WO2011037154A1 - Method for manufacturing desalted whey - Google Patents

Method for manufacturing desalted whey Download PDF

Info

Publication number
WO2011037154A1
WO2011037154A1 PCT/JP2010/066480 JP2010066480W WO2011037154A1 WO 2011037154 A1 WO2011037154 A1 WO 2011037154A1 JP 2010066480 W JP2010066480 W JP 2010066480W WO 2011037154 A1 WO2011037154 A1 WO 2011037154A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
whey
liquid
desalted
exchange resin
Prior art date
Application number
PCT/JP2010/066480
Other languages
French (fr)
Japanese (ja)
Inventor
信夫 関
貴絵 木下
正俊 大西
賢司 西
吉隆 田村
浩 越智
仁志 齋藤
Original Assignee
森永乳業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 森永乳業株式会社 filed Critical 森永乳業株式会社
Priority to JP2011503296A priority Critical patent/JP5771520B2/en
Publication of WO2011037154A1 publication Critical patent/WO2011037154A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/14Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment
    • A23C9/146Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment by ion-exchange
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/14Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment
    • A23C9/142Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment by dialysis, reverse osmosis or ultrafiltration
    • A23C9/1425Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment by dialysis, reverse osmosis or ultrafiltration by ultrafiltration, microfiltration or diafiltration of whey, e.g. treatment of the UF permeate
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/15Reconstituted or recombined milk products containing neither non-milk fat nor non-milk proteins
    • A23C9/1512Reconstituted or recombined milk products containing neither non-milk fat nor non-milk proteins containing isolated milk or whey proteins, caseinates or cheese; Enrichment of milk products with milk proteins in isolated or concentrated form, e.g. ultrafiltration retentate

Definitions

  • the present invention relates to a method for producing desalted whey.
  • This application claims priority based on Japanese Patent Application No. 2009-219862 filed in Japan on September 25, 2009, the contents of which are incorporated herein by reference.
  • Whey is a by-product of dairy products such as cheese.
  • whey whey
  • whey is used as a raw material for whey protein and lactose, as well as a raw material for improving the flavor of bread or baked confectionery, a raw material for beverages, a raw material for infant formula, and the like.
  • Whey has a unique flavor and has a limited use because it contains a large amount of minerals. Therefore, many methods have been proposed as a method for desalting whey. Examples of the method for desalting whey include an ion exchange method, a nanofiltration method, and an electrodialysis method.
  • calcium and magnesium are important nutrients whose intake standards are set in each country, as shown in the “Japanese dietary intake standards (2005 edition)”. It is. However, in Japan, for example, according to the “2005 National Health and Nutrition Survey Results”, the rate of satisfaction with the dietary intake standard is insufficient. For this reason, calcium and magnesium fortified foods and supplements are widely distributed. Calcium and magnesium are defined as nutritional ingredients that can be labeled as functional nutritional foods. By satisfying certain requirements, the functions of calcium and magnesium can be demonstrated and their nutritional significance is widely recognized. .
  • Dairy products are expected as a good source of calcium, and whey is no exception.
  • desalting whey it is desirable not only to simply reduce the mineral content, but also to desalinate only monovalent minerals such as sodium and potassium while leaving divalent cations, ie calcium and magnesium.
  • Patent Document 1 The method described in Patent Document 1 is a method in which liquid passing through an ion exchange resin and electrodialysis are combined.
  • concentrated whey is first introduced into a weakly cationic or carboxylic acid column, 60-70% of divalent cations are ion exchanged with protons, and 5-15% of monovalent cations are ion exchanged with protons.
  • the resulting effluent is then introduced into a mixed bed column of strong cationic ion exchange resin and strong anionic ion exchange resin, the remaining calcium and magnesium ions are exchanged for protons, and sodium and potassium ions are exchanged for protons.
  • the sulfate anion is ion-exchanged with the chloride anion to become strongly acidic (pH 2 to 2.5). Thereafter, most of the chloride anions and most of the protons are removed by introduction into an electrodialyzer, and further introduced into a strong anionic ion exchange resin to exchange citrate ions and phosphate ions with chloride ions. This method describes that 60% or more of divalent cations (calcium and magnesium) are removed.
  • Patent Document 2 proposes a method for reducing the contents of sodium and potassium using a nanofiltration method which is a kind of membrane separation method.
  • the desalting by nanofiltration has a problem that the desalting efficiency decreases as the desalting rate increases. Therefore, in order to achieve a high desalting rate, it is necessary to perform membrane filtration for a long time, for example, and the production efficiency is poor.
  • Patent Document 3 proposes a method of adding an electrolyte (milk casein, whey protein concentrate, etc.) that does not permeate the nanofiltration membrane to the milk before desalting in order to promote desalting in the nanofiltration method. ing.
  • Non-Patent Document 2 reports that calcium chloride is added in the nanofiltration method in order to reduce the sodium ion blocking rate of the sodium chloride solution.
  • the present invention has been made in view of the above circumstances, and efficiently produces desalted whey in which sodium and potassium are sufficiently reduced while suppressing the reduction of the contents of calcium and magnesium contained in the raw material whey. It aims to provide a possible method.
  • the present inventors have conducted intensive research.
  • the total of the sodium content and the potassium content in the liquid to be treated is a treatment target. It was found that when the molar ratio of the chlorine content to the value, that is, the value of (chlorine / (sodium + potassium)) is small, the permeation rate of sodium and potassium in the separation membrane is reduced, and the desalting efficiency is lowered.
  • the molar ratio (chlorine / (potassium + sodium)) can be increased by passing the liquid to be treated through a chlorine-type anion exchange resin, and the molar ratio (chlorine / (potassium + sodium)) is increased. It was found that sodium and potassium can be efficiently desalted by performing membrane separation in a state where the reduction of the content of calcium and magnesium contained in whey can be suppressed, and the present invention has been completed. .
  • One aspect of the present invention is a method for producing desalted whey from a raw material whey solution through a step of performing a desalting treatment by a membrane separation method, and a liquid to be treated to be subjected to the desalting treatment, Having a step of passing through an ion exchange resin before desalting, wherein the ion exchange resin is made of an anion exchange resin, and at least a chlorine type anion exchange resin is used as the anion exchange resin.
  • the present invention relates to a method for producing desalted whey.
  • a treatment liquid to be subjected to desalting treatment is passed through an ion exchange resin before being desalted, and the passed treatment liquid is subjected to membrane separation.
  • the present invention relates to a method for producing desalted whey, wherein the ion exchange resin is made of an anion exchange resin, and at least a chlorine type anion exchange resin is used as the anion exchange resin.
  • the liquid to be treated for the desalting treatment is a raw material whey liquid
  • the pH of the raw material whey liquid is, for example, 5.5 to 7.4, more preferably 6
  • the present invention relates to a method for producing desalted whey, wherein the pH of the effluent from the anion exchange resin is in the range of 5.5 to 7.4, more preferably 6 to 7.
  • Another aspect of the present invention relates to a method for producing desalted whey in which the membrane separation method is a nanofiltration method.
  • the molar ratio of chlorine content to the total value of sodium content and potassium content (chlorine / (sodium + potassium)) of the liquid to be treated for the desalting treatment is as follows.
  • the present invention relates to a method for producing desalted whey performed under conditions of 0.8 or more.
  • the (Ca + Mg) residual rate determined by the following formula (1) in the desalted whey is 60% or more, and the desalting rate calculated by the following formula (2) is 60%.
  • the present invention relates to a method for producing desalted whey as described above.
  • (Ca + Mg) residual rate (unit:%) ⁇ (total of Ca content and Mg content of desalted whey) / (total of Ca content and Mg content of raw whey solution) ⁇ ⁇ 100 (1)
  • the Ca content is the content of calcium contained per 100 g of the solid content
  • the Mg content is the content of magnesium contained per 100 g of the solid content
  • each unit is mmol / 100 g solid.
  • the Na content is the content of sodium contained per 100 g of solid content
  • the K content is potassium contained per 100 g of solid content.
  • the unit is mmol / 100 g solid.
  • Yet another aspect of the present invention relates to the desalted whey, which is suitable for formula milk.
  • a whey is a transparent liquid remaining after removing coagulated milk in the process of producing cheese, casein, sodium caseinate, yogurt or the like using milk such as cow, sheep or goat as a raw material.
  • the whey used in the present invention may be an untreated whey obtained only by separating the coagulated milk, and the untreated whey is subjected to degreasing and / or deprotein pretreatment using a separation membrane.
  • the untreated whey or the pretreated whey may be powdered by a conventional method such as spray drying or freeze drying. Commercial whey powder can also be used.
  • the raw material whey liquid may be a liquid containing whey.
  • liquid whey may be used as it is, or an aqueous solution of whey powder.
  • the whey and the raw material whey liquid are preferably neutral.
  • the pH of the raw material whey solution is preferably in the range of 5.5 to 7.4, more preferably 6 to 7, for example. If the raw material whey solution is within the above range, the desalting step by the separation membrane and the step of passing through the ion exchange resin, which will be described later, can be performed in a neutral region without performing the neutralization step. Degradation, denaturation, acid decomposition of sugar, alkaline reaction, etc. can be prevented. In addition, it is preferable to use a separation membrane having low alkali resistance because there is no possibility of shortening the membrane life.
  • the ion exchange resin in this invention consists of an anion exchange resin. That is, the process of passing the liquid through the cation exchange resin is not performed.
  • the liquid passing through the anion exchange resin is preferably performed in a neutral range.
  • the pH of the liquid before passing through the anion exchange resin and the pH of the effluent from the anion exchange resin are both, for example, pH 5.5 to 7.4, more preferably 6 It is preferably within the range of.
  • the chlorine type anion exchange resin an anion exchange resin that has been previously made into a chlorine type using saline or hydrochloric acid is used.
  • the anion exchange resin include IRA402BL and IRA958 manufactured by Rohm and Haas, and PA316 manufactured by Mitsubishi Chemical (both are product names).
  • the present invention is not limited thereto, and an anion exchange resin suitable for obtaining a desalted whey having a target composition can be appropriately selected according to the use of the desalted whey.
  • the chlorine content in the solution increases.
  • the liquid to be treated to be subjected to the desalting treatment by the membrane separation method is passed before the desalting treatment.
  • the desalting treatment may be performed after passing the raw material whey solution through a chlorine-type anion exchange resin.
  • the desalted whey solution that has been desalted by the membrane separation method may be passed through a chlorine-type anion exchange resin and then further subjected to a desalting treatment by the membrane-separation method.
  • the raw material whey is extracted from the raw material tank, passed through a chlorine-type anion exchange resin, and an operation for returning the obtained liquid to the raw material tank is added to perform membrane separation, thereby reducing the Cl / (Na + K) ratio. It is possible to maintain.
  • the increase in the chlorine content by passing through the chlorine type anion exchange resin is the chlorine content relative to the total of the sodium (Na) content and potassium (K) content in the effluent from the chlorine type anion exchange resin.
  • the molar ratio (chlorine / (sodium + potassium)) (hereinafter sometimes referred to as the Cl / (Na + K) ratio) is preferably 0.8 or more.
  • 1.1 is preferable from a viewpoint of manufacturing efficiency, and, as for the suitable upper limit of Cl / (Na + K) ratio, it is more preferable that it is 1.0.
  • the value of the Cl / (Na + K) ratio increases as the amount of whey solids per unit exchange capacity of the chlorine-type anion exchange resin decreases.
  • the Cl / (Na + K) ratio is 0.8 or more, it is easy to keep the Cl / (Na + K) ratio in the liquid to be processed to be desalted in the separation membrane described later at 0.35 or more.
  • the ratio may decrease over time.
  • the Cl / (Na + K) ratio of the liquid initially supplied for the desalting treatment is 0.8 or more, the Cl / (Na + K) of the liquid to be treated can be obtained without increasing the chlorine content in the middle. It is easy to maintain the ratio at 0.35 or higher.
  • the upper limit of the increase in chlorine content by passing through the chlorine-type anion exchange resin is not particularly limited, but it is necessary to make it within a range that does not hinder after the desalting step. It is preferable to set the chlorine content of the desalted whey within a preferable range according to the use of the desalted whey. For example, when desalted whey is used as a raw material for infant formula, the chlorine content of desalted whey can be exemplified by 1 to 25 mmol / 100 g solids.
  • the condition for passing through the chlorine-type anion exchange resin can be set in accordance with the target value of the chlorine content in the effluent as long as lactose does not precipitate.
  • a whey-containing liquid is passed through a chlorine-type anion exchange resin
  • the increase will increase.
  • the solid concentration of the liquid to be passed is lower and the flow rate is smaller (slower).
  • the solid concentration of the liquid passed through the chlorine-type anion exchange resin is preferably 4 to 40% by mass, for example, and more preferably 5 to 20% by mass.
  • the flow rate when the liquid is passed is preferably 2 to 12 SV, and more preferably 3 to 8 SV. If the flow rate is less than 2 SV, it takes time to pass the liquid and the efficiency is not good. When the flow rate exceeds 12 SV, the pressure loss increases.
  • the SV represents a relative amount of the liquid passed per unit time with respect to the amount of the ion exchange resin, and a flow rate when the same amount of liquid as the amount of the ion exchange resin is passed for 1 hour is referred to as 1 SV.
  • the temperature of the liquid to be passed is preferably 2 to 50 ° C, more preferably 3 to 15 ° C. When the temperature is less than 2 ° C., the viscosity of the liquid becomes too high. If the temperature is too low, the liquid may freeze. On the other hand, when the temperature exceeds 50 ° C., the possibility of protein denaturation or browning increases. In order to suppress the growth of microorganisms, 10 ° C. or lower is preferable.
  • the solid content of the liquid is set to 2.2 kg or less, the Cl / (Na + K) ratio is 0.8 or more.
  • “Eq” represents the ion exchange capacity of the ion exchange resin, and 1 eq means that 1 mol of charge can be exchanged.
  • ⁇ Desalting step of performing desalting treatment by membrane separation method As the membrane separation method used for the desalting treatment, a method having a high calcium and magnesium rejection and a high sodium and potassium permeability is used. For example, a known method can be used as a method for selectively desalting monovalent minerals, such as electrodialysis, nanofiltration, or dialysis. The nanofiltration method is preferable in that desalting and concentration can be performed at the same time, and advanced desalting is possible by combining diafiltration steps as necessary.
  • the nanofiltration method is a method having a step of separating a liquid to be treated for desalting treatment by nanofiltration into a permeated liquid that has permeated the nanofiltration membrane and a retentate liquid that has not permeated.
  • a nanofiltration (NF) membrane is an intermediate region between an ultrafiltration (UF) membrane and a reverse osmosis (RO) membrane that has a molecular weight of tens to thousands of daltons, that is, a nanometer region when converted to a molecular size. This is a separation membrane to be imaged.
  • inorganic substances carbohydrates, amino acids, vitamins, etc., particles having a low molecular weight and low charge permeate the nanofiltration membrane.
  • a part of the cation of the monovalent mineral among the minerals contained in the whey passes through the nanofiltration membrane and is contained in the permeate.
  • divalent mineral cations hardly pass through the nanofiltration membrane and are contained in the retentate.
  • Desalted whey is obtained from the retentate solution.
  • Specific nanofiltration membranes include DL, DK, HL series manufactured by GE Water Technologies, SR-3 series manufactured by Koch Membrane System, DOW-NF series manufactured by Dow Chemical, and NTR manufactured by Nitto Denko.
  • a series (all are product names) can be exemplified, but is not limited thereto.
  • a separation membrane suitable for obtaining a desalted whey having a target composition can be appropriately selected and used depending on the application of the desalted whey.
  • a known apparatus can be appropriately selected and used.
  • a membrane module equipped with a nanofiltration membrane a supply pump that sends the liquid to be treated to the membrane module, a means for taking out the permeate that has permeated the nanofiltration membrane from the membrane module, and a retentate that did not permeate the nanofiltration membrane Means for taking out the membrane from the membrane module.
  • the batch-type apparatus further includes a stock solution tank that holds the liquid to be treated before being supplied to the membrane module, and means for returning the retentate liquid taken out from the membrane module to the stock solution tank.
  • the membrane separation operation may be a batch concentration type in which the permeate is taken out and the retentate is returned to the stock solution tank.
  • a step of performing diafiltration in which the same amount of water as the taken out permeate is added to the stock solution tank may be provided.
  • a continuous type may be employed in which the liquid to be treated is continuously supplied to the membrane module, and the retentate liquid and the permeated liquid are continuously extracted.
  • the transmittance of sodium and potassium (hereinafter sometimes referred to as (Na + K) transmittance) is a value represented by the following formula (3).
  • the unit of sodium content (hereinafter sometimes referred to as Na content) and potassium content (hereinafter sometimes referred to as K content) is mmol / L solution.
  • (Na + K) permeability (total of Na content and K content in permeate) / (total of Na content and K content in retentate) (3)
  • the Cl / (Na + K) ratio of chlorine content to the total value of Na content and K content at 0.35 or higher, preferably 0.5 or higher, in the liquid to be treated for desalination treatment with a separation membrane. It is preferable to do.
  • the Cl / (Na + K) ratio is 0.35 or more, the (Na + K) transmittance is sufficiently high.
  • the Cl / (Na + K) ratio is 0.35 or more, the (Na + K) transmittance is sufficiently high.
  • the Cl / (Na + K) ratio is lowered, the chlorine-type anion exchange is performed again. It is possible to pass through the resin and then perform membrane separation. That is, in the production method of the present invention, the Cl / (Na + K) ratio can be maintained at 0.35 or more by repeating the anion exchange step a plurality of times.
  • Desalted whey is obtained from a retentate solution that has been desalted.
  • the retentate obtained after the desalting treatment may be used as it is as a liquid desalted whey, and if necessary, a concentrated liquid desalted whey may be used as a concentrated liquid desalted whey. Further, after the retentate solution is concentrated as necessary, it may be converted into a powdered desalted whey through a normal drying process such as freeze drying or spray drying.
  • Desalted whey can be used as a raw material for other products.
  • the total of the sodium content and the potassium content in the desalted whey is preferably 40 mmol or less, more preferably 32 mmol or less, per 100 g of the solid content.
  • the present invention by providing a liquid to be processed to be subjected to a desalting treatment by a membrane separation method through a chlorine-type anion exchange resin before being desalted, the following examples are provided.
  • (Na + K) permeability during the desalting step is kept at a high level, and desalting efficiency is improved. Therefore, a desalted whey having a sufficiently reduced content of sodium and potassium in the raw material whey can be efficiently produced. Moreover, the reduction of the content of calcium and magnesium contained in the raw material whey can be satisfactorily suppressed.
  • a desalted whey having a residual rate of calcium and magnesium ((Ca + Mg) residual rate) of 60% or more and a desalting rate of 60% or more can be produced.
  • the (Ca + Mg) residual rate is a value obtained by the following formula (1)
  • the desalting rate is a value obtained by the following formula (2).
  • (Ca + Mg) residual rate (unit:%) ⁇ (total of Ca content and Mg content of desalted whey) / (total of Ca content and Mg content of raw whey solution) ⁇ ⁇ 100 (1)
  • the Ca content is the content of calcium contained per 100 g of the solid content
  • the Mg content is the content of magnesium contained per 100 g of the solid content
  • each unit is mmol / 100 g solid.
  • the Na content is the content of sodium contained per 100 g of solid content
  • the K content is potassium contained per 100 g of solid content. In any case, the unit is mmol / 100 g solid.
  • the desalting rate can be controlled by the desalting conditions.
  • the desalination rate can be improved by elongating the desalting time, increasing the integrated permeate amount, or the like.
  • the residual ratio of (Ca + Mg) varies depending on the processing conditions when the liquid is passed through the ion exchange resin or the desalting conditions.
  • Non-Patent Document 2 Journal of membrane Science, Vol. 104, no. 3, P205-218 (1995) (Non-Patent Document 2), since the operation of adding calcium chloride is not performed, desalted whey without increasing the calcium content as compared with the raw material whey. Can be manufactured. Therefore, for example, desalted whey suitable for applications where the calcium content is too high compared to the raw material whey, such as desalted whey for prepared milk powder.
  • the formula powdered milk is obtained by processing raw milk, milk or special milk, or foods produced using these as raw materials, or using them as a main raw material, and adding the nutrients necessary for infants to a powder form.
  • the obtained raw material whey solution was subjected to desalination treatment with a nanofiltration membrane (DL3840C-30D: manufactured by GE Water & Process Technologies) while returning the retentate solution to the stock solution tank until the permeate amounted to 66.6 kg. went.
  • the liquid in the stock solution tank at this time is defined as desalted whey liquid (I).
  • the nanofiltration is continued by a hydrodiafiltration method that keeps the amount of liquid in the stock solution tank constant, and the permeate is 33.3 kg (desalting treatment).
  • the desalting treatment was performed until the total reached 99.9 kg from the start.
  • the liquid in the stock solution tank thus obtained is designated as desalted whey liquid (II).
  • the recovered amount of desalted whey liquid (II) is 31.0 kg and contains 4.4 kg of solid content.
  • the composition per 100 g of the solid content is shown in Table 1, and the mineral composition per 100 g of the solid content (unit: mmol / 100 g solid, the same applies hereinafter) is shown in Table 2.
  • the permeate amount is measured six times over time, and after passing through the desalted whey solution and nanofiltration membrane in the stock solution tank at the time of the measurement, the stock solution tank 40 mL each of the retentate liquid in the middle of being returned to and the permeated liquid of the nanofiltration membrane were collected at the same time.
  • the (Na + K) transmittance determined in (3) and the desalting rate determined in the above equation (2) were calculated. The results are shown in Table 4.
  • the amount of desalting is determined by (permeate amount) ⁇ (concentration of salt to be desalted in the permeate).
  • the amount of permeate per unit time and the concentration of the salt to be desalted in the raw material liquid are the same, if the transmittance is halved, the desalted amount is also halved.
  • the decrease means that the desalting amount per unit permeate is reduced. Therefore, in this example, even if desalting is continued in an attempt to increase the desalting rate beyond this level, the desalting does not proceed substantially because the transmittance is extremely low. Even if desalting proceeds, it is considered that the desalting does not proceed because the transmittance further decreases as desalting proceeds.
  • the pH of the raw material whey solution and the desalted whey solution (II) is almost unchanged at 6.6 to 6.8.
  • the desalted whey solution (II) had a reduced (Na + K) content compared with the raw material whey, the desalting rate was only 44.1%. Ca and Mg contents decreased slightly.
  • the Cl / (Na + K) ratio immediately after the start of the desalting treatment was 0. 5 and finally decreased to 0.03.
  • the (Na + K) transmittance was as low as 0.09 when the desalination rate reached 44.1%.
  • Example 1 The point that this example is significantly different from Comparative Example 2 is that the raw material whey solution was passed through a chlorine-type anion exchange resin before the desalting treatment by nanofiltration.
  • the raw material whey 6.8 kg of the same cheese whey powder as in Comparative Example 2 was used, and water was added to dissolve it to obtain 95 kg of raw material whey liquid.
  • the obtained raw material whey liquid was passed through a 3 L chlorine type anion exchange resin column (Rohm and Haas, product name: IRA402BL) to obtain 94 kg of an ion exchange whey liquid containing 6 kg of a solid content.
  • the liquid flow conditions were a flow rate of 6.4 SV and a liquid flow temperature of 5 to 10 ° C.
  • the liquid in the stock solution tank thus obtained is designated as desalted whey liquid (II).
  • the recovered amount of desalted whey liquid (II) is 34.5 kg and contains 4.8 kg of solids.
  • Table 9 About raw material whey and desalted whey liquid (II), the composition per 100 g of solid content is shown in Table 9, and the mineral composition per 100 g of solid content is shown in Table 10.
  • Table 11 For raw material whey liquid, ion exchange whey liquid and desalted whey liquid (II), pH, total of Na content and K content per 100 g of solid content, total of Ca content and Mg content per 100 g of solid content, Table 11 shows the chlorine content and the (Cl / (Na + K) ratio).
  • the pH values of the raw material whey solution, the ion exchange whey solution, and the desalted whey solution (II) are 6.5 to 6.8 and hardly change.
  • the desalted whey solution (II) has a significantly reduced (Na + K) content and a high desalting rate of 67.8% compared to the raw material whey.
  • the (Ca + Mg) content in the desalted whey solution (II) is lower than that in Comparative Examples 1 and 2, but the (Ca + Mg) content in the desalted whey solution (II) relative to the (Ca + Mg) content in the raw material whey.
  • the residual ratio (Ca + Mg) expressed as a ratio is 79.9% when calculated from the values in Table 11, which is favorable.
  • the Cl / (Na + K) ratio immediately after the start of the desalting treatment (the permeate amount of 1 kg in Table 12) is high due to the high chloride ion content of the ion exchange whey solution subjected to nanofiltration. was as high as 0.88, and finally decreased only to 0.37.
  • the (Na + K) permeability was as high as 0.43 in the desalted whey solution (II) in which the desalting rate reached 67.8%.
  • Example 2 The difference between this example and Example 1 is that, in nanofiltration after passing through the ion exchange resin, desalting is first performed under conditions to obtain a 3-fold concentrated solution, and then desalted by hydrodiafiltration. This is the point where salt treatment was performed.
  • Cheese whey powder 13.2% protein, 0.9% fat, 76.0% carbohydrates, 7.9% ash, 2.1% moisture
  • a raw material whey was dissolved in 185 kg by adding water to 185 kg
  • a 5 kg raw material whey solution was prepared.
  • the obtained raw material whey liquid was passed through a 10 L chlorine-type anion exchange resin column (Rohm and Haas, product name: IRA402BL). 1-No.
  • the flow conditions were a flow rate of 6.0 SV and a flow temperature of 5 to 10 ° C. No. 1-No.
  • the pH of the ion exchange whey solution of No. 3 was 6.5.
  • Table 13 shows the liquid amount and solid amount of each liquid, and the chlorine content per 100 g of the solid content.
  • the operation of the apparatus was stopped immediately before the liquid 3 was exhausted.
  • the retentate solution (desalted whey solution) is supplied at a rate of 1 L / min.
  • the removal rate of the retentate liquid and the permeated liquid can be set to a ratio of 1: 2 such that the permeated liquid is extracted from the membrane module at a rate of 2 L / min.
  • the three-fold concentrated desalted whey solution obtained above was subjected to nanofiltration with the same nanofiltration membrane, and then returned to the stock solution tank while the retentate solution was returned to the stock solution tank. Desalting was performed until 6 kg was obtained.
  • the liquid in the stock solution tank thus obtained is designated as desalted whey liquid (II).
  • the recovered amount of desalted whey liquid (II) is 71.1 kg and contains 10.8 kg of solid content.
  • the pH of No. 3 ion exchange whey solution, 3 times concentrated desalted whey solution, and desalted whey solution (II) is 6.3 to 6.8, and hardly changes.
  • the desalted whey liquid (II) has a significantly reduced (Na + K) content as compared with the raw material whey, and the desalting rate is 76.2%, which is higher than that of Example 1.
  • the residual ratio of (Ca + Mg) in the desalted whey solution (II) is 88.6%, which is favorable.
  • the Cl / (Na + K) ratio immediately after the start of the desalting treatment is 1 because the chloride ion content of the ion exchange whey solution used for nanofiltration is high. It was as high as .12, and finally decreased only to 0.56 (permeate amount of 77.6 kg in Table 18).
  • the (Na + K) permeability was as high as 0.5 even when the desalting rate reached 76.2%.
  • Example 3 A desalted whey solution was produced in the same procedure as in Example 1. That is, the desalting conditions by nanofiltration are the same as in Comparative Example 2. In this example, the amount of ion exchange resin used was changed from 3 L to 5 L, so that the chlorine content in the ion exchange whey liquid was higher than in Example 1. As a raw material whey, water was added to and dissolved in 6.75 kg of the same cheese whey powder as in Comparative Example 2 to obtain a 95 kg raw material whey solution.
  • the liquid in the stock solution tank thus obtained is designated as desalted whey liquid (II).
  • the recovered amount of the desalted whey liquid (II) is 33.1 kg and contains 4.8 kg of solids.
  • Table 19 About raw material whey and desalted whey liquid (II), the composition per 100 g of solid content is shown in Table 19, and the mineral composition per 100 g of solid content is shown in Table 20.
  • Table 21 shows the chlorine content and the (Cl / (Na + K) ratio).
  • the pH values of the raw material whey liquid, ion exchange whey liquid, and desalted whey liquid (II) are 6.4 to 6.8 and hardly change.
  • the desalted whey solution (II) has a significantly reduced (Na + K) content compared to the raw material whey, and the desalting rate is 73.9%, which is higher than that of Example 1.
  • the residual ratio of (Ca + Mg) in the desalted whey solution (II) is 69.5%, which is slightly lower than Example 1 but good.
  • Table 23 shows the raw material whey used in Example 3 and Comparative Example 2, and the desalted whey solution obtained in each example, the total of Na content and K content per 100 g of solid content, 100 g of solid content.
  • the total of Ca content per Mg and Mg content, chlorine content, and (Cl / (Na + K) ratio) are collectively shown.
  • FIG. 1 is a graph showing the relationship between the accumulated permeate amount and the desalination rate (%) of (Na + K) based on the results of Example 3 and Comparative Example 2.
  • Example 3 As shown in Table 23, Cl / (Na + K) in Example 3 in which the raw material whey liquid was passed through a chlorine-type anion exchange resin before the desalting treatment by nanofiltration was compared to Comparative Example 2. The ratio is remarkably large and the (Na + K) content is small. In addition, as shown in FIG. 1, even though the accumulated permeate amounts in the nanofiltration step are the same, Example 3 has a higher (Na + K) desalination rate than Comparative Example 2, and unit permeation Desalination efficiency per liquid volume was greatly improved.
  • Example 3 The difference between this example and Example 3 is that the raw material whey liquid is not passed through the chlorine-type anion exchange resin, but instead a liquid obtained by adding CaCl 2 ⁇ 2H 2 O to the raw material whey liquid is subjected to nanofiltration. It is a point that was subjected to. The desalting conditions by nanofiltration are the same as in Comparative Example 2.
  • Table 24 About raw material whey and desalted whey liquid (II), the composition per 100 g of solid content is shown in Table 24, and the mineral composition per 100 g of solid content is shown in Table 25.
  • Table 26 shows the chlorine content and the Cl / (Na + K) ratio.
  • Comparative Example 3 to which calcium chloride was added had a permeation flux per unit membrane module of about 1/2. And much smaller. If the permeation flux is halved, the amount of liquid that can be processed in the same area is halved, and if the membrane area is the same, twice the time required to obtain the same permeate flow rate is required. Means.
  • Example 4 In this example, a nanofiltration membrane different from those in Examples 1 to 3 was used.
  • Cheese whey powder (protein 12.1%, fat 1.1%, carbohydrate 77.2%, ash 7.8%, moisture 1.8%) 6.1 kg was dissolved in water to make 85 kg of raw whey solution .
  • This raw material whey solution was passed through a 6 L chlorine type anion exchange resin column (Rohm and Haas, product name: IRA402BL) to obtain 95.1 kg of ion exchange whey solution containing 5.82 kg of solid content.
  • the liquid flow conditions were a flow rate of 6.4 SV and a liquid flow temperature of 5 to 10 ° C.
  • the total amount was made 106 kg by adding water to this ion exchange whey solution. This was subjected to desalting with a nanofiltration membrane (Duratherm Pro NF3840HR: manufactured by GE Water & Process Technologies) in a batch concentration manner while returning the retentate solution to the stock solution tank until 66.6 kg of permeate was obtained.
  • the liquid in the stock solution tank at this time is defined as desalted whey liquid (I).
  • the pH of the desalted whey solution (I) was 6.6.
  • nanofiltration was continued by a hydrodiafiltration method, and desalting was performed until the permeate reached 33.3 kg (total 99.9 kg from the start of desalting).
  • the liquid in the stock solution tank thus obtained is designated as desalted whey liquid (II).
  • the recovered amount of desalted whey liquid (II) is 32.9 kg and contains 4.7 kg of solid content.
  • pH, total of Na content and K content per 100 g of solid content, total of Ca content and Mg content per 100 g of solid content Table 28 shows the chlorine content and the Cl / (Na + K) ratio.
  • the pH values of the raw material whey liquid, the ion exchange whey liquid, and the desalted whey liquid (II) are 6.4 to 6.8, and hardly change.
  • the desalted whey solution (II) has a significantly reduced (Na + K) content and a high desalting rate of 75.9% compared to the raw material whey.
  • the residual ratio of (Ca + Mg) in the desalted whey solution (II) is 78.8% when calculated from the values in Table 28, which is favorable.
  • the ion exchange whey solution used for nanofiltration had a high chloride ion content, and the Cl / (Na + K) ratio decreased only from 1.01 to 0.94 in the desalting process.

Abstract

Provided is a method for manufacturing desalted whey, said method including: a step in which a liquid to be supplied to a desalting process is passed through an ion-exchange resin before being desalted; and a step in which the liquid which has passed through the ion-exchange resin is desalted via a membrane separation process. The aforementioned ion-exchange resin comprises an anion-exchange resin. At least a chlorine anion-exchange resin is used as the anion-exchange resin. The provided method can efficiently manufacture desalted whey in which the sodium and potassium content has been sufficiently reduced, while minimizing loss of the calcium and magnesium that the starting whey contains.

Description

脱塩ホエイの製造方法Method for producing desalted whey
  本発明は脱塩ホエイの製造方法に関する。
  本願は、2009年9月25日に、日本に出願された特願2009-219862号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing desalted whey.
This application claims priority based on Japanese Patent Application No. 2009-219862 filed in Japan on September 25, 2009, the contents of which are incorporated herein by reference.
 ホエイはチーズ等の乳製品の副生成物である。一般にホエイ(乳清)は、ホエイ蛋白質、乳糖の原料として用いられる他、パンもしくは焼き菓子の風味改良用の原料、飲料の原料または育児用調製粉乳の原料等として用いられている。
 ホエイは独特の風味を有しており、また大量のミネラルを含むことから用途に制限がある。そのため、ホエイの脱塩方法として多くの方法が提案されている。ホエイの脱塩方法としては、例えば、イオン交換法、ナノろ過法および電気透析法などが挙げられる。
Whey is a by-product of dairy products such as cheese. In general, whey (whey) is used as a raw material for whey protein and lactose, as well as a raw material for improving the flavor of bread or baked confectionery, a raw material for beverages, a raw material for infant formula, and the like.
Whey has a unique flavor and has a limited use because it contains a large amount of minerals. Therefore, many methods have been proposed as a method for desalting whey. Examples of the method for desalting whey include an ion exchange method, a nanofiltration method, and an electrodialysis method.
 ホエイに含まれるミネラルのうち、カルシウムおよびマグネシウムは、「日本人の食事摂取基準(2005年版)」にもその摂取基準が示されているように、各国において摂取基準が定められている重要な栄養素である。しかしながら、例えば日本では、「平成17年 国民健康・栄養調査結果」によれば、食事摂取基準に対する充足率が足りていない。そのため、カルシウム・マグネシウム強化食品や、サプリメントが幅広く流通している。カルシウムおよびマグネシウムは栄養機能食品として表示出来る栄養成分に定められており、一定の要件を満たすことで、カルシウムおよびマグネシウムの機能を示すことが可能でありその栄養上の重要性は広く認識されている。 Among the minerals contained in whey, calcium and magnesium are important nutrients whose intake standards are set in each country, as shown in the “Japanese dietary intake standards (2005 edition)”. It is. However, in Japan, for example, according to the “2005 National Health and Nutrition Survey Results”, the rate of satisfaction with the dietary intake standard is insufficient. For this reason, calcium and magnesium fortified foods and supplements are widely distributed. Calcium and magnesium are defined as nutritional ingredients that can be labeled as functional nutritional foods. By satisfying certain requirements, the functions of calcium and magnesium can be demonstrated and their nutritional significance is widely recognized. .
 乳製品はカルシウムの良質な供給源として期待されており、ホエイもその例外ではない。ホエイの脱塩においては、単純にミネラル含量を減らすだけで無く、2価のカチオン、すなわち、カルシウムおよびマグネシウムを残しつつ、ナトリウムおよびカリウムなどの1価のミネラルだけを脱塩することが望ましい。 Dairy products are expected as a good source of calcium, and whey is no exception. In desalting whey, it is desirable not only to simply reduce the mineral content, but also to desalinate only monovalent minerals such as sodium and potassium while leaving divalent cations, ie calcium and magnesium.
 イオン交換樹脂を用いた従来のホエイの脱塩方法は、1価のカチオンだけでなく、栄養学的に価値の高い、カルシウムおよびマグネシウムなどの2価のカチオンをむしろ優先的に除去する。
 例えば、非特許文献1に記載されている方法において、ホエイは、まず水素型陽イオン交換樹脂に通液され、金属陽イオンが水素イオンに置換されて酸性となって流出する。次いで、この流出液は水酸基型陰イオン交換樹脂に通液され、陰イオン(クエン酸、リン酸、塩素、乳酸)が水酸イオンに置換される方法で脱塩が実施される。この方法によれば90~98%の高脱塩率を達成できるが、カルシウムおよびマグネシウムも除去される。
Conventional methods of desalting whey using ion exchange resins preferentially remove not only monovalent cations but also divalent cations such as calcium and magnesium, which are nutritionally valuable.
For example, in the method described in Non-Patent Document 1, whey is first passed through a hydrogen-type cation exchange resin, and metal cations are replaced with hydrogen ions to become acidic and flow out. Next, the effluent is passed through a hydroxyl group-type anion exchange resin, and desalting is carried out by replacing anions (citric acid, phosphoric acid, chlorine, lactic acid) with hydroxide ions. According to this method, a high desalting rate of 90 to 98% can be achieved, but calcium and magnesium are also removed.
 特許文献1に記載の方法は、イオン交換樹脂への通液と電気透析とを組み合わせた方法である。ここでは、濃縮ホエイが、まず弱カチオン性またはカルボン酸カラムに導入され、二価カチオンの60~70%がプロトンにイオン交換され、一価カチオンの5~15%がプロトンにイオン交換される。次いで、得られた流出液は強カチオン性イオン交換樹脂と強アニオン性イオン交換樹脂の混合床カラムに導入され、残りのカルシウムイオンおよびマグネシウムイオンがプロトンに交換され、ナトリウムおよびカリウムイオンがプロトンに交換され、スルフェートアニオンが塩化物アニオンにイオン交換されて強酸性(pH2~2.5)となる。その後、電気透析装置に導入され塩化物アニオンの大部分およびプロトンの大部分が除去され、さらに強アニオン性イオン交換樹脂に導入されてシトレートイオンおよびホスフェートイオンが塩化物イオンに交換される。この方法では二価カチオン(カルシウム、マグネシウム)が60%以上除去されると記載されている。 The method described in Patent Document 1 is a method in which liquid passing through an ion exchange resin and electrodialysis are combined. Here, concentrated whey is first introduced into a weakly cationic or carboxylic acid column, 60-70% of divalent cations are ion exchanged with protons, and 5-15% of monovalent cations are ion exchanged with protons. The resulting effluent is then introduced into a mixed bed column of strong cationic ion exchange resin and strong anionic ion exchange resin, the remaining calcium and magnesium ions are exchanged for protons, and sodium and potassium ions are exchanged for protons. Then, the sulfate anion is ion-exchanged with the chloride anion to become strongly acidic (pH 2 to 2.5). Thereafter, most of the chloride anions and most of the protons are removed by introduction into an electrodialyzer, and further introduced into a strong anionic ion exchange resin to exchange citrate ions and phosphate ions with chloride ions. This method describes that 60% or more of divalent cations (calcium and magnesium) are removed.
 2価のカチオンを残しつつ、ナトリウムおよびカリウムなどの1価のミネラルだけを脱塩する方法としては、膜分離法がある。
 特許文献2には、膜分離法の一種であるナノろ過法を用いてナトリウムおよびカリウムの含有量を低減させる方法が提案されている。
 しかしながら、ナノろ過法による脱塩は脱塩率が上昇するに従って脱塩効率が落ちるという問題がある。そのため、高度な脱塩率を達成するためには、例えば長時間の膜ろ過を行うことが必要であり製造効率が悪い。
There is a membrane separation method as a method of desalting only monovalent minerals such as sodium and potassium while leaving divalent cations.
Patent Document 2 proposes a method for reducing the contents of sodium and potassium using a nanofiltration method which is a kind of membrane separation method.
However, the desalting by nanofiltration has a problem that the desalting efficiency decreases as the desalting rate increases. Therefore, in order to achieve a high desalting rate, it is necessary to perform membrane filtration for a long time, for example, and the production efficiency is poor.
 特許文献3には、ナノろ過法における脱塩を促進するために、脱塩前の乳類に、ナノろ過膜を透過しない電解質(ミルクカゼイン、ホエイ蛋白質濃縮物等)を添加する方法が提案されている。
 非特許文献2には、ナノろ過法において、塩化ナトリウム溶液のナトリウムイオンの阻止率を低下させるために、塩化カルシウムを加えることが報告されている。
Patent Document 3 proposes a method of adding an electrolyte (milk casein, whey protein concentrate, etc.) that does not permeate the nanofiltration membrane to the milk before desalting in order to promote desalting in the nanofiltration method. ing.
Non-Patent Document 2 reports that calcium chloride is added in the nanofiltration method in order to reduce the sodium ion blocking rate of the sodium chloride solution.
日本国特許第3295696号公報Japanese Patent No. 3295696 特開平8-266221号公報JP-A-8-266221 特開2004-180580号公報JP 2004-180580 A
 しかしながら、特許文献3に記載されている方法では、添加する電解質(ミルクカゼイン、ホエイ蛋白質濃縮物等)自身が経済的価値を持つものであり、経済的に非効率である。
 非特許文献2に記載されている方法にあっては、本発明者等の知見によれば、塩化カルシウムを加えることにより透過流束すなわち単位時間当たりに膜を通り抜ける液量が減少し、結果的に脱塩の効率が悪くなるという欠点がある。また塩化カルシウムを加えるため、得られる脱塩ホエイにおけるカルシウム含有量が原料ホエイよりも多くなり、用途によっては好ましくない場合がある。
However, in the method described in Patent Document 3, the electrolyte to be added (milk casein, whey protein concentrate, etc.) itself has economic value and is economically inefficient.
In the method described in Non-Patent Document 2, according to the knowledge of the present inventors, the addition of calcium chloride reduces the permeation flux, that is, the amount of liquid passing through the membrane per unit time. However, there is a drawback that the desalting efficiency becomes worse. Moreover, since calcium chloride is added, the calcium content in the obtained desalted whey is higher than that of the raw material whey, which may not be preferable depending on the application.
 本発明は上記事情に鑑みてなされたものであって、原料ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減を抑えつつ、ナトリウムおよびカリウムが充分に低減された脱塩ホエイを効率良く製造できる方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and efficiently produces desalted whey in which sodium and potassium are sufficiently reduced while suppressing the reduction of the contents of calcium and magnesium contained in the raw material whey. It aims to provide a possible method.
 前記課題を解決するために、本発明者らは鋭意研究を行った結果、膜分離法によるホエイの脱塩処理において、処理の対象である被処理液中におけるナトリウム含有量とカリウム含有量の合計値に対する塩素含有量のモル比、すなわち、(塩素/(ナトリウム+カリウム))の値が小さいと、分離膜におけるナトリウムおよびカリウムの透過率が減少し、脱塩効率が低下することを見出した。
 また被処理液を塩素型陰イオン交換樹脂に通液させることにより前記モル比(塩素/(カリウム+ナトリウム))を増大させることができ、前記モル比(塩素/(カリウム+ナトリウム))が増大した状態で膜分離を行うことによりナトリウムおよびカリウムを効率的に脱塩できるとともに、ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減は抑えられることを見出し、本発明を完成させるに至った。
In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, in the desalination treatment of whey by the membrane separation method, the total of the sodium content and the potassium content in the liquid to be treated is a treatment target. It was found that when the molar ratio of the chlorine content to the value, that is, the value of (chlorine / (sodium + potassium)) is small, the permeation rate of sodium and potassium in the separation membrane is reduced, and the desalting efficiency is lowered.
The molar ratio (chlorine / (potassium + sodium)) can be increased by passing the liquid to be treated through a chlorine-type anion exchange resin, and the molar ratio (chlorine / (potassium + sodium)) is increased. It was found that sodium and potassium can be efficiently desalted by performing membrane separation in a state where the reduction of the content of calcium and magnesium contained in whey can be suppressed, and the present invention has been completed. .
 本発明の1つの側面としては、原料ホエイ液から、膜分離法により脱塩処理する工程を経て、脱塩ホエイを製造する方法であって、前記脱塩処理に供される被処理液を、脱塩処理される前にイオン交換樹脂に通液させる工程を有し、前記イオン交換樹脂が陰イオン交換樹脂からなり、該陰イオン交換樹脂として少なくとも塩素型陰イオン交換樹脂を用いることを特徴とする脱塩ホエイの製造方法に関する。 One aspect of the present invention is a method for producing desalted whey from a raw material whey solution through a step of performing a desalting treatment by a membrane separation method, and a liquid to be treated to be subjected to the desalting treatment, Having a step of passing through an ion exchange resin before desalting, wherein the ion exchange resin is made of an anion exchange resin, and at least a chlorine type anion exchange resin is used as the anion exchange resin. The present invention relates to a method for producing desalted whey.
 本発明の別の側面としては、脱塩処理に供される被処理液を、脱塩処理される前にイオン交換樹脂に通液させる工程、および前記通液させた被処理液を、膜分離法により脱塩処理する工程を有し、ここで、前記イオン交換樹脂は陰イオン交換樹脂からなり、前記陰イオン交換樹脂として少なくとも塩素型陰イオン交換樹脂を用いる脱塩ホエイの製造方法に関する。 According to another aspect of the present invention, a treatment liquid to be subjected to desalting treatment is passed through an ion exchange resin before being desalted, and the passed treatment liquid is subjected to membrane separation. The present invention relates to a method for producing desalted whey, wherein the ion exchange resin is made of an anion exchange resin, and at least a chlorine type anion exchange resin is used as the anion exchange resin.
 本発明のまた別の側面としては、前記脱塩処理に供される被処理液が原料ホエイ液であって、前記原料ホエイ液のpHが、例えば5.5~7.4、より好ましくは6~7の範囲内であり、前記陰イオン交換樹脂からの流出液のpHが、例えば5.5~7.4、より好ましくは6~7の条件で行う脱塩ホエイの製造方法に関する。
 本発明のまた別の側面としては、前記膜分離法がナノろ過法である脱塩ホエイの製造方法に関する。
In another aspect of the present invention, the liquid to be treated for the desalting treatment is a raw material whey liquid, and the pH of the raw material whey liquid is, for example, 5.5 to 7.4, more preferably 6 The present invention relates to a method for producing desalted whey, wherein the pH of the effluent from the anion exchange resin is in the range of 5.5 to 7.4, more preferably 6 to 7.
Another aspect of the present invention relates to a method for producing desalted whey in which the membrane separation method is a nanofiltration method.
 本発明のまた別の側面としては、前記脱塩処理に供される被処理液の、ナトリウム含有量とカリウム含有量との合計値に対する塩素含有量のモル比(塩素/(ナトリウム+カリウム))を0.35以上に維持する脱塩ホエイの製造方法に関する。
 本発明のまた別の側面としては、前記塩素型陰イオン交換樹脂からの流出液の、ナトリウム含有量とカリウム含有量の合計値に対する塩素含有量のモル比(塩素/(ナトリウム+カリウム))が0.8以上となる条件で行う脱塩ホエイの製造方法に関する。
As another aspect of the present invention, the molar ratio of chlorine content to the total value of sodium content and potassium content (chlorine / (sodium + potassium)) of the liquid to be treated for the desalting treatment. The present invention relates to a method for producing a desalted whey that maintains 0.35 or more.
As another aspect of the present invention, the molar ratio (chlorine / (sodium + potassium)) of chlorine content to the total value of sodium content and potassium content in the effluent from the chlorine-type anion exchange resin is as follows. The present invention relates to a method for producing desalted whey performed under conditions of 0.8 or more.
 本発明のまた別の側面としては、前記脱塩ホエイにおける下記式(1)で求められる(Ca+Mg)残存率が60%以上であり、かつ下記式(2)で求められる脱塩率が60%以上である脱塩ホエイの製造方法に関する。
 (Ca+Mg)残存率(単位:%)={(脱塩ホエイのCa含有量とMg含有量の合計)/(原料ホエイ液のCa含有量とMg含有量の合計)}×100…(1)(式中、Ca含有量は固形分100gあたりに含まれるカルシウムの含有量であり、Mg含有量は固形分100gあたりに含まれるマグネシウムの含有量であり、いずれも単位はmmol/100g固形である。)
 脱塩率(単位:%)={{(原料ホエイ液のNa含有量とK含有量の合計)-(脱塩ホエイのNa含有量とK含有量の合計)}/(原料ホエイ液のNa含有量とK含有量の合計)}×100…(2)(式中、Na含有量は固形分100gあたりに含まれるナトリウムの含有量であり、K含有量は固形分100gあたりに含まれるカリウムの含有量であり、いずれも単位はmmol/100g固形である。)
 本発明の更に別の側面としては、調製粉乳用として好適である前記脱塩ホエイに関する。
As another aspect of the present invention, the (Ca + Mg) residual rate determined by the following formula (1) in the desalted whey is 60% or more, and the desalting rate calculated by the following formula (2) is 60%. The present invention relates to a method for producing desalted whey as described above.
(Ca + Mg) residual rate (unit:%) = {(total of Ca content and Mg content of desalted whey) / (total of Ca content and Mg content of raw whey solution)} × 100 (1) (In the formula, the Ca content is the content of calcium contained per 100 g of the solid content, the Mg content is the content of magnesium contained per 100 g of the solid content, and each unit is mmol / 100 g solid. .)
Desalination rate (unit:%) = {{(total of Na content and K content of raw material whey liquid) − (total of Na content and K content of desalted whey liquid)} / (Na of raw whey liquid) Total of content and K content)} × 100 (2) (In the formula, the Na content is the content of sodium contained per 100 g of solid content, and the K content is potassium contained per 100 g of solid content. In any case, the unit is mmol / 100 g solid.)
Yet another aspect of the present invention relates to the desalted whey, which is suitable for formula milk.
 本発明の方法によれば、原料ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減を抑えつつ、ナトリウムおよびカリウムが充分に低減された脱塩ホエイを効率良く製造できる。 According to the method of the present invention, it is possible to efficiently produce a desalted whey in which sodium and potassium are sufficiently reduced while suppressing reduction of the contents of calcium and magnesium contained in the raw material whey.
実施例および比較例における、ナノろ過膜の積算透過液量とナトリウムおよびカリウムの脱塩率との関係を示すグラフである。It is a graph which shows the relationship between the integrated permeate amount of a nanofiltration membrane, and the desalination rate of sodium and potassium in an Example and a comparative example. 実施例および比較例における、積算透過液量と単位膜モジュール当たりの透過流束との関係を示すグラフである。It is a graph which shows the relationship between the amount of integrated permeated liquids and the permeation flux per unit membrane module in an Example and a comparative example.
 本発明について、詳細に説明する。なお、以下において、%は、特に断りの無い限り質量%である。
<原料ホエイ液>
 ウシ、ヒツジ、またはヤギ等の乳を原料として、チーズ、カゼイン、カゼインナトリウム、またはヨーグルト等を製造する過程において、凝固させた乳分を取り除いて残る透明な液をホエイと言う。本発明で用いられるホエイは、凝固した乳分を分離しただけの未処理のホエイでもよく、前記未処理のホエイに対して、分離膜を用いて脱脂および/または脱蛋白質の前処理を施したものでもよく、前記未処理のホエイまたは前処理後のホエイを、噴霧乾燥や凍結乾燥等の常法により粉末化したものでもよい。市販のホエイパウダーも使用できる。
The present invention will be described in detail. In the following, “%” is “% by mass” unless otherwise specified.
<Raw material whey>
A whey is a transparent liquid remaining after removing coagulated milk in the process of producing cheese, casein, sodium caseinate, yogurt or the like using milk such as cow, sheep or goat as a raw material. The whey used in the present invention may be an untreated whey obtained only by separating the coagulated milk, and the untreated whey is subjected to degreasing and / or deprotein pretreatment using a separation membrane. The untreated whey or the pretreated whey may be powdered by a conventional method such as spray drying or freeze drying. Commercial whey powder can also be used.
 原料ホエイ液はホエイを含む液体であればよく、例えば液体のホエイをそのまま用いてもよく、ホエイパウダーの水溶液でもよい。必要に応じて予め濃縮した濃縮液を原料ホエイ液として用いてもよい。
 ホエイおよび原料ホエイ液は中性であることが好ましい。具体的に、原料ホエイ液のpHが、例えば5.5~7.4、より好ましくは6~7の範囲内であることが好ましい。
 原料ホエイ液が前記範囲内であると、中和工程を行うことなく、後述する分離膜による脱塩工程およびイオン交換樹脂に通液させる工程を中性域で行うことができるため、ホエイタンパク質の分解、変性、糖の酸分解やアルカリ反応などを防ぐことができる。また耐アルカリ性が低い分離膜を用いても膜寿命が短命化するおそれがないため好ましい。
The raw material whey liquid may be a liquid containing whey. For example, liquid whey may be used as it is, or an aqueous solution of whey powder. You may use the concentrate concentrated beforehand as a raw material whey liquid as needed.
The whey and the raw material whey liquid are preferably neutral. Specifically, the pH of the raw material whey solution is preferably in the range of 5.5 to 7.4, more preferably 6 to 7, for example.
If the raw material whey solution is within the above range, the desalting step by the separation membrane and the step of passing through the ion exchange resin, which will be described later, can be performed in a neutral region without performing the neutralization step. Degradation, denaturation, acid decomposition of sugar, alkaline reaction, etc. can be prevented. In addition, it is preferable to use a separation membrane having low alkali resistance because there is no possibility of shortening the membrane life.
<陰イオン交換樹脂への通液>
 本発明におけるイオン交換樹脂は陰イオン交換樹脂からなる。すなわち、陽イオン交換樹脂に通液させる処理は行わない。
 陰イオン交換樹脂への通液は中性域で行うことが好ましい。具体的には、陰イオン交換樹脂に通液される前の液のpH、および前記陰イオン交換樹脂からの流出液のpHが、いずれも、例えばpH5.5~7.4、より好ましくは6~7、の範囲内であることが好ましい。
 このためには、中性の原料ホエイ液を用い、陰イオン交換樹脂としてOH型陰イオン交換樹脂を使用しないことが望ましく、陰イオン交換樹脂として塩素型陰イオン交換樹脂のみを用いることが好ましい。
<Liquid flow to anion exchange resin>
The ion exchange resin in this invention consists of an anion exchange resin. That is, the process of passing the liquid through the cation exchange resin is not performed.
The liquid passing through the anion exchange resin is preferably performed in a neutral range. Specifically, the pH of the liquid before passing through the anion exchange resin and the pH of the effluent from the anion exchange resin are both, for example, pH 5.5 to 7.4, more preferably 6 It is preferably within the range of.
For this purpose, it is desirable to use a neutral raw material whey solution and not to use an OH type anion exchange resin as an anion exchange resin, and it is preferable to use only a chlorine type anion exchange resin as an anion exchange resin.
 塩素型陰イオン交換樹脂としては、陰イオン交換樹脂を、予め食塩水、または塩酸などを用いて塩素型にしたものを用いる。陰イオン交換樹脂の例としては、ロームアンドハース社製IRA402BL、IRA958、および三菱化学社製PA316(いずれも製品名)などを例示することができる。しかし、これらに限られず、脱塩ホエイの用途に応じて、目的とする組成の脱塩ホエイを得るのに好適な陰イオン交換樹脂を適宜選択することができる。 As the chlorine type anion exchange resin, an anion exchange resin that has been previously made into a chlorine type using saline or hydrochloric acid is used. Examples of the anion exchange resin include IRA402BL and IRA958 manufactured by Rohm and Haas, and PA316 manufactured by Mitsubishi Chemical (both are product names). However, the present invention is not limited thereto, and an anion exchange resin suitable for obtaining a desalted whey having a target composition can be appropriately selected according to the use of the desalted whey.
 塩素型陰イオン交換樹脂に通液させることにより液中の塩素含有量が増加する。塩素型陰イオン交換樹脂への通液時期は、膜分離法による脱塩処理に供される被処理液を、脱塩処理される前に通液させる。例えば、原料ホエイ液を塩素型陰イオン交換樹脂に通液させた後に、脱塩処理を行ってもよい。または、膜分離法による脱塩処理を経た脱塩ホエイ液を、塩素型陰イオン交換樹脂に通液させた後、さらに膜分離法による脱塩処理に供してもよく、塩素型陰イオン交換樹脂への通液と、膜分離法による脱塩処理とを交互に複数回繰り返し、最後に膜分離法による脱塩処理を行ってもよい。これらを組み合わせてもよい。
 さらに、原料タンクから原料ホエイを抜き出して塩素型陰イオン交換樹脂に通液し、得られた液を原料タンクに戻す操作を追加して、膜分離を行うことにより、Cl/(Na+K)比を維持することが可能である。
By passing the solution through a chlorine-type anion exchange resin, the chlorine content in the solution increases. At the time of passing through the chlorine-type anion exchange resin, the liquid to be treated to be subjected to the desalting treatment by the membrane separation method is passed before the desalting treatment. For example, the desalting treatment may be performed after passing the raw material whey solution through a chlorine-type anion exchange resin. Alternatively, the desalted whey solution that has been desalted by the membrane separation method may be passed through a chlorine-type anion exchange resin and then further subjected to a desalting treatment by the membrane-separation method. It is also possible to alternately repeat the flow of water through and the desalting treatment by the membrane separation method a plurality of times, and finally perform the desalting treatment by the membrane separation method. These may be combined.
Furthermore, the raw material whey is extracted from the raw material tank, passed through a chlorine-type anion exchange resin, and an operation for returning the obtained liquid to the raw material tank is added to perform membrane separation, thereby reducing the Cl / (Na + K) ratio. It is possible to maintain.
 塩素型陰イオン交換樹脂への通液による塩素含有量の増加量は、塩素型陰イオン交換樹脂からの流出液におけるナトリウム(Na)含有量とカリウム(K)含有量の合計値に対する塩素含有量のモル比(塩素/(ナトリウム+カリウム))(以下、Cl/(Na+K)比ということもある)が0.8以上となる量が好ましい。
 また、Cl/(Na+K)比の好適な上限値は、製造効率の観点から1.1が好ましく、1.0であることがより好ましい。後記するように、塩素型陰イオン交換樹脂単位交換容量あたりのホエイ固形分の通液量が少ないほど、Cl/(Na+K)比の値は高くなる。
 前記Cl/(Na+K)比が0.8以上であると、後述の分離膜での脱塩処理に供される被処理液におけるCl/(Na+K)比を0.35以上に保ちやすい。
 例えば、後述の回分濃縮式またはダイアフィルトレーションによる脱塩処理にあっては、途中で塩素含有量を増加させなければ、分離膜による脱塩処理に供される被処理液におけるCl/(Na+K)比が経時的に減少する場合がある。この場合、脱塩処理に最初に供される液のCl/(Na+K)比が0.8以上であると、途中で塩素含有量を増加させなくても、被処理液のCl/(Na+K)比を0.35以上に維持しやすい。
 塩素型陰イオン交換樹脂への通液による塩素含有量の増加量の上限は、特に制限は無いが、脱塩工程後において支障が無い範囲とすることが必要である。脱塩ホエイの用途に応じて、脱塩ホエイの塩素含有量が好ましい範囲となるように設定することが好ましい。例えば、脱塩ホエイを育児用調製粉乳の原料として使用する場合は、脱塩ホエイの塩素含量は、1~25mmol/100g固形を例示することができる。
The increase in the chlorine content by passing through the chlorine type anion exchange resin is the chlorine content relative to the total of the sodium (Na) content and potassium (K) content in the effluent from the chlorine type anion exchange resin. The molar ratio (chlorine / (sodium + potassium)) (hereinafter sometimes referred to as the Cl / (Na + K) ratio) is preferably 0.8 or more.
Moreover, 1.1 is preferable from a viewpoint of manufacturing efficiency, and, as for the suitable upper limit of Cl / (Na + K) ratio, it is more preferable that it is 1.0. As will be described later, the value of the Cl / (Na + K) ratio increases as the amount of whey solids per unit exchange capacity of the chlorine-type anion exchange resin decreases.
When the Cl / (Na + K) ratio is 0.8 or more, it is easy to keep the Cl / (Na + K) ratio in the liquid to be processed to be desalted in the separation membrane described later at 0.35 or more.
For example, in the desalting treatment by batch concentration method or diafiltration described later, Cl / (Na + K in the liquid to be treated used for the desalting treatment by the separation membrane unless the chlorine content is increased in the middle. ) The ratio may decrease over time. In this case, if the Cl / (Na + K) ratio of the liquid initially supplied for the desalting treatment is 0.8 or more, the Cl / (Na + K) of the liquid to be treated can be obtained without increasing the chlorine content in the middle. It is easy to maintain the ratio at 0.35 or higher.
The upper limit of the increase in chlorine content by passing through the chlorine-type anion exchange resin is not particularly limited, but it is necessary to make it within a range that does not hinder after the desalting step. It is preferable to set the chlorine content of the desalted whey within a preferable range according to the use of the desalted whey. For example, when desalted whey is used as a raw material for infant formula, the chlorine content of desalted whey can be exemplified by 1 to 25 mmol / 100 g solids.
 塩素型陰イオン交換樹脂への通液条件は、乳糖が析出しない範囲で、流出液における塩素含有量の目標値に応じて設定できる。
 ホエイを含む液を塩素型陰イオン交換樹脂に通液させる場合、イオン交換樹脂単位交換容量あたりのホエイ固形分の通液量が少ないほど、イオン交換効率が高くなり、通液による塩素含有量の増加量は多くなる。流出液中の塩素含有量をより増大させるためには、通液させる液の固形濃度は低い方が好ましく、流速は小さい(遅い)方が好ましい。
 塩素型陰イオン交換樹脂に通液させる液の固形濃度は、例えば4~40質量%が好ましく、5~20質量%がより好ましい。前記固形濃度が4質量%未満であると通液に時間がかかり効率がよくない。また、前記固形濃度が低いほど、後工程において濃縮を行う際に濃縮倍率を高くする必要がある。前記固形濃度が40質量%を超えると、溶液の粘度が高くなり、乳糖析出の可能性も高くなる。
 通液させる際の流速は、例えば2~12SVが好ましく、3~8SVがより好ましい。前記流速が2SV未満であると通液に時間がかかり効率がよくない。前記流速が12SVを超えると、圧力損失が高くなる。なおSVとは、単位時間当たりに通液した液の、イオン交換樹脂量に対する相対量を表し、1時間にイオン交換樹脂量と同量の液を通液した場合の流速を1SVという。
 通液させる液の温度は2~50℃が好ましく、3~15℃がより好ましい。前記温度が2℃未満であると、液の粘度が高くなりすぎる。また温度が下がりすぎると液が凍結をおこすおそれもある。一方、50℃を超えると蛋白質の変性、または褐変等が生じる可能性が高くなる。微生物の増殖を抑えるためには10℃以下が好ましい。
 一般には、SVおよび固形分濃度がともに小さい方がイオン交換効率は上昇し、Cl/(Na+K)比は高くなる傾向にある。
 また、塩素型陰イオン交換樹脂単位交換容量あたりのホエイ固形分の通液量が少ないほど、Cl/(Na+K)比は高くなる傾向にある。
 具体的には、ナトリウム(Na)が23.5mmol/100g固形、カリウム(K)が66.5mmol/100g固形、塩素(Cl)が42.3mmol/100g固形のホエイを使用して、濃度が7質量%となるような原料ホエイ液を、SV6.5でイオン交換樹脂に10℃の条件で通液する場合において、塩素型陰イオン交換樹脂のイオン交換容量(能力)1eqあたり、通液するホエイ液の固形分量を2.2kg以下に設定すれば、Cl/(Na+K)比は0.8以上となる。なお、「eq」とは、イオン交換樹脂のイオン交換容量を表し、1eqは、1mol分の電荷を交換できることを意味する。
The condition for passing through the chlorine-type anion exchange resin can be set in accordance with the target value of the chlorine content in the effluent as long as lactose does not precipitate.
When a whey-containing liquid is passed through a chlorine-type anion exchange resin, the smaller the amount of whey solids per unit exchange capacity of the ion exchange resin, the higher the ion exchange efficiency. The increase will increase. In order to increase the chlorine content in the effluent, it is preferable that the solid concentration of the liquid to be passed is lower and the flow rate is smaller (slower).
The solid concentration of the liquid passed through the chlorine-type anion exchange resin is preferably 4 to 40% by mass, for example, and more preferably 5 to 20% by mass. When the solid concentration is less than 4% by mass, it takes time to pass the liquid and the efficiency is not good. Further, the lower the solid concentration, the higher the concentration factor when performing the concentration in the subsequent step. When the solid concentration exceeds 40% by mass, the viscosity of the solution increases and the possibility of lactose precipitation increases.
For example, the flow rate when the liquid is passed is preferably 2 to 12 SV, and more preferably 3 to 8 SV. If the flow rate is less than 2 SV, it takes time to pass the liquid and the efficiency is not good. When the flow rate exceeds 12 SV, the pressure loss increases. SV represents a relative amount of the liquid passed per unit time with respect to the amount of the ion exchange resin, and a flow rate when the same amount of liquid as the amount of the ion exchange resin is passed for 1 hour is referred to as 1 SV.
The temperature of the liquid to be passed is preferably 2 to 50 ° C, more preferably 3 to 15 ° C. When the temperature is less than 2 ° C., the viscosity of the liquid becomes too high. If the temperature is too low, the liquid may freeze. On the other hand, when the temperature exceeds 50 ° C., the possibility of protein denaturation or browning increases. In order to suppress the growth of microorganisms, 10 ° C. or lower is preferable.
In general, the smaller the SV and the solid content concentration, the higher the ion exchange efficiency and the higher the Cl / (Na + K) ratio.
Moreover, the Cl / (Na + K) ratio tends to increase as the amount of whey solids per unit exchange capacity of the chlorine-type anion exchange resin decreases.
Specifically, whey containing 23.5 mmol / 100 g solid of sodium (Na), 66.5 mmol / 100 g solid of potassium (K), and 42.3 mmol / 100 g solid of chlorine (Cl) and having a concentration of 7 When the raw material whey liquid that is mass% is passed through the ion exchange resin at SV 6.5 under the condition of 10 ° C., the whey that passes through the ion exchange capacity (capacity) of the chlorine type anion exchange resin per 1 eq. If the solid content of the liquid is set to 2.2 kg or less, the Cl / (Na + K) ratio is 0.8 or more. “Eq” represents the ion exchange capacity of the ion exchange resin, and 1 eq means that 1 mol of charge can be exchanged.
<膜分離法により脱塩処理を行う脱塩工程>
 脱塩処理に用いる膜分離法としては、カルシウムおよびマグネシウムの阻止率が高く、ナトリウムおよびカリウムの透過率が高い方法が用いられる。例えば、電気透析法、ナノろ過法、または透析法等、1価のミネラルを選択的に脱塩する方法として公知の手法を用いることができる。脱塩および濃縮を同時に行うことができる点、および必要に応じて透析ろ過工程を組み合わせることで高度な脱塩が可能である点でナノろ過法が好ましい。
<Desalting step of performing desalting treatment by membrane separation method>
As the membrane separation method used for the desalting treatment, a method having a high calcium and magnesium rejection and a high sodium and potassium permeability is used. For example, a known method can be used as a method for selectively desalting monovalent minerals, such as electrodialysis, nanofiltration, or dialysis. The nanofiltration method is preferable in that desalting and concentration can be performed at the same time, and advanced desalting is possible by combining diafiltration steps as necessary.
 ナノろ過法は、ナノろ過による脱塩処理に供される被処理液を、ナノろ過膜を透過した透過液と透過しないリテンテート液とに分離する工程を有する方法である。
 ナノろ過(NF)膜とは、限外ろ過(UF)膜と逆浸透(RO)膜の中間領域である分子量数十から千ダルトン、すなわち、分子の大きさに換算するとナノメートルの領域を分画対象とした分離膜である。無機質、糖質、アミノ酸、ビタミンなどのうち、分子量が小さく、荷電の低い粒子はナノろ過膜を透過する。
The nanofiltration method is a method having a step of separating a liquid to be treated for desalting treatment by nanofiltration into a permeated liquid that has permeated the nanofiltration membrane and a retentate liquid that has not permeated.
A nanofiltration (NF) membrane is an intermediate region between an ultrafiltration (UF) membrane and a reverse osmosis (RO) membrane that has a molecular weight of tens to thousands of daltons, that is, a nanometer region when converted to a molecular size. This is a separation membrane to be imaged. Among inorganic substances, carbohydrates, amino acids, vitamins, etc., particles having a low molecular weight and low charge permeate the nanofiltration membrane.
 本発明の1つの側面である脱塩工程において、ホエイに含まれるミネラルのうち、1価のミネラルの陽イオンの一部がナノろ過膜を透過して透過液に含まれる。一方、2価のミネラルの陽イオンはほとんどナノろ過膜を透過せず、リテンテート液に含まれる。リテンテート液から脱塩ホエイを得る。
 具体的なナノろ過膜としては、GE Water Technologies社製のDL、DK、HLシリーズ、Koch Membrane System社製のSR-3シリーズ、Dow Chemical社製のDOW-NFシリーズ、および日東電工社製のNTRシリーズ(いずれも製品名)などを例示することができるが、これらに限られるものではない。
 脱塩ホエイの用途に応じて、目的とする組成の脱塩ホエイを得るのに好適な分離膜を適宜選択して用いることができる。
In the desalting step which is one aspect of the present invention, a part of the cation of the monovalent mineral among the minerals contained in the whey passes through the nanofiltration membrane and is contained in the permeate. On the other hand, divalent mineral cations hardly pass through the nanofiltration membrane and are contained in the retentate. Desalted whey is obtained from the retentate solution.
Specific nanofiltration membranes include DL, DK, HL series manufactured by GE Water Technologies, SR-3 series manufactured by Koch Membrane System, DOW-NF series manufactured by Dow Chemical, and NTR manufactured by Nitto Denko. A series (all are product names) can be exemplified, but is not limited thereto.
A separation membrane suitable for obtaining a desalted whey having a target composition can be appropriately selected and used depending on the application of the desalted whey.
 本発明で用いる膜分離装置は公知のものを適宜選択して用いることができる。
 例えば、ナノろ過膜を備えた膜モジュールと、膜モジュールに被処理液を送る供給ポンプと、ナノろ過膜を透過した透過液を膜モジュールから取り出す手段と、ナノろ過膜を透過しなかったリテンテート液を膜モジュールから取り出す手段を備えている。回分式の装置はさらに膜モジュールに供給される前の被処理液を保持する原液タンクと、膜モジュールから取り出したリテンテート液を原液タンクに戻す手段を備えている。
 膜分離操作は、透過液を取り出し、リテンテート液を原液タンクに戻す回分濃縮式でもよい。透過液を取り出し、リテンテート液を原液タンクに戻す工程のほかに、取り出した透過液と同量の水を原液タンクに加えるダイアフィルトレーション(加水透析ろ過)を行う工程を設けてもよい。または被処理液を膜モジュールに連続的に供給し、リテンテート液および透過液をそれぞれ連続的に取り出す連続式でもよい。これらを組み合わせてもよい。
As the membrane separation apparatus used in the present invention, a known apparatus can be appropriately selected and used.
For example, a membrane module equipped with a nanofiltration membrane, a supply pump that sends the liquid to be treated to the membrane module, a means for taking out the permeate that has permeated the nanofiltration membrane from the membrane module, and a retentate that did not permeate the nanofiltration membrane Means for taking out the membrane from the membrane module. The batch-type apparatus further includes a stock solution tank that holds the liquid to be treated before being supplied to the membrane module, and means for returning the retentate liquid taken out from the membrane module to the stock solution tank.
The membrane separation operation may be a batch concentration type in which the permeate is taken out and the retentate is returned to the stock solution tank. In addition to the step of taking out the permeate and returning the retentate solution to the stock solution tank, a step of performing diafiltration (hydrodiafiltration) in which the same amount of water as the taken out permeate is added to the stock solution tank may be provided. Alternatively, a continuous type may be employed in which the liquid to be treated is continuously supplied to the membrane module, and the retentate liquid and the permeated liquid are continuously extracted. These may be combined.
 本明細書における、ナトリウムおよびカリウムの透過率(以下(Na+K)透過率ということもある。)は、下記式(3)で表わされる値である。なおナトリウム含有量(以下、Na含有量と記載することもある。)およびカリウム含有量(以下、K含有量と記載することもある。)の単位はmmol/L液である。(Na+K)透過率=(透過液中のNa含有量とK含有量の合計)/(リテンテート液中のNa含有量とK含有量の合計)…(3) In this specification, the transmittance of sodium and potassium (hereinafter sometimes referred to as (Na + K) transmittance) is a value represented by the following formula (3). The unit of sodium content (hereinafter sometimes referred to as Na content) and potassium content (hereinafter sometimes referred to as K content) is mmol / L solution. (Na + K) permeability = (total of Na content and K content in permeate) / (total of Na content and K content in retentate) (3)
 分離膜による脱塩処理に供される被処理液における、Na含有量とK含有量の合計値に対する塩素含有量のCl/(Na+K)比を0.35以上、好ましくは0.5以上に維持することが好ましい。前記Cl/(Na+K)比が0.35以上であると、(Na+K)透過率が充分に高くなる。
 前記Cl/(Na+K)比が0.35以上であると、(Na+K)透過率が十分に高くなる。また、膜分離による脱塩処理中にCl/(Na+K)比が0.35未満になるのを防止するためには、Cl/(Na+K)比が低下した時点で、再度、塩素型陰イオン交換樹脂に通液し、その後、膜分離を実施すれば可能である。すなわち、本発明の製造方法においては、陰イオン交換の工程を複数回繰り返すことで、Cl/(Na+K)比を0.35以上に維持することが可能である。
Maintain the Cl / (Na + K) ratio of chlorine content to the total value of Na content and K content at 0.35 or higher, preferably 0.5 or higher, in the liquid to be treated for desalination treatment with a separation membrane. It is preferable to do. When the Cl / (Na + K) ratio is 0.35 or more, the (Na + K) transmittance is sufficiently high.
When the Cl / (Na + K) ratio is 0.35 or more, the (Na + K) transmittance is sufficiently high. In order to prevent the Cl / (Na + K) ratio from becoming less than 0.35 during the desalting process by membrane separation, once the Cl / (Na + K) ratio is lowered, the chlorine-type anion exchange is performed again. It is possible to pass through the resin and then perform membrane separation. That is, in the production method of the present invention, the Cl / (Na + K) ratio can be maintained at 0.35 or more by repeating the anion exchange step a plurality of times.
 脱塩ホエイは脱塩処理を経たリテンテート液から得られる。脱塩処理後に得られるリテンテート液をそのままの状態で液状の脱塩ホエイとして用いてもよく、必要に応じて通常の方法で濃縮したものを濃縮液状の脱塩ホエイとしてもよい。またリテンテート液を必要に応じて濃縮した後、凍結乾燥、噴霧乾燥等の通常の乾燥工程を経て、粉末状の脱塩ホエイとしてもよい。脱塩ホエイは他製品の原料として用いることが可能である。
 脱塩ホエイ中のナトリウム含有量とカリウム含有量の合計は固形分100g当たり40mmol以下であることが好ましく、32mmol以下であることがより好ましい。
Desalted whey is obtained from a retentate solution that has been desalted. The retentate obtained after the desalting treatment may be used as it is as a liquid desalted whey, and if necessary, a concentrated liquid desalted whey may be used as a concentrated liquid desalted whey. Further, after the retentate solution is concentrated as necessary, it may be converted into a powdered desalted whey through a normal drying process such as freeze drying or spray drying. Desalted whey can be used as a raw material for other products.
The total of the sodium content and the potassium content in the desalted whey is preferably 40 mmol or less, more preferably 32 mmol or less, per 100 g of the solid content.
 本発明によれば、膜分離法による脱塩処理に供される被処理液を、脱塩処理される前に塩素型陰イオン交換樹脂に通液させる工程を設けることにより、後述の実施例に示されるように、脱塩工程中の(Na+K)透過率が高いレベルに保たれ、脱塩効率が向上する。したがって、原料ホエイ中のナトリウムおよびカリウムの含有量を充分に低減された脱塩ホエイを効率良く製造できる。また、原料ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減は良好に抑えられる。 According to the present invention, by providing a liquid to be processed to be subjected to a desalting treatment by a membrane separation method through a chlorine-type anion exchange resin before being desalted, the following examples are provided. As shown, (Na + K) permeability during the desalting step is kept at a high level, and desalting efficiency is improved. Therefore, a desalted whey having a sufficiently reduced content of sodium and potassium in the raw material whey can be efficiently produced. Moreover, the reduction of the content of calcium and magnesium contained in the raw material whey can be satisfactorily suppressed.
 例えば、カルシウムとマグネシウムの残存率((Ca+Mg)残存率)が60%以上であり、かつ脱塩率が60%以上である脱塩ホエイを製造することができる。
 本明細書における(Ca+Mg)残存率は下記式(1)で求められる値であり、脱塩率は下記式(2)で求められる値である。
 (Ca+Mg)残存率(単位:%)={(脱塩ホエイのCa含有量とMg含有量の合計)/(原料ホエイ液のCa含有量とMg含有量の合計)}×100…(1)(式中、Ca含有量は固形分100gあたりに含まれるカルシウムの含有量であり、Mg含有量は固形分100gあたりに含まれるマグネシウムの含有量であり、いずれも単位はmmol/100g固形である。)
 脱塩率(単位:%)={{(原料ホエイ液のNa含有量とK含有量の合計)-(脱塩ホエイのNa含有量とK含有量の合計)}/(原料ホエイ液のNa含有量とK含有量の合計)}×100…(2)(式中、Na含有量は固形分100gあたりに含まれるナトリウムの含有量であり、K含有量は固形分100gあたりに含まれるカリウムの含有量であり、いずれも単位はmmol/100g固形である。)
For example, a desalted whey having a residual rate of calcium and magnesium ((Ca + Mg) residual rate) of 60% or more and a desalting rate of 60% or more can be produced.
In the present specification, the (Ca + Mg) residual rate is a value obtained by the following formula (1), and the desalting rate is a value obtained by the following formula (2).
(Ca + Mg) residual rate (unit:%) = {(total of Ca content and Mg content of desalted whey) / (total of Ca content and Mg content of raw whey solution)} × 100 (1) (In the formula, the Ca content is the content of calcium contained per 100 g of the solid content, the Mg content is the content of magnesium contained per 100 g of the solid content, and each unit is mmol / 100 g solid. .)
Desalination rate (unit:%) = {{(total of Na content and K content of raw material whey liquid) − (total of Na content and K content of desalted whey liquid)} / (Na of raw whey liquid) Total of content and K content)} × 100 (2) (In the formula, the Na content is the content of sodium contained per 100 g of solid content, and the K content is potassium contained per 100 g of solid content. In any case, the unit is mmol / 100 g solid.)
 脱塩率は脱塩処理条件によって制御できる。例えば脱塩処理時間を長くする、積算透過液量を増加させる等により脱塩率を向上させることができる。
 (Ca+Mg)残存率はイオン交換樹脂に通液させる際の処理条件、または脱塩処理条件によって変化する。
The desalting rate can be controlled by the desalting conditions. For example, the desalination rate can be improved by elongating the desalting time, increasing the integrated permeate amount, or the like.
The residual ratio of (Ca + Mg) varies depending on the processing conditions when the liquid is passed through the ion exchange resin or the desalting conditions.
 また本発明によれば、Journal of membrane Science、Vol.104、No.3、P205-218(1995年)(非特許文献2)に記載されているような、塩化カルシウムを添加するという操作を行わないため、原料ホエイよりもカルシウム含有量を増加させずに脱塩ホエイを製造できる。したがって、例えば、調製粉乳用の脱塩ホエイなど、原料ホエイに比べてカルシウム含有量が高すぎると好ましくない用途にも好適な脱塩ホエイが得られる。
 調製粉乳とは、生乳、牛乳若しくは特別牛乳、またはこれらを原料として製造した食品を加工し、または主要原料とし、これに乳幼児に必要な栄養素を加え粉末状にしたものである。
Also according to the present invention, Journal of membrane Science, Vol. 104, no. 3, P205-218 (1995) (Non-Patent Document 2), since the operation of adding calcium chloride is not performed, desalted whey without increasing the calcium content as compared with the raw material whey. Can be manufactured. Therefore, for example, desalted whey suitable for applications where the calcium content is too high compared to the raw material whey, such as desalted whey for prepared milk powder.
The formula powdered milk is obtained by processing raw milk, milk or special milk, or foods produced using these as raw materials, or using them as a main raw material, and adding the nutrients necessary for infants to a powder form.
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。以下において含有量の単位を表わす「%」は特に断りのない限り「質量%」である。
<比較例1>
(原料ホエイ液)
 原料ホエイとしてチーズホエイパウダー(タンパク質12.1%、脂質1.1%、炭水化物77.2%、灰分7.8%、水分1.8%、)5.7kgを用い、これに水を加えて溶解して105kgの原料ホエイ液を得た。(ナノろ過による脱塩処理)
 得られた原料ホエイ液をナノろ過膜(DL3840C-30D:GE Water&Process Technologies社製)で、リテンテート液を原液タンクに戻しながら、回分濃縮式で、透過液が66.6kgとなるまで脱塩処理を行った。この時点での原液タンク内の液を脱塩ホエイ液(I)とする。
 続いて、透過液量に等しい水量を原液タンクに加水することで、原液タンク内の液量を一定に保つ加水透析ろ過方式で、ナノろ過を継続し、透過液が33.3kg(脱塩処理開始からの合計99.9kg)となるまで脱塩処理を行った。こうして得られた原液タンク内の液を脱塩ホエイ液(II)とする。脱塩ホエイ液(II)の回収量は31.0kgで固形分4.4kgを含む。
Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples. In the following, “%” representing a unit of content is “% by mass” unless otherwise specified.
<Comparative Example 1>
(Raw material whey solution)
Cheese whey powder (protein 12.1%, fat 1.1%, carbohydrate 77.2%, ash content 7.8%, moisture 1.8%) 5.7kg as raw material whey, water was added to this It melt | dissolved and the raw material whey liquid of 105 kg was obtained. (Desalination by nanofiltration)
The obtained raw material whey solution was subjected to desalination treatment with a nanofiltration membrane (DL3840C-30D: manufactured by GE Water & Process Technologies) while returning the retentate solution to the stock solution tank until the permeate amounted to 66.6 kg. went. The liquid in the stock solution tank at this time is defined as desalted whey liquid (I).
Subsequently, by adding water amount equal to the permeate amount to the stock solution tank, the nanofiltration is continued by a hydrodiafiltration method that keeps the amount of liquid in the stock solution tank constant, and the permeate is 33.3 kg (desalting treatment). The desalting treatment was performed until the total reached 99.9 kg from the start. The liquid in the stock solution tank thus obtained is designated as desalted whey liquid (II). The recovered amount of desalted whey liquid (II) is 31.0 kg and contains 4.4 kg of solid content.
 原料ホエイおよび脱塩ホエイ液(II)について、固形分100gあたりの組成を表1に示し、固形分100gあたりのミネラル組成(単位:mmol/100g固形、以下同様。)を表2に示す。
 原料ホエイ液、脱塩ホエイ液(I)および脱塩ホエイ液(II)について、pH、固形分100gあたりのナトリウム(Na)含有量とカリウム(K)含有量の合計(以下、Na+Kと記載することがある)、固形分100gあたりのCa含有量とMg含有量の合計(以下、Ca+Mgと記載することがある)、塩素含有量(以下、Clと記載することがある)、およびCl/(Na+K)比を、表3に示す。
Regarding the raw material whey and the desalted whey solution (II), the composition per 100 g of the solid content is shown in Table 1, and the mineral composition per 100 g of the solid content (unit: mmol / 100 g solid, the same applies hereinafter) is shown in Table 2.
About raw material whey liquid, desalted whey liquid (I), and desalted whey liquid (II), the total of sodium (Na) content and potassium (K) content per 100 g of solid content (hereinafter referred to as Na + K) The total of Ca content and Mg content per 100 g of solid content (hereinafter sometimes referred to as Ca + Mg), chlorine content (hereinafter sometimes referred to as Cl), and Cl / ( The Na + K) ratio is shown in Table 3.
 また、脱塩処理の開始から終了までの途中で、経時的に6回、透過液量を測定するとともに、前記測定時における原液タンク内の脱塩ホエイ液、ナノろ過膜を通過した後に原液タンクに戻される途中のリテンテート液、およびナノろ過膜の透過液を、同時に各40mL採取した。採取した液の、Na含有量、K含有量、塩素含有量(いずれも単位はmmol/100g固形)をそれぞれ測定し、原液タンク内の脱塩ホエイ液中のCl/(Na+K)比、前記式(3)で求める(Na+K)透過率、および前記式(2)で求める脱塩率をそれぞれ算出した。その結果を表4に示す。 In addition, during the period from the start to the end of the desalting treatment, the permeate amount is measured six times over time, and after passing through the desalted whey solution and nanofiltration membrane in the stock solution tank at the time of the measurement, the stock solution tank 40 mL each of the retentate liquid in the middle of being returned to and the permeated liquid of the nanofiltration membrane were collected at the same time. Measure the Na content, K content, and chlorine content (all in mmol / 100g solids) of the collected liquid, and the Cl / (Na + K) ratio in the desalted whey solution in the stock solution tank, the above formula The (Na + K) transmittance determined in (3) and the desalting rate determined in the above equation (2) were calculated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3および4に示されるように、原料ホエイ液、脱塩ホエイ液(I)および(II)のpHは6.8~6.9でほとんど変化しない。脱塩ホエイ液(II)は原料ホエイに比べて、(Na+K)含有量は低減しているものの、脱塩率は44.0%に止まった。固形分100gあたりのCa、Mg含有量はわずかに増加した。
 表4に示されるように、原料ホエイ液をそのままナノろ過で脱塩処理した本例では、脱塩処理中に、ナノろ過に供される脱塩ホエイ液(被処理液)中のCl/(Na+K)比が経時的に低下し、最終的に得られた脱塩ホエイ液(II)では0.02となった。それに伴い(Na+K)の透過率も低下し、脱塩率が44%となった時点で、(Na+K)透過率は0.07と著しく低い値になった。
 一般に、膜分離法を用いた脱塩処理において、脱塩量は、(透過液量)×(脱塩される塩の透過液中における濃度)で求まる。単位時間当たりの透過液量、脱塩される塩の原料液中における濃度が同じである場合は、透過率が2分の1になると、脱塩量も2分の1となるため、透過率が低下するということは単位透過液量あたりの脱塩量が低下することを意味する。
 したがって、本例において、これ以上に脱塩率を高くしようとして脱塩を続けても、透過率が著しく低いため、実質的に脱塩が進まない。仮に脱塩が進んでも、脱塩が進むにつれて透過率がさらに低下するため、脱塩が進まなくなると考えられる。
As shown in Tables 3 and 4, the pH values of the raw material whey liquid and the desalted whey liquids (I) and (II) are almost unchanged at 6.8 to 6.9. Although the desalted whey solution (II) had a reduced (Na + K) content as compared with the raw material whey, the desalting rate was only 44.0%. The Ca and Mg contents per 100 g of the solid content increased slightly.
As shown in Table 4, in this example in which the raw material whey solution was desalted as it was by nanofiltration, Cl / (in the desalted whey solution (liquid to be treated) subjected to nanofiltration during the desalting treatment. The Na + K) ratio decreased with time, and finally obtained desalted whey solution (II) was 0.02. Along with this, the transmittance of (Na + K) also decreased, and when the desalting rate reached 44%, the (Na + K) transmittance became a remarkably low value of 0.07.
In general, in a desalting treatment using a membrane separation method, the amount of desalting is determined by (permeate amount) × (concentration of salt to be desalted in the permeate). When the amount of permeate per unit time and the concentration of the salt to be desalted in the raw material liquid are the same, if the transmittance is halved, the desalted amount is also halved. The decrease means that the desalting amount per unit permeate is reduced.
Therefore, in this example, even if desalting is continued in an attempt to increase the desalting rate beyond this level, the desalting does not proceed substantially because the transmittance is extremely low. Even if desalting proceeds, it is considered that the desalting does not proceed because the transmittance further decreases as desalting proceeds.
<比較例2>
 本例が比較例1と大きく異なる点は、原料ホエイとして用いたチーズホエイパウダーが異なる点、およびナノろ過による脱塩処理において、加水透析ろ過方式でナノろ過を行った後に加水を停止してナノろ過を継続する点である。
 原料ホエイとしてチーズホエイパウダー(タンパク質12.7%、脂質0.9%、炭水化物76.4%、灰分8.1%、水分2.0%、)5.8kgを用い、これに水を加えて溶解して105kgの原料ホエイ液を得た。
(ナノろ過による脱塩処理)
 得られた原料ホエイ液を比較例1と同様にして、ナノろ過膜で透過液が52.4kgとなるまで脱塩処理した。この時点での原液タンク内の脱塩ホエイ液(I)のpHは6.8であった。
 続いて、比較例1と同様にして加水透析ろ過方式でナノろ過を継続し、透過液が38.6kgとなるまで脱塩処理を行った。この時点での原液タンク内の脱塩ホエイ液のpHは6.7であった。
 その後は、加水を停止してナノろ過を継続し、透過液14.3kg(脱塩処理開始からの合計105.3kg)を得た。こうして得られた原液タンク内の液を脱塩ホエイ液(II)とする。脱塩ホエイ液(II)の回収量は32.9kgで固形分4.6kgを含む。
<Comparative Example 2>
The difference between this example and Comparative Example 1 is that the cheese whey powder used as the raw material whey is different, and in the desalting treatment by nanofiltration, the nanofiltration is carried out by the hydrodiafiltration method, and then the water is stopped and It is a point to continue filtration.
Cheese whey powder (protein 12.7%, fat 0.9%, carbohydrate 76.4%, ash content 8.1%, moisture 2.0%) 5.8kg as raw material whey, water was added to this It melt | dissolved and the raw material whey liquid of 105 kg was obtained.
(Desalination by nanofiltration)
The obtained raw material whey solution was desalted in the same manner as in Comparative Example 1 until the permeate amounted to 52.4 kg with a nanofiltration membrane. At this time, the pH of the desalted whey solution (I) in the stock solution tank was 6.8.
Subsequently, nanofiltration was continued by the hydrodiafiltration method in the same manner as in Comparative Example 1, and desalting treatment was performed until the permeate became 38.6 kg. At this time, the pH of the desalted whey solution in the stock solution tank was 6.7.
Thereafter, the addition of water was stopped and nanofiltration was continued to obtain 14.3 kg of permeate (a total of 105.3 kg from the start of the desalting treatment). The liquid in the stock solution tank thus obtained is designated as desalted whey liquid (II). The recovered amount of the desalted whey liquid (II) is 32.9 kg and contains 4.6 kg of solid content.
 原料ホエイおよび脱塩ホエイ液(II)について、固形分100gあたりの組成を表5に示し、固形分100gあたりのミネラル組成を表6に示す。
 原料ホエイ液および脱塩ホエイ液(II)について、pH、固形分100gあたりのNa含有量とK含有量の合計、固形分100gあたりのCa含有量とMg含有量の合計、塩素含有量、およびCl/(Na+K)比を表7に示す。
About raw material whey and desalted whey liquid (II), the composition per 100 g of solid content is shown in Table 5, and the mineral composition per 100 g of solid content is shown in Table 6.
About raw material whey liquid and desalted whey liquid (II), pH, total of Na content and K content per 100 g of solid content, total of Ca content and Mg content per 100 g of solid content, chlorine content, and The Cl / (Na + K) ratio is shown in Table 7.
 また、脱塩処理の開始から終了までの途中で、経時的に5回、透過液量を測定するとともに、比較例1と同様にして各測定時における脱塩ホエイ液中のCl/(Na+K)比、(Na+K)透過率、および脱塩率をそれぞれ算出した。その結果を表8に示す。 In addition, during the period from the start to the end of the desalting treatment, the permeate amount was measured five times over time, and Cl / (Na + K) in the desalted whey solution at each measurement was performed in the same manner as in Comparative Example 1. The ratio, (Na + K) permeability, and desalting rate were calculated. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表7および8に示されるように、原料ホエイ液および脱塩ホエイ液(II)のpHは6.6~6.8でほとんど変化しない。
 脱塩ホエイ液(II)は原料ホエイに比べて、(Na+K)含有量は低減しているものの、脱塩率は44.1%に止まった。Ca、Mg含有量はわずかに減少した。
 表7および8に示されるように、原料ホエイ液をそのままナノろ過で脱塩処理した本例では、脱塩処理開始直後(表8の透過液量1kg)のCl/(Na+K)比が0.5であり、最終的に0.03にまで低下した。(Na+K)透過率は、脱塩率が44.1%となった時点で0.09と著しく低い値になった。
As shown in Tables 7 and 8, the pH of the raw material whey solution and the desalted whey solution (II) is almost unchanged at 6.6 to 6.8.
Although the desalted whey solution (II) had a reduced (Na + K) content compared with the raw material whey, the desalting rate was only 44.1%. Ca and Mg contents decreased slightly.
As shown in Tables 7 and 8, in this example in which the raw material whey solution was desalted as it was by nanofiltration, the Cl / (Na + K) ratio immediately after the start of the desalting treatment (permeate amount 1 kg in Table 8) was 0. 5 and finally decreased to 0.03. The (Na + K) transmittance was as low as 0.09 when the desalination rate reached 44.1%.
<実施例1>
 本例が比較例2と大きく異なる点は、ナノろ過による脱塩処理を行う前に、塩素型陰イオン交換樹脂に原料ホエイ液を通液させた点である。
 原料ホエイとして比較例2と同じチーズホエイパウダー6.8kgを用い、これに水を加えて溶解して95kgの原料ホエイ液を得た。
(イオン交換樹脂への通液)
 得られた原料ホエイ液を、3Lの塩素型陰イオン交換樹脂カラム(ロームアンドハース社製、製品名:IRA402BL)に通液し、固形分6kgを含むイオン交換ホエイ液94kgを得た。通液条件は、流速6.4SV、通液温度5~10℃とした。
<Example 1>
The point that this example is significantly different from Comparative Example 2 is that the raw material whey solution was passed through a chlorine-type anion exchange resin before the desalting treatment by nanofiltration.
As the raw material whey, 6.8 kg of the same cheese whey powder as in Comparative Example 2 was used, and water was added to dissolve it to obtain 95 kg of raw material whey liquid.
(Liquid flow to ion exchange resin)
The obtained raw material whey liquid was passed through a 3 L chlorine type anion exchange resin column (Rohm and Haas, product name: IRA402BL) to obtain 94 kg of an ion exchange whey liquid containing 6 kg of a solid content. The liquid flow conditions were a flow rate of 6.4 SV and a liquid flow temperature of 5 to 10 ° C.
(ナノろ過による脱塩処理)
 得られたイオン交換ホエイ液のうち、固形量5.6kgに相当する量の液を分取し、これに加水して全量を106.5kgとした。これを比較例2と同条件で、ナノろ過膜で透過液が52.4kgとなるまで脱塩処理した。この時点での原液タンク内の脱塩ホエイ液(I)のpHは6.5であった。
 続いて、比較例2と同条件で、加水透析ろ過方式でナノろ過を継続し、透過液が38.6kgとなるまで脱塩処理を行った。この時点での原液タンク内の脱塩ホエイ液のpHは6.6であった。
 その後は、比較例2と同条件で、加水を停止してナノろ過を継続し、透過液14.3kg(脱塩処理開始からの合計105.3kg)を得た。こうして得られた原液タンク内の液を脱塩ホエイ液(II)とする。脱塩ホエイ液(II)の回収量は34.5kgで固形分4.8kgを含む。
(Desalination by nanofiltration)
Of the obtained ion exchange whey liquid, an amount of liquid corresponding to a solid amount of 5.6 kg was collected and added to make a total amount of 106.5 kg. This was desalted under the same conditions as in Comparative Example 2 until the permeate reached 52.4 kg with a nanofiltration membrane. At this time, the pH of the desalted whey solution (I) in the stock solution tank was 6.5.
Subsequently, under the same conditions as in Comparative Example 2, nanofiltration was continued by a hydrodiafiltration method, and desalting was performed until the permeate reached 38.6 kg. At this time, the pH of the desalted whey solution in the stock solution tank was 6.6.
Thereafter, under the same conditions as in Comparative Example 2, water addition was stopped and nanofiltration was continued to obtain 14.3 kg of permeate (a total of 105.3 kg from the start of the desalting treatment). The liquid in the stock solution tank thus obtained is designated as desalted whey liquid (II). The recovered amount of desalted whey liquid (II) is 34.5 kg and contains 4.8 kg of solids.
 原料ホエイおよび脱塩ホエイ液(II)について、固形分100gあたりの組成を表9に示し、固形分100gあたりのミネラル組成を表10に示す。
 原料ホエイ液、イオン交換ホエイ液および脱塩ホエイ液(II)について、pH、固形分100gあたりのNa含有量とK含有量の合計、固形分100gあたりのCa含有量とMg含有量の合計、塩素含有量、および(Cl/(Na+K)比)を表11に示す。
About raw material whey and desalted whey liquid (II), the composition per 100 g of solid content is shown in Table 9, and the mineral composition per 100 g of solid content is shown in Table 10.
For raw material whey liquid, ion exchange whey liquid and desalted whey liquid (II), pH, total of Na content and K content per 100 g of solid content, total of Ca content and Mg content per 100 g of solid content, Table 11 shows the chlorine content and the (Cl / (Na + K) ratio).
 また、脱塩処理の開始から終了までの途中で、経時的に5回、透過液量を測定するとともに、比較例1と同様にして各測定時における脱塩ホエイ液中のCl/(Na+K)比、(Na+K)透過率、および脱塩率をそれぞれ算出した。その結果を表12に示す。 In addition, during the period from the start to the end of the desalting treatment, the permeate amount was measured five times over time, and Cl / (Na + K) in the desalted whey solution at each measurement was performed in the same manner as in Comparative Example 1. The ratio, (Na + K) transmittance, and desalting rate were calculated. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表11および12に示されるように、原料ホエイ液、イオン交換ホエイ液、および脱塩ホエイ液(II)のpHは6.5~6.8でほとんど変化しない。
 脱塩ホエイ液(II)は原料ホエイに比べて、(Na+K)含有量が大幅に低減し、脱塩率は67.8%と高い。
 脱塩ホエイ液(II)における(Ca+Mg)含有量は、比較例1および2に比べると低いが、原料ホエイにおける(Ca+Mg)含有量に対する、脱塩ホエイ液(II)における(Ca+Mg)含有量の割合で表わされる(Ca+Mg)残存率は、表11の値から算出すると79.9%となり、良好である。
 表11および12に示されるように、ナノろ過に供されるイオン交換ホエイ液の塩素イオン含有量が高いため、脱塩処理開始直後(表12の透過液量1kg)のCl/(Na+K)比が0.88と高く、最終的に0.37にまでしか低下しなかった。(Na+K)透過率は、脱塩率が67.8%に達した脱塩ホエイ液(II)においても、0.43と高かった。
As shown in Tables 11 and 12, the pH values of the raw material whey solution, the ion exchange whey solution, and the desalted whey solution (II) are 6.5 to 6.8 and hardly change.
The desalted whey solution (II) has a significantly reduced (Na + K) content and a high desalting rate of 67.8% compared to the raw material whey.
The (Ca + Mg) content in the desalted whey solution (II) is lower than that in Comparative Examples 1 and 2, but the (Ca + Mg) content in the desalted whey solution (II) relative to the (Ca + Mg) content in the raw material whey. The residual ratio (Ca + Mg) expressed as a ratio is 79.9% when calculated from the values in Table 11, which is favorable.
As shown in Tables 11 and 12, the Cl / (Na + K) ratio immediately after the start of the desalting treatment (the permeate amount of 1 kg in Table 12) is high due to the high chloride ion content of the ion exchange whey solution subjected to nanofiltration. Was as high as 0.88, and finally decreased only to 0.37. The (Na + K) permeability was as high as 0.43 in the desalted whey solution (II) in which the desalting rate reached 67.8%.
<実施例2>
 本例が実施例1と大きく異なる点は、イオン交換樹脂への通液を行った後のナノろ過において、まず3倍濃縮液を得る条件で脱塩処理を行い、次いで加水透析ろ過方式で脱塩処理を行った点である。
 原料ホエイとしてチーズホエイパウダー(タンパク質13.2%、脂質0.9%、炭水化物76.0%、灰分7.9%、水分2.1%、)13.2kgに水を加えて溶解して185.5kgの原料ホエイ液とした。(イオン交換樹脂への通液)
 得られた原料ホエイ液を、10Lの塩素型陰イオン交換樹脂カラム(ロームアンドハース社製、製品名:IRA402BL)に通液し、カラムから流出するイオン交換ホエイ液を、流出順にNo.1~No.3に分割して得た。通液条件は、流速6.0SV、通液温度5~10℃とした。No.1~No.3のイオン交換ホエイ液のpHは、いずれも6.5であった。各液の液量と固形量、および固形分100g当たりの塩素含有量を表13に示す。
<Example 2>
The difference between this example and Example 1 is that, in nanofiltration after passing through the ion exchange resin, desalting is first performed under conditions to obtain a 3-fold concentrated solution, and then desalted by hydrodiafiltration. This is the point where salt treatment was performed.
Cheese whey powder (13.2% protein, 0.9% fat, 76.0% carbohydrates, 7.9% ash, 2.1% moisture) as a raw material whey was dissolved in 185 kg by adding water to 185 kg A 5 kg raw material whey solution was prepared. (Liquid flow to ion exchange resin)
The obtained raw material whey liquid was passed through a 10 L chlorine-type anion exchange resin column (Rohm and Haas, product name: IRA402BL). 1-No. It was obtained by dividing into three. The flow conditions were a flow rate of 6.0 SV and a flow temperature of 5 to 10 ° C. No. 1-No. The pH of the ion exchange whey solution of No. 3 was 6.5. Table 13 shows the liquid amount and solid amount of each liquid, and the chlorine content per 100 g of the solid content.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 次に、比較例1と同じナノろ過膜に、No.1~No.3のイオン交換ホエイ液を順次投入しながら、リテンテート液を原液タンクに戻すことなくワンウェイ方式で、濃縮倍率が3倍になるように操作しながら脱塩処理を行い、装置内の水が加算されて、固形分12.2kgを含む78.0kgのリテンテート液(脱塩ホエイ液)を得た。
 投入の仕方は、原料タンク中のNo.1の液がなくなる直前にNo.2の液を投入し、同様にNo.2の液がなくなる直前にNo.3の液を投入した。原料タンク中のNo.3の液がなくなる直前に装置の運転を停止した。
 濃縮倍率を3倍にする方法は、例えば、ナノろ過膜を備えた膜モジュールに原料ホエイ液を3L/minで供給する場合、リテンテート液(脱塩ホエイ液)を1L/minの速度で膜モジュールから抜き出し、かつ透過液を2L/minの速度で膜モジュールから抜き出す、というように、リテンテート液と透過液の排出速度を1:2の比率とすることによって実施できる。
 こうして得られた3倍濃縮脱塩ホエイ液(リテンテート液)のpH、固形分100gあたりのNa含有量とK含有量の合計、固形分100gあたりのCa含有量とMg含有量の合計、塩素含有量、およびCl/(Na+K)比を表17に示す。
Next, in the same nanofiltration membrane as in Comparative Example 1, no. 1-No. While the ion exchange whey solution of 3 is sequentially added, the desalting treatment is carried out while operating the one-way system without returning the retentate solution to the stock solution tank, and the concentration factor is tripled, and the water in the device is added. As a result, 78.0 kg of a retentate solution (desalted whey solution) containing 12.2 kg of a solid content was obtained.
The method of charging is No. in the raw material tank. No. 1 immediately before the liquid of 1 was exhausted. No. 2 was added, and No. 2 was similarly applied. No. 2 immediately before the liquid of No. 2 runs out. 3 liquids were added. No. in the raw material tank. The operation of the apparatus was stopped immediately before the liquid 3 was exhausted.
For example, when the raw material whey solution is supplied to a membrane module equipped with a nanofiltration membrane at 3 L / min, the retentate solution (desalted whey solution) is supplied at a rate of 1 L / min. The removal rate of the retentate liquid and the permeated liquid can be set to a ratio of 1: 2 such that the permeated liquid is extracted from the membrane module at a rate of 2 L / min.
The pH of the 3-fold concentrated desalted whey solution (retentate solution) thus obtained, the total of Na content and K content per 100 g of solid content, the total of Ca content and Mg content per 100 g of solid content, and chlorine content The amounts and the Cl / (Na + K) ratio are shown in Table 17.
 No.1を投入してから78.0kgのリテンテート液(脱塩ホエイ液)を得るまでの間に、経時的に3回、原液タンク内の原料ホエイ液、リテンテート液(脱塩ホエイ液)、透過液のそれぞれを40mL同時に採取した。1回目の採取は原料タンク中のNo.1の液がなくなる直前に、2回目の採取は原料タンク中のNo.2の液がなくなる直前に、3回目の採取は原料タンク中のNo.3の液を分離中であって、装置運転の停止直前にそれぞれ行った。
 比較例1と同様にして、原液タンク内の原料ホエイ液(被処理液)中のCl/(Na+K)比、および(Na+K)透過率をそれぞれ算出した。結果を表14に示す。
 比較例1と同様にして脱塩率を求めたところ55%であった。
No. 3 times over time until 18.0 kg of retentate solution (desalted whey solution) is obtained after feeding 1 and the raw material whey solution, retentate solution (desalted whey solution), permeate in the stock solution tank 40 mL of each was collected simultaneously. The first sampling is No. in the raw material tank. Immediately before the liquid of 1 is exhausted, the second sampling is No. in the raw material tank. Immediately before the liquid of No. 2 disappears, the third sampling is No. in the raw material tank. Each of the three liquids was being separated and was performed immediately before the operation of the apparatus was stopped.
In the same manner as in Comparative Example 1, the Cl / (Na + K) ratio and (Na + K) permeability in the raw material whey liquid (processed liquid) in the stock solution tank were calculated. The results are shown in Table 14.
When the desalting rate was determined in the same manner as in Comparative Example 1, it was 55%.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 続いて、上記で得られた3倍濃縮脱塩ホエイ液を、同じナノろ過膜で、その後は、リテンテート液を原液タンクに戻しながら、かつ加水透析ろ過方式でナノろ過を行い、透過液77.6kgを得るまで脱塩処理を行った。こうして得られた原液タンク内の液を脱塩ホエイ液(II)とする。脱塩ホエイ液(II)の回収量は71.1kgで固形分10.8kgを含む。 Subsequently, the three-fold concentrated desalted whey solution obtained above was subjected to nanofiltration with the same nanofiltration membrane, and then returned to the stock solution tank while the retentate solution was returned to the stock solution tank. Desalting was performed until 6 kg was obtained. The liquid in the stock solution tank thus obtained is designated as desalted whey liquid (II). The recovered amount of desalted whey liquid (II) is 71.1 kg and contains 10.8 kg of solid content.
 原料ホエイおよび脱塩ホエイ液(II)について、固形分100gあたりの組成を表15に示し、固形分100gあたりのミネラル組成を表16に示す。
 原料ホエイ液、前記3倍濃縮脱塩ホエイ液および脱塩ホエイ液(II)について、pH、固形分100gあたりのNa含有量とK含有量の合計、固形分100gあたりのCa含有量とMg含有量の合計、塩素含有量、およびCl/(Na+K)比を表17に示す。
About raw material whey and desalted whey liquid (II), the composition per 100 g of solid content is shown in Table 15, and the mineral composition per 100 g of solid content is shown in Table 16.
About raw material whey liquid, said 3 times concentration desalted whey liquid and desalted whey liquid (II), pH, total of Na content and K content per 100 g of solid content, Ca content and Mg content per 100 g of solid content The total amount, chlorine content, and Cl / (Na + K) ratio are shown in Table 17.
 また、加水透析ろ過方式によるナノろ過の開始から終了までの途中で、経時的に4回、透過液量を測定するとともに、比較例1と同様にして各測定時における、原料タンク内の脱塩ホエイ液中のCl/(Na+K)比、(Na+K)透過率、および脱塩率をそれぞれ算出した。その結果を表18に示す。 In addition, while measuring the amount of permeate four times over the course from the start to the end of nanofiltration by the hydrodiafiltration method, desalting in the raw material tank at each measurement in the same manner as in Comparative Example 1 The Cl / (Na + K) ratio, (Na + K) permeability, and desalting rate in the whey solution were calculated, respectively. The results are shown in Table 18.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表17および18に示されるように、原料ホエイ液、No.1~No.3のイオン交換ホエイ液、3倍濃縮脱塩ホエイ液、脱塩ホエイ液(II)のpHは6.3~6.8でほとんど変化しない。
 脱塩ホエイ液(II)は原料ホエイに比べて、(Na+K)含有量が大幅に低減し、脱塩率は76.2%と、実施例1よりも高い。
 表17の値から算出すると、脱塩ホエイ液(II)における(Ca+Mg)残存率は88.6%であり、良好である。
 表17、18に示されるように、ナノろ過に供されるイオン交換ホエイ液の塩素イオン含有量が高いため、脱塩処理開始直後(表14の1回目)のCl/(Na+K)比が1.12と高く、最終的(表18の透過液量77.6kg)に0.56にまでしか低下しなかった。(Na+K)透過率は、脱塩率が76.2%に達した時点においても、0.5と高かった。
As shown in Tables 17 and 18, the raw material whey solution, No. 1-No. The pH of No. 3 ion exchange whey solution, 3 times concentrated desalted whey solution, and desalted whey solution (II) is 6.3 to 6.8, and hardly changes.
The desalted whey liquid (II) has a significantly reduced (Na + K) content as compared with the raw material whey, and the desalting rate is 76.2%, which is higher than that of Example 1.
When calculated from the values in Table 17, the residual ratio of (Ca + Mg) in the desalted whey solution (II) is 88.6%, which is favorable.
As shown in Tables 17 and 18, the Cl / (Na + K) ratio immediately after the start of the desalting treatment (first time in Table 14) is 1 because the chloride ion content of the ion exchange whey solution used for nanofiltration is high. It was as high as .12, and finally decreased only to 0.56 (permeate amount of 77.6 kg in Table 18). The (Na + K) permeability was as high as 0.5 even when the desalting rate reached 76.2%.
<実施例3>
 実施例1と同じ手順で脱塩ホエイ液を製造した。すなわちナノろ過による脱塩処理条件は比較例2と同じである。本例では、イオン交換樹脂の使用量を3Lから5Lに変更することによって、イオン交換ホエイ液中の塩素含有量が実施例1よりも多くなるようにした。
 原料ホエイとして比較例2と同じチーズホエイパウダー6.75kgに水を加えて溶解して95kgの原料ホエイ液とした。
(イオン交換樹脂への通液)
 得られた原料ホエイ液を、5Lの塩素型陰イオン交換樹脂カラム(ロームアンドハース社製、製品名:IRA402BL)に通液し、固形分5.74kgを含むイオン交換ホエイ液88.1kgを得た。通液条件は、流速6.4SV、通液温度6~10℃とした。
<Example 3>
A desalted whey solution was produced in the same procedure as in Example 1. That is, the desalting conditions by nanofiltration are the same as in Comparative Example 2. In this example, the amount of ion exchange resin used was changed from 3 L to 5 L, so that the chlorine content in the ion exchange whey liquid was higher than in Example 1.
As a raw material whey, water was added to and dissolved in 6.75 kg of the same cheese whey powder as in Comparative Example 2 to obtain a 95 kg raw material whey solution.
(Liquid flow to ion exchange resin)
The obtained raw material whey liquid was passed through a 5 L chlorine-type anion exchange resin column (Rohm and Haas, product name: IRA402BL) to obtain 88.1 kg of an ion exchange whey liquid containing 5.74 kg of a solid content. It was. The liquid flow conditions were a flow rate of 6.4 SV and a liquid flow temperature of 6 to 10 ° C.
(ナノろ過による脱塩処理)
 得られたイオン交換ホエイ液に加水して全量を105kgとした。これを比較例2と同条件で、ナノろ過膜で透過液が52.4kgとなるまで脱塩処理した。この時点での原液タンク内の脱塩ホエイ液(I)のpHは6.4であった。
 続いて、比較例2と同条件で加水透析ろ過方式でナノろ過を継続し、透過液が38.6kgとなるまで脱塩処理を行った。この時点での原液タンク内の脱塩ホエイ液のpHは6.5であった。
 その後は、加水を停止してナノろ過を継続し、透過液14.3kg(脱塩処理開始からの合計105.3kg)を得た。こうして得られた原液タンク内の液を脱塩ホエイ液(II)とする。脱塩ホエイ液(II)の回収量は33.1kgで固形分4.8kgを含む。
(Desalination by nanofiltration)
Water was added to the obtained ion exchange whey solution to make a total amount of 105 kg. This was desalted under the same conditions as in Comparative Example 2 until the permeate reached 52.4 kg with a nanofiltration membrane. At this time, the pH of the desalted whey solution (I) in the stock solution tank was 6.4.
Subsequently, nanofiltration was continued by a hydrodiafiltration method under the same conditions as in Comparative Example 2, and desalting treatment was performed until the permeate reached 38.6 kg. At this time, the pH of the desalted whey solution in the stock solution tank was 6.5.
Thereafter, the addition of water was stopped and nanofiltration was continued to obtain 14.3 kg of permeate (a total of 105.3 kg from the start of the desalting treatment). The liquid in the stock solution tank thus obtained is designated as desalted whey liquid (II). The recovered amount of the desalted whey liquid (II) is 33.1 kg and contains 4.8 kg of solids.
 原料ホエイおよび脱塩ホエイ液(II)について、固形分100gあたりの組成を表19に示し、固形分100gあたりのミネラル組成を表20に示す。
 原料ホエイ液、イオン交換ホエイ液および脱塩ホエイ液(II)について、pH、固形分100gあたりのNa含有量とK含有量の合計、固形分100gあたりのCa含有量とMg含有量の合計、塩素含有量、および(Cl/(Na+K)比)を表21に示す。
About raw material whey and desalted whey liquid (II), the composition per 100 g of solid content is shown in Table 19, and the mineral composition per 100 g of solid content is shown in Table 20.
For raw material whey liquid, ion exchange whey liquid and desalted whey liquid (II), pH, total of Na content and K content per 100 g of solid content, total of Ca content and Mg content per 100 g of solid content, Table 21 shows the chlorine content and the (Cl / (Na + K) ratio).
 また、脱塩処理の開始から終了までの途中で、経時的に5回、透過液量を測定するとともに、比較例1と同様にして各測定時における脱塩ホエイ液中のCl/(Na+K)比、(Na+K)透過率、および脱塩率をそれぞれ算出した。その結果を表22に示す。 In addition, during the period from the start to the end of the desalting treatment, the permeate amount was measured five times over time, and Cl / (Na + K) in the desalted whey solution at each measurement was performed in the same manner as in Comparative Example 1. The ratio, (Na + K) transmittance, and desalting rate were calculated. The results are shown in Table 22.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表21および22に示されるように、原料ホエイ液、イオン交換ホエイ液、および脱塩ホエイ液(II)のpHは6.4~6.8でほとんど変化しない。
 脱塩ホエイ液(II)は原料ホエイに比べて、(Na+K)含有量が大幅に低減し、脱塩率は73.9%と実施例1より高い。
 表21の値から算出すると、脱塩ホエイ液(II)における(Ca+Mg)残存率は69.5%であり、実施例1よりやや低いが良好である。
 表21、22に示されるように、ナノろ過に供されるイオン交換ホエイ液の塩素イオン含有量が高いため、脱塩処理開始直後(表18の透過液量1kg)のCl/(Na+K)比が1.03と高く、最終的(表22の透過液量105.3kg)に0.56にまでしか低下しなかった。(Na+K)透過率は、脱塩率が73.9%に達した時点においても、0.53と高かった。
As shown in Tables 21 and 22, the pH values of the raw material whey liquid, ion exchange whey liquid, and desalted whey liquid (II) are 6.4 to 6.8 and hardly change.
The desalted whey solution (II) has a significantly reduced (Na + K) content compared to the raw material whey, and the desalting rate is 73.9%, which is higher than that of Example 1.
When calculated from the values in Table 21, the residual ratio of (Ca + Mg) in the desalted whey solution (II) is 69.5%, which is slightly lower than Example 1 but good.
As shown in Tables 21 and 22, the Cl / (Na + K) ratio immediately after the start of the desalting treatment (permeated liquid amount 1 kg in Table 18) because the ion exchange whey solution used for nanofiltration has a high chloride ion content. Was as high as 1.03, and finally decreased only to 0.56 (permeated liquid amount of 105.3 kg in Table 22). The (Na + K) permeability was as high as 0.53 even when the desalination rate reached 73.9%.
<実施例3と比較例2との比較>
 表23は、実施例3および比較例2で用いた原料ホエイと、各例でそれぞれ得られた脱塩ホエイ液についての、固形分100gあたりのNa含有量とK含有量の合計、固形分100gあたりのCa含有量とMg含有量の合計、塩素含有量、および(Cl/(Na+K)比)をまとめて示したものである。
 図1は、実施例3と比較例2の結果から、積算透過液量と(Na+K)の脱塩率(%)との関係をグラフに示したものである。
<Comparison between Example 3 and Comparative Example 2>
Table 23 shows the raw material whey used in Example 3 and Comparative Example 2, and the desalted whey solution obtained in each example, the total of Na content and K content per 100 g of solid content, 100 g of solid content. The total of Ca content per Mg and Mg content, chlorine content, and (Cl / (Na + K) ratio) are collectively shown.
FIG. 1 is a graph showing the relationship between the accumulated permeate amount and the desalination rate (%) of (Na + K) based on the results of Example 3 and Comparative Example 2.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 表23に示されるように、ナノろ過による脱塩処理の前に原料ホエイ液を塩素型陰イオン交換樹脂に通液させた実施例3の方が、比較例2に比べてCl/(Na+K)比が格段に大きく、(Na+K)含有量が小さい。
 また図1に示されるように、ナノろ過工程における積算透過液量が互いに同じであっても、実施例3の方が、比較例2に比べて(Na+K)の脱塩率が大きく、単位透過液量あたりの脱塩効率が大幅に向上した。
As shown in Table 23, Cl / (Na + K) in Example 3 in which the raw material whey liquid was passed through a chlorine-type anion exchange resin before the desalting treatment by nanofiltration was compared to Comparative Example 2. The ratio is remarkably large and the (Na + K) content is small.
In addition, as shown in FIG. 1, even though the accumulated permeate amounts in the nanofiltration step are the same, Example 3 has a higher (Na + K) desalination rate than Comparative Example 2, and unit permeation Desalination efficiency per liquid volume was greatly improved.
<比較例3>
 本例が、実施例3と大きく異なる点は、原料ホエイ液を塩素型陰イオン交換樹脂に通液することなく、その代わりに原料ホエイ液にCaCl・2HOを添加した液をナノろ過に供した点である。ナノろ過による脱塩処理条件は比較例2と同じである。
<Comparative Example 3>
The difference between this example and Example 3 is that the raw material whey liquid is not passed through the chlorine-type anion exchange resin, but instead a liquid obtained by adding CaCl 2 · 2H 2 O to the raw material whey liquid is subjected to nanofiltration. It is a point that was subjected to. The desalting conditions by nanofiltration are the same as in Comparative Example 2.
 原料ホエイとして、チーズホエイパウダー(タンパク質12.3%、脂質1.1%、炭水化物76.4%、灰分7.4%、水分1.9%)5.83kgを用い、これに水を加えて溶解した原料ホエイ液に、さらに塩化カルシウム2水塩(CaCl・2HO)の200gを水に溶解した水溶液を添加混合して、105kgの塩化カルシウム添加ホエイ液を得た。 As raw material whey, use cheese whey powder (protein 12.3%, fat 1.1%, carbohydrate 76.4%, ash 7.4%, moisture 1.9%) 5.83kg, add water to this An aqueous solution in which 200 g of calcium chloride dihydrate (CaCl 2 · 2H 2 O) was further dissolved in water was added to and mixed with the dissolved raw material whey solution to obtain 105 kg of calcium chloride-added whey solution.
(ナノろ過による脱塩処理)
 得られた塩化カルシウム添加ホエイ液を比較例2と同条件で、ナノろ過膜で透過液が52.4kgとなるまで脱塩処理した。この時点での原液タンク内の脱塩ホエイ液(I)のpHは6.2であった。
 続いて、比較例2と同条件で加水透析ろ過方式でナノろ過を継続し、透過液が38.6kgとなるまで脱塩処理を行った。この時点での原液タンク内の脱塩ホエイ液のpHは6.2であった。
 その後は、加水を停止してナノろ過を継続し、透過液14.3kg(脱塩処理開始からの合計105.3kg)を得た。こうして得られた原液タンク内の液を脱塩ホエイ液(II)とする。脱塩ホエイ液(II)の回収量は33.0kgで固形分5.0kgを含む。
(Desalination by nanofiltration)
The obtained calcium chloride-added whey solution was desalted under the same conditions as in Comparative Example 2 with a nanofiltration membrane until the permeate amounted to 52.4 kg. At this time, the pH of the desalted whey solution (I) in the stock solution tank was 6.2.
Subsequently, nanofiltration was continued by a hydrodiafiltration method under the same conditions as in Comparative Example 2, and desalting treatment was performed until the permeate reached 38.6 kg. At this time, the pH of the desalted whey solution in the stock solution tank was 6.2.
Thereafter, the addition of water was stopped and nanofiltration was continued to obtain 14.3 kg of permeate (a total of 105.3 kg from the start of the desalting treatment). The liquid in the stock solution tank thus obtained is designated as desalted whey liquid (II). The recovered amount of desalted whey liquid (II) is 33.0 kg and contains 5.0 kg of solid content.
 原料ホエイおよび脱塩ホエイ液(II)について、固形分100gあたりの組成を表24に示し、固形分100gあたりのミネラル組成を表25に示す。
 原料ホエイ液、塩化カルシウム添加ホエイ液および脱塩ホエイ液(II)について、pH、固形分100gあたりのNa含有量とK含有量の合計、固形分100gあたりのCa含有量とMg含有量の合計、塩素含有量、およびCl/(Na+K)比を表26に示す。
About raw material whey and desalted whey liquid (II), the composition per 100 g of solid content is shown in Table 24, and the mineral composition per 100 g of solid content is shown in Table 25.
About raw material whey solution, calcium chloride added whey solution and desalted whey solution (II), pH, total of Na content and K content per 100 g of solid content, total of Ca content and Mg content per 100 g of solid content Table 26 shows the chlorine content and the Cl / (Na + K) ratio.
 また、脱塩処理の開始直後(透過液量1kg)の時点と終了時における脱塩ホエイ液中のCl/(Na+K)比、(Na+K)透過率、および脱塩率をそれぞれ算出した。その結果を表27に示す。 Also, the Cl / (Na + K) ratio, (Na + K) permeability, and desalting rate in the desalted whey solution at the time immediately after the start of desalting treatment (permeate amount 1 kg) and at the end thereof were calculated. The results are shown in Table 27.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
<透過流束の測定>
 実施例3および比較例3について、ナノろ過による脱塩処理を開始してから終了するまでの間の、単位膜モジュールあたりの透過流束(単位:L/min)の経時変化を調べた。その結果を図2に示す。図2の縦軸は膜モジュール1本(膜面積7.4m)当たりの透過流束(単位:L/分)を示し、横軸は透過液量の積算値を示す。
<Measurement of permeation flux>
About Example 3 and Comparative Example 3, the time-dependent change of the permeation flux (unit: L / min) per unit membrane module from the start to the end of the desalting process by nanofiltration was examined. The result is shown in FIG. The vertical axis in FIG. 2 represents the permeation flux (unit: L / min) per membrane module (membrane area 7.4 m 2 ), and the horizontal axis represents the integrated value of the permeate amount.
 表26および27に示されるように、比較例3は塩化カルシウムを添加したため、脱塩ホエイ液(II)における(Ca+Mg)の含有量は原料ホエイよりも大幅に増加している。また(Na+K)透過率、および脱塩率において実施例3よりやや劣る。
 具体的に、比較例3では塩化カルシウムを添加したため、脱塩ホエイ液(II)におけるCa含有量は30.7mmol/100g固形と、原料ホエイの約3倍と大幅に増加した。カルシウムは重要な栄養素ではあるが、Ca含量の大きすぎる増加は常に受容されるとは言えない。例えば、ホエイを調製粉乳に利用する際に、Ca含量が高すぎると使用量を制限する必要がある。
As shown in Tables 26 and 27, since calcium chloride was added in Comparative Example 3, the content of (Ca + Mg) in the desalted whey solution (II) was significantly increased as compared with the raw material whey. Further, (Na + K) transmittance and desalting rate are slightly inferior to those of Example 3.
Specifically, in Comparative Example 3, since calcium chloride was added, the Ca content in the desalted whey solution (II) was 30.7 mmol / 100 g solid, which was about three times that of the raw material whey. Calcium is an important nutrient, but an excessive increase in Ca content is not always acceptable. For example, when using whey in formula milk, if the Ca content is too high, it is necessary to limit the amount used.
 また、図2に示されるように、実施例3と同じ条件でナノろ過を行ったにもかかわらず、塩化カルシウムを添加した比較例3は、単位膜モジュールあたりの透過流束が約1/2と格段に小さい。透過流束が半分になるということは、同じ面積で処理できる液量が半分になり、膜面積が同じであれば、同量の透過流量を得るのに必要な時間が2倍必要になることを意味する。 In addition, as shown in FIG. 2, although nanofiltration was performed under the same conditions as in Example 3, Comparative Example 3 to which calcium chloride was added had a permeation flux per unit membrane module of about 1/2. And much smaller. If the permeation flux is halved, the amount of liquid that can be processed in the same area is halved, and if the membrane area is the same, twice the time required to obtain the same permeate flow rate is required. Means.
<実施例4>
 本例では、実施例1~3とは異なるナノろ過膜を用いた。
 チーズホエイパウダー(タンパク質12.1%、脂質1.1%、炭水化物77.2%、灰分7.8%、水分1.8%)6.1kgを水に溶解して85kgの原料ホエイ液とした。この原料ホエイ液を、6Lの塩素型陰イオン交換樹脂カラム(ロームアンドハース社製、製品名:IRA402BL)に通液し、固形分5.82kgを含むイオン交換ホエイ液95.1kgを得た。通液条件は、流速6.4SV、通液温度5~10℃とした。
<Example 4>
In this example, a nanofiltration membrane different from those in Examples 1 to 3 was used.
Cheese whey powder (protein 12.1%, fat 1.1%, carbohydrate 77.2%, ash 7.8%, moisture 1.8%) 6.1 kg was dissolved in water to make 85 kg of raw whey solution . This raw material whey solution was passed through a 6 L chlorine type anion exchange resin column (Rohm and Haas, product name: IRA402BL) to obtain 95.1 kg of ion exchange whey solution containing 5.82 kg of solid content. The liquid flow conditions were a flow rate of 6.4 SV and a liquid flow temperature of 5 to 10 ° C.
 このイオン交換ホエイ液に加水して全量を106kgとした。これをナノろ過膜(Duratherm Pro NF3840HR:GE Water&Process Technologies社製)で、リテンテート液を原液タンクに戻しながら、回分濃縮式で、透過液66.6kgを得るまで脱塩処理を行った。この時点での原液タンク内の液を脱塩ホエイ液(I)とする。脱塩ホエイ液(I)のpHは6.6であった。
 その後は、加水透析ろ過方式でナノろ過を継続し、透過液が33.3kg(脱塩処理開始からの合計99.9kg)となるまで脱塩処理を行った。こうして得られた原液タンク内の液を脱塩ホエイ液(II)とする。脱塩ホエイ液(II)の回収量は32.9kgで固形分4.7kgを含む。
 原料ホエイ液、イオン交換ホエイ液および脱塩ホエイ液(II)について、pH、固形分100gあたりのNa含有量とK含有量の合計、固形分100gあたりのCa含有量とMg含有量の合計、塩素含有量、およびCl/(Na+K)比を表28に示す。
The total amount was made 106 kg by adding water to this ion exchange whey solution. This was subjected to desalting with a nanofiltration membrane (Duratherm Pro NF3840HR: manufactured by GE Water & Process Technologies) in a batch concentration manner while returning the retentate solution to the stock solution tank until 66.6 kg of permeate was obtained. The liquid in the stock solution tank at this time is defined as desalted whey liquid (I). The pH of the desalted whey solution (I) was 6.6.
Thereafter, nanofiltration was continued by a hydrodiafiltration method, and desalting was performed until the permeate reached 33.3 kg (total 99.9 kg from the start of desalting). The liquid in the stock solution tank thus obtained is designated as desalted whey liquid (II). The recovered amount of desalted whey liquid (II) is 32.9 kg and contains 4.7 kg of solid content.
For raw material whey liquid, ion exchange whey liquid and desalted whey liquid (II), pH, total of Na content and K content per 100 g of solid content, total of Ca content and Mg content per 100 g of solid content, Table 28 shows the chlorine content and the Cl / (Na + K) ratio.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表28に示されるように、原料ホエイ液、イオン交換ホエイ液、および脱塩ホエイ液(II)のpHは6.4~6.8でほとんど変化しない。
 脱塩ホエイ液(II)は原料ホエイに比べて、(Na+K)含有量が大幅に低減し、脱塩率は75.9%と高い。
 脱塩ホエイ液(II)における(Ca+Mg)残存率は、表28の値から算出すると78.8%となり、良好である。
 ナノろ過に供されるイオン交換ホエイ液の塩素イオン含有量が高く、脱塩処理工程においてCl/(Na+K)比は1.01から0.94にまでしか低下しなかった。
As shown in Table 28, the pH values of the raw material whey liquid, the ion exchange whey liquid, and the desalted whey liquid (II) are 6.4 to 6.8, and hardly change.
The desalted whey solution (II) has a significantly reduced (Na + K) content and a high desalting rate of 75.9% compared to the raw material whey.
The residual ratio of (Ca + Mg) in the desalted whey solution (II) is 78.8% when calculated from the values in Table 28, which is favorable.
The ion exchange whey solution used for nanofiltration had a high chloride ion content, and the Cl / (Na + K) ratio decreased only from 1.01 to 0.94 in the desalting process.
 本発明の方法によれば、原料ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減を抑えつつ、ナトリウムおよびカリウムが充分に低減された脱塩ホエイを効率良く製造できる。 According to the method of the present invention, it is possible to efficiently produce a desalted whey in which sodium and potassium are sufficiently reduced while suppressing reduction of the contents of calcium and magnesium contained in the raw material whey.

Claims (7)

  1.  脱塩ホエイの製造方法であって、
     脱塩処理に供される被処理液を、脱塩処理される前にイオン交換樹脂に通液させること、および
     前記通液させた被処理液を、膜分離法により脱塩処理することを含み、
     ここで、前記イオン交換樹脂は陰イオン交換樹脂からなり、
     前記陰イオン交換樹脂として少なくとも塩素型陰イオン交換樹脂を用いる前記方法。
    A method for producing desalted whey,
    Including passing a solution to be subjected to desalting treatment through an ion exchange resin before being desalted, and subjecting the liquid to be treated to desalting by a membrane separation method. ,
    Here, the ion exchange resin comprises an anion exchange resin,
    The method using at least a chlorine-type anion exchange resin as the anion exchange resin.
  2.  前記脱塩処理に供される被処理液が原料ホエイであって、前記原料ホエイ液のpHが6~7の範囲内であり、前記陰イオン交換樹脂からの流出液のpHが6~7である、請求項1記載の脱塩ホエイの製造方法。 The liquid to be treated for the desalting treatment is a raw material whey, the pH of the raw material whey liquid is in the range of 6-7, and the pH of the effluent from the anion exchange resin is 6-7. The method for producing a desalted whey according to claim 1.
  3.  前記膜分離法がナノろ過法である、請求項1または2に記載の脱塩ホエイの製造方法。 The method for producing desalted whey according to claim 1 or 2, wherein the membrane separation method is a nanofiltration method.
  4.  前記脱塩処理に供される被処理液の、ナトリウム含有量とカリウム含有量との合計値に対する塩素含有量のモル比(塩素/(ナトリウム+カリウム))を0.35以上に維持する、請求項1~3のいずれか一項に記載の脱塩ホエイの製造方法。 The molar ratio (chlorine / (sodium + potassium)) of the chlorine content to the total value of the sodium content and the potassium content of the liquid to be subjected to the desalting treatment is maintained at 0.35 or more. Item 4. The method for producing desalted whey according to any one of Items 1 to 3.
  5.  前記塩素型陰イオン交換樹脂からの流出液の、ナトリウム含有量とカリウム含有量の合計値に対する塩素含有量のモル比(塩素/(ナトリウム+カリウム))が0.8以上となる条件で行う、請求項1~4のいずれか一項に記載の脱塩ホエイの製造方法。 In the effluent from the chlorine-type anion exchange resin, the molar ratio of the chlorine content to the total value of the sodium content and the potassium content (chlorine / (sodium + potassium)) is 0.8 or more. The method for producing desalted whey according to any one of claims 1 to 4.
  6.  前記脱塩ホエイにおける下記式(1)で求められる(Ca+Mg)残存率が60%以上であり、かつ下記式(2)で求められる脱塩率が60%以上である、請求項1~5のいずれか一項に記載の脱塩ホエイの製造方法。
     (Ca+Mg)残存率(単位:%)={(脱塩ホエイのCa含有量とMg含有量の合計)/(原料ホエイ液のCa含有量とMg含有量の合計)}×100…(1)(式1中、Ca含有量は固形分100gあたりに含まれるカルシウムの含有量であり、Mg含有量は固形分100gあたりに含まれるマグネシウムの含有量であり、いずれも単位はmmol/100g固形である。)
     脱塩率(単位:%)={{(原料ホエイ液のNa含有量とK含有量の合計)-(脱塩ホエイのNa含有量とK含有量の合計)}/(原料ホエイ液のNa含有量とK含有量の合計)}×100…(2)
    (式2中、Na含有量は固形分100gあたりに含まれるナトリウムの含有量であり、K含有量は固形分100gあたりに含まれるカリウムの含有量であり、いずれも単位はmmol/100g固形である。)
    The (Ca + Mg) residual rate obtained by the following formula (1) in the desalted whey is 60% or more, and the desalting rate obtained by the following formula (2) is 60% or more. The manufacturing method of desalted whey as described in any one of Claims.
    (Ca + Mg) residual rate (unit:%) = {(total of Ca content and Mg content of desalted whey) / (total of Ca content and Mg content of raw whey solution)} × 100 (1) (In Formula 1, the Ca content is the content of calcium contained per 100 g of solid content, the Mg content is the content of magnesium contained per 100 g of solid content, and the unit is mmol / 100 g solid. is there.)
    Desalination rate (unit:%) = {{(total of Na content and K content of raw material whey liquid) − (total of Na content and K content of desalted whey liquid)} / (Na of raw whey liquid) Sum of content and K content)} × 100 (2)
    (In Formula 2, Na content is the content of sodium contained per 100 g of solid content, K content is the content of potassium contained per 100 g of solid content, and all units are in mmol / 100 g solids. is there.)
  7.  前記脱塩ホエイが調製粉乳用である、請求項1~6のいずれか一項に記載の脱塩ホエイの製造方法。 The method for producing desalted whey according to any one of claims 1 to 6, wherein the desalted whey is for formula milk powder.
PCT/JP2010/066480 2009-09-25 2010-09-24 Method for manufacturing desalted whey WO2011037154A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011503296A JP5771520B2 (en) 2009-09-25 2010-09-24 Method for producing desalted whey

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009219862 2009-09-25
JP2009-219862 2009-09-25

Publications (1)

Publication Number Publication Date
WO2011037154A1 true WO2011037154A1 (en) 2011-03-31

Family

ID=43795899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066480 WO2011037154A1 (en) 2009-09-25 2010-09-24 Method for manufacturing desalted whey

Country Status (2)

Country Link
JP (1) JP5771520B2 (en)
WO (1) WO2011037154A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113057227A (en) * 2021-04-23 2021-07-02 北安宜品努卡乳业有限公司 Method for preparing desalted whey powder for sheep

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11337435B2 (en) 2019-04-12 2022-05-24 Land O'lakes, Inc. Product and method of producing dairy products comprising dairy-derived emulsifying salts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266221A (en) * 1995-03-30 1996-10-15 Snow Brand Milk Prod Co Ltd Low-mineral milk powder and its production
JP2000350551A (en) * 1999-05-17 2000-12-19 Francaise D Ingenierie & De Recherche:Sa Treatment of whey for desalting
JP2004129579A (en) * 2002-10-10 2004-04-30 Morinaga Milk Ind Co Ltd Method for producing whey prepared by lactose degradation and desalinization
FR2848877A1 (en) * 2004-01-28 2004-06-25 Applexion Ste Nouvelle De Rech Purification of sugar solutions containing polyvalent ions, especially whey, whey permeate or sugar juice, comprises cation and/or anion exchange before nanofiltration
JP2004180580A (en) * 2002-12-03 2004-07-02 Morinaga Milk Ind Co Ltd Method for promoting desalting of milk
WO2010116686A1 (en) * 2009-03-30 2010-10-14 森永乳業株式会社 Method for producing desalted milk, and desalted milk

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104246A (en) * 1988-10-12 1990-04-17 Morinaga Milk Ind Co Ltd Production of high-purity whey protein powder
JP2623342B2 (en) * 1989-06-01 1997-06-25 雪印乳業株式会社 Method for producing desalted milk
JP2916047B2 (en) * 1992-08-20 1999-07-05 森永乳業株式会社 Production method of whey protein fraction
JP2001095487A (en) * 1999-09-29 2001-04-10 Japan Organo Co Ltd Method for refining acidic whey
PL1958514T3 (en) * 2007-02-07 2013-08-30 Kraft Foods R & D Inc Process for producing modified whey powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266221A (en) * 1995-03-30 1996-10-15 Snow Brand Milk Prod Co Ltd Low-mineral milk powder and its production
JP2000350551A (en) * 1999-05-17 2000-12-19 Francaise D Ingenierie & De Recherche:Sa Treatment of whey for desalting
JP2004129579A (en) * 2002-10-10 2004-04-30 Morinaga Milk Ind Co Ltd Method for producing whey prepared by lactose degradation and desalinization
JP2004180580A (en) * 2002-12-03 2004-07-02 Morinaga Milk Ind Co Ltd Method for promoting desalting of milk
FR2848877A1 (en) * 2004-01-28 2004-06-25 Applexion Ste Nouvelle De Rech Purification of sugar solutions containing polyvalent ions, especially whey, whey permeate or sugar juice, comprises cation and/or anion exchange before nanofiltration
WO2010116686A1 (en) * 2009-03-30 2010-10-14 森永乳業株式会社 Method for producing desalted milk, and desalted milk

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R.A.M. DELANEY ET AL.: "DEMINERALIZATION OF WHEY", THE AUSTRALIAN JOURNAL OF DAILY TECHNOLOGY, vol. 31, no. 1, 1976, pages 12 - 17 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113057227A (en) * 2021-04-23 2021-07-02 北安宜品努卡乳业有限公司 Method for preparing desalted whey powder for sheep

Also Published As

Publication number Publication date
JPWO2011037154A1 (en) 2013-02-21
JP5771520B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
RU2483559C2 (en) Method for production of desalted milk and desalted milk
JP5531020B2 (en) Method for producing low phosphorus whey
US6506305B2 (en) Methods of isolating urea, urea compositions and methods for producing the same
JP5771520B2 (en) Method for producing desalted whey
CN111935986A (en) Method for desalting whey and whey obtained thereby
JP7372232B2 (en) Method for producing a composition containing κ-casein glycomacropeptide
EP1041065B1 (en) Method for isolating urea using membranes and compositions thereof
WO2009119646A1 (en) Method of producing desalted whey
JP2017195802A (en) Method for producing component adjusted milk
JP6508809B2 (en) Method of producing component-adjusted milk
JP3757076B2 (en) Urea-containing composition derived from milk and method for producing the same
JP6932687B2 (en) Whey protein fractionation method, method for producing a composition containing α-lactalbumin, and method for producing a composition containing β-lactoglobulin.
AU2016218089B2 (en) Process for treating a sweet whey material containing cGMP and related method for producing a protein material having a targeted tryptophan/threonine ratio
JP2024511136A (en) Method of processing milk protein compositions to produce lactose-enriched liquid compositions
CN114586847A (en) Fresh milk grade mother emulsified milk protein base material and preparation method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011503296

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10818826

Country of ref document: EP

Kind code of ref document: A1