WO2011036744A1 - Method for controlling mosquitoes - Google Patents

Method for controlling mosquitoes Download PDF

Info

Publication number
WO2011036744A1
WO2011036744A1 PCT/JP2009/066534 JP2009066534W WO2011036744A1 WO 2011036744 A1 WO2011036744 A1 WO 2011036744A1 JP 2009066534 W JP2009066534 W JP 2009066534W WO 2011036744 A1 WO2011036744 A1 WO 2011036744A1
Authority
WO
WIPO (PCT)
Prior art keywords
diet
fabric
microencapsulated
nonwoven fabric
mosquitoes
Prior art date
Application number
PCT/JP2009/066534
Other languages
French (fr)
Japanese (ja)
Inventor
隆紀 安藤
貴 愛知後
Original Assignee
住友商事株式会社
株式会社エス・ディー・エス バイオテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友商事株式会社, 株式会社エス・ディー・エス バイオテック filed Critical 住友商事株式会社
Priority to PCT/JP2009/066534 priority Critical patent/WO2011036744A1/en
Publication of WO2011036744A1 publication Critical patent/WO2011036744A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/18Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof

Definitions

  • the present invention relates to a method for controlling the attack of mosquitoes that transmit malaria parasites or dengue viruses.
  • Patent Document 1 Conventionally, various insecticides and insect repellents have been used to control mosquitoes that carry malaria parasites or dengue viruses.
  • the present inventors diligently studied the mode of use of diet, which is one of the powerful repellents.
  • the microencapsulated diet is applied to the nonwoven fabric by adhering, mixing, blending, or dispersing, and the fabric is finished using this as a fabric material was found to be effective in controlling against mosquito attacks by applying it to indoor fabric products or clothing, and the present invention was completed.
  • the present invention is a method for controlling against the attack of mosquitoes mediated by malaria parasites or dengue viruses, which is a finished fabric using a nonwoven fabric to which microencapsulated diet is attached, mixed, blended or dispersed as a fabric material Is applied to indoor fabric products or clothing.
  • Suitable examples of the material of the nonwoven fabric are cotton fiber, rayon fiber, polyester fiber, and blended fiber containing cotton, rayon or polyester.
  • a preferred example of the above microencapsulated diet is in the form of a microcapsule having an average particle size of 3 to 50 ⁇ m.
  • the fabric is preferably made of a non-woven fabric containing microencapsulated diet in an amount of 2 to 50 g as a diet mass per 1 m 2 of fabric.
  • mosquitoes that transmit malaria parasites or dengue viruses can be effectively controlled. That is, mosquitoes do not stand close to fabrics incorporating microencapsulated diets, and therefore people who handle indoor fabric products using such fabrics, or who wear clothing using such fabrics Can be prevented against attacks from mosquitoes. Moreover, the high control effect with respect to a mosquito is acquired over a long period of time by selecting the said cotton fiber, rayon fiber, polyester fiber, and the mixed fiber containing cotton, rayon, or polyester as a material of a nonwoven fabric. Since the control method of the present invention can effectively control mosquitoes that carry malaria parasites or dengue viruses, it can be expected to contribute to the prevention of these infectious diseases.
  • the present inventors have conducted various studies on the use of diet as a method for controlling mosquitoes that transmit malaria parasites or dengue viruses.
  • Diet is a known volatile compound that has a repellent effect on mosquitoes, but even if such a repellent compound is used to control mosquitoes that transmit malaria parasites or dengue viruses, However, it is considered that it is lower than that using a pesticide.
  • the present inventors surprisingly apply a finished fabric using, as a fabric material, a nonwoven fabric to which microencapsulated diet is attached, mixed, blended, or dispersed, to indoor fabric products and clothing, particularly the nonwoven fabric.
  • mosquitoes can be effectively controlled for a long period of time by selecting from the above-mentioned cotton fibers, rayon fibers, polyester fibers, and blended fibers containing cotton, rayon or polyester.
