WO2011036779A1 - Volatile semiconductor memory device - Google Patents

Volatile semiconductor memory device Download PDF

Info

Publication number
WO2011036779A1
WO2011036779A1 PCT/JP2009/066701 JP2009066701W WO2011036779A1 WO 2011036779 A1 WO2011036779 A1 WO 2011036779A1 JP 2009066701 W JP2009066701 W JP 2009066701W WO 2011036779 A1 WO2011036779 A1 WO 2011036779A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
region
thyristor
conductivity type
anode
Prior art date
Application number
PCT/JP2009/066701
Other languages
French (fr)
Japanese (ja)
Inventor
潤 藤木
敏典 沼田
悠介 東
究 佐久間
直樹 安田
浩一 村岡
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2009/066701 priority Critical patent/WO2011036779A1/en
Publication of WO2011036779A1 publication Critical patent/WO2011036779A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/39Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using thyristors or the avalanche or negative resistance type, e.g. PNPN, SCR, SCS, UJT
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/10SRAM devices comprising bipolar components

Definitions

  • the present invention relates to a volatile semiconductor memory device using a thyristor as a memory element.
  • the negative resistance element Since the negative resistance element has a high resistance state and a low resistance state, it can be used as a storage element for storing data “0” and data “0”.
  • a thyristor is known as a negative resistance element.
  • a memory device in which a thyristor and an access transistor are connected in series using the turn-off / turn-on characteristics of the thyristor has been proposed (for example, Patent Documents 1 and 2).
  • This memory device mainly applied as SRAM is composed of high-speed and area-saving memory cells.
  • This memory device is called Thyristor-RAM (Random Access Memory), and is hereinafter abbreviated as TRAM.
  • the miniaturization of the unit cell is a problem for the problem of increasing the capacity of the TRAM.
  • Patent Document 3 when a contact is formed for each unit cell, or when the cell is separated by element isolation, the area of the unit cell is reduced due to the wiring area and the area of the element isolation region. It becomes difficult.
  • the present invention provides a volatile semiconductor memory device capable of further reducing the area of the memory cell array.
  • a volatile semiconductor memory device includes a semiconductor substrate, an insulating layer partially provided over the semiconductor substrate, a semiconductor layer provided over the insulating layer, and first to third elements.
  • Memory cells Each of the first to third memory cells is provided on the semiconductor substrate, has a MOSFET having a source, a drain, and a first gate, and is provided on the semiconductor layer, and has an anode, a cathode, and a second gate. A thyristor, and the drain is electrically connected to the cathode.
  • the first and second memory cells have their sources electrically connected, and the first and third memory cells have their anodes electrically connected.
  • a volatile semiconductor memory device includes a MOSFET having a source, a drain, a first gate, and a substrate gate, and a thyristor having an anode, a cathode, and a second gate, and the drain Comprises first to third memory cells electrically connected to the cathode.
  • the sources of the first and second memory cells are electrically connected, the anodes of the first and third memory cells are electrically connected, and the first to third memory cells are The substrate gates are electrically connected.
  • FIG. 1 is a schematic diagram showing a volatile semiconductor memory device 10 according to a first embodiment.
  • FIG. 2 is an equivalent circuit diagram showing a part of the semiconductor memory device 10 extracted. The figure which shows the current-voltage characteristic in case the memory cell MC hold
  • FIG. 6 is a diagram showing current-voltage characteristics when data “0” is written to a memory cell MC.
  • 1 is a layout diagram showing a part of a semiconductor memory device 10 according to a first embodiment.
  • FIG. 8 is a cross-sectional view of the semiconductor memory device 10 taken along line II ′ shown in FIG.
  • FIG. 8 is a cross-sectional view of the semiconductor memory device 10 taken along the line II-II ′ shown in FIG. 7.
  • FIG. 6 is a diagram showing a manufacturing process of the semiconductor memory device 10 according to the first embodiment.
  • FIG. 11 shows a manufacturing process of the semiconductor memory device 10 following FIG. 10;
  • FIG. 12 is a diagram showing a manufacturing process of the semiconductor memory device 10 following FIG. 11.
  • FIG. 13 shows a manufacturing process of the semiconductor memory device 10 following FIG. 12.
  • FIG. 14 is a diagram showing a manufacturing process of the semiconductor memory device 10 following FIG. 13.
  • FIG. 15 is a diagram showing a manufacturing process of the semiconductor memory device 10 following FIG. 14.
  • FIG. 16 is a diagram showing manufacturing steps of the semiconductor memory device 10 following FIG. 15.
  • FIG. 17 is a diagram showing manufacturing steps of the semiconductor memory device 10 following FIG. 16.
  • FIG. 4 is a layout diagram of a volatile semiconductor memory device 10 according to a second embodiment.
  • FIG. 19 is a cross-sectional view of the semiconductor memory device 10 along the line II ′ shown in FIG. Sectional drawing which shows the structure of the volatile semiconductor memory device 10 which concerns on 3rd Embodiment.
  • FIG. 1 is a schematic diagram showing a configuration of a volatile semiconductor memory device (TRAM) 10 according to the first embodiment of the present invention.
  • FIG. 2 is an equivalent circuit diagram showing a part of the volatile semiconductor memory device 10 extracted.
  • TPM volatile semiconductor memory device
  • the semiconductor memory device 10 includes a plurality of memory cells MC arranged in a matrix. Further, the semiconductor memory device 10 has (n + 1) bit lines BL0 to BLn extending in the X direction, (m + 1) word lines WL1_0 to WL1_m extending in the Y direction intersecting the X direction, and (m + 1) extending in the Y direction. This includes word lines WL2_0 to WL2_m and a plurality of anode lines AL. One bit line BL, two word lines WL1, WL2, and one anode line AL are connected to one memory cell MC.
  • one memory cell MC includes one access transistor 11 and one negative resistance element 12 connected in series.
  • the access transistor 11 is composed of, for example, an N channel MOSFET (Metal
  • the negative resistance element 12 is composed of a thyristor.
  • the access transistor 11 has a source terminal S, a drain terminal D, a gate terminal G1, and a substrate gate terminal SG as terminals for connecting to an external circuit.
  • the thyristor 12 has an anode terminal A, a cathode terminal C, and a gate terminal G2 as terminals for connecting to an external circuit.
  • the source terminal S is electrically connected to the bit line BL via the bit line contact BC
  • the drain terminal D is electrically connected to the cathode terminal C
  • the anode terminal A is electrically connected to the anode line AL via the anode contact AC.
  • the gate terminal G1 is electrically connected to the word line WL1
  • the gate terminal G2 is electrically connected to the word line WL2.
  • the memory cells MC1 to MC3 are arranged in order along the X direction, the memory cells MC1 and MC2 are electrically connected to each other and share the bit line contact BC.
  • the memory cells MC2 and MC3 are electrically connected to each other and share an anode contact AC.
  • the memory cell groups for one row arranged in the X direction are formed in the same element region AA, and the substrate gate terminals SG of these memory cell groups are electrically connected in common by the source line SL. Further, the memory cell group commonly connected to the source line SL is electrically connected to the same bit line BL via the bit line contact BC. Other than the above connection, the terminals are not connected to each other.
  • One of the features of the semiconductor memory device 10 of the present embodiment is that adjacent memory cells are connected to each other, and the adjacent memory cells share a bit line contact BC or an anode contact AC. In this manner, a memory cell array with a small area can be realized by reducing the number of wirings.
  • FIG. 3 is a diagram schematically showing current-voltage characteristics when the memory cell MC holds data.
  • the solid line represents the current-voltage characteristic of the thyristor 12, and the broken line represents the current-voltage characteristic of the access transistor 11.
  • Data retention is performed by setting the anode line AL to a high potential with respect to the bit line BL and applying no voltage to the word lines WL1 and WL2.
  • the intersection of the current-voltage characteristics of the thyristor 12 and the access transistor 11 is the holding state. That is, the intersection of the low resistance characteristic of the thyristor 12 and the current-voltage characteristic of the access transistor 11 is “1”, and the intersection of the high resistance characteristic of the thyristor 12 and the current-voltage characteristic of the access transistor 11 is “0”.
  • FIG. 4 is a diagram schematically showing current-voltage characteristics when data held in the memory cell MC is read. Reading is performed by setting the anode line AL to a high potential with respect to the bit line BL, further setting the word line WL1 to a high potential, and applying no voltage to WL2. An intersection of the current-voltage characteristics of the thyristor 12 and the access transistor 11 is realized at the time of reading. That is, the intersection between the low resistance characteristic of the thyristor 12 and the current voltage characteristic of the access transistor 11 is “1” reading, and the intersection of the high resistance characteristic of the thyristor 12 and the current voltage characteristic of the access transistor 11 is “0”. Reading of the state.
  • FIG. 5 is a diagram schematically showing current-voltage characteristics when data “1” is written to the memory cell MC. While the write voltage is applied to the word line WL2 of the thyristor 12, the current-voltage characteristics of the thyristor 12 are as shown in FIG. A write voltage is applied to the word lines WL1 and WL2, the anode line AL is set to a high potential with respect to the bit line BL, and the thyristor 12 is set in a low resistance state to write data “1”.
  • FIG. 6 is a diagram schematically showing current-voltage characteristics when data “0” is written to the memory cell MC. While the write voltage is applied to the word line WL2 of the thyristor 12, the current-voltage characteristics of the thyristor 12 are as shown in FIG. A write voltage is applied to the word lines WL1 and WL2, the bit line BL is set to a high potential with respect to the anode line AL, and the thyristor 12 is set in a high resistance state to write data “0”.
  • the adjacent memory cells MC1 and MC2 share the bit line contact BC, and the adjacent memory cells MC2 and MC3 share the anode contact AC, but each has the word lines WL1 and WL2 individually, so that the memory
  • the cells MC1 to MC3 can be controlled independently.
  • silicon not only silicon but also various materials such as germanium, silicon germanium (SiGe), indium phosphide (InP), polysilicon, silicon carbide (SiC) are applicable as semiconductor materials.
  • SiGe silicon germanium
  • InP indium phosphide
  • SiC silicon carbide
  • FIG. 7 is a layout diagram showing a part of the semiconductor memory device 10 according to the first embodiment.
  • FIG. 8 is a cross-sectional view of the semiconductor memory device 10 taken along the line II ′ shown in FIG.
  • FIG. 9 is a cross-sectional view of the semiconductor memory device 10 taken along the line II-II ′ shown in FIG.
  • the semiconductor substrate (or well) 20 includes an element isolation insulating layer 21 in the surface region, and a region where the element isolation insulating layer 21 is not formed becomes an element region (active region) AA in which an element is formed.
  • the element isolation insulating layer 21 is configured by, for example, STI (Shallow Trench Isolation).
  • STI Shallow Trench Isolation
  • silicon oxide (SiO 2 ) is used as the STI.
  • a plurality of element regions AA exist in the Y direction via the element isolation insulating layer 21, and each element region AA extends in the X direction. Adjacent element regions AA are not electrically connected because the element isolation insulating layer 21 exists.
  • the bit line BL is disposed above the element area AA and extends in the X direction so as to be parallel to the element area AA.
  • the bit line BL is connected to the bit line contact BC.
  • the word lines WL1 and WL2 and the anode line AL extend in the Y direction.
  • illustration of the anode line AL is omitted, and only the anode contact AC is illustrated, but actually, the anode line AL wider than the anode contact AC is on the anode contact AC in the Y direction. It is provided so as to extend.
  • Each element region AA is provided with a plurality of memory cells MC to which adjacent ones are connected.
  • the plurality of memory cells MC provided in the same element region AA are arranged in the X direction so that the word lines WL1 and the word lines WL2 face each other alternately.
  • the memory cell MC includes an access transistor 11 and a thyristor 12.
  • the semiconductor substrate (or well) 20 is a p-type semiconductor substrate (p-sub).
  • the access transistor 11 includes a source region S and a drain region D that are provided separately in the semiconductor substrate 20, and a gate electrode that is provided on the semiconductor substrate 20 between the source region S and the drain region D via a gate insulating film. G1.
  • the source region S and the drain region D are n + type semiconductor regions. Side walls 22 are provided on both side surfaces of the gate electrode G1.
  • the first memory cell and the second memory cell adjacent to one of the first memory cells are arranged so that the access transistors 11 included in the first memory cell face each other, and the source region S of the access transistor 11 is Sharing.
  • a bit line contact BC is provided on the source region S shared by the access transistors 11 of the first memory cell and the second memory cell. That is, the first memory cell and the second memory cell also share the bit line contact BC.
  • a bit line BL extending in the X direction is provided on the bit line contact BC.
  • a plurality of memory cells formed in the same element area AA are connected to each other by a bit line BL.
  • the thyristor 12 includes a semiconductor layer in which a cathode region C made of an n + type semiconductor layer, a p ⁇ type semiconductor layer 26, an n ⁇ type semiconductor layer 27, and an anode region A made of a p + type semiconductor layer are sequentially joined. .
  • the minus or plus notation added to the conductivity type means the concentration of impurities, minus indicates a low concentration, and plus indicates a high concentration.
  • the cathode region C is provided on the drain region D of the access transistor 11.
  • the p ⁇ type semiconductor layer 26, the n ⁇ type semiconductor layer 27, and the anode region A are provided on an insulating layer 28 provided on the semiconductor substrate 20. That is, the p ⁇ type semiconductor layer 26, the n ⁇ type semiconductor layer 27, and the semiconductor layer including the anode region A are made of partial SOI (Silicon On Insulator) partially formed on the semiconductor substrate 20.
  • a gate electrode G2 is provided via a gate insulating film. Side walls 30 are provided on the side surfaces of the gate electrode G2.
  • the thyristor 12 is electrically insulated from the semiconductor substrate 20 via the insulating layer 28 except that the cathode region C is connected to the drain region D.
  • the thyristor 12 is formed in the partial SOI, adjacent thyristors can be controlled independently.
  • the first memory cell and the third memory cell adjacent to the first memory cell in the opposite direction to the second memory cell are arranged so that the thyristor 12 included in the first memory cell faces each other, and The anode region A of the thyristor 12 is shared.
  • An anode contact AC is provided on the anode region A shared by the thyristors 12 of the first memory cell and the third memory cell. That is, the first memory cell and the third memory cell also share the anode contact AC.
  • An anode line AL extending in the Y direction is provided on the anode contact AC.
  • adjacent memory cells have a cross-sectional structure that is line symmetric with respect to the boundary line of these memory cells.
  • the element region AA is connected to, for example, a source line SL (not shown) via a contact, and is set to a ground voltage, for example, by the source line SL. Accordingly, as in the circuit diagram of FIG. 1, the access transistors 11 included in the plurality of memory cells MC formed in the same element region AA have the substrate gate terminals SG corresponding to the element regions AA connected to the source line SL. And the substrate gate terminal SG is grounded via the source line SL.
  • the substrate gate terminal SG of the access transistor 11 cannot be commonly connected to the source line SL. That is, the circuit configuration of FIG. 2 cannot be realized.
  • the voltage of the substrate gate terminal SG of the access transistor 11 can be controlled, for example, the threshold voltage of the access transistor 11 can be adjusted. Thereby, the operating characteristics of the access transistor 11 can be improved.
  • an interlayer insulating layer 25 (including insulating layers 25A to 25C) is buried.
  • the semiconductor memory device 10 according to the first embodiment is configured.
  • a plurality of element isolation insulating layers 21 extending in the X direction are formed in the semiconductor substrate (p-sub) 20 to form a plurality of element regions AA in the surface region of the semiconductor substrate 20.
  • the gate electrode G ⁇ b> 1 of the access transistor 11 is formed on the semiconductor substrate 20 (element region AA) via a gate insulating film.
  • the gate electrode G1 functions as the word line WL1 shown in FIG.
  • Various conductive materials such as polysilicon, TaN, Ti, Al, TaC, TiN, TiAlN, Cu, Au, and RrO can be applied to the gate electrode G1.
  • the gate insulating film various insulating materials such as silicon oxide, silicon oxynitride, AlO, SiN, HfO 2 , HfAlO, ZrO 2 , Ta 2 O 5 , La 2 O 3 , LaAlO 3 can be applied, and A laminated structure of these insulating films is also applicable. Subsequently, sidewalls 22 made of, for example, silicon nitride are formed on both side surfaces of the gate electrode G1.
  • a SiGe layer 23 is formed as a sacrificial layer on the exposed element region AA.
  • SiGe may be deposited or epitaxially grown. Thereby, the SiGe layer 23 is formed up to the end of the side wall 22.
  • the side wall 22 is once etched to expose the element region AA in a portion excluding the gate electrode G1 and the SiGe layer 23.
  • n-type impurities are ion-implanted into the element region AA to form the source region S and the drain region D of the access transistor 11.
  • sidewalls 22 are formed on both side surfaces of the gate electrode G1, and sidewalls 24 are formed on both side surfaces of the SiGe layer.
  • an insulating layer 25 ⁇ / b> A made of, for example, silicon oxide is formed on the gate electrode G ⁇ b> 1 and the source region S, and then a semiconductor layer 26 is formed on the drain region D and the SiGe layer 23.
  • the semiconductor layer 26 has a bridge shape including an extending portion formed on the SiGe layer 23 and two supporting portions connecting the two drain regions D from both ends of the extending portion.
  • the width of the semiconductor layer 26 is substantially the same as the width of the element region AA.
  • the semiconductor layer 26 is formed by polysilicon deposition or silicon epitaxial growth.
  • the semiconductor layer 26 is ion-implanted with p-type impurities, and the semiconductor layer 26 becomes a p ⁇ -type semiconductor layer.
  • the SiGe layer 23 is removed by selective etching, and the removed hollow region is filled with an insulating layer 28 made of, for example, silicon oxide.
  • a gate electrode G2 of the thyristor 12 is formed on the semiconductor layer 26 via a gate insulating film, and a dummy insulating layer 29 made of, for example, silicon nitride is further formed on the gate electrode G2.
  • Various conductive materials such as polysilicon, TaN, Ti, Al, TaC, TiN, TiAlN, Cu, Au, and RrO can be applied to the gate electrode G2.
  • various insulating materials such as silicon oxide, silicon oxynitride, AlO, SiN, HfO 2 , HfAlO, ZrO 2 , Ta 2 O 5 , La 2 O 3 , LaAlO 3 can be applied, and A laminated structure of these insulating films is also applicable.
  • the gate electrode G2 and the dummy insulating layer 29 are processed to expose only the semiconductor layer 26 on the drain region D.
  • n-type impurities are ion-implanted into the exposed semiconductor layer 26 to form a cathode region C made of an n + -type semiconductor layer on the drain region D.
  • the dummy insulating layer 29 is back-etched to retreat the dummy insulating layer 29 inward.
  • an insulating layer 25B made of, for example, silicon oxide is deposited on the entire surface of the device, and the insulating layer 25B is planarized and the dummy insulating layer 29 is exposed by CMP (Chemical-Mechanical-Polishing).
  • the dummy insulating layer 29 is selectively etched to partially expose the gate electrode G2.
  • the gate electrode G2 is processed by RIE (Reactive Ion Etching), and the semiconductor layer 26 is exposed.
  • the last remaining gate electrode G2 serves as the gate (word line WL2) of the thyristor 12.
  • n-type impurities are ion-implanted into the exposed semiconductor layer 26.
  • only the exposed portion of the semiconductor layer 26 becomes the n ⁇ type semiconductor layer 27, and the portion immediately below the gate electrode G 2 remains the p ⁇ type semiconductor layer 26.
  • a side wall 30 made of, for example, silicon nitride on the side surface of the gate electrode G ⁇ b> 2 p-type impurities are ion-implanted into the exposed semiconductor layer 27.
  • the p + -type semiconductor layer becomes an anode region A.
  • the semiconductor layer 27 covered with the sidewall 30 remains an n ⁇ type semiconductor layer.
  • bit line contact BC is formed on the source region S, and the anode contact AC is formed on the anode region A. Finally, the bit line BL connected to the bit line contact BC and the anode line AL connected to the anode contact AC are formed.
  • the memory cell MC according to the first embodiment is manufactured, and a memory cell array with a reduced area in which the number of wirings is reduced is realized.
  • the thyristor 12 may be formed before the gate electrode G1 of the access transistor 11 is formed. Further, instead of epitaxially growing the semiconductor layer 26 on the SiGe layer 23, the semiconductor layer 26 may be formed on the insulating layer 28 after the insulating layer 28 is formed. Further, instead of processing the gate electrode G2 of the thyristor 12 using the dummy insulating layer 29, the gate electrode G2 may be processed using lithography.
  • the access transistor 11 and the thyristor 12 constitute a memory cell.
  • the first memory cell and the second memory cell adjacent to one of the memory cell are The source region S and the bit line contact BC provided on the source region S are shared. Further, the first memory cell and the third memory cell adjacent to the other one share the anode region A of the thyristor 12 and the anode contact AC and the anode line AL provided on the anode region A. Yes.
  • the substrate gates of the access transistors 11 are commonly connected to the plurality of memory cells formed in the same element region AA. Since the plurality of memory cells individually have the word line WL1 connected to the access transistor 11 and the word line WL2 connected to the thyristor 12, they can be controlled independently.
  • the number of anode contacts AC and anode lines AL can be reduced.
  • the number of bit line contacts BC can be reduced.
  • the wiring area can be reduced, so that the area of the memory cell array can be reduced.
  • the source region S of the access transistor 11 or the anode region A of the thyristor 12 is shared by adjacent memory cells, it is not necessary to provide an element isolation region between the memory cells. As a result, the area of the memory cell array can be further reduced because there is no element isolation region.
  • the thyristor 12 is provided on a partial SOI formed on the semiconductor substrate 20, and the semiconductor substrate 20 is interposed via an insulating layer 28 except that the cathode region C is connected to the drain region D.
  • the adjacent thyristors can be controlled independently, so that the connection relationship of the present embodiment shown in FIG. 2 can be realized.
  • the access transistor 11 is formed on the semiconductor substrate 20, the voltage (substrate voltage) of the substrate gate terminal SG of the access transistor 11 can be controlled. Thereby, the operating characteristics of the access transistor 11 can be improved.
  • a volatile semiconductor memory device is configured such that adjacent memory cells share a bit line contact BC or an anode line AL, and the thyristor 12 has a vertical structure.
  • FIG. 18 is a layout diagram showing a configuration of the volatile semiconductor memory device 10 according to the second embodiment of the present invention.
  • FIG. 19 is a cross-sectional view of the semiconductor memory device 10 along the line II ′ shown in FIG.
  • a cross-sectional view of the semiconductor memory device 10 taken along line II-II ′ shown in FIG. 18 is the same as FIG.
  • An equivalent circuit diagram of the volatile semiconductor memory device 10 according to the second embodiment is the same as FIG.
  • the bit line BL is disposed above the element area AA and extends in the X direction so as to be parallel to the element area AA.
  • the bit line BL is connected to the bit line contact BC.
  • the word lines WL1 and WL2 and the anode line AL extend in the Y direction.
  • Each element region AA is provided with a plurality of memory cells MC to which adjacent ones are connected.
  • the plurality of memory cells MC are arranged in the X direction so that the word lines WL1 and the word lines WL2 face each other alternately.
  • the memory cell MC includes an access transistor 11 and a thyristor 12.
  • the semiconductor substrate (or well) 20 is a p-type semiconductor substrate (p-sub).
  • the access transistor 11 includes a source region S and a drain region D that are provided separately in the semiconductor substrate 20, and a gate electrode that is provided on the semiconductor substrate 20 between the source region S and the drain region D via a gate insulating film. G1.
  • the source region S and the drain region D are n + type semiconductor regions. Side walls 22 are provided on both side surfaces of the gate electrode G1.
  • the first memory cell and the second memory cell adjacent to one of the first memory cells are arranged so that the access transistors 11 included in the first memory cell face each other, and the source region S of the access transistor 11 is Sharing.
  • a bit line contact BC is provided on the source region S shared by the access transistors 11 of the first memory cell and the second memory cell. That is, the first memory cell and the second memory cell also share the bit line contact BC.
  • a bit line BL extending in the X direction is provided on the bit line contact BC.
  • a plurality of memory cells formed in the same element area AA are connected to each other by a bit line BL.
  • the thyristor 12 is provided on the cathode region C made of an n + type semiconductor layer provided in the semiconductor substrate 20, the p ⁇ type semiconductor layer 26 provided on the cathode region C, and the p ⁇ type semiconductor layer 26.
  • the n ⁇ type semiconductor layer 27 and the anode region A made of a p + type semiconductor layer provided on the n ⁇ type semiconductor layer 27 are provided. That is, the semiconductor layer including the p ⁇ type semiconductor layer 26, the n ⁇ type semiconductor layer 27, and the anode region A is a pillar-shaped semiconductor layer.
  • the cathode region C of the thyristor 12 is connected to the drain region D of the access transistor 11. In the present embodiment, the cathode region C and the drain region D are configured by the same semiconductor region.
  • a gate electrode G2 is provided on the side surface of the p ⁇ type semiconductor layer 26 via a gate insulating film.
  • an anode line AL extending in the Y direction is provided.
  • the first memory cell and the third memory cell adjacent to the first memory cell in the opposite direction to the second memory cell share the anode line AL.
  • the semiconductor layer (including the cathode region C, the p ⁇ -type semiconductor layer 26, the n ⁇ -type semiconductor layer 27, and the anode region A) included therein includes the insulating layer 31. And the n-type semiconductor region 32 are electrically insulated.
  • adjacent memory cells have a cross-sectional structure that is line symmetric with respect to the boundary line of these memory cells.
  • the element region AA is grounded via the source line SL. That is, the plurality of memory cells MC formed in the same element region AA are grounded with their substrate gate terminals SG commonly connected to the source line SL.
  • An interlayer insulating layer 25 is embedded between the semiconductor substrate 20 and the bit line BL.
  • the semiconductor memory device 10 according to the second embodiment is configured.
  • the conductivity type of a semiconductor it is not restricted to the designation
  • the access transistor 11 and the thyristor 12 constitute a memory cell, and the first memory cell and the second memory cell adjacent to one of the memory cell are The source region S and the bit line contact BC provided on the source region S are shared. The first memory cell and the third memory cell adjacent to the other one share the anode line AL. Furthermore, the substrate gates of the access transistors 11 are commonly connected to the plurality of memory cells formed in the same element region AA.
  • the number of anode lines AL and bit line contacts BC can be reduced.
  • the wiring area can be reduced, so that the area of the memory cell array can be reduced.
  • the thyristor 12 is configured vertically, the area of the memory cell array can be further reduced.
  • the thyristor 12 is a vertical type, the thyristor 12 is electrically insulated from the semiconductor substrate 20 except that the cathode region C is connected to the drain region D. As a result, the adjacent thyristors can be controlled independently, and the connection relationship shown in FIG. 2 can be realized.
  • the third embodiment shows another configuration example of the thyristor 12, and the volatile semiconductor memory device 10 is configured using a thyristor having a MOS structure.
  • FIG. 20 is a cross-sectional view showing the configuration of the volatile semiconductor memory device 10 according to the third embodiment of the present invention.
  • the circuit configuration of the volatile semiconductor memory device 10 and the device structure of the access transistor 11 are the same as those in the first embodiment.
  • the thyristor 12 is provided on the cathode region C made of an n + type semiconductor layer provided in the semiconductor substrate 20, the p ⁇ type semiconductor layer 26 provided on the cathode region C, and the p ⁇ type semiconductor layer 26. Insulating film (tunnel insulating film) 33 and anode electrode A provided on insulating film 33 are provided.
  • a gate electrode G2 is provided on the side surface of the p ⁇ type semiconductor layer 26 via a gate insulating film.
  • the anode electrode A corresponds to the anode line AL in FIG. That is, the anode electrode A shown in FIG. 20 extends in the Y direction.
  • the gate electrode G2 functions as the word line WL2.
  • the cathode region C of the thyristor 12 is connected to the drain region D of the access transistor 11. In the present embodiment, the cathode region C and the drain region D are configured by the same semiconductor region.
  • the anode electrode A can be made of various conductive materials such as polysilicon, TaN, Ti, Al, TaC, TiN, TiAlN, Cu, Au, and RrO.
  • As the insulating film 33 silicon oxide or the like is used.
  • the first memory cell and the second memory cell adjacent to one of the first memory cells are arranged so that the access transistors 11 included in the first memory cell face each other, and the source region S of the access transistor 11 is Sharing.
  • the first memory cell and the third memory cell adjacent to the first memory cell in the opposite direction to the second memory cell share the anode electrode A.
  • the semiconductor layer (including the cathode region C and the p ⁇ -type semiconductor layer 26) included therein is electrically connected by the insulating layer 31 and the n-type semiconductor region 32. Insulated.
  • adjacent memory cells have a cross-sectional structure that is line symmetric with respect to the boundary line of these memory cells.
  • the element region AA is grounded via the source line SL. That is, the plurality of memory cells MC formed in the same element region AA are grounded with their substrate gate terminals SG commonly connected to the source line SL.
  • the semiconductor memory device 10 according to the third embodiment is configured.
  • the conductivity type of a semiconductor it is not restricted to the designation
  • FIGS. 21 to 23 are energy band diagrams for explaining the operation of the thyristor 12.
  • FIGS. 21 to 23 show the anode electrode A (electrode), the insulating film 33, the p ⁇ type semiconductor layer 26 (p ⁇ type semiconductor), and the n + type semiconductor layer C (n + type semiconductor) constituting the thyristor 12. Shows the energy band.
  • Ef is the Fermi level
  • Ec is the conduction band energy level
  • Ev is the valence band energy level
  • Efm is the metal Fermi level.
  • the voltage of the anode electrode A is all applied to the insulating film 33, and the electron current and the hole current increase (ON state (low resistance state)). Since holes are always injected into the p ⁇ -type semiconductor layer 26, the potential in this region is always lowered and the inverted state is maintained. In addition, the amount of holes passing through the insulating film 33 does not vary, and the on state continues.
  • the voltage applied to the word line WL2 (gate electrode G2) has the effect of promoting the inversion state of the p ⁇ -type semiconductor layer 26.
  • the hole current decreases when the voltage of the anode electrode A is lowered, but the on-current is maintained until the inversion state of the p ⁇ -type semiconductor layer 26 continues. (Electron current and hole current) flow.
  • the voltage of the anode electrode A is set to a predetermined voltage or lower.
  • the thyristor 12 shown in FIG. 20 has a high resistance state and a low resistance state in accordance with voltages applied to the anode, the cathode, and the gate, and thus can be used as a memory element.
  • the same effects as those of the second embodiment can be obtained. Further, since the number of semiconductor layers constituting the thyristor 12 can be reduced as compared with the thyristor of the second embodiment, the memory cell array can be further miniaturized and the manufacturing cost can be further reduced.
  • the fourth embodiment is another configuration example of a thyristor having a MOS structure.
  • FIG. 24 is a cross-sectional view showing the configuration of the volatile semiconductor memory device 10 according to the fourth embodiment of the present invention.
  • the circuit configuration of the volatile semiconductor memory device 10 and the device structure of the access transistor 11 are the same as those in the first embodiment.
  • a gate electrode G2 is provided via a gate insulating film.
  • Side walls 34 are provided on both side surfaces of the gate electrode G1.
  • An insulating film (tunnel insulating film) 33 is provided on the n + type semiconductor layer 35, and an anode electrode A is provided on the insulating film 33. In this way, the thyristor 12 of the third embodiment is configured.
  • the anode electrode A corresponds to the anode line AL in FIG. That is, the anode electrode A shown in FIG. 24 extends in the Y direction.
  • the gate electrode G2 functions as the word line WL2.
  • the cathode region C of the thyristor 12 is shared with the drain region D of the access transistor 11.
  • the first memory cell and the second memory cell adjacent to one of the first memory cells are arranged so that the access transistors 11 included in the first memory cell face each other, and the source region S of the access transistor 11 is Sharing.
  • the first memory cell and the third memory cell adjacent to the first memory cell in the opposite direction to the second memory cell share the anode electrode A.
  • the n + -type semiconductor layer 35 included therein is electrically insulated by the insulating layer 31 and the n-type semiconductor region 32.
  • the n + type semiconductor layer 35 functions as a conductor, and serves to electrically connect the p ⁇ type semiconductor region immediately below the gate electrode G2, the insulating film 33, and the anode electrode A. Fulfill. Therefore, the contact relationship including the anode electrode A, the insulating film 33, the p ⁇ type semiconductor region, and the n + type semiconductor layer (cathode region) C is the same as that in FIG. That is, the thyristor 12 of the fourth embodiment operates in the same manner as the thyristor of the third embodiment.
  • FIG. 25 is a cross-sectional view showing another configuration example of the thyristor 12.
  • An insulating film 33 is provided on the semiconductor substrate 20, and an anode electrode A is provided on the insulating film 33.
  • the anode electrode A is disposed adjacent to the gate electrode G2. Even when the thyristor 12 is configured in this manner, the same operation as the thyristor of the third embodiment can be realized.
  • the same effect as that of the second embodiment can be obtained.
  • the thyristor 12 can be manufactured using a process similar to that of the MOSFET. Thereby, manufacturing cost can be reduced.
  • MC ... memory cell, BL ... bit line, WL ... word line, AL ... anode line, BC ... bit line contact, AC ... anode contact, SL ... source line, AA ... element region, S ... source region, D ... drain region G1, G2 gate electrodes, C ... cathode region, A ... anode region, 10 ... volatile semiconductor memory device, 11 ... access transistor, 12 ... thyristor, 20 ... semiconductor substrate, 21 ... element isolation insulating layer, 22, 24, Reference numerals 30, 34 ... sidewalls, 23 ... SiGe layer, 25 ... interlayer insulating layer, 26 ... p - type semiconductor layer, 27 ... n - type semiconductor layer, 28 ... insulating layer, 29 ... dummy insulating layer, 31 ... insulating layer, 32 ... n-type semiconductor region, 33 ... insulating film, 35 ... n + type semiconductor layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

The disclosed volatile semiconductor memory device is provided with a semiconductor substrate, an insulating layer provided on parts of the aforementioned semiconductor substrate, a semiconductor layer provided on the aforementioned insulating layer, and a first through a third memory cell. Each of the aforementioned first through third memory cells is equipped with: a MOSFET that is provided to the aforementioned semiconductor substrate and that has a source, a drain, and a first gate; and a thyristor that is provided to the aforementioned semiconductor layer and that has an anode, a cathode, and a second gate. The aforementioned drain and the aforementioned cathode are electrically connected. The sources of the aforementioned first and second memory cells are electrically connected, and the anodes of the aforementioned first and third memory cells are electrically connected.

Description

揮発性半導体記憶装置Volatile semiconductor memory device
 本発明は、サイリスタを記憶素子として用いた揮発性半導体記憶装置に関する。 The present invention relates to a volatile semiconductor memory device using a thyristor as a memory element.
 負性抵抗素子は、高抵抗状態と低抵抗状態とを有するため、データ“0”及びデータ“0”を記憶する記憶素子として利用することができる。負性抵抗素子としては、サイリスタが知られている。このサイリスタのターンオフ/ターンオン特性を用い、サイリスタとアクセストランジスタとを直列に接続したメモリデバイスが提案されている(例えば、特許文献1、2)。主にSRAMとして応用されるこのメモリデバイスは、高速でかつ省面積のメモリセルで構成されている。このメモリデバイスはThyristor-RAM(Random Access Memory)と呼ばれており、以下TRAMと略す。 Since the negative resistance element has a high resistance state and a low resistance state, it can be used as a storage element for storing data “0” and data “0”. A thyristor is known as a negative resistance element. A memory device in which a thyristor and an access transistor are connected in series using the turn-off / turn-on characteristics of the thyristor has been proposed (for example, Patent Documents 1 and 2). This memory device mainly applied as SRAM is composed of high-speed and area-saving memory cells. This memory device is called Thyristor-RAM (Random Access Memory), and is hereinafter abbreviated as TRAM.
 TRAMの大容量化の課題に対して単位セルの微細化が問題となる。特許文献3に見るように、単位セル毎にコンタクトを形成したり、セル同士を素子分離で離間させる形状がとられる場合、配線面積や素子分離領域の面積があるため単位セルの面積を小さくすることが困難となる。 The miniaturization of the unit cell is a problem for the problem of increasing the capacity of the TRAM. As seen in Patent Document 3, when a contact is formed for each unit cell, or when the cell is separated by element isolation, the area of the unit cell is reduced due to the wiring area and the area of the element isolation region. It becomes difficult.
米国特許第6,462,359号明細書US Pat. No. 6,462,359 米国特許第6,888,176号明細書US Pat. No. 6,888,176 特開2009-135187号公報JP 2009-135187 A
 本発明は、メモリセルアレイの面積をより縮小することが可能な揮発性半導体記憶装置を提供する。 The present invention provides a volatile semiconductor memory device capable of further reducing the area of the memory cell array.
 本発明の一態様に係る揮発性半導体記憶装置は、半導体基板と、前記半導体基板上に部分的に設けられた絶縁層と、前記絶縁層上に設けられた半導体層と、第1乃至第3のメモリセルとを具備する。前記第1乃至第3のメモリセルの各々は、前記半導体基板に設けられ、ソース、ドレイン及び第1のゲートを有するMOSFETと、前記半導体層に設けられ、アノード、カソード及び第2のゲートを有するサイリスタとを備え、かつ前記ドレインは前記カソードに電気的に接続される。前記第1及び第2のメモリセルは、ソース同士が電気的に接続され、前記第1及び第3のメモリセルは、アノード同士が電気的に接続される。 A volatile semiconductor memory device according to one embodiment of the present invention includes a semiconductor substrate, an insulating layer partially provided over the semiconductor substrate, a semiconductor layer provided over the insulating layer, and first to third elements. Memory cells. Each of the first to third memory cells is provided on the semiconductor substrate, has a MOSFET having a source, a drain, and a first gate, and is provided on the semiconductor layer, and has an anode, a cathode, and a second gate. A thyristor, and the drain is electrically connected to the cathode. The first and second memory cells have their sources electrically connected, and the first and third memory cells have their anodes electrically connected.
 本発明の一態様に係る揮発性半導体記憶装置は、ソース、ドレイン、第1のゲート及び基板ゲートを有するMOSFETと、アノード、カソード及び第2のゲートを有するサイリスタとからそれぞれが構成され、前記ドレインは前記カソードに電気的に接続される、第1乃至第3のメモリセルを具備する。前記第1及び第2のメモリセルは、ソース同士が電気的に接続され、前記第1及び第3のメモリセルは、アノード同士が電気的に接続され、前記第1乃至第3のメモリセルは、基板ゲート同士が電気的に接続される。 A volatile semiconductor memory device according to one embodiment of the present invention includes a MOSFET having a source, a drain, a first gate, and a substrate gate, and a thyristor having an anode, a cathode, and a second gate, and the drain Comprises first to third memory cells electrically connected to the cathode. The sources of the first and second memory cells are electrically connected, the anodes of the first and third memory cells are electrically connected, and the first to third memory cells are The substrate gates are electrically connected.
 本発明によれば、メモリセルアレイの面積をより縮小することが可能な揮発性半導体記憶装置を提供することができる。 According to the present invention, it is possible to provide a volatile semiconductor memory device that can further reduce the area of the memory cell array.
第1の実施形態に係る揮発性半導体記憶装置10を示す概略図。1 is a schematic diagram showing a volatile semiconductor memory device 10 according to a first embodiment. 半導体記憶装置10の一部を抽出して示した等価回路図。FIG. 2 is an equivalent circuit diagram showing a part of the semiconductor memory device 10 extracted. メモリセルMCがデータを保持する場合の電流電圧特性を示す図。The figure which shows the current-voltage characteristic in case the memory cell MC hold | maintains data. メモリセルMCに保持されたデータを読み出す場合の電流電圧特性を示す図。The figure which shows the current-voltage characteristic in the case of reading the data hold | maintained at the memory cell MC. メモリセルMCにデータ“1”を書き込む場合の電流電圧特性を示す図。The figure which shows the current-voltage characteristic in the case of writing data "1" in the memory cell MC. メモリセルMCにデータ“0”を書き込む場合の電流電圧特性を示す図。FIG. 6 is a diagram showing current-voltage characteristics when data “0” is written to a memory cell MC. 第1の実施形態に係る半導体記憶装置10の一部を示すレイアウト図。1 is a layout diagram showing a part of a semiconductor memory device 10 according to a first embodiment. 図7に示したI-I´線に沿った半導体記憶装置10の断面図。FIG. 8 is a cross-sectional view of the semiconductor memory device 10 taken along line II ′ shown in FIG. 図7に示したII-II´線に沿った半導体記憶装置10の断面図。FIG. 8 is a cross-sectional view of the semiconductor memory device 10 taken along the line II-II ′ shown in FIG. 7. 第1の実施形態に係る半導体記憶装置10の製造工程を示す図。FIG. 6 is a diagram showing a manufacturing process of the semiconductor memory device 10 according to the first embodiment. 図10に続く半導体記憶装置10の製造工程を示す図。FIG. 11 shows a manufacturing process of the semiconductor memory device 10 following FIG. 10; 図11に続く半導体記憶装置10の製造工程を示す図。FIG. 12 is a diagram showing a manufacturing process of the semiconductor memory device 10 following FIG. 11. 図12に続く半導体記憶装置10の製造工程を示す図。FIG. 13 shows a manufacturing process of the semiconductor memory device 10 following FIG. 12. 図13に続く半導体記憶装置10の製造工程を示す図。FIG. 14 is a diagram showing a manufacturing process of the semiconductor memory device 10 following FIG. 13. 図14に続く半導体記憶装置10の製造工程を示す図。FIG. 15 is a diagram showing a manufacturing process of the semiconductor memory device 10 following FIG. 14. 図15に続く半導体記憶装置10の製造工程を示す図。FIG. 16 is a diagram showing manufacturing steps of the semiconductor memory device 10 following FIG. 15. 図16に続く半導体記憶装置10の製造工程を示す図。FIG. 17 is a diagram showing manufacturing steps of the semiconductor memory device 10 following FIG. 16. 第2の実施形態に係る揮発性半導体記憶装置10のレイアウト図。FIG. 4 is a layout diagram of a volatile semiconductor memory device 10 according to a second embodiment. 図18に示したI-I´線に沿った半導体記憶装置10の断面図。FIG. 19 is a cross-sectional view of the semiconductor memory device 10 along the line II ′ shown in FIG. 第3の実施形態に係る揮発性半導体記憶装置10の構成を示す断面図。Sectional drawing which shows the structure of the volatile semiconductor memory device 10 which concerns on 3rd Embodiment. サイリスタ12の動作を説明するエネルギーバンド図。The energy band figure explaining operation | movement of the thyristor 12. FIG. サイリスタ12の動作を説明するエネルギーバンド図。The energy band figure explaining operation | movement of the thyristor 12. FIG. サイリスタ12の動作を説明するエネルギーバンド図。The energy band figure explaining operation | movement of the thyristor 12. FIG. 第4の実施形態に係る揮発性半導体記憶装置10の構成を示す断面図。Sectional drawing which shows the structure of the volatile semiconductor memory device 10 which concerns on 4th Embodiment. サイリスタ12の他の構成例を示す断面図。Sectional drawing which shows the other structural example of the thyristor 12. FIG.
 以下、本発明の実施形態について図面を参照して詳細に説明する。 
 なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比係数などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比係数が異なって表される場合もある。 
 また、以下の説明において、既出の図に関して前述したものと同様の要素には同一の符号を付し、重複説明は適宜省略する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Note that the drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the ratio coefficient of the size between the parts, and the like are not necessarily the same as actual ones. Further, even when the same part is represented, the dimensions and ratio coefficient may be represented differently depending on the drawing.
Moreover, in the following description, the same code | symbol is attached | subjected to the element similar to what was mentioned above regarding the previous figure, and duplication description is abbreviate | omitted suitably.
 [第1の実施形態]
 [1.回路構成]
 図1は、本発明の第1の実施形態に係る揮発性半導体記憶装置(TRAM)10の構成を示す概略図である。図2は、揮発性半導体記憶装置10の一部を抽出して示した等価回路図である。
[First Embodiment]
[1. Circuit configuration]
FIG. 1 is a schematic diagram showing a configuration of a volatile semiconductor memory device (TRAM) 10 according to the first embodiment of the present invention. FIG. 2 is an equivalent circuit diagram showing a part of the volatile semiconductor memory device 10 extracted.
 半導体記憶装置10は、マトリクス状に配列された複数のメモリセルMCを備えている。また、半導体記憶装置10は、X方向に延びる(n+1)本のビット線BL0~BLn、X方向に交差するY方向に延びる(m+1)本のワード線WL1_0~WL1_m、Y方向に延びる(m+1)本のワード線WL2_0~WL2_m、及び複数本のアノード線ALを備えている。1個のメモリセルMCには、1本のビット線BL、2本のワード線WL1,WL2、及び1本のアノード線ALが接続されている。 The semiconductor memory device 10 includes a plurality of memory cells MC arranged in a matrix. Further, the semiconductor memory device 10 has (n + 1) bit lines BL0 to BLn extending in the X direction, (m + 1) word lines WL1_0 to WL1_m extending in the Y direction intersecting the X direction, and (m + 1) extending in the Y direction. This includes word lines WL2_0 to WL2_m and a plurality of anode lines AL. One bit line BL, two word lines WL1, WL2, and one anode line AL are connected to one memory cell MC.
 図2に示すように、1個のメモリセルMCは、1個のアクセストランジスタ11と、1個の負性抵抗素子12とが直列に接続されて構成される。アクセストランジスタ11は、例えば、NチャネルMOSFET(Metal Oxide Semiconductor Field Effect Transistor)から構成される。負性抵抗素子12は、サイリスタから構成される。 As shown in FIG. 2, one memory cell MC includes one access transistor 11 and one negative resistance element 12 connected in series. The access transistor 11 is composed of, for example, an N channel MOSFET (Metal | Oxide | Semiconductor | Field | Effect | Transistor). The negative resistance element 12 is composed of a thyristor.
 メモリセルMCを詳細に説明すると、アクセストランジスタ11は、ソース端子S、ドレイン端子D、ゲート端子G1、及び基板ゲート端子SGを外部の回路と接続する端子として有している。サイリスタ12は、アノード端子A、カソード端子C、及びゲート端子G2を外部の回路と接続する端子として有している。ソース端子Sはビット線コンタクトBCを介してビット線BLに電気的に接続され、ドレイン端子Dはカソード端子Cに電気的に接続され、アノード端子AはアノードコンタクトACを介してアノード線ALに電気的に接続され、ゲート端子G1はワード線WL1に電気的に接続され、ゲート端子G2はワード線WL2に電気的に接続されている。 The memory cell MC will be described in detail. The access transistor 11 has a source terminal S, a drain terminal D, a gate terminal G1, and a substrate gate terminal SG as terminals for connecting to an external circuit. The thyristor 12 has an anode terminal A, a cathode terminal C, and a gate terminal G2 as terminals for connecting to an external circuit. The source terminal S is electrically connected to the bit line BL via the bit line contact BC, the drain terminal D is electrically connected to the cathode terminal C, and the anode terminal A is electrically connected to the anode line AL via the anode contact AC. The gate terminal G1 is electrically connected to the word line WL1, and the gate terminal G2 is electrically connected to the word line WL2.
 さらに、メモリセルMC1~MC3がX方向に沿って順に並んでいるとすると、メモリセルMC1及びMC2は、これらのソース端子S同士が電気的に接続され、ビット線コンタクトBCを共有している。また、メモリセルMC2及びMC3は、これらのアノード端子A同士が電気的に接続され、アノードコンタクトACを共有している。また、X方向に並んだ1行分のメモリセル群は、同一の素子領域AAに形成され、これらメモリセル群の基板ゲート端子SGがソース線SLによって電気的に共通接続されている。さらに、ソース線SLに共通接続されたメモリセル群は、ビット線コンタクトBCを介して同一のビット線BLに電気的に接続されている。上記の接続以外は、各端子が互いに接続されていない。 Further, assuming that the memory cells MC1 to MC3 are arranged in order along the X direction, the memory cells MC1 and MC2 are electrically connected to each other and share the bit line contact BC. The memory cells MC2 and MC3 are electrically connected to each other and share an anode contact AC. The memory cell groups for one row arranged in the X direction are formed in the same element region AA, and the substrate gate terminals SG of these memory cell groups are electrically connected in common by the source line SL. Further, the memory cell group commonly connected to the source line SL is electrically connected to the same bit line BL via the bit line contact BC. Other than the above connection, the terminals are not connected to each other.
 本実施形態の半導体記憶装置10の特徴の一つは、隣接するメモリセル同士が接続され、さらに、隣接するメモリセル同士がビット線コンタクトBCあるいはアノードコンタクトACを共有していることにある。このようにして配線の数を低減し、面積の小さなメモリセルアレイを実現することができる。 One of the features of the semiconductor memory device 10 of the present embodiment is that adjacent memory cells are connected to each other, and the adjacent memory cells share a bit line contact BC or an anode contact AC. In this manner, a memory cell array with a small area can be realized by reducing the number of wirings.
 次に、半導体記憶装置10のデータ書き込み、保持、及び読み出し動作について説明する。 Next, data write, hold, and read operations of the semiconductor memory device 10 will be described.
 図3は、メモリセルMCがデータを保持する場合の電流電圧特性を模式的に示した図である。実線がサイリスタ12の電流電圧特性を表し、破線がアクセストランジスタ11の電流電圧特性を表す。ビット線BLに対してアノード線ALを高電位にし、さらにワード線WL1及びWL2には電圧印加を行わないことによってデータ保持が行われる。サイリスタ12及びアクセストランジスタ11の電流電圧特性の交点が保持状態である。すなわち、サイリスタ12の低抵抗特性とアクセストランジスタ11の電流電圧特性との交点が“1”状態であり、サイリスタ12の高抵抗特性とアクセストランジスタ11の電流電圧特性との交点が“0”状態である。上記の電位が印加されている間は、それぞれの状態が保持される。なお、サイリスタ12の低抵抗特性とアクセストランジスタ11の電流電圧特性との交点を“0”状態とし、サイリスタ12の高抵抗特性とアクセストランジスタ11の電流電圧特性との交点を“1”状態としても良い。 FIG. 3 is a diagram schematically showing current-voltage characteristics when the memory cell MC holds data. The solid line represents the current-voltage characteristic of the thyristor 12, and the broken line represents the current-voltage characteristic of the access transistor 11. Data retention is performed by setting the anode line AL to a high potential with respect to the bit line BL and applying no voltage to the word lines WL1 and WL2. The intersection of the current-voltage characteristics of the thyristor 12 and the access transistor 11 is the holding state. That is, the intersection of the low resistance characteristic of the thyristor 12 and the current-voltage characteristic of the access transistor 11 is “1”, and the intersection of the high resistance characteristic of the thyristor 12 and the current-voltage characteristic of the access transistor 11 is “0”. is there. Each state is maintained while the potential is applied. Note that the intersection between the low resistance characteristic of the thyristor 12 and the current voltage characteristic of the access transistor 11 is set to the “0” state, and the intersection of the high resistance characteristic of the thyristor 12 and the current voltage characteristic of the access transistor 11 is set to the “1” state. good.
 図4は、メモリセルMCに保持されたデータを読み出す場合の電流電圧特性を模式的に示した図である。ビット線BLに対してアノード線ALを高電位にし、さらにワード線WL1を高電位にし、WL2には電圧印加を行わないことによって読み出しが行われる。サイリスタ12及びアクセストランジスタ11の電流電圧特性の交点が読み出し時に実現される。すなわち、サイリスタ12の低抵抗特性とアクセストランジスタ11の電流電圧特性との交点が“1”状態の読み出しであり、サイリスタ12の高抵抗特性とアクセストランジスタ11の電流電圧特性との交点が“0”状態の読み出しである。 FIG. 4 is a diagram schematically showing current-voltage characteristics when data held in the memory cell MC is read. Reading is performed by setting the anode line AL to a high potential with respect to the bit line BL, further setting the word line WL1 to a high potential, and applying no voltage to WL2. An intersection of the current-voltage characteristics of the thyristor 12 and the access transistor 11 is realized at the time of reading. That is, the intersection between the low resistance characteristic of the thyristor 12 and the current voltage characteristic of the access transistor 11 is “1” reading, and the intersection of the high resistance characteristic of the thyristor 12 and the current voltage characteristic of the access transistor 11 is “0”. Reading of the state.
 図5は、メモリセルMCにデータ“1”を書き込む場合の電流電圧特性を模式的に示した図である。サイリスタ12のワード線WL2に書き込み電圧を印加している間は、サイリスタ12の電流電圧特性は図5のようになる。ワード線WL1及びWL2に書き込み電圧を印加し、さらにビット線BLに対してアノード線ALを高電位にし、サイリスタ12を低抵抗状態にしてデータ“1”を書き込む。 FIG. 5 is a diagram schematically showing current-voltage characteristics when data “1” is written to the memory cell MC. While the write voltage is applied to the word line WL2 of the thyristor 12, the current-voltage characteristics of the thyristor 12 are as shown in FIG. A write voltage is applied to the word lines WL1 and WL2, the anode line AL is set to a high potential with respect to the bit line BL, and the thyristor 12 is set in a low resistance state to write data “1”.
 図6は、メモリセルMCにデータ“0”を書き込む場合の電流電圧特性を模式的に示した図である。サイリスタ12のワード線WL2に書き込み電圧を印加している間は、サイリスタ12の電流電圧特性は図6のようになる。ワード線WL1及びWL2に書き込み電圧を印加し、さらにアノード線ALに対してビット線BLを高電位にし、サイリスタ12を高抵抗状態にしてデータ“0”を書き込む。 FIG. 6 is a diagram schematically showing current-voltage characteristics when data “0” is written to the memory cell MC. While the write voltage is applied to the word line WL2 of the thyristor 12, the current-voltage characteristics of the thyristor 12 are as shown in FIG. A write voltage is applied to the word lines WL1 and WL2, the bit line BL is set to a high potential with respect to the anode line AL, and the thyristor 12 is set in a high resistance state to write data “0”.
 以上のようにして、メモリセルMCに関して、データ保持、読み出し、及び書き込みが実施される。隣り合うメモリセルMC1及びMC2がビット線コンタクトBCを共有し、隣り合うメモリセルMC2及びMC3がアノードコンタクトACを共有しているが、それぞれワード線WL1及びWL2を個別に有しているため、メモリセルMC1~MC3は独立に制御することが可能である。 As described above, data holding, reading, and writing are performed on the memory cell MC. The adjacent memory cells MC1 and MC2 share the bit line contact BC, and the adjacent memory cells MC2 and MC3 share the anode contact AC, but each has the word lines WL1 and WL2 individually, so that the memory The cells MC1 to MC3 can be controlled independently.
 [2.デバイス構造]
 次に、図1の回路図を実現するためのメモリセルMCの構造について説明する。なお、半導体の伝導型を指定するとき、伝導型1と伝導型2とを使う。伝導型1と伝導型2とは逆の極性であって、n型あるいはp型である。以下の説明では、伝導型1をn型、伝導型2をp型であるとみなす。しかし本実施形態は、以上の伝導型の指定に制限されない。すなわち、伝導型1をp型とし、伝導型2をn型とすることによって本実施形態が適用可能となる。なお、この場合には当該半導体記憶装置10を駆動するあらゆる電圧の極性を逆にする。
[2. Device structure]
Next, the structure of the memory cell MC for realizing the circuit diagram of FIG. 1 will be described. Note that when the semiconductor conductivity type is specified, the conductivity type 1 and the conductivity type 2 are used. Conductive type 1 and conductive type 2 have opposite polarities and are n-type or p-type. In the following description, it is assumed that the conductivity type 1 is n-type and the conductivity type 2 is p-type. However, the present embodiment is not limited to the designation of the above conductivity type. That is, the present embodiment can be applied by setting the conductivity type 1 to p-type and the conductivity type 2 to n-type. In this case, the polarity of all voltages for driving the semiconductor memory device 10 is reversed.
 以下の説明において、半導体の材料には、シリコンのみならず、ゲルマニウム、シリコンゲルマニウム(SiGe)、インジウムリン(InP)、ポリシリコン、シリコン炭化物(SiC)などさまざまな材料が適用可能である。 In the following description, not only silicon but also various materials such as germanium, silicon germanium (SiGe), indium phosphide (InP), polysilicon, silicon carbide (SiC) are applicable as semiconductor materials.
 図7は、第1の実施形態に係る半導体記憶装置10の一部を示すレイアウト図である。図8は、図7に示したI-I´線に沿った半導体記憶装置10の断面図である。図9は、図7に示したII-II´線に沿った半導体記憶装置10の断面図である。 FIG. 7 is a layout diagram showing a part of the semiconductor memory device 10 according to the first embodiment. FIG. 8 is a cross-sectional view of the semiconductor memory device 10 taken along the line II ′ shown in FIG. FIG. 9 is a cross-sectional view of the semiconductor memory device 10 taken along the line II-II ′ shown in FIG.
 半導体基板(或いはウェル)20は、表面領域に素子分離絶縁層21を具備し、素子分離絶縁層21が形成されていない領域が素子を形成する素子領域(活性領域)AAとなる。素子分離絶縁層21は、例えばSTI(Shallow Trench Isolation)により構成される。STIとしては、例えばシリコン酸化物(SiO)が用いられる。 The semiconductor substrate (or well) 20 includes an element isolation insulating layer 21 in the surface region, and a region where the element isolation insulating layer 21 is not formed becomes an element region (active region) AA in which an element is formed. The element isolation insulating layer 21 is configured by, for example, STI (Shallow Trench Isolation). For example, silicon oxide (SiO 2 ) is used as the STI.
 素子領域AAは、素子分離絶縁層21を介してY方向に複数存在し、各素子領域AAは、X方向に延在している。隣接する素子領域AAは、素子分離絶縁層21が存在するために、電気的には接続されていない。 A plurality of element regions AA exist in the Y direction via the element isolation insulating layer 21, and each element region AA extends in the X direction. Adjacent element regions AA are not electrically connected because the element isolation insulating layer 21 exists.
 ビット線BLは、素子領域AAの上方に配置され、素子領域AAと平行になるようにしてX方向に延在している。ビット線BLは、ビット線コンタクトBCに接続されている。ワード線WL1、WL2、及びアノード線ALは、Y方向に延在している。なお、図7では、アノード線ALの図示を省略し、アノードコンタクトACのみを図示しているが、実際には、アノードコンタクトAC上には、アノードコンタクトACより幅が広いアノード線ALがY方向に延在するようにして設けられている。 The bit line BL is disposed above the element area AA and extends in the X direction so as to be parallel to the element area AA. The bit line BL is connected to the bit line contact BC. The word lines WL1 and WL2 and the anode line AL extend in the Y direction. In FIG. 7, illustration of the anode line AL is omitted, and only the anode contact AC is illustrated, but actually, the anode line AL wider than the anode contact AC is on the anode contact AC in the Y direction. It is provided so as to extend.
 各素子領域AAには、隣接するもの同士が接続された複数のメモリセルMCが設けられている。同一の素子領域AAに設けられた複数のメモリセルMCは、ワード線WL1同士、ワード線WL2同士が交互に向き合うようにしてX方向に配置される。 Each element region AA is provided with a plurality of memory cells MC to which adjacent ones are connected. The plurality of memory cells MC provided in the same element region AA are arranged in the X direction so that the word lines WL1 and the word lines WL2 face each other alternately.
 以下に、図8を参照してメモリセルMCの具体的な構造について説明する。メモリセルMCは、アクセストランジスタ11及びサイリスタ12によって構成される。半導体基板(或いはウェル)20は、p型半導体基板(p-sub)である。 Hereinafter, a specific structure of the memory cell MC will be described with reference to FIG. The memory cell MC includes an access transistor 11 and a thyristor 12. The semiconductor substrate (or well) 20 is a p-type semiconductor substrate (p-sub).
 アクセストランジスタ11は、半導体基板20内に離間して設けられたソース領域S及びドレイン領域Dと、ソース領域S及びドレイン領域D間の半導体基板20上にゲート絶縁膜を介して設けられたゲート電極G1とを備えている。ソース領域S及びドレイン領域Dは、n型半導体領域からなる。ゲート電極G1の両側面には、側壁22が設けられている。 The access transistor 11 includes a source region S and a drain region D that are provided separately in the semiconductor substrate 20, and a gate electrode that is provided on the semiconductor substrate 20 between the source region S and the drain region D via a gate insulating film. G1. The source region S and the drain region D are n + type semiconductor regions. Side walls 22 are provided on both side surfaces of the gate electrode G1.
 第1のメモリセルと、この第1のメモリセルの一方に隣接する第2のメモリセルとは、これらに含まれるアクセストランジスタ11が向き合うように配置され、また、アクセストランジスタ11のソース領域Sを共有している。第1のメモリセル及び第2のメモリセルのアクセストランジスタ11に共有されたソース領域S上には、ビット線コンタクトBCが設けられている。すなわち、第1のメモリセル及び第2のメモリセルは、ビット線コンタクトBCも共有している。ビット線コンタクトBC上には、X方向に延びるビット線BLが設けられている。また、同一の素子領域AAに形成された複数のメモリセルは、ビット線BLによって互いに接続されている。 The first memory cell and the second memory cell adjacent to one of the first memory cells are arranged so that the access transistors 11 included in the first memory cell face each other, and the source region S of the access transistor 11 is Sharing. A bit line contact BC is provided on the source region S shared by the access transistors 11 of the first memory cell and the second memory cell. That is, the first memory cell and the second memory cell also share the bit line contact BC. A bit line BL extending in the X direction is provided on the bit line contact BC. A plurality of memory cells formed in the same element area AA are connected to each other by a bit line BL.
 サイリスタ12は、n型半導体層からなるカソード領域C、p型半導体層26、n型半導体層27、p型半導体層からなるアノード領域Aが順に接合された半導体層を備えている。なお、伝導型に付記したマイナス若しくはプラスの表記は、不純物の濃度を意味しており、マイナスは低濃度、プラスは高濃度を示している。 The thyristor 12 includes a semiconductor layer in which a cathode region C made of an n + type semiconductor layer, a p type semiconductor layer 26, an n type semiconductor layer 27, and an anode region A made of a p + type semiconductor layer are sequentially joined. . Note that the minus or plus notation added to the conductivity type means the concentration of impurities, minus indicates a low concentration, and plus indicates a high concentration.
 カソード領域Cは、アクセストランジスタ11のドレイン領域D上に設けられている。p型半導体層26、n型半導体層27、及びアノード領域Aは、半導体基板20上に設けられた絶縁層28上に設けられている。すなわち、p型半導体層26、n型半導体層27、及びアノード領域Aを含む半導体層は、半導体基板20上に部分的に形成された部分SOI(Silicon On Insulator)からなる。p型半導体層26上には、ゲート絶縁膜を介してゲート電極G2が設けられている。ゲート電極G2の側面には、側壁30が設けられている。 The cathode region C is provided on the drain region D of the access transistor 11. The p type semiconductor layer 26, the n type semiconductor layer 27, and the anode region A are provided on an insulating layer 28 provided on the semiconductor substrate 20. That is, the p type semiconductor layer 26, the n type semiconductor layer 27, and the semiconductor layer including the anode region A are made of partial SOI (Silicon On Insulator) partially formed on the semiconductor substrate 20. On the p type semiconductor layer 26, a gate electrode G2 is provided via a gate insulating film. Side walls 30 are provided on the side surfaces of the gate electrode G2.
 サイリスタ12は、カソード領域Cがドレイン領域Dと接続しているのを除けば、半導体基板20とは絶縁層28を介して電気的に絶縁されている。例えば、サイリスタを半導体基板に直接形成すると、サイリスタを構成する拡散領域の一部が隣接するもの同士で電気的に接続されてしまうため、隣接するサイリスタをそれぞれ独立して制御することができない。ところが、本実施形態では、サイリスタ12を部分SOIに形成しているため、隣接するサイリスタをそれぞれ独立して制御することが可能となる。 The thyristor 12 is electrically insulated from the semiconductor substrate 20 via the insulating layer 28 except that the cathode region C is connected to the drain region D. For example, when a thyristor is directly formed on a semiconductor substrate, adjacent diffusion thyristors cannot be controlled independently because part of diffusion regions constituting the thyristor are electrically connected to each other. However, in this embodiment, since the thyristor 12 is formed in the partial SOI, adjacent thyristors can be controlled independently.
 第1のメモリセルと、この第1のメモリセルに対して上記第2のメモリセルと反対方向に隣接する第3のメモリセルとは、これらに含まれるサイリスタ12が向き合うように配置され、また、サイリスタ12のアノード領域Aを共有している。第1のメモリセル及び第3のメモリセルのサイリスタ12に共有されたアノード領域A上には、アノードコンタクトACが設けられている。すなわち、第1のメモリセル及び第3のメモリセルは、アノードコンタクトACも共有している。アノードコンタクトAC上には、Y方向に延びるアノード線ALが設けられている。 The first memory cell and the third memory cell adjacent to the first memory cell in the opposite direction to the second memory cell are arranged so that the thyristor 12 included in the first memory cell faces each other, and The anode region A of the thyristor 12 is shared. An anode contact AC is provided on the anode region A shared by the thyristors 12 of the first memory cell and the third memory cell. That is, the first memory cell and the third memory cell also share the anode contact AC. An anode line AL extending in the Y direction is provided on the anode contact AC.
 また、隣接するメモリセル同士は、その断面構造がこれらメモリセルの境界線に対して線対称である。 Also, adjacent memory cells have a cross-sectional structure that is line symmetric with respect to the boundary line of these memory cells.
 素子領域AAは、例えば、図示せぬソース線SLにコンタクトを介して接続されており、このソース線SLによって例えば接地電圧に設定される。これにより、図1の回路図と同様に、同一の素子領域AAに形成された複数のメモリセルMCに含まれるアクセストランジスタ11は、素子領域AAに対応するこれらの基板ゲート端子SGがソース線SLに共通接続され、基板ゲート端子SGがソース線SLを介して接地される。 The element region AA is connected to, for example, a source line SL (not shown) via a contact, and is set to a ground voltage, for example, by the source line SL. Accordingly, as in the circuit diagram of FIG. 1, the access transistors 11 included in the plurality of memory cells MC formed in the same element region AA have the substrate gate terminals SG corresponding to the element regions AA connected to the source line SL. And the substrate gate terminal SG is grounded via the source line SL.
 例えば、アクセストランジスタ11をサイリスタ12が形成されるSOIに設けた場合、アクセストランジスタ11の基板ゲート端子SGをソース線SLに共通接続することができない。すなわち、図2の回路構成を実現できない。一方、本実施形態では、アクセストランジスタ11の基板ゲート端子SGの電圧を制御することができるため、例えば、アクセストランジスタ11の閾値電圧を調整することが可能となる。これにより、アクセストランジスタ11の動作特性を向上できる。 For example, when the access transistor 11 is provided in the SOI where the thyristor 12 is formed, the substrate gate terminal SG of the access transistor 11 cannot be commonly connected to the source line SL. That is, the circuit configuration of FIG. 2 cannot be realized. On the other hand, in this embodiment, since the voltage of the substrate gate terminal SG of the access transistor 11 can be controlled, for example, the threshold voltage of the access transistor 11 can be adjusted. Thereby, the operating characteristics of the access transistor 11 can be improved.
 半導体基板20とビット線BLとの間は、層間絶縁層25(絶縁層25A~25Cを含む)で埋め込まれている。このようにして、第1の実施形態に係る半導体記憶装置10が構成される。 Between the semiconductor substrate 20 and the bit line BL, an interlayer insulating layer 25 (including insulating layers 25A to 25C) is buried. Thus, the semiconductor memory device 10 according to the first embodiment is configured.
 [3.製造方法]
 次に、第1の実施形態に係る半導体記憶装置10を製造する方法の一例について図面を参照して説明する。なお、製造工程を示す断面図は、図7のI-I´線に沿った位置のものである。
[3. Production method]
Next, an example of a method for manufacturing the semiconductor memory device 10 according to the first embodiment will be described with reference to the drawings. The cross-sectional view showing the manufacturing process is taken along the line II ′ of FIG.
 まず、半導体基板(p-sub)20内にX方向に延びる複数の素子分離絶縁層21を形成することにより、半導体基板20の表面領域に複数の素子領域AAを形成する。 First, a plurality of element isolation insulating layers 21 extending in the X direction are formed in the semiconductor substrate (p-sub) 20 to form a plurality of element regions AA in the surface region of the semiconductor substrate 20.
 続いて、図10に示すように、半導体基板20(素子領域AA)上に、ゲート絶縁膜を介して、アクセストランジスタ11のゲート電極G1を形成する。ゲート電極G1は、図7に示したワード線WL1として機能する。ゲート電極G1は、ポリシリコン、TaN、Ti、Al、TaC、TiN、TiAlN、Cu、Au、RrO等のさまざまな導電性材料が適用可能である。ゲート絶縁膜は、シリコン酸化物、シリコン酸窒化物、AlO、SiN、HfO、HfAlO、ZrO、Ta、La、LaAlOなどさまざまな絶縁材料が適用可能であり、また、これらの絶縁膜の積層構造も適用可能である。続いて、ゲート電極G1の両側面に、例えばシリコン窒化物からなる側壁22を形成する。 Subsequently, as illustrated in FIG. 10, the gate electrode G <b> 1 of the access transistor 11 is formed on the semiconductor substrate 20 (element region AA) via a gate insulating film. The gate electrode G1 functions as the word line WL1 shown in FIG. Various conductive materials such as polysilicon, TaN, Ti, Al, TaC, TiN, TiAlN, Cu, Au, and RrO can be applied to the gate electrode G1. As the gate insulating film, various insulating materials such as silicon oxide, silicon oxynitride, AlO, SiN, HfO 2 , HfAlO, ZrO 2 , Ta 2 O 5 , La 2 O 3 , LaAlO 3 can be applied, and A laminated structure of these insulating films is also applicable. Subsequently, sidewalls 22 made of, for example, silicon nitride are formed on both side surfaces of the gate electrode G1.
 続いて、図11に示すように、露出した素子領域AA上に、犠牲層としてSiGe層23を形成する。SiGeは、堆積させてもよいし、エピタキシャル成長させてもよい。これにより、SiGe層23は、側壁22の端部まで形成される。 Subsequently, as shown in FIG. 11, a SiGe layer 23 is formed as a sacrificial layer on the exposed element region AA. SiGe may be deposited or epitaxially grown. Thereby, the SiGe layer 23 is formed up to the end of the side wall 22.
 続いて、図12に示すように、一旦、側壁22をエッチングし、ゲート電極G1及びSiGe層23を除く部分について素子領域AAを露出させる。続いて、素子領域AAにn型不純物をイオン注入し、アクセストランジスタ11のソース領域S及びドレイン領域Dを形成する。続いて、ゲート電極G1の両側面に側壁22を形成し、また、SiGe層の両側面に側壁24を形成する。 Subsequently, as shown in FIG. 12, the side wall 22 is once etched to expose the element region AA in a portion excluding the gate electrode G1 and the SiGe layer 23. Subsequently, n-type impurities are ion-implanted into the element region AA to form the source region S and the drain region D of the access transistor 11. Subsequently, sidewalls 22 are formed on both side surfaces of the gate electrode G1, and sidewalls 24 are formed on both side surfaces of the SiGe layer.
 続いて、図13に示すように、ゲート電極G1及びソース領域S上に例えばシリコン酸化物からなる絶縁層25Aを形成した後、ドレイン領域D及びSiGe層23上に半導体層26を形成する。これにより、半導体層26は、SiGe層23上に形成された延在部と、この延在部の両端からそれぞれ2つのドレイン領域Dを繋ぐ2つの支持部とからなるブリッジ形状を有する。半導体層26の幅は、素子領域AAの幅と概略同じである。半導体層26は、ポリシリコンの堆積や、シリコンのエピタキシャル成長によって形成される。半導体層26へはp型不純物のイオン注入が行われ、半導体層26は、p型半導体層になる。 Subsequently, as illustrated in FIG. 13, an insulating layer 25 </ b> A made of, for example, silicon oxide is formed on the gate electrode G <b> 1 and the source region S, and then a semiconductor layer 26 is formed on the drain region D and the SiGe layer 23. As a result, the semiconductor layer 26 has a bridge shape including an extending portion formed on the SiGe layer 23 and two supporting portions connecting the two drain regions D from both ends of the extending portion. The width of the semiconductor layer 26 is substantially the same as the width of the element region AA. The semiconductor layer 26 is formed by polysilicon deposition or silicon epitaxial growth. The semiconductor layer 26 is ion-implanted with p-type impurities, and the semiconductor layer 26 becomes a p -type semiconductor layer.
 続いて、図14に示すように、SiGe層23を選択エッチングで取り除き、取り除かれた中空の領域を例えばシリコン酸化物からなる絶縁層28で埋め込む。続いて、半導体層26上に、ゲート絶縁膜を介して、サイリスタ12のゲート電極G2を形成し、さらにゲート電極G2上に例えばシリコン窒化物からなるダミー絶縁層29を形成する。ゲート電極G2は、ポリシリコン、TaN、Ti、Al、TaC、TiN、TiAlN、Cu、Au、RrO等のさまざまな導電性材料が適用可能である。ゲート絶縁膜は、シリコン酸化物、シリコン酸窒化物、AlO、SiN、HfO、HfAlO、ZrO、Ta、La、LaAlOなどさまざまな絶縁材料が適用可能であり、また、これらの絶縁膜の積層構造も適用可能である。 Subsequently, as shown in FIG. 14, the SiGe layer 23 is removed by selective etching, and the removed hollow region is filled with an insulating layer 28 made of, for example, silicon oxide. Subsequently, a gate electrode G2 of the thyristor 12 is formed on the semiconductor layer 26 via a gate insulating film, and a dummy insulating layer 29 made of, for example, silicon nitride is further formed on the gate electrode G2. Various conductive materials such as polysilicon, TaN, Ti, Al, TaC, TiN, TiAlN, Cu, Au, and RrO can be applied to the gate electrode G2. As the gate insulating film, various insulating materials such as silicon oxide, silicon oxynitride, AlO, SiN, HfO 2 , HfAlO, ZrO 2 , Ta 2 O 5 , La 2 O 3 , LaAlO 3 can be applied, and A laminated structure of these insulating films is also applicable.
 続いて、ゲート電極G2及びダミー絶縁層29を加工し、ドレイン領域D上の半導体層26のみを露出させる。続いて、露出された部分の半導体層26内にn型不純物をイオン注入し、ドレイン領域D上にn型半導体層からなるカソード領域Cを形成する。 Subsequently, the gate electrode G2 and the dummy insulating layer 29 are processed to expose only the semiconductor layer 26 on the drain region D. Subsequently, n-type impurities are ion-implanted into the exposed semiconductor layer 26 to form a cathode region C made of an n + -type semiconductor layer on the drain region D.
 続いて、図15に示すように、ダミー絶縁層29を後退エッチングし、ダミー絶縁層29を内側に後退させる。続いて、装置全面に例えばシリコン酸化物からなる絶縁層25Bを堆積し、CMP(Chemical Mechanical Polishing)により絶縁層25Bを平坦化するとともにダミー絶縁層29を露出させる。 Subsequently, as shown in FIG. 15, the dummy insulating layer 29 is back-etched to retreat the dummy insulating layer 29 inward. Subsequently, an insulating layer 25B made of, for example, silicon oxide is deposited on the entire surface of the device, and the insulating layer 25B is planarized and the dummy insulating layer 29 is exposed by CMP (Chemical-Mechanical-Polishing).
 続いて、図16に示すように、ダミー絶縁層29を選択エッチングして、ゲート電極G2を部分的に露出させる。続いて、RIE(Reactive Ion Etching)によりゲート電極G2を加工し、半導体層26を露出させる。最後に残ったゲート電極G2が、サイリスタ12のゲート(ワード線WL2)を担う。続いて、露出した半導体層26にn型不純物をイオン注入する。これにより、半導体層26のうち露出した部分のみn型半導体層27となり、ゲート電極G2直下の部分はp型半導体層26のままである。 Subsequently, as shown in FIG. 16, the dummy insulating layer 29 is selectively etched to partially expose the gate electrode G2. Subsequently, the gate electrode G2 is processed by RIE (Reactive Ion Etching), and the semiconductor layer 26 is exposed. The last remaining gate electrode G2 serves as the gate (word line WL2) of the thyristor 12. Subsequently, n-type impurities are ion-implanted into the exposed semiconductor layer 26. As a result, only the exposed portion of the semiconductor layer 26 becomes the n type semiconductor layer 27, and the portion immediately below the gate electrode G 2 remains the p type semiconductor layer 26.
 続いて、図17に示すように、ゲート電極G2の側面に例えばシリコン窒化物からなる側壁30を形成した後、露出した半導体層27にp型不純物をイオン注入する。これにより、半導体層27のうち露出した部分のみp型半導体層となり、このp型半導体層がアノード領域Aとなる。一方、側壁30に覆われた半導体層27は、n型半導体層のままである。 Subsequently, as shown in FIG. 17, after forming a side wall 30 made of, for example, silicon nitride on the side surface of the gate electrode G <b> 2, p-type impurities are ion-implanted into the exposed semiconductor layer 27. Thus, only becomes p + -type semiconductor layer exposed portion of the semiconductor layer 27, the p + -type semiconductor layer becomes an anode region A. On the other hand, the semiconductor layer 27 covered with the sidewall 30 remains an n type semiconductor layer.
 続いて、ソース領域S上にビット線コンタクトBCを形成し、アノード領域A上にアノードコンタクトACを形成する。最後に、ビット線コンタクトBCに接続されたビット線BLと、アノードコンタクトACに接続されたアノード線ALとを形成する。 Subsequently, the bit line contact BC is formed on the source region S, and the anode contact AC is formed on the anode region A. Finally, the bit line BL connected to the bit line contact BC and the anode line AL connected to the anode contact AC are formed.
 以上のような製造方法を適用することにより、第1の実施形態に係るメモリセルMCが製造され、配線数を削減した省面積のメモリセルアレイが実現される。 By applying the manufacturing method as described above, the memory cell MC according to the first embodiment is manufactured, and a memory cell array with a reduced area in which the number of wirings is reduced is realized.
 以上の製造方法は一例であり、図8のメモリセル構造を実現させるために適宜別のプロセスが採用される。例えば、アクセストランジスタ11のゲート電極G1を形成する前に、サイリスタ12を形成してもよい。また、半導体層26をSiGe層23上にエピタキシャル成長させる代わりに、絶縁層28を形成した後に絶縁層28上に半導体層26を形成してもよい。また、ダミー絶縁層29を使ってサイリスタ12のゲート電極G2を加工する代わりに、リソグラフィを用いてゲート電極G2を加工してもよい。 The above manufacturing method is an example, and another process is appropriately employed to realize the memory cell structure of FIG. For example, the thyristor 12 may be formed before the gate electrode G1 of the access transistor 11 is formed. Further, instead of epitaxially growing the semiconductor layer 26 on the SiGe layer 23, the semiconductor layer 26 may be formed on the insulating layer 28 after the insulating layer 28 is formed. Further, instead of processing the gate electrode G2 of the thyristor 12 using the dummy insulating layer 29, the gate electrode G2 may be processed using lithography.
 以上詳述したように第1の実施形態では、アクセストランジスタ11及びサイリスタ12からメモリセルが構成され、第1のメモリセルとこれの一方に隣接する第2のメモリセルとは、アクセストランジスタ11のソース領域Sと、このソース領域S上に設けられるビット線コンタクトBCとを共有している。また、第1のメモリセルとこれの他方に隣接する第3のメモリセルとは、サイリスタ12のアノード領域Aと、このアノード領域A上に設けられるアノードコンタクトAC及びアノード線ALとを共有している。さらに、同一の素子領域AAに形成された複数のメモリセルは、アクセストランジスタ11の基板ゲートが共通接続されている。なお、複数のメモリセルは、アクセストランジスタ11に接続されるワード線WL1とサイリスタ12に接続されるワード線WL2とを個別に有しているため、独立に制御することが可能である。 As described above in detail, in the first embodiment, the access transistor 11 and the thyristor 12 constitute a memory cell. The first memory cell and the second memory cell adjacent to one of the memory cell are The source region S and the bit line contact BC provided on the source region S are shared. Further, the first memory cell and the third memory cell adjacent to the other one share the anode region A of the thyristor 12 and the anode contact AC and the anode line AL provided on the anode region A. Yes. Furthermore, the substrate gates of the access transistors 11 are commonly connected to the plurality of memory cells formed in the same element region AA. Since the plurality of memory cells individually have the word line WL1 connected to the access transistor 11 and the word line WL2 connected to the thyristor 12, they can be controlled independently.
 従って第1の実施形態によれば、アノードコンタクトAC及びアノード線ALの数を減らすことができる。また、ビット線コンタクトBCの数を減らすことができる。これにより、配線面積を削減することができるため、メモリセルアレイの面積を縮小することが可能となる。 Therefore, according to the first embodiment, the number of anode contacts AC and anode lines AL can be reduced. In addition, the number of bit line contacts BC can be reduced. As a result, the wiring area can be reduced, so that the area of the memory cell array can be reduced.
 また、隣接するメモリセルでアクセストランジスタ11のソース領域S或いはサイリスタ12のアノード領域Aを共有しているため、メモリセル間に素子分離領域を設ける必要がない。これにより、素子分離領域がない分、メモリセルアレイの面積をより縮小することが可能となる。 Further, since the source region S of the access transistor 11 or the anode region A of the thyristor 12 is shared by adjacent memory cells, it is not necessary to provide an element isolation region between the memory cells. As a result, the area of the memory cell array can be further reduced because there is no element isolation region.
 また、サイリスタ12は、半導体基板20上に形成された部分SOI上に設けられており、カソード領域Cがドレイン領域Dと接続しているのを除けば、半導体基板20とは絶縁層28を介して電気的に絶縁されている。これにより、隣接するサイリスタをそれぞれ独立して制御することが可能となるため、図2に示した本実施形態の接続関係を実現することができる。 The thyristor 12 is provided on a partial SOI formed on the semiconductor substrate 20, and the semiconductor substrate 20 is interposed via an insulating layer 28 except that the cathode region C is connected to the drain region D. Are electrically insulated. As a result, the adjacent thyristors can be controlled independently, so that the connection relationship of the present embodiment shown in FIG. 2 can be realized.
 また、アクセストランジスタ11を半導体基板20に形成しているため、アクセストランジスタ11の基板ゲート端子SGの電圧(基板電圧)を制御することができる。これにより、アクセストランジスタ11の動作特性を向上できる。 Further, since the access transistor 11 is formed on the semiconductor substrate 20, the voltage (substrate voltage) of the substrate gate terminal SG of the access transistor 11 can be controlled. Thereby, the operating characteristics of the access transistor 11 can be improved.
 [第2の実施形態]
 第2の実施形態は、隣接するメモリセルでビット線コンタクトBC或いはアノード線ALを共有するようにして揮発性半導体記憶装置を構成し、さらにサイリスタ12を縦型構造にしている。
[Second Embodiment]
In the second embodiment, a volatile semiconductor memory device is configured such that adjacent memory cells share a bit line contact BC or an anode line AL, and the thyristor 12 has a vertical structure.
 図18は、本発明の第2の実施形態に係る揮発性半導体記憶装置10の構成を示すレイアウト図である。図19は、図18に示したI-I´線に沿った半導体記憶装置10の断面図である。図18に示したII-II´線に沿った半導体記憶装置10の断面図は、図9と同じである。また、第2の実施形態に係る揮発性半導体記憶装置10の等価回路図は、図2と同じである。 FIG. 18 is a layout diagram showing a configuration of the volatile semiconductor memory device 10 according to the second embodiment of the present invention. FIG. 19 is a cross-sectional view of the semiconductor memory device 10 along the line II ′ shown in FIG. A cross-sectional view of the semiconductor memory device 10 taken along line II-II ′ shown in FIG. 18 is the same as FIG. An equivalent circuit diagram of the volatile semiconductor memory device 10 according to the second embodiment is the same as FIG.
 ビット線BLは、素子領域AAの上方に配置され、素子領域AAと平行になるようにしてX方向に延在している。ビット線BLは、ビット線コンタクトBCに接続されている。ワード線WL1、WL2、及びアノード線ALは、Y方向に延在している。各素子領域AAには、隣接するもの同士が接続された複数のメモリセルMCが設けられている。複数のメモリセルMCは、ワード線WL1同士、ワード線WL2同士が交互に向き合うようにしてX方向に配置される。 The bit line BL is disposed above the element area AA and extends in the X direction so as to be parallel to the element area AA. The bit line BL is connected to the bit line contact BC. The word lines WL1 and WL2 and the anode line AL extend in the Y direction. Each element region AA is provided with a plurality of memory cells MC to which adjacent ones are connected. The plurality of memory cells MC are arranged in the X direction so that the word lines WL1 and the word lines WL2 face each other alternately.
 メモリセルMCは、アクセストランジスタ11及びサイリスタ12によって構成される。半導体基板(或いはウェル)20は、p型半導体基板(p-sub)である。 The memory cell MC includes an access transistor 11 and a thyristor 12. The semiconductor substrate (or well) 20 is a p-type semiconductor substrate (p-sub).
 アクセストランジスタ11は、半導体基板20内に離間して設けられたソース領域S及びドレイン領域Dと、ソース領域S及びドレイン領域D間の半導体基板20上にゲート絶縁膜を介して設けられたゲート電極G1とを備えている。ソース領域S及びドレイン領域Dは、n型半導体領域からなる。ゲート電極G1の両側面には、側壁22が設けられている。 The access transistor 11 includes a source region S and a drain region D that are provided separately in the semiconductor substrate 20, and a gate electrode that is provided on the semiconductor substrate 20 between the source region S and the drain region D via a gate insulating film. G1. The source region S and the drain region D are n + type semiconductor regions. Side walls 22 are provided on both side surfaces of the gate electrode G1.
 第1のメモリセルと、この第1のメモリセルの一方に隣接する第2のメモリセルとは、これらに含まれるアクセストランジスタ11が向き合うように配置され、また、アクセストランジスタ11のソース領域Sを共有している。第1のメモリセル及び第2のメモリセルのアクセストランジスタ11に共有されたソース領域S上には、ビット線コンタクトBCが設けられている。すなわち、第1のメモリセル及び第2のメモリセルは、ビット線コンタクトBCも共有している。ビット線コンタクトBC上には、X方向に延びるビット線BLが設けられている。また、同一の素子領域AAに形成された複数のメモリセルは、ビット線BLによって互いに接続されている。 The first memory cell and the second memory cell adjacent to one of the first memory cells are arranged so that the access transistors 11 included in the first memory cell face each other, and the source region S of the access transistor 11 is Sharing. A bit line contact BC is provided on the source region S shared by the access transistors 11 of the first memory cell and the second memory cell. That is, the first memory cell and the second memory cell also share the bit line contact BC. A bit line BL extending in the X direction is provided on the bit line contact BC. A plurality of memory cells formed in the same element area AA are connected to each other by a bit line BL.
 サイリスタ12は、半導体基板20内に設けられたn型半導体層からなるカソード領域Cと、カソード領域C上に設けられたp型半導体層26と、p型半導体層26上に設けられたn型半導体層27と、n型半導体層27上に設けられたp型半導体層からなるアノード領域Aとを備えている。すなわち、p型半導体層26、n型半導体層27、及びアノード領域Aからなる半導体層は、ピラー状の半導体層である。サイリスタ12のカソード領域Cは、アクセストランジスタ11のドレイン領域Dに接続されている。本実施形態では、カソード領域C及びドレイン領域Dは同一の半導体領域によって構成されている。p型半導体層26の側面には、ゲート絶縁膜を介してゲート電極G2が設けられている。 The thyristor 12 is provided on the cathode region C made of an n + type semiconductor layer provided in the semiconductor substrate 20, the p type semiconductor layer 26 provided on the cathode region C, and the p type semiconductor layer 26. The n type semiconductor layer 27 and the anode region A made of a p + type semiconductor layer provided on the n type semiconductor layer 27 are provided. That is, the semiconductor layer including the p type semiconductor layer 26, the n type semiconductor layer 27, and the anode region A is a pillar-shaped semiconductor layer. The cathode region C of the thyristor 12 is connected to the drain region D of the access transistor 11. In the present embodiment, the cathode region C and the drain region D are configured by the same semiconductor region. A gate electrode G2 is provided on the side surface of the p type semiconductor layer 26 via a gate insulating film.
 アノード領域A上には、Y方向に延びるアノード線ALが設けられている。第1のメモリセルと、この第1のメモリセルに対して上記第2のメモリセルと反対方向に隣接する第3のメモリセルとは、アノード線ALを共有している。 On the anode region A, an anode line AL extending in the Y direction is provided. The first memory cell and the third memory cell adjacent to the first memory cell in the opposite direction to the second memory cell share the anode line AL.
 第1のメモリセル及び第3のメモリセルにおいて、これらに含まれる半導体層(カソード領域C、p型半導体層26、n型半導体層27、及びアノード領域Aからなる)は、絶縁層31、及びn型半導体領域32によって電気的に絶縁されている。 In the first memory cell and the third memory cell, the semiconductor layer (including the cathode region C, the p -type semiconductor layer 26, the n -type semiconductor layer 27, and the anode region A) included therein includes the insulating layer 31. And the n-type semiconductor region 32 are electrically insulated.
 また、隣接するメモリセル同士は、その断面構造がこれらメモリセルの境界線に対して線対称である。 Also, adjacent memory cells have a cross-sectional structure that is line symmetric with respect to the boundary line of these memory cells.
 素子領域AAは、ソース線SLを介して接地される。すなわち、同一の素子領域AAに形成された複数のメモリセルMCは、これらの基板ゲート端子SGがソース線SLに共通接続されて接地される。半導体基板20とビット線BLとの間は、層間絶縁層25で埋め込まれている。このようにして、第2の実施形態に係る半導体記憶装置10が構成される。なお、半導体の伝導型については、以上の伝導型の指定に制限されず、以上の伝導型を逆にしてもよい。 The element region AA is grounded via the source line SL. That is, the plurality of memory cells MC formed in the same element region AA are grounded with their substrate gate terminals SG commonly connected to the source line SL. An interlayer insulating layer 25 is embedded between the semiconductor substrate 20 and the bit line BL. Thus, the semiconductor memory device 10 according to the second embodiment is configured. In addition, about the conductivity type of a semiconductor, it is not restricted to the designation | designated of the above conductivity type, You may reverse the above conductivity type.
 以上詳述したように第2の実施形態では、アクセストランジスタ11及びサイリスタ12からメモリセルが構成され、第1のメモリセルとこれの一方に隣接する第2のメモリセルとは、アクセストランジスタ11のソース領域Sと、このソース領域S上に設けられるビット線コンタクトBCとを共有している。また、第1のメモリセルとこれの他方に隣接する第3のメモリセルとは、アノード線ALを共有している。さらに、同一の素子領域AAに形成された複数のメモリセルは、アクセストランジスタ11の基板ゲートが共通接続されている。 As described above in detail, in the second embodiment, the access transistor 11 and the thyristor 12 constitute a memory cell, and the first memory cell and the second memory cell adjacent to one of the memory cell are The source region S and the bit line contact BC provided on the source region S are shared. The first memory cell and the third memory cell adjacent to the other one share the anode line AL. Furthermore, the substrate gates of the access transistors 11 are commonly connected to the plurality of memory cells formed in the same element region AA.
 従って第2の実施形態によれば、アノード線AL及びビット線コンタクトBCの数を減らすことができる。これにより、配線面積を削減することができるため、メモリセルアレイの面積を縮小することが可能となる。また、サイリスタ12を縦型に構成しているため、メモリセルアレイの面積をより小さくすることが可能となる。 Therefore, according to the second embodiment, the number of anode lines AL and bit line contacts BC can be reduced. As a result, the wiring area can be reduced, so that the area of the memory cell array can be reduced. In addition, since the thyristor 12 is configured vertically, the area of the memory cell array can be further reduced.
 また、アクセストランジスタ11のソース領域Sを共有するメモリセル間には、素子分離領域を設ける必要がない。これにより、素子分離領域がない分、メモリセルアレイの面積をより縮小することが可能となる。 Also, it is not necessary to provide an element isolation region between memory cells sharing the source region S of the access transistor 11. As a result, the area of the memory cell array can be further reduced because there is no element isolation region.
 また、サイリスタ12を縦型にしているため、サイリスタ12は、カソード領域Cがドレイン領域Dと接続しているのを除けば、半導体基板20とは電気的に絶縁されている。これにより、隣接するサイリスタをそれぞれ独立して制御することが可能となるため、図2に示した接続関係を実現することができる。 Since the thyristor 12 is a vertical type, the thyristor 12 is electrically insulated from the semiconductor substrate 20 except that the cathode region C is connected to the drain region D. As a result, the adjacent thyristors can be controlled independently, and the connection relationship shown in FIG. 2 can be realized.
 [第3の実施形態]
 第3の実施形態は、サイリスタ12の他の構成例を示しており、MOS構造のサイリスタを用いて揮発性半導体記憶装置10を構成するようにしている。
[Third embodiment]
The third embodiment shows another configuration example of the thyristor 12, and the volatile semiconductor memory device 10 is configured using a thyristor having a MOS structure.
 図20は、本発明の第3の実施形態に係る揮発性半導体記憶装置10の構成を示す断面図である。揮発性半導体記憶装置10の回路構成、及びアクセストランジスタ11のデバイス構造は、第1の実施形態と同じである。 FIG. 20 is a cross-sectional view showing the configuration of the volatile semiconductor memory device 10 according to the third embodiment of the present invention. The circuit configuration of the volatile semiconductor memory device 10 and the device structure of the access transistor 11 are the same as those in the first embodiment.
 サイリスタ12は、半導体基板20内に設けられたn型半導体層からなるカソード領域Cと、カソード領域C上に設けられたp型半導体層26と、p型半導体層26上に設けられた絶縁膜(トンネル絶縁膜)33と、絶縁膜33上に設けられたアノード電極Aとを備えている。p型半導体層26の側面には、ゲート絶縁膜を介してゲート電極G2が設けられている。アノード電極Aは、図1のアノード線ALに対応する。すなわち、図20に示したアノード電極Aは、Y方向に延在している。ゲート電極G2は、ワード線WL2として機能する。サイリスタ12のカソード領域Cは、アクセストランジスタ11のドレイン領域Dに接続されている。本実施形態では、カソード領域C及びドレイン領域Dは同一の半導体領域によって構成されている。 The thyristor 12 is provided on the cathode region C made of an n + type semiconductor layer provided in the semiconductor substrate 20, the p type semiconductor layer 26 provided on the cathode region C, and the p type semiconductor layer 26. Insulating film (tunnel insulating film) 33 and anode electrode A provided on insulating film 33 are provided. A gate electrode G2 is provided on the side surface of the p type semiconductor layer 26 via a gate insulating film. The anode electrode A corresponds to the anode line AL in FIG. That is, the anode electrode A shown in FIG. 20 extends in the Y direction. The gate electrode G2 functions as the word line WL2. The cathode region C of the thyristor 12 is connected to the drain region D of the access transistor 11. In the present embodiment, the cathode region C and the drain region D are configured by the same semiconductor region.
 アノード電極Aは、ポリシリコン、TaN、Ti、Al、TaC、TiN、TiAlN、Cu、Au、RrO等のさまざまな導電性材料が適用可能である。絶縁膜33としては、シリコン酸化物などが用いられる。 The anode electrode A can be made of various conductive materials such as polysilicon, TaN, Ti, Al, TaC, TiN, TiAlN, Cu, Au, and RrO. As the insulating film 33, silicon oxide or the like is used.
 第1のメモリセルと、この第1のメモリセルの一方に隣接する第2のメモリセルとは、これらに含まれるアクセストランジスタ11が向き合うように配置され、また、アクセストランジスタ11のソース領域Sを共有している。 The first memory cell and the second memory cell adjacent to one of the first memory cells are arranged so that the access transistors 11 included in the first memory cell face each other, and the source region S of the access transistor 11 is Sharing.
 第1のメモリセルと、この第1のメモリセルに対して上記第2のメモリセルと反対方向に隣接する第3のメモリセルとは、アノード電極Aを共有している。第1のメモリセル及び第3のメモリセルにおいて、これらに含まれる半導体層(カソード領域C、及びp型半導体層26からなる)は、絶縁層31、及びn型半導体領域32によって電気的に絶縁されている。 The first memory cell and the third memory cell adjacent to the first memory cell in the opposite direction to the second memory cell share the anode electrode A. In the first memory cell and the third memory cell, the semiconductor layer (including the cathode region C and the p -type semiconductor layer 26) included therein is electrically connected by the insulating layer 31 and the n-type semiconductor region 32. Insulated.
 また、隣接するメモリセル同士は、その断面構造がこれらメモリセルの境界線に対して線対称である。 Also, adjacent memory cells have a cross-sectional structure that is line symmetric with respect to the boundary line of these memory cells.
 素子領域AAは、ソース線SLを介して接地される。すなわち、同一の素子領域AAに形成された複数のメモリセルMCは、これらの基板ゲート端子SGがソース線SLに共通接続されて接地される。このようにして、第3の実施形態に係る半導体記憶装置10が構成される。なお、半導体の伝導型については、以上の伝導型の指定に制限されず、以上の伝導型を逆にしてもよい。 The element region AA is grounded via the source line SL. That is, the plurality of memory cells MC formed in the same element region AA are grounded with their substrate gate terminals SG commonly connected to the source line SL. Thus, the semiconductor memory device 10 according to the third embodiment is configured. In addition, about the conductivity type of a semiconductor, it is not restricted to the designation | designated of the above conductivity type, You may reverse the above conductivity type.
 次に、サイリスタ12の動作について説明する。図21乃至図23は、サイリスタ12の動作を説明するエネルギーバンド図である。図21乃至図23は、サイリスタ12を構成する、アノード電極A(電極)、絶縁膜33、p型半導体層26(p型半導体)、及びn型半導体層C(n型半導体)のエネルギーバンドを示している。Efはフェルミ準位、Ecは伝導帯のエネルギー準位、Evは価電子帯のエネルギー準位、Efmは金属のフェルミ準位である。 Next, the operation of the thyristor 12 will be described. 21 to 23 are energy band diagrams for explaining the operation of the thyristor 12. FIGS. 21 to 23 show the anode electrode A (electrode), the insulating film 33, the p type semiconductor layer 26 (p type semiconductor), and the n + type semiconductor layer C (n + type semiconductor) constituting the thyristor 12. Shows the energy band. Ef is the Fermi level, Ec is the conduction band energy level, Ev is the valence band energy level, and Efm is the metal Fermi level.
 図21に示すように、アノード電極Aに電圧が印加されていないときは、PN接合にも電圧が印加されず、PN接合には0Vでの内蔵電位のみが発生しており、p型半導体層26には少数キャリア(電子)が発生していない。よって、サイリスタ12には電流が流れず、サイリスタ12はオフしている(高抵抗状態)。 As shown in FIG. 21, when no voltage is applied to the anode electrode A, no voltage is applied to the PN junction, and only a built-in potential at 0 V is generated at the PN junction, and the p type semiconductor Minority carriers (electrons) are not generated in the layer 26. Therefore, no current flows through the thyristor 12, and the thyristor 12 is off (high resistance state).
 図22に示すように、アノード電極Aに電圧を印加すると、絶縁膜33界面のp型半導体層は空乏化し、アノード電極Aの電圧はこの空乏化領域に印加される。p型半導体層26は反転しておらず少数キャリアも発生していない。一方で、わずかに絶縁膜33に電界が印加されるので、アノード電極Aから正孔が注入され始める。 As shown in FIG. 22, when a voltage is applied to the anode electrode A, the p type semiconductor layer at the interface of the insulating film 33 is depleted, and the voltage of the anode electrode A is applied to this depleted region. The p type semiconductor layer 26 is not inverted and minority carriers are not generated. On the other hand, since an electric field is slightly applied to the insulating film 33, holes start to be injected from the anode electrode A.
 アノード電極Aにさらに電圧を印加すると、アノード電極Aからの正孔注入が顕著になり、p型半導体層26のポテンシャルを引き下げる。同時にカソード(n型半導体層C)から電子が注入されやすくなり、最終的には図23に示すようにp型半導体層26が反転する。 When a voltage is further applied to the anode electrode A, hole injection from the anode electrode A becomes remarkable, and the potential of the p -type semiconductor layer 26 is lowered. At the same time, electrons are easily injected from the cathode (n + type semiconductor layer C), and finally the p type semiconductor layer 26 is inverted as shown in FIG.
 この時点で、アノード電極Aの電圧はすべて絶縁膜33に印加されることになり、電子電流および正孔電流が大きくなる(オン状態(低抵抗状態))。正孔が常にp型半導体層26に注入されているのでこの領域のポテンシャルは常に引き下げられ、反転状態が維持される。また、絶縁膜33を通過する正孔量も変動せず、オン状態が続く。ワード線WL2(ゲート電極G2)への印加電圧はp型半導体層26の反転状態を促進する効果がある。 At this time, the voltage of the anode electrode A is all applied to the insulating film 33, and the electron current and the hole current increase (ON state (low resistance state)). Since holes are always injected into the p -type semiconductor layer 26, the potential in this region is always lowered and the inverted state is maintained. In addition, the amount of holes passing through the insulating film 33 does not vary, and the on state continues. The voltage applied to the word line WL2 (gate electrode G2) has the effect of promoting the inversion state of the p -type semiconductor layer 26.
 一旦p型半導体層26の反転状態が形成された後に、アノード電極Aの電圧を下げていくと正孔電流が減少するが、p型半導体層26の反転状態が継続するまではオン電流(電子電流及び正孔電流)が流れる。オン状態のサイリスタ12をオフさせるには、アノード電極Aの電圧を所定電圧以下に設定する。 Once the inversion state of the p -type semiconductor layer 26 is formed, the hole current decreases when the voltage of the anode electrode A is lowered, but the on-current is maintained until the inversion state of the p -type semiconductor layer 26 continues. (Electron current and hole current) flow. In order to turn off the thyristor 12 in the on state, the voltage of the anode electrode A is set to a predetermined voltage or lower.
 このように、図20に示したサイリスタ12は、アノード、カソード、及びゲートに印加する電圧に応じて高抵抗状態と低抵抗状態とを有するため、記憶素子として用いることが可能である。 As described above, the thyristor 12 shown in FIG. 20 has a high resistance state and a low resistance state in accordance with voltages applied to the anode, the cathode, and the gate, and thus can be used as a memory element.
 以上詳述したように第3の実施形態によれば、第2の実施形態と同じ効果を得ることができる。また、第2の実施形態のサイリスタと比べて、サイリスタ12を構成する半導体層の数を減らせるため、メモリセルアレイのより微細化が可能となり、さらに製造コストを低減することが可能となる。 As described in detail above, according to the third embodiment, the same effects as those of the second embodiment can be obtained. Further, since the number of semiconductor layers constituting the thyristor 12 can be reduced as compared with the thyristor of the second embodiment, the memory cell array can be further miniaturized and the manufacturing cost can be further reduced.
 [第4の実施形態]
 第4の実施形態は、MOS構造のサイリスタの他の構成例である。図24は、本発明の第4の実施形態に係る揮発性半導体記憶装置10の構成を示す断面図である。揮発性半導体記憶装置10の回路構成、及びアクセストランジスタ11のデバイス構造は、第1の実施形態と同じである。
[Fourth Embodiment]
The fourth embodiment is another configuration example of a thyristor having a MOS structure. FIG. 24 is a cross-sectional view showing the configuration of the volatile semiconductor memory device 10 according to the fourth embodiment of the present invention. The circuit configuration of the volatile semiconductor memory device 10 and the device structure of the access transistor 11 are the same as those in the first embodiment.
 半導体基板20内には、n型半導体層からなるカソード領域Cと、n型半導体層35とが互いに離間して設けられている。カソード領域C及びn型半導体層35間の半導体基板20上には、ゲート絶縁膜を介してゲート電極G2が設けられている。ゲート電極G1の両側面には、側壁34が設けられている。n型半導体層35上には絶縁膜(トンネル絶縁膜)33が設けられ、絶縁膜33上にはアノード電極Aが設けられている。このようにして、第3の実施形態のサイリスタ12が構成される。 The semiconductor substrate 20, and the cathode region C made of n + -type semiconductor layer, and an n + -type semiconductor layer 35 is provided apart from each other. On the semiconductor substrate 20 between the cathode region C and the n + type semiconductor layer 35, a gate electrode G2 is provided via a gate insulating film. Side walls 34 are provided on both side surfaces of the gate electrode G1. An insulating film (tunnel insulating film) 33 is provided on the n + type semiconductor layer 35, and an anode electrode A is provided on the insulating film 33. In this way, the thyristor 12 of the third embodiment is configured.
 アノード電極Aは、図1のアノード線ALに対応する。すなわち、図24に示したアノード電極Aは、Y方向に延在している。ゲート電極G2は、ワード線WL2として機能する。サイリスタ12のカソード領域Cは、アクセストランジスタ11のドレイン領域Dと共有されている。 The anode electrode A corresponds to the anode line AL in FIG. That is, the anode electrode A shown in FIG. 24 extends in the Y direction. The gate electrode G2 functions as the word line WL2. The cathode region C of the thyristor 12 is shared with the drain region D of the access transistor 11.
 第1のメモリセルと、この第1のメモリセルの一方に隣接する第2のメモリセルとは、これらに含まれるアクセストランジスタ11が向き合うように配置され、また、アクセストランジスタ11のソース領域Sを共有している。 The first memory cell and the second memory cell adjacent to one of the first memory cells are arranged so that the access transistors 11 included in the first memory cell face each other, and the source region S of the access transistor 11 is Sharing.
 第1のメモリセルと、この第1のメモリセルに対して上記第2のメモリセルと反対方向に隣接する第3のメモリセルとは、アノード電極Aを共有している。第1のメモリセル及び第3のメモリセルにおいて、これらに含まれるn型半導体層35は、絶縁層31、及びn型半導体領域32によって電気的に絶縁されている。 The first memory cell and the third memory cell adjacent to the first memory cell in the opposite direction to the second memory cell share the anode electrode A. In the first memory cell and the third memory cell, the n + -type semiconductor layer 35 included therein is electrically insulated by the insulating layer 31 and the n-type semiconductor region 32.
 このように構成されたサイリスタ12において、n型半導体層35は、導電体として機能し、ゲート電極G2直下のp型半導体領域と絶縁膜33とアノード電極Aとを電気的に接続する役割を果たす。よって、アノード電極A、絶縁膜33、p型半導体領域、及びn型半導体層(カソード領域)Cからなる接触関係は、図21と同様になる。すなわち、第4の実施形態のサイリスタ12は、第3の実施形態のサイリスタと同様の動作をする。 In the thyristor 12 configured as described above, the n + type semiconductor layer 35 functions as a conductor, and serves to electrically connect the p type semiconductor region immediately below the gate electrode G2, the insulating film 33, and the anode electrode A. Fulfill. Therefore, the contact relationship including the anode electrode A, the insulating film 33, the p type semiconductor region, and the n + type semiconductor layer (cathode region) C is the same as that in FIG. That is, the thyristor 12 of the fourth embodiment operates in the same manner as the thyristor of the third embodiment.
 なお、n型半導体層35は、省略することも可能である。図25は、サイリスタ12の他の構成例を示す断面図である。半導体基板20上には絶縁膜33が設けられ、絶縁膜33上にはアノード電極Aが設けられている。アノード電極Aは、ゲート電極G2に隣接して配置されている。このようにしてサイリスタ12を構成した場合でも、第3の実施形態のサイリスタと同様の動作を実現できる。 The n + type semiconductor layer 35 can be omitted. FIG. 25 is a cross-sectional view showing another configuration example of the thyristor 12. An insulating film 33 is provided on the semiconductor substrate 20, and an anode electrode A is provided on the insulating film 33. The anode electrode A is disposed adjacent to the gate electrode G2. Even when the thyristor 12 is configured in this manner, the same operation as the thyristor of the third embodiment can be realized.
 以上詳述したように第4の実施形態によれば、第2の実施形態と同じ効果を得ることができる。また、サイリスタ12をMOSFETと同様のプロセスを用いて製造することができる。これにより、製造コストを低減することができる。 As described in detail above, according to the fourth embodiment, the same effect as that of the second embodiment can be obtained. Further, the thyristor 12 can be manufactured using a process similar to that of the MOSFET. Thereby, manufacturing cost can be reduced.
 以上、具体例を参照しつつ、本発明の実施形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、揮発性半導体記憶装置を構成する各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。 
 また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に包含される。
The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. For example, regarding the specific configuration of each element constituting the volatile semiconductor memory device, as long as a person skilled in the art can implement the present invention in a similar manner by appropriately selecting from a known range and obtain the same effect, It is included in the scope of the present invention.
In addition, combinations of any two or more elements of each specific example within the technically possible range are also included in the scope of the present invention as long as they include the gist of the present invention.
 その他、本発明の実施形態として上述した揮発性半導体記憶装置を基にして、当業者が適宜設計変更して実施し得る全ての揮発性半導体記憶装置も、本発明の要旨を包含する限り本発明の範囲に属する。 
 その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
In addition, all volatile semiconductor memory devices that can be implemented by those skilled in the art based on the volatile semiconductor memory device described above as an embodiment of the present invention are included in the present invention as long as they include the gist of the present invention. Belongs to the range.
In addition, in the category of the idea of the present invention, those skilled in the art can conceive of various changes and modifications, and it is understood that these changes and modifications also belong to the scope of the present invention. .
 MC…メモリセル、BL…ビット線、WL…ワード線、AL…アノード線、BC…ビット線コンタクト、AC…アノードコンタクト、SL…ソース線、AA…素子領域、S…ソース領域、D…ドレイン領域、G1,G2ゲート電極、C…カソード領域、A…アノード領域、10…揮発性半導体記憶装置、11…アクセストランジスタ、12…サイリスタ、20…半導体基板、21…素子分離絶縁層、22,24,30,34…側壁、23…SiGe層、25…層間絶縁層、26…p型半導体層、27…n型半導体層、28…絶縁層、29…ダミー絶縁層、31…絶縁層、32…n型半導体領域、33…絶縁膜、35…n型半導体層。 MC ... memory cell, BL ... bit line, WL ... word line, AL ... anode line, BC ... bit line contact, AC ... anode contact, SL ... source line, AA ... element region, S ... source region, D ... drain region G1, G2 gate electrodes, C ... cathode region, A ... anode region, 10 ... volatile semiconductor memory device, 11 ... access transistor, 12 ... thyristor, 20 ... semiconductor substrate, 21 ... element isolation insulating layer, 22, 24, Reference numerals 30, 34 ... sidewalls, 23 ... SiGe layer, 25 ... interlayer insulating layer, 26 ... p - type semiconductor layer, 27 ... n - type semiconductor layer, 28 ... insulating layer, 29 ... dummy insulating layer, 31 ... insulating layer, 32 ... n-type semiconductor region, 33 ... insulating film, 35 ... n + type semiconductor layer.

Claims (10)

  1.  半導体基板と、
     前記半導体基板上に部分的に設けられた絶縁層と、
     前記絶縁層上に設けられた半導体層と、
     第1乃至第3のメモリセルとを具備し、
     前記第1乃至第3のメモリセルの各々は、前記半導体基板に設けられ、ソース、ドレイン及び第1のゲートを有するMOSFETと、前記半導体層に設けられ、アノード、カソード及び第2のゲートを有するサイリスタとを備え、かつ前記ドレインは前記カソードに電気的に接続され、
     前記第1及び第2のメモリセルは、ソース同士が電気的に接続され、
     前記第1及び第3のメモリセルは、アノード同士が電気的に接続されることを特徴とする揮発性半導体記憶装置。
    A semiconductor substrate;
    An insulating layer partially provided on the semiconductor substrate;
    A semiconductor layer provided on the insulating layer;
    First to third memory cells,
    Each of the first to third memory cells is provided on the semiconductor substrate, has a MOSFET having a source, a drain, and a first gate, and is provided on the semiconductor layer, and has an anode, a cathode, and a second gate. A thyristor, and the drain is electrically connected to the cathode;
    In the first and second memory cells, sources are electrically connected to each other,
    The volatile semiconductor memory device, wherein anodes of the first and third memory cells are electrically connected to each other.
  2.  前記半導体基板は、第1の伝導型であり、
     前記ソース及び前記ドレインは、第2の伝導型であり、
     前記半導体層は、第2の伝導型の第1の半導体領域、第1の伝導型の第2の半導体領域、第2の伝導型の第3の半導体領域、第1の伝導型の第4の半導体領域が順に接合されて構成され、
     前記第1の半導体領域は、前記カソードに対応し、
     前記第4の半導体領域は、前記アノードに対応し、
     前記第2のゲートは、前記第2の半導体領域上に設けられることを特徴とする請求項1に記載の揮発性半導体記憶装置。
    The semiconductor substrate is of a first conductivity type;
    The source and the drain are of a second conductivity type;
    The semiconductor layer includes a first semiconductor region of a second conductivity type, a second semiconductor region of a first conductivity type, a third semiconductor region of a second conductivity type, a fourth semiconductor of a first conductivity type. The semiconductor regions are joined in order,
    The first semiconductor region corresponds to the cathode;
    The fourth semiconductor region corresponds to the anode;
    The volatile semiconductor memory device according to claim 1, wherein the second gate is provided on the second semiconductor region.
  3.  第1の方向に延在し、かつ前記第1乃至第3のメモリセルのソースに電気的に接続された第1の配線をさらに具備し、
     前記第1乃至第3のメモリセルは、前記第1の方向に配列されることを特徴とする請求項1に記載の揮発性半導体記憶装置。
    A first wiring extending in a first direction and electrically connected to a source of the first to third memory cells;
    The volatile semiconductor memory device according to claim 1, wherein the first to third memory cells are arranged in the first direction.
  4.  前記ソース上に設けられ、かつ前記第1の配線に接続され、かつ前記第1及び第2のメモリセルに共有されるコンタクトをさらに具備することを特徴とする請求項3に記載の揮発性半導体記憶装置。 The volatile semiconductor according to claim 3, further comprising a contact provided on the source and connected to the first wiring and shared by the first and second memory cells. Storage device.
  5.  前記半導体基板には、隣接するメモリセルを電気的に分離する絶縁層が形成されないことを特徴とする請求項2に記載の揮発性半導体記憶装置。 3. The volatile semiconductor memory device according to claim 2, wherein an insulating layer for electrically separating adjacent memory cells is not formed on the semiconductor substrate.
  6.  前記第1及び第3のメモリセルに共有され、かつ前記第1及び第3のメモリセルのアノードに電気的に接続された第2の配線をさらに具備することを特徴とする請求項1に記載の揮発性半導体記憶装置。 2. The semiconductor device according to claim 1, further comprising: a second wiring shared by the first and third memory cells and electrically connected to anodes of the first and third memory cells. Volatile semiconductor memory device.
  7.  ソース、ドレイン、第1のゲート及び基板ゲートを有するMOSFETと、アノード、カソード及び第2のゲートを有するサイリスタとからそれぞれが構成され、前記ドレインは前記カソードに電気的に接続される、第1乃至第3のメモリセルを具備し、
     前記第1及び第2のメモリセルは、ソース同士が電気的に接続され、
     前記第1及び第3のメモリセルは、アノード同士が電気的に接続され、
     前記第1乃至第3のメモリセルは、基板ゲート同士が電気的に接続されることを特徴とする揮発性半導体記憶装置。
    A MOSFET having a source, a drain, a first gate, and a substrate gate, and a thyristor having an anode, a cathode, and a second gate are each configured, and the drain is electrically connected to the cathode. Comprising a third memory cell;
    In the first and second memory cells, sources are electrically connected to each other,
    The anodes of the first and third memory cells are electrically connected to each other,
    In the volatile semiconductor memory device, the first to third memory cells have substrate gates electrically connected to each other.
  8.  前記MOSFETは、第1の伝導型の半導体基板に設けられ、
     前記ソース及び前記ドレインは、第2の伝導型であり、
     前記サイリスタは、
      前記半導体基板に設けられ、かつ前記カソードに対応し、かつ第2の伝導型である第1の半導体領域と、
      前記第1の半導体領域上に設けられ、かつ第1の伝導型である第2の半導体領域と、
      前記第2の半導体領域上に設けられ、かつ第2の伝導型である第3の半導体領域と、
      前記第3の半導体領域上に設けられ、かつ前記アノードに対応し、かつ第1の伝導型である第4の半導体領域とを含み、
     前記第2のゲートは、前記第2の半導体領域の側面に設けられることを特徴とする請求項7に記載の揮発性半導体記憶装置。
    The MOSFET is provided on a semiconductor substrate of a first conductivity type,
    The source and the drain are of a second conductivity type;
    The thyristor is
    A first semiconductor region provided on the semiconductor substrate and corresponding to the cathode and having a second conductivity type;
    A second semiconductor region provided on the first semiconductor region and having a first conductivity type;
    A third semiconductor region provided on the second semiconductor region and having a second conductivity type;
    A fourth semiconductor region provided on the third semiconductor region and corresponding to the anode and having a first conductivity type;
    The volatile semiconductor memory device according to claim 7, wherein the second gate is provided on a side surface of the second semiconductor region.
  9.  前記MOSFETは、第1の伝導型の半導体基板に設けられ、
     前記ソース及び前記ドレインは、第2の伝導型であり、
     前記サイリスタは、
      前記半導体基板に設けられ、かつ前記カソードに対応し、かつ第2の伝導型である第1の半導体領域と、
      前記第1の半導体領域上に設けられ、かつ第1の伝導型である第2の半導体領域と、
      前記第2の半導体領域上に設けられた絶縁膜と、
      前記絶縁膜上に設けられ、かつ前記アノードに対応する電極とを含み、
     前記第2のゲートは、前記第2の半導体領域の側面に設けられることを特徴とする請求項7に記載の揮発性半導体記憶装置。
    The MOSFET is provided on a semiconductor substrate of a first conductivity type,
    The source and the drain are of a second conductivity type;
    The thyristor is
    A first semiconductor region provided on the semiconductor substrate and corresponding to the cathode and having a second conductivity type;
    A second semiconductor region provided on the first semiconductor region and having a first conductivity type;
    An insulating film provided on the second semiconductor region;
    An electrode provided on the insulating film and corresponding to the anode;
    The volatile semiconductor memory device according to claim 7, wherein the second gate is provided on a side surface of the second semiconductor region.
  10.  前記MOSFETは、第1の伝導型の半導体基板に設けられ、
     前記ソース及び前記ドレインは、第2の伝導型であり、
     前記サイリスタは、
      前記半導体基板に設けられ、かつ前記カソードに対応し、かつ第2の伝導型である半導体領域と、
      前記半導体基板上に設けられた絶縁膜と、
      前記絶縁膜上に設けられ、かつ前記アノードに対応する電極とを含み、
     前記第2のゲートは、前記半導体領域と前記電極との間の前記半導体基板上に設けられることを特徴とする請求項7に記載の揮発性半導体記憶装置。
    The MOSFET is provided on a semiconductor substrate of a first conductivity type,
    The source and the drain are of a second conductivity type;
    The thyristor is
    A semiconductor region provided on the semiconductor substrate and corresponding to the cathode and having a second conductivity type;
    An insulating film provided on the semiconductor substrate;
    An electrode provided on the insulating film and corresponding to the anode;
    The volatile semiconductor memory device according to claim 7, wherein the second gate is provided on the semiconductor substrate between the semiconductor region and the electrode.
PCT/JP2009/066701 2009-09-25 2009-09-25 Volatile semiconductor memory device WO2011036779A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066701 WO2011036779A1 (en) 2009-09-25 2009-09-25 Volatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066701 WO2011036779A1 (en) 2009-09-25 2009-09-25 Volatile semiconductor memory device

Publications (1)

Publication Number Publication Date
WO2011036779A1 true WO2011036779A1 (en) 2011-03-31

Family

ID=43795549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066701 WO2011036779A1 (en) 2009-09-25 2009-09-25 Volatile semiconductor memory device

Country Status (1)

Country Link
WO (1) WO2011036779A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246560A (en) * 2001-02-13 2002-08-30 Toshiba Corp Semiconductor device and its manufacturing method
JP2003030980A (en) * 2001-07-13 2003-01-31 Toshiba Corp Semiconductor memory
US7042027B2 (en) * 2002-08-30 2006-05-09 Micron Technology, Inc. Gated lateral thyristor-based random access memory cell (GLTRAM)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246560A (en) * 2001-02-13 2002-08-30 Toshiba Corp Semiconductor device and its manufacturing method
JP2003030980A (en) * 2001-07-13 2003-01-31 Toshiba Corp Semiconductor memory
US7042027B2 (en) * 2002-08-30 2006-05-09 Micron Technology, Inc. Gated lateral thyristor-based random access memory cell (GLTRAM)

Similar Documents

Publication Publication Date Title
US11201215B2 (en) MOSFET and memory cell having improved drain current through back bias application
US7582926B2 (en) Semiconductor storage device, its manufacturing method and operating method, and portable electronic apparatus
US10553683B2 (en) MOSFET and memory cell having improved drain current through back bias application
US8648414B2 (en) Semiconductor structures including bodies of semiconductor material, devices including such structures and related methods
US8928060B2 (en) Architecture to improve cell size for compact array of split gate flash cell
US10685695B2 (en) Semiconductor device
US8143656B2 (en) High performance one-transistor DRAM cell device and manufacturing method thereof
KR20080032025A (en) Tft charge storage memory cell having high-mobility corrugated channel
US11908899B2 (en) MOSFET and memory cell having improved drain current through back bias application
CN114121999A (en) NOR type memory bank, memory device and manufacturing method
KR101073640B1 (en) High-density vertical-type semiconductor memory cell string, cell string array and fabricating method thereof
KR20100049570A (en) Planar double gate transistor storage cell
JP2007129187A (en) Non-volatile semiconductor memory device and method of manufacturing same
TWI824701B (en) Memory device useing semiconductor elements
US20230108227A1 (en) Memory device using semiconductor device
US11342430B2 (en) Semiconductor device
JP4678362B2 (en) Semiconductor device and manufacturing method thereof
WO2011036779A1 (en) Volatile semiconductor memory device
TW201633509A (en) Memory device and method for fabricating the same
US20070045722A1 (en) Non-volatile memory and fabrication thereof
TWI841332B (en) Semiconductor memory device
US20240179895A1 (en) Semiconductor device including memory elements
WO2024142389A1 (en) Semiconductor device having memory element
US20220415901A1 (en) Method for manufacturing memory device using semiconductor element
TW202349678A (en) Semiconductor memory device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP