WO2011036910A1 - Aggregate heating apparatus and aggregate heating method - Google Patents

Aggregate heating apparatus and aggregate heating method Download PDF

Info

Publication number
WO2011036910A1
WO2011036910A1 PCT/JP2010/056462 JP2010056462W WO2011036910A1 WO 2011036910 A1 WO2011036910 A1 WO 2011036910A1 JP 2010056462 W JP2010056462 W JP 2010056462W WO 2011036910 A1 WO2011036910 A1 WO 2011036910A1
Authority
WO
WIPO (PCT)
Prior art keywords
aggregate
heating
furnace
heat
opening
Prior art date
Application number
PCT/JP2010/056462
Other languages
French (fr)
Japanese (ja)
Inventor
一三 山城
Original Assignee
特定非営利活動法人プロサップ
南部鋪道株式会社
琉興総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 特定非営利活動法人プロサップ, 南部鋪道株式会社, 琉興総業株式会社 filed Critical 特定非営利活動法人プロサップ
Priority to JP2011532921A priority Critical patent/JP4980493B2/en
Publication of WO2011036910A1 publication Critical patent/WO2011036910A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/02Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
    • E01C19/05Crushing, pulverising or disintegrating apparatus; Aggregate screening, cleaning, drying or heating apparatus; Dust-collecting arrangements specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/02Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
    • E01C19/10Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resins, i.e. producing mixtures or coating aggregates otherwise than by penetrating or surface dressing; Apparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
    • E01C19/1013Plant characterised by the mode of operation or the construction of the mixing apparatus; Mixing apparatus
    • E01C19/104Mixing by means of movable members in a non-rotating mixing enclosure, e.g. stirrers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/78Arrangements for continuous movement of material
    • H05B6/784Arrangements for continuous movement of material wherein the material is moved using a tubular transport line, e.g. screw transport systems

Definitions

  • the present invention relates to an aggregate heating apparatus and an aggregate heating method, and more particularly to an aggregate heating apparatus and a heating method for composing asphalt composite material.
  • an asphalt plant that manufactures an asphalt mixture includes an aggregate heating device that heats the aggregate to a desired temperature.
  • this aggregate heating device there is one using a heating burner of a dryer for heating and drying as in Patent Document 1.
  • the aggregate is heated using the hot air by the heating burner of the dryer for heat drying, and the radiant heat from the inner cylinder which covers the flame.
  • a heating method using a high frequency electromagnetic wave is also known.
  • the aggregate is dried by the heating furnace while the aggregate is being conveyed by the conveyance device through the conveyance device that is horizontally disposed in the heating furnace that heats the aggregate by high-frequency electromagnetic waves. .
  • An object of the present invention is to provide an aggregate heating apparatus and an aggregate heating method capable of more reliably reducing the load on the environment.
  • the aggregate heating device comprises at least one heating furnace part for heating the aggregate constituting the asphalt mixture by a heating method based on microwaves, and the aggregate heated in at least one heating furnace part, A heat-retaining furnace section that retains heat by an electrical or optical heating method, and a microwave supply section that supplies microwaves into the heating furnace section.
  • the heat-retaining furnace section and the heating furnace section are provided in this order in the vertical direction.
  • the multi-stage structure is configured, and the partition part separating each stage constituting the multi-stage structure is provided with a first aggregate discharge part that can be opened and closed and discharges the aggregate to the lower stage.
  • a second aggregate discharging unit that is openable and closable and that discharges the aggregate that has been kept warm in the heat insulating furnace is provided at the bottom of the heat insulating furnace.
  • the heating furnace part located above the heat insulation furnace part can heat the aggregate based on the microwave supplied from the microwave supply part. Furthermore, in the heat insulation furnace, the aggregate is kept warm by an electric or optical heating method. As described above, microwaves are used for heating the aggregate by the heating furnace, and electrical or optical heating methods are used for heating by the heat holding furnace, so that CO 2 or the like is not discharged. . Furthermore, the heat-retaining furnace part and the heating furnace part are arranged in the vertical direction to form a multistage structure. Therefore, leakage of microwaves used for heating the aggregate in the heating furnace can be suppressed.
  • the first aggregate discharge portion that can be opened and closed is provided in the partition wall that partitions each step, the lower step portion that is adjacent to the upper step portion by opening the first aggregate discharge portion Aggregate can be thrown into.
  • the aggregate heated in the heating furnace can be easily put into the heat insulation furnace.
  • the 2nd aggregate discharge part which can be opened and closed is provided in the bottom part of the heat retention furnace part, aggregate can be discharged by opening the 2nd aggregate discharge part. Therefore, for example, it is not necessary to pass the conveying means for conveying the aggregate such as a conveyor through the aggregate heating device.
  • it can be set as the structure which closed the aggregate heating apparatus by closing the 1st and 2nd aggregate discharge part. Therefore, the load on the environment due to the microwave can also be reduced.
  • the next aggregate can be heated in a heating furnace part, keeping an aggregate in a heat retention furnace part, it is possible to heat-process an aggregate continuously.
  • the aggregate heating apparatus it is preferable that a plurality of the heating furnace parts are provided in multiple stages on the heat insulating furnace part.
  • the aggregate can be heated in stages in a plurality of heating furnace sections and sequentially supplied to the lower heating furnace section, so that the processing capacity of the aggregate heating apparatus can be improved.
  • the aggregate heating apparatus it is preferable to further include a microwave absorber provided in the heating furnace.
  • the aggregate can be heated not only by the direct heating of the aggregate by the microwave but also by the heat generated by the microwave absorber absorbing the microwave.
  • the heating furnace unit further includes a stirring unit that stirs the aggregate, and the stirring unit includes a rotating shaft and a plurality of stirring blades provided on the rotating shaft. It is characterized by.
  • Agitation of the aggregate makes it easier to irradiate the aggregate with microwaves, so that the aggregate can be efficiently heated.
  • the aggregate heating method according to the present invention is a method of heating asphalt mixture by a heating method based on microwaves in a heating furnace part that is positioned on the heat insulating furnace part in the vertical direction and constitutes a multistage structure together with the heat insulating furnace part.
  • the aggregate discharge process Provided at the bottom of the heat insulation furnace, the aggregate discharge process, the heat insulation process in which the aggregate heated in the multistage structure at the upper stage adjacent to the heat insulation furnace is electrically or optically heated.
  • a second aggregate discharging step of opening the second aggregate discharging section that is openable and closable and discharging the aggregate to the outside of the heat insulation furnace section.
  • the aggregate in the heating furnace part is heated using microwaves, and in the heat insulation furnace part, the aggregate is kept warm by an electrical or optical heating method.
  • microwaves are used for heating the aggregate by the heating furnace
  • electrical or optical heating methods are used for heating by the heat holding furnace, so that CO 2 or the like is not discharged.
  • the aggregate can be moved from the upper stage part to the lower stage part in the first aggregate discharging process, and the second aggregate discharging process. The aggregate can be discharged to the outside of the heat insulation furnace.
  • the movement of the aggregate from the heating furnace part to the heat insulation furnace part and the discharge of the aggregate to the outside are facilitated. Therefore, for example, it is not necessary to pass a conveying means for conveying the aggregate such as a conveyor through the aggregate heating apparatus. Moreover, since the said multistage structure can be made into the closed structure by closing the 1st and 2nd aggregate discharge part, the leakage of the microwave utilized in a heating furnace part can be suppressed. Therefore, the load on the environment due to the microwave can also be reduced. Furthermore, in the above method, since the next aggregate can be heated in the heating furnace while keeping the aggregate in the heat retaining furnace, it is possible to continuously heat the aggregate.
  • a plurality of heating furnace parts are provided in multiple stages in the vertical direction, and the heat insulation furnace part is the lowest heating furnace among the plurality of heating furnace parts provided in multiple stages.
  • the aggregate is preferably heated in order from the uppermost stage in a plurality of heating furnaces provided in multiple stages.
  • the aggregate can be heated step by step in a plurality of heating furnace sections, and the aggregate can be sequentially supplied to the lower heating furnace section, so that the heat treatment capacity of the aggregate can be improved.
  • the aggregate heating method in the heating step, it is preferable to heat the aggregate while stirring it with a stirring unit.
  • the aggregate In the heating step, the aggregate is agitated by the agitation unit, so that the microwave is easily irradiated to the aggregate. Therefore, the aggregate can be heated more efficiently.
  • the aggregate can be heated more reliably while preventing environmental destruction.
  • FIG. 5 is a cross-sectional view schematically showing an example of a cross-sectional configuration orthogonal to the axis of the rotation axis of the stirring unit shown in FIG. 4.
  • FIG. 1 is a schematic view of an embodiment of an asphalt composite material production system including an embodiment of an aggregate heating device according to the present invention.
  • the asphalt mixture manufacturing system 10 is a system for manufacturing the asphalt mixture 14 using the aggregate 12.
  • a new aggregate 12A such as new crushed stone or new sand and a recycled aggregate 12B such as oxidized slag are used.
  • the recycled aggregate 12B is mixed with the aggregate 12A at a predetermined ratio.
  • the asphalt composite material manufacturing system 10 includes a plurality of cold bins 16A for collecting, for each size, a new aggregate 12A taken out from an aggregate silo that stocks aggregates such as crushed stone and sand in various sizes. .
  • a first aggregate conveying means 18A is provided below each cold bin 16A.
  • An example of the first aggregate conveying means 18A is a conveyor.
  • An example of the conveyor is a belt conveyor.
  • the first aggregate conveying means 18A conveys a certain amount of aggregate A discharged from each cold bin 16A to the aggregate heating device 20A.
  • the aggregate heating device 20A heats the supplied aggregate 12A to remove adhering moisture and dry it, and heats it to a desired temperature.
  • a second aggregate conveying means 18B is provided below the aggregate heating apparatus 20A.
  • An example of the second aggregate conveying means 22B is a conveyor.
  • An example of this conveyor is a chain conveyor.
  • the second aggregate conveying means 22B conveys the heated aggregate 12A discharged from the aggregate heating device 20A to the hot elevator 24.
  • the hot elevator 24 puts the aggregate 12 ⁇ / b> A into the hot bin 26.
  • the hot bottle 26 includes a crushed stone screen 26a having a mesh according to the size of each aggregate 12A, and an accommodating portion 26b that accommodates the aggregate 12A having different sizes selected according to the size of the mesh of each crushed stone screen 26a.
  • the aggregate 12A is sorted by size and stored for each size.
  • a weighing facility 28 is provided at the subsequent stage of the hot bin 26.
  • the weighing equipment 28 measures the aggregates 12A having different sizes selected by the hot bins 26 in accordance with the aggregate blending amount of the asphalt mixture 14 to be manufactured, and then supplies the aggregate 12A into the mixing equipment 30.
  • the asphalt composite material manufacturing system 10 also includes a cold bin 16B for storing the recycled aggregate 12B.
  • a first aggregate conveying means 18B similar to the first aggregate conveying means 18A is provided below the cold bin 16B.
  • the first aggregate transport means 18B transports the aggregate 12B discharged from the cold bin 16B storing the aggregate 12B to the aggregate heating device 20B.
  • the aggregate heating device 20B heats the aggregate 12B to a desired temperature.
  • the heated aggregate 12B is put into the skip trolley 34A via the second aggregate conveying means 22B and the recycled aggregate sieving machine 32 similar to the second aggregate conveying means 22A.
  • the skip trolley 34 ⁇ / b> A conveys the aggregate 12 ⁇ / b> B to the surge bin 36.
  • Aggregate 12B discharged from surge bin 36 is weighed by a predetermined amount by skip trolley 34B having a metering function, and a predetermined amount of aggregate 12B is supplied into mixing facility 30.
  • the mixing equipment 30 is supplied with a predetermined amount of stone powder supplied from the stone powder silo 38 and measured by the stone powder measuring tank 40, and supplied from the asphalt tank 42 and measured by the asphalt measuring tank 44. Then, molten asphalt heated to a desired temperature is charged. The aggregates 12A and 12B, the stone powder, and the molten asphalt that have been charged are agitated and mixed by the rotating stirring blade 30a to become the asphalt mixture 14.
  • the asphalt mixture 14 manufactured by the asphalt mixture manufacturing system 10 can be mounted on a transportation means 46 such as a truck and directly supplied to the pavement site.
  • the asphalt mixture manufacturing system 10 can also include a storage silo 48 that stores the manufactured asphalt mixture 14.
  • the manufactured asphalt mixture 14 is carried into the mixture storage silo 48 from the mixing facility 30 via the skip trolley 34C, and can be supplied to the pavement site as needed by the mixture storage silo 48.
  • the asphalt mixture 14 stocked in the mixture storage silo 48 is appropriately mounted on a transport means 46 such as a truck and supplied to the pavement site.
  • the asphalt mixture manufacturing system 10 depending on the desired production amount of the asphalt mixture 14, for example, the discharge amount of the aggregates 12 A and 12 B from the cold bins 16 A and 16 B and the aggregate heating devices 20 A and 20 B and the first and Changes in the conveying speed of the aggregates 12A and 12B by the second aggregate conveying means 18A, 18B, 22A and 22B occur. Therefore, the asphalt composite material manufacturing system 10, for example, in accordance with the desired production amount of the asphalt composite material 14, the aggregate discharge amount from each device, the aggregate of the aggregate by the first and second aggregate conveying means, etc. It is preferable to control the conveyance speed and the like. In FIG.
  • control device 50 is connected to the cold bin 16 ⁇ / b> A, the aggregate heating device 20 ⁇ / b> A, the first and second aggregate transport means 18 ⁇ / b> A, 22 ⁇ / b> A by a control line (dashed line in the figure).
  • the connection is illustrated, and the description of the control lines to the devices on the subsequent stage of the second aggregate conveying means 22B and the devices on the side of the recycled aggregate 12B is omitted.
  • the aggregate heating apparatus according to this embodiment that is preferably applied to the asphalt composite material manufacturing system 10 will be described in detail with reference to FIGS. 2 and 3.
  • the new aggregate 12A and the regenerated aggregate 12B are referred to as the aggregate 12
  • the aggregate heating device 20A and the aggregate heating device 20B are referred to as the aggregate heating device 20.
  • FIG. 2 is an end view schematically showing a configuration of an embodiment of the aggregate heating apparatus.
  • FIG. 3 is a block diagram for explaining an example of the control mechanism of the aggregate heating device. In FIG. 3, some of the elements related to the aggregate heating device 20 and the control are schematically shown.
  • the aggregate heating device 20 has a multistage structure in which a heat retaining furnace part 52, a heating furnace part 54, and a heating furnace part 54 are provided in series in order from the lower side in the vertical direction.
  • a hopper portion (lid portion) 56 is further provided on the uppermost heating furnace portion 54.
  • the heating furnace 54 adjacent to the thermal insulation furnace section 52 referred to as a furnace section 54 1
  • the furnace 54 is also referred to as a furnace section 54 2.
  • Each furnace section 54 1, 54 2 included in the aggregate heating device 20 heats the aggregate 12 by a heating method using a microwave. Moreover, the heat insulation furnace part 52 heats the aggregate 12 by electric heating.
  • the aggregate heating device 20 is a hybrid aggregate heating device in which the heating method and the heat retaining method of the aggregate 12 are different between the heating furnace portions 54 1 and 54 2 and the heat retaining furnace portion 52. The structure of each step part which comprises the aggregate heating apparatus 20 of a multistage structure is demonstrated.
  • the structure of the heating furnace part 54 m (m is 1 or 2) of the aggregate heating device 20 will be described.
  • the heating furnace portion 54 m has a cylindrical side wall 58 m and a bottom wall 60 m made of a metal material (microwave shield material) having a microwave shielding characteristic such as iron or stainless steel.
  • the side wall 58 m can have a substantially rectangular shape when viewed from the input side of the aggregate 12 (upper side in the figure).
  • a microwave supply unit 62 m for irradiating microwaves into the heating furnace unit 54 m .
  • the microwave supply unit 62 m can be, for example, a microwave oscillator of 2.450 MHz assigned to industrial, chemical, medical, and other uses in the radio wave law.
  • the microwave supply unit 62 m may include a propagation member such as an electromagnetic wave waveguide or a horn antenna that is attached to the microwave transmitter and propagates the microwave.
  • the microwave supply unit 62 m is configured by attaching a propagation member such as an electromagnetic wave waveguide or a horn antenna to the microwave oscillator, for example, the microwave oscillator is extended to the outer wall surface side of the side wall 58 m , It can also be adapted to supply microwaves into the heating furnace section 54 m through the propagation member.
  • the bottom wall 60 m, the opening 64a m for discharging the aggregate 12 that is heated in a heating furnace part 54 m is formed. Opening 64a m can be assumed to extend in a predetermined direction.
  • the openings 64a m is openable closing portion 64b m is provided in the opening 64a m. In this case, when the closing part 64b m is opened, the aggregate 12 is discharged to the lower portion through the opening 64a m.
  • openings 64a m and the opening and closing portion 64b m is the heated aggregate 12 open aggregate discharge portion for discharging the lower portion (first aggregate discharge portion) constitutes a 64 m .
  • the opening / closing part 64b m is preferably made of a microwave shielding material such as iron or stainless steel. When closing the closing portion 64b m, it is because it inhibited more reliably microwave leakage.
  • An example of the opening / closing portion 64b m is a pair of plate-like bodies as shown in FIG. Plate-like body as these closing portion 64b m, along with crosses capable relative to each other, it is sufficient to provided adjustably bottom wall 60 m the amount of projection of the opening 64a m side.
  • the opening and closing portion 64b m can also be arranged plate-like body so as to cover the end portion of the opening 64a m.
  • the switching control section 66 m by moving the plate-shaped body from an end portion of the opening 64a m, can control the opening and closing.
  • the opening and closing portion 64b m is not particularly limited as long as it is open constituting the opening 64a m.
  • Switching control section 66 m is, for example, a cylinder, in this case, controls the opening and closing of the opening and closing unit by adjusting the expansion and contraction of the cylinder.
  • Examples of the cylinder include an air cylinder and a hydraulic cylinder.
  • Switching control section 66 m is connected to the closing part 64b m may be arranged to open and close portion 64b m drivable position, for example, heating the container portion 68 m and the side walls 58 m and a bottom wall 62 m, which will be described later It can also be provided in a space formed between them.
  • Heating the container portion 68 m has a tapered portion 68a m was tapered lower tapered portion 68a m first and second cylindrical portions 68b m respectively from both ends of the 68c m extends.
  • First and second cylindrical portion 68b m can be a substantially square shape in cross section shape perpendicular to the vertical direction of 68c m.
  • the second tubular portion 68c m is communicated with the opening 64a m of the bottom wall 60 m.
  • the angle is set to approximately equal with respect to the vertical direction of the pair of inclined surfaces constituting the tapered portion 68a m, it may be different. In this case, there is a tendency for flowing into the aggregate 12 to the second cylindrical portion 68c m becomes easier.
  • the material of the heating vessel portion 68 m it is not particularly limited as long as it has a microwave transparent, for example, heat-resistant glass and brick, refractory tiles and refractory ceramic plate or the like insulation material is preferred. This is because it is easy to confine heat in the heating container portion 68 m .
  • the microwave absorber 70 m On the inner surface of the heating container portion 68 m is the microwave absorber 70 m to absorb the microwave is provided in a layer or particles dispersed form. Examples of the microwave absorber 70 m include iron oxide, magnetic material, silicon carbide, carbon material, permalloy, and the like.
  • the material of the heating vessel portion 68 m as described above may have a microwave transparent.
  • microwave absorber 70 m is provided in the form of a layer or a particle dispersion on the inner surface of the heating container portion 68 m , it is not limited thereto.
  • Microwave absorber 70 m may be dispersed in the wall constituting the heating vessel portion 68 m, heating the container portion 68 m is formed from a microwave transparent material having no heat insulating properties In some cases, it may be provided on the outer surface.
  • the bottom wall 60 2 of the furnace section 54 2 is a heating furnace unit 54 1 and the heating furnace 54 2 It becomes the partition part which partitions off. Thereby, the aggregate 12 can be heated effectively. Further, in the above arrangement, the interior space of the heating furnace unit 542, so surrounded by walls made of microwave shielding material, the interior space of the heating furnace unit 542 has a microwave shield space.
  • the heating container 68 1 heating container portion 68 1 has is arranged in a position to be received aggregate 12 discharged from the opening 64a 2 of the heating furnace 54 2.
  • the inner space of the furnace section 54 2 it means surrounded by walls made of microwave shielding material, the interior space of the heating furnace unit 542 has a microwave shield space.
  • Hopper 56 is for turning on the aggregate 12 that has been conveyed by the first aggregate conveying means 18 into the heating furnace 54 2.
  • the opening 72a of the hopper 56 is provided with an opening / closing portion 72b that can open and close the opening 72a.
  • the opening 72a and the opening / closing part 72b constitute an aggregate input part 72 that can be opened and closed for inputting the aggregate 12 to the lower stage part.
  • Configuration of the closing part 72b can be similar to opening portion 64b 1, the material of the closing part 72b can also be assumed similar to the closing part 64b 1.
  • the opening / closing part 72b can be controlled to open / close by an opening / closing control part 74 (see FIG. 3).
  • Switching control section 74 may be configured similarly to the switching control section 66 m, for example, a cylinder such as an air cylinder or a hydraulic cylinder.
  • the opening / closing control unit 74 may be connected to the opening / closing unit 72b and disposed at a position where the opening / closing unit 72b can be driven.
  • the opening / closing control unit 74 forms an accommodation space for accommodating the opening / closing control unit 74 between the slope portion and the bottom wall surface of the hopper 56, and may be arranged inside or outside thereof. it can.
  • the heat insulation furnace 52 is a furnace for keeping the aggregate 12 at a predetermined temperature by an electric heating method.
  • Thermal insulation furnace section 52 includes a sidewall 76 and a bottom wall 78 made of the same shape and material as the side walls 58 1 and a bottom wall 60 1 with a heating furnace unit 54 1.
  • a heating element 80 is provided on the side wall 76.
  • the heating element 80 can be a metal heating element such as a nichrome wire, a Kanthal wire, or a platinum wire.
  • the bottom wall 78 is formed with an opening 82 a for discharging the aggregate 12 that has been kept warm by the heat-retaining furnace 52.
  • the opening 82a is provided with an opening / closing part 82b that can open and close the opening 82a.
  • the aggregate 12 is discharged from the heat insulating furnace 52 when the opening / closing part 82b is opened.
  • the opening 82a and the opening / closing part 82b constitute an openable / closable aggregate discharging part 82 for discharging the heated aggregate 12.
  • Configuration of the closing part 82b can be similar to opening portion 64b 1, the material of the closing part 82b can also be assumed similar to the closing part 64b 1.
  • the opening / closing part 82 b can be controlled to open / close by the opening / closing control part 84.
  • the switching control section 84 may be configured similarly to the switching control section 66 m, for example, a cylinder such as an air cylinder or a hydraulic cylinder.
  • the opening / closing controller 84 may be connected to the opening / closing part 82b and disposed at a position where the opening / closing part 82b can be driven.
  • the open / close control unit 84 can be provided in a space formed between a heat retaining container 86 and a side wall 76 and a bottom wall 78, which will be described later.
  • a heat insulation container portion 86 for housing the aggregate 12 during heat insulation is provided inside the heat insulation furnace 52.
  • Insulated container portion 86 similarly to the heating container portion 68 m, has a tapered portion 86a which is tapered downward, the first and second cylindrical portions 86b, respectively from both ends of the tapered portion 86a, is 86c extends ing.
  • the second cylindrical portion 86 c communicates with the opening 82 a of the bottom wall 78.
  • the material constituting the heat retaining container 86 is a material having heat conductivity, for example, a ceramic material made of aluminum, iron, nitride, or boride.
  • the bottom wall 60 1 of the furnace section 54 1 functions as a partition wall portion which partitions the heating furnace section 54 1 and the heat insulating furnace section 52. Therefore, the aggregate 12 can be effectively kept warm in the heat retaining furnace 52. Moreover, in the said structure, since the internal space of the heat retention furnace part 52 is enclosed by the wall surface which consists of a microwave shielding material, the internal space of the heat insulation furnace part 52 is a microwave shield space.
  • Aggregate heating device 20 heats the aggregate 12 in the heating furnace 54 1, 54 2 (heating step), heated aggregate 12 is discharged to the lower portion (first aggregate discharge step). Further, in the heat insulation furnace 52, the aggregate 12 put in from the upper stage is kept warm (a heat retention step), and the aggregate 12 is appropriately discharged to the outside (second aggregate discharge step).
  • each temperature sensor 88 1, 88 2, 90 is capable of measuring position the temperature of the heating container 68 1, 68 2 and insulated container portion 86.
  • Thermocouples are exemplified as the temperature sensors 88 1 , 88 2 , 90.
  • the aggregate heating apparatus 20 includes the measurement results of the temperature sensors 88 1 , 88 2 , 90 in each of the heating furnace portions 54 1 , 54 2 and the heat insulation furnace portion 52, the desired aggregate discharge amount from the heat insulation furnace portion 52, etc. It can be controlled by the control device 50 according to the various parameters. As described above, the control device 50 controls the asphalt mixture manufacturing system 10 including the aggregate heating device 20. However, an example of the control mechanism of the aggregate heating device 20 according to the present embodiment in the control device 50 will be described with reference to FIG.
  • the microwave supply units 62 1 and 62 2 , the temperature sensors 88 1 and 88 2, and the open / close control units 66 1 and 66 2 included in the heating furnace units 54 1 and 54 2 are provided in the control device 50. Electrically connected. Similarly, the heating element 80, the temperature sensor 90, and the open / close control unit 84 included in the heat insulation furnace unit 52 are electrically connected to the control device 50. Similarly, an opening / closing control unit 74 that controls opening / closing of the opening / closing unit 72 b provided in the hopper unit 56 is also electrically connected to the control device 50.
  • the control device 50 controls the open / close control unit 84 so that a predetermined amount of the aggregate 12 is accommodated in the heat insulation furnace 52 based on the discharge amount of the desired aggregate 12 to be discharged from the heat insulation furnace 52. To control the aggregate discharging part. Similarly, the control unit 50, a heating furnace unit 54 1, 54 as aggregate 12 of a predetermined amount is housed in 2, the switching control unit 66 1, 66 2, 74 aggregate discharge portion 64 via the 1, 64 2 and to control the aggregate feeding section 72.
  • control unit 50 the heating vessel 68 1 of the furnace section 54 1, 54 2, 68 2 so that each becomes a predetermined temperature
  • the micro on the basis of the temperature sensor 88 1, 88 2 of the temperature measurement result
  • the amount of microwave irradiation by the wave supply units 62 1 and 62 2 is controlled.
  • the heat generation amount of the heating element 80 is controlled based on the measurement result of the temperature sensor 90 so that the inside of the heat insulation container portion 86 of the heat insulation furnace portion 52 becomes a predetermined temperature.
  • the amount of the aggregate 12 input to the aggregate heating device 20 is normally determined with respect to the amount of the aggregate 12 discharged from the heat insulation furnace 52.
  • the microwaves supplied by the microwave supply units 62 1 and 62 2 according to the amount of the aggregate 12 discharged. It is also preferable to control the amount of wave irradiation and the amount of heat generated by the heating element 80. For example, when processing the aggregate 12 more, it is preferable to increase the microwave irradiation amount and increase the heat generation amount of the heating element 80.
  • the heating furnace 54 within 1 microwave is supplied from the microwave supply unit 62 1, similar to the heating furnace unit 542, by a heating method based on microwave, heating the aggregate 12.
  • the aggregate 12 in the heating furnace 54 within 1 to heat a certain time, after heating the aggregate 12 to a higher than the first predetermined temperature a second predetermined temperature, open the aggregate discharge unit 64 1, discharging the aggregate 12 from the furnace unit 64 1, to introduce extra insulation furnace section 52.
  • first and second predetermined temperature and the required heating time may be appropriately set depending on the amount and type of the aggregate 12 of the furnace section 54 1, 54 2.
  • Microwave oscillation output from the microwave supply unit 62 1, 62 2, first heating furnace 54 1, 54 2 or the furnace section 54, 54 second heating container portion 68 1 has, 68 2 of the capacitance, the request What is necessary is just to set suitably by the heating time of the aggregate 12 to be performed, the quantity of the aggregate 12 supplied, etc.
  • the temperature of the heating furnace 54 1, 54 in 2 controls the microwave supply unit 62 1, 62 2 based on the temperature sensor 88 1, 88 2 of the detection result, to keep constant.
  • the heat insulation furnace part 52 by supplying electric power to the heating element 80, the heat insulation furnace part 52 is kept at a predetermined temperature and the aggregate 12 is kept warm. It is preferable that the predetermined temperature in the heat insulation furnace 52 is a second predetermined temperature.
  • the electric power supplied to the heating element 80 may be appropriately set depending on the capacity of the heat insulation furnace 52 or the heat insulation container 86, the required heat retention time of the aggregate 12, the amount of the aggregate 12 to be supplied, and the like. Further, the temperature in the heat insulation furnace 52 is controlled to be constant by controlling the power supplied to the heating element 80 based on the detection result of the temperature sensor 90.
  • the aggregate 12 stored while being kept warm in the heat retaining furnace 52 is discharged by a desired amount by controlling the opening / closing of the aggregate discharging section 82.
  • the discharged aggregate 12 is carried out by the second aggregate transport means 22.
  • the aggregate heating device 20 has already been driven.
  • the microwave supply units 62 1 and 62 2 are appropriately driven according to the input of the aggregate 12. Or power may be supplied to the heating element 80. Alternatively, or in advance, it drives the microwave supply unit 62 1, 62 2, supplies power to the heating element 80, leave the furnace section 54 1, 54 2 and heated to a first and second predetermined temperature The heat retaining furnace portion 52 may be heated to the second predetermined temperature.
  • aggregate heating device 20 kept warm furnace section 54 1, 54 2 are provided in multiple stages in a heat retaining furnace 52 vertically, aggregate 12 that is heated by the heating furnace 54 1, 54 2 Since the heat is stored in the furnace 52 while being kept warm, the constant heated aggregate 12 can be continuously discharged. Therefore, the following operation is possible.
  • the heat insulating furnace portion 52 by providing the heat insulating furnace portion 52 a plurality of furnace section 54 on 1, 54 2, it is possible to heat in multiple stages, it can be processed aggregate 12 more efficiently It is.
  • the aggregate heating device 20 the heating furnace 54 1 of the lower portion, the aggregate 12 that is heated in a heating furnace unit 542 of the upper portion is turned.
  • the aggregate 12 is heated in steps, more aggregate 12 can be heat-treated in the same time.
  • the aggregate 12 can be processed more efficiently by increasing the number of heating furnace sections 54 provided on the heat retaining furnace section 52.
  • the plurality of heating furnace portions 54 are provided vertically above, even when the installation place of the aggregate heating device 20 is limited, the space is effectively used to improve the processing efficiency of the aggregate 12. be able to.
  • the heat treatment of the aggregate 12 can also be improved by increasing the capacity of the heating furnace section 54 and the heat retaining furnace section 52 and increasing the amount of microwave supply in the microwave supply section 62. Can do. Therefore, when the installation area is not limited, it is possible to improve the processing efficiency by adjusting the capacity of the heating furnace section 54 and the thermal insulation furnace section 52 and the supply amount of microwaves as described above.
  • the structure of the aggregate heating device 20 has a higher degree of freedom in device design.
  • the heating furnace parts 54 1 and 54 2 and the heat insulation furnace part 52 are provided in multiple stages in the vertical direction, the transportation of the aggregate into the heating furnace parts 54 1 and 54 2 and the heat insulation furnace part 52 can be performed. It is easy and can be continuously heated and kept warm. Due to such continuity, the aggregate 12 can be efficiently heated and discharged.
  • the aggregate 12 is an amount of the aggregate 12 corresponding to the amount of the aggregate 12 discharged from the heat insulation furnace section 52, and the aggregate 12 that has already been heated is converted into the heating furnace section. 54 can be supplied. Accordingly, a certain amount of the aggregate 12 heated during operation is continuously stored in the heat retaining furnace 52. Therefore, when the aggregate heating device 20 is used as the aggregate heating devices 20A and 20B of the asphalt mixture manufacturing system 10 shown in FIG. 1, the aggregate 12 is heated continuously (the aggregate 12A or the aggregate 12B). As a result, it is possible to improve the production efficiency of the asphalt mixture 14.
  • the amount of the aggregate 12 to be processed by heating container 68 1, 68 2, of the aggregate 12 to be discharged from the heat retaining furnace 52 Preferably it is approximately equal to the amount.
  • the capacitance of the insulated container 86, with greater than desired emissions, it is preferably larger than the volume of the heating vessel 68 1, 68 2.
  • the aggregate heating apparatus 20 uses microwaves for heating the aggregate 12 in the heating furnace section 54, exhaust gas and odor are compared with conventional heating means using liquid fuel or gaseous fuel.
  • the surrounding environment can be prevented from being destroyed or polluted by smoke or the like.
  • the aggregate can be heated to a desired temperature by passing an atmosphere heated to a desired temperature, compared to a conventional aggregate heating device that heats while rotating the aggregate in a rotating drum. Generation of vibration, noise and dust can be reduced.
  • the hopper portion 56 provided on the heating furnace unit 542 of the aggregate heating device 20 since there is provided a heat retaining furnace 52 to lower first heating furnace 54 of the aggregate heating device 20, the hopper 56 and The heat insulation furnace 52 functions to prevent leakage of microwaves as high-frequency electromagnetic waves.
  • the structure of the aggregate heating device 20 is configured to contribute to prevention of the occurrence of electromagnetic interference due to leakage of the microwave while using the microwave.
  • the aggregate heating device 20 has a multistage structure, so that the upper furnace or hopper The bottom wall surface of the portion 56 functions as a partition that partitions each step. As a result, it is possible to maintain the uniformity of the temperature environment of each furnace.
  • the crushed stone or sand aggregate 12 to be heated is not necessarily in a dry state, and there are cases where moisture adheres to the surface or moisture penetrates inside.
  • the moisture adhering to the surface and the moisture penetrating inside are directly heated by the microwave. Therefore, in the aggregate heating apparatus 20, by using microwaves, moisture directly or the like is generated together with direct heating by the microwaves of the aggregate 12 itself and indirect heating by heat generated by the microwave absorber 70 absorbing the microwaves. Direct heating by microwaves also occurs. Therefore, the aggregate 12 having various features can be efficiently heated.
  • the new crushed aggregate 12A some iron may be included.
  • iron contained in the crushed stone absorbs the microwave and generates heat.
  • the oxidized slag itself absorbs microwaves and generates heat. Therefore, when the aggregate heating device 20 is applied as the aggregate heating devices 20A and 20B for heating the new aggregate 12A and the recycled aggregate 12B, respectively, heating can be performed more efficiently.
  • this invention is not limited to the said embodiment.
  • the number of the heating furnace parts 54 on the heat insulation furnace part 52 may be three or more. In other words, one or more heating furnace sections 54 may be provided on the heat retaining furnace section 52. The number of heating furnaces 54 can be determined according to the amount of processing of the aggregate 12 in the aggregate heating device 20 and the required performance.
  • the hopper portion 56 as a lid portion is provided on the multistage structure including the heat retaining furnace portion 52 and the two heating furnace portions 54, but the present invention is not limited to this.
  • it may be of integral heating furnace unit 542 and the hopper portion 56 of the uppermost.
  • the heating furnace unit 542 of the uppermost stage has a top wall, it may be the shape of the outer surface with hopper-shaped.
  • the aggregate heating apparatus 20 shown in FIG. 2 is provided with the hopper portion 56 as a lid portion, the lid portion may not be provided.
  • the heating furnace 54 located at the uppermost stage of the aggregate heating apparatus in this case may be configured to have an upper wall, and an aggregate input port that can be opened and closed may be provided on the upper wall.
  • it can be said that it is the structure which does not have a cover part also when the uppermost heating furnace part 54 has an upper wall as mentioned above and the shape of the outer surface is made into a hopper shape.
  • the microwave supply unit 62 is provided on the side wall 58, it may be provided so that the aggregate 12 in the heating container 68 can be efficiently irradiated with microwaves. Moreover, you may provide the heat generating body 80 so that it may wind around the outer periphery of the heat insulation container part 86, for example. Furthermore, in the heat insulating furnace 52, it is possible to heat the aggregate 12 by an optical heating method using infrared rays in addition to the exemplified electric heating method. In this case, a halogen lamp may be provided in the heat insulating furnace 52 as an infrared source.
  • the microwave absorber 70 is disposed in the heating furnace section 54, but the microwave absorber 70 may be omitted. This is because the aggregate 12 itself absorbs microwaves and generates heat. However, by providing the microwave absorber 70, the aggregate 12 can be efficiently heated using indirect heating.
  • the shape when the heating furnace part 54, the heating container part 68, the heat insulating furnace part 52, and the heat insulating container part 86 are viewed from the charging side of the aggregate 12 is substantially rectangular, it is not limited thereto. These shapes may be circular, for example.
  • the shapes of the heating container portion 68 and the heat retaining container portion 86 are not particularly limited as long as the aggregate 12 smoothly flows into the aggregate discharge portions 64 and 82 in order to discharge the aggregate 12. For example, a configuration in which the second cylindrical portions 68 and 86 are not provided may be employed.
  • the opening parts 64a and 82a are each provided in the center part of the bottom walls 60 and 78, the position of the opening parts 64a and 82a is provided in the bottom part of the heating furnace part 54 and the heat insulation furnace part 52, Any position where the aggregate 12 can be discharged to the lower stage or the outside may be used.
  • the opening and closing section 64b 1, 64b 2, 72b, 82b has been illustrated a case which is composed of a microwave shielding material is not limited thereto.
  • the opening / closing portions 64b 1 , 64b 2 , 72b, and 82b are made of a microwave shielding material because microwave leakage can be further prevented.
  • the opening / closing part 82b is preferably made of a microwave shielding material.
  • control by the control apparatus 50 which controls the whole asphalt mixture manufacturing system was illustrated as control of the aggregate heating apparatus 20, the aggregate heating apparatus 20 may be provided with the control part, for example.
  • the control unit in this case may be provided with a control function of the aggregate heating device 20 by the control device 50 described in the above embodiment.
  • the aggregate heating apparatus 20 is provided with a control part, what is necessary is just to input the discharge
  • the input of the predetermined information to the control unit may be input in advance by an operator when a change occurs, or may be input from the control device 50 by electrically connecting the control device 50 of the entire system. You can also
  • the heating furnace unit 54 included in the aggregate heating device 20 may include a stirring unit that stirs the aggregate 12 during heating.
  • a configuration of an embodiment of a heating furnace unit having a stirring unit will be described by taking as an example a case where two heating furnace units 92 and 92 are provided on the heat insulating furnace unit 52.
  • heating furnace portions 92 1 and 92 2 when it is necessary to distinguish between the two heating furnace portions 92 and 92, they are referred to as heating furnace portions 92 1 and 92 2 for convenience as in the case of the heating furnace portions 54 and 54.
  • the constituent elements of the furnace portions 92 and 92 are also described in the same manner.
  • FIG. 4 is a sectional view showing another embodiment of a heating furnace unit, shows a part of the furnace section 92 1 and the heating furnace section 92 2. Construction of the furnace section 92 1 and the heating furnace section 92 2 is because it is substantially the same, the configuration of the heating furnace 92 1.
  • FIG. 5 is an enlarged view of an example of a cross-sectional configuration orthogonal to the axis of the rotation axis of the stirring unit shown in FIG.
  • Furnace unit 92 1 has a cylindrical portion 98 1 stirring unit 94 1 is disposed on the inner side. Examples of a shape viewed cylindrical upper 98 1 from the upper side has a substantially square shape. Between the opening 64a 1 of the cylindrical portion 98 1 and the bottom wall 60 1, the opening and closing portion 64b 1 is disposed, by opening and closing part 64b 1 is closed, aggregate 12 in the cylindrical portion 98 in 1 Can be accommodated.
  • the tubular portion 98 1 is also a heating container portion for accommodating the aggregate 12 during heating. Examples of the tubular portion 98 1 of the material, but may be similar to the heating container 68 1, also a heat insulating material, such as described in the case of heating the container portion 68 1 as having been coated such as a ceramic Good.
  • the tubular portion 98 1, a plurality of stirring units 94 1 is disposed (see FIG. 5).
  • Mixing unit 94 1 has a rotary shaft 94A 1, and a plurality of stirring blades 94B 1 provided on the rotating shaft 94A 1.
  • a plurality of stirring units 94 1, rotation shaft 94A 1 are substantially parallel to each other.
  • the rotation axis of the agitating unit 94 1 94A 1 is connected via the driving force transmitting unit 102 1 to the drive source 100 1.
  • Examples of the driving source 100 1 is a rotating motor, an example of the driving force transmitting unit 102 1 is a gear train.
  • Driving source 100 1 may be controlled by the control device 50.
  • Rotary shaft 94A 1 is rotated by the driving force of the driving source 100 1.
  • the rotation directions of the adjacent rotation shafts 94A 1 and 94A 1 are preferably opposite to each other as shown in FIG. This is because the aggregate 12 can be suppressed from being biased in one direction by stirring.
  • Rotational direction of the rotary shaft 94A 1 for example, adjusts the driving force transmitting unit 102 1.
  • An example of the opening / closing part 64b 1 included in the heating furnace part 92 1 is a pair of slide gates 106 1 and 106 1 .
  • the pair of slide gates 106 1 , 106 1 are arranged to face each other, and when closed, together with the tubular portion 98 1 , constitute a housing portion for the aggregate 12.
  • each groove 104 1 has an approximately semicircular shape as shown in FIG. Curvature of the groove 104 1 of the inner surface radius approximately equal to the length of the radial direction of the agitating blades 94B 1.
  • the slide gate 106 1, the piston 108a 1 of cylinder 108 1 is connected.
  • Examples of the cylinder 108 1 is an air cylinder or a hydraulic cylinder.
  • the slide gate 106 1 openings 64a 1 is opened and closed controlled by sliding. Therefore, the cylinder 108 1 functions as the opening / closing control unit 66 1 .
  • the opening / closing part 64b 1 has been described as a pair of slide gates 106 1 , 106 1 , the opening / closing part 64b 1 has a configuration in which a plurality of opposed slide gates 106 1 , 106 1 are arranged in a direction perpendicular to the sliding direction. It can also be. Further, the opening and closing portion 64b 1 may be one of the sliding gate 106 1 If closing the opening 64b 1.
  • the furnace section 92 1 microwave supply unit 62 1 supplies microwaves to, as in the case of the heating furnace 54, a microwave aggregate 12 What is necessary is just to be provided so that it can irradiate.
  • the heating furnace section 92 heating the aggregate 12 with stirring aggregate 12 at a stirring unit 94 1. Therefore, the aggregate 12 is easily irradiated with microwaves, and as a result, the aggregate 12 can be heated more efficiently.
  • the open / close units 82b and 72b for the heat insulating furnace unit 52 and the hopper unit 56 also use slide gates having the same configuration as the slide gate 106. be able to.
  • an example of the configuration of the hopper portion 56 is such that a hopper main body portion that functions as a hopper is arranged inside the hopper accommodating portion.
  • the hopper accommodating part has the side wall 58 and the bottom wall 60 of the heating furnace part 92, and the side wall and bottom wall of the same structure.
  • the pair of slide gates as the opening / closing portion 72b is provided between an opening formed in the bottom wall of the hopper accommodating portion and the hopper body portion.
  • the opening formed in the bottom wall of the hopper accommodating portion corresponds to the opening 72a in the aggregate heating device 20 shown in FIG. 2, and a pair of the opening of the hopper accommodating portion and the opening / closing portion 72b.
  • the slide gate constitutes the opening / closing control unit 72.

Abstract

Disclosed is an aggregate heating apparatus (20) equipped with a heating furnace unit (54) that heats aggregate (12) by means of a microwave-based heating method, a heat-retention furnace unit (52) that retains the heat of the heated aggregate by means of an electrical or optical heating method, and a microwave supply unit (62) that supplies microwaves within the heating furnace unit. The heat-retention furnace unit and the heating furnace unit vertically form a multi-step structure in that order. A first aggregate discharge section (64), which is capable of opening and closing and is for discharging the aggregate to a lower step, is disposed on partition sections that partition each step of the of the multi-step structure; and a second aggregate discharge section (82), which is capable of opening and closing and is for discharging the aggregate that had heat retained in the heat-retention furnace unit, is disposed on the bottom of the heat-retention furnace unit.

Description

骨材加熱装置及び骨材加熱方法Aggregate heating device and aggregate heating method
 本発明は、骨材加熱装置及び骨材加熱方法に関し、特に、アスファルト合材を組成する骨材の加熱装置及び加熱方法に関するものである。 The present invention relates to an aggregate heating apparatus and an aggregate heating method, and more particularly to an aggregate heating apparatus and a heating method for composing asphalt composite material.
 アスファルト舗装現場で使用するアスファルト合材を製造する場合、アスファルト合材の組成物である各種大きさの砕石や砂等の骨材に付着した水分を乾燥させてアスファルト合材に水分が混入するのを防止すると共にアスファルト合材を舗装現場まで運搬する間にアスファルトの軟化状態を保つ必要がある。そのため、アスファルト合材を製造するアスファルトプラントでは、骨材を所望温度に加熱する骨材加熱装置を備える。この骨材加熱装置としては、特許文献1のように、加熱乾燥用のドライヤーの加熱バーナを使用したものがある。特許文献1では、加熱乾燥用のドライヤーの加熱バーナによる熱風とその火炎を覆う内筒からの輻射熱を利用して骨材を加熱している。また、骨材加熱装置としては、特許文献2に記載にされているように、高周波電磁波を利用した加熱方法によるものも知られている。特許文献2記載の技術では、高周波電磁波で骨材を加熱する加熱炉内に、水平に配置された搬送装置を通し、搬送装置で骨材を搬送しながら加熱炉よ骨材を乾燥させている。 When manufacturing asphalt mixture for use in the asphalt pavement site, moisture adhering to aggregates such as crushed stone and sand of various sizes, which is the composition of the asphalt mixture, is dried and mixed into the asphalt mixture. It is necessary to keep the asphalt softened while transporting the asphalt mixture to the pavement site. Therefore, an asphalt plant that manufactures an asphalt mixture includes an aggregate heating device that heats the aggregate to a desired temperature. As this aggregate heating device, there is one using a heating burner of a dryer for heating and drying as in Patent Document 1. In patent document 1, the aggregate is heated using the hot air by the heating burner of the dryer for heat drying, and the radiant heat from the inner cylinder which covers the flame. As an aggregate heating device, as described in Patent Document 2, a heating method using a high frequency electromagnetic wave is also known. In the technique described in Patent Literature 2, the aggregate is dried by the heating furnace while the aggregate is being conveyed by the conveyance device through the conveyance device that is horizontally disposed in the heating furnace that heats the aggregate by high-frequency electromagnetic waves. .
特開2006-45845号公報JP 2006-45845 特開2006-322254号公報JP 2006-32254 A
 しかしながら、特許文献1に記載の技術では、重油等の液体燃料やガス等の気体燃料により加熱された加熱空気を骨材に吹き付けて加熱しているので、これら燃料の燃焼時に排出される排気ガスの煤煙や臭気、CO等により周囲の環境が破壊されてしまう。また、加熱熱風の熱源として重油ボイラー等の液体燃料を使用する場合には、液体燃料の流出により土壌を汚染する恐れをも有している。 However, in the technique described in Patent Document 1, since heated air heated by liquid fuel such as heavy oil or gaseous fuel such as gas is blown onto the aggregate, the exhaust gas discharged when these fuels are burned is heated. The surrounding environment will be destroyed by smoke, odor, CO 2, etc. Moreover, when using liquid fuel, such as a heavy oil boiler, as a heat source of a heating hot air, there exists a possibility of contaminating soil by the outflow of liquid fuel.
 特許文献2に記載の技術においては、加熱炉に搬送装置の移動口を確保する必要があるため、電波の漏洩による環境破壊の問題を含むと考えられる。 In the technique described in Patent Document 2, it is necessary to secure a moving port of the transfer device in the heating furnace, which is considered to include a problem of environmental destruction due to leakage of radio waves.
 本発明は、より確実に環境への負荷の低減が可能な骨材加熱装置および骨材加熱方法を提供することを目的とする。 An object of the present invention is to provide an aggregate heating apparatus and an aggregate heating method capable of more reliably reducing the load on the environment.
 本発明に係る骨材加熱装置は、アスファルト合材を組成する骨材をマイクロ波に基づく加熱法によって加熱する少なくとも一つの加熱炉部と、少なくとも一つの加熱炉部で加熱された骨材を、電気的又は光学的加熱法によって保温する保温炉部と、マイクロ波を加熱炉部内に供給するマイクロ波供給部と、を備え、保温炉部及び加熱炉部は、この順で鉛直方向に設けられて多段構造を構成しており、多段構造を構成する各段を隔てる隔壁部には、開閉可能であって骨材を下段に排出するための第1の骨材排出部が設けられており、保温炉部の底部には、開閉可能であって保温炉部で保温された骨材を排出するための第2の骨材排出部が設けられている。 The aggregate heating device according to the present invention comprises at least one heating furnace part for heating the aggregate constituting the asphalt mixture by a heating method based on microwaves, and the aggregate heated in at least one heating furnace part, A heat-retaining furnace section that retains heat by an electrical or optical heating method, and a microwave supply section that supplies microwaves into the heating furnace section. The heat-retaining furnace section and the heating furnace section are provided in this order in the vertical direction. The multi-stage structure is configured, and the partition part separating each stage constituting the multi-stage structure is provided with a first aggregate discharge part that can be opened and closed and discharges the aggregate to the lower stage. A second aggregate discharging unit that is openable and closable and that discharges the aggregate that has been kept warm in the heat insulating furnace is provided at the bottom of the heat insulating furnace.
 この構成では、保温炉部の上側に位置する加熱炉部は、マイクロ波供給部から供給されるマイクロ波に基づいて骨材を加熱可能である。更に、保温炉部では、電気的又は光学的加熱方法によって骨材を保温する。このように、加熱炉部による骨材の加熱にマイクロ波を利用しており、保温炉部による保温に電気的又は光学的加熱法を利用していることから、CO等の排出が生じない。更に、保温炉部及び加熱炉部は鉛直方向に配置され多段構造を構成している。従って、加熱炉部での骨材の加熱に利用するマイクロ波の漏洩を抑制できる。また、上記多段構造において、各段を仕切る隔壁部には開閉可能な第1の骨材排出部が設けられているので、第1の骨材排出部を開くことで上段部から隣接する下段部に骨材を投入できる。その結果、加熱炉部で加熱された骨材を保温炉部に容易に投入可能である。また、保温炉部の底部には開閉可能な第2の骨材排出部が設けられていることから、第2の骨材排出部を開くことで骨材を排出可能となっている。従って、例えば、コンベアといった骨材を搬送する搬送手段を骨材加熱装置内に通す必要がない。また、第1及び第2の骨材排出部を閉じることで、骨材加熱装置を閉じた構造とすることができる。従って、マイクロ波による環境への負荷も低減できている。更に、上記構成では、保温炉部内で骨材を保温しながら次の骨材を加熱炉部で加熱可能であるため、連続的に骨材を加熱処理することが可能である。 In this structure, the heating furnace part located above the heat insulation furnace part can heat the aggregate based on the microwave supplied from the microwave supply part. Furthermore, in the heat insulation furnace, the aggregate is kept warm by an electric or optical heating method. As described above, microwaves are used for heating the aggregate by the heating furnace, and electrical or optical heating methods are used for heating by the heat holding furnace, so that CO 2 or the like is not discharged. . Furthermore, the heat-retaining furnace part and the heating furnace part are arranged in the vertical direction to form a multistage structure. Therefore, leakage of microwaves used for heating the aggregate in the heating furnace can be suppressed. Further, in the multi-stage structure, since the first aggregate discharge portion that can be opened and closed is provided in the partition wall that partitions each step, the lower step portion that is adjacent to the upper step portion by opening the first aggregate discharge portion Aggregate can be thrown into. As a result, the aggregate heated in the heating furnace can be easily put into the heat insulation furnace. Moreover, since the 2nd aggregate discharge part which can be opened and closed is provided in the bottom part of the heat retention furnace part, aggregate can be discharged by opening the 2nd aggregate discharge part. Therefore, for example, it is not necessary to pass the conveying means for conveying the aggregate such as a conveyor through the aggregate heating device. Moreover, it can be set as the structure which closed the aggregate heating apparatus by closing the 1st and 2nd aggregate discharge part. Therefore, the load on the environment due to the microwave can also be reduced. Furthermore, in the said structure, since the next aggregate can be heated in a heating furnace part, keeping an aggregate in a heat retention furnace part, it is possible to heat-process an aggregate continuously.
 また、本発明に係る骨材加熱装置では、複数の前記加熱炉部が前記保温炉部上に多段に設けられていることが好ましい。 Moreover, in the aggregate heating apparatus according to the present invention, it is preferable that a plurality of the heating furnace parts are provided in multiple stages on the heat insulating furnace part.
 この構成では、複数の加熱炉部で段階的に骨材を加熱し、順次下段の加熱炉部に供給できるので、骨材加熱装置における処理能力を向上させることができる。 In this configuration, the aggregate can be heated in stages in a plurality of heating furnace sections and sequentially supplied to the lower heating furnace section, so that the processing capacity of the aggregate heating apparatus can be improved.
 本発明に係る骨材加熱装置では、上記加熱炉部内に設けられているマイクロ波吸収体を更に備える、ことが好ましい。 In the aggregate heating apparatus according to the present invention, it is preferable to further include a microwave absorber provided in the heating furnace.
 この場合、マイクロ波による骨材の直接加熱と共に、マイクロ波吸収体がマイクロ波を吸収することによって生じる熱によっても骨材を加熱することができる。 In this case, the aggregate can be heated not only by the direct heating of the aggregate by the microwave but also by the heat generated by the microwave absorber absorbing the microwave.
 本発明に係る骨材加熱装置では、加熱炉部は、骨材を攪拌する攪拌ユニットを更に備え、攪拌ユニットは、回転軸と、回転軸に設けられた複数の攪拌羽根と、を有する、ことを特徴とする。 In the aggregate heating apparatus according to the present invention, the heating furnace unit further includes a stirring unit that stirs the aggregate, and the stirring unit includes a rotating shaft and a plurality of stirring blades provided on the rotating shaft. It is characterized by.
 骨材を攪拌することで、マイクロ波が骨材に照射されやすくなるので、骨材を効率的に加熱できる。 Agitation of the aggregate makes it easier to irradiate the aggregate with microwaves, so that the aggregate can be efficiently heated.
 また、本発明に係る骨材加熱方法は、鉛直方向において保温炉部上に位置しており保温炉部と共に多段構造を構成する加熱炉部内で、マイクロ波に基づく加熱法によって、アスファルト合材を組成する骨材を加熱する加熱工程と、加熱炉部の底部に設けられており開閉可能な第1の骨材排出部を開いて骨材を多段構造の隣接する下段部に排出する第1の骨材排出工程と、保温炉部内で、多段構造において保温炉部に隣接する上段部で加熱された骨材を電気的又は光学的加熱方法で保温する保温工程と、保温炉部の底部に設けられており開閉可能な第2の骨材排出部を開いて骨材を保温炉部の外部に排出する第2の骨材排出工程と、を備える。 Further, the aggregate heating method according to the present invention is a method of heating asphalt mixture by a heating method based on microwaves in a heating furnace part that is positioned on the heat insulating furnace part in the vertical direction and constitutes a multistage structure together with the heat insulating furnace part. A heating step of heating the aggregate to be composed; and a first aggregate discharge unit provided at the bottom of the heating furnace unit that is openable and closable to discharge the aggregate to an adjacent lower stage of the multistage structure. Provided at the bottom of the heat insulation furnace, the aggregate discharge process, the heat insulation process in which the aggregate heated in the multistage structure at the upper stage adjacent to the heat insulation furnace is electrically or optically heated. A second aggregate discharging step of opening the second aggregate discharging section that is openable and closable and discharging the aggregate to the outside of the heat insulation furnace section.
 この方法では、保温炉部の上側に位置する加熱炉部では、マイクロ波を利用して加熱炉部内の骨材を加熱し、保温炉部では、電気的又は光学的加熱方法によって骨材を保温する。このように、加熱炉部による骨材の加熱にマイクロ波を利用しており、保温炉部による保温に電気的又は光学的加熱法を利用していることから、CO等の排出が生じない。更に、保温炉部及び加熱炉部は鉛直方向に配置されているので、第1の骨材排出工程で上段部から下段部への骨材の移動が可能であり、第2の骨材排出工程で骨材を保温炉部の外部に排出可能である。従って、加熱炉部から保温炉部への骨材の移動及び外部への骨材の排出が容易になっている。そのため、例えば、コンベアといった骨材を搬送する搬送手段を骨材加熱装置内に通す必要がない。また、第1及び第2の骨材排出部を閉じることで、上記多段構造を閉じた構造とすることができるので、加熱炉部で利用するマイクロ波の漏洩を抑制できる。従って、マイクロ波による環境への負荷も低減できている。更に、上記方法では、保温炉部内で骨材を保温しながら次の骨材を加熱炉部で加熱可能であるため、連続的に骨材を加熱処理することが可能である。 In this method, in the heating furnace part located above the heat insulation furnace part, the aggregate in the heating furnace part is heated using microwaves, and in the heat insulation furnace part, the aggregate is kept warm by an electrical or optical heating method. To do. As described above, microwaves are used for heating the aggregate by the heating furnace, and electrical or optical heating methods are used for heating by the heat holding furnace, so that CO 2 or the like is not discharged. . Furthermore, since the heat-retaining furnace part and the heating furnace part are arranged in the vertical direction, the aggregate can be moved from the upper stage part to the lower stage part in the first aggregate discharging process, and the second aggregate discharging process. The aggregate can be discharged to the outside of the heat insulation furnace. Therefore, the movement of the aggregate from the heating furnace part to the heat insulation furnace part and the discharge of the aggregate to the outside are facilitated. Therefore, for example, it is not necessary to pass a conveying means for conveying the aggregate such as a conveyor through the aggregate heating apparatus. Moreover, since the said multistage structure can be made into the closed structure by closing the 1st and 2nd aggregate discharge part, the leakage of the microwave utilized in a heating furnace part can be suppressed. Therefore, the load on the environment due to the microwave can also be reduced. Furthermore, in the above method, since the next aggregate can be heated in the heating furnace while keeping the aggregate in the heat retaining furnace, it is possible to continuously heat the aggregate.
 また、本発明に係る骨材加熱方法では、複数の加熱炉部が鉛直方向に多段に設けられており、保温炉部は、多段に設けられた複数の加熱炉部のうち最下段の加熱炉部に隣接しており、加熱工程では、多段に設けられた複数の加熱炉部で最上段から順に骨材を加熱する、ことが好ましい。 Further, in the aggregate heating method according to the present invention, a plurality of heating furnace parts are provided in multiple stages in the vertical direction, and the heat insulation furnace part is the lowest heating furnace among the plurality of heating furnace parts provided in multiple stages. In the heating step, the aggregate is preferably heated in order from the uppermost stage in a plurality of heating furnaces provided in multiple stages.
 この方法では、複数の加熱炉部で段階的に骨材を加熱し、順次下段の加熱炉部に骨材を供給できるので、骨材の加熱処理能力を向上させることができる。 In this method, the aggregate can be heated step by step in a plurality of heating furnace sections, and the aggregate can be sequentially supplied to the lower heating furnace section, so that the heat treatment capacity of the aggregate can be improved.
 本発明に係る骨材加熱方法では、加熱工程では、骨材を攪拌ユニットで攪拌しながら加熱することが好ましい。加熱工程において、骨材が攪拌ユニットで攪拌されるので、マイクロ波が骨材に照射されやすい。そのため、骨材をより効率的に加熱可能である。 In the aggregate heating method according to the present invention, in the heating step, it is preferable to heat the aggregate while stirring it with a stirring unit. In the heating step, the aggregate is agitated by the agitation unit, so that the microwave is easily irradiated to the aggregate. Therefore, the aggregate can be heated more efficiently.
 本発明によれば、環境破壊を防止しながら、より確実に骨材を加熱することができる。 According to the present invention, the aggregate can be heated more reliably while preventing environmental destruction.
本発明に係る骨材加熱装置の一実施形態を含むアスファルト合材製造システムの一実施形態の模式図である。It is a mimetic diagram of one embodiment of an asphalt compound material manufacturing system containing one embodiment of an aggregate heating device concerning the present invention. 本発明に係る骨材加熱装置の一実施形態の構成を概略的に示す端面図である。It is an end view which shows roughly the structure of one Embodiment of the aggregate heating apparatus which concerns on this invention. 図2に示した骨材加熱装置の制御機構の一例を説明するためのブロック図である。It is a block diagram for demonstrating an example of the control mechanism of the aggregate heating apparatus shown in FIG. 本発明に係る骨材加熱装置が有する加熱炉部の他の実施形態の一例を概略的に示す断面図である。It is sectional drawing which shows roughly an example of other embodiment of the heating furnace part which the aggregate heating apparatus which concerns on this invention has. 図4に示した攪拌ユニットの回転軸の軸線に直交する断面の構成の一例を概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing an example of a cross-sectional configuration orthogonal to the axis of the rotation axis of the stirring unit shown in FIG. 4.
 以下、図を参照して本発明の好適な実施形態について説明する。なお、以下の説明においては、同一の要素には同一の符号を用いることとし重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals are used for the same elements, and duplicate descriptions are omitted.
 図1は、本発明に係る骨材加熱装置の一実施形態を含むアスファルト合材製造システムの一実施形態の模式図である。 FIG. 1 is a schematic view of an embodiment of an asphalt composite material production system including an embodiment of an aggregate heating device according to the present invention.
 アスファルト合材製造システム10は、骨材12を利用してアスファルト合材14を製造するシステムである。アスファルト合材製造システム10では、アスファルト合材14を組成する骨材12として、新規の砕石や新規の砂等の新規骨材12Aとともに、酸化スラグ等の再生骨材12Bを使用しており、新規骨材12Aに所定量の割合で再生骨材12Bを混合して製造している。 The asphalt mixture manufacturing system 10 is a system for manufacturing the asphalt mixture 14 using the aggregate 12. In the asphalt composite material manufacturing system 10, as the aggregate 12 constituting the asphalt composite material 14, a new aggregate 12A such as new crushed stone or new sand and a recycled aggregate 12B such as oxidized slag are used. The recycled aggregate 12B is mixed with the aggregate 12A at a predetermined ratio.
 アスファルト合材製造システム10は、砕石や砂などの骨材を各種大きさごとにストックする骨材サイロから取出された新規骨材12Aを、それぞれの大きさごとに溜める複数のコールドビン16Aを備える。それぞれのコールドビン16Aの下側には第1の骨材搬送手段18Aが設けられている。第1の骨材搬送手段18Aとしてはコンベアが例示できる。コンベアとしては例えばベルトコンベアである。第1の骨材搬送手段18Aは、それぞれのコールドビン16Aから排出された一定量の骨材Aを骨材加熱装置20Aに搬送する。 The asphalt composite material manufacturing system 10 includes a plurality of cold bins 16A for collecting, for each size, a new aggregate 12A taken out from an aggregate silo that stocks aggregates such as crushed stone and sand in various sizes. . A first aggregate conveying means 18A is provided below each cold bin 16A. An example of the first aggregate conveying means 18A is a conveyor. An example of the conveyor is a belt conveyor. The first aggregate conveying means 18A conveys a certain amount of aggregate A discharged from each cold bin 16A to the aggregate heating device 20A.
 骨材加熱装置20Aは、供給される骨材12Aを加熱して付着した水分を除去して乾燥させると共に所望温度に加熱する。骨材加熱装置20Aの下側には第2の骨材搬送手段18Bが設けられている。第2の骨材搬送手段22Bとしては、コンベアが例示できる。このコンベアとしては例えばチェーンコンベアである。第2の骨材搬送手段22Bは、骨材加熱装置20Aから排出される加熱後の骨材12Aをホットエレベータ24に搬送する。ホットエレベータ24は、骨材12Aをホットビン26に投入する。ホットビン26は、それぞれの骨材12Aの大きさに応じた網目を有した砕石スクリーン26aと、各砕石スクリーン26aの網目の大きさによって選別された大きさの異なる骨材12Aを収容する収容部26bとを有しており、骨材12Aを大きさで選別して大きさ毎に溜める。 The aggregate heating device 20A heats the supplied aggregate 12A to remove adhering moisture and dry it, and heats it to a desired temperature. A second aggregate conveying means 18B is provided below the aggregate heating apparatus 20A. An example of the second aggregate conveying means 22B is a conveyor. An example of this conveyor is a chain conveyor. The second aggregate conveying means 22B conveys the heated aggregate 12A discharged from the aggregate heating device 20A to the hot elevator 24. The hot elevator 24 puts the aggregate 12 </ b> A into the hot bin 26. The hot bottle 26 includes a crushed stone screen 26a having a mesh according to the size of each aggregate 12A, and an accommodating portion 26b that accommodates the aggregate 12A having different sizes selected according to the size of the mesh of each crushed stone screen 26a. The aggregate 12A is sorted by size and stored for each size.
 ホットビン26の後段には、計量設備28が設けられている。計量設備28は、ホットビン26で選別した大きさの異なる骨材12Aを、製造しようとするアスファルト合材14の骨材配合量に応じて計量した後に、混合設備30内に供給される。 A weighing facility 28 is provided at the subsequent stage of the hot bin 26. The weighing equipment 28 measures the aggregates 12A having different sizes selected by the hot bins 26 in accordance with the aggregate blending amount of the asphalt mixture 14 to be manufactured, and then supplies the aggregate 12A into the mixing equipment 30.
 また、アスファルト合材製造システム10は、再生骨材12Bを溜めるコールドビン16Bも備える。コールドビン16Bの下側には、第1の骨材搬送手段18Aと同様の第1の骨材搬送手段18Bが設けられている。第1の骨材搬送手段18Bは、骨材12Bを溜めているコールドビン16Bから排出された骨材12Bを骨材加熱装置20Bに搬送する。この骨材加熱装置20Bは、骨材12Bを所望温度に加熱する。加熱後の骨材12Bは、第2の骨材搬送手段22Aと同様の第2の骨材搬送手段22Bと再生骨材篩機32とを介してスキップトローリ34Aに投入される。スキップトローリ34Aは、骨材12Bをサージビン36に搬送する。サージビン36から排出された骨材12Bは計量機能を有するスキップトローリ34Bで所定量計量され、所定量の骨材12Bが混合設備30内に供給される。 The asphalt composite material manufacturing system 10 also includes a cold bin 16B for storing the recycled aggregate 12B. Below the cold bin 16B, a first aggregate conveying means 18B similar to the first aggregate conveying means 18A is provided. The first aggregate transport means 18B transports the aggregate 12B discharged from the cold bin 16B storing the aggregate 12B to the aggregate heating device 20B. The aggregate heating device 20B heats the aggregate 12B to a desired temperature. The heated aggregate 12B is put into the skip trolley 34A via the second aggregate conveying means 22B and the recycled aggregate sieving machine 32 similar to the second aggregate conveying means 22A. The skip trolley 34 </ b> A conveys the aggregate 12 </ b> B to the surge bin 36. Aggregate 12B discharged from surge bin 36 is weighed by a predetermined amount by skip trolley 34B having a metering function, and a predetermined amount of aggregate 12B is supplied into mixing facility 30.
 混合設備30には、上記した骨材12A,12Bのほかに石粉サイロ38から供給されて石粉計量槽40により計量された所定量の石粉と、アスファルトタンク42から供給されてアスファルト計量槽44により計量され所望温度に加熱された溶融状態のアスファルトが投入される。投入された骨材12A,12B、石粉及び溶融状態のアスファルトは、回転する撹拌羽根30aにより撹拌及び混合されてアスファルト合材14となる。 In addition to the above-described aggregates 12A and 12B, the mixing equipment 30 is supplied with a predetermined amount of stone powder supplied from the stone powder silo 38 and measured by the stone powder measuring tank 40, and supplied from the asphalt tank 42 and measured by the asphalt measuring tank 44. Then, molten asphalt heated to a desired temperature is charged. The aggregates 12A and 12B, the stone powder, and the molten asphalt that have been charged are agitated and mixed by the rotating stirring blade 30a to become the asphalt mixture 14.
 アスファルト合材製造システム10で製造されたアスファルト合材14は、トラックといった運搬手段46に搭載されて、直接舗装現場に供給することができる。ただし、アスファルト合材製造システム10は、製造したアスファルト合材14を貯蔵する貯蔵サイロ48を備えることもできる。この場合、製造されたアスファルト合材14は、混合設備30からスキップトローリ34Cを介して合材貯蔵サイロ48内に搬入され、合材貯蔵サイロ48で、必要に応じて舗装現場に供給できるようにストックされる。合材貯蔵サイロ48内にストックされたアスファルト合材14は、適宜トラックといった運搬手段46に搭載されて舗装現場に供給される。 The asphalt mixture 14 manufactured by the asphalt mixture manufacturing system 10 can be mounted on a transportation means 46 such as a truck and directly supplied to the pavement site. However, the asphalt mixture manufacturing system 10 can also include a storage silo 48 that stores the manufactured asphalt mixture 14. In this case, the manufactured asphalt mixture 14 is carried into the mixture storage silo 48 from the mixing facility 30 via the skip trolley 34C, and can be supplied to the pavement site as needed by the mixture storage silo 48. Stocked. The asphalt mixture 14 stocked in the mixture storage silo 48 is appropriately mounted on a transport means 46 such as a truck and supplied to the pavement site.
 上記アスファルト合材製造システム10では、アスファルト合材14の所望の生産量に応じて、例えコールドビン16A,16Bや骨材加熱装置20A,20Bからの骨材12A,12Bの排出量や第1及び第2の骨材搬送手段18A,18B、22A,22Bによる骨材12A,12Bの搬送速度等の変更が生じることになる。従って、アスファルト合材製造システム10は、例えばアスファルト合材14の所望の生産量に応じて、各装置からの骨材の排出量や、第1及び第2の骨材搬送手段等による骨材の搬送速度等を制御することが好ましい。なお、図1では、図示の都合上、制御装置50が、コールドビン16A、骨材加熱装置20A、第1及び第2の骨材搬送手段18A,22Aに制御ライン(図中の一点鎖線)で接続されていることを例示しており、第2の骨材搬送手段22Bの後段の装置や再生骨材12B側のラインの各装置への制御ラインの記載は省略している。 In the asphalt mixture manufacturing system 10, depending on the desired production amount of the asphalt mixture 14, for example, the discharge amount of the aggregates 12 A and 12 B from the cold bins 16 A and 16 B and the aggregate heating devices 20 A and 20 B and the first and Changes in the conveying speed of the aggregates 12A and 12B by the second aggregate conveying means 18A, 18B, 22A and 22B occur. Therefore, the asphalt composite material manufacturing system 10, for example, in accordance with the desired production amount of the asphalt composite material 14, the aggregate discharge amount from each device, the aggregate of the aggregate by the first and second aggregate conveying means, etc. It is preferable to control the conveyance speed and the like. In FIG. 1, for convenience of illustration, the control device 50 is connected to the cold bin 16 </ b> A, the aggregate heating device 20 </ b> A, the first and second aggregate transport means 18 </ b> A, 22 </ b> A by a control line (dashed line in the figure). The connection is illustrated, and the description of the control lines to the devices on the subsequent stage of the second aggregate conveying means 22B and the devices on the side of the recycled aggregate 12B is omitted.
 次に、上記アスファルト合材製造システム10に好適に適用される本実施形態に係る骨材加熱装置について図2及び図3を利用して詳細に説明する。以下の説明では、特に断らない限り、新規骨材12A及び再生骨材12Bを骨材12と称し、骨材加熱装置20A,骨材加熱装置20Bを骨材加熱装置20と称する。 Next, the aggregate heating apparatus according to this embodiment that is preferably applied to the asphalt composite material manufacturing system 10 will be described in detail with reference to FIGS. 2 and 3. In the following description, unless otherwise specified, the new aggregate 12A and the regenerated aggregate 12B are referred to as the aggregate 12, and the aggregate heating device 20A and the aggregate heating device 20B are referred to as the aggregate heating device 20.
 図2は、骨材加熱装置の一実施形態の構成を概略的に示す端面図である。図3は、骨材加熱装置の制御機構の一例を説明するためのブロック図である。図3では、骨材加熱装置20及び制御に関連する要素の一部を模式的に示している。 FIG. 2 is an end view schematically showing a configuration of an embodiment of the aggregate heating apparatus. FIG. 3 is a block diagram for explaining an example of the control mechanism of the aggregate heating device. In FIG. 3, some of the elements related to the aggregate heating device 20 and the control are schematically shown.
 図2に示すように、骨材加熱装置20は、鉛直方向に下側から順に、保温炉部52、加熱炉部54及び加熱炉部54が直列に設けられた多段構造を有しており、最上段の加熱炉部54上には更にホッパー部(蓋部)56が設けられている。以下の説明では、説明の便宜上、2つの加熱炉部54を区別して説明する場合には、保温炉部52に隣接する加熱炉部54を加熱炉部54とも称し、ホッパー部56に隣接する加熱炉部54を加熱炉部54とも称する。各加熱炉部54が有する構成要素についても同様とする。 As shown in FIG. 2, the aggregate heating device 20 has a multistage structure in which a heat retaining furnace part 52, a heating furnace part 54, and a heating furnace part 54 are provided in series in order from the lower side in the vertical direction. A hopper portion (lid portion) 56 is further provided on the uppermost heating furnace portion 54. In the following description, for convenience of description, when describing to distinguish two furnace portions 54, the heating furnace 54 adjacent to the thermal insulation furnace section 52 referred to as a furnace section 54 1, adjacent to the hopper 56 the furnace 54 is also referred to as a furnace section 54 2. The same applies to the constituent elements of each heating furnace section 54.
 骨材加熱装置20が有する各加熱炉部54,54は、マイクロ波を利用した加熱方法によって骨材12を加熱する。また、保温炉部52は、電気加熱により骨材12を保温する。このように、骨材加熱装置20は、加熱炉部54,54及び保温炉部52で骨材12の加熱法及び保温法が異なっているハイブリッド型の骨材加熱装置である。多段構造の骨材加熱装置20を構成する各段部の構成について説明する。 Each furnace section 54 1, 54 2 included in the aggregate heating device 20 heats the aggregate 12 by a heating method using a microwave. Moreover, the heat insulation furnace part 52 heats the aggregate 12 by electric heating. As described above, the aggregate heating device 20 is a hybrid aggregate heating device in which the heating method and the heat retaining method of the aggregate 12 are different between the heating furnace portions 54 1 and 54 2 and the heat retaining furnace portion 52. The structure of each step part which comprises the aggregate heating apparatus 20 of a multistage structure is demonstrated.
 骨材加熱装置20が有する加熱炉部54(mは1又は2)の構成について説明する。加熱炉部54は、例えば鉄、ステンレス等のようなマイクロ波シールド特性を有する金属材(マイクロ波シールド材料)からなる筒状の側壁58と底壁60とを有する。側壁58は骨材12の投入側(図中の上側)からみた場合、略四角形状とすることができる。側壁58の内面上には、加熱炉部54内に向けてマイクロ波を照射するためのマイクロ波供給部62が設けられている。 The structure of the heating furnace part 54 m (m is 1 or 2) of the aggregate heating device 20 will be described. The heating furnace portion 54 m has a cylindrical side wall 58 m and a bottom wall 60 m made of a metal material (microwave shield material) having a microwave shielding characteristic such as iron or stainless steel. The side wall 58 m can have a substantially rectangular shape when viewed from the input side of the aggregate 12 (upper side in the figure). On the inner surface of the side wall 58 m , there is provided a microwave supply unit 62 m for irradiating microwaves into the heating furnace unit 54 m .
 マイクロ波供給部62は、電波法上、工業用、化学用、医療用等の用途に割当てられた、例えば2.450MHzのマイクロ波発振器とすることができる。ただし、マイクロ波供給部62は、マイクロ波発信器に取り付けられマイクロ波を伝播するための電磁波導波管やホーンアンテナ等の伝播部材を備えることもできる。マイクロ波供給部62が、マイクロ波発振器に、電磁波導波管やホーンアンテナ等の伝播部材が取り付けられて構成されている場合、例えば、マイクロ波発振器を側壁58の外壁面側に出し、上記伝播部材を介して加熱炉部54内にマイクロ波を供給するようにすることもできる。 The microwave supply unit 62 m can be, for example, a microwave oscillator of 2.450 MHz assigned to industrial, chemical, medical, and other uses in the radio wave law. However, the microwave supply unit 62 m may include a propagation member such as an electromagnetic wave waveguide or a horn antenna that is attached to the microwave transmitter and propagates the microwave. When the microwave supply unit 62 m is configured by attaching a propagation member such as an electromagnetic wave waveguide or a horn antenna to the microwave oscillator, for example, the microwave oscillator is extended to the outer wall surface side of the side wall 58 m , It can also be adapted to supply microwaves into the heating furnace section 54 m through the propagation member.
 底壁60には、加熱炉部54で加熱された骨材12を排出するための開口部64aが形成されている。開口部64aは、所定方向に延びているものとすることができる。開口部64aには開口部64aを開閉可能な開閉部64bが設けられている。この場合、開閉部64bが開かれている際に、開口部64aを介して骨材12が下段部に排出される。よって、開口部64a及び開閉部64bは、加熱された骨材12を下段部に排出するための開閉可能な骨材排出部(第1の骨材排出部)64を構成している。開閉部64bは、鉄、ステンレス等のようなマイクロ波シールド材料から構成されていることが好ましい。開閉部64bを閉じた際に、より確実にマイクロ波の漏洩を抑制できるからである。 The bottom wall 60 m, the opening 64a m for discharging the aggregate 12 that is heated in a heating furnace part 54 m is formed. Opening 64a m can be assumed to extend in a predetermined direction. The openings 64a m is openable closing portion 64b m is provided in the opening 64a m. In this case, when the closing part 64b m is opened, the aggregate 12 is discharged to the lower portion through the opening 64a m. Thus, openings 64a m and the opening and closing portion 64b m is the heated aggregate 12 open aggregate discharge portion for discharging the lower portion (first aggregate discharge portion) constitutes a 64 m . The opening / closing part 64b m is preferably made of a microwave shielding material such as iron or stainless steel. When closing the closing portion 64b m, it is because it inhibited more reliably microwave leakage.
 開閉部64bとしては、図2に示したように一対の板状体が例示できる。これらの開閉部64bとしての板状体は、互いに交差可能に相対させると共に、開口部64a側への突出量を調整可能に底壁60に設けておけばよい。この構成では、一対の板状体の開口部64a側への突出量を開閉制御部66(図3参照)によって制御することで開閉部64bの開閉を制御できる。また、開閉部64bは、開口部64aの端部を覆うように配置された板状体とすることもできる。この場合、開閉制御部66によって板状体を開口部64aの端部から移動させることで、開閉を制御できる。ただし、開閉部64bは、開口部64aを開閉可能な構成であれば特に限定されない。 An example of the opening / closing portion 64b m is a pair of plate-like bodies as shown in FIG. Plate-like body as these closing portion 64b m, along with crosses capable relative to each other, it is sufficient to provided adjustably bottom wall 60 m the amount of projection of the opening 64a m side. In this configuration, it is possible to control the opening and closing of the closing part 64b m by controlling the opening and closing control unit 66 m (see FIG. 3) the amount of projection of the opening 64a m side of the pair of the plate-like body. Further, the opening and closing portion 64b m can also be arranged plate-like body so as to cover the end portion of the opening 64a m. In this case, the switching control section 66 m by moving the plate-shaped body from an end portion of the opening 64a m, can control the opening and closing. However, the opening and closing portion 64b m is not particularly limited as long as it is open constituting the opening 64a m.
 開閉制御部66は、例えばシリンダであり、この場合、シリンダの伸縮を調整することで開閉部の開閉を制御する。シリンダとしてはエアシリンダや油圧シリンダが例示できる。開閉制御部66は、開閉部64bに接続され開閉部64bを駆動可能な位置に配置されていればよく、例えば、後述する加熱容器部68と側壁58及び底壁62の間に形成される空間に設けることもできる。 Switching control section 66 m is, for example, a cylinder, in this case, controls the opening and closing of the opening and closing unit by adjusting the expansion and contraction of the cylinder. Examples of the cylinder include an air cylinder and a hydraulic cylinder. Switching control section 66 m is connected to the closing part 64b m may be arranged to open and close portion 64b m drivable position, for example, heating the container portion 68 m and the side walls 58 m and a bottom wall 62 m, which will be described later It can also be provided in a space formed between them.
 加熱炉部54の内部には、加熱時に骨材12を収容する加熱容器部68が設けられている。加熱容器部68は、下側が先細りしたテーパ部68aを有しており、テーパ部68aの両端部からそれぞれ第1及び第2の筒状部68b,68cが延びている。第1及び第2の筒状部68b,68cの鉛直方向に直交する断面形状としては略四角形状とすることができる。第2の筒状部68cは、底壁60の開口部64aに連通している。 Inside the heating furnace portion 54 m , a heating container portion 68 m that houses the aggregate 12 during heating is provided. Heating the container portion 68 m has a tapered portion 68a m was tapered lower tapered portion 68a m first and second cylindrical portions 68b m respectively from both ends of the 68c m extends. First and second cylindrical portion 68b m, can be a substantially square shape in cross section shape perpendicular to the vertical direction of 68c m. The second tubular portion 68c m is communicated with the opening 64a m of the bottom wall 60 m.
 図2では、テーパ部68aを構成している一対の斜面の鉛直方向に対する角度はほぼ等しいとしているが、異なっていてもよい。この場合、第2の筒状部68cへの骨材12への流入がより容易になる傾向がある。 In Figure 2, the angle is set to approximately equal with respect to the vertical direction of the pair of inclined surfaces constituting the tapered portion 68a m, it may be different. In this case, there is a tendency for flowing into the aggregate 12 to the second cylindrical portion 68c m becomes easier.
 加熱容器部68の材料としては、マイクロ波透過性を有していれば特に限定されないが、例えば、耐熱ガラスやレンガ、耐火タイルや耐熱セラミック板等の断熱材が好ましい。加熱容器部68内に熱を閉じ込めやすいからである。加熱容器部68の内面上には、マイクロ波を吸収するマイクロ波吸収体70が層状又は粒子分散状に設けられている。マイクロ波吸収体70としては、酸化鉄や磁性材料、炭化珪素や炭素材料、パーマロイ等が例示できる。ここでは、加熱容器部68の好適な材料として断熱材を例示したが、前述したように加熱容器部68の材料はマイクロ波透過性を有していれば良い。また、マイクロ波吸収体70は、加熱容器部68の内面上に層状又は粒子分散状に設けられているとしたがこれに限定されない。マイクロ波吸収体70は、例えば、加熱容器部68を構成する壁部内に分散されていてもよいし、加熱容器部68が断熱性を有しないマイクロ波透過性材料から構成されている場合には、その外面上に設けられていても良い。 As the material of the heating vessel portion 68 m, it is not particularly limited as long as it has a microwave transparent, for example, heat-resistant glass and brick, refractory tiles and refractory ceramic plate or the like insulation material is preferred. This is because it is easy to confine heat in the heating container portion 68 m . On the inner surface of the heating container portion 68 m is the microwave absorber 70 m to absorb the microwave is provided in a layer or particles dispersed form. Examples of the microwave absorber 70 m include iron oxide, magnetic material, silicon carbide, carbon material, permalloy, and the like. Although exemplified insulation Suitable materials for heating the container portion 68 m, the material of the heating vessel portion 68 m as described above may have a microwave transparent. Further, although the microwave absorber 70 m is provided in the form of a layer or a particle dispersion on the inner surface of the heating container portion 68 m , it is not limited thereto. Microwave absorber 70 m, for example, may be dispersed in the wall constituting the heating vessel portion 68 m, heating the container portion 68 m is formed from a microwave transparent material having no heat insulating properties In some cases, it may be provided on the outer surface.
 上記構成の2つの加熱炉部54,54は、鉛直方向に直列に設けられているので、加熱炉部54の底壁60が加熱炉部54と加熱炉部54とを仕切る隔壁部となる。これにより、骨材12を有効に加熱可能である。また、上記構成では、加熱炉部54の内部空間は、マイクロ波シールド材料からなる壁面で囲まれるので、加熱炉部54の内部空間は、マイクロ波シールド空間となっている。なお、加熱容器部68が有する加熱容器部68は、加熱炉部54の開口部64aから排出される骨材12を受けられる位置に配置されている。 Two heating furnace section 54 1, 54 2 of the above-described configuration, since provided in series in the vertical direction, the bottom wall 60 2 of the furnace section 54 2 is a heating furnace unit 54 1 and the heating furnace 54 2 It becomes the partition part which partitions off. Thereby, the aggregate 12 can be heated effectively. Further, in the above arrangement, the interior space of the heating furnace unit 542, so surrounded by walls made of microwave shielding material, the interior space of the heating furnace unit 542 has a microwave shield space. The heating container 68 1 heating container portion 68 1 has is arranged in a position to be received aggregate 12 discharged from the opening 64a 2 of the heating furnace 54 2.
 2つの加熱炉部54,54のうち上段部の加熱炉部54上には、前述した鉄、ステンレス等のようなマイクロ波シールド材料から構成されているホッパー部56が配設されている。このホッパー部56の底面が加熱炉部54の上面として機能する。よって、加熱炉部54内で骨材12を有効に加熱可能である。また、上記構成では、加熱炉部54の内部空間は、マイクロ波シールド材料からなる壁面で囲まれることになるので、加熱炉部54の内部空間は、マイクロ波シールド空間となっている。 On two heating furnace section 54 1, 54 heating furnace 54 2 of the upper portion of the 2, it is a hopper portion 56 and a microwave shielding material is disposed, such as iron, stainless steel or the like described above Yes. The bottom surface of the hopper 56 serves as the upper surface of the heating furnace 54 2. Therefore, it is effective to allow heating the aggregate 12 in the heating furnace 54 2. Further, in the above configuration, the inner space of the furnace section 54 2, it means surrounded by walls made of microwave shielding material, the interior space of the heating furnace unit 542 has a microwave shield space.
 ホッパー部56は、第1の骨材搬送手段18で搬送されてきた骨材12を加熱炉部54に投入するためのものである。ホッパー部56の開口部72aには、開口部72aを開閉可能な開閉部72bが設けられている。この場合、開閉部72bが開かれている際に、開口部72aを介して骨材12が下段部に投入される。よって、開口部72a及び開閉部72bは、骨材12を下段部に投入するための開閉可能な骨材投入部72を構成している。開閉部72bの構成は、開閉部64bと同様の構成とすることができ、開閉部72bの材料も開閉部64bと同様のものとすることができる。開閉部72bは開閉制御部74(図3参照)により開閉制御可能である。開閉制御部74は、開閉制御部66と同様の構成とすることができ、例えば、エアシリンダや油圧シリンダといったシリンダである。開閉制御部74は、開閉部72bに接続され開閉部72bを駆動可能な位置に配置されていればよい。例えば、開閉制御部74は、ホッパー部56における斜面部と底壁面との間に、開閉制御部74を収容する収容空間を形成し、その中に配置しても良いし外側に配置することもできる。 Hopper 56 is for turning on the aggregate 12 that has been conveyed by the first aggregate conveying means 18 into the heating furnace 54 2. The opening 72a of the hopper 56 is provided with an opening / closing portion 72b that can open and close the opening 72a. In this case, when the opening / closing part 72b is opened, the aggregate 12 is put into the lower stage part through the opening part 72a. Therefore, the opening 72a and the opening / closing part 72b constitute an aggregate input part 72 that can be opened and closed for inputting the aggregate 12 to the lower stage part. Configuration of the closing part 72b can be similar to opening portion 64b 1, the material of the closing part 72b can also be assumed similar to the closing part 64b 1. The opening / closing part 72b can be controlled to open / close by an opening / closing control part 74 (see FIG. 3). Switching control section 74 may be configured similarly to the switching control section 66 m, for example, a cylinder such as an air cylinder or a hydraulic cylinder. The opening / closing control unit 74 may be connected to the opening / closing unit 72b and disposed at a position where the opening / closing unit 72b can be driven. For example, the opening / closing control unit 74 forms an accommodation space for accommodating the opening / closing control unit 74 between the slope portion and the bottom wall surface of the hopper 56, and may be arranged inside or outside thereof. it can.
 また、2つの加熱炉部54,54のうち最下部の加熱炉部54の下側には、保温炉部52が配設されている。保温炉部52は、電気加熱法により骨材12を所定の温度で保温するための炉である。保温炉部52は、加熱炉部54が有する側壁58及び底壁60と同様の形状及び材料からなる側壁76と底壁78とを有する。側壁76には、発熱体80が設けられている。発熱体80は、ニクロム線、カンタル線、白金線等の金属発熱体とすることができる。 Further, the two furnace portions 54 1, 54 lower bottom of the furnace section 54 1 of 2, kept furnace section 52 is disposed. The heat insulation furnace 52 is a furnace for keeping the aggregate 12 at a predetermined temperature by an electric heating method. Thermal insulation furnace section 52 includes a sidewall 76 and a bottom wall 78 made of the same shape and material as the side walls 58 1 and a bottom wall 60 1 with a heating furnace unit 54 1. A heating element 80 is provided on the side wall 76. The heating element 80 can be a metal heating element such as a nichrome wire, a Kanthal wire, or a platinum wire.
 底壁78には、保温炉部52で保温された骨材12を排出するための開口部82aが形成されている。開口部82aには開口部82aを開閉可能な開閉部82bが設けられている。この場合、開閉部82bが開かれている際に、保温炉部52から骨材12が排出されることになる。従って、開口部82a及び開閉部82bは、加熱された骨材12を排出するための開閉可能な骨材排出部82を構成している。開閉部82bの構成は、開閉部64bと同様の構成とすることができ、開閉部82bの材料も開閉部64bと同様のものとすることができる。開閉部82bは開閉制御部84により開閉制御可能である。開閉制御部84としては、開閉制御部66と同様の構成とすることができ、例えば、エアシリンダや油圧シリンダといったシリンダである。開閉制御部84は、開閉部82bに接続され開閉部82bを駆動可能な位置に配置されていればよい。例えば、開閉制御部84は、後述する保温容器部86と側壁76及び底壁78の間に形成される空間に設けることもできる。 The bottom wall 78 is formed with an opening 82 a for discharging the aggregate 12 that has been kept warm by the heat-retaining furnace 52. The opening 82a is provided with an opening / closing part 82b that can open and close the opening 82a. In this case, the aggregate 12 is discharged from the heat insulating furnace 52 when the opening / closing part 82b is opened. Accordingly, the opening 82a and the opening / closing part 82b constitute an openable / closable aggregate discharging part 82 for discharging the heated aggregate 12. Configuration of the closing part 82b can be similar to opening portion 64b 1, the material of the closing part 82b can also be assumed similar to the closing part 64b 1. The opening / closing part 82 b can be controlled to open / close by the opening / closing control part 84. The switching control section 84 may be configured similarly to the switching control section 66 m, for example, a cylinder such as an air cylinder or a hydraulic cylinder. The opening / closing controller 84 may be connected to the opening / closing part 82b and disposed at a position where the opening / closing part 82b can be driven. For example, the open / close control unit 84 can be provided in a space formed between a heat retaining container 86 and a side wall 76 and a bottom wall 78, which will be described later.
 保温炉部52の内部には、保温時に骨材12を収容する保温容器部86が設けられている。保温容器部86は、加熱容器部68と同様に、下側が先細りしたテーパ部86aを有しており、テーパ部86aの両端部からそれぞれ第1及び第2の筒状部86b,86cが延びている。第2の筒状部86cは、底壁78の開口部82aに連通している。 Inside the heat insulation furnace 52, a heat insulation container portion 86 for housing the aggregate 12 during heat insulation is provided. Insulated container portion 86, similarly to the heating container portion 68 m, has a tapered portion 86a which is tapered downward, the first and second cylindrical portions 86b, respectively from both ends of the tapered portion 86a, is 86c extends ing. The second cylindrical portion 86 c communicates with the opening 82 a of the bottom wall 78.
 なお、テーパ部86aを構成している一対の斜面の鉛直方向に対する角度が異なっていることが好ましいのは、加熱炉部54の場合と同様である。保温容器部86を構成する材料としては、伝熱性を有する材料であり、例えばアルミニウムや鉄、窒化物やホウ化物からなるセラミックス材料である。 Incidentally, it is preferable that an angle relative to the vertical direction of the pair of inclined surfaces constituting the tapered portion 86a are different, the same as in the heating furnace part 54 m. The material constituting the heat retaining container 86 is a material having heat conductivity, for example, a ceramic material made of aluminum, iron, nitride, or boride.
 保温炉部52上には、加熱炉部54が位置するので、加熱炉部54の底壁60が加熱炉部54と保温炉部52とを仕切る隔壁部として機能する。よって、保温炉部52内で骨材12を有効に保温可能となっている。また、上記構成では、保温炉部52の内部空間は、マイクロ波シールド材料からなる壁面で囲まれるので、保温炉部52の内部空間は、マイクロ波シールド空間である。 On insulation furnace 52, furnace 54 1 so positioned, the bottom wall 60 1 of the furnace section 54 1 functions as a partition wall portion which partitions the heating furnace section 54 1 and the heat insulating furnace section 52. Therefore, the aggregate 12 can be effectively kept warm in the heat retaining furnace 52. Moreover, in the said structure, since the internal space of the heat retention furnace part 52 is enclosed by the wall surface which consists of a microwave shielding material, the internal space of the heat insulation furnace part 52 is a microwave shield space.
 上記骨材加熱装置20において、保温容器部86、加熱容器部68,加熱容器部68は、それぞれ開口部64a,開口部64a,開口部72aからの骨材12を受けられる位置に配置されている。 In the aggregate heating device 20, insulated container 86, the heating vessel 68 1, heating the container portion 68 2, respectively opening 64a 1, opening 64a 2, a position for receiving the aggregate 12 from the opening 72a Has been placed.
 骨材加熱装置20は、各加熱炉部54,54で骨材12を加熱し(加熱工程)、加熱された骨材12を下段部に排出する(第1の骨材排出工程)。また、保温炉部52では、上段部から投入された骨材12を保温し(保温工程)、適宜骨材12を外部に排出する(第2の骨材排出工程)。 Aggregate heating device 20 heats the aggregate 12 in the heating furnace 54 1, 54 2 (heating step), heated aggregate 12 is discharged to the lower portion (first aggregate discharge step). Further, in the heat insulation furnace 52, the aggregate 12 put in from the upper stage is kept warm (a heat retention step), and the aggregate 12 is appropriately discharged to the outside (second aggregate discharge step).
 この際、各加熱炉部54,54及び保温炉部52内で骨材12を適切に所定の温度で加熱及び保温するために、各加熱炉部54,54及び保温炉部52内には、温度センサ88,88,90(図3参照)がそれぞれ設けられている。各温度センサ88,88,90は、加熱容器部68,68及び保温容器部86内の温度を計測可能に配置されている。温度センサ88,88,90としては、熱電対が例示される。 At this time, in order to heat and insulation aggregate 12 at a suitable predetermined temperature in the heating furnace 54 1, 54 2 and inner heat insulation furnace section 52, the heating furnace 54 1, 54 2 and kept furnace portion 52 Inside, temperature sensors 88 1 , 88 2 , 90 (see FIG. 3) are respectively provided. Each temperature sensor 88 1, 88 2, 90 is capable of measuring position the temperature of the heating container 68 1, 68 2 and insulated container portion 86. Thermocouples are exemplified as the temperature sensors 88 1 , 88 2 , 90.
 骨材加熱装置20は、各加熱炉部54,54及び保温炉部52内の温度センサ88,88,90の計測結果や、保温炉部52からの所望の骨材排出量等の種々パラメータに応じて、制御装置50により制御することができる。制御装置50は、前述したように、骨材加熱装置20を含むアスファルト合材製造システム10を制御するものである。ただし、ここでは制御装置50のうち本実施形態に係る骨材加熱装置20の制御機構の一例について図3を参照して説明する。 The aggregate heating apparatus 20 includes the measurement results of the temperature sensors 88 1 , 88 2 , 90 in each of the heating furnace portions 54 1 , 54 2 and the heat insulation furnace portion 52, the desired aggregate discharge amount from the heat insulation furnace portion 52, etc. It can be controlled by the control device 50 according to the various parameters. As described above, the control device 50 controls the asphalt mixture manufacturing system 10 including the aggregate heating device 20. However, an example of the control mechanism of the aggregate heating device 20 according to the present embodiment in the control device 50 will be described with reference to FIG.
 図3に示すように、各加熱炉部54,54が有するマイクロ波供給部62,62、温度センサ88,88及び開閉制御部66,66は、制御装置50に電気的に接続されている。同様に、保温炉部52が有する発熱体80、温度センサ90及び開閉制御部84は制御装置50に電気的に接続されている。同様に、ホッパー部56に設けられた開閉部72bの開閉を制御する開閉制御部74も制御装置50に電気的に接続されている。 As illustrated in FIG. 3, the microwave supply units 62 1 and 62 2 , the temperature sensors 88 1 and 88 2, and the open / close control units 66 1 and 66 2 included in the heating furnace units 54 1 and 54 2 are provided in the control device 50. Electrically connected. Similarly, the heating element 80, the temperature sensor 90, and the open / close control unit 84 included in the heat insulation furnace unit 52 are electrically connected to the control device 50. Similarly, an opening / closing control unit 74 that controls opening / closing of the opening / closing unit 72 b provided in the hopper unit 56 is also electrically connected to the control device 50.
 制御装置50は、保温炉部52から排出すべき所望の骨材12の排出量に基づいて、保温炉部52内に所定量の骨材12が収容されているように、開閉制御部84を介して骨材排出部を制御する。同様に、制御装置50は、加熱炉部54,54内に所定量の骨材12が収容されているように、開閉制御部66,66,74を介して骨材排出部64,64及び骨材投入部72を制御する。また、制御装置50は、各加熱炉部54,54の加熱容器部68,68がそれぞれ所定の温度になるように、温度センサ88,88の温度計測結果に基づいてマイクロ波供給部62,62によるマイクロ波の照射量を制御する。同様に、保温炉部52の保温容器部86内がそれぞれ所定の温度になるように、温度センサ90の計測結果に基づいて発熱体80の発熱量を制御する。 The control device 50 controls the open / close control unit 84 so that a predetermined amount of the aggregate 12 is accommodated in the heat insulation furnace 52 based on the discharge amount of the desired aggregate 12 to be discharged from the heat insulation furnace 52. To control the aggregate discharging part. Similarly, the control unit 50, a heating furnace unit 54 1, 54 as aggregate 12 of a predetermined amount is housed in 2, the switching control unit 66 1, 66 2, 74 aggregate discharge portion 64 via the 1, 64 2 and to control the aggregate feeding section 72. Further, the control unit 50, the heating vessel 68 1 of the furnace section 54 1, 54 2, 68 2 so that each becomes a predetermined temperature, the micro on the basis of the temperature sensor 88 1, 88 2 of the temperature measurement result The amount of microwave irradiation by the wave supply units 62 1 and 62 2 is controlled. Similarly, the heat generation amount of the heating element 80 is controlled based on the measurement result of the temperature sensor 90 so that the inside of the heat insulation container portion 86 of the heat insulation furnace portion 52 becomes a predetermined temperature.
 なお、制御装置50では、通常、保温炉部52からの骨材12の排出量に対して骨材加熱装置20への骨材12の投入量が決まる。この投入量は、ホッパー部56の開閉制御部74で制御することに加えて、第1の骨材搬送手段18(図1及び図2参照)の搬送速度を制御して調整することも好ましい。また、骨材12の排出量に応じて、骨材加熱装置20への骨材12の投入量が決まるので、骨材12の排出量に応じて、マイクロ波供給部62,62によるマイクロ波の照射量や発熱体80の発熱量を制御することも好ましい。例えば、より多く骨材12を処理する場合には、マイクロ波照射量を多くし、また、発熱体80の発熱量を多くすることが好ましい。 Note that, in the control device 50, the amount of the aggregate 12 input to the aggregate heating device 20 is normally determined with respect to the amount of the aggregate 12 discharged from the heat insulation furnace 52. In addition to being controlled by the opening / closing control unit 74 of the hopper 56, it is also preferable to control the feeding amount by controlling the conveying speed of the first aggregate conveying means 18 (see FIGS. 1 and 2). Further, since the amount of the aggregate 12 input to the aggregate heating device 20 is determined according to the amount of the aggregate 12 discharged, the microwaves supplied by the microwave supply units 62 1 and 62 2 according to the amount of the aggregate 12 discharged. It is also preferable to control the amount of wave irradiation and the amount of heat generated by the heating element 80. For example, when processing the aggregate 12 more, it is preferable to increase the microwave irradiation amount and increase the heat generation amount of the heating element 80.
 以下、骨材加熱装置20を利用した骨材12の加熱方法の一例について説明する。ここでは、すでに駆動されている骨材加熱装置20内に新たに投入される骨材12に着目して説明する。 Hereinafter, an example of a method for heating the aggregate 12 using the aggregate heating apparatus 20 will be described. Here, the description will be made by paying attention to the aggregate 12 that is newly input into the aggregate heating apparatus 20 that has already been driven.
 ホッパー部56の骨材投入部72を開いて、第1の骨材搬送手段18(図1及び図2参照)によって搬送されてきた骨材12を加熱炉部54内に投入する。加熱炉部54内にはマイクロ波供給部62からマイクロ波を供給しているので、骨材12がマイクロ波を吸収して発熱する。また、加熱炉部54内にはマイクロ波吸収体70が設けられていることから、マイクロ波吸収体70がマイクロ波を吸収して発熱する。この熱により骨材12が加熱される。このように、加熱炉部54内では、マイクロ波に基づいた加熱法によって、骨材12を直接及び間接的に加熱する。この加熱炉部54内で骨材12を一定時間加熱することで、第1の所定温度まで骨材12を加熱した後、骨材排出部64を開いて、骨材12を加熱炉部54から排出し、加熱炉部54に投入する。 Open the aggregate loading portion 72 of the hopper 56, to introduce the aggregate 12 having been conveyed by the first aggregate conveying means 18 (see FIGS. 1 and 2) in the furnace section 54 2. Since the heating furnace 54 in 2 it is supplying microwaves from the microwave supply unit 62 2 generates heat aggregate 12 absorbs the microwave. Also, the heating furnace 54 in 2 since the microwave absorber 70 2 is provided, the microwave absorber 70 2 generates heat by absorbing microwaves. The aggregate 12 is heated by this heat. Thus, in the heating furnace unit 542, by a heating method based on microwave, heating the aggregate 12 directly and indirectly. By a certain time heating the aggregate 12 in the heating furnace 54 inside 2, after heating the aggregate 12 to a first predetermined temperature, open the aggregate discharge unit 64 2, the furnace section of the aggregate 12 discharged from the 54 2, charged into the furnace section 54 1.
 加熱炉部54内ではマイクロ波供給部62からマイクロ波が供給されているので、加熱炉部54と同様に、マイクロ波に基づいた加熱法によって、骨材12を加熱する。この加熱炉部54内で骨材12を一定時間加熱することで、第1の所定温度より高い第2の所定温度まで骨材12を加熱した後、骨材排出部64を開いて、骨材12を加熱炉部64から排出し、保温炉部52に投入する。 Since the heating furnace 54 within 1 microwave is supplied from the microwave supply unit 62 1, similar to the heating furnace unit 542, by a heating method based on microwave, heating the aggregate 12. The aggregate 12 in the heating furnace 54 within 1 to heat a certain time, after heating the aggregate 12 to a higher than the first predetermined temperature a second predetermined temperature, open the aggregate discharge unit 64 1, discharging the aggregate 12 from the furnace unit 64 1, to introduce extra insulation furnace section 52.
 上記第1及び第2の所定温度及び要求される加熱時間は、加熱炉部54,54内の骨材12の量や種類によって適宜設定すればよい。マイクロ波供給部62,62からのマイクロ波の発振出力は、加熱炉部54,54又は各加熱炉部54,54が有する加熱容器部68,68の容量、要求される骨材12の加熱時間、供給される骨材12の量等により適宜設定すればよい。また、加熱炉部54,54内の温度は、温度センサ88,88の検出結果に基づいてマイクロ波供給部62,62を制御して、一定に保つようにする。 It said first and second predetermined temperature and the required heating time may be appropriately set depending on the amount and type of the aggregate 12 of the furnace section 54 1, 54 2. Microwave oscillation output from the microwave supply unit 62 1, 62 2, first heating furnace 54 1, 54 2 or the furnace section 54, 54 second heating container portion 68 1 has, 68 2 of the capacitance, the request What is necessary is just to set suitably by the heating time of the aggregate 12 to be performed, the quantity of the aggregate 12 supplied, etc. The temperature of the heating furnace 54 1, 54 in 2 controls the microwave supply unit 62 1, 62 2 based on the temperature sensor 88 1, 88 2 of the detection result, to keep constant.
 保温炉部52内では、発熱体80に電力を供給することによって、保温炉部52内を所定の温度に保ち、骨材12を保温する。保温炉部52内の所定の温度は、第2の所定温度であることが好ましい。発熱体80に供給する電力は、保温炉部52又は保温容器部86の容量、要求される骨材12の保温時間、供給される骨材12の量等により適宜設定すればよい。また、保温炉部52内の温度は、温度センサ90の検出結果に基づいて発熱体80への供給電力を制御して、一定に保つようにする。この保温炉部52で保温されながら貯留されている骨材12を、骨材排出部82を開閉制御することで、所望の量ずつ排出する。排出された骨材12は、第2の骨材搬送手段22で搬出される。 In the heat insulation furnace part 52, by supplying electric power to the heating element 80, the heat insulation furnace part 52 is kept at a predetermined temperature and the aggregate 12 is kept warm. It is preferable that the predetermined temperature in the heat insulation furnace 52 is a second predetermined temperature. The electric power supplied to the heating element 80 may be appropriately set depending on the capacity of the heat insulation furnace 52 or the heat insulation container 86, the required heat retention time of the aggregate 12, the amount of the aggregate 12 to be supplied, and the like. Further, the temperature in the heat insulation furnace 52 is controlled to be constant by controlling the power supplied to the heating element 80 based on the detection result of the temperature sensor 90. The aggregate 12 stored while being kept warm in the heat retaining furnace 52 is discharged by a desired amount by controlling the opening / closing of the aggregate discharging section 82. The discharged aggregate 12 is carried out by the second aggregate transport means 22.
 上述した加熱方法の説明では、すでに骨材加熱装置20が駆動されているとしたが、初期駆動のときは、骨材12の投入に応じて適宜マイクロ波供給部62,62を駆動したり、発熱体80に電力を供給すればよい。或いは、予め、マイクロ波供給部62,62を駆動すると共に、発熱体80に電力を供給し、加熱炉部54,54を第1及び第2の所定温度に加熱しておいたり、保温炉部52を第2の所定温度に加熱しておいても良い。 In the description of the heating method described above, the aggregate heating device 20 has already been driven. However, in the initial drive, the microwave supply units 62 1 and 62 2 are appropriately driven according to the input of the aggregate 12. Or power may be supplied to the heating element 80. Alternatively, or in advance, it drives the microwave supply unit 62 1, 62 2, supplies power to the heating element 80, leave the furnace section 54 1, 54 2 and heated to a first and second predetermined temperature The heat retaining furnace portion 52 may be heated to the second predetermined temperature.
 骨材加熱装置20では、加熱炉部54,54と保温炉部52とを鉛直方向において多段に設けられており、各加熱炉部54,54で加熱された骨材12を保温炉部52で保温しながら貯留するため、一定の加熱された骨材12を連続的に排出することができる。従って、次のような運転が可能である。 In aggregate heating device 20, kept warm furnace section 54 1, 54 2 are provided in multiple stages in a heat retaining furnace 52 vertically, aggregate 12 that is heated by the heating furnace 54 1, 54 2 Since the heat is stored in the furnace 52 while being kept warm, the constant heated aggregate 12 can be continuously discharged. Therefore, the following operation is possible.
 すなわち、保温炉部52から一定量の骨材12を排出したら、排出した骨材12とほぼ同じ量の骨材12を、開閉部64bを開いて加熱炉部54から保温炉部52に保温炉部52に供給する。開閉部64bを閉じると、開閉部64bを開いて加熱炉部54の骨材12を加熱炉部54に供給する。開閉部64bを閉じると、開閉部72bを開いてホッパー部56から骨材12を加熱炉部54に供給する。 That is, as the discharge the fixed amount aggregate 12 from the heat retaining furnace 52, the aggregate 12 of approximately the same amount as the discharged aggregate 12, the heat retaining furnace 52 from the furnace unit 54 1 Open closing portion 64b 1 The heat is supplied to the heat insulation furnace 52. Closing the opening portion 64b 1, supplies the aggregate 12 of the heating furnace unit 542 in the heating furnace unit 541 opens the opening and closing portion 64b 2. Closing the closing portion 64b 2, supplied from the hopper section 56 the aggregate 12 to the furnace section 54 1 Open closing portion 72b.
 このような運転方法では、加熱炉部54,54及び保温炉部52にそれぞれ継続的に一定の量の骨材12が収容され加熱及び保温されていることになる。従って、骨材加熱装置20から加熱された骨材12を随時排出できる。 In such an operating method, so that the aggregate 12 respectively continuously constant amount is housed is heated and kept warm in a heating furnace unit 54 1, 54 2 and kept furnace section 52. Therefore, the aggregate 12 heated from the aggregate heating device 20 can be discharged at any time.
 また、図2に示したように、保温炉部52上に複数の加熱炉部54,54を設けることで、多段に加熱できるので、骨材12を更に効率的に処理することが可能である。例えば、骨材加熱装置20では、下段部の加熱炉部54には、上段部の加熱炉部54で加熱された骨材12が投入される。このように骨材12が段階的に加熱されるので、同じ時間でより多くの骨材12を加熱処理できることになる。 Further, as shown in FIG. 2, by providing the heat insulating furnace portion 52 a plurality of furnace section 54 on 1, 54 2, it is possible to heat in multiple stages, it can be processed aggregate 12 more efficiently It is. For example, the aggregate heating device 20, the heating furnace 54 1 of the lower portion, the aggregate 12 that is heated in a heating furnace unit 542 of the upper portion is turned. Thus, since the aggregate 12 is heated in steps, more aggregate 12 can be heat-treated in the same time.
 このように、骨材加熱装置20では、保温炉部52上に設けられる加熱炉部54の数を増やすことで、骨材12をより効率的に処理することができる。この場合、複数の加熱炉部54は、鉛直上方に設けられているので、骨材加熱装置20の設置場所に制限がある場合でも空間を有効に利用して骨材12の処理効率向上を図ることができる。また、骨材加熱装置20では、加熱炉部54及び保温炉部52の容量を大きくし、マイクロ波供給部62でのマイクロ波の供給量を増やすことでも骨材12の加熱処理を向上させることができる。従って、設置面積に制限がない場合には、上記のように加熱炉部54及び保温炉部52の容量やマイクロ波の供給量を調整して処理効率向上を図ることができる。このように、骨材加熱装置20の構成は、装置設計において、より高い自由度を有する。 Thus, in the aggregate heating device 20, the aggregate 12 can be processed more efficiently by increasing the number of heating furnace sections 54 provided on the heat retaining furnace section 52. In this case, since the plurality of heating furnace portions 54 are provided vertically above, even when the installation place of the aggregate heating device 20 is limited, the space is effectively used to improve the processing efficiency of the aggregate 12. be able to. In the aggregate heating device 20, the heat treatment of the aggregate 12 can also be improved by increasing the capacity of the heating furnace section 54 and the heat retaining furnace section 52 and increasing the amount of microwave supply in the microwave supply section 62. Can do. Therefore, when the installation area is not limited, it is possible to improve the processing efficiency by adjusting the capacity of the heating furnace section 54 and the thermal insulation furnace section 52 and the supply amount of microwaves as described above. Thus, the structure of the aggregate heating device 20 has a higher degree of freedom in device design.
 また、加熱炉部54,54と保温炉部52とを鉛直方向において多段に設けていることから、各加熱炉部54,54及び保温炉部52内への骨材の搬送が容易であると共に、連続的な加熱及び保温が可能である。このような連続性により、骨材12を効率的に加熱し、排出することが可能である。 Further, since the heating furnace parts 54 1 and 54 2 and the heat insulation furnace part 52 are provided in multiple stages in the vertical direction, the transportation of the aggregate into the heating furnace parts 54 1 and 54 2 and the heat insulation furnace part 52 can be performed. It is easy and can be continuously heated and kept warm. Due to such continuity, the aggregate 12 can be efficiently heated and discharged.
 例えば、バッチ式で処理を実施する場合、各炉内の骨材12を一度全て取り出し、新たに骨材12を投入して新規に加熱することになるので、加熱時間をより多く要することになる。これに対して、上記骨材加熱装置20では、保温炉部52から排出した骨材12の量に相当する量の骨材12であって、すでに加熱されている骨材12を、加熱炉部54から供給することができる。従って、保温炉部52には、運転中、加熱された骨材12が一定量、継続的に貯留されていることになる。そのため、骨材加熱装置20を、図1に示すアスファルト合材製造システム10の骨材加熱装置20A,20Bとして使用した際、連続的に加熱された骨材12(骨材12A又は骨材12B)を供給でき、結果として、アスファルト合材14の製造効率の向上を図ることが可能である。 For example, when processing is performed in a batch system, all the aggregate 12 in each furnace is once taken out, and the aggregate 12 is newly charged and newly heated, so that a longer heating time is required. . On the other hand, in the aggregate heating device 20, the aggregate 12 is an amount of the aggregate 12 corresponding to the amount of the aggregate 12 discharged from the heat insulation furnace section 52, and the aggregate 12 that has already been heated is converted into the heating furnace section. 54 can be supplied. Accordingly, a certain amount of the aggregate 12 heated during operation is continuously stored in the heat retaining furnace 52. Therefore, when the aggregate heating device 20 is used as the aggregate heating devices 20A and 20B of the asphalt mixture manufacturing system 10 shown in FIG. 1, the aggregate 12 is heated continuously (the aggregate 12A or the aggregate 12B). As a result, it is possible to improve the production efficiency of the asphalt mixture 14.
 前述したような連続的な処理や運転を好適に実施する観点からは、例えば、加熱容器部68,68で処理する骨材12の量は、保温炉部52から排出する骨材12の量にほぼ等しいとすることが好ましい。また、保温容器部86の容量は、所望の排出量より大きいと共に、加熱容器部68、68の容量より大きいことが好ましい。 From the viewpoint of suitably implementing the continuous process and operating as described above, for example, the amount of the aggregate 12 to be processed by heating container 68 1, 68 2, of the aggregate 12 to be discharged from the heat retaining furnace 52 Preferably it is approximately equal to the amount. The capacitance of the insulated container 86, with greater than desired emissions, it is preferably larger than the volume of the heating vessel 68 1, 68 2.
 また、骨材加熱装置20では、加熱炉部54での骨材12の加熱にマイクロ波を利用していることから、液体燃料や気体燃料を使用する従来の加熱手段に比べて排気ガスや臭気、煤煙等による周囲の環境破壊や汚染を防止することができる。また、所望の温度に加熱された雰囲気を通過させることにより骨材を所望の温度に加熱することができ、回転ドラム内で骨材を転動させながら加熱する従来の骨材加熱装置に比べて振動や騒音や粉塵の発生を低減することができる。 Further, since the aggregate heating apparatus 20 uses microwaves for heating the aggregate 12 in the heating furnace section 54, exhaust gas and odor are compared with conventional heating means using liquid fuel or gaseous fuel. In addition, the surrounding environment can be prevented from being destroyed or polluted by smoke or the like. Moreover, the aggregate can be heated to a desired temperature by passing an atmosphere heated to a desired temperature, compared to a conventional aggregate heating device that heats while rotating the aggregate in a rotating drum. Generation of vibration, noise and dust can be reduced.
 更に、骨材加熱装置20の加熱炉部54上にはホッパー部56を設け、骨材加熱装置20の加熱炉部54下には保温炉部52を設けているので、ホッパー部56及び保温炉部52が高周波電磁波としてのマイクロ波の漏洩防止の機能を果たしている。その結果、骨材加熱装置20の構成は、マイクロ波を使用する一方で、マイクロ波が漏洩して電磁波障害の発生防止にも資する構成となっている。また、保温炉部52上に、順に加熱炉部54,加熱炉部54、ホッパー部56を設けることによって、骨材加熱装置20は多段構造を有しているので、上段の炉又はホッパー部56の底壁面が各段部を仕切る隔壁として機能する。その結果、各炉の温度環境の均一性を保持することが可能である。 Further, the hopper portion 56 provided on the heating furnace unit 542 of the aggregate heating device 20, since there is provided a heat retaining furnace 52 to lower first heating furnace 54 of the aggregate heating device 20, the hopper 56 and The heat insulation furnace 52 functions to prevent leakage of microwaves as high-frequency electromagnetic waves. As a result, the structure of the aggregate heating device 20 is configured to contribute to prevention of the occurrence of electromagnetic interference due to leakage of the microwave while using the microwave. Further, by providing the heating furnace part 54 1 , the heating furnace part 54 2 , and the hopper part 56 in this order on the heat insulation furnace part 52, the aggregate heating device 20 has a multistage structure, so that the upper furnace or hopper The bottom wall surface of the portion 56 functions as a partition that partitions each step. As a result, it is possible to maintain the uniformity of the temperature environment of each furnace.
 また、加熱しようとする砕石や砂の骨材12は、必ずしも乾燥した状態のものばかりではなく、表面に水分が付着している場合や、内部に水分が浸透している場合がある。このように表面に付着した水分や内部に浸透した水分は、マイクロ波によって直接加熱される。従って、骨材加熱装置20では、マイクロ波を利用することによって、骨材12自体のマイクロ波による直接加熱とマイクロ波吸収体70がマイクロ波を吸収することで生じる熱による間接加熱と共に、水分等に対するマイクロ波による直接加熱も生じている。従って、様々の素性の骨材12を効率的に加熱させることができる。 Further, the crushed stone or sand aggregate 12 to be heated is not necessarily in a dry state, and there are cases where moisture adheres to the surface or moisture penetrates inside. Thus, the moisture adhering to the surface and the moisture penetrating inside are directly heated by the microwave. Therefore, in the aggregate heating apparatus 20, by using microwaves, moisture directly or the like is generated together with direct heating by the microwaves of the aggregate 12 itself and indirect heating by heat generated by the microwave absorber 70 absorbing the microwaves. Direct heating by microwaves also occurs. Therefore, the aggregate 12 having various features can be efficiently heated.
 例えば、新規砕石の骨材12Aにあっては、一部に鉄分を含む場合がある。この場合には、砕石に含まれる鉄分がマイクロ波を吸収して発熱する。また、酸化スラグ等が混入された再生骨材12Bにあっては、酸化スラグ自体、マイクロ波を吸収して発熱する。従って、骨材加熱装置20を、新規骨材12A、再生骨材12Bを加熱するための骨材加熱装置20A,20Bとしてそれぞれ適用した場合、より効率的に加熱させることができる。 For example, in the new crushed aggregate 12A, some iron may be included. In this case, iron contained in the crushed stone absorbs the microwave and generates heat. In the recycled aggregate 12B mixed with oxidized slag and the like, the oxidized slag itself absorbs microwaves and generates heat. Therefore, when the aggregate heating device 20 is applied as the aggregate heating devices 20A and 20B for heating the new aggregate 12A and the recycled aggregate 12B, respectively, heating can be performed more efficiently.
 以上、本発明に係る骨材加熱装置及び骨材加熱方法の実施形態について説明したが、本発明は上記実施形態に限定されない。例えば、保温炉部52上には、一つの加熱炉部54が設けられていればよい。この場合でも、加熱炉部54で加熱した骨材12を保温炉部52で保温しながら貯留することが可能であり、前述した処理の連続性を有する。従って、効率的に骨材12を処理することが可能である。また、保温炉部52上の加熱炉部54の数は3個以上でもよい。すなわち、保温炉部52上には1個以上の加熱炉部54があればよい。加熱炉部54の数は、骨材加熱装置20での骨材12の処理量や要求される性能などに応じて決定することができる。 As mentioned above, although embodiment of the aggregate heating apparatus and aggregate heating method which concern on this invention was described, this invention is not limited to the said embodiment. For example, it is sufficient that one heating furnace portion 54 is provided on the heat retaining furnace portion 52. Even in this case, it is possible to store the aggregate 12 heated in the heating furnace section 54 while keeping the temperature in the heat holding furnace section 52, and has the continuity of the processing described above. Therefore, it is possible to process the aggregate 12 efficiently. Moreover, the number of the heating furnace parts 54 on the heat insulation furnace part 52 may be three or more. In other words, one or more heating furnace sections 54 may be provided on the heat retaining furnace section 52. The number of heating furnaces 54 can be determined according to the amount of processing of the aggregate 12 in the aggregate heating device 20 and the required performance.
 上記実施形態の説明では、例えば保温炉部52及び2つの加熱炉部54からなる多段構造上に蓋部としてのホッパー部56が設けられているとしたが、これに限定されない。例えば、最上段の加熱炉部54とホッパー部56とは一体のものとすることができる。換言すれば、最上段の加熱炉部54が上壁を有し、その外面の形状をホッパー形状とすることもできる。 In the description of the above embodiment, for example, the hopper portion 56 as a lid portion is provided on the multistage structure including the heat retaining furnace portion 52 and the two heating furnace portions 54, but the present invention is not limited to this. For example, it may be of integral heating furnace unit 542 and the hopper portion 56 of the uppermost. In other words, the heating furnace unit 542 of the uppermost stage has a top wall, it may be the shape of the outer surface with hopper-shaped.
 更に、図2に示した骨材加熱装置20では、蓋部としてのホッパー部56を備えるとしたが、蓋部は備えなくてもよい。例えば、この場合の骨材加熱装置の最上段に位置する加熱炉部54が上壁を有する構成とし、その上壁に開閉可能な骨材投入口を設けておけばよい。また、前述したような、最上段の加熱炉部54が上壁を有し、その外面の形状をホッパー形状とした場合も蓋部を有しない構成といえる。 Furthermore, although the aggregate heating apparatus 20 shown in FIG. 2 is provided with the hopper portion 56 as a lid portion, the lid portion may not be provided. For example, the heating furnace 54 located at the uppermost stage of the aggregate heating apparatus in this case may be configured to have an upper wall, and an aggregate input port that can be opened and closed may be provided on the upper wall. Moreover, it can be said that it is the structure which does not have a cover part also when the uppermost heating furnace part 54 has an upper wall as mentioned above and the shape of the outer surface is made into a hopper shape.
 また、マイクロ波供給部62は側壁58に設けられているとしたが、加熱容器部68内の骨材12に効率的にマイクロ波を照射可能に設けられていればよい。また、発熱体80は、例えば、保温容器部86の外周に巻きつけるように設けても良い。更に、保温炉部52では、例示した電気的な加熱方法の他に、例えば、赤外線を利用した光学的な加熱方法により骨材12を加熱することも可能である。この場合、赤外線源としてハロゲンランプを保温炉部52内に設けておけばよい。 Further, although the microwave supply unit 62 is provided on the side wall 58, it may be provided so that the aggregate 12 in the heating container 68 can be efficiently irradiated with microwaves. Moreover, you may provide the heat generating body 80 so that it may wind around the outer periphery of the heat insulation container part 86, for example. Furthermore, in the heat insulating furnace 52, it is possible to heat the aggregate 12 by an optical heating method using infrared rays in addition to the exemplified electric heating method. In this case, a halogen lamp may be provided in the heat insulating furnace 52 as an infrared source.
 上記実施形態では、加熱炉部54内には、マイクロ波吸収体70が配置されているとしたが、マイクロ波吸収体70は設けない構成とすることもできる。骨材12自体がマイクロ波を吸収して発熱するからである。ただし、マイクロ波吸収体70を設けることで、間接的な加熱を利用して骨材12を効率的に加熱できる。 In the above embodiment, the microwave absorber 70 is disposed in the heating furnace section 54, but the microwave absorber 70 may be omitted. This is because the aggregate 12 itself absorbs microwaves and generates heat. However, by providing the microwave absorber 70, the aggregate 12 can be efficiently heated using indirect heating.
 更に、加熱炉部54, 加熱容器部68、保温炉部52及び保温容器部86を骨材12の投入側から見た場合の形状は略四角形状としたが、これに限定されない。これらの形状は、例えば円形とすることもできる。また、加熱容器部68及び保温容器部86の形状は、骨材12を排出するために、骨材12が骨材排出部64,82にスムーズに流入する形状であれば特に限定されない。例えば、第2の筒状部68,86を設けていない構成とすることもできる。 Furthermore, although the shape when the heating furnace part 54, the heating container part 68, the heat insulating furnace part 52, and the heat insulating container part 86 are viewed from the charging side of the aggregate 12 is substantially rectangular, it is not limited thereto. These shapes may be circular, for example. In addition, the shapes of the heating container portion 68 and the heat retaining container portion 86 are not particularly limited as long as the aggregate 12 smoothly flows into the aggregate discharge portions 64 and 82 in order to discharge the aggregate 12. For example, a configuration in which the second cylindrical portions 68 and 86 are not provided may be employed.
 また、開口部64a,82aは、それぞれ底壁60,78の中央部に設けているが、開口部64a,82aの位置は、加熱炉部54及び保温炉部52の底部に設けられており、下段又は外部に骨材12を排出できる位置であればよい。また、開閉部64b,64b、72b,82bは、マイクロ波シールド材料から構成されている場合を例示したが、これに限定されない。ただし、開閉部64b,64b、72b,82bをマイクロ波シールド材料から構成することは、マイクロ波の漏洩をより防止できるため好ましい。特に、開閉部82bは、マイクロ波シールド材料から構成されていることが好ましい。 Moreover, although the opening parts 64a and 82a are each provided in the center part of the bottom walls 60 and 78, the position of the opening parts 64a and 82a is provided in the bottom part of the heating furnace part 54 and the heat insulation furnace part 52, Any position where the aggregate 12 can be discharged to the lower stage or the outside may be used. Further, the opening and closing section 64b 1, 64b 2, 72b, 82b has been illustrated a case which is composed of a microwave shielding material is not limited thereto. However, it is preferable that the opening / closing portions 64b 1 , 64b 2 , 72b, and 82b are made of a microwave shielding material because microwave leakage can be further prevented. In particular, the opening / closing part 82b is preferably made of a microwave shielding material.
 更に、骨材加熱装置20の制御として、アスファルト合材製造システム全体を制御する制御装置50による制御を例示したが、例えば、骨材加熱装置20が制御部を備えていてもよい。この場合の制御部は、上記実施形態で説明した制御装置50による骨材加熱装置20の制御機能を備えるものとすることができる。そして、骨材加熱装置20が制御部を備える場合、骨材加熱装置20の制御に要する排出量などは適宜入力情報として制御部に入力すればよい。なお、制御部への所定情報の入力は、変更が生じた際に操作者によって予め入力してもよいし、システム全体の制御装置50を電気的に接続して、制御装置50からの入力とすることもできる。 Furthermore, although control by the control apparatus 50 which controls the whole asphalt mixture manufacturing system was illustrated as control of the aggregate heating apparatus 20, the aggregate heating apparatus 20 may be provided with the control part, for example. The control unit in this case may be provided with a control function of the aggregate heating device 20 by the control device 50 described in the above embodiment. And when the aggregate heating apparatus 20 is provided with a control part, what is necessary is just to input the discharge | emission amount etc. which are required for control of the aggregate heating apparatus 20 into a control part as input information suitably. The input of the predetermined information to the control unit may be input in advance by an operator when a change occurs, or may be input from the control device 50 by electrically connecting the control device 50 of the entire system. You can also
 更に、骨材加熱装置20が有する加熱炉部54は、加熱時に骨材12を攪拌する攪拌ユニットを備えるものとすることができる。攪拌ユニットを有する加熱炉部の一実施形態の構成について、保温炉部52上に2つの加熱炉部92,92が設けられている場合を例にして説明する。以下の説明では、2つの加熱炉部92,92を区別する必要がある場合には、加熱炉部54,54の場合と同様に便宜的に加熱炉部92,92と称し、各加熱炉部92,92が有する構成要素についても同様に記載するものとする。 Furthermore, the heating furnace unit 54 included in the aggregate heating device 20 may include a stirring unit that stirs the aggregate 12 during heating. A configuration of an embodiment of a heating furnace unit having a stirring unit will be described by taking as an example a case where two heating furnace units 92 and 92 are provided on the heat insulating furnace unit 52. In the following description, when it is necessary to distinguish between the two heating furnace portions 92 and 92, they are referred to as heating furnace portions 92 1 and 92 2 for convenience as in the case of the heating furnace portions 54 and 54. The constituent elements of the furnace portions 92 and 92 are also described in the same manner.
 図4は、加熱炉部の他の実施形態を示す断面図であり、加熱炉部92と加熱炉部92の一部を示している。加熱炉部92と加熱炉部92の構成は実質的に同じであるため、加熱炉部92の構成について説明する。図5は、図4に示した攪拌ユニットの回転軸の軸線に直交する断面構成の一例の拡大図である。 Figure 4 is a sectional view showing another embodiment of a heating furnace unit, shows a part of the furnace section 92 1 and the heating furnace section 92 2. Construction of the furnace section 92 1 and the heating furnace section 92 2 is because it is substantially the same, the configuration of the heating furnace 92 1. FIG. 5 is an enlarged view of an example of a cross-sectional configuration orthogonal to the axis of the rotation axis of the stirring unit shown in FIG.
 図4及び図5に示した加熱炉部92は、攪拌ユニット94を含む点で、加熱炉部54(54)と主に相違する。 Furnace unit 92 1 shown in FIGS. 4 and 5, in that it includes a stirring unit 94 1, mainly differs from the furnace section 54 1 (54).
 加熱炉部92は、加熱時に攪拌ユニット94により骨材12を攪拌する。加熱炉部92は、攪拌ユニット94が内側に配置される筒状部98を有する。筒上部98を上側からみた形状の例は略四角形状である。筒状部98と底壁60の開口部64aとの間に、開閉部64bが配置されており、開閉部64bが閉じられることで、筒状部98内に骨材12を収容可能である。よって、筒状部98は、加熱時に骨材12を収容する加熱容器部でもある。筒状部98の材料の例は、加熱容器部68と同様のものとすることができるが、加熱容器部68の場合に説明したような断熱材をセラミックなどで被覆したものとしてもよい。 Furnace section 92 1, agitating the aggregate 12 by the stirring unit 94 1 during heating. Furnace unit 92 1 has a cylindrical portion 98 1 stirring unit 94 1 is disposed on the inner side. Examples of a shape viewed cylindrical upper 98 1 from the upper side has a substantially square shape. Between the opening 64a 1 of the cylindrical portion 98 1 and the bottom wall 60 1, the opening and closing portion 64b 1 is disposed, by opening and closing part 64b 1 is closed, aggregate 12 in the cylindrical portion 98 in 1 Can be accommodated. Thus, the tubular portion 98 1 is also a heating container portion for accommodating the aggregate 12 during heating. Examples of the tubular portion 98 1 of the material, but may be similar to the heating container 68 1, also a heat insulating material, such as described in the case of heating the container portion 68 1 as having been coated such as a ceramic Good.
 筒状部98内には、複数の攪拌ユニット94が配置されている(図5参照)。攪拌ユニット94は、回転軸94Aと、回転軸94Aに設けられた複数の攪拌羽94Bとを有する。複数の攪拌ユニット94は、回転軸94Aが互いに略平行に配置されている。 The tubular portion 98 1, a plurality of stirring units 94 1 is disposed (see FIG. 5). Mixing unit 94 1 has a rotary shaft 94A 1, and a plurality of stirring blades 94B 1 provided on the rotating shaft 94A 1. A plurality of stirring units 94 1, rotation shaft 94A 1 are substantially parallel to each other.
 攪拌ユニット94の回転軸94Aは、駆動源100に駆動力伝達部102を介して接続されている。駆動源100の例は回転モータであり、駆動力伝達部102の例は歯車列である。駆動源100は、制御装置50によって制御すればよい。回転軸94Aは駆動源100の駆動力により回転する。この際、隣接する回転軸94A,94Aの回転方向は、図5に示すように、互いに逆周りであることが好ましい。骨材12が攪拌により一方向に偏ることを抑制することができるからである。回転軸94Aの回転方向は、例えば、駆動力伝達部102で調整する。 The rotation axis of the agitating unit 94 1 94A 1 is connected via the driving force transmitting unit 102 1 to the drive source 100 1. Examples of the driving source 100 1 is a rotating motor, an example of the driving force transmitting unit 102 1 is a gear train. Driving source 100 1 may be controlled by the control device 50. Rotary shaft 94A 1 is rotated by the driving force of the driving source 100 1. At this time, the rotation directions of the adjacent rotation shafts 94A 1 and 94A 1 are preferably opposite to each other as shown in FIG. This is because the aggregate 12 can be suppressed from being biased in one direction by stirring. Rotational direction of the rotary shaft 94A 1, for example, adjusts the driving force transmitting unit 102 1.
 上記加熱炉部92が有する開閉部64bの一例は、一対のスライドゲート106,106である。一対のスライドゲート106,106は、対向して配置され、閉じたときに、筒状部98と共に骨材12の収容部を構成する。 An example of the opening / closing part 64b 1 included in the heating furnace part 92 1 is a pair of slide gates 106 1 and 106 1 . The pair of slide gates 106 1 , 106 1 are arranged to face each other, and when closed, together with the tubular portion 98 1 , constitute a housing portion for the aggregate 12.
 スライドゲート106の上面には、各回転軸94Aの下方に回転軸94Aの延在方向に延びている溝部104が形成されている。各溝部104の断面形状は、図5に示すように略半円形状である。溝部104の内面の曲率半径は攪拌羽根94Bの径方向の長さにほぼ等しい。 The upper surface of the slide gate 106 1, the rotary shafts 94A 1 of the rotary shaft 94A grooves 104 1 extending in the extending direction of 1 downward is formed. Cross-sectional shape of each groove 104 1 has an approximately semicircular shape as shown in FIG. Curvature of the groove 104 1 of the inner surface radius approximately equal to the length of the radial direction of the agitating blades 94B 1.
 隣接する溝部104と溝部104との中央部は、隣接する回転軸94A,94Aの中央部の下方に位置するので、攪拌羽根94Bの回転により、隣接する溝部104,104の中央部に骨材12が堆積することが抑制することできる。開閉部64bを、上記構成の一対のスライドゲート106,106とする場合、筒状部98において回転軸94Aを支持する一対の壁面は、スライドゲート106,106が移動可能であると共に、スライドゲート106,106が閉じた時に骨材12を収容できるように形成されている。スライドゲート106は、スライドレールやローラ等によってスライド可能に加熱炉部92内に設ければよい。 Central portion of the groove portion 104 1 and the groove portion 104 1 adjacent Since located below the central portion of the rotary shaft 94A 1, 94A 1 adjacent, by rotation of the stirring blade 94B 1, groove 104 adjacent 1, 104 1 It is possible to suppress the aggregate 12 from accumulating in the central part. The closing part 64b 1, if a pair of slide gate 106 1, 106 1 of the above configuration, a pair of wall surfaces for supporting the rotation shaft 94A 1 in the tubular portion 98 1, the sliding gate 106 1, 106 1 movable In addition, the aggregate 12 can be accommodated when the slide gates 106 1 and 106 1 are closed. Sliding gate 106 1 may be provided to slidably furnace portion 92 1 by the slide rails or rollers.
 スライドゲート106には、シリンダ108のピストン108aが接続されている。シリンダ108の例はエアシリンダ又は油圧シリンダである。シリンダ108がピストン108aを伸縮することで、スライドゲート106がスライドして開口部64aが開閉制御される。よって、シリンダ108は、開閉制御部66として機能する。 The slide gate 106 1, the piston 108a 1 of cylinder 108 1 is connected. Examples of the cylinder 108 1 is an air cylinder or a hydraulic cylinder. By cylinder 108 1 to stretch the piston 108a 1, the slide gate 106 1 openings 64a 1 is opened and closed controlled by sliding. Therefore, the cylinder 108 1 functions as the opening / closing control unit 66 1 .
 開閉部64bは、一対のスライドゲート106,106として説明したが、開閉部64bは、対向する一対のスライドゲート106,106を、スライド方向に直交する方向において複数配置した構成とすることもできる。また、開閉部64bは、開口部64bを開閉できれば一つのスライドゲート106であってもよい。 Although the opening / closing part 64b 1 has been described as a pair of slide gates 106 1 , 106 1 , the opening / closing part 64b 1 has a configuration in which a plurality of opposed slide gates 106 1 , 106 1 are arranged in a direction perpendicular to the sliding direction. It can also be. Further, the opening and closing portion 64b 1 may be one of the sliding gate 106 1 If closing the opening 64b 1.
 図4及び図5では記載を省略しているが、加熱炉部92にマイクロ波を供給するマイクロ波供給部62は、加熱炉部54の場合と同様に、骨材12にマイクロ波を照射できるように設けられていればよい。 Although not described in FIG. 4 and 5, the furnace section 92 1 microwave supply unit 62 1 supplies microwaves to, as in the case of the heating furnace 54, a microwave aggregate 12 What is necessary is just to be provided so that it can irradiate.
 加熱炉部92では、骨材12を攪拌ユニット94で攪拌しながら骨材12を加熱する。そのため、骨材12がマイクロ波に照射されやすく、結果として、骨材12をより効率的に加熱できる。 In the heating furnace section 92 1, heating the aggregate 12 with stirring aggregate 12 at a stirring unit 94 1. Therefore, the aggregate 12 is easily irradiated with microwaves, and as a result, the aggregate 12 can be heated more efficiently.
 上述した構成の加熱炉部92を骨材加熱装置20が備える場合、保温炉部52及びホッパー部56に対する開閉部82b,72bも、スライドゲート106と同様の構成のスライドゲートを用いたものとすることができる。この場合、ホッパー部56の構成の例は、ホッパーとして機能するホッパー本体部をホッパー収容部の内側に配置したものである。ホッパー収容部は、加熱炉部92の側壁58や底壁60と、同様の構成の側壁及び底壁を有する。開閉部72bとしての一対のスライドゲートは、ホッパー収容部の底壁に形成した開口とホッパー本体部との間に設ける。この構成では、ホッパー収容部の底壁に形成された開口部が、図2に示した骨材加熱装置20における開口部72aに対応し、ホッパー収容部の開口部と開閉部72bとしての一対のスライドゲートとが開閉制御部72を構成することになる。 When the aggregate heating device 20 includes the heating furnace unit 92 having the above-described configuration, the open / close units 82b and 72b for the heat insulating furnace unit 52 and the hopper unit 56 also use slide gates having the same configuration as the slide gate 106. be able to. In this case, an example of the configuration of the hopper portion 56 is such that a hopper main body portion that functions as a hopper is arranged inside the hopper accommodating portion. The hopper accommodating part has the side wall 58 and the bottom wall 60 of the heating furnace part 92, and the side wall and bottom wall of the same structure. The pair of slide gates as the opening / closing portion 72b is provided between an opening formed in the bottom wall of the hopper accommodating portion and the hopper body portion. In this configuration, the opening formed in the bottom wall of the hopper accommodating portion corresponds to the opening 72a in the aggregate heating device 20 shown in FIG. 2, and a pair of the opening of the hopper accommodating portion and the opening / closing portion 72b. The slide gate constitutes the opening / closing control unit 72.
 10…アスファルト合材製造システム、12…骨材、12A…新規骨材、12B…再生骨材、14…アスファルト合材、20,20A,20B…骨材加熱装置、52…保温炉部、54,54,54…加熱炉部、56…ホッパー部(蓋部)、60,60,60…加熱炉部の底壁(底部)、62,62,62…マイクロ波供給部、64,64,64…骨材排出部(第1の骨材排出部)、82…骨材排出部(第2の骨材排出部)、68,68,68…加熱容器部、70,70,70…マイクロ波吸収体、72…骨材投入部、78…保温炉部の底壁(底部)、86…保温容器部、92,92…加熱炉部、94…攪拌ユニット。 DESCRIPTION OF SYMBOLS 10 ... Asphalt compound manufacturing system, 12 ... Aggregate, 12A ... New aggregate, 12B ... Recycled aggregate, 14 ... Asphalt compound, 20, 20A, 20B ... Aggregate heating device, 52 ... Incubator part, 54, 54 1 , 54 2 ... heating furnace part, 56 ... hopper part (lid part), 60, 60 1 , 60 2 ... bottom wall (bottom part) of the heating furnace part, 62, 62 1 , 62 2 ... microwave supply part, 64, 64 1 , 64 2 ... aggregate discharge part (first aggregate discharge part), 82 ... aggregate discharge part (second aggregate discharge part), 68, 68 1 , 68 2 ... heating container part, 70, 70 1, 70 2 ... microwave absorber, 72 ... aggregate loading portion, 78 ... bottom wall (bottom) of the heat insulation furnace section, 86 ... insulated container portion, 92 1, 92 2 ... furnace section, 94 1 ... a stirring unit.

Claims (7)

  1.  アスファルト合材を組成する骨材をマイクロ波に基づく加熱法によって加熱する少なくとも一つの加熱炉部と、
     前記少なくとも一つの加熱炉部で加熱された前記骨材を、電気的又は光学的加熱法によって保温する保温炉部と、
     前記マイクロ波を前記加熱炉部内に供給するマイクロ波供給部と、
    を備え、
     前記保温炉部及び前記加熱炉部は、この順で鉛直方向に設けられて多段構造を構成しており、
     前記多段構造を構成する各段を隔てる隔壁部には、開閉可能であって前記骨材を下段に排出するための第1の骨材排出部が設けられており、
     前記保温炉部の底部には、開閉可能であって前記保温炉部で保温された前記骨材を排出するための第2の骨材排出部が設けられている、
    骨材加熱装置。
    At least one heating furnace for heating the aggregate constituting the asphalt mixture by a heating method based on microwaves;
    A heat retaining furnace section that retains the aggregate heated in the at least one heating furnace section by an electrical or optical heating method;
    A microwave supply section for supplying the microwave into the heating furnace section;
    With
    The heat-retaining furnace part and the heating furnace part are provided in the vertical direction in this order to constitute a multistage structure,
    The partition part separating the stages constituting the multi-stage structure is provided with a first aggregate discharging part that can be opened and closed and discharges the aggregate to the lower stage,
    The bottom of the heat retaining furnace is provided with a second aggregate discharging part that can be opened and closed and for discharging the aggregate that is kept warm in the heat retaining furnace.
    Aggregate heating device.
  2.  複数の前記加熱炉部が前記保温炉部上に多段に設けられている、請求項1に記載の骨材加熱装置。 The aggregate heating apparatus according to claim 1, wherein a plurality of the heating furnace parts are provided in multiple stages on the heat insulation furnace part.
  3.  前記加熱炉部内に設けられているマイクロ波吸収体を更に備える、請求項1又は2に記載の骨材加熱装置。 The aggregate heating apparatus according to claim 1 or 2, further comprising a microwave absorber provided in the heating furnace.
  4.  前記加熱炉部は、前記骨材を攪拌する攪拌ユニットを更に備え、
     前記攪拌ユニットは、
     回転軸と、
     前記回転軸に設けられた複数の攪拌羽根と、
    を有する、
    請求項1~3の何れか一項に記載の骨材加熱装置。
    The heating furnace part further includes a stirring unit for stirring the aggregate,
    The stirring unit includes:
    A rotation axis;
    A plurality of stirring blades provided on the rotating shaft;
    Having
    The aggregate heating apparatus according to any one of claims 1 to 3.
  5.  鉛直方向において保温炉部上に位置しており前記保温炉部と共に多段構造を構成する加熱炉部内で、マイクロ波に基づく加熱法によって、アスファルト合材を組成する骨材を加熱する加熱工程と、
     前記加熱炉部の底部に設けられており開閉可能な第1の骨材排出部を開いて前記骨材を前記多段構造の隣接する下段部に排出する第1の骨材排出工程と、
     前記保温炉部内で、前記多段構造において前記保温炉部に隣接する上段部で加熱された前記骨材を電気的又は光学的加熱方法で保温する保温工程と、
     前記保温炉部の底部に設けられており開閉可能な第2の骨材排出部を開いて前記骨材を前記保温炉部の外部に排出する第2の骨材排出工程と、
    を備える、骨材加熱方法。
    In the heating furnace part that is positioned on the heat insulation furnace part in the vertical direction and constitutes a multistage structure together with the heat insulation furnace part, a heating process for heating the aggregate constituting the asphalt mixture by a heating method based on microwaves, and
    A first aggregate discharging step of opening a first aggregate discharging section provided at the bottom of the heating furnace section and opening and closing and discharging the aggregate to an adjacent lower stage of the multistage structure;
    In the heat retaining furnace part, in the multistage structure, a heat retaining step of retaining the aggregate heated by the upper stage part adjacent to the heat retaining furnace part by an electrical or optical heating method;
    A second aggregate discharging step of opening a second aggregate discharging section provided at the bottom of the heat retaining furnace section and opening and closing and discharging the aggregate to the outside of the heat retaining furnace section;
    An aggregate heating method comprising:
  6.  複数の前記加熱炉部が鉛直方向に多段に設けられており、
     前記保温炉部は、多段に設けられた複数の前記加熱炉部のうち最下段の前記加熱炉部に隣接しており、
     前記加熱工程では、多段に設けられた複数の前記加熱炉部で最上段から順に前記骨材を加熱する、
    請求項5に記載の骨材加熱方法。
    A plurality of the heating furnace portions are provided in multiple stages in the vertical direction,
    The heat-retaining furnace part is adjacent to the lowermost heating furnace part among the plurality of heating furnace parts provided in multiple stages,
    In the heating step, the aggregate is heated in order from the uppermost stage in a plurality of heating furnaces provided in multiple stages.
    The aggregate heating method according to claim 5.
  7.  前記加熱工程では、前記骨材を攪拌ユニットで攪拌しながら加熱する、請求項5又は6に記載の骨材加熱方法。 The aggregate heating method according to claim 5 or 6, wherein in the heating step, the aggregate is heated while being stirred by a stirring unit.
PCT/JP2010/056462 2009-09-25 2010-04-09 Aggregate heating apparatus and aggregate heating method WO2011036910A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011532921A JP4980493B2 (en) 2009-09-25 2010-04-09 Aggregate heating device and aggregate heating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/066692 WO2011036773A1 (en) 2009-09-25 2009-09-25 Aggregate heating system and aggregate heating method
JPPCT/JP2009/066692 2009-09-25

Publications (1)

Publication Number Publication Date
WO2011036910A1 true WO2011036910A1 (en) 2011-03-31

Family

ID=43795543

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/066692 WO2011036773A1 (en) 2009-09-25 2009-09-25 Aggregate heating system and aggregate heating method
PCT/JP2010/056462 WO2011036910A1 (en) 2009-09-25 2010-04-09 Aggregate heating apparatus and aggregate heating method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066692 WO2011036773A1 (en) 2009-09-25 2009-09-25 Aggregate heating system and aggregate heating method

Country Status (1)

Country Link
WO (2) WO2011036773A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105200898A (en) * 2015-09-28 2015-12-30 吉林省嘉鹏集团有限公司 Asphalt pavement in-situ heat regenerator with asphalt smoke dust recycling function
CN105297592A (en) * 2015-09-28 2016-02-03 吉林省嘉鹏集团有限公司 Layered heating device for regenerated mixtures
CN105350430A (en) * 2015-09-28 2016-02-24 吉林省嘉鹏集团有限公司 Asphalt pavement hot in-place recycling layered heating method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR201102838A2 (en) * 2011-04-28 2011-08-22 E-Mak Maki̇na İnşaat Ti̇caret Ve San. Ltd. Şti̇. Hot asphalt preparation system and method to produce a new asphalt layer from the asphalt to be recovered
DE102011084705A1 (en) * 2011-10-18 2013-04-18 Mining Technology Consulting Method for producing asphalt from mineral mixture and bitumen for constructing asphalt road in structural and civil engineering application, involves dewatering mixture by heating using microwaves, and mixing mixture with hot bitumen
WO2015015600A1 (en) * 2013-07-31 2015-02-05 特定非営利活動法人プロサップ Heating device
US10430377B2 (en) 2014-04-24 2019-10-01 International Business Machines Corporation Processes to better support defensible disposal in records management
US10372832B2 (en) 2014-06-20 2019-08-06 International Business Machines Corporation Deletion workflow that preserves data integrity of a records management system
WO2017165664A1 (en) 2016-03-23 2017-09-28 A.L.M Holding Company Batch asphalt mix plant
CA3145256A1 (en) * 2019-07-01 2021-01-07 A.L.M Holding Company Microwave heating system with suppression tunnel and related features

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266114A (en) * 1997-03-24 1998-10-06 Naotada Hasegawa Production of heated asphalt mixture for pavement by making use of microwave
JP2002275819A (en) * 2001-03-15 2002-09-25 Nippon Hodo Co Ltd Method of manufacturing asphalt mixture
JP2006322254A (en) * 2005-05-20 2006-11-30 Yasuhiro Kondo Aggregate drying/heating device and aggregate drying/heating method for asphalt plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266114A (en) * 1997-03-24 1998-10-06 Naotada Hasegawa Production of heated asphalt mixture for pavement by making use of microwave
JP2002275819A (en) * 2001-03-15 2002-09-25 Nippon Hodo Co Ltd Method of manufacturing asphalt mixture
JP2006322254A (en) * 2005-05-20 2006-11-30 Yasuhiro Kondo Aggregate drying/heating device and aggregate drying/heating method for asphalt plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105200898A (en) * 2015-09-28 2015-12-30 吉林省嘉鹏集团有限公司 Asphalt pavement in-situ heat regenerator with asphalt smoke dust recycling function
CN105297592A (en) * 2015-09-28 2016-02-03 吉林省嘉鹏集团有限公司 Layered heating device for regenerated mixtures
CN105350430A (en) * 2015-09-28 2016-02-24 吉林省嘉鹏集团有限公司 Asphalt pavement hot in-place recycling layered heating method

Also Published As

Publication number Publication date
WO2011036773A1 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
WO2011036910A1 (en) Aggregate heating apparatus and aggregate heating method
WO2013018199A1 (en) Heating furnace and heating device
JP5896073B1 (en) Drying processing equipment
KR100928277B1 (en) An apparatus and method for rapid drying sludge
US4276093A (en) Asphalt production
US8096063B2 (en) Apparatus and method for thermally removing coatings and/or impurities
JP2007029822A (en) Mixing apparatus
KR102188473B1 (en) Carbonizing furnace
US9045867B2 (en) Method and device for heating worn road coating materials
JP4980493B2 (en) Aggregate heating device and aggregate heating method
KR101251102B1 (en) Regeneration device of waste ascon
CN102948254A (en) Microwave and radio frequency material processing
KR101223910B1 (en) Regeneration apparatus for wasted activated carbon
JP2009281671A (en) Drying method and dryer assembly for granular material
JP2006322254A (en) Aggregate drying/heating device and aggregate drying/heating method for asphalt plant
EP1871547B1 (en) Apparatus and method for thermally removing coatings and/or impurities
WO2012124037A1 (en) Aggregate heating apparatus and aggregate heating method
WO2015015600A1 (en) Heating device
GB2485229A (en) Apparatus for drying particulate materials
KR100993290B1 (en) Apparatus for recovering a valuable element
JP2019005703A (en) Cooling apparatus of fly ash
KR100540165B1 (en) Waste water evaporation method and apparatus
CN208136066U (en) Microwave treatment oily sludge equipment
KR101047209B1 (en) High temperature melting using microwave
CN108285261A (en) Microwave treatment oily sludge equipment and its processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818587

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011532921

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10818587

Country of ref document: EP

Kind code of ref document: A1