  • the microencapsulated diet particles is partly associated and three-dimensionally formed on the nonwoven fabric fibers. Arrangement and contact of the mosquito with non-woven fabric that has been treated with microencapsulated diet in an indoor environment, ie, an environment where mosquitoes are attracted, contributes to effective mosquito control. It seems to be.
  • the mosquitoes to be controlled by the present invention are mosquitoes that transmit malaria parasites or dengue viruses, and specifically, Anopheles ⁇ sinensis, Anopheles gambiae, Anopheles hyrcanus, and other mosquitoes, Aedes aegypti, (Aedes albopictus) and other squids such as Culex pitaens pallens, Culex pipiens pallens, and Culex quinquefasciatus.
  • the DEET used in the present invention is a general name of diethyl toluamide (N, N-diethyl-m-toluamide).
  • Micro-encapsulation of diets includes phase separation, liquid drying, melt dispersion cooling, spray drying, pan coating, air suspension coating, powder bed, interfacial polymerization, in situ polymerization, liquid It is carried out by a known method such as a medium-curing coating method or an interfacial reaction method, and particularly suitable methods include interfacial polymerization methods and in situ polymerization methods.
  • the material of the microcapsule film includes melamine resin, urethane resin, polyamide resin, polyacrylamide resin, acrylate resin, epoxy resin, silica compound, polystyrene resin, polyacrylonitrile resin, ethyl cellulose or aminoplast resin.
  • melamine resins In particular, melamine resins, urethane resins, polyamide resins, and polyacrylamide resins are preferable examples.
  • the preferred average particle size (D50) of the microencapsulated diet is 1 to 100 ⁇ m, and the more preferred average particle size is 3 to 50 ⁇ m.
  • the nonwoven fabric used in the present invention is a nonwoven fabric made of cotton fiber, rayon fiber, cotton / polyester blended fiber, rayon / polyester blended fiber, cotton / rayon blended fiber, polyester fiber, polyethylene fiber, nylon fiber, etc.
  • Suitable examples include cotton fibers, rayon fibers, polyester fibers, and blended fibers containing cotton, rayon or polyester (cotton / polyester blended fibers, rayon / polyester blended fibers, cotton / rayon blended fibers, etc.).
  • the method for adhering, mixing, blending or dispersing the microencapsulated diet to the nonwoven fabric is not particularly limited, but preferably a dispersion containing the microencapsulated diet is sprayed onto the nonwoven fabric or the dispersion is mixed with the dispersion. It is spread on the nonwoven fabric by impregnating it with the nonwoven fabric. Or the above-mentioned fiber for nonwoven fabric manufacture is added to this dispersion liquid, and this microcapsule is spread on the fiber for nonwoven fabric manufacture, and a nonwoven fabric is manufactured after that.
  • binder resins for the purpose are acrylic resins, silicone resins, silicone / acrylic copolymers, epoxy silicone resins, epoxy silicone / urethane combined compounds or copolymers, acrylic / urethane combined compounds or copolymers. is there.
  • the non-woven fabric on which the microencapsulated diet produced by the above method is spread is used as a cloth material to finish the cloth, and the cloth is processed into an indoor cloth product or clothing.
  • indoor fabric products are mosquito nets, curtains, carpets, mats, wall hangings, duvets, blankets, sheets, pillow covers and tents, especially mosquito nets, curtains, carpets, mats, wall hangings, duvets, blankets.
  • Sheets or pillow covers are suitable examples.
  • Examples of clothing include shirts, slacks, hats, turban, and socks.
  • the fabric finished using a nonwoven fabric that has been treated with microencapsulated diet is used for all or part of these products or garments.
  • the fabric is preferably a non-woven fabric on which micro-encapsulated diet is spread so that the mass of diet per 1 m 2 of fabric is 1 to 100 g, more preferably 2 to 50 g. Further, in such a fabric, the amount of the nonwoven fabric containing the microencapsulated diet is 10 to 2000 g, more preferably 20 to 200 g, per 1 m 2 of fabric.
  • insecticides, insect repellents, repellents or synergists that are commonly used for controlling the attack of mosquitoes that carry malaria parasites or dengue viruses are used in combination with the control method of the present invention. By doing so, the control effect can be further enhanced.
  • insecticides, insect repellents, repellents or synergists include the following.
  • insecticides insect repellents, repellents or synergists
  • concentration of such insecticide, insect repellent, repellent or synergist used in the present invention is desirably adjusted as appropriate according to the strength of physiological activity possessed by these agents.
  • insecticides insect repellents, repellents or synergists
  • these insecticides, insect repellents, repellents or synergists can be used in the same indoor fabric product or garment together with the microencapsulated diet, in separate indoor fabric products or garment, or Any method of using as a spraying agent or a volatilizing agent is possible.
  • An initial condensate was prepared.
  • the condensate was added to the emulsion and stirred at a liquid temperature of 75 ° C. for 2 hours to obtain a sustained-release melamine resin wall microcapsule dispersion containing diet.
  • the ratio of the wall film amount to the core material amount was 8.6%.
  • the average particle size of the microencapsulated diet was 6 ⁇ m.
  • This microencapsulated diet dispersion was diluted with water to adjust the concentration as a diet to 10%.
  • the above-mentioned fiber dispersion is sprayed onto a polyester spunlace nonwoven fabric (80 g / m 2 ) and heat treated at 180 ° C. for 1 minute to spread the microencapsulated diet on the nonwoven fabric. It was.
  • the obtained nonwoven fabric contained 8 g of microencapsulated diet per 1 m 2 as diet.
  • Example 1 [Mosquito control effect 1: Culex tritaeniorhynchus] A small cage of 20 cm in length, 10 cm in width and 10 cm in height, covered with a 20 mesh stainless steel wire mesh, is covered with the non-woven fabric produced in Example 1, and this is covered at room temperature (10-30 ° C.) 6 Left for a month.
  • a polyester spunlace nonwoven fabric 80 g / m 2
  • this nonwoven fabric is sprayed with an ethanol solution containing 10% deet to give 1 m 2 of nonwoven fabric.
  • 12 g of diet was contained, and this was allowed to stand at room temperature (10 to 30 ° C.) for 6 months.
  • the small rectangular parallelepiped basket covered with the nonwoven fabric produced in Example 1 was placed in a large rectangular parallelepiped basket having a length of 40 cm, a width of 40 cm, and a height of 40 cm with a 20-mesh stainless wire mesh. Then, one mouse was put in a small cage, and 50 Culex tritaeniorhynchus were released in a large cage, and the number of dead insects after 4 hours was counted to determine the death rate. In addition, as a control, a similar test using a mouse and a Culex mosquito was performed on a small rectangular basket covered with a nonwoven fabric sprayed with an ethanol solution of Diet to determine the death rate.
  • the death rate when using the nonwoven fabric produced in the previous production example was 75%, while the death rate when using a nonwoven fabric sprayed with diet ethanol was 6%. there were.
  • This result showed that mosquitoes can be effectively controlled for a long time by the control method of the present invention.
  • Example 2 [Mosquito control effect 2: Anopheles gambiae]
  • Anopheles gambiae was used instead of the Culex mosquito in Example 1.
  • the death rate when using the nonwoven fabric produced in the previous production example was 81%, while the death rate when using the nonwoven fabric sprayed with diet ethanol was 5%. there were. That is, it was shown that mosquitoes can be effectively controlled for a long period of time by the control method of the present invention even when Anopheles gambiae is targeted.
  • Example 3 [Mosquito control effect 3: Aedes albopictus]
  • the test was conducted under the same conditions as in Example 1 except that Aedes albopictus was used in place of the Culex mosquito in Example 1.
  • the death rate when using the nonwoven fabric produced in the previous production example was 72%, whereas the death rate when using the nonwoven fabric sprayed with diet ethanol was 8%. there were. That is, it was shown that mosquitoes can be effectively controlled over a long period of time by the control method of the present invention even when targeting the human striped mosquito.
  • Example 4 [Mosquito control effect 4: Blood absorption test using processed blanket]
  • a rayon spunlace nonwoven fabric (80 g / m 2 ) is immersed in a fiber processing diet dispersion containing the microencapsulated diet produced in the previous production example, followed by heat treatment at 180 ° C. for 1 minute.
  • the microencapsulated diet was spread on the nonwoven fabric.
  • the obtained nonwoven fabric contained 8 g of microencapsulated diet per 1 m 2 as diet.
  • a fabric finished using this nonwoven fabric was processed into a blanket.
  • a nonwoven fabric (permethrin 500 mg / m 2 ) spread using the same procedure using permethrin instead of a microencapsulated diet, and a nonwoven fabric that has not been treated with microencapsulated diet or permethrin as a reference example Each was processed into a blanket. These blankets were allowed to stand at room temperature (10 to 30 ° C.) for 6 months, and then subjected to a subsequent blood absorption test.
  • the protection rate of the untreated blanket was 30%
  • the protection rate of the blanket treated with permethrin was 25%
  • the protection rate of the blanket treated with microencapsulated diet was 70%. From these results, it was shown that mosquitoes can be effectively controlled by the control method of the present invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Provided is a method for effectively controlling the attacks of mosquitoes which may carry malarial parasites or dengue virus. A method for controlling the attacks of mosquitoes which may carry malarial parasites or dengue virus, characterized by applying a cloth that has been finished using a nonwoven fabric as textile material to cloth products for indoor use or clothing, said nonwoven fabric holding microcapsulated DEET in an adhering, incorporated, blended or dispersed state.

Description

蚊の防除方法How to control mosquitoes
 本発明は、マラリア原虫又はデングウィルスを媒介する蚊の攻撃を防除する方法に関する。 The present invention relates to a method for controlling the attack of mosquitoes that transmit malaria parasites or dengue viruses.
 従来より、マラリア原虫又はデングウィルスを媒介する蚊を防除するために、様々な殺虫剤や昆虫忌避剤が使用されている(特許文献1)。 Conventionally, various insecticides and insect repellents have been used to control mosquitoes that carry malaria parasites or dengue viruses (Patent Document 1).
特開平5-271170号公報JP-A-5-271170
 近年、種々の殺虫剤においてそれら薬剤の耐性を獲得した害虫が出現しており、今後、蚊においても、これまで使用してきた殺虫剤に対して抵抗性を有するものの出現が見込まれている。このため、殺虫剤等に対する抵抗性を有する蚊の出現リスクを低くできるとして、殺虫剤の代わりに忌避剤を使用した蚊の効果的な防除方法の開発が求められている。
 従って本発明は、マラリア原虫又はデングウィルスを媒介する蚊の攻撃に対する防除のために、有効な忌避剤を使用する方法を提供することを課題とする。
In recent years, pests that have acquired resistance to these drugs have appeared in various insecticides, and in the future, mosquitoes that are resistant to the insecticides used so far are expected to appear. For this reason, the development of the effective control method of the mosquito which uses a repellent instead of an insecticide is calculated | required because the appearance risk of the mosquito which has resistance with an insecticide etc. can be lowered | hung.
Accordingly, it is an object of the present invention to provide a method of using an effective repellent for controlling against mosquito attacks that carry malaria parasites or dengue viruses.
 本発明者らは、上記の課題を解決すべく、有力な忌避剤の一つであるディートの使用の態様につき鋭意検討を行った。その結果、マラリア原虫又はデングウィルスを媒介する蚊攻撃に対する防除のために、マイクロカプセル化したディートを不織布に付着、混入、配合又は分散するなどして適用し、これを布材料として用い仕上げた布帛を、室内用布製品又は衣料に適用することで、こうした蚊の攻撃に対する防除に有効であることを見出し、本発明を完成させた。 In order to solve the above-mentioned problems, the present inventors diligently studied the mode of use of diet, which is one of the powerful repellents. As a result, in order to control against mosquito attacks mediated by malaria parasite or dengue virus, the microencapsulated diet is applied to the nonwoven fabric by adhering, mixing, blending, or dispersing, and the fabric is finished using this as a fabric material Was found to be effective in controlling against mosquito attacks by applying it to indoor fabric products or clothing, and the present invention was completed.
 すなわち、本発明は、マラリア原虫又はデングウィルスを媒介する蚊の攻撃に対して防除する方法であって、マイクロカプセル化ディートが付着、混入、配合又は分散された不織布を布材料として用い仕上げた布帛を、室内用布製品又は衣料に適用することを特徴とする方法である。 That is, the present invention is a method for controlling against the attack of mosquitoes mediated by malaria parasites or dengue viruses, which is a finished fabric using a nonwoven fabric to which microencapsulated diet is attached, mixed, blended or dispersed as a fabric material Is applied to indoor fabric products or clothing.
 上記の不織布の材質の好適な例は綿繊維、レーヨン繊維、ポリエステル繊維及び、綿、レーヨン又はポリエステルを含む混紡繊維である。
 また、上記のマイクロカプセル化ディートの好適な例は、3ないし50μmの平均粒子径を有するマイクロカプセル形態のものである。
 さらには、前記布帛は布帛1m2当たりディート質量として2ないし50gの量でマイクロカプセル化ディートを含む不織布からなることが好ましい。
Suitable examples of the material of the nonwoven fabric are cotton fiber, rayon fiber, polyester fiber, and blended fiber containing cotton, rayon or polyester.
A preferred example of the above microencapsulated diet is in the form of a microcapsule having an average particle size of 3 to 50 μm.
Further, the fabric is preferably made of a non-woven fabric containing microencapsulated diet in an amount of 2 to 50 g as a diet mass per 1 m 2 of fabric.
 本発明によって、マラリア原虫又はデングウィルスを媒介する蚊を効果的に防除することができる。すなわち、蚊は、マイクロカプセル化ディートを取り入れた布帛に寄り付かず、よって、その種の布帛を用いた室内用布製品を取り扱う人、或いはその種の布帛を用いた衣料を身に着けた人を、蚊からの攻撃に対して防ぐことができる。
 また、不織布の材質として、上記綿繊維、レーヨン繊維、ポリエステル繊維及び、綿、レーヨン又はポリエステルを含む混紡繊維を選択することで、長期間に亘って蚊に対する高い防除効果が得られる。
 そして本発明の防除方法は、マラリア原虫又はデングウィルスを媒介する蚊を効果的に防除することができることから、これら感染症予防への貢献にも期待ができる。
According to the present invention, mosquitoes that transmit malaria parasites or dengue viruses can be effectively controlled. That is, mosquitoes do not stand close to fabrics incorporating microencapsulated diets, and therefore people who handle indoor fabric products using such fabrics, or who wear clothing using such fabrics Can be prevented against attacks from mosquitoes.
Moreover, the high control effect with respect to a mosquito is acquired over a long period of time by selecting the said cotton fiber, rayon fiber, polyester fiber, and the mixed fiber containing cotton, rayon, or polyester as a material of a nonwoven fabric.
Since the control method of the present invention can effectively control mosquitoes that carry malaria parasites or dengue viruses, it can be expected to contribute to the prevention of these infectious diseases.
 前述の通り、本発明者らは、マラリア原虫又はデングウィルスを媒介する蚊の防除方法として、ディートの使用方法に関して種々検討を行ってきた。
 なお、ディートは蚊に対する忌避作用を有する揮散性の化合物として公知の物質であるが、こうした忌避性の化合物をマラリア原虫又はデングウィルスを媒介する蚊の防除に用いたとしても、得られる防除効果は、常識的には殺虫剤を用いた方法と比べれば低くなると考えられる。
 しかしながら、本発明者らは意外にも、マイクロカプセル化ディートを付着、混入、配合又は分散させた不織布を布材料として用い仕上げた布帛を、室内用布製品や衣料に適用すること、特に前記不織布を上記綿繊維、レーヨン繊維、ポリエステル繊維及び、綿、レーヨン又はポリエステルを含む混紡繊維から選択することで、蚊を長期間、効果的に防除が可能であることを見出した。
 なお、上述の方法が長期間、高い防除効果を発揮する詳細なメカニズムについては不明であるが、マイクロカプセル化ディート(粒子)が、一部、会合した形で、不織布の繊維上に立体的に配置されること、並びに室内環境、すなわち、蚊が誘引される環境で、蚊がマイクロカプセル化ディートによる処理が施された不織布に接触することが、こうした効果的な蚊の防除に寄与しているものと思われる。
As described above, the present inventors have conducted various studies on the use of diet as a method for controlling mosquitoes that transmit malaria parasites or dengue viruses.
Diet is a known volatile compound that has a repellent effect on mosquitoes, but even if such a repellent compound is used to control mosquitoes that transmit malaria parasites or dengue viruses, However, it is considered that it is lower than that using a pesticide.
However, the present inventors surprisingly apply a finished fabric using, as a fabric material, a nonwoven fabric to which microencapsulated diet is attached, mixed, blended, or dispersed, to indoor fabric products and clothing, particularly the nonwoven fabric. It was found that mosquitoes can be effectively controlled for a long period of time by selecting from the above-mentioned cotton fibers, rayon fibers, polyester fibers, and blended fibers containing cotton, rayon or polyester.
In addition, although the detailed mechanism by which the above-mentioned method exerts a high control effect for a long time is unknown, the microencapsulated diet (particles) is partly associated and three-dimensionally formed on the nonwoven fabric fibers. Arrangement and contact of the mosquito with non-woven fabric that has been treated with microencapsulated diet in an indoor environment, ie, an environment where mosquitoes are attracted, contributes to effective mosquito control. It seems to be.
 本発明が防除の対象とする蚊は、マラリア原虫又はデングウィルスを媒介する蚊であり、具体的にはシナハマダラカ(Anopheles sinensis)、Anopheles gambiae、Anopheles hyrcanus等のハマダラカ類、ネッタイシマカ(Aedes aegypti)、ヒトスジシマカ(Aedes albopictus)等のエーデス属、コガタアカイエカ(Culex tritaeniorhynchus)、アカイエカ(Culex pipiens pallens)、ネッタイイエカ(Culex quinquefasciatus)等のイエカ類が挙げられる。 The mosquitoes to be controlled by the present invention are mosquitoes that transmit malaria parasites or dengue viruses, and specifically, Anopheles の sinensis, Anopheles gambiae, Anopheles hyrcanus, and other mosquitoes, Aedes aegypti, (Aedes albopictus) and other squids such as Culex pitaens pallens, Culex pipiens pallens, and Culex quinquefasciatus.
 本発明において使用するディート(DEET)は、ジエチルトルアミド(N,N-diethyl-m-toluamide)の一般名である。 The DEET used in the present invention is a general name of diethyl toluamide (N, N-diethyl-m-toluamide).
 ディートのマイクロカプセル化は、相分離法、液中乾燥法、融解分散冷却法、スプレードライング法、パンコーティング法、気中懸濁被覆法、粉床法、界面重合法、in situ重合法、液中硬化被覆法又は界面反応法等の既知の方法によって実施され、特に好適な方法としては界面重合法あるいはin situ重合法が挙げられる。
 マイクロカプセル膜の材質としては、メラミン樹脂、ウレタン系樹脂、ポリアミド樹脂、ポリアクリルアミド樹脂、アクリル酸エステル系樹脂、エポキシ系樹脂、シリカ系化合物、ポリスチレン樹脂、ポリアクリロニトリル樹脂、エチルセルロース又はアミノプラスト樹脂等が挙げられ、特に、メラミン樹脂、ウレタン系樹脂、ポリアミド樹脂、ポリアクリルアミド樹脂が好適な例として挙げられる。
 また、マイクロカプセル化ディートの好ましい平均粒子径(D50)は、1ないし100μm、より好ましい平均粒子径は3ないし50μmである。
Micro-encapsulation of diets includes phase separation, liquid drying, melt dispersion cooling, spray drying, pan coating, air suspension coating, powder bed, interfacial polymerization, in situ polymerization, liquid It is carried out by a known method such as a medium-curing coating method or an interfacial reaction method, and particularly suitable methods include interfacial polymerization methods and in situ polymerization methods.
The material of the microcapsule film includes melamine resin, urethane resin, polyamide resin, polyacrylamide resin, acrylate resin, epoxy resin, silica compound, polystyrene resin, polyacrylonitrile resin, ethyl cellulose or aminoplast resin. In particular, melamine resins, urethane resins, polyamide resins, and polyacrylamide resins are preferable examples.
The preferred average particle size (D50) of the microencapsulated diet is 1 to 100 μm, and the more preferred average particle size is 3 to 50 μm.
 本発明において使用する不織布は、綿繊維、レーヨン繊維、綿・ポリエステル混紡繊維、レーヨン・ポリエステル混紡繊維、綿・レーヨン混紡繊維、ポリエステル繊維、ポリエチレン繊維及びナイロン繊維等を材質とする不織布であり、特に、綿繊維、レーヨン繊維、ポリエステル繊維、及び、綿、レーヨン又はポリエステルを含む混紡繊維(綿・ポリエステル混紡繊維、レーヨン・ポリエステル混紡繊維、綿・レーヨン混紡繊維等)が好適な例として挙げられる。 The nonwoven fabric used in the present invention is a nonwoven fabric made of cotton fiber, rayon fiber, cotton / polyester blended fiber, rayon / polyester blended fiber, cotton / rayon blended fiber, polyester fiber, polyethylene fiber, nylon fiber, etc. Suitable examples include cotton fibers, rayon fibers, polyester fibers, and blended fibers containing cotton, rayon or polyester (cotton / polyester blended fibers, rayon / polyester blended fibers, cotton / rayon blended fibers, etc.).
 前記のマイクロカプセル化ディートを前記不織布に付着、混入、配合又は分散させる方法は特に限定されないが、好ましくは該マイクロカプセル化ディートを含む分散液を前記不織布に噴霧したり、或いは該分散液に前記不織布を含浸させるなどして不織布に展着させる。或いは、該分散液に不織布製造のための上述の繊維を加え、該マイクロカプセルを不織布製造のための繊維に展着させ、その後不織布を製造する。
 より強固にマイクロカプセル化ディートを不織布或いは繊維に展着させるために、バインダーとしての樹脂(展着剤)を展着処理のための溶液に加えてから不織布又は繊維を処理することが望ましく、この目的のための好適なバインダー樹脂の例は、アクリル樹脂、シリコン樹脂、シリコン・アクリル共重合物、エポキシシリコン樹脂、エポキシシリコン・ウレタン併用化合物もしくは共重合物、アクリル・ウレタン併用化合物もしくは共重合物である。
The method for adhering, mixing, blending or dispersing the microencapsulated diet to the nonwoven fabric is not particularly limited, but preferably a dispersion containing the microencapsulated diet is sprayed onto the nonwoven fabric or the dispersion is mixed with the dispersion. It is spread on the nonwoven fabric by impregnating it with the nonwoven fabric. Or the above-mentioned fiber for nonwoven fabric manufacture is added to this dispersion liquid, and this microcapsule is spread on the fiber for nonwoven fabric manufacture, and a nonwoven fabric is manufactured after that.
In order to spread the microencapsulated diet more firmly on the nonwoven fabric or fiber, it is desirable to add the resin (spreading agent) as a binder to the solution for spreading treatment before treating the nonwoven fabric or fiber. Examples of suitable binder resins for the purpose are acrylic resins, silicone resins, silicone / acrylic copolymers, epoxy silicone resins, epoxy silicone / urethane combined compounds or copolymers, acrylic / urethane combined compounds or copolymers. is there.
 前記の方法で製造された、マイクロカプセル化ディートを展着させた不織布を、布材料として用いて布帛に仕上げ、これら布帛を室内用布製品又は衣料に加工する。そしてマイクロカプセル化ディートによる処理が施された布帛を用いた室内用布製品を使用したり、或いは、その種の布帛を用いた衣料を身につけることにより、蚊の攻撃に対して防御することができる。
 このような室内用布製品の例は、蚊帳、カーテン、カーペット、マット、壁掛け、布団、毛布、シーツ、枕カバー及びテント等であり、特に、蚊帳、カーテン、カーペット、マット、壁掛け、布団、毛布、シーツ又は枕カバーが好適な例として挙げられる。また衣料の例としてはシャツ、スラックス、帽子、ターバン、靴下等が挙げられる。
 これら室内用布製品又は衣料において、マイクロカプセル化ディートによる処理が施された不織布を用いて仕上げた布帛は、これら製品又は衣料の全部又は一部に使用される。なお、蚊の攻撃に対する効果的な防御のためには、蚊とマイクロカプセル化ディートとの接触頻度を高めることが好ましいため、これら製品又は衣料の最も外側に前記布帛を配置させることがより好ましい。
The non-woven fabric on which the microencapsulated diet produced by the above method is spread is used as a cloth material to finish the cloth, and the cloth is processed into an indoor cloth product or clothing. Protect against mosquito attacks by using indoor fabric products that use fabrics that have been treated with microencapsulated diets, or by wearing clothing that uses such fabrics. Can do.
Examples of such indoor fabric products are mosquito nets, curtains, carpets, mats, wall hangings, duvets, blankets, sheets, pillow covers and tents, especially mosquito nets, curtains, carpets, mats, wall hangings, duvets, blankets. Sheets or pillow covers are suitable examples. Examples of clothing include shirts, slacks, hats, turban, and socks.
In these indoor fabric products or garments, the fabric finished using a nonwoven fabric that has been treated with microencapsulated diet is used for all or part of these products or garments. In order to effectively protect against mosquito attacks, it is preferable to increase the contact frequency between the mosquito and the microencapsulated diet, and therefore it is more preferable to place the fabric on the outermost side of these products or clothing.
 前記布帛は、布帛1m2当たりに含まれるディート質量として1ないし100g、より好ましくは2ないし50gとなるよう、マイクロカプセル化ディートが展着された不織布が使用されていることが望ましい。また、こうした布帛において、前記マイクロカプセル化ディートを含む不織布の使用量は、布帛1m2当たり10ないし2000g、より好ましくは20ないし200gである。 The fabric is preferably a non-woven fabric on which micro-encapsulated diet is spread so that the mass of diet per 1 m 2 of fabric is 1 to 100 g, more preferably 2 to 50 g. Further, in such a fabric, the amount of the nonwoven fabric containing the microencapsulated diet is 10 to 2000 g, more preferably 20 to 200 g, per 1 m 2 of fabric.
 尚、本発明において、マラリア原虫又はデングウィルスを媒介する蚊の攻撃を防除するために、通常使用される様々な殺虫剤、防虫剤、忌避剤あるいは共力剤を、本発明の防除方法と併用することで、防除効果をより高めることが可能である。このような殺虫剤、防虫剤、忌避剤あるいは共力剤の好適な例として、以下のものが挙げられる。 In the present invention, various insecticides, insect repellents, repellents or synergists that are commonly used for controlling the attack of mosquitoes that carry malaria parasites or dengue viruses are used in combination with the control method of the present invention. By doing so, the control effect can be further enhanced. Preferable examples of such insecticides, insect repellents, repellents or synergists include the following.
 アジノフォス-エチル、アジノフォス-メチル、1-(4-クロロフェニル)-4-(O-エチル,S-プロピル)ホスホリルオキシピラゾル(TIA-230)、クロロピリフォス、テトラクロロピリフォス、クマフォス、デトメン-S-メチル、ジアジノン、ジクロルボス、ジメトエート、エトプロフォス、エトリムフォス、フェニトロチオン、ピリダフェンチオン、ヘプテノフォス、パラチオン、パラチオン-メチル、プロペタンホス、フォサロン、フォキシム、ピリミフォス-エチル、ピリミフォス-メチル、プロフェノフォス、プロチオフォース、スルプロフォス、トリアゾフォス、トリクロルフォン等のリン酸エステル系化合物;
 クロルピリホス、クロルピリホス-メチル、ピリミホス-メチル、ピリミホス-エチル、フェニトロチオン、プロフェノホス、スルプロホス、アセファート、メチルパラチオン、キナルホス、アジンホス-メチル、デメトン-s-メチル、ヘプテノホス、チオメトン、ピラクロホス、エトプロホス、ホスチアゼート、フェナミホス、モノクロトