological membranes, and includes hydrophobic groups such as long-chain alkyl groups and phosphate groups in the molecule. It is an amphiphilic substance having a hydrophilic group.
  • Liposomes may contain other membrane components together with the main constituent components.
  • lipids other than phospholipids or derivatives thereof hereinafter sometimes referred to as other lipids are included.
  • the “lipid other than phospholipid” is a lipid that has a hydrophobic group such as a long-chain alkyl group in the molecule and does not contain a phosphate group in the molecule, and is not particularly limited, but is not limited to glyceroglycolipid, sphingoglycolipid.
  • sterol derivatives such as cholesterol and derivatives such as hydrogenated products thereof.
  • Cholesterol derivatives are sterols having a cyclopentanohydrophenanthrene ring, and specific examples include, but are not limited to, cholesterol.
  • the liposome in the present invention can be preferably formulated by controlling the lipid composition ratio of phospholipid and cholesterol, and also enhances the antitumor effect by shortening the chain length of the acyl chain of the phospholipid used. Can do.
  • the average chain length of the acyl chain is more than 16 to 18, phospholipid 100 mol% or phospholipid 70 to 50 mol% and cholesterol 30 to 50 mol% are preferable.
  • the phospholipid acyl chain is a phospholipid selected from the group consisting of distearoyl, palmitoyl stearoyl, stearoyl palmitoyl, myristoyl stearoyl and stearoyl myristoyl, phospholipid 100 mol% or phospholipid 70-50 mol%, cholesterol 30- 50 mol% is preferable.
  • the average chain length of the acyl chain is more than 14 to 16, phospholipids of 80 to 50 mol% and cholesterol of 20 to 50 mol% are preferable.
  • the phospholipid acyl chain is a phospholipid selected from the group consisting of dipalmitoyl, palmitoyl myristoyl and myristoyl palmitoyl, phospholipids of 80 to 50 mol% and cholesterol of 20 to 50 mol% are preferred. More preferred are phospholipid 70-50 mol% and cholesterol 30-50 mol%.
  • the average chain length of the acyl chain is 14, phospholipids of 50 to 60 mol% and cholesterol of 50 to 40 mol% are preferable.
  • the acyl chain is dimyristoyl, phospholipids are preferably 50 to 60 mol% and cholesterol is 50 to 40 mol%.
  • the spicamycin derivative can be formulated into a liposome formulation by stabilizing the membrane while preventing a decrease in the drug loading.
  • the lipid membrane may be modified in order to change the physical properties of the lipid constituting the lipid membrane and impart desired properties to the lipid membrane.
  • a derivative in which a modifying group is linked to a compound main body having affinity for a lipid membrane can be included in the film, and the compound main body is usually a lipid.
  • This lipid moiety may be either phospholipid or lipid other than phospholipid, or both, and is not particularly limited.
  • phospholipid, long chain aliphatic alcohol, sterol, polyoxypropylene alkyl, glycerin fatty acid ester and the like can be mentioned.
  • the modifying group is not particularly limited, and examples thereof include a charged group, a hydrophilic group such as a water-soluble polysaccharide, and a hydrophilic polymer chain, and one or a combination of two or more of these may be used.
  • the charged group is not particularly limited, and examples thereof include basic functional groups such as amino group, amidino group, and guanidino group, acidic functional groups, and the like, and a charged substance having these groups can be included in the film.
  • Examples of the charged substance having a basic functional group include DOTMA disclosed in JP-A No. 61-161246, DOTAP disclosed in JP-A-5-508626, and JP-A-2-292246.
  • Transfectam TMAG disclosed in JP-A-4-108391, 3,5-dipentadecyloxybenzamidine hydrochloride, DOSPA, TfxTM-50, DDAB disclosed in WO 97/42166, pamphlet , DC-CHOL, DMRIE and the like.
  • the charged substance having an acidic functional group include gangliosides having sialic acid such as ganglioside GM1 and ganglioside GM3, and acidic amino acid surfactants such as N-acyl-L-glutamic acid.
  • the charged substance is a substance in which a compound having a basic functional group is bound to a lipid, it is called a cationized lipid.
  • the basic functional group may be present on the lipid membrane surface of the liposome (on the outer membrane surface and / or on the inner membrane surface) as the lipid portion of the cationized lipid is inserted into the lipid bilayer of the liposome. it can.
  • the water-soluble polysaccharide is not particularly limited, and examples thereof include water-soluble polysaccharides such as glucuronic acid, sialic acid, dextran, pullulan, amylose, amylopectin, chitosan, mannan, cyclodextrin, pectin, and carrageenan.
  • water-soluble polysaccharide derivatives include glycolipids. The membrane modification rate by the charged substance and the water-soluble polysaccharide can be appropriately set as necessary.
  • the hydrophilic polymer is not particularly limited, but polyethylene glycol, ficoll, polyvinyl alcohol, styrene-maleic anhydride alternating copolymer, divinyl ether-maleic anhydride alternating copolymer, polyvinyl pyrrolidone, polyvinyl methyl ether, polyvinyl methyl oxazoline. , Polyethyloxazoline, polyhydroxypropyloxazoline, polyhydroxypropylmethacrylamide, polymethacrylamide, polydimethylacrylamide, polyhydroxypropyl methacrylate, polyhydroxyethyl acrylate, hydroxymethylcellulose, hydroxyethylcellulose, polyaspartamide, synthetic polyamino acid, etc. Is mentioned.
  • the hydrophilic polymer preferably has a structure for modifying the lipid membrane of the liposome.
  • the hydrophilic polymer chain preferably has this structure at one end.
  • the structure is a hydrophobic part such as a lipid
  • the hydrophilic polymer chain is immobilized so that the hydrophobic part protrudes from the outer surface of the liposome as the hydrophobic part is inserted into the lipid membrane.
  • the hydrophilic polymer chain is formed on the outer surface of the liposome by covalently bonding with a lipid membrane component such as phospholipid exposed on the outer surface of the liposome. It is fixed so that it may protrude from.
  • the hydrophobic compound is not particularly limited.
  • region can be mentioned.
  • the hydrophobic compound include other lipids such as phospholipids and sterols, long-chain aliphatic alcohols, glycerin fatty acid esters, and the like. Among them, phospholipid is one of the preferred embodiments.
  • these hydrophobic compounds may have a reactive functional group.
  • the bond formed by the reactive functional group is preferably a covalent bond, and specific examples include an amide bond, an ester bond, an ether bond, a sulfide bond, and a disulfide bond, but are not particularly limited.
  • the acyl chain of the phospholipid is preferably a saturated fatty acid acyl chain.
  • the chain length of the acyl chain is preferably C 14 to C 20 , and more preferably C 14 to C 18 .
  • Examples of the acyl chain include dimyristoyl, dipalmitoyl, distearoyl, and palmitoyl stearoyl.
  • the phospholipid is not particularly limited.
  • As the phospholipid for example, one having a functional group capable of reacting with the hydrophilic polymer can be used.
  • the phospholipid having a functional group capable of reacting with such a hydrophilic polymer include phosphatidylethanolamine having an amino group, phosphatidylglycerol having a hydroxy group, and phosphatidylserine having a carboxy group. Is mentioned.
  • One preferred mode is to use the above phosphatidylethanolamine.
  • the lipid derivative of the hydrophilic polymer comprises the above hydrophilic polymer and the above lipid.
  • the combination of the hydrophilic polymer and the lipid is not particularly limited. What was combined suitably according to the objective can be used.
  • At least one selected from other lipids such as phospholipids and sterols, long chain fatty alcohols, glycerin fatty acid esters, and at least selected from PEG, polyglycerol (PG), and polypropylene glycol (PPG).
  • PEG polyglycerol
  • PPG polypropylene glycol
  • One example is a derivative of a hydrophilic polymer bonded to one. Specific examples include polyoxypropylene alkyl, and in particular, when the hydrophilic polymer is polyethylene glycol (PEG), it is one of preferred embodiments to select phospholipid and cholesterol as the lipid. Examples of the PEG lipid derivative by such a combination include PEG phospholipid derivatives and PEG cholesterol derivatives.
  • the lipid derivative of the hydrophilic polymer can be positively charged, negatively charged, or neutral depending on the choice of lipid.
  • DSPE lipid derivative that shows a negative charge due to the influence of the phosphate group
  • cholesterol cholesterol is selected as the lipid, it becomes a neutral lipid derivative.
  • Lipids can be selected according to the purpose.
  • the molecular weight of PEG is not particularly limited, but is usually 500 to 10,000 daltons, preferably 1,000 to 7,000 daltons, more preferably 1,500 to 5,500 daltons, and more preferably 1,500 daltons. ⁇ 5,000 Daltons. More preferably, it is 1,500 to 2,500 daltons.
  • the molecular weight of PG is not particularly limited, but is usually 100 to 10,000 daltons, preferably 200 to 7,000 daltons, more preferably 400 to 5,000 daltons.
  • the molecular weight of PPG is not particularly limited, but is usually 100 to 10,000 daltons, preferably 200 to 7,000 daltons, more preferably 10,000 to 5,000 daltons.
  • phospholipid derivatives of PEG are mentioned as one of preferable embodiments.
  • Examples of the phospholipid derivative of PEG include polyethylene glycol-distearoylphosphatidylethanolamine (PEG-DSPE).
  • PEG-DSPE is preferred because it is a general-purpose compound and is easily available.
  • Liposomes whose surface has been modified using lipid derivatives of such hydrophilic polymers prevent blood opsonin protein and the like from adsorbing to the surface of the liposomes, increasing the blood stability of the liposomes, In addition, it is possible to avoid capture by reticuloendothelial tissue (RES) such as spleen, and to improve delivery to a target tissue or cell. That is, high blood retention is obtained. As a result, it is possible to passively accumulate in the tissue in which the vascular permeability of the tumor tissue is enhanced.
  • RES reticuloendothelial tissue
  • retention in blood means a property in which a drug carried in a liposome preparation is present in blood in a host administered with the liposome preparation carrying the drug.
  • the modification rate by the hydrophilic polymer lipid derivative is usually 0.1 to 20 mol%, preferably 0.1 to 10 mol%, more preferably 0.5 to 10 mol%, as a ratio to the total lipid. Furthermore, it is 0.5 to 4 mol%.
  • total lipid refers to a lipid obtained by removing a hydrophilic polymer lipid derivative from lipids constituting a lipid membrane.
  • the amount of the poorly water-soluble spicamycin derivative supported on the liposome as described above, that is, the drug / total lipid molar ratio of the liposome preparation is usually 0.1 or less from the viewpoint of liposome stability and encapsulation efficiency. Yes, preferably 0.001 to 0.03.
  • the drug loading in the liposome or the drug content in the liposome formulation means a state in which the drug is supported and retained in the liposome formulation (dispersion), and the drug not retained in the liposome, that is, dispersed. This means that the outer aqueous phase of the liquid is essentially free of any drug that is freely present regardless of liposomes.
  • the liposome preparation of the present invention using a poorly water-soluble spicamycin derivative as a drug, it is considered that at least a part of the drug is substantially contained in the lipid film and is supported on the membrane.
  • the preparation is not required to have a free drug in the outer aqueous phase, and the loading state of the drug is not limited, and may be supported on the lipid membrane of the liposome and / or encapsulated in the inner aqueous phase.
  • the liposome preparation of the present invention may further contain a pharmaceutically acceptable stabilizer and / or antioxidant depending on the administration route. These are collectively referred to as pharmaceutically auxiliaries.
  • Stabilizers include, but are not limited to, saccharides such as glycerol or sucrose.
  • examples of the antioxidant include, but are not limited to, ascorbic acid, uric acid, and tocophenol analogues such as vitamin E. Tocophenol has four isomers, ⁇ , ⁇ , ⁇ , and ⁇ , and any of them can be used in the present invention.
  • the liposome preparation of the present invention may further contain a pharmaceutically acceptable additive depending on the administration route.
  • additives examples include water, saline, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinyl pyrrolidone, carboxyvinyl polymer, sodium carboxymethyl cellulose, sodium polyacrylate, sodium alginate, water-soluble Dextran, sodium carboxymethyl starch, pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, casein, gelatin, agar, diglycerin, propylene glycol, polyethylene glycol, petrolatum, paraffin, stearyl alcohol, human serum albumin (HSA), mannitol, Sorbitol, lactose, PBS, biodegradable polymer, serum-free medium, acceptable as a pharmaceutical additive, and stability of liposome preparation
  • Surfactants do not affect the concentration, and the concentrations that do not affect the stability refers to 15 mass% or less of the total formulation.
  • a buffer solution of physiological pH acceptable in vivo can be used.
  • the additive to be used
  • the liposome formulation of the aspect containing these additives and / or pharmaceutically-added adjuvant can be provided as a pharmaceutical composition.
  • the pharmaceutical composition of the present invention can be stored by refrigeration at room temperature (generally 21 ° C. to 25 ° C.), preferably 0 to 8 ° C.
  • room temperature generally 21 ° C. to 25 ° C.
  • known liposome preparation methods can be widely used as long as the medicine can be stably supported.
  • the method for preparing the liposome suspension includes hydration method (Bangham method), sonication method, reverse phase evaporation vesicles, heating method, lipid dissolution method, DRV method (Dehydrated / Rehydrated Vesicles), freeze-thaw method, ethanol injection method, thin film method, extrusion method, high-pressure emulsification method using high-pressure discharge type emulsifier ("Liposome in Life Science" edited by Terada, Yoshimura et al .; Springer Fairlark Tokyo (1992) Various known techniques such as) can be employed.
  • a typical liposome preparation step includes the steps (i) of producing a liposome encapsulating a drug to obtain a coarse liposome suspension, the granulating step (ii) of the coarse liposome suspension, and an external solution.
  • a preparation method as described above can be appropriately employed as necessary. Further, not only one method but also two or more methods can be selected, and the same or different methods can be duplicated or added. Since liposomes generally have a phase transition point, each step before the external liquid replacement step (unencapsulated drug removal step) (iii) for liposome preparation is performed at a temperature above the phase transition point of the main membrane material. It is preferable.
  • the lipid bilayer structure of liposomes there are known membrane structures such as Unilamellar Vesicle (SUV, Large Unilamellar Vesicle, LUV) and multilamellar vesicle (MLV) composed of a plurality of sheets.
  • the liposome according to the present invention may have any membrane structure, but multilamellar vesicle liposomes are preferred from the viewpoint of encapsulation efficiency.
  • it when carrying out the sizing step by the above-mentioned membrane emulsification method, it can be made into a mono-lamellar by forcibly passing a membrane filter made of a commercially available polycarbonate or the like several times using an extruder. Can be controlled.
  • the particle size when the particle size is adjusted to 100 nm, the particle size can be adjusted stepwise by combining membrane filters of 400 nm, 200 nm, 100 nm and the like. In the granulating step, if the temperature of the liposome coarse suspension is equal to or higher than the phase transition point of the main membrane material, the particle size can be easily controlled.
  • the size of the liposome after sizing is not particularly limited, but it can take a spherical shape or a form close thereto, and its particle diameter (diameter of particle outer diameter) is not particularly limited, but is usually 0.02 to 2 ⁇ m, The thickness is preferably 0.03 to 0.4 ⁇ m, more preferably 0.05 to 0.25 ⁇ m. This particle diameter is measured as a mean diameter value of all particles by a dynamic light scattering method using a Zetasizer (Malvern Instruments. 3000HS, Zatasizer Nano ZS90).
  • the tumor to be treated with the liposome preparation of the present invention is not particularly limited, but is a solid tumor, specifically, esophageal cancer, stomach cancer, colon cancer, colon cancer, rectal cancer, pancreatic cancer, liver cancer, laryngeal cancer. Lung cancer, prostate cancer, bladder cancer, breast cancer, uterine cancer or ovarian cancer.
  • Target sites include tumor cells, tissues, organs or organs and their interiors. Therefore, in the present invention, the disease means the above-mentioned tumor, and the drug is expected to show an antitumor effect against them.
  • “exposure” means that the drug released to the outside of the liposome acts on the external environment.
  • the released spicamycin derivative is close to the target site, and when it penetrates the cell membrane of cancer cells, the fatty acid side chain is enzymatically hydrolyzed between the fatty acid and glycine, and the active form SAN-Gly.
  • This SAN-Gly acts on the intracellular protein synthesis system and exhibits an antitumor effect. In order to show such an effect, it is necessary to maintain a balance between the drug release from the liposome preparation and the blood retention of the liposome preparation.
  • “release” means that the drug contained in the liposome preparation is released from the liposome. It is important to control the release of the drug contained in the liposome preparation of the present invention because it exhibits strong antitumor activity when exposed to a target site at a high concentration for a long time in plasma.
  • the liposome preparation of the present invention can maintain the drug concentration in plasma at a high concentration. Since conventional liposome preparations disappear quickly from blood, it is difficult to expect a sufficient effect because the exposure time at the target site is short. Further, rapid disappearance from the blood is not preferable because the drug is exposed to organs such as liver and spleen, which are metabolic organs, at a high concentration, leading to side effects at the site. Since the liposome preparation of the present invention can maintain the drug concentration in plasma at a high concentration, it can reduce the exposure of the drug to organs such as the liver and spleen. It is preferable because it can be exposed and side effects can be reduced. In the present invention, the drug concentration in plasma 1 hour after administration is 10% or more of the initial value, preferably 15% or more.
  • This “initial value” is the theoretical concentration immediately after administration of the liposome preparation of the present invention, and is generally assumed that the total plasma volume calculated from the body weight of the host is used to dilute with the dose volume. Calculated.
  • the plasma concentration at each time point can be expressed as a ratio to the initial value, and is generally expressed as “% dose”.
  • the drug is used for long exposure to the desired target site. Therefore, in the present invention, for the prevention and / or treatment of host diseases, an effective amount of a drug is released in the host by administering to the host a liposome preparation carrying an effective amount of the drug, and the target site is prolonged. For exposure at high concentrations over time, it can be parenterally administered systemically or locally to the host (patient). Examples of the host to be administered include mammals, preferably humans, monkeys, mice, livestock and the like.
  • intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, and subcutaneous injection
  • an appropriate administration method should be selected depending on the age and symptoms of the patient.
  • the carrier of the invention is administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially block the symptoms of the disease.
  • the effective dose of the drug enclosed in the carrier is selected in the range of 0.01 mg to 100 mg per kg body weight per day.
  • the carrier of the present invention is not limited to these dosages.
  • the administration time may be administered after the disease has occurred, or may be administered prophylactically to relieve symptoms at the time of onset when the onset of the disease is predicted.
  • the administration period can be appropriately selected depending on the age and symptoms of the patient.
  • the liposome preparation can be administered by syringe or infusion.
  • a catheter is inserted into the body of a patient or host, for example, into a lumen, for example, into a blood vessel, and the tip thereof is guided to the vicinity of the target site, and the blood flow to the desired target site, the vicinity thereof, or the target site through the catheter. It is also possible to administer from the site where is expected.
  • each concentration and particle diameter of the drug-encapsulated liposome prepared in each example were determined as follows.
  • Phospholipid concentration (mg / mL) Phospholipid concentration in the liposome suspension quantified using high performance liquid chromatography.
  • Cholesterol concentration (mg / mL) Cholesterol concentration in a liposome suspension quantified using high performance liquid chromatography.
  • This total lipid does not include lipids in PEG derivatives for introducing PEG (in the example, DSPE in PEG-DSPE).
  • Drug concentration (mg / mL): About the solution obtained by diluting the preparation obtained above with RO water (reverse osmosis membrane water) so that the phospholipid concentration is about 20 mg / mL, and further diluting 20 times with methanol, Absorbance at 264 nm was quantified by high performance liquid chromatography using an ultraviolet absorptiometer. The concentration of the enclosed KRN5500 is shown as drug amount (mg) / total preparation amount (mL).
  • High performance liquid chromatography test conditions Column: A stainless steel tube having an inner diameter of 6 mm and a length of 15 cm is filled with fully porous spherical silica gel (Nacalai Tesque COSMOSIL 5C18-ARII). Column temperature: around 30 ° C. Mobile phase: 400 mL of liquid chromatogram methanol is added to and mixed with 100 mL of citrate buffer at pH 6.0. Flow rate: 1.5mL / min Drug loading (drug / total lipid molar ratio): The concentration of KRN5500 encapsulated in liposomes is shown as the drug / total lipid molar ratio from the ratio of the drug concentration to the total lipid concentration.
  • Particle size (nm) average particle size measured with a Zatasizer 3000HS (Malvern Instruments) or Zatasizer Nano ZS90 after diluting 20 ⁇ L of the liposome dispersion in 3 mL of physiological saline.
  • DSPC Distearoyl phosphatidylcholine (molecular weight 790.2, manufactured by NOF Corporation)
  • HSPC hydrogenated soybean phosphatidylcholine (molecular weight 790, Lipoid SPC3)
  • HEPC Hydrogen egg yolk soybean phosphatidylcholine (molecular weight 777, manufactured by NOF Corporation)
  • DPPC dipalmitoylphosphatidylcholine (molecular weight 734.0, manufactured by NOF Corporation)
  • DMPC Dimyristoylphosphatidylcholine (molecular weight 677.9, manufactured by NOF Corporation)
  • Chol cholesterol (molecular weight 388.66, manufactured by Solvay)
  • PEG 5000 -DSPE Polyethylene glycol (molecular weight 5000) -phosphatidylethanolamine (molecular weight 6081, manufactured by NOF Corporation)
  • PEG 2000 -DSPE Polyethylene glycol (molecular weight 5000) -phosphatidyl
  • HSPC / Chol-Lipo Preparation Example 1, HEPC / Chol-Lipo: Preparation Example 2, DPPC / Chol-Lipo: Preparation Example 3, DMPC / Chol-Lipo: Preparation Example 4, HSPC (PEG 0.75 mol%)-Lipo: Preparation Example 5, HSPC (PEG 2.0 mol%)-Lipo: Preparation Example 6, DMPC / Chol-Lipo: Preparation Example 17, HEPC / Chol-Lipo: Preparation Example 18, DMPC / Chol (PEG 0.75 mol%)-Lipo: Preparation Example 19, DMPC / Chol (PEG 1.5 mol%)-lipo: Preparation Example 20, DMPC / Chol (PEG 2.0 mol%)-lipo: Preparation Example 21, DMPC / Chol (PEG 1.5 mol%)-lipo: Preparation Example 20, DMPC / Chol (P
  • KRN5500 liposomes Each type of phospholipid, cholesterol, and KRN5500 were weighed so as to have a predetermined molar ratio shown in Table 1, and 10 mL of absolute ethanol was added and dissolved by heating. To 10 mL of the obtained lipid / drug mixed ethanol solution, 90 mL of an inner aqueous phase (10 mM citric acid monohydrate / 0.9% sodium chloride solution at pH 6.5) heated to about 70 ° C. was added, and ultrasonic waves were added. A crude liposome suspension was prepared by stirring in an apparatus.
  • This crude liposome suspension was filtered with a filter (pore size 0.2 ⁇ m ⁇ 3 times, 0.1 ⁇ m ⁇ 10 times, Whatman) attached to an extruder (The Extruder T.100, Lipexbiomembranes Inc.) heated to about 70 ° C. ) In order to prepare a liposome suspension.
  • an aqueous solution of PEG 5000 -DSPE 37.7 mg / mL was immediately added so as to achieve the PEG introduction rate shown in Table 1, The membrane surface (outer surface) of the liposome was PEG-modified by warm stirring. The liposome suspension after the heating was quickly cooled with ice.
  • the PEG introduction rate (mol%) (PEG 5000 ⁇ DSPE / total lipid) ⁇ 100 It is.
  • the total lipid does not include lipids in PEG derivatives (DSPE in PEG 5000 -DSPE).
  • (3) External solution replacement The ice-cooled liposome suspension after PEG modification is crossed with an external aqueous phase solution (10 mM citric acid monohydrate / 0.9% sodium chloride solution (pH 6.5)). External liquid replacement was performed by a flow filtration system (Vivaflow MW 100,000). In addition, it concentrated in order to obtain a high concentration KRN5500 liposome formulation (Preparation Examples 1, 5, and 6).
  • the membrane formulation containing no cholesterol can increase the amount of KRN5500 charged to about twice when preparing a lipid / drug mixed ethanol solution. The loading amount also increased by a factor of about 2.
  • the preparation amount necessary to obtain the maximum amount of drug encapsulated was examined.
  • the amount of KRN5500 charged is 0.002, 0.003, 0.005, 0.007 in order of drug / total lipid (mol / mol) ratio. , 0.008, 0.009, 0.010, 0.012, 0.014, and 0.016 except that the amount was changed to an amount of 0.06, 0.016, and 0.016 to obtain a KRN5500 liposome preparation.
  • Table 3 shows the drug / total lipid and particle size of the obtained KRN5500 liposome preparation.
  • FIG. 1 shows a drug loading amount
  • FIG. 2 shows a graph of encapsulation efficiency
  • the absorbance at 264 nm of the collected solution was quantified by high performance liquid chromatography using an ultraviolet absorptiometer, and the concentration of KRN5500 in each plasma was determined.
  • the high-performance liquid chromatography test conditions are the same as the KRN5500 concentration conditions encapsulated in the liposomes. The results are shown in Table 4 and FIG. In the case of KRN5500 alone, the KRN5500 concentration in plasma decreased rapidly after administration, and was detected only for 0.25 and 1 hour. On the other hand, all liposome preparations were detected up to 48 hours after administration, and a significant increase in residence time was observed compared to KRN5500 alone.
  • KRN5500 alone was about 5-6% 1 hour after administration, whereas the liposome preparation was 70-80%.
  • the area under the plasma concentration-time curve (AUC) was 60 to 100 times larger in the liposome preparation than in the KRN5500 alone. From these results, it was confirmed that the liposome preparation of the present invention can maintain the plasma KRN5500 concentration at a high concentration for a long time in any membrane formulation.
  • the retention in blood of the HSPC 100 mol% prescription containing no cholesterol tends to be slightly lower than that of the prescription containing cholesterol, and when the modification rate of PEG 5000 -DSPE is 0.75 mol%, Immediate distribution, showing blood kinetics appearing again in the blood, and by increasing the modification rate of PEG 5000 -DSPE to 2.0 mol%, the initially observed distribution disappears, and the retention in blood is improved. Admitted.
  • FIG. 4 shows the cell killing effect in vitro of the KRN5500 liposome preparation prepared in Preparation Examples 1, 2, 3, 6, and 17.
  • Human colon cancer strain Colo205 was plated on a 96-well plate in RPMI medium containing 10% fetal bovine serum so as to be 2000 cells / 90 micro L / well, and cultured at 37 ° C., 5% CO 2 for 5 hours.
  • test substance is DMSO for KRN5500, and 10 mM citric acid / 0.9% sodium chloride solution at pH 6.5 for KRN5500 liposome preparation, 200-fold dilution series of final concentration (10 concentrations from 0 to 10000 nM as KRN5500)
  • a test substance solution (specimen) was prepared by diluting it 20 times with RPMI medium. The sample was added to a 96-well plate containing 10 microliters / well, cultured at 37 ° C. and 5% CO 2 for 72 hours, and then added with Cell Counting Kit (DOJINDO) 10 microliters / well.
  • the human colon cancer strain CoL-1 tumor was inoculated subcutaneously into nude mice (BALB / C, nu / nu, pupa) and transplanted in normal breeding.
  • nude mice BALB / C, nu / nu, pupa
  • the KRN5500 liposome preparation prepared in Preparation Examples 1, 5, 17, and 18 and KRN5500 alone were mixed with a medium [KRN5500 medium (N, N-dimethylacetamide 3.75%, polysorbate 80 3.0% , 2-aminoethanol 0.45%, physiological saline 92.8%), liposome preparation medium (pH 6.5, 10 mM citric acid / 0.9% sodium chloride solution)] and intravenous at 10 mg / kg It was administered internally.
  • the medium group of KRN5500 and the medium group of liposome preparation were used as the control group [Control (Liposome medium), Control (KRN5500 medium)].
  • the tumor volume was calculated as L ⁇ W ⁇ H / 2 mm 3 by measuring the major axis (Lmm), minor axis (Wmm), and thickness (Hmm) of the tumor at intervals of 2 to 3 days from Day 1 with calipers.
  • FIG. 5 shows the tumor volume in days elapsed after administration.
  • the liposome preparation and KRN5500 alone showed a significant tumor growth inhibitory effect compared to the control group.
  • the liposome preparation showed a high sustained antitumor effect as compared with KRN5500 alone.
  • the maximum antitumor effect of the liposome preparations of Preparation Examples 5 and 17 was similar to that of KRN5500 alone, and a remarkable sustained effect was recognized as compared with KRN5500 alone.
  • Relative tumor volume (RTV) Day X tumor volume / Day 1 tumor volume
  • Tumor growth inhibition rate (TGIR, (%)) (1 ⁇ RTV of test substance administration group / RTV of Control group) ⁇ 100
  • TGIR, (%) (1 ⁇ RTV of test substance administration group / RTV of Control group) ⁇ 100
  • the liposome preparation hardly affected the body weight of the mouse, whereas KRN5500 alone was observed to have a transient weight loss accompanying administration. From these results, it was clarified that the antitumor effect can be enhanced and the side effects can be reduced by making KRN5500 into liposomes. In addition, it became clear that the liposome preparation of other prescriptions has little influence on the body weight change of a mouse
  • the KRN5500 liposome preparation shown in Table 8 was obtained in the same manner as in Preparation Examples 1-6.
  • Preparation Examples 19 to 22 and 24 prepared PEG5000-DSPE liposome preparations with different modification amounts
  • Preparation Example 23 prepared PEG2000-DSPE liposome preparations with different PEG molecular weights.
  • a large liposome preparation of about 200 nm was obtained only in Preparation Example 22.
  • the results are shown in Table 8. It became clear that the encapsulated amount of KRN5500 increased and the drug / total lipid ratio improved as the particle size increased. On the other hand, it became clear that the molecular weight of PEG does not significantly affect the drug / total lipid ratio.
  • Test Example 6 In Vitro Cell Killing Effect of KRN5000 Liposome Formulation Containing PEG2000-DSPE Human colon cancer strain Colo205 or HT-29 in RPMI or McCoy's 5A medium containing 10% fetal bovine serum in 2000 cells / 90 were plated in 96well plates at a micro L / well, 37 °C, and incubated for 5 hours at 5% CO 2.
  • KRN5500 and the KRN5500 liposome preparation prepared in Preparation Example 23 were used as test substances, KRN5500 was DMSO, and the liposome preparation was a final concentration of 10 mM citric acid / 0.9% sodium chloride solution at pH 6.5 (0 to 10,000 nM as KRN5500).
  • a 200-fold dilution series of 10 concentrations was prepared, and a test substance solution (specimen) was prepared by diluting it 20 times with RPMI or McCoy's 5A. After adding 10 microL / well of the sample to a 96-well plate in which cells were seeded and culturing at 37 ° C., 5% CO 2 for 72 hours, CellTiter-Glo Luminescent Cell Viability Assay (Promega) reagent was added at 50 microL / well. Wells were added and the fluorescence intensity was measured with a luminometer.
  • Cell growth inhibitory action is 100% inhibition of fluorescence intensity (A) of cells ( ⁇ ) and medium + test substance medium alone, and fluorescence intensity (B) of cells (+) and medium + test substance medium alone is 0%.
  • the cell killing effect (%) 100 ⁇ (B ⁇ analyte fluorescence intensity) / (BA) was calculated as inhibition.
  • An empty liposome preparation (same as the liposome of Preparation Example 23 but does not carry KRN5500 and therefore carries liposome and medium) was used as a control group. The results are shown in FIG. 9 and FIG. In any cell type, no cell killing effect was observed with the empty liposome preparation, whereas the KRN5000 liposome preparation containing PEG2000-DSPE showed high activity. The reason why the IC50 value of the liposome preparation is higher than that of KRN5500 alone is thought to be that KRN5500 exhibits an inhibitory action after being released from the liposome.
  • the KRN5500 liposome preparation prepared in Preparation Examples 19, 20, 22, 23, and 24 and KRN5500 alone were prepared in a medium to 1 mg / mL and intravenously administered at 10 mg / kg. After 0, 2, 4, 6, 8, 10, 13, 15, 18, 21 days after administration, the tumor volume was measured according to Test Example 3, and the mouse body weight (g) was measured as the body weight measurement value (g). -Calculated by tumor volume (mm 3 ) / 1000, and the weight change rate with Day 0 as 1 was used as an index. The results are shown in FIG. 11, FIG. 12, and FIG.
  • the liposome preparation and KRN5500 alone showed a significant tumor growth inhibitory effect compared to the control group.
  • the liposome preparation had a high and sustained antitumor effect, and tumor regression was observed up to 1/2 volume or less at the start of administration.
  • the mouse body weight loss of the liposome preparation was greatly suppressed as compared with KRN5500 alone and the side effects were reduced.
  • the KRN5500 liposome preparation containing PEG 2000 -DSPE shows tumor regression at an early stage after administration up to 1/2 volume or less at the start of administration, and weight loss while maintaining the regression for a long period of time. It became clear that it was relaxation as well.
  • KRN5500 alone although having a high antitumor effect, also showed an increase in weight loss (particularly 2 to 4 days after administration), suggesting a strong side effect.
  • tumor regression was observed at a dose of 5.5 mg / kg or more and 1 ⁇ 2 volume or less at the start of administration in a group in which the liposome preparation was administered three times at intervals of 4 days from Day 0.
  • a transient body weight loss was observed after the second administration at 16.5 mg / kg, but other body weights at 3.3, 5.5, 10.0 mg / kg There was little effect.
  • the KRN5000 liposome preparation containing PEG2000-DSPE was administered twice at intervals of 6 days was milder than when the KRN5500 alone was administered once. Therefore, it was clarified that the KRN5500 liposome preparation of this formulation can further reduce the toxicity of KRN5500 while maintaining a high antitumor effect.

Abstract

Disclosed is a liposome preparation in which a poorly water-soluble spicamycin derivative (KRN5500) can be retained stably, and which can exhibit excellent accumulation in blood when the constitutional proportions of a phospholipid and other lipids, which are membrane-constituting components, and the length of an acyl chain in the phospholipid are controlled properly and can also release KRN5500 with high efficiency in an affected part. The liposome preparation comprises a liposome and a spicamycin derivative represented by chemical formula (I) and carried on the liposome, wherein the liposome comprises 0 to 50 mol% of cholesterol and 100 to 50 mol% of a phospholipid having an acyl chain that is an acyl chain contained in a saturated C14-C18 fatty acid. (In the formula, R1 represents H; R2 represents OH; and R represents a linear or branched alkyl group having 9 to 15 carbon atoms or a linear alkenyl group having 10 to 17 carbon atoms.)

Description

スピカマイシン誘導体を含有するリポソーム製剤Liposome preparation containing spicamycin derivative
 本発明は、薬剤として水難溶性スピカマイシン誘導体を含有するリポソーム製剤に関するものである。 The present invention relates to a liposome preparation containing a poorly water-soluble spicamycin derivative as a drug.
 癌治療に用いられる抗癌剤は、癌細胞に対する高分子合成阻害活性のパターンから、DNA、RNA、蛋白合成阻害剤に分類される。主に、DNA、RNA合成に作用する抗癌剤の開発が主流であり、この場合は骨髄抑制など限られた器官への毒性が用量制限毒性(DLT)となる例が多い。一方、蛋白合成阻害剤は、肝臓をはじめとする生体維持に必要な重要な蛋白を合成する臓器に毒性が認められることが多く、こういった毒性が、薬効の効果が臨床で認められる前に発現するため、臨床で開発中止になる例が多い。このため、蛋白合成阻害剤は、より高い腫瘍細胞と正常細胞との選択毒性が要求される。 Anticancer agents used for cancer treatment are classified into DNA, RNA, and protein synthesis inhibitors based on the pattern of polymer synthesis inhibitory activity against cancer cells. Mainly, the development of anticancer agents acting on DNA and RNA synthesis is the mainstream. In this case, there are many cases where toxicity to limited organs such as myelosuppression becomes dose limiting toxicity (DLT). On the other hand, protein synthesis inhibitors are often toxic to organs that synthesize important proteins necessary for the maintenance of the body, including the liver. In many cases, clinical development is discontinued due to expression. For this reason, protein synthesis inhibitors are required to have higher selective toxicity between tumor cells and normal cells.
 式(I)で表されるスピカマイシン誘導体[式中、R=H、R=OHであって、Rは炭素数9~15の直鎖のもしくは分岐したアルキルまたは炭素数10~17の直鎖のアルケニルである]は、
Figure JPOXMLDOC01-appb-C000002

放線菌由来の抗腫瘍物質であり、HL60細胞の分化誘導作用を有する蛋白合成阻害剤として見出された(特許文献1参照)。プリンの6位のアミノ基に特異なアミノヘプトース(以後、このアミノヘプトースをスピカミンと略称する)が結合し、このスピカミンの4位のアミノ基にグリシンがアミド結合し、更にこのグリシンのアミノ基に脂肪酸がアミド結合した構造を有している。該スピカマイシンを抗腫瘍剤として臨床的に使用するために、より毒性が低く、より治療係数が高く、成分的に単一化されたスピカマイシン化合物の提供を目的に、脂肪酸側鎖部分の異なる種々のスピカマイシン誘導体の開発が行われてきた。その結果、これらの各種誘導体において脂肪酸部分の構造が最も抗腫瘍活性に寄与することが見出されており、スピカマイシンX(WO 90/15811号公開公報)(特許願PCT/JP90/00781号)ならびにKRN5500(6-[4-deoxy-4-(2E,4E)-tetradecadienoylglycyl]-amino-L-glycero-b-L-mannnoheptopyranosyl)amino-9H-purine)が、その目的に適合しうる抗腫瘍物質であることが報告されている(特許文献2参照)。
A spicamycin derivative represented by the formula (I) [wherein R 1 = H, R 2 = OH, and R is a linear or branched alkyl having 9 to 15 carbon atoms or a carbon having 10 to 17 carbon atoms] Straight-chain alkenyl] is
Figure JPOXMLDOC01-appb-C000002

It is an antitumor substance derived from actinomycetes and was found as a protein synthesis inhibitor having an action of inducing differentiation of HL60 cells (see Patent Document 1). A peculiar aminoheptose (hereinafter abbreviated as spicamine) binds to the amino group at the 6-position of purine, glycine binds to the amino group at the 4-position of the spicamine, and a fatty acid is attached to the amino group of the glycine. It has an amide-bonded structure. For clinical use of the spicamycin as an anti-tumor agent, the fatty acid side chain moieties differ for the purpose of providing a less toxic, higher therapeutic index, componentally singulated spicamycin compound Various spicamycin derivatives have been developed. As a result, it has been found that the structure of the fatty acid moiety in these various derivatives contributes most to the antitumor activity, and spicamycin X (WO 90/15811 publication) (patent application PCT / JP90 / 00781). As well as KRN5500 (6- [4-deoxy-4- (2E, 4E) -tetradecadienoylglycyl] -amino-L-glycero-b-mannoheptopyranosyl) amino-9H-purine may be suitable for its purpose. It is reported that it is (refer patent document 2).
 これらの中でも特に式(II)
Figure JPOXMLDOC01-appb-C000003

で表されるKRN5500は、最も大きな治療指数を有するスピカマイシン誘導体であり、その効果は癌細胞の蛋白合成を阻害することで発揮されるため、新しい抗腫瘍メカニズムを有する新規の抗癌剤として開発が試みられた(非特許文献1)。上記KRN5500は、脂肪酸側鎖部分と細胞とのインターラクションが強力であるため、容易にインターナライゼーションが起こり、細胞内に取り込まれる。細胞内に取り込まれると、この脂肪酸側鎖は細胞膜などにある酵素によって、脂肪酸部分のみが加水分解されて活性本体のSAN-Gly(4-N-glycylspicamycin aminonucleoside)が産生される(非特許文献2)。各細胞がもっているKRN5500のSAN-Glyへの変換活性と、KRN5500のその細胞への殺細胞効果は相関することが認められており、正常細胞ではSAN-Glyへの変換活性は低く、KRN5500が強い殺細胞効果を示す癌細胞株では高く、このことから、KRN5500は比較的癌細胞選択性を有していることが報告されている(非特許文献3)。さらに、KRN5500はアドリアマイシン、ビンクリスチン、マイトマイシンC耐性細胞に対しても親株と同程度の殺細胞効果を示し、ほとんどのP-糖蛋白による薬剤排出機構を免れて多剤耐性細胞に対して有効であることも見出されている。
Of these, in particular the formula (II)
Figure JPOXMLDOC01-appb-C000003

KRN5500 is a spicamycin derivative having the largest therapeutic index, and its effect is exerted by inhibiting protein synthesis of cancer cells. Therefore, it has been developed as a novel anticancer agent having a new antitumor mechanism. (Non-Patent Document 1). Since KRN5500 has strong interaction between the fatty acid side chain moiety and the cell, internalization easily occurs and is taken into the cell. When taken into cells, this fatty acid side chain is hydrolyzed only by the fatty acid moiety by an enzyme present in the cell membrane or the like to produce the active body SAN-Gly (4-N-glycylpicamicin aminoside) (Non-patent Document 2). ). The conversion activity of KRN5500 in each cell to SAN-Gly and the cell-killing effect of KRN5500 on that cell have been found to correlate. In normal cells, the conversion activity to SAN-Gly is low. It is high in cancer cell lines showing a strong cell killing effect, and it has been reported that KRN5500 has relatively cancer cell selectivity (Non-patent Document 3). Furthermore, KRN5500 shows the same cytocidal effect on adriamycin, vincristine, and mitomycin C resistant cells as the parent strain, and is effective against multidrug resistant cells by avoiding the drug excretion mechanism by most P-glycoproteins. It has also been found.
 このように、KRN5500は蛋白合成阻害という新しい抗腫瘍メカニズムを有し、かつ既存の抗癌剤の耐性を獲得した癌に対しても高い有効性が期待されるため、新規抗癌剤としての期待度が高く、国内、米国ともに臨床試験が行われた(非特許文献4、非特許文献5、非特許文献6)。しかしながら、国内、米国での第I相臨床試験ではそれぞれに肺障害、肝障害が出現した。
 KRN5500の副作用に付随する課題の一つはその水難溶性にあり、水への溶解度が著しく低いため有機溶媒またはポリオキシエチレンヒマシ油(クレモホールEL)の使用が余儀なくされている。そのため、KRN5500の薬剤自体の毒性に加えて溶媒毒性による副作用が発現する危険性があり、臨床試験で観察された副作用もこれらの毒性が関与していることが報告されている。また、有機溶媒の使用により製剤のpHが10-11と高いアルカリ性となっているため、臨床試験では中心静脈からの投与を余儀なくされており、そのため投与時間も長く、非常に扱いづらいことも報告されている。このようにKRN5500は薬剤自体の毒性の他に、溶解剤による毒性の問題があり、未だ解決すべき多くの課題がある。
Thus, KRN5500 has a new antitumor mechanism of protein synthesis inhibition and is expected to be highly effective against cancers that have acquired the resistance of existing anticancer agents. Clinical trials were conducted both in Japan and in the United States (Non-Patent Document 4, Non-Patent Document 5, Non-Patent Document 6). However, in phase I clinical trials in Japan and the United States, pulmonary disorders and liver disorders appeared, respectively.
One of the problems associated with the side effects of KRN5500 is its poor water solubility, and the use of organic solvents or polyoxyethylene castor oil (Cremophor EL) is unavoidable due to its extremely low solubility in water. Therefore, in addition to the toxicity of the drug itself of KRN5500, there is a risk of developing side effects due to solvent toxicity, and it has been reported that these side effects are also involved in the side effects observed in clinical trials. In addition, since the pH of the preparation is as high as 10-11 due to the use of an organic solvent, it has been inevitably administered from the central vein in clinical trials, so the administration time is also long and very difficult to handle. Has been. Thus, KRN5500 has a problem of toxicity due to a solubilizer in addition to the toxicity of the drug itself, and there are still many problems to be solved.
 一般的に水難溶性薬物は、このような溶剤毒性による副作用を回避するためにDDS化の検討が試みられている。例えば、水難溶性薬物としてパクリタキセルが挙げられるが、現在、注射液として投与するために溶媒にクレモホールEL(ポリオキシエチレンヒマシ油)とエタノールを用いている。このクレモホールELは過敏反応を引き起こすことが知られており、アナフィラキシー反応を引き起こし、呼吸困難、顔面紅潮、全身性の発疹、胸痛、頻脈、血圧低下、血管浮腫、蕁麻疹などの発現を認めることがある。そのため、この重篤な過敏症を防ぐためにパクリタキセルの投与時にステロイド剤や坑ヒスタミン薬の前投与薬が必要とされ、大変使いづらいのが現状である(非特許文献7)。 Generally, studies have been made on DDS for poorly water-soluble drugs in order to avoid such side effects due to solvent toxicity. For example, paclitaxel is mentioned as a poorly water-soluble drug. Currently, Cremophor EL (polyoxyethylene castor oil) and ethanol are used as solvents for administration as an injection solution. This Cremophor EL is known to cause hypersensitivity reactions, causing anaphylactic reactions, and manifestation of dyspnea, facial flushing, generalized rash, chest pain, tachycardia, hypotension, angioedema, urticaria, etc. There is. Therefore, in order to prevent this severe hypersensitivity, pre-administration drugs such as steroids and antihistamines are required at the time of administration of paclitaxel, and it is currently difficult to use (Non-patent Document 7).
 そこで、これらの問題を解決するために、パクリタキセルのDDS化の検討が試みられている。現在開発中のNK105(ナノキャリア)や、既に臨床で使用されているアブラキサンはそれらに該当するものである。
 NK105は、親水性のあるポリエチレングリコール(PEG)鎖と、疎水基であるポリアスパラギン酸鎖が鎖状に結合したブロック共重合体にパクリタキセルを混合させることでつくられた高分子ミセル製剤であり、クレモホールELを使用せずにパクリタキセルの溶解度を飛躍的に向上することができるため、溶媒毒性を回避した注射液の提供を可能としている。上記NK105の非臨床試験では、すぐれた血中滞留性と抗腫瘍効果、ならびに神経毒性の軽減が認められ、現在臨床第II相試験が行われている(非特許文献8)。また、同じくパクリタキセルのDDS製剤であるアブラキサンは、ヒト血清アルブミンを添加物とした均一なナノ粒子製剤である。NK105と同様にクレモホールELおよびエタノールを溶媒として使用しないため、溶剤毒性の危険性を免れることができ、かつ前投与を必要とせずに、短時間で高用量のパクリタキセルを投与することができる(非特許文献9)。このように水難溶性薬物は、DDS化することで溶媒毒性による副作用の危険性を免れることができるため、製剤の安全域を広げることが可能である。さらに、DDS製剤はその特性上、薬剤本来が有する毒性を軽減しながら、抗腫瘍効果を維持、もしくは高めることが期待される。
Therefore, in order to solve these problems, attempts have been made to make DCL of paclitaxel. NK105 (nanocarrier), which is currently under development, and Abraxane that is already in clinical use fall under these categories.
NK105 is a polymeric micelle preparation produced by mixing paclitaxel with a block copolymer in which a hydrophilic polyethylene glycol (PEG) chain and a polyaspartic acid chain that is a hydrophobic group are bonded in a chain form, Since the solubility of paclitaxel can be drastically improved without using Cremophor EL, it is possible to provide an injection solution that avoids solvent toxicity. In the non-clinical study of NK105, excellent retention in blood, antitumor effect, and reduction of neurotoxicity were observed, and a clinical phase II study is currently being conducted (Non-patent Document 8). Abraxane, which is also a paclitaxel DDS formulation, is a uniform nanoparticle formulation with human serum albumin as an additive. Like NK105, Cremophor EL and ethanol are not used as solvents, so the risk of solvent toxicity can be avoided, and a high dose of paclitaxel can be administered in a short time without the need for pre-administration. Patent Document 9). Thus, since a poorly water-soluble drug can be freed from the risk of side effects due to solvent toxicity by being converted to DDS, the safety range of the preparation can be expanded. Furthermore, the DDS preparation is expected to maintain or enhance the antitumor effect while reducing the toxicity inherent in the drug due to its characteristics.
 上記KRN5500においても、溶媒毒性による副作用、さらにはKRN5500自体の毒性を軽減しながら、かつ効果を高めることが求められる。したがって、これらの課題を解決するために、これまでKRN5500のミセル化(特許文献3,非特許文献10、非特許文献11)やリポソーム化の検討がなされている。KRN5500のミセル化は、親水性ポリマーセグメントと疎水性ポリマーセグメントを有するブロックコポリマー(PEG-P(C16, BLA))およびKRN5500をそれぞれN,N-ジメチルホルムアミド(DMF)またはジメチルスルホキシド(DMSO)に溶解し、それらを混合攪拌した後、透析、超音波処理を行うことで得られる(非特許文献12)。このKRN5500ミセルの毒性ならびに抗腫瘍効果を評価しており、毒性に関しては、ラットにおけるブレオマイシン(BLM)モデルによる肺毒性において単体と比べて軽減されることが報告されている。一方、抗腫瘍効果に関しては、ヌードマウスにヒト胃癌細胞株MKN-45細胞を移植した系において、KRN5500単体とほぼ同等であり、単体を上回る効果は得られていない。また、これらミセルの粒子サイズは、散乱強度によると2つのピークが検出されており、粒子径の制御が困難である。また、粒度分布も81nm~390nmと広く、実用可能な注射液として好ましくない。さらに、有機溶媒を用いている点や透析、超音波処理を必要とする製造法を用いている点など、スケールアップに適した製造法ではない。
 このようにKRN5500ミセルは、薬効面や製造法、粒子サイズなど多くの課題が残されており、臨床で耐えられるレベルまでに至っていないのが現状である。したがって、KRN5500の有効性を得るためには、有機溶媒やクレモホールELを用いずに可溶化することができ、かつKRN5500本来の毒性および溶剤毒性による副作用を軽減できる製剤の開発が望まれる。
Also in the above KRN5500, it is required to enhance the effect while reducing the side effects due to solvent toxicity, and further, the toxicity of KRN5500 itself. Therefore, in order to solve these problems, studies have been made on micellization of KRN5500 (Patent Document 3, Non-Patent Document 10, Non-Patent Document 11) and liposome formation. The micelleization of KRN5500 is achieved by converting a block copolymer having a hydrophilic polymer segment and a hydrophobic polymer segment (PEG-P (C 16 , BLA)) and KRN5500 into N, N-dimethylformamide (DMF) or dimethyl sulfoxide (DMSO), respectively. It is obtained by dissolving, mixing and stirring them, and then performing dialysis and sonication (Non-patent Document 12). The toxicity and antitumor effect of this KRN5500 micelle are evaluated, and the toxicity is reported to be reduced compared with the single substance in pulmonary toxicity in the bleomycin (BLM) model in rats. On the other hand, the antitumor effect is almost the same as that of KRN5500 alone in a system in which human gastric cancer cell line MKN-45 cells are transplanted into nude mice, and an effect exceeding that of the single body is not obtained. Further, the particle size of these micelles has two peaks detected according to the scattering intensity, and it is difficult to control the particle size. Further, the particle size distribution is as wide as 81 nm to 390 nm, which is not preferable as a practical injection solution. Furthermore, it is not a production method suitable for scale-up, such as using an organic solvent or using a production method that requires dialysis or ultrasonic treatment.
As described above, KRN5500 micelles still have many problems such as medicinal efficacy, production method, particle size, etc., and have not reached the level that can be clinically endured. Therefore, in order to obtain the effectiveness of KRN5500, it is desired to develop a preparation that can be solubilized without using an organic solvent or Cremophor EL and can reduce the original toxicity of KRN5500 and side effects due to solvent toxicity.
特開昭59-161396号公報JP 59-161396 A 特開平5-186494号公報Japanese Patent Laid-Open No. 5-186494 特開平11-335267号公報JP-A-11-335267
 水難溶性スピカマイシン誘導体(KRN5500)を、有機溶媒またはクレモホールELを使わずに可溶化することができ、これにより溶媒毒性による副作用の危険性から免れ、また、投与後血中で長時間薬物濃度を維持することができるとともに、KRN5500自体の毒性を軽減しながら効果を維持または高めることができるKRN5500製剤を提供することを目的としている。また、このKRN5500製剤は、バイヤル中での安定性にも非常に優れていることが望まれる。 The poorly water-soluble spicamycin derivative (KRN5500) can be solubilized without using an organic solvent or Cremophor EL, thereby avoiding the risk of side effects due to solvent toxicity, and increasing the drug concentration in the blood for a long time after administration. An object of the present invention is to provide a KRN5500 formulation that can be maintained and can maintain or enhance the effect while reducing the toxicity of KRN5500 itself. Moreover, it is desired that this KRN5500 preparation is very excellent in stability in a vial.
 上記課題は以下の本発明により解決される。
 本発明者は、上記目的を達成すべく検討したところ、リポソームの脂質膜構成成分であるリン脂質およびコレステロールの脂質組成比をコントロールすることにより、水難溶性スピカマイシン誘導体(KRN5500)をリポソーム化できることを見出した。また、このKRN5500リポソーム製剤の抗腫瘍効果について検討するうちに、アシル鎖の鎖長の短いリン脂質(ミリストイル、C14)を用いると抗腫瘍効果を高めることができることを見出した(ただし、この場合、脂質膜構成成分としてコレステロールを約半量含む)。KRN5500は脂溶性薬物であるため、その特性上、脂質膜に内封されると考えられるが、リン脂質のアシル鎖の鎖長を短くすることにより、アシル鎖の鎖長とKRN5500の脂肪酸側鎖との疎水性相互作用がやや弱まり、その結果、血中では長時間薬物濃度を維持しながらも、患部において効率良くKRN5500を放出させることができるためだと考えられる。また、脂質膜構成成分としてコレステロールを含まない膜処方においても同様に抗腫瘍効果が高まることを見出した。これらの結果より、高い抗腫瘍効果を得るためには、血中での安定性と患部におけるKRN5500の放出性のバランスが非常に重要であることが分かるが、上記のようにこれを支配しているのが脂質膜構成成分であるリン脂質のアシル鎖の鎖長とKRN5500の脂肪酸側鎖の疎水性相互作用だと推測される。この疎水性相互作用が強すぎると脂質膜の流動性が抑制されるため、患部でのKRN5500の放出性が抑制され、その結果、期待される抗腫瘍効果は得られないと推測される。一方、この疎水性相互作用が弱すぎると、血中での安定性が低下し直ちに消失するため、同様に期待される抗腫瘍効果は得られない。したがって、KRN5500を血中では安定に保持しながら、患部では効率良く放出できるリポソーム製剤が求められ、そのためには膜の流動性が高いほど(ただしコレステロールを含む場合)上記目的を達成しうることが明らかとなった。また、比較的鎖長の短いPEG(好ましくはPEG2000-DSPE)を高密度に脂質膜表面に含有するリポソーム製剤ほど、強い抗腫瘍作用を維持しつつ、副作用をより低減できることが明らかとなった。これらから、上記課題を解決するものとして、以下の本発明を提供する。
The above problems are solved by the present invention described below.
The present inventor has studied to achieve the above-mentioned object, and as a result, the poorly water-soluble spicamycin derivative (KRN5500) can be made into a liposome by controlling the lipid composition ratio of phospholipid and cholesterol, which are the lipid membrane components of the liposome. I found it. Moreover, while examining the antitumor effect of this KRN5500 liposome preparation, it was found that the antitumor effect can be enhanced by using a phospholipid having a short acyl chain length (myristoyl, C 14 ) (in this case, however) About half of the cholesterol as a lipid membrane component). Since KRN5500 is a fat-soluble drug, it is considered that it is encapsulated in the lipid membrane due to its characteristics, but by shortening the chain length of the acyl chain of phospholipid, the chain length of the acyl chain and the fatty acid side chain of KRN5500 This is probably because KRN5500 can be efficiently released in the affected area while maintaining the drug concentration for a long time in the blood. In addition, it was found that the antitumor effect is also enhanced in a membrane formulation not containing cholesterol as a lipid membrane constituent. From these results, it can be seen that, in order to obtain a high antitumor effect, the balance between stability in blood and release of KRN5500 in the affected area is very important. It is presumed that there is a hydrophobic interaction between the chain length of the phospholipid acyl chain, which is a lipid membrane component, and the fatty acid side chain of KRN5500. If this hydrophobic interaction is too strong, the fluidity of the lipid membrane is suppressed, so that the release of KRN5500 in the affected area is suppressed, and as a result, it is presumed that the expected antitumor effect cannot be obtained. On the other hand, if this hydrophobic interaction is too weak, the stability in the blood is reduced and disappears immediately, so that the antitumor effect expected in the same manner cannot be obtained. Therefore, there is a demand for a liposome preparation that can be efficiently released in the affected area while stably maintaining KRN5500 in the blood, and for that purpose, the higher the membrane fluidity (however, when cholesterol is included), the above objective can be achieved. It became clear. In addition, it became clear that a liposome preparation containing a relatively short chain length of PEG (preferably PEG 2000 -DSPE) on the lipid membrane surface can reduce side effects while maintaining a strong antitumor action. . From these, the following present invention is provided to solve the above-mentioned problems.
(1)コレステロールが0~50mol%および、アシル鎖がC14~C18の鎖長をもつ飽和脂肪酸のアシル鎖であるリン脂質100~50mol%を含有するリポソームに、化学式(I)で示されるスピカマイシン誘導体を坦持させたリポソーム製剤:
Figure JPOXMLDOC01-appb-C000004

(式中、R=H、R=OHであって、Rは炭素数9~15の直鎖のもしくは分岐したアルキルまたは炭素数10~17の直鎖のアルケニルである。)。
(2)リポソームの脂質膜が、以下の1)~3)のいずれかである(1)に記載のリポソーム製剤:
 1)リポソームの脂質膜が、アシル鎖が平均鎖長16超~18の飽和脂肪酸のアシル鎖であるリン脂質を主構成成分として含有する脂質膜であり、アシル鎖がジステアロイルまたはパルミトイルステアロイルまたはステアロイルパルミトイルまたはミリストイルステアロイルまたはステアロイルミリストイルであるのが好ましい。
 2)リポソームの脂質膜が、アシル鎖が平均鎖長14超~16の飽和脂肪酸のアシル鎖であるリン脂質、およびコレステロールを主構成成分として含有し、両成分のモル比が80:20~50:50である、アシル鎖がジパルミトイルまたはパルミトイルミリストイルまたはミリストイルパルミトイルであるのが好ましい。
 3)リポソームの脂質膜が、アシル鎖が平均鎖長14の飽和脂肪酸のアシル鎖であるリン脂質、およびコレステロールを主構成成分として含有し、両成分のモル比が60:40~50:50である、アシル鎖がジミリストイルであるのが好ましい。
 リポソームの脂質膜の総脂質に対する主構成成分の含有率は50質量%以上、好ましくは80質量%以上であることが望ましい。
 ここで、アシル鎖の鎖長とは、アシル鎖の炭素数を意味する。平均鎖長とは、リン脂質を構成する脂肪酸のそれぞれの炭素数を平均した炭素数を意味する。構成する脂肪酸は同一であっても異なってもよい。
(3)リポソーム製剤のリポソームの脂質膜が、以下の1)~3)のいずれかである(1)に記載のリポソーム製剤:
 1)リポソームの脂質膜が、アシル鎖が鎖長18の飽和脂肪酸のアシル鎖であるリン脂質を主構成成分として含有する。
 2)リポソームの脂質膜が、アシル鎖が鎖長が16の飽和脂肪酸のアシル鎖であるリン脂質、およびコレステロールを主構成成分として含有し、両成分のモル比が80:20~50:50である。
 3)リポソームの脂質膜が、アシル鎖が鎖長が14の飽和脂肪酸のアシル鎖であるリン脂質、およびコレステロールを主構成成分として含有し、両成分のモル比が60:40~50:50である。
リポソームの脂質膜の総脂質に対する主構成成分の含有率は50質量%以上、好ましくは80質量%以上であることが望ましい。
(4) 前記リン脂質がフォスファチジルコリンである(1)~(3)のいずれかに記載のリポソーム製剤。
(5)前記、基 R=CH3(CH2)8CH=CHCH=CH-であり、化学式(I)の化合物が(6-[4-deoxy-4-(2E,4E)-tetradecadienoylglycyl]-amino-L-glycero-b-L-mannnoheptopyranosyl)amino-9H-purine)(KRN5500と称される)である(1)~(4)のいずれかに記載のリポソーム製剤。
(6)前記リポソーム製剤が親水性高分子を含有する(1)~(5)のいずれかに記載のリポソーム製剤。
(7)化学式(I)で示されるスピカマイシン誘導体のAUC(血漿中濃度-時間曲線下面積)が、該スピカマイシン誘導体単体に比べて45倍以上である(1)~(6)のいずれかに記載のリポソーム製剤。
(1) A liposome containing 100 to 50 mol% of phospholipid which is an acyl chain of a saturated fatty acid having a cholesterol chain length of 0 to 50 mol% and an acyl chain of C 14 to C 18 is represented by the chemical formula (I) Liposome preparation carrying a spicamycin derivative:
Figure JPOXMLDOC01-appb-C000004

(Wherein R 1 = H, R 2 = OH, and R is straight-chain or branched alkyl having 9 to 15 carbon atoms or straight-chain alkenyl having 10 to 17 carbon atoms).
(2) The liposome preparation according to (1), wherein the lipid membrane of the liposome is any of the following 1) to 3):
1) The lipid membrane of the liposome is a lipid membrane containing a phospholipid whose acyl chain is an acyl chain of a saturated fatty acid having an average chain length of more than 16 to 18 as a main constituent, and the acyl chain is distearoyl, palmitoyl stearoyl or stearoyl Palmitoyl or myristoyl stearoyl or stearoyl myristoyl is preferred.
2) The lipid membrane of the liposome contains phospholipids whose acyl chains are acyl chains of saturated fatty acids having an average chain length of more than 14 to 16 and cholesterol as main components, and the molar ratio of both components is 80: 20-50 Preferably, the acyl chain is dipalmitoyl or palmitoyl myristoyl or myristoyl palmitoyl.
3) The lipid membrane of the liposome contains a phospholipid whose acyl chain is an acyl chain of a saturated fatty acid having an average chain length of 14 and cholesterol as main components, and the molar ratio of both components is 60:40 to 50:50 It is preferred that the acyl chain is dimyristoyl.
The content of the main constituent component with respect to the total lipid of the lipid membrane of the liposome is 50% by mass or more, preferably 80% by mass or more.
Here, the chain length of the acyl chain means the carbon number of the acyl chain. The average chain length means the carbon number obtained by averaging the carbon numbers of the fatty acids constituting the phospholipid. The constituent fatty acids may be the same or different.
(3) The liposome preparation according to (1), wherein the liposome lipid membrane of the liposome preparation is any of the following 1) to 3):
1) The lipid membrane of the liposome contains, as a main component, a phospholipid whose acyl chain is an acyl chain of a saturated fatty acid having a chain length of 18.
2) The lipid membrane of the liposome contains a phospholipid whose acyl chain is an acyl chain of a saturated fatty acid having a chain length of 16 and cholesterol as main components, and the molar ratio of both components is 80:20 to 50:50 is there.
3) The lipid membrane of the liposome contains a phospholipid whose acyl chain is an acyl chain of a saturated fatty acid having a chain length of 14 and cholesterol as main components, and the molar ratio of both components is 60:40 to 50:50 is there.
The content of the main constituent component with respect to the total lipid of the lipid membrane of the liposome is 50% by mass or more, preferably 80% by mass or more.
(4) The liposome preparation according to any one of (1) to (3), wherein the phospholipid is phosphatidylcholine.
(5) The group R = CH 3 (CH 2 ) 8 CH═CHCH═CH—, wherein the compound of the formula (I) is (6- [4-deoxy-4- (2E, 4E) -tetradecadenyloylglycyl]- The liposomal preparation according to any one of (1) to (4), which is amino-L-glycero-b-L-mannnohetopypyranosyl) amino-9H-purine) (referred to as KRN5500).
(6) The liposome preparation according to any one of (1) to (5), wherein the liposome preparation contains a hydrophilic polymer.
(7) Any one of (1) to (6), wherein the AUC (plasma concentration-area under the time curve) of the spicamycin derivative represented by chemical formula (I) is 45 times or more that of the spicamycin derivative alone The liposome preparation described in 1.
 上記のような本発明に係るリポソーム製剤は、例えば水難溶性スピカマイシン誘導体(KRN5500)を安定に保持することができ、膜構成成分であるリン脂質と他の脂質の組成比や、リン脂質のアシル鎖長をコントロールすることで、血中滞留性に優れながらも、患部では効率よくKRN5500を放出することを可能にし、KRN5500本来の抗腫瘍効果をさらに高めることができ、かつ、薬剤の毒性による副作用を軽減することができる。特に、PEG鎖長(ポリエチレングリコールの分子量)ならびにPEG修飾量をコントロールすることで、強い抗腫瘍作用を維持しつつ副作用をより軽減することができる。また、上記発明に至る過程で、本発明のKRN5500製剤は、バイヤル中での安定性が良いことが明らかになった。 The above-described liposome preparation according to the present invention can stably retain, for example, a poorly water-soluble spicamycin derivative (KRN5500), the composition ratio of phospholipids and other lipids, which are membrane constituents, and acyl of phospholipids. By controlling the chain length, it is possible to efficiently release KRN5500 in the affected area while being excellent in retention in blood, and can further enhance the original antitumor effect of KRN5500, and side effects due to drug toxicity Can be reduced. In particular, by controlling the PEG chain length (molecular weight of polyethylene glycol) and the amount of PEG modification, side effects can be further reduced while maintaining a strong antitumor action. In the course of reaching the above invention, it was revealed that the KRN5500 preparation of the present invention has good stability in a vial.
図1は、薬剤仕込み量に対するリポソームの薬剤担持量を示すグラフである。FIG. 1 is a graph showing the amount of liposome drug loaded relative to the amount of drug charged. 図2は、薬剤仕込み量に対するリポソームへの薬剤封入効率を示すグラフである。FIG. 2 is a graph showing the efficiency of drug encapsulation in liposomes with respect to the amount of drug charged. 図3は、リポソーム製剤等を、ラットに投与し、投与後、所定時間経過後の血漿中のKRN5500濃度を吸光度測定によって定量したグラフである。FIG. 3 is a graph in which a liposome preparation or the like was administered to a rat, and the KRN5500 concentration in plasma after the lapse of a predetermined time after the administration was quantified by absorbance measurement. 図4は、異なる脂質組成を有するKRN5500リポソーム製剤のin vitroでの殺細胞効果(Colo205)を示すグラフである。FIG. 4 is a graph showing the in vitro cell-killing effect (Colo205) of KRN5500 liposome preparations having different lipid compositions. 図5は、マウス(ヒト大腸癌細胞(CoL-1))にリポソーム製剤等を投与した後の経過日数における腫瘍体積を示すグラフである。FIG. 5 is a graph showing the tumor volume over the elapsed days after administration of a liposome preparation or the like to mice (human colon cancer cells (CoL-1)). 図6は、マウス(ヒト肺癌細胞株PC-9)にリポソーム製剤等を反復投与した場合の腫瘍体積を示すグラフである。FIG. 6 is a graph showing the tumor volume when a liposome preparation or the like is repeatedly administered to mice (human lung cancer cell line PC-9). 図7は、マウス(ヒト肺癌細胞株PC-9)にリポソーム製剤等を反復投与した場合のマウスの体重変化率を示すグラフである。FIG. 7 is a graph showing the weight change rate of mice when a liposome preparation or the like is repeatedly administered to mice (human lung cancer cell line PC-9). 図8は、PEG修飾量およびPEG鎖長のことなるリポソーム製剤をラットに投与し、投与後、所定時間経過後の血漿中のKRN5500濃度を吸光度測定によって定量したグラフである。FIG. 8 is a graph in which liposome preparations having different PEG modification amounts and PEG chain lengths were administered to rats, and the KRN5500 concentration in plasma after lapse of a predetermined time after the administration was quantified by absorbance measurement. 図9は、PEG2000-DSPEを含有するKRN5500リポソーム製剤のin vitroでの殺細胞効果(Colo205)を示すグラフである。FIG. 9 is a graph showing the in vitro cell killing effect (Colo205) of a KRN5500 liposome formulation containing PEG 2000 -DSPE. 図10は、PEG2000-DSPEを含有するKRN5500リポソーム製剤のin vitroでの殺細胞効果(HT-29)を示すグラフである。FIG. 10 is a graph showing the in vitro cell killing effect (HT-29) of a KRN5500 liposome preparation containing PEG 2000 -DSPE. 図11は、マウス(ヒト大腸癌細胞(CoL-1))にリポソーム製剤等を投与した後の経過日数における腫瘍体積を示すグラフである。FIG. 11 is a graph showing the tumor volume over the elapsed days after administration of a liposome preparation or the like to mice (human colon cancer cells (CoL-1)). 図12は、マウス(ヒト大腸癌細胞(CoL-1))にリポソーム製剤等を投与した後の経過日数におけるControl群に対する相対的な腫瘍体積を示すグラフである。FIG. 12 is a graph showing the relative tumor volume with respect to the Control group in the number of days after administration of a liposome preparation or the like to mice (human colon cancer cells (CoL-1)). 図13は、マウス(ヒト大腸癌細胞(CoL-1))にリポソーム製剤等を投与した後のマウスの体重変化を示すグラフである。FIG. 13 is a graph showing changes in the body weight of mice after administration of a liposome preparation or the like to mice (human colon cancer cells (CoL-1)). 図14は、マウス(ヒト大腸癌細胞(CoL-1))にリポソーム製剤等を4日間隔で計3回投与したときの経過日数における腫瘍体積を示すグラフである。FIG. 14 is a graph showing the tumor volume over the elapsed days when a liposome preparation or the like was administered to mice (human colon cancer cells (CoL-1)) three times in total at 4-day intervals. 図15は、マウス(ヒト大腸癌細胞(CoL-1))にリポソーム製剤等を4日間隔で計3回投与したときの経過日数におけるControl群に対する相対的な腫瘍体積を示すグラフである。FIG. 15 is a graph showing the relative tumor volume with respect to the Control group in the elapsed days when a liposome preparation or the like was administered to mice (human colorectal cancer cells (CoL-1)) three times at intervals of 4 days. 図16は、マウス(ヒト大腸癌細胞(CoL-1))にリポソーム製剤等を4日間隔で計3回投与したときの経過日数におけるマウスの体重推移を示すグラフである。FIG. 16 is a graph showing the change in body weight of mice over the elapsed days when a liposome preparation or the like was administered to mice (human colon cancer cells (CoL-1)) three times in total at 4-day intervals. 図17は、マウス(ヒト大腸癌細胞(CoL-1))にリポソーム製剤等を6日間隔で計2回投与したときの経過日数における腫瘍体積を示すグラフである。FIG. 17 is a graph showing the tumor volume over the elapsed days when a liposome preparation or the like was administered to mice (human colon cancer cells (CoL-1)) twice at a total interval of 6 days. 図18は、マウス(ヒト大腸癌細胞(CoL-1))にリポソーム製剤等を6日間隔で計2回投与したときの経過日数におけるControl群に対する相対的な腫瘍体積を示すグラフである。FIG. 18 is a graph showing the relative tumor volume with respect to the Control group in the elapsed days when a liposome preparation or the like was administered to mice (human colon cancer cells (CoL-1)) twice at a total interval of 6 days. 図19は、マウス(ヒト大腸癌細胞(CoL-1))にリポソーム製剤等を6日間隔で計2回投与したときの経過日数におけるマウスの体重推移を示すグラフである。FIG. 19 is a graph showing changes in the body weight of mice over the elapsed days when a liposome preparation or the like was administered to mice (human colon cancer cells (CoL-1)) twice at a 6-day interval.
 以下、本発明をより詳細に説明する。
「水難溶性スピカマイシン誘導体」は、水に不溶もしくは難溶のスピカマイシン骨格を有する化合物の総称である。具体的には、下記式(I)で示され、式中、R=H、R=OHであって、Rは炭素数9~15の直鎖のもしくは分岐したアルキルまたは炭素数10~17の直鎖のアルケニルを有する誘導体である。式(I)で表わされる化合物において、好ましくは、R=CH3(CH2)8CH=CHCH=CH- である誘導体、例えば式(II)で示される(6-[4-deoxy-4-(2E,4E)-tetradecadienoylglycyl]-amino-L-glycero-b-L-mannnoheptopyranosyl)amino-9H-purine)(KRN5500)であるか、または、R=CH(CH)である誘導体、例えば (6-〔4’-N-(N’ -ジデカノイルグリシル)-スピカミニル-アミノ〕プリン)(SPM VIIIもしくはSPM Xと称される)であり、より好ましくは(6-[4-deoxy-4-(2E,4E)-tetradecadienoylglycyl]-amino-L-glycero-b-L-mannnoheptopyranosyl)amino-9H-purine)(KRN5500)である。
Hereinafter, the present invention will be described in more detail.
The “poorly water-soluble spicamycin derivative” is a general term for compounds having a spicamycin skeleton that is insoluble or sparingly soluble in water. Specifically, it is represented by the following formula (I), wherein R 1 = H, R 2 = OH, and R is a linear or branched alkyl having 9 to 15 carbon atoms, or 10 to 10 carbon atoms. A derivative having 17 straight-chain alkenyl. In the compound represented by the formula (I), a derivative having R═CH 3 (CH 2 ) 8 CH═CHCH═CH—, for example, a compound represented by the formula (II) (6- [4-deoxy-4- (2E, 4E) -tetradecadienoylglycyl] -amino-L-glycero-b-L-mannnohepttopyranosyl) amino-9H-purine) (KRN5500) or R = CH 3 (CH 2 ) 6- [4′-N- (N′-didecanoylglycyl) -spicaminyl-amino] purine) (referred to as SPM VIII or SPM X), more preferably (6- [4-deoxy- 4- (2E, 4E) -tetradecadienoylglycyl] -amino-L-glycero-b-L-mannnohetopy ranosyl) amino-9H-purine) (KRN5500).
 水難溶性スピカマイシン誘導体は、活性体SAN-Gly(4-N-glycylspicamycin aminonucleoside)のプロドラッグである。該プロドラッグの脂肪酸側鎖は癌細胞の細胞膜の透過に必要であり、細胞膜透過時に脂肪酸とグリシンの間で酵素により加水分解され切断されるものと考えられる。そのようにして生じたSAN-Glyが細胞内の蛋白合成系に作用し、癌細胞に対する殺細胞効果を示す。このプロドラッグ誘導体合成の過程でグリシンと脂肪酸とのアミド結合が重要であり、この部分が化学変換されると抗腫瘍活性が消失することが報告されている。 The poorly water-soluble spicamycin derivative is a prodrug of the active form SAN-Gly (4-N-glycylspicamycinamine amineside). It is considered that the fatty acid side chain of the prodrug is necessary for permeation of the cell membrane of cancer cells and is hydrolyzed and cleaved by an enzyme between the fatty acid and glycine when permeating the cell membrane. The resulting SAN-Gly acts on the intracellular protein synthesis system and exhibits a cytocidal effect on cancer cells. It has been reported that an amide bond between glycine and a fatty acid is important in the process of synthesizing this prodrug derivative, and the antitumor activity disappears when this part is chemically converted.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 本発明では、上記水難溶性スピカマイシン誘導体(例えば、KRN5500)を含有するリポソーム製剤を提供する。
 リポソームは、リン脂質二重膜からなり、脂質の疎水性基と親水性基との極性に基づいて生ずる膜により外界から隔てられた空間を形成する構造を有する閉鎖小胞の水性分散液である。膜を隔てて閉鎖小胞内外の水相は、それぞれ内水相、外水相と称される。リポソーム製剤は、リポソームを担体とし、これに薬剤を担持させたものをいう。本発明では、このリポソームに、薬剤として水難溶性スピカマイシン誘導体(例えば、KRN5500)を担持させる。
In the present invention, a liposome preparation containing the poorly water-soluble spicamycin derivative (for example, KRN5500) is provided.
Liposomes are aqueous dispersions of closed vesicles composed of a phospholipid bilayer membrane and having a structure that forms a space separated from the outside by a membrane formed based on the polarity of the hydrophobic and hydrophilic groups of the lipid. . The aqueous phases inside and outside the closed vesicle across the membrane are called the inner aqueous phase and the outer aqueous phase, respectively. The liposome preparation refers to a preparation in which a liposome is used as a carrier and a drug is supported thereon. In the present invention, this liposome is loaded with a poorly water-soluble spicamycin derivative (for example, KRN5500) as a drug.
 上記薬剤を担持するリポソームの脂質膜の主構成成分の1つである「リン脂質」は、生体膜の主要構成成分であり、分子内に長鎖アルキル基等の疎水性基とリン酸基等の親水性基を持つ両親媒性物質である。リン脂質としては、フォスファチジルコリン(=レシチン)、フォスファチジルグリセロール、フォスファチジン酸、フォスファチジルエタノールアミン、フォスファチジルセリン、フォスファチジルイノシトール、さらにスフィンゴミエリンなどのスフィンゴリン脂質、カルジオリピン等の天然あるいは合成のリン脂質もしくはこれらの誘導体、糖類を結合させた誘導体(糖リン脂質)およびこれらを常法にしたがって水素添加した水素添加リン脂質などを挙げることができる。これらのうちでも、水素添加大豆フォスファチジルコリン、水素添加卵黄フォスファチジルコリン、ジステアロイルフォスファチジルコリン、ジパルミトイルフォスファチジルコリン、ジミリストイルフォスファチジルコリンが好ましい。またリポソームは、上記主構成成分とともに他の膜成分を含んでいてもよい。たとえば、リン脂質以外の脂質もしくはその誘導体(以下、他の脂質類と称することもある)を含む。
 「リン脂質以外の脂質」とは、分子内に長鎖アルキル基等の疎水性基を有し、リン酸基を分子内に含まない脂質であり、特に限定されないがグリセロ糖脂質、スフィンゴ糖脂質、コレステロールなどのステロール誘導体およびこれらの水素添加物などの誘導体を挙げることができる。コレステロール誘導体とは、シクロペンタノヒドロフェナントレン環を有するステロール類であり、具体例としては特に限定されないがコレステロールが挙げられる。
“Phospholipid”, which is one of the main components of the lipid membrane of liposomes carrying the drug, is a main component of biological membranes, and includes hydrophobic groups such as long-chain alkyl groups and phosphate groups in the molecule. It is an amphiphilic substance having a hydrophilic group. Phospholipids include phosphatidylcholine (= lecithin), phosphatidylglycerol, phosphatidic acid, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin and other sphingophospholipids, cardiolipin And natural or synthetic phospholipids or derivatives thereof, derivatives bound with sugars (glycophospholipids), and hydrogenated phospholipids obtained by hydrogenating them according to a conventional method. Among these, hydrogenated soybean phosphatidylcholine, hydrogenated egg yolk phosphatidylcholine, distearoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine, and dimyristoyl phosphatidylcholine are preferable. Liposomes may contain other membrane components together with the main constituent components. For example, lipids other than phospholipids or derivatives thereof (hereinafter sometimes referred to as other lipids) are included.
The “lipid other than phospholipid” is a lipid that has a hydrophobic group such as a long-chain alkyl group in the molecule and does not contain a phosphate group in the molecule, and is not particularly limited, but is not limited to glyceroglycolipid, sphingoglycolipid. And sterol derivatives such as cholesterol and derivatives such as hydrogenated products thereof. Cholesterol derivatives are sterols having a cyclopentanohydrophenanthrene ring, and specific examples include, but are not limited to, cholesterol.
 本発明におけるリポソームは、好ましくはリン脂質およびコレステロールの脂質組成比をコントロールすることによって製剤化することができ、また、用いるリン脂質のアシル鎖の鎖長を短くすることによって抗腫瘍効果を高めることができる。
 アシル鎖の平均鎖長が16超~18である場合、リン脂質100mol%またはリン脂質70~50mol%、コレステロール30~50mol%が好ましい。リン脂質のアシル鎖が、ジステアロイル、パルミトイルステアロイル、ステアロイルパルミトイル、ミリストイルステアロイルおよびステアロイルミリストイルからなる群から選択されるリン脂質である場合は、リン脂質100mol%またはリン脂質70~50mol%、コレステロール30~50mol%が好ましい。
 アシル鎖の平均鎖長が14超~16である場合、リン脂質80~50mol%、コレステロール20~50mol%が好ましい。リン脂質のアシル鎖が、ジパルミトイル、パルミトイルミリストイルおよびミリストイルパルミトイルからなる群から選択されるリン脂質である場合は、リン脂質80~50mol%、コレステロール20~50mol%が好ましい。リン脂質70~50mol%、コレステロール30~50mol%がより好ましい。
 アシル鎖の平均鎖長が14である場合、リン脂質50~60mol%、コレステロール50~40mol%が好ましい。アシル鎖がジミリストイルである場合は、リン脂質50~60mol%、コレステロール50~40mol%が好ましい。これらの範囲であれば薬剤担持量が下がることを防ぎつつ膜を安定化させてスピカマイシン誘導体をリポソーム製剤化できる。
The liposome in the present invention can be preferably formulated by controlling the lipid composition ratio of phospholipid and cholesterol, and also enhances the antitumor effect by shortening the chain length of the acyl chain of the phospholipid used. Can do.
When the average chain length of the acyl chain is more than 16 to 18, phospholipid 100 mol% or phospholipid 70 to 50 mol% and cholesterol 30 to 50 mol% are preferable. When the phospholipid acyl chain is a phospholipid selected from the group consisting of distearoyl, palmitoyl stearoyl, stearoyl palmitoyl, myristoyl stearoyl and stearoyl myristoyl, phospholipid 100 mol% or phospholipid 70-50 mol%, cholesterol 30- 50 mol% is preferable.
When the average chain length of the acyl chain is more than 14 to 16, phospholipids of 80 to 50 mol% and cholesterol of 20 to 50 mol% are preferable. When the phospholipid acyl chain is a phospholipid selected from the group consisting of dipalmitoyl, palmitoyl myristoyl and myristoyl palmitoyl, phospholipids of 80 to 50 mol% and cholesterol of 20 to 50 mol% are preferred. More preferred are phospholipid 70-50 mol% and cholesterol 30-50 mol%.
When the average chain length of the acyl chain is 14, phospholipids of 50 to 60 mol% and cholesterol of 50 to 40 mol% are preferable. When the acyl chain is dimyristoyl, phospholipids are preferably 50 to 60 mol% and cholesterol is 50 to 40 mol%. Within these ranges, the spicamycin derivative can be formulated into a liposome formulation by stabilizing the membrane while preventing a decrease in the drug loading.
 また、脂質膜を構成する脂質の物性を変化させ、脂質膜に所望の特性を付与するため、脂質膜が修飾されてもよい。具体的には、脂質膜に親和性のある化合物本体に修飾基が連結された誘導体を膜中に含むことができ、化合物本体は、通常、脂質である。この脂質部分は、リン脂質またはリン脂質以外の脂質のいずれか、またはどちらであってもよく特に限定されない。たとえばリン脂質、長鎖脂肪族アルコール、ステロール、ポリオキシプロピレンアルキル、またはグリセリン脂肪酸エステル等が挙げられる。
 修飾基としては、特に限定されないが荷電性基、水溶性多糖類などの親水性基、親水性高分子鎖等が挙げられ、これらの1種または2種以上の組み合わせでもよい。
 荷電性基は、特に限定されないが、アミノ基、アミジノ基、グアジニノ基などの塩基性官能基、酸性官能基などが挙げられ、これらの基を有する荷電物質を膜中に含むことができる。
 塩基性官能基を有する荷電物質としては、特開昭61-161246号公報に開示されたDOTMA、特表平5-508626号公報に開示されたDOTAP、特開平2-292246号公報に開示されたトランスフェクタム、特開平4-108391号公報に開示されたTMAG、国際公開第97/42166号・パンフレットに開示された3,5-ジペンタデシロキシベンズアミジン塩酸塩、DOSPA、TfxTM-50、DDAB、DC-CHOL、DMRIEなどが挙げられる。
 酸性官能基を有する荷電物質としては、ガングリオシドGM1、ガングリオシドGM3等のシアル酸を有するガングリオシド類、N-アシル-L-グルタミン酸等の酸性アミノ酸系界面活性剤などが挙げられる。
 上記荷電物質が、脂質に、塩基性官能基を有する化合物が結合した物質である場合には、カチオン化脂質と称される。カチオン化脂質の脂質部分がリポソームの脂質二重膜中に挿入されるかたちで塩基性官能基部分がリポソームの脂質膜表面上(外膜表面上および/または内膜表面上)に存在することができる。カチオン化脂質で脂質膜を修飾することにより、リポソームの脂質膜と細胞との接着性等を高めることができる。
In addition, the lipid membrane may be modified in order to change the physical properties of the lipid constituting the lipid membrane and impart desired properties to the lipid membrane. Specifically, a derivative in which a modifying group is linked to a compound main body having affinity for a lipid membrane can be included in the film, and the compound main body is usually a lipid. This lipid moiety may be either phospholipid or lipid other than phospholipid, or both, and is not particularly limited. For example, phospholipid, long chain aliphatic alcohol, sterol, polyoxypropylene alkyl, glycerin fatty acid ester and the like can be mentioned.
The modifying group is not particularly limited, and examples thereof include a charged group, a hydrophilic group such as a water-soluble polysaccharide, and a hydrophilic polymer chain, and one or a combination of two or more of these may be used.
The charged group is not particularly limited, and examples thereof include basic functional groups such as amino group, amidino group, and guanidino group, acidic functional groups, and the like, and a charged substance having these groups can be included in the film.
Examples of the charged substance having a basic functional group include DOTMA disclosed in JP-A No. 61-161246, DOTAP disclosed in JP-A-5-508626, and JP-A-2-292246. Transfectam, TMAG disclosed in JP-A-4-108391, 3,5-dipentadecyloxybenzamidine hydrochloride, DOSPA, TfxTM-50, DDAB disclosed in WO 97/42166, pamphlet , DC-CHOL, DMRIE and the like.
Examples of the charged substance having an acidic functional group include gangliosides having sialic acid such as ganglioside GM1 and ganglioside GM3, and acidic amino acid surfactants such as N-acyl-L-glutamic acid.
When the charged substance is a substance in which a compound having a basic functional group is bound to a lipid, it is called a cationized lipid. The basic functional group may be present on the lipid membrane surface of the liposome (on the outer membrane surface and / or on the inner membrane surface) as the lipid portion of the cationized lipid is inserted into the lipid bilayer of the liposome. it can. By modifying the lipid membrane with a cationized lipid, the adhesion between the lipid membrane of the liposome and the cells can be enhanced.
 水溶性多糖類としては、特に限定されないが、たとえばグルクロン酸、シアル酸、デキストラン、プルラン、アミロース、アミロペクチン、キトサン、マンナン、シクロデキストリン、ペクチン、カラギーナンなどの水溶性多糖類などが挙げられる。水溶性多糖類の誘導体は、糖脂質などが挙げられる。
 上記荷電物質、水溶性多糖類による膜修飾率は、必要に応じて適宜設定することができる。
 親水性高分子としては、特に限定されないがポリエチレングリコール、フイコール、ポリビニルアルコール、スチレン-無水マレイン酸交互共重合体、ジビニルエーテル-無水マレイン酸交互共重合体、ポリビニルピロリドン、ポリビニルメチルエーテル、ポリビニルメチルオキサゾリン、ポリエチルオキサゾリン、ポリヒドロキシプロピルオキサゾリン、ポリヒドロキシプロピルメタアクリルアミド、ポリメタアクリルアミド、ポリジメチルアクリルアミド、ポリヒドロキシプロピルメタアクリレート、ポリヒドロキシエチルアクリレート、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ポリアスパルトアミド、合成ポリアミノ酸などが挙げられる。
 親水性高分子は、リポソームの脂質膜を修飾するための構造を有していることが好ましい。特に、親水性高分子鎖の一端に該構造を有していることが好ましい。該構造が脂質等の疎水性部分である場合は、該疎水性部分が脂質膜に挿入されるかたちで親水性高分子鎖がリポソーム外表面上から突出するように固定化され、該構造が脂質膜構成成分と共有結合しうる反応性官能基である場合は、リポソームの外表面に露出しているリン脂質等の脂質膜構成成分と共有結合することにより親水性高分子鎖がリポソーム外表面上から突出するように固定化される。
The water-soluble polysaccharide is not particularly limited, and examples thereof include water-soluble polysaccharides such as glucuronic acid, sialic acid, dextran, pullulan, amylose, amylopectin, chitosan, mannan, cyclodextrin, pectin, and carrageenan. Examples of water-soluble polysaccharide derivatives include glycolipids.
The membrane modification rate by the charged substance and the water-soluble polysaccharide can be appropriately set as necessary.
The hydrophilic polymer is not particularly limited, but polyethylene glycol, ficoll, polyvinyl alcohol, styrene-maleic anhydride alternating copolymer, divinyl ether-maleic anhydride alternating copolymer, polyvinyl pyrrolidone, polyvinyl methyl ether, polyvinyl methyl oxazoline. , Polyethyloxazoline, polyhydroxypropyloxazoline, polyhydroxypropylmethacrylamide, polymethacrylamide, polydimethylacrylamide, polyhydroxypropyl methacrylate, polyhydroxyethyl acrylate, hydroxymethylcellulose, hydroxyethylcellulose, polyaspartamide, synthetic polyamino acid, etc. Is mentioned.
The hydrophilic polymer preferably has a structure for modifying the lipid membrane of the liposome. In particular, the hydrophilic polymer chain preferably has this structure at one end. When the structure is a hydrophobic part such as a lipid, the hydrophilic polymer chain is immobilized so that the hydrophobic part protrudes from the outer surface of the liposome as the hydrophobic part is inserted into the lipid membrane. In the case of a reactive functional group capable of covalently bonding with a membrane component, the hydrophilic polymer chain is formed on the outer surface of the liposome by covalently bonding with a lipid membrane component such as phospholipid exposed on the outer surface of the liposome. It is fixed so that it may protrude from.
 次に、親水性高分子鎖と結合して親水性高分子-疎水性高分子化合物を形成させるために使用される疎水性化合物について以下に説明する。
 当該疎水性化合物は、特に限定されない。例えば、疎水性の領域を有する化合物(疎水性化合物)を挙げることができる。疎水性化合物としては、例えば、リン脂質やステロール等の他の脂質類、あるいは、長鎖脂肪族アルコール、グリセリン脂肪酸エステル等が挙げられる。中でも、リン脂質が好ましい態様の一つである。また、これらの疎水性化合物は反応性官能基を有してもよい。反応性官能基によって形成される結合としては共有結合が望ましく、具体的にはアミド結合、エステル結合、エーテル結合、スルフィド結合、ジスルフィド結合、などが挙げられるが特に限定されない。
 上記リン脂質のアシル鎖は、飽和脂肪酸のアシル鎖であることが望ましい。アシル鎖の鎖長は、C14~C20が望ましく、さらにはC14~C18であることが望ましい。アシル鎖としては、例えば、ジミリストイル、ジパルミトイル、ジステアロイル、パルミトイルステアロイルが挙げられる。
 リン脂質は、特に制限されない。リン脂質としては、例えば、上記親水性高分子と反応可能な官能基を有するものを使用することができる。このような親水性高分子と反応可能な官能基を有するリン脂質の具体例としては、アミノ基を有するフォスファチジルエタノールアミン、ヒドロキシ基を有するフォスファチジルグリセロール、カルボキシ基を有するフォスファチジルセリンが挙げられる。上記のフォスファチジルエタノールアミンを使用するのが好適な様態の1つである。
 親水性高分子の脂質誘導体は、上記の親水性高分子と上記の脂質とからなる。上記の親水性高分子と上記の脂質との組み合わせは、特に限定されない。目的に応じて適宜組み合わせたものを使用することができる。例えば、リン脂質、ステロール等の他の脂質類、長鎖脂肪族アルコール、グリセリン脂肪酸エステルの中から選ばれる少なくとも1つと、PEG、ポリグリセロール(PG)、ポリプロピレングリコール(PPG)の中から選ばれる少なくとも1つとが結合した親水性高分子の誘導体が挙げられる。具体的には、ポリオキシプロピレンアルキルなどが挙げられ、特に、親水性高分子がポリエチレングリコール(PEG)である場合において脂質としてリン脂質、コレステロールを選択するのが好適な態様のひとつである。このような組み合わせによるPEGの脂質誘導体としては、例えば、PEGのリン脂質誘導体またはPEGのコレステロール誘導体が挙げられる。
Next, the hydrophobic compound used for bonding with the hydrophilic polymer chain to form the hydrophilic polymer-hydrophobic polymer compound will be described below.
The hydrophobic compound is not particularly limited. For example, the compound (hydrophobic compound) which has a hydrophobic area | region can be mentioned. Examples of the hydrophobic compound include other lipids such as phospholipids and sterols, long-chain aliphatic alcohols, glycerin fatty acid esters, and the like. Among them, phospholipid is one of the preferred embodiments. Moreover, these hydrophobic compounds may have a reactive functional group. The bond formed by the reactive functional group is preferably a covalent bond, and specific examples include an amide bond, an ester bond, an ether bond, a sulfide bond, and a disulfide bond, but are not particularly limited.
The acyl chain of the phospholipid is preferably a saturated fatty acid acyl chain. The chain length of the acyl chain is preferably C 14 to C 20 , and more preferably C 14 to C 18 . Examples of the acyl chain include dimyristoyl, dipalmitoyl, distearoyl, and palmitoyl stearoyl.
The phospholipid is not particularly limited. As the phospholipid, for example, one having a functional group capable of reacting with the hydrophilic polymer can be used. Specific examples of the phospholipid having a functional group capable of reacting with such a hydrophilic polymer include phosphatidylethanolamine having an amino group, phosphatidylglycerol having a hydroxy group, and phosphatidylserine having a carboxy group. Is mentioned. One preferred mode is to use the above phosphatidylethanolamine.
The lipid derivative of the hydrophilic polymer comprises the above hydrophilic polymer and the above lipid. The combination of the hydrophilic polymer and the lipid is not particularly limited. What was combined suitably according to the objective can be used. For example, at least one selected from other lipids such as phospholipids and sterols, long chain fatty alcohols, glycerin fatty acid esters, and at least selected from PEG, polyglycerol (PG), and polypropylene glycol (PPG). One example is a derivative of a hydrophilic polymer bonded to one. Specific examples include polyoxypropylene alkyl, and in particular, when the hydrophilic polymer is polyethylene glycol (PEG), it is one of preferred embodiments to select phospholipid and cholesterol as the lipid. Examples of the PEG lipid derivative by such a combination include PEG phospholipid derivatives and PEG cholesterol derivatives.
 親水性高分子の脂質誘導体は、脂質の選択により、正電荷、負電荷、中性の選択が可能である。例えば、脂質としてDSPEを選択した場合、リン酸基の影響で負電荷を示す脂質誘導体となり、また脂質としてコレステロールを選択した場合、中性の脂質誘導体となる。脂質は、その目的に応じ、選択することが可能である。
 PEGの分子量については特に限定されないが、通常、500~10,000ダルトン、好ましくは1,000~7,000ダルトン、より好ましくは1,500~5,500ダルトンであり、より好ましくは1,500~5,000ダルトンである。さらに好ましくは1,500~2,500ダルトンである。
 PGの分子量についてはとくに限定されないが、通常100~10,000ダルトンであり、好ましくは200~7,000ダルトン、より好ましくは400~5,000ダルトンである。
 PPGの分子量については特に限定されないが、通常100~10,000ダルトンであり、好ましくは200~7,000ダルトン、より好ましくは10,00~5,000ダルトンである。
 これらの中でも、PEGのリン脂質誘導体が好ましい態様の一つとして挙げられる。PEGのリン脂質誘導体としては、例えば、ポリエチレングリコール-ジステアロイルフォスファチジルエタノールアミン(PEG-DSPE)が挙げられる。PEG-DSPEは、汎用の化合物であり入手容易であることから好ましい。
The lipid derivative of the hydrophilic polymer can be positively charged, negatively charged, or neutral depending on the choice of lipid. For example, when DSPE is selected as the lipid, it becomes a lipid derivative that shows a negative charge due to the influence of the phosphate group, and when cholesterol is selected as the lipid, it becomes a neutral lipid derivative. Lipids can be selected according to the purpose.
The molecular weight of PEG is not particularly limited, but is usually 500 to 10,000 daltons, preferably 1,000 to 7,000 daltons, more preferably 1,500 to 5,500 daltons, and more preferably 1,500 daltons. ~ 5,000 Daltons. More preferably, it is 1,500 to 2,500 daltons.
The molecular weight of PG is not particularly limited, but is usually 100 to 10,000 daltons, preferably 200 to 7,000 daltons, more preferably 400 to 5,000 daltons.
The molecular weight of PPG is not particularly limited, but is usually 100 to 10,000 daltons, preferably 200 to 7,000 daltons, more preferably 10,000 to 5,000 daltons.
Among these, phospholipid derivatives of PEG are mentioned as one of preferable embodiments. Examples of the phospholipid derivative of PEG include polyethylene glycol-distearoylphosphatidylethanolamine (PEG-DSPE). PEG-DSPE is preferred because it is a general-purpose compound and is easily available.
 このような親水性高分子の脂質誘導体を用いて表面修飾されたリポソームは、血漿中のオプソニン蛋白質等が当該リポソームの表面へ吸着するのを防止して当該リポソームの血中安定性を高め、肝臓、脾臓等の細網内皮系組織(RES)での捕捉を回避することが可能となり、標的とする組織や細胞への送達性を高めることができる。すなわち、高い血中滞留性が得られる。これにより、腫瘍組織の血管透過性が亢進した組織に受動的に集積させることが可能となる。
 なお本発明において、「血中滞留性」とは、薬剤が担持されたリポソーム製剤を投与した宿主において、該リポソーム製剤に担持された薬剤が血液中に存在する性質を意味する。薬剤が、標的とする組織や細胞へ送達する前にリポソームから放出されると、速やかに血中から消失する。血中滞留性が良いと、少ない量の薬剤を投与しても、標的とする組織や細胞への送達性を高めることが可能となる。
 上記親水性高分子脂質誘導体による修飾率は、総脂質に対する比率で、通常0.1~20mol%、好ましくは0.1~10mol%、より好ましくは0.5~10mol%とすることができる。さらには0.5~4mol%である。
 なお本発明において、「総脂質」とは、脂質膜を構成する脂質のうちから親水性高分子脂質誘導体を除いた脂質をいう。
Liposomes whose surface has been modified using lipid derivatives of such hydrophilic polymers prevent blood opsonin protein and the like from adsorbing to the surface of the liposomes, increasing the blood stability of the liposomes, In addition, it is possible to avoid capture by reticuloendothelial tissue (RES) such as spleen, and to improve delivery to a target tissue or cell. That is, high blood retention is obtained. As a result, it is possible to passively accumulate in the tissue in which the vascular permeability of the tumor tissue is enhanced.
In the present invention, “retention in blood” means a property in which a drug carried in a liposome preparation is present in blood in a host administered with the liposome preparation carrying the drug. If the drug is released from the liposome before delivery to the target tissue or cell, it quickly disappears from the blood. When the retention in blood is good, it is possible to improve the delivery to a target tissue or cell even if a small amount of drug is administered.
The modification rate by the hydrophilic polymer lipid derivative is usually 0.1 to 20 mol%, preferably 0.1 to 10 mol%, more preferably 0.5 to 10 mol%, as a ratio to the total lipid. Furthermore, it is 0.5 to 4 mol%.
In the present invention, “total lipid” refers to a lipid obtained by removing a hydrophilic polymer lipid derivative from lipids constituting a lipid membrane.
 本発明において、上記のようなリポソームへの水難溶性スピカマイシン誘導体の担持量、すなわちリポソーム製剤の薬剤/総脂質mol比は、リポソームの安定性および封入効率の観点上、通常、0.1以下であり、好ましくは0.001~0.03である。
 このリポソームへの薬剤担持あるいはリポソーム製剤の薬剤含有とは、リポソーム製剤(分散液)中、薬剤がリポソームに担持され、保持されて存在する状態を意味し、リポソームに保持されていない薬剤、すなわち分散液の外水相には、リポソームとは関係なく自由に存在する薬剤は本質的に含まれないことを意味する。水難溶性スピカマイシン誘導体を薬剤とする本発明のリポソーム製剤では、実質的に、薬剤の少なくとも一部が脂質膜内に含まれるなどして膜に担持されていると考えられるが、本発明のリポソーム製剤は、外水相に自由な薬剤が存在しなければよく、薬剤の担持状態は限定されず、リポソームの脂質膜に担持および/または内水相に内包されていてよい。
In the present invention, the amount of the poorly water-soluble spicamycin derivative supported on the liposome as described above, that is, the drug / total lipid molar ratio of the liposome preparation is usually 0.1 or less from the viewpoint of liposome stability and encapsulation efficiency. Yes, preferably 0.001 to 0.03.
The drug loading in the liposome or the drug content in the liposome formulation means a state in which the drug is supported and retained in the liposome formulation (dispersion), and the drug not retained in the liposome, that is, dispersed. This means that the outer aqueous phase of the liquid is essentially free of any drug that is freely present regardless of liposomes. In the liposome preparation of the present invention using a poorly water-soluble spicamycin derivative as a drug, it is considered that at least a part of the drug is substantially contained in the lipid film and is supported on the membrane. The preparation is not required to have a free drug in the outer aqueous phase, and the loading state of the drug is not limited, and may be supported on the lipid membrane of the liposome and / or encapsulated in the inner aqueous phase.
 本発明のリポソーム製剤は、投与経路次第で医薬的に許容される安定剤および/または酸化防止剤をさらに含むものであってもよい。これらは製薬学的に添加可能な助剤と総称する。安定化剤としては、特に限定されないがグリセロールまたはスクロースなどの糖類が挙げられる。酸化防止剤としては、特に限定されないがアスコルビン酸、尿酸あるいはトコフェノール同属体例えばビタミンEなどが挙げられる。トコフェノールには、α、β、γ、δの4個の異性体が存在するが本発明においてはいずれも使用できる。
 本発明のリポソーム製剤は、投与経路次第で医薬的に許容される添加物をさらに含むものであってもよい。このような添加物の例として、水、生理食塩水、医薬的に許容される有機溶媒、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルビキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ペクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、カゼイン、ゼラチン、寒天、ジグリセリン、プロピレングリコール、ポリエチレングリコール、ワセリン、パラフィン、ステアリルアルコール、ヒト血清アルブミン(HSA)、マンニトール、ソルビトール、ラクトース、PBS、生体内分解性ポリマー、無血清培地、医薬添加物として許容され、かつリポソーム製剤の安定性に影響しない濃度の界面活性剤、安定性に影響しない濃度とは、全製剤中の15質量%以下をいう。あるいは生体内で許容し得る生理的pHの緩衝液などが挙げられる。使用される添加物は、剤型に応じて上記の中から適宜あるいは組み合わせて選択されるが、これらに限定されるものではない。
The liposome preparation of the present invention may further contain a pharmaceutically acceptable stabilizer and / or antioxidant depending on the administration route. These are collectively referred to as pharmaceutically auxiliaries. Stabilizers include, but are not limited to, saccharides such as glycerol or sucrose. Examples of the antioxidant include, but are not limited to, ascorbic acid, uric acid, and tocophenol analogues such as vitamin E. Tocophenol has four isomers, α, β, γ, and δ, and any of them can be used in the present invention.
The liposome preparation of the present invention may further contain a pharmaceutically acceptable additive depending on the administration route. Examples of such additives include water, saline, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinyl pyrrolidone, carboxyvinyl polymer, sodium carboxymethyl cellulose, sodium polyacrylate, sodium alginate, water-soluble Dextran, sodium carboxymethyl starch, pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, casein, gelatin, agar, diglycerin, propylene glycol, polyethylene glycol, petrolatum, paraffin, stearyl alcohol, human serum albumin (HSA), mannitol, Sorbitol, lactose, PBS, biodegradable polymer, serum-free medium, acceptable as a pharmaceutical additive, and stability of liposome preparation Surfactants do not affect the concentration, and the concentrations that do not affect the stability refers to 15 mass% or less of the total formulation. Alternatively, a buffer solution of physiological pH acceptable in vivo can be used. The additive to be used is selected appropriately or in combination from the above depending on the dosage form, but is not limited thereto.
 本発明では、これらの添加物および/または製薬学的に添加可能な助剤を含む態様のリポソーム製剤を、医薬組成物として供することができる。本発明の医薬組成物は、室温(一般的に21℃~25℃)、好ましくは0~8℃での冷蔵で保存することができる。
 上記のようなリポソーム製剤は、薬剤を安定的に担持することができる範囲において、公知のリポソーム製剤化方法を広く用いることができる。
 本発明においてリポソーム懸濁液の調製方法としては、水和法(Bangham法)、超音波処理法、逆相蒸発法(Reverse phase evaporation vesicles)、加温法、脂質溶解法、DRV法(Dehydrated/Rehydrated Vesicles)、凍結融解法、エタノール注入法、薄膜法、エクストリュージョン法、高圧吐出型乳化機による高圧乳化法(「ライフサイエンスにおけるリポソーム」寺田、吉村ら編;シュプリンガー・フェアラーク東京(1992))などの各種の公知の技術を採用することができる。
 また近年開発された技術として、超高圧による圧縮からの速度変換を利用し、液相下でのジェット流により剪断乳化を行うジェット流乳化法、超臨界二酸化炭素を利用したリポソーム調製技術、後段の整粒工程を簡便化する改良型エタノール注入法などもある。
 本発明において、典型的なリポソームの調製工程は、薬剤を封入したリポソームを生成させてリポソーム粗懸濁液を得る工程(i)、リポソーム粗懸濁液の整粒化工程(ii)および外液置換(未封入薬物除去)してリポソーム懸濁液を得る工程(iv)を含み、好ましくは工程(ii)と(iv)の間にさらに親水性高分子による表面修飾工程(iii)を含む。
In this invention, the liposome formulation of the aspect containing these additives and / or pharmaceutically-added adjuvant can be provided as a pharmaceutical composition. The pharmaceutical composition of the present invention can be stored by refrigeration at room temperature (generally 21 ° C. to 25 ° C.), preferably 0 to 8 ° C.
As the above-mentioned liposome preparation, known liposome preparation methods can be widely used as long as the medicine can be stably supported.
In the present invention, the method for preparing the liposome suspension includes hydration method (Bangham method), sonication method, reverse phase evaporation vesicles, heating method, lipid dissolution method, DRV method (Dehydrated / Rehydrated Vesicles), freeze-thaw method, ethanol injection method, thin film method, extrusion method, high-pressure emulsification method using high-pressure discharge type emulsifier ("Liposome in Life Science" edited by Terada, Yoshimura et al .; Springer Fairlark Tokyo (1992) Various known techniques such as) can be employed.
In addition, recently developed technologies include the jet flow emulsification method that uses shear rate emulsification by jet flow under a liquid phase using the speed conversion from compression by ultra high pressure, the liposome preparation technology using supercritical carbon dioxide, There is also an improved ethanol injection method that simplifies the sizing process.
In the present invention, a typical liposome preparation step includes the steps (i) of producing a liposome encapsulating a drug to obtain a coarse liposome suspension, the granulating step (ii) of the coarse liposome suspension, and an external solution. It includes a step (iv) of obtaining a liposome suspension by substitution (removal of unencapsulated drug), and preferably a step (iii) of surface modification with a hydrophilic polymer is further included between steps (ii) and (iv).
 これら工程を行うにあたり、上記に示すような調製方法を必要に応じて適宜に採用することができる。また1方法だけでなく、2以上の方法を選択することもでき、同じまたは別の方法を重複ないし追加することもできる。
 一般的にリポソームは相転移点をもつため、リポソームの調製のための外液置換工程(未封入薬物除去工程)(iii)の前段各工程を主膜材の相転移点以上の温度で実施することが好ましい。
In performing these steps, a preparation method as described above can be appropriately employed as necessary. Further, not only one method but also two or more methods can be selected, and the same or different methods can be duplicated or added.
Since liposomes generally have a phase transition point, each step before the external liquid replacement step (unencapsulated drug removal step) (iii) for liposome preparation is performed at a temperature above the phase transition point of the main membrane material. It is preferable.
 リポソームの脂質二重膜構造は、ユニラメラ小胞(Small Unilamellar Vesicle, SUV, Large Unilamellar Vesicle, LUV)および複数枚からなる多重ラメラ小胞(Multilamellar Vesicle, MLV)などの膜構造が知られている。
 本発明に係るリポソームは、どの膜構造でもよいが、封入効率の点から多重ラメラ小胞のリポソームが好ましい。
 整粒化工程をたとえば、上記膜乳化法により行う場合には、エクストルーダーを用いて、市販されているポリカーボネート製などのメンブランフィルターを複数回強制通過させることによりユニラメラ化することができ、粒子径をコントロールすることができる。たとえば、粒子径100nmに整粒する場合には、通常、400nm、200nm、100nmなどのメンブレンフィルターを組み合わせて段階的に整粒することができる。
 整粒化工程において、リポソーム粗懸濁液の温度が上記主膜材の相転移点以上であれば、粒子径制御が容易である。
 整粒化後のリポソームの大きさは特に限定されないが、球状またはそれに近い形態をとることができ、その粒子径(粒子外径の直径)は特に限定されないが、通常、0.02~2μm、好ましくは0.03~0.4μm、より好ましくは0.05~0.25μmである。この粒子径は、Zetasizer(Malvern Instruments. 3000HS、Zatasizer Nano ZS90)を用いて動的光散乱法により全粒子の直径平均値として測定される。
As the lipid bilayer structure of liposomes, there are known membrane structures such as Unilamellar Vesicle (SUV, Large Unilamellar Vesicle, LUV) and multilamellar vesicle (MLV) composed of a plurality of sheets.
The liposome according to the present invention may have any membrane structure, but multilamellar vesicle liposomes are preferred from the viewpoint of encapsulation efficiency.
For example, when carrying out the sizing step by the above-mentioned membrane emulsification method, it can be made into a mono-lamellar by forcibly passing a membrane filter made of a commercially available polycarbonate or the like several times using an extruder. Can be controlled. For example, when the particle size is adjusted to 100 nm, the particle size can be adjusted stepwise by combining membrane filters of 400 nm, 200 nm, 100 nm and the like.
In the granulating step, if the temperature of the liposome coarse suspension is equal to or higher than the phase transition point of the main membrane material, the particle size can be easily controlled.
The size of the liposome after sizing is not particularly limited, but it can take a spherical shape or a form close thereto, and its particle diameter (diameter of particle outer diameter) is not particularly limited, but is usually 0.02 to 2 μm, The thickness is preferably 0.03 to 0.4 μm, more preferably 0.05 to 0.25 μm. This particle diameter is measured as a mean diameter value of all particles by a dynamic light scattering method using a Zetasizer (Malvern Instruments. 3000HS, Zatasizer Nano ZS90).
 本発明のリポソーム製剤の治療の対象となる腫瘍としては、特に限定されないが固形腫瘍であり、具体的には食道癌、胃癌、大腸癌、結腸癌、直腸癌、膵臓癌、肝臓癌、喉頭癌、肺癌、前立腺癌、膀胱癌、乳癌、子宮癌または卵巣癌が挙げられる。標的部位は、腫瘍の細胞、組織、器官または臓器およびそれらの内部などである。したがって、本発明において、疾患とは前記の腫瘍を意味し、薬剤はそれらに対し抗腫瘍効果を示すことが期待される。
 本発明において、「暴露」とは、リポソームの外部へ放出された薬剤が外部環境へ作用を及ぼすことを意味する。具体的には、放出されたスピカマイシン誘導体は標的部位に近接し、癌細胞の細胞膜を透過する時に脂肪酸側鎖が脂肪酸とグリシンの間で酵素的に加水分解され、活性体であるSAN-Glyを生じ、このSAN-Glyが細胞内の蛋白合成系に作用し、抗腫瘍効果を発揮する。このような効果を示すために、リポソーム製剤からの薬剤の放出とリポソーム製剤の血中滞留性との均衡を保つ必要がある。
 本発明において、「放出」とは、リポソーム製剤に含まれる薬剤がリポソームから離脱することを意味する。
 本発明のリポソーム製剤中に含まれる薬剤は、血漿中において、長時間高濃度で標的部位に暴露することで強い抗腫瘍活性を示すことから放出を制御することが重要となる。
The tumor to be treated with the liposome preparation of the present invention is not particularly limited, but is a solid tumor, specifically, esophageal cancer, stomach cancer, colon cancer, colon cancer, rectal cancer, pancreatic cancer, liver cancer, laryngeal cancer. Lung cancer, prostate cancer, bladder cancer, breast cancer, uterine cancer or ovarian cancer. Target sites include tumor cells, tissues, organs or organs and their interiors. Therefore, in the present invention, the disease means the above-mentioned tumor, and the drug is expected to show an antitumor effect against them.
In the present invention, “exposure” means that the drug released to the outside of the liposome acts on the external environment. Specifically, the released spicamycin derivative is close to the target site, and when it penetrates the cell membrane of cancer cells, the fatty acid side chain is enzymatically hydrolyzed between the fatty acid and glycine, and the active form SAN-Gly. This SAN-Gly acts on the intracellular protein synthesis system and exhibits an antitumor effect. In order to show such an effect, it is necessary to maintain a balance between the drug release from the liposome preparation and the blood retention of the liposome preparation.
In the present invention, “release” means that the drug contained in the liposome preparation is released from the liposome.
It is important to control the release of the drug contained in the liposome preparation of the present invention because it exhibits strong antitumor activity when exposed to a target site at a high concentration for a long time in plasma.
 本発明のリポソーム製剤は、血漿中の薬剤濃度を高濃度で維持することができる。従来のリポソーム製剤は、血液中から速やかに消失するため、標的部位での暴露時間が短く、充分な効果を期待することは困難である。また、血液中からの速やかな消失は代謝器官である肝臓、脾臓などの臓器に対して薬剤を高濃度で暴露することになり、当該部位での副作用につながるため好ましくない。本発明のリポソーム製剤は、血漿中の薬剤濃度を高濃度で維持することができるため、肝臓、脾臓などの臓器に対する薬剤の暴露を軽減することができ、それに伴い、標的部位において薬剤を長時間暴露することができ、副作用を軽減することができることから好適である。
 本発明において、投与後1時間における血漿中の薬剤濃度は、初期値の10%以上であり、好ましくは15%以上である。この「初期値」とは、本発明のリポソーム製剤を投与した直後の理論濃度であり、一般的に、宿主の体重から算出した全血漿量を用いて、投与液量で希釈されたと仮定して算出される。また、各時点の血漿中濃度は、初期値に対する比率として示すことができ、一般的に「% dose」として表記される。
 本発明では、薬剤が所望の標的部位に長時間暴露するために使用される。したがって、本発明において、宿主の疾患の予防および/または治療のため、有効量の薬剤を担持するリポソーム製剤を宿主に投与することにより、宿主内で有効量の薬剤を放出し、標的部位に長時間高濃度で暴露するために、宿主(患者)に非経口的に全身あるいは局所的に投与することができる。投与対象の宿主としては、哺乳動物、好ましくはヒト、サル、ネズミ、家畜等が挙げられる。
The liposome preparation of the present invention can maintain the drug concentration in plasma at a high concentration. Since conventional liposome preparations disappear quickly from blood, it is difficult to expect a sufficient effect because the exposure time at the target site is short. Further, rapid disappearance from the blood is not preferable because the drug is exposed to organs such as liver and spleen, which are metabolic organs, at a high concentration, leading to side effects at the site. Since the liposome preparation of the present invention can maintain the drug concentration in plasma at a high concentration, it can reduce the exposure of the drug to organs such as the liver and spleen. It is preferable because it can be exposed and side effects can be reduced.
In the present invention, the drug concentration in plasma 1 hour after administration is 10% or more of the initial value, preferably 15% or more. This “initial value” is the theoretical concentration immediately after administration of the liposome preparation of the present invention, and is generally assumed that the total plasma volume calculated from the body weight of the host is used to dilute with the dose volume. Calculated. The plasma concentration at each time point can be expressed as a ratio to the initial value, and is generally expressed as “% dose”.
In the present invention, the drug is used for long exposure to the desired target site. Therefore, in the present invention, for the prevention and / or treatment of host diseases, an effective amount of a drug is released in the host by administering to the host a liposome preparation carrying an effective amount of the drug, and the target site is prolonged. For exposure at high concentrations over time, it can be parenterally administered systemically or locally to the host (patient). Examples of the host to be administered include mammals, preferably humans, monkeys, mice, livestock and the like.
 非経口的投与の経路としては、例えば点滴などの静脈注射(静注)、筋肉内注射、腹腔内注射、皮下注射を選択することができ、患者の年齢、症状により適宜投与方法を選択することができる。本発明の担体は、病気に既に悩まされる患者に、疾患の症状を治癒するか、あるいは少なくとも部分的に阻止するために十分な量で投与される。例えば、担体に封入される薬剤の有効投与量は、一日につき体重1kgあたり0.01mgから100mgの範囲で選ばれる。しかしながら、本発明の担体はこれらの投与量に制限されるものではない。投与時期は、疾患が生じてから投与してもよいし、あるいは疾患の発症が予測される時に発症時の症状緩和のために予防的に投与してもよい。また、投与期間は、患者の年齢、症状により適宜選択することができる。
 具体的な投与方法としては、リポソーム製剤をシリンジや点滴によって投与することができる。また、カテーテルを患者または宿主の体内、例えば管腔内、例えば血管内に挿入して、その先端を標的部位付近に導き、当該カテーテルを通して、所望の標的部位またはその近傍あるいは標的部位への血流が期待される部位から投与することも可能である。
As the parenteral route of administration, for example, intravenous injection (intravenous injection) such as infusion, intramuscular injection, intraperitoneal injection, and subcutaneous injection can be selected, and an appropriate administration method should be selected depending on the age and symptoms of the patient. Can do. The carrier of the invention is administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially block the symptoms of the disease. For example, the effective dose of the drug enclosed in the carrier is selected in the range of 0.01 mg to 100 mg per kg body weight per day. However, the carrier of the present invention is not limited to these dosages. The administration time may be administered after the disease has occurred, or may be administered prophylactically to relieve symptoms at the time of onset when the onset of the disease is predicted. The administration period can be appropriately selected depending on the age and symptoms of the patient.
As a specific administration method, the liposome preparation can be administered by syringe or infusion. Further, a catheter is inserted into the body of a patient or host, for example, into a lumen, for example, into a blood vessel, and the tip thereof is guided to the vicinity of the target site, and the blood flow to the desired target site, the vicinity thereof, or the target site through the catheter. It is also possible to administer from the site where is expected.
 次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるべきものではない。
 各例で調製された薬剤封入リポソームの各濃度および粒子径は、以下のように求めた。
リン脂質濃度(mg/mL):高速液体クロマトグラフィーを用いて定量されるリポソーム懸濁液中でのリン脂質濃度。
コレステロール濃度(mg/mL):高速液体クロマトグラフィーを用いて定量されるリポソーム懸濁液中でのコレステロール濃度。
総脂質濃度(mol/L):上記リン脂質濃度およびコレステロール濃度から算出される膜構成成分である脂質の合計モル濃度(mM)。この総脂質中には、PEGを導入するためのPEG誘導体中の脂質(例では、PEG-DSPE中のDSPE)は含まない。
薬剤濃度(mg/mL):上記で得られた製剤をRO水(逆浸透膜浄水)でリン脂質濃度が約20mg/mLとなるように希釈した後、さらにメタノールで20倍希釈した溶液について、264nmでの吸光度を、紫外吸光光度計を用いて高速液体クロマトグラフィーにて定量した。内封されたKRN5500濃度を薬剤量(mg)/製剤全量(mL)で示す。
高速液体クロマトグラフィー試験条件:
カラム:内径6mm、長さ15cmのステンレス管に全多孔性球状シリカゲルを充填(ナカライテスク(株)COSMOSIL 5C18-ARII)。
カラム温度:30℃付近
移動相:pH6.0のクエン酸緩衝液100mLに液体クロマトグラム用メタノール400mLを加え混合する。
流量:1.5mL/min
薬剤担持量(薬剤/総脂質のモル比):リポソームに内封されたKRN5500濃度を上記総脂質濃度に対する上記薬剤濃度の比から、薬剤/総脂質のモル比で示す。
粒子径(nm):リポソーム分散液20μLを生理食塩水3mLに希釈し、Zatasizer 3000HS(Malvern Instruments)またはZatasizer Nano ZS90で測定した平均粒子径。
EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention should not be limited to these Examples.
Each concentration and particle diameter of the drug-encapsulated liposome prepared in each example were determined as follows.
Phospholipid concentration (mg / mL): Phospholipid concentration in the liposome suspension quantified using high performance liquid chromatography.
Cholesterol concentration (mg / mL): Cholesterol concentration in a liposome suspension quantified using high performance liquid chromatography.
Total lipid concentration (mol / L): Total molar concentration (mM) of lipid as a membrane component calculated from the above phospholipid concentration and cholesterol concentration. This total lipid does not include lipids in PEG derivatives for introducing PEG (in the example, DSPE in PEG-DSPE).
Drug concentration (mg / mL): About the solution obtained by diluting the preparation obtained above with RO water (reverse osmosis membrane water) so that the phospholipid concentration is about 20 mg / mL, and further diluting 20 times with methanol, Absorbance at 264 nm was quantified by high performance liquid chromatography using an ultraviolet absorptiometer. The concentration of the enclosed KRN5500 is shown as drug amount (mg) / total preparation amount (mL).
High performance liquid chromatography test conditions:
Column: A stainless steel tube having an inner diameter of 6 mm and a length of 15 cm is filled with fully porous spherical silica gel (Nacalai Tesque COSMOSIL 5C18-ARII).
Column temperature: around 30 ° C. Mobile phase: 400 mL of liquid chromatogram methanol is added to and mixed with 100 mL of citrate buffer at pH 6.0.
Flow rate: 1.5mL / min
Drug loading (drug / total lipid molar ratio): The concentration of KRN5500 encapsulated in liposomes is shown as the drug / total lipid molar ratio from the ratio of the drug concentration to the total lipid concentration.
Particle size (nm): average particle size measured with a Zatasizer 3000HS (Malvern Instruments) or Zatasizer Nano ZS90 after diluting 20 μL of the liposome dispersion in 3 mL of physiological saline.
 以下に使用した各成分の略称および分子量を示す。
DSPC:ジステアロイルフォスファチジルコリン(分子量790.2、日油社製)
HSPC:水素添加大豆フォスファチジルコリン(分子量790、リポイド(Lipoid)社製SPC3)
HEPC:水素卵黄大豆フォスファチジルコリン(分子量777、日油社製)
DPPC:ジパルミトイルフォスファチジルコリン(分子量734.0、日油社製)
DMPC:ジミリストイルフォスファチジルコリン(分子量677.9、日油社製)
Chol:コレステロール(分子量388.66、Solvay社製)
PEG5000‐DSPE:ポリエチレングリコール(分子量5000)‐フォスファチジルエタノールアミン(分子量6081、日油社製)
PEG2000‐DSPE:ポリエチレングリコール(分子量2000)‐フォスファチジルエタノールアミン(分子量2927、日油社製)
KRN5500(分子量589.7、協和発酵キリン社製)
The abbreviations and molecular weights of the components used are shown below.
DSPC: Distearoyl phosphatidylcholine (molecular weight 790.2, manufactured by NOF Corporation)
HSPC: hydrogenated soybean phosphatidylcholine (molecular weight 790, Lipoid SPC3)
HEPC: Hydrogen egg yolk soybean phosphatidylcholine (molecular weight 777, manufactured by NOF Corporation)
DPPC: dipalmitoylphosphatidylcholine (molecular weight 734.0, manufactured by NOF Corporation)
DMPC: Dimyristoylphosphatidylcholine (molecular weight 677.9, manufactured by NOF Corporation)
Chol: cholesterol (molecular weight 388.66, manufactured by Solvay)
PEG 5000 -DSPE: Polyethylene glycol (molecular weight 5000) -phosphatidylethanolamine (molecular weight 6081, manufactured by NOF Corporation)
PEG 2000 -DSPE: Polyethylene glycol (molecular weight 2000) -phosphatidylethanolamine (molecular weight 2927, manufactured by NOF Corporation)
KRN5500 (molecular weight 589.7, manufactured by Kyowa Hakko Kirin Co., Ltd.)
 ここで、図面に用いた表記と以下の実施例での調製例との関係を記載する。
HSPC/Chol-リポ:調製例1、HEPC/Chol-リポ:調製例2、
DPPC/Chol-リポ:調製例3、DMPC/Chol-リポ:調製例4、
HSPC(PEG0.75mol%)-リポ:調製例5、
HSPC(PEG2.0mol%)-リポ:調製例6、DMPC/Chol-リポ:調製例17、
HEPC/Chol-リポ:調製例18、DMPC/ Chol(PEG0.75mol%)-リポ:調製例19、
DMPC/ Chol(PEG1.5mol%)-リポ:調製例20、
DMPC/ Chol(PEG2.0mol%)-リポ:調製例21、
DMPC/ Chol(PEG1.5mol%)-Lリポ:調製例22、
DMPC/ Chol(PEG2000-4.0mol%)-リポ:調製例23、HEPC -リポ:調製例24。
Here, the relationship between the notation used in the drawings and the preparation examples in the following examples will be described.
HSPC / Chol-Lipo: Preparation Example 1, HEPC / Chol-Lipo: Preparation Example 2,
DPPC / Chol-Lipo: Preparation Example 3, DMPC / Chol-Lipo: Preparation Example 4,
HSPC (PEG 0.75 mol%)-Lipo: Preparation Example 5,
HSPC (PEG 2.0 mol%)-Lipo: Preparation Example 6, DMPC / Chol-Lipo: Preparation Example 17,
HEPC / Chol-Lipo: Preparation Example 18, DMPC / Chol (PEG 0.75 mol%)-Lipo: Preparation Example 19,
DMPC / Chol (PEG 1.5 mol%)-lipo: Preparation Example 20,
DMPC / Chol (PEG 2.0 mol%)-lipo: Preparation Example 21,
DMPC / Chol (PEG 1.5 mol%)-L lipo: Preparation Example 22,
DMPC / Chol (PEG2000-4.0 mol%)-lipo: Preparation Example 23, HEPC-lipo: Preparation Example 24.
(調製例1~6)KRN5500リポソーム製剤の調製
 KRN5500封入リポソーム製剤を達成しうる膜処方を確認するために、アシル鎖の鎖長の異なるリン脂質を用いてリポソーム化を試みた。また、異なるリン脂質/Chol比を有する膜処方についても試みた。調製例1、5、6は100mLスケールで調製し、調製例2、3および4は10mLスケールで製造した。なお、下記は100mLスケールでの調製法を示す。
(1)KRN5500リポソーム生成
 各種類のリン脂質、コレステロール、KRN5500を表1に示す所定のモル比となるように秤量し、無水エタノール10mLを添加し、加温溶解した。
 得られた脂質/薬剤混合エタノール溶液10mLに、約70℃に加温した内水相(pH6.5の10mMクエン酸一水和物/0.9%塩化ナトリウム溶液)90mLを添加し、超音波装置にて撹拌して粗リポソーム懸濁液を調製した。この粗リポソーム懸濁液を、約70℃に加温したエクストルーダー(The Extruder T.100、Lipexbiomembranes Inc.)に取り付けたフィルター(孔径0.2μm×3回、0.1μm×10回、Whatman社)を順次通し、リポソーム懸濁液を調製した。
(2)表面修飾
 上記リポソーム懸濁液を加温状態で維持したまま、PEG5000-DSPEの水溶液(37.7mg/mL)を、表1に示すPEG導入率となるように直ちに添加し、加温撹拌することで、リポソームの膜表面(外表面)をPEG修飾した。加温終了後のリポソーム懸濁液は、速やかに氷冷した。
 なお、上記PEG導入率(mol%)=(PEG5000-DSPE/総脂質)×100
である。ここでの総脂質は、PEG誘導体中の脂質(PEG5000-DSPE中のDSPE)は含まない。
(3)外液置換
 上記氷冷したPEG修飾後のリポソーム懸濁液を、外水相溶液(10mMクエン酸一水和物/0.9%塩化ナトリウム溶液(pH6.5))を用いてクロスフローろ過システム(ビバフロー MW100,000)により外液置換を行った。なお、高濃度のKRN5500リポソーム製剤を得るために濃縮を行った(調製例1、5、6)。
(4)ろ過滅菌
 外液置換後の上記リポソーム懸濁液を用いてろ過滅菌を行い無菌化し、最終製剤とした。ろ過滅菌後のリポソーム懸濁液を高速液体クロマトグラフィーを用いて、リン脂質、CholおよびKRN5500濃度を定量した。リン脂質濃度、Chol濃度の総和を総脂質濃度とし、封入されたKRN5500量を求めた。
 上記で得られたKRN5500リポソーム製剤の膜組成比、薬剤担持量(薬剤濃度、薬剤/総脂質モル比)粒子径を表1に示す。
 調製例1~4に示すように、コレステロールを約半量含む膜処方の薬剤担持量は、リン脂質のアシル鎖の鎖長に関わらず、ほぼKRN5500/総脂質量=0.01(mol/mol)を示した。一方、コレステロールを含まない膜処方(調製例5および6)は、脂質/薬剤混合エタノール溶液の調製時において、仕込みのKRN5500量を約2倍に増やすことができるため、得られたリポソーム製剤の薬剤担持量も約2倍に増加した。
 また、製剤化における脂質組成比の影響を検討した結果、表2に示すように、リン脂質のアシル鎖の鎖長、および膜組成比によってリポソーム化が困難な膜処方があることが明らかとなった。リン脂質のアシル鎖の鎖長が長い場合は(ジステアロイル、パルミトイルステアロイル)コレステロールを含まなくてもリポソーム化することができるが、短い場合は(ジパルミトイル、ジミリストイル)、コレステロールを含まないとゲル化が生じ、製剤化できないことが明らかとなった。特にジミリストイル(C14)を用いる場合は、リン脂質に対して約半量のコレステロールが必要であることが明らかとなった。これは、コレステロールの膜安定化効果が影響していると考えられる。すなわち、アシル鎖の鎖長が長ければ疎水性相互作用が強まるため、コレステロールによる膜安定化効果がなくてもKRN5500を安定に内封することができると推測される。一方、アシル鎖の鎖長が短いと疎水性相互作用が弱まり、膜の流動性が大きくなるため、KRN5500を膜に安定に内封することができず、その結果、KRN5500自体の凝集が起こり、ゲル化してしまうと推測される。
(Preparation Examples 1 to 6) Preparation of KRN5500 Liposome Formulation In order to confirm a membrane formulation capable of achieving a KRN5500 encapsulated liposome formulation, liposome formation was attempted using phospholipids having different chain lengths of acyl chains. We also tried membrane formulations with different phospholipid / Chol ratios. Preparation Examples 1, 5, and 6 were prepared on a 100 mL scale, and Preparation Examples 2, 3, and 4 were manufactured on a 10 mL scale. In addition, the following shows the preparation method in a 100 mL scale.
(1) Production of KRN5500 liposomes Each type of phospholipid, cholesterol, and KRN5500 were weighed so as to have a predetermined molar ratio shown in Table 1, and 10 mL of absolute ethanol was added and dissolved by heating.
To 10 mL of the obtained lipid / drug mixed ethanol solution, 90 mL of an inner aqueous phase (10 mM citric acid monohydrate / 0.9% sodium chloride solution at pH 6.5) heated to about 70 ° C. was added, and ultrasonic waves were added. A crude liposome suspension was prepared by stirring in an apparatus. This crude liposome suspension was filtered with a filter (pore size 0.2 μm × 3 times, 0.1 μm × 10 times, Whatman) attached to an extruder (The Extruder T.100, Lipexbiomembranes Inc.) heated to about 70 ° C. ) In order to prepare a liposome suspension.
(2) Surface modification While maintaining the above-mentioned liposome suspension in a heated state, an aqueous solution of PEG 5000 -DSPE (37.7 mg / mL) was immediately added so as to achieve the PEG introduction rate shown in Table 1, The membrane surface (outer surface) of the liposome was PEG-modified by warm stirring. The liposome suspension after the heating was quickly cooled with ice.
The PEG introduction rate (mol%) = (PEG 5000 −DSPE / total lipid) × 100
It is. The total lipid here does not include lipids in PEG derivatives (DSPE in PEG 5000 -DSPE).
(3) External solution replacement The ice-cooled liposome suspension after PEG modification is crossed with an external aqueous phase solution (10 mM citric acid monohydrate / 0.9% sodium chloride solution (pH 6.5)). External liquid replacement was performed by a flow filtration system (Vivaflow MW 100,000). In addition, it concentrated in order to obtain a high concentration KRN5500 liposome formulation (Preparation Examples 1, 5, and 6).
(4) Filtration sterilization Filtration sterilization was carried out using the above-mentioned liposome suspension after replacement with an external solution to obtain a final preparation. Phospholipid, Chol, and KRN5500 concentrations were quantified in the liposome suspension after filter sterilization using high performance liquid chromatography. The total of the phospholipid concentration and the Chol concentration was taken as the total lipid concentration, and the amount of encapsulated KRN5500 was determined.
Table 1 shows the membrane composition ratio and drug loading (drug concentration, drug / total lipid molar ratio) particle size of the KRN5500 liposome preparation obtained above.
As shown in Preparation Examples 1 to 4, the drug loading of the membrane formulation containing about half of the cholesterol is almost KRN5500 / total lipid = 0.01 (mol / mol) regardless of the chain length of the acyl chain of the phospholipid. showed that. On the other hand, the membrane formulation containing no cholesterol (Preparation Examples 5 and 6) can increase the amount of KRN5500 charged to about twice when preparing a lipid / drug mixed ethanol solution. The loading amount also increased by a factor of about 2.
Further, as a result of examining the influence of the lipid composition ratio in the formulation, as shown in Table 2, it became clear that there is a membrane formulation that is difficult to form into a liposome depending on the chain length of the acyl chain of the phospholipid and the membrane composition ratio. It was. If the chain length of the phospholipid acyl chain is long (distearoyl, palmitoyl stearoyl), it can be made into liposomes without cholesterol, but if it is short (dipalmitoyl, dimyristoyl), it contains no cholesterol. It became clear that it could not be formulated. In particular, when dimyristoyl (C 14 ) was used, it was found that about half the amount of cholesterol was required for the phospholipid. This is thought to be due to the membrane stabilization effect of cholesterol. That is, if the chain length of the acyl chain is long, the hydrophobic interaction is strengthened. Therefore, it is presumed that KRN5500 can be stably encapsulated even if there is no membrane stabilization effect by cholesterol. On the other hand, when the chain length of the acyl chain is short, the hydrophobic interaction is weakened and the fluidity of the membrane is increased, so that KRN5500 cannot be stably encapsulated in the membrane, and as a result, aggregation of KRN5500 itself occurs. Presumed to gel.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本発明のリポソームにおいて、最大薬剤封入量を得るために必要な仕込み量を調べた。
(調製例7~16)
 HSPC/Chol(モル比)=54/46膜処方において、仕込みのKRN5500の量を、薬剤/総脂質(mol/mol)比で、順に0.002、0.003、0.005、0.007、0.008、0.009、0.010、0.012、0.014および0.016となる量に変えた以外は、調製例1~4と同様にしてKRN5500リポソーム製剤を得た。得られたKRN5500リポソーム製剤の薬剤/総脂質および粒子径を表3に示す。また、図1は薬剤担持量を、図2は封入効率のグラフを示す。
 KRN5500仕込み量を薬剤/総脂質(mol/mol)=0.002から0.016に変えてリポソーム化の検討を行った結果、図1に示すように、仕込みのKRN5500量の増加と供に、封入量の増加が認められた。仕込みのKRN5500量をさらに増やすことが可能であれば、封入量もさらに増やせることが期待されるが、整粒化工程において目詰まりが発生したり、あるいはKRN5500が脂質エタノール溶液に溶解しなくなったりするため、これ以上仕込み量を増やすことは困難である。したがって、該処方における最大薬剤担持量は、総脂質に対して約1mol%であることが明らかとなった。この結果は他のリン脂質を用いても同様であった。また、KRN5500の封入効率は、仕込み量に関わらず、60~80%の値を示した(図2)。
In the liposome of the present invention, the preparation amount necessary to obtain the maximum amount of drug encapsulated was examined.
(Preparation Examples 7 to 16)
In the HSPC / Chol (molar ratio) = 54/46 membrane formulation, the amount of KRN5500 charged is 0.002, 0.003, 0.005, 0.007 in order of drug / total lipid (mol / mol) ratio. , 0.008, 0.009, 0.010, 0.012, 0.014, and 0.016 except that the amount was changed to an amount of 0.06, 0.016, and 0.016 to obtain a KRN5500 liposome preparation. Table 3 shows the drug / total lipid and particle size of the obtained KRN5500 liposome preparation. FIG. 1 shows a drug loading amount, and FIG. 2 shows a graph of encapsulation efficiency.
As a result of studying liposome formation by changing the amount of KRN5500 charged from drug / total lipid (mol / mol) = 0.002 to 0.016, as shown in FIG. 1, with the increase in the amount of KRN5500 charged, An increase in the amount enclosed was observed. If it is possible to further increase the amount of KRN5500 charged, it is expected that the encapsulated amount can be further increased. However, clogging may occur in the granulation process, or KRN5500 may not be dissolved in the lipid ethanol solution. For this reason, it is difficult to increase the charged amount further. Therefore, it was revealed that the maximum drug loading in the formulation was about 1 mol% with respect to the total lipid. This result was the same when other phospholipids were used. The encapsulation efficiency of KRN5500 showed a value of 60 to 80% regardless of the charged amount (FIG. 2).
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[試験例1]異なる脂質組成を有するリポソーム製剤の薬物動態(血中滞留性)
 調製例1、2、4、5、6で調製されたKRN5500リポソーム製剤およびKRN5500単体を、KRN5500量として0.2mg/kgでラットに投与した。投与後、0.25、1、2、4、6、8、12、24、48時間経過後に採血し、遠心分離(5,000 rpm、10分、4℃)して血漿を採取した。引き続き、血漿40μLにメタノール200μLを添加し、遠心分離(10,000rpm、10分、4℃)して上清を採取した。採取した溶液について、264nmでの吸光度を、紫外吸光光度計を用いて高速液体クロマトグラフィーにて定量し、各血漿中のKRN5500濃度を求めた。なお、高速液体クロマトグラフィーの試験条件は、リポソームに内封されたKRN5500濃度の条件と同様である。その結果を表4および図3に示す。
 血漿中のKRN5500濃度は、KRN5500単体の場合には、投与後急激に減少し、0.25および1時間のみ検出された。一方、リポソーム製剤はいずれも、投与後48時間まで検出され、KRN5500単体に比べて顕著な滞留時間の延長が認められた。「% dose」で表記すると、KRN5500単体は投与1時間後、約5~6%であるのに対して、リポソーム製剤は70~80%であった。また、血漿中濃度-時間曲線下面積(AUC)は、リポソーム製剤はKRN5500単体に比べて60~100倍大きかった。これらの結果より、本発明におけるリポソーム製剤は、いずれの膜処方においても、血漿中KRN5500濃度を長時間高濃度で維持することが可能であることを確認できた。ただし、コレステロールを含まないHSPC100mol%処方の血中滞留性は、コレステロールを含む処方と比べて、やや低下する傾向があり、PEG5000-DSPEの修飾率が0.75mol%の場合は、投与後、直ちに分布し、再び血中に現れる血中動態を示し、PEG5000-DSPEの修飾率を2.0mol%に増加することにより、初期に観察された分布が消失し、血中滞留性の改善が認められた。
[Test Example 1] Pharmacokinetics of liposome preparations with different lipid compositions (retention in blood)
The KRN5500 liposome preparation prepared in Preparation Examples 1, 2, 4, 5 and 6 and KRN5500 alone were administered to rats at a dose of 0.2 mg / kg as the amount of KRN5500. After administration, blood was collected after 0.25, 1, 2, 4, 6, 8, 12, 24, and 48 hours, and plasma was collected by centrifugation (5,000 rpm, 10 minutes, 4 ° C.). Subsequently, 200 μL of methanol was added to 40 μL of plasma, and the supernatant was collected by centrifugation (10,000 rpm, 10 minutes, 4 ° C.). The absorbance at 264 nm of the collected solution was quantified by high performance liquid chromatography using an ultraviolet absorptiometer, and the concentration of KRN5500 in each plasma was determined. The high-performance liquid chromatography test conditions are the same as the KRN5500 concentration conditions encapsulated in the liposomes. The results are shown in Table 4 and FIG.
In the case of KRN5500 alone, the KRN5500 concentration in plasma decreased rapidly after administration, and was detected only for 0.25 and 1 hour. On the other hand, all liposome preparations were detected up to 48 hours after administration, and a significant increase in residence time was observed compared to KRN5500 alone. In terms of “% dose”, KRN5500 alone was about 5-6% 1 hour after administration, whereas the liposome preparation was 70-80%. In addition, the area under the plasma concentration-time curve (AUC) was 60 to 100 times larger in the liposome preparation than in the KRN5500 alone. From these results, it was confirmed that the liposome preparation of the present invention can maintain the plasma KRN5500 concentration at a high concentration for a long time in any membrane formulation. However, the retention in blood of the HSPC 100 mol% prescription containing no cholesterol tends to be slightly lower than that of the prescription containing cholesterol, and when the modification rate of PEG 5000 -DSPE is 0.75 mol%, Immediate distribution, showing blood kinetics appearing again in the blood, and by increasing the modification rate of PEG 5000 -DSPE to 2.0 mol%, the initially observed distribution disappears, and the retention in blood is improved. Admitted.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[試験例2]異なる脂質組成を有するリポソーム製剤の殺細胞効果
 in vitroでの殺細胞効果評価用には、調製例1、2、3、6および下記に示す調製例17のリポソーム製剤を用いた。
(調製例17)
 膜処方がDMPC/Chol(モル比)=54/46となるようにDMPC、CholおよびKRN5500を秤量し、調製例1~6と同様にしてKRN5500リポソーム製剤を得た(100mLスケール)。得られたKRN5500リポソーム製剤の薬剤/総脂質および粒子径を表5に示す。
[Test Example 2] Cytocidal effect of liposome preparation having different lipid composition For evaluation of cytocidal effect in vitro, the liposome preparations of Preparation Examples 1, 2, 3, 6 and Preparation Example 17 shown below were used. .
(Preparation Example 17)
DMPC, Chol, and KRN5500 were weighed so that the film formulation was DMPC / Chol (molar ratio) = 54/46, and KRN5500 liposome preparations were obtained in the same manner as in Preparation Examples 1 to 6 (100 mL scale). Table 5 shows the drug / total lipid and particle size of the obtained KRN5500 liposome preparation.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 図4は、調製例1、2、3、6、17にて調製されたKRN5500リポソーム製剤のin vitroでの殺細胞効果を示す。
 ヒト大腸癌株Colo205を10%ウシ胎児血清を含むRPMI培地で、2000cells/90マイクロ L/wellとなるように96wellプレートに蒔き、37℃、5%COにて5時間培養した。被験物質は、KRN5500はDMSOを、KRN5500リポソーム製剤はpH6.5の10mMクエン酸/0.9%塩化ナトリウム溶液を媒体とし、最終濃度(KRN5500として0から10000nMまで10濃度)の200倍の希釈系列を調製し、これをRPMI培地にて20倍希釈した被験物質溶液(検体)を調製した。細胞を蒔いた96wellプレートに、検体を10マイクロ L/well添加し、37℃、5%COにて72時間培養した後、Cell Counting Kit(DOJINDO)を10マイクロ L/well添加し、再び37℃、5%COにて約20分間培養し、吸光度(450nm、参照波長650nm)を測定した。細胞増殖抑制作用は、細胞(-)、培地+被験物質の媒体のみのwellの吸光度(A)を100%阻害、細胞(+)、培地+被験物質の媒体のみのwellの吸光度(B)を0%阻害とし、検体による細胞増殖抑制作用は、殺細胞効果(%)=100×(B-検体吸光度)/(B-A) で算出した。
 膜組成がリン脂質/Chol比=54/46(モル比)のKRN5500リポソーム製剤の殺細胞効果は、リン脂質のアシル鎖の鎖長が短いほど活性が高かった(図4)。これは、リン脂質のアシル鎖の鎖長が短いほど、アシル鎖の鎖長とKRN5500の脂肪酸側鎖の疎水性相互作用が弱く、KRN5500がリポソームから放出しやすいためだと考えられる。また、コレステロールを含まないHSPC100mol%処方においても、KRN5500単体と同程度の高い活性が得られた。
FIG. 4 shows the cell killing effect in vitro of the KRN5500 liposome preparation prepared in Preparation Examples 1, 2, 3, 6, and 17.
Human colon cancer strain Colo205 was plated on a 96-well plate in RPMI medium containing 10% fetal bovine serum so as to be 2000 cells / 90 micro L / well, and cultured at 37 ° C., 5% CO 2 for 5 hours. The test substance is DMSO for KRN5500, and 10 mM citric acid / 0.9% sodium chloride solution at pH 6.5 for KRN5500 liposome preparation, 200-fold dilution series of final concentration (10 concentrations from 0 to 10000 nM as KRN5500) A test substance solution (specimen) was prepared by diluting it 20 times with RPMI medium. The sample was added to a 96-well plate containing 10 microliters / well, cultured at 37 ° C. and 5% CO 2 for 72 hours, and then added with Cell Counting Kit (DOJINDO) 10 microliters / well. ° C., and cultured in 5% CO 2 for about 20 minutes, the absorbance was measured (450 nm, reference wavelength 650 nm). Cell growth inhibitory action is 100% inhibition of cell (-), medium + test substance medium well absorbance (A), cell (+), medium + test substance medium well absorbance (B). With 0% inhibition, the cell growth inhibitory action by the sample was calculated by the cell killing effect (%) = 100 × (B−sample absorbance) / (BA).
The cell killing effect of the KRN5500 liposome preparation having a membrane composition of phospholipid / Chol ratio = 54/46 (molar ratio) was higher as the chain length of the phospholipid acyl chain was shorter (FIG. 4). This is probably because the shorter the chain length of the acyl chain of the phospholipid, the weaker the hydrophobic interaction between the chain length of the acyl chain and the fatty acid side chain of KRN5500, and KRN5500 is more likely to be released from the liposome. Further, even in the HSPC 100 mol% formulation not containing cholesterol, the same high activity as that of KRN5500 alone was obtained.
[試験例3]異なる脂質組成を有するリポソーム製剤の抗腫瘍効果(単回投与)
 ヒト大腸癌細胞(CoL-1)における単回投与での抗腫瘍効果には、調製例1、5、17と下記に示す調製例18のリポソーム製剤を用いた。
(調製例18)
 膜処方がHEPC/Chol(モル比)=54/46となるようにHEPC、CholおよびKRN5500を秤量し、調製例1~6と同様にしてKRN5500リポソーム製剤を得た(100mLスケールで調製)。得られたKRN5500リポソーム製剤の薬剤/総脂質および粒子径を表6に示す。
[Test Example 3] Antitumor effect of liposome preparation having different lipid composition (single administration)
For the antitumor effect of a single dose in human colon cancer cells (CoL-1), the liposome preparations of Preparation Examples 1, 5, and 17 and Preparation Example 18 shown below were used.
(Preparation Example 18)
HEPC, Chol, and KRN5500 were weighed so that the membrane formulation was HEPC / Chol (molar ratio) = 54/46, and a KRN5500 liposome preparation was obtained in the same manner as in Preparation Examples 1 to 6 (prepared on a 100 mL scale). Table 6 shows the drug / total lipid and particle size of the obtained KRN5500 liposome preparation.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 ヒト大腸癌株CoL-1腫瘍はヌードマウス(BALB/C、nu/nu、♀)の皮下に接種して通常飼育にて植え継いだ。試験用にヌードマウス背側部皮下に腫瘍断片を接種して通常飼育し、腫瘍体積が100mm前後に達した段階で腫瘍体積が同程度となるようにn=4で群設定を行った(Day1)。
 調製例1、5、17、18で調製したKRN5500リポソーム製剤およびKRN5500単体を、1mg/mLとなるように媒体〔KRN5500の媒体(N,N-ジメチルアセトアミド 3.75%、ポリソルベート80 3.0%、2-アミノエタノール 0.45%、生理食塩水92.8%)、リポソーム製剤の媒体(pH6.5の10mMクエン酸/0.9%塩化ナトリウム溶液)〕で調製し、10mg/kgで静脈内投与した。
KRN5500の媒体群およびリポソーム製剤の媒体群を対照群とした〔Control(Liposome媒体)、Control(KRN5500媒体)〕。
 腫瘍体積は、Day1より2~3日間隔で腫瘍の長径(Lmm)、短径(Wmm)、厚さ(Hmm)をノギスで測定し、L×W×H/2mmで算出した。
 図5は、投与後の経過日数における腫瘍体積を示す。
 ヒト大腸癌に対して、リポソーム製剤およびKRN5500単体は、いずれも対照群と比較して有意な腫瘍増殖抑制効果を示した。また、リポソーム製剤は、KRN5500単体に比べ高い持続的な抗腫瘍効果が得られた。特に、調製例5および17のリポソーム製剤の最大抗腫瘍効果はKRN5500単体と同程度であり、かつKRN5500単体よりも著しい持続効果が認められた。
The human colon cancer strain CoL-1 tumor was inoculated subcutaneously into nude mice (BALB / C, nu / nu, pupa) and transplanted in normal breeding. For the test, a nude mouse was subcutaneously inoculated with the tumor fragment on the dorsal skin and reared normally, and when the tumor volume reached around 100 mm 3 , a group setting was performed with n = 4 so that the tumor volume became comparable ( Day 1).
The KRN5500 liposome preparation prepared in Preparation Examples 1, 5, 17, and 18 and KRN5500 alone were mixed with a medium [KRN5500 medium (N, N-dimethylacetamide 3.75%, polysorbate 80 3.0% , 2-aminoethanol 0.45%, physiological saline 92.8%), liposome preparation medium (pH 6.5, 10 mM citric acid / 0.9% sodium chloride solution)] and intravenous at 10 mg / kg It was administered internally.
The medium group of KRN5500 and the medium group of liposome preparation were used as the control group [Control (Liposome medium), Control (KRN5500 medium)].
The tumor volume was calculated as L × W × H / 2 mm 3 by measuring the major axis (Lmm), minor axis (Wmm), and thickness (Hmm) of the tumor at intervals of 2 to 3 days from Day 1 with calipers.
FIG. 5 shows the tumor volume in days elapsed after administration.
For human colon cancer, the liposome preparation and KRN5500 alone showed a significant tumor growth inhibitory effect compared to the control group. In addition, the liposome preparation showed a high sustained antitumor effect as compared with KRN5500 alone. In particular, the maximum antitumor effect of the liposome preparations of Preparation Examples 5 and 17 was similar to that of KRN5500 alone, and a remarkable sustained effect was recognized as compared with KRN5500 alone.
[試験例4]異なる脂質組成を有するリポソーム製剤の抗腫瘍効果(反復投与)
 ヒト肺癌細胞株PC-9を10%ウシ胎児血清を含むRPMI培地にて培養し、PBSにて洗浄後、10%Tripsin-EDTA処理し、RPMI培地にて2回洗浄後、ヌードマウス(BALB/C、nu/nu、♀)の背側部皮下に5×10cells/100マイクロ L/個体となるように接種し通常飼育した。腫瘍体積が100mm前後に達した段階で腫瘍体積が同程度となるようにn=4で群設定を行った(Day1)。
 Day1より7日間隔で計4回(Day1、8、15、22)、調製例6ならびに17で調製したリポソーム製剤およびKRN5500単体をそれぞれの媒体で1mg/mLとなるように調製し、10mg/kgを静脈内投与した。KRN5500の媒体群およびリポソーム製剤の媒体群を対照群とした〔Control(リポソーム媒体)、Control(KRN5500媒体)〕。
 Day1より、2~3日間隔で試験例3に準じて腫瘍体積を測定し、またマウス体重(g)を、体重測定値(g)-腫瘍体積(mm)/1000で算出し、Day1の値を1とした体重変化率を指標とした。
 投与後1、3、5、8、10、12、15、17、19、22、24日後に推定腫瘍体積およびマウスの体重を求めた。その結果を表7ならびに図6および図7に示す。
[Test Example 4] Antitumor effect of liposome preparation having different lipid composition (repeated administration)
Human lung cancer cell line PC-9 was cultured in RPMI medium containing 10% fetal bovine serum, washed with PBS, treated with 10% Tripsin-EDTA, washed twice with RPMI medium, and then nude mice (BALB / C, nu / nu, pupa) were inoculated subcutaneously in the dorsal part of the dorsal side so as to be 5 × 10 6 cells / 100 micro L / individual and reared normally. Group setting was performed with n = 4 so that the tumor volume became comparable when the tumor volume reached around 100 mm 3 (Day 1).
7 times from Day 1 ( Day 1, 8, 15, 22) in total, the liposome preparation prepared in Preparation Examples 6 and 17 and KRN5500 alone were prepared to 1 mg / mL in each medium, and 10 mg / kg Was administered intravenously. The medium group of KRN5500 and the medium group of liposome preparation were used as the control group [Control (liposome medium), Control (KRN5500 medium)].
From Day 1, tumor volume was measured at intervals of 2 to 3 days according to Test Example 3, and mouse body weight (g) was calculated as body weight measurement value (g) −tumor volume (mm 3 ) / 1000. The weight change rate with a value of 1 was used as an index.
Estimated tumor volume and mouse body weight were determined 1, 3, 5, 8, 10, 12, 15, 17, 19, 22, 24 days after administration. The results are shown in Table 7 and FIGS.
相対腫瘍体積(RTV)=Day Xの腫瘍体積/Day 1の腫瘍体積
腫瘍増殖抑制率(TGIR、(%))=(1-被験物質投与群のRTV/Control群のRTV)×100
 ヒト肺癌細胞に対して、リポソーム製剤およびKRN5500単体は、いずれも対照群と比較して有意な腫瘍増殖抑制効果を示した。さらに、リポソーム製剤はいずれの処方もKRN5500単体に比べて高い抗腫瘍効果が得られ、かつ持続的な効果が認められた。特にDMPC/Chol膜処方のリポソーム製剤は、最も高い抗腫瘍効果が得られた。また、リポソーム製剤はマウスの体重にほとんど影響を与えなかったのに対して、KRN5500単体は投与に伴う一過性の体重減少が観察された。これらの結果より、KRN5500をリポソーム化することで、抗腫瘍効果を高めることができ、かつ副作用も軽減できることが明らかとなった。尚、他の処方のリポソーム製剤もマウスの体重変化にはほとんど影響を及ぼさず、副作用を軽減できることが明らかとなった。また、ラット急性毒性試験の結果では、リポソーム化することによりKRN5500単体で認められた急性死を回避することができ、また肝臓の白色化を軽減できることが明らかとなった。
Relative tumor volume (RTV) = Day X tumor volume / Day 1 tumor volume Tumor growth inhibition rate (TGIR, (%)) = (1−RTV of test substance administration group / RTV of Control group) × 100
For human lung cancer cells, both the liposome preparation and KRN5500 alone showed a significant tumor growth inhibitory effect compared to the control group. Furthermore, in any of the liposome preparations, a high antitumor effect was obtained as compared with KRN5500 alone, and a sustained effect was recognized. In particular, the liposome preparation of DMPC / Chol film formulation has the highest antitumor effect. In addition, the liposome preparation hardly affected the body weight of the mouse, whereas KRN5500 alone was observed to have a transient weight loss accompanying administration. From these results, it was clarified that the antitumor effect can be enhanced and the side effects can be reduced by making KRN5500 into liposomes. In addition, it became clear that the liposome preparation of other prescriptions has little influence on the body weight change of a mouse | mouth, and can reduce a side effect. In addition, as a result of the rat acute toxicity test, it was found that the acute death observed with KRN5500 alone can be avoided and the whitening of the liver can be reduced by liposome formation.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表8に示すKRN5500リポソーム製剤を、調製例1~6と同様にして得た。尚、調製例19~22および24は、修飾量の異なるPEG5000-DSPEのリポソーム製剤を調製し、調製例23は、PEGの分子量の異なるPEG2000-DSPEのリポソーム製剤を調製した。また、調製例22のみ、約200nmの大きなリポソーム製剤を得た。その結果を表8に示す。
 粒子径が大きくなるとKRN5500の封入量が上がり、薬剤/総脂質比が向上することが明らかとなった。一方、PEGの分子量は、薬剤/総脂質比に大きく影響しないことが明らかとなった。
The KRN5500 liposome preparation shown in Table 8 was obtained in the same manner as in Preparation Examples 1-6. Preparation Examples 19 to 22 and 24 prepared PEG5000-DSPE liposome preparations with different modification amounts, and Preparation Example 23 prepared PEG2000-DSPE liposome preparations with different PEG molecular weights. In addition, a large liposome preparation of about 200 nm was obtained only in Preparation Example 22. The results are shown in Table 8.
It became clear that the encapsulated amount of KRN5500 increased and the drug / total lipid ratio improved as the particle size increased. On the other hand, it became clear that the molecular weight of PEG does not significantly affect the drug / total lipid ratio.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
[試験例5]異なるPEG修飾量およびPEG鎖を有する水溶性高分子を含有するリポソーム製剤の薬物動態(血中滞留性)
 調製例19~23で調製したKRN5500リポソーム製剤を、KRN5500量として0.2mg/kgでラットに投与した。試験例1と同様に、所定時間経過後に採血し、高速液体クロマトグラフィーにて血漿中のKRN5500濃度を求めた。その結果を図8および表9に示す。
 粒子径の大きなリポソーム製剤(調製例22)は、他と比べて半減期が短く、血中滞留性がやや低下することが明らかとなった。しかしながら大きな低下ではなく、EPR効果を期待できる許容範囲内の血中滞留性を有していることが示唆された。それ以外のリポソーム製剤はいずれも、KRN5500単体に比べて顕著な滞留時間の延長が認められた。
[Test Example 5] Pharmacokinetics of liposome preparation containing water-soluble polymer having different PEG modification amount and PEG chain (retention in blood)
The KRN5500 liposome preparation prepared in Preparation Examples 19 to 23 was administered to rats at a dose of 0.2 mg / kg as the amount of KRN5500. In the same manner as in Test Example 1, blood was collected after a predetermined time, and the KRN5500 concentration in plasma was determined by high performance liquid chromatography. The results are shown in FIG.
It was clarified that the liposome preparation having a large particle size (Preparation Example 22) has a short half-life compared to the others, and the retention in blood is slightly reduced. However, it was not a large decrease, but it was suggested that the blood retention was within an acceptable range in which the EPR effect can be expected. In all other liposome preparations, a significant increase in residence time was observed compared to KRN5500 alone.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
[試験例6]PEG2000-DSPEを含有するKRN5000リポソーム製剤のin vitroでの殺細胞効果
 ヒト大腸癌株Colo205またはHT-29を10%ウシ胎児血清を含むRPMIまたはMcCoy‘s 5A培地で、2000cells/90マイクロ L/wellとなるように96wellプレートに蒔き、37℃、5%COにて5時間培養した。KRN5500および調製例23で調製したKRN5500リポソーム製剤を被験物質とし、KRN5500はDMSOを、リポソーム製剤はpH6.5の10mMクエン酸/0.9%塩化ナトリウム溶液を媒体として最終濃度(KRN5500として0から10000nMまで10濃度)の200倍の希釈系列を調製し、これをRPMIまたはMcCoy’s 5Aにて20倍希釈した被験物質溶液(検体)を調製した。
 細胞を蒔いた96wellプレートに、検体を10マイクロL/well添加し、37℃、5%COにて72時間培養した後、CellTiter-Glo Luminescent Cell Viability Assay (Promega社)試薬を50マイクロL/well添加し、蛍光強度をルミノメーターで測定した。
 細胞増殖抑制作用は、細胞(-)、培地+被験物質の媒体のみの蛍光強度(A)を100%阻害、細胞(+)、培地+被験物質の媒体のみの蛍光強度(B)を0%阻害とし、殺細胞効果(%)= 100×(B-検体蛍光強度)/(B-A) で算出した。尚、空リポソーム製剤(調製例23のリポソームと同一であるがKRN5500を担持していないのでリポソームと媒体とを坦持している)を対照群とした。その結果を図9ならびに図10に示す。いずれの細胞種においても、空リポソーム製剤では殺細胞効果が全く認められなかったが、一方、PEG2000-DSPEを含有するKRN5000リポソーム製剤は、高い活性が認められた。リポソーム製剤のIC50値がKRN5500単体より高いのは、KRN5500がリポソームから放出した後、抑制作用を発現するためだと考えられる。
Test Example 6 In Vitro Cell Killing Effect of KRN5000 Liposome Formulation Containing PEG2000-DSPE Human colon cancer strain Colo205 or HT-29 in RPMI or McCoy's 5A medium containing 10% fetal bovine serum in 2000 cells / 90 were plated in 96well plates at a micro L / well, 37 ℃, and incubated for 5 hours at 5% CO 2. KRN5500 and the KRN5500 liposome preparation prepared in Preparation Example 23 were used as test substances, KRN5500 was DMSO, and the liposome preparation was a final concentration of 10 mM citric acid / 0.9% sodium chloride solution at pH 6.5 (0 to 10,000 nM as KRN5500). A 200-fold dilution series of 10 concentrations was prepared, and a test substance solution (specimen) was prepared by diluting it 20 times with RPMI or McCoy's 5A.
After adding 10 microL / well of the sample to a 96-well plate in which cells were seeded and culturing at 37 ° C., 5% CO 2 for 72 hours, CellTiter-Glo Luminescent Cell Viability Assay (Promega) reagent was added at 50 microL / well. Wells were added and the fluorescence intensity was measured with a luminometer.
Cell growth inhibitory action is 100% inhibition of fluorescence intensity (A) of cells (−) and medium + test substance medium alone, and fluorescence intensity (B) of cells (+) and medium + test substance medium alone is 0%. The cell killing effect (%) = 100 × (B−analyte fluorescence intensity) / (BA) was calculated as inhibition. An empty liposome preparation (same as the liposome of Preparation Example 23 but does not carry KRN5500 and therefore carries liposome and medium) was used as a control group. The results are shown in FIG. 9 and FIG. In any cell type, no cell killing effect was observed with the empty liposome preparation, whereas the KRN5000 liposome preparation containing PEG2000-DSPE showed high activity. The reason why the IC50 value of the liposome preparation is higher than that of KRN5500 alone is thought to be that KRN5500 exhibits an inhibitory action after being released from the liposome.
[試験例7]異なるPEG修飾量およびPEG鎖を有する水溶性高分子を含有するリポソーム製剤の抗腫瘍効果(CoL-1反復投与)
 試験例3と同様に、ヒト大腸癌株CoL-1腫瘍はヌードマウス(BALB/C、nu/nu、♀)の皮下に接種して通常飼育にて植え継いだ。試験用にヌードマウス背側部皮下に腫瘍断片を接種して通常飼育し、腫瘍体積が100mm前後に達した段階で腫瘍体積が同程度となるようにn=5で群設定を行った(Day0)。
 調製例19、20、22、23、24で調製したKRN5500リポソーム製剤およびKRN5500単体を、1mg/mLとなるように媒体で調製し、10mg/kgで静脈内投与した。投与後0、2、4、6、8、10、13、15、18、21日後に、試験例3に準じて腫瘍体積を測定し、またマウス体重(g)を、体重測定値(g)-腫瘍体積(mm)/1000で算出し、Day0の値を1とした体重変化率を指標とした。その結果を図11ならびに図12および図13に示す。尚、対照群はリポソーム製剤の媒体群とし〔Control(Liposome媒体)〕、Control群に対する相対的な腫瘍体積(T/C)は下記の式を用いて算出した。
 Control群に対する相対腫瘍体積(T/C)=Day Xの腫瘍体積/Day XのControl群の腫瘍体積
[Test Example 7] Antitumor effect of liposome preparation containing water-soluble polymer having different PEG modification amount and PEG chain (CoL-1 repeated administration)
Similar to Test Example 3, human colon cancer strain CoL-1 tumors were inoculated subcutaneously into nude mice (BALB / C, nu / nu, rabbits) and were transplanted in normal breeding. For the test, a tumor fragment was subcutaneously inoculated subcutaneously on the dorsal side of nude mice and reared normally. When the tumor volume reached around 100 mm 3 , a group setting was performed with n = 5 so that the tumor volume became comparable ( Day 0).
The KRN5500 liposome preparation prepared in Preparation Examples 19, 20, 22, 23, and 24 and KRN5500 alone were prepared in a medium to 1 mg / mL and intravenously administered at 10 mg / kg. After 0, 2, 4, 6, 8, 10, 13, 15, 18, 21 days after administration, the tumor volume was measured according to Test Example 3, and the mouse body weight (g) was measured as the body weight measurement value (g). -Calculated by tumor volume (mm 3 ) / 1000, and the weight change rate with Day 0 as 1 was used as an index. The results are shown in FIG. 11, FIG. 12, and FIG. The control group was a vehicle group of liposome preparation [Control (Liposome medium)], and the relative tumor volume (T / C) relative to the Control group was calculated using the following formula.
Relative tumor volume (T / C) for the Control group = Tumor volume of Day X / Tumor volume of Control group of Day X
 ヒト大腸癌に対して、リポソーム製剤およびKRN5500単体は、いずれも対照群と比較して有意な腫瘍増殖抑制効果を示した。また、リポソーム製剤は、高い持続的な抗腫瘍効果が得られ、投与開始時の1/2volume以下まで腫瘍退縮が認められた。さらにリポソーム製剤のマウス体重減少はKRN5500単体と比べて大きく抑制され、副作用が軽減されることが明らかとなった。特にPEG2000-DSPEを含有するKRN5500リポソーム製剤は、投与後早い段階で投与開始時の1/2volume以下まで腫瘍退縮が認められ、かつ、その退縮を長い期間維持しつつも体重減少は他の製剤と同様に緩和であることが明らかとなった。一方、KRN5500単体は、高い抗腫瘍効果が認められたものの体重減少(特に投与後2~4日)の増強も認められ、強い副作用が示唆された。 For human colon cancer, the liposome preparation and KRN5500 alone showed a significant tumor growth inhibitory effect compared to the control group. In addition, the liposome preparation had a high and sustained antitumor effect, and tumor regression was observed up to 1/2 volume or less at the start of administration. Furthermore, it became clear that the mouse body weight loss of the liposome preparation was greatly suppressed as compared with KRN5500 alone and the side effects were reduced. In particular, the KRN5500 liposome preparation containing PEG 2000 -DSPE shows tumor regression at an early stage after administration up to 1/2 volume or less at the start of administration, and weight loss while maintaining the regression for a long period of time. It became clear that it was relaxation as well. On the other hand, KRN5500 alone, although having a high antitumor effect, also showed an increase in weight loss (particularly 2 to 4 days after administration), suggesting a strong side effect.
[試験例8]PEG2000-DSPEを含有するKRN5500リポソーム製剤の抗腫瘍効果(CoL-1反復投与)
 試験例6の結果より、強い抗腫瘍効果を発揮しつつ、かつ副作用を最大限軽減することが最も可能なリポソーム製剤はPEG2000-DSPEを含有する製剤であると推測されたため、該リポソーム製剤を用いてヒト大腸癌細胞(CoL-1)における反復投与での抗腫瘍効果の試験を行った。
 調製例23で調製したリポソーム製剤を媒体で1mg/mLとなるように調製し、3.3、5.5、10.0、16.5mg/kgをそれぞれDay0より4日間隔で計3回(Day0、4、8)静脈内投与した。また、5.5、16.5mg/kgをそれぞれDay0より6日間隔で計2回(Day0、6)静脈内投与した。リポソーム製剤の媒体群を対照群とした(Control)。
 Day0、2、4、6、8、10、13、15、18日後に、試験例3に準じて腫瘍体積を測定し、またマウス体重(g)を求めた。Day0より4日間隔で計3回投与した群(q4d×3)の結果を図14ならびに図15および図16に示し、またDay0より6日間隔で計2回投与した群(q6d×2)を図17ならびに図18および図19に示す。
 ヒト大腸癌に対して、リポソーム製剤をDay0より4日間隔で計3回投与した群において、5.5mg/kg以上で、投与開始時の1/2volume以下まで腫瘍退縮が認められた。3.3mg/kgでは、腫瘍増殖抑制効果は認められたものの、1/2volume以下までの退縮には及ばなかった。また、体重減少は、16.5mg/kgでは2回目投与以降、一過性の体重減少が観察されたが、それ以外の3.3、5.5、10.0mg/kgではマウスの体重にほとんど影響を与えなかった。
 一方、リポソーム製剤をDay0より6日間隔で計2回投与した群では、5.5、16.5mg/kgのいずれにおいても投与開始時の1/2volume以下まで腫瘍退縮が認められた。また、いずれの投与量においてもマウスの体重にはほとんど影響を与えなかった。このとから、高投与量の16.5mg/kgでも投与間隔を6日にすることで、2回目投与後の体重減少も回避できることが明らかとなった。
 以上のことから、PEG2000-DSPEを含有するKRN5500リポソーム製剤は、強い抗腫瘍作用を維持しつつ副作用を回避できることが明らかとなった。また、q4d×3とq6d×2において、Day15付近までの抗腫瘍作用は5.5mg/kg間でも、16.5mg/kg間でもほぼ同等であったことから、さらに投与間隔を検討することで、強い抗腫瘍作用を維持しつつより副作用を回避できる可能性があることが示唆された。
[Test Example 8] Antitumor effect of KRN5500 liposome preparation containing PEG2000-DSPE (CoL-1 repeated administration)
From the results of Test Example 6, it was speculated that the liposome preparation that exhibits the strong antitumor effect and can reduce the side effects to the maximum is the preparation containing PEG2000-DSPE. The anti-tumor effect of repeated administration on human colon cancer cells (CoL-1) was tested.
The liposome preparation prepared in Preparation Example 23 was prepared to 1 mg / mL with a medium, and 3.3, 5.5, 10.0, and 16.5 mg / kg were each three times at intervals of 4 days from Day 0 ( Day 0, 4, 8) Intravenous administration. In addition, 5.5 and 16.5 mg / kg were intravenously administered twice at a 6-day interval from Day 0 (Day 0, 6), respectively. The vehicle group of the liposome preparation was used as a control group (Control).
After Day 0, 2, 4, 6, 8, 10, 13, 15, 18 days, the tumor volume was measured according to Test Example 3, and the mouse body weight (g) was determined. The results of the group administered three times at a 4-day interval from Day 0 (q4d × 3) are shown in FIG. 14, FIG. 15 and FIG. 16, and the group administered twice at a 6-day interval from Day 0 (q6d × 2) It is shown in FIG. 17, FIG. 18 and FIG.
In human colorectal cancer, tumor regression was observed at a dose of 5.5 mg / kg or more and ½ volume or less at the start of administration in a group in which the liposome preparation was administered three times at intervals of 4 days from Day 0. At 3.3 mg / kg, although the tumor growth inhibitory effect was recognized, it did not reach the regression to 1/2 volume or less. As for body weight loss, a transient body weight loss was observed after the second administration at 16.5 mg / kg, but other body weights at 3.3, 5.5, 10.0 mg / kg There was little effect.
On the other hand, in the group in which the liposome preparation was administered twice from Day 0 at an interval of 6 days, tumor regression was observed up to 1/2 volume or less at the start of administration in both 5.5 and 16.5 mg / kg. Moreover, there was almost no effect on the body weight of the mice at any dose. From this, it became clear that even at a high dose of 16.5 mg / kg, the weight loss after the second administration can be avoided by setting the administration interval to 6 days.
From the above, it was revealed that the KRN5500 liposome preparation containing PEG2000-DSPE can avoid side effects while maintaining a strong antitumor action. In addition, in q4d × 3 and q6d × 2, the antitumor activity up to around Day 15 was almost the same between 5.5 mg / kg and 16.5 mg / kg. It was suggested that there is a possibility that side effects can be avoided while maintaining a strong antitumor effect.
[試験例9]PEG2000-DSPEを含有するKRN5000リポソーム製剤のラット間歇投与毒性試験
 調製例23で調製したKRN5500リポソーム製剤を媒体で0.3及び1.0 mg/mLになるように調製し、3及び10 mg/kgを雄性のCrl:CD(SD)ラットに6日間隔で2回静脈内投与し、2回目投与の2日後に血液学的検査、血液生化学的検査、剖検及び病理組織学的検査を実施した。また、対照としてリポソーム製剤の媒体及び空リポソームを投与する群を設けた。匹数は各群5匹とした。その結果を表10ならびに表11に示す。
[Test Example 9] Rat rat intermittent administration toxicity test of KRN5000 liposome formulation containing PEG2000-DSPE The KRN5500 liposome formulation prepared in Preparation Example 23 was prepared to 0.3 and 1.0 mg / mL in a medium, and 3 And 10 mg / kg were administered intravenously to male Crl: CD (SD) rats twice at 6-day intervals, and hematologic examination, blood biochemical examination, autopsy and histopathology 2 days after the second administration Examination was carried out. In addition, as a control, a group for administering a liposome preparation medium and empty liposomes was provided. The number of animals was 5 in each group. The results are shown in Table 10 and Table 11.
 体重の増加抑制が、空リポソーム投与群と比べて3mg/kg群では2回目投与後に、10mg/kg群では1回目及び2回目投与後に認められた。血液学的検査では、空リポソーム投与群と比べて10mg/kg群で軽度な貧血及び血小板の高値が認められた。血液生化学的検査では、空リポソーム投与群と比べて総タンパク及びアルブミンの低値、アスパラギン酸アミノトランスフェラーゼ(AST)及びロイシンアミノペプチダーゼ(LAP)の高値が3及び10mg/kg群で、アラニンアミノトランスフェラーゼ(ALT)の高値が10mg/kg群で認められた。程度はいずれも軽微~軽度であった。剖検時の肉眼的検査では、肝臓の軽微な退色(白色化)が3mg/kg群で5例中4例、10mg/kg群で5例全例に認められた。病理組織学的検査では、肝細胞の空胞化が3mg/kg群で5例中3例、10mg/kg群で5例全例に、脾臓の髄外造血低下が10mg/kg群で5例中4例に認められた。
 KRN5500単体の3.1~25.0mg/kgを単回静脈内投与した試験(各群n=5)では、投与2日後の病理組織学的検査で肝細胞の空胞化及び脾臓の髄外造血減少が3.1mg/kg以上の各群認められた。また、胸腺の皮質領域萎縮、骨髄の造血減少、精嚢上皮の壊死が3.1mg/kg以上の各群で、前立腺上皮の壊死が6.3mg/kg以上の各群で認められた。血液学的検査値及び血液生化学的検査値の変動はKRN5500リポソーム製剤とほぼ同様であった。
Inhibition of body weight gain was observed after the second dose in the 3 mg / kg group and after the first and second doses in the 10 mg / kg group compared to the empty liposome dose group. Hematological examinations showed mild anemia and elevated platelet levels in the 10 mg / kg group compared to the empty liposome administration group. In the blood biochemical test, alanine aminotransferase was used in the groups of 3 and 10 mg / kg in which the low values of total protein and albumin, the high values of aspartate aminotransferase (AST) and leucine aminopeptidase (LAP) were compared with the empty liposome administration group. A high (ALT) value was observed in the 10 mg / kg group. The grades were all mild to mild. On gross examination at necropsy, slight fading (whitening) of the liver was observed in 4 of 5 cases in the 3 mg / kg group and in all 5 cases in the 10 mg / kg group. Histopathological examination revealed hepatocyte vacuolation in 3 of 5 cases in the 3 mg / kg group, all 5 cases in the 10 mg / kg group, and decreased splenic extramedullary hematopoiesis in 5 cases in the 10 mg / kg group. It was observed in 4 cases.
In a single intravenous administration of 3.1 to 25.0 mg / kg of KRN5500 alone (n = 5 in each group), hepatocellular vacuolation and extramedullary hematopoiesis of the spleen were confirmed by histopathological examination 2 days after administration. A decrease was observed in each group of 3.1 mg / kg or more. Cortical area atrophy of the thymus, decreased hematopoiesis of the bone marrow, and necrosis of the seminal vesicle epithelium were observed in each group of 3.1 mg / kg or more, and necrosis of the prostate epithelium was observed in each group of 6.3 mg / kg or more. The changes in hematological test values and blood biochemical test values were almost the same as those of the KRN5500 liposome preparation.
 以上のことから、PEG2000-DSPEを含有するKRN5000リポソーム製剤を6日間隔で2回投与したときの毒性は、KRN5500単体を単回投与した時よりも軽度であると考えられた。従って、該処方のKRN5500リポソーム製剤は、高い抗腫瘍効果を維持しつつ、かつKRN5500の毒性をより軽減できることが明らかとなった。 Based on the above, it was considered that the toxicity when the KRN5000 liposome preparation containing PEG2000-DSPE was administered twice at intervals of 6 days was milder than when the KRN5500 alone was administered once. Therefore, it was clarified that the KRN5500 liposome preparation of this formulation can further reduce the toxicity of KRN5500 while maintaining a high antitumor effect.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016

Claims (6)

  1.  コレステロールが0~50mol%および、アシル鎖が鎖長C14~C18の飽和脂肪酸のアシル鎖であるリン脂質100~50mol%を含有するリポソームに、化学式(I)で示されるスピカマイシン誘導体を坦持させたリポソーム製剤:
    Figure JPOXMLDOC01-appb-C000001

    (式中、R=H、R=OHであって、Rは炭素数9~15の直鎖のもしくは分岐したアルキルまたは炭素数10~17の直鎖のアルケニルである。)。
    A liposome containing 100 to 50 mol% of phospholipid having cholesterol of 0 to 50 mol% and an acyl chain of a saturated fatty acid having a chain length of C 14 to C 18 is loaded with a spicamycin derivative represented by the chemical formula (I). Liposome formulation held:
    Figure JPOXMLDOC01-appb-C000001

    (Wherein R 1 = H, R 2 = OH, and R is straight-chain or branched alkyl having 9 to 15 carbon atoms or straight-chain alkenyl having 10 to 17 carbon atoms).
  2.  前記リポソーム製剤のリポソームの脂質膜が、以下の1)~3)のいずれかである請求項1に記載のリポソーム製剤:
    1)リポソームの脂質膜が、アシル鎖が平均鎖長が16超~18の飽和脂肪酸のアシル鎖であるリン脂質を主構成成分として含有する、
    2)リポソームの脂質膜が、アシル鎖が平均鎖長が14超~16の飽和脂肪酸のアシル鎖であるリン脂質、およびコレステロールを主構成成分として含有し、両成分のモル比が80:20~50:50である、
    3)リポソームの脂質膜が、アシル鎖が平均鎖長14の飽和脂肪酸のアシル鎖であるリン脂質、およびコレステロールを主構成成分として含有し、両成分のモル比が60:40~50:50である。
    2. The liposome preparation according to claim 1, wherein the lipid membrane of the liposome of the liposome preparation is any of the following 1) to 3):
    1) The lipid membrane of the liposome contains, as a main component, a phospholipid whose acyl chain is an acyl chain of a saturated fatty acid having an average chain length of more than 16 to 18.
    2) The lipid membrane of the liposome contains a phospholipid whose acyl chain is an acyl chain of a saturated fatty acid having an average chain length of more than 14 to 16 and cholesterol as main components, and the molar ratio of both components is 80:20 to 50:50,
    3) The lipid membrane of the liposome contains a phospholipid whose acyl chain is an acyl chain of a saturated fatty acid having an average chain length of 14 and cholesterol as main components, and the molar ratio of both components is 60:40 to 50:50 is there.
  3.  前記リン脂質がフォスファチジルコリンである請求項1または2に記載のリポソーム製剤。 The liposome preparation according to claim 1 or 2, wherein the phospholipid is phosphatidylcholine.
  4.  前記、基R=CH3(CH2)8CH=CHCH=CH-であり、化学式(I)の化合物が(6-[4-de
    oxy-4-(2E,4E)-tetradecadienoylglycyl]-amino-L-glycero-b-L-mannnoheptopyranosyl)amino-9H-purine)(KRN5500と称される)である請求項1~3のいずれかに記載のリポソーム製剤。
    The group R = CH 3 (CH 2 ) 8 CH═CHCH═CH—, wherein the compound of formula (I) is (6- [4-de
    4. Oxy-4- (2E, 4E) -tetradecadienoyllycyl] -amino-L-glycero-b-L-mannenohypertopynoylyl) amino-9H-purine) (referred to as KRN5500) Liposome formulation.
  5.  前記リポソーム製剤が親水性高分子を含有する請求項1~4のいずれかに記載のリポソーム製剤。 The liposome preparation according to any one of claims 1 to 4, wherein the liposome preparation contains a hydrophilic polymer.
  6.  化学式(I)で示されるスピカマイシン誘導体の血漿中濃度-時間曲線下面積が、該スピカマイシン誘導体単体に比べて45倍以上である請求項1~5のいずれかに記載のリポソーム製剤。 The liposome preparation according to any one of claims 1 to 5, wherein the area under the plasma concentration-time curve of the spicamycin derivative represented by the chemical formula (I) is 45 times or more that of the spicamycin derivative alone.
PCT/JP2010/066808 2009-09-28 2010-09-28 Liposome preparation containing spicamycin derivative WO2011037252A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009223004A JP2012236772A (en) 2009-09-28 2009-09-28 Liposome preparation containing spicamycin derivative
JP2009-223004 2009-09-28

Publications (1)

Publication Number Publication Date
WO2011037252A1 true WO2011037252A1 (en) 2011-03-31

Family

ID=43795990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066808 WO2011037252A1 (en) 2009-09-28 2010-09-28 Liposome preparation containing spicamycin derivative

Country Status (2)

Country Link
JP (1) JP2012236772A (en)
WO (1) WO2011037252A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176223A1 (en) * 2012-05-23 2013-11-28 国立大学法人大阪大学 Pharmaceutical composition for treating inflammatory disease

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180280300A1 (en) * 2015-10-07 2018-10-04 Ensuiko Sugar Refining Co., Ltd. Liposome including taxane compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005508921A (en) * 2001-10-03 2005-04-07 セレイター テクノロジーズ インコーポレーティッド Liposomes loading metal ions
JP2005145959A (en) * 2003-10-20 2005-06-09 Nof Corp Phospholipid membrane formulation
JP2006525236A (en) * 2003-04-02 2006-11-09 セレーター ファーマスーティカルズ、インク. Drug resistant therapeutic composition
JP2009532341A (en) * 2006-04-01 2009-09-10 ローマン ウント ラウシャー ゲーエムベーハー ウント ツェーオー.カーゲー Biguanide-containing liposomes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005508921A (en) * 2001-10-03 2005-04-07 セレイター テクノロジーズ インコーポレーティッド Liposomes loading metal ions
JP2006525236A (en) * 2003-04-02 2006-11-09 セレーター ファーマスーティカルズ、インク. Drug resistant therapeutic composition
JP2005145959A (en) * 2003-10-20 2005-06-09 Nof Corp Phospholipid membrane formulation
JP2009532341A (en) * 2006-04-01 2009-09-10 ローマン ウント ラウシャー ゲーエムベーハー ウント ツェーオー.カーゲー Biguanide-containing liposomes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NAOTO OKU, LIPOSOME OYO NO SHINTENKAI JINKO SAIBO NO KAIHATSU NI MUKETE, 2005, pages 4 - 11, 176 TO 185 *
SENIOR, J. ET AL.: "Stability of small unilamellar liposomes in serum and clearance from the circulation: the effect of the phospholipid and cholesterol components", LIFE SCI, vol. 30, no. 24, 1982, pages 2123 - 2136 *
TETSUYA HAMAGUCHI: "Sosuisei Koganzai KRN5500 no Liposome Funyu", DRUG DELIVERY SYSTEM, 1998, THE 14TH ANNUAL CONFERENCE OF THE JAPAN DRUG DELIVERY SYSTEM RESEARCH SOCIETY KOEN YOSHISHU, IPPAN SESSION KOEN YOSHI (SONO 2) 2C22, vol. 13, no. 4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176223A1 (en) * 2012-05-23 2013-11-28 国立大学法人大阪大学 Pharmaceutical composition for treating inflammatory disease
JPWO2013176223A1 (en) * 2012-05-23 2016-01-14 国立大学法人大阪大学 Pharmaceutical composition for the treatment of inflammatory diseases

Also Published As

Publication number Publication date
JP2012236772A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP4885715B2 (en) Irinotecan formulation
JP5770336B2 (en) Method for producing liposome composition
AU2016324450B2 (en) Pharmaceutical composition containing anionic drug, and preparation method therefor
WO2010113984A1 (en) Liposome composition
US8241663B2 (en) Liposome preparation
US20240082154A1 (en) Disease-site-specific liposomal formulation
JP6263609B2 (en) Liposome composition and production method thereof
JP4874097B2 (en) Liposomes containing poorly water-soluble camptothecin
JP7057434B2 (en) Combination drug containing a liposome composition containing a drug and a platinum preparation
JP2006273812A (en) Method of manufacturing liposome preparation
Hao et al. In-vitro cytotoxicity, in-vivo biodistribution and anti-tumour effect of PEGylated liposomal topotecan
JP6705933B2 (en) Liposome composition and method for producing the same
WO2011037252A1 (en) Liposome preparation containing spicamycin derivative
JPWO2005021012A1 (en) Gemcitabine encapsulated drug carrier
EP3395370B1 (en) Liposome and liposome composition
JP7186385B2 (en) Disease site-specific liposome formulation
JPWO2009125858A1 (en) 2-Lipid dispersion preparation containing indolinone derivative
KR20050020988A (en) Stealth lipid nanocapsules, methods for the preparation thereof and use thereof as a carrier for active principle(s)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10818922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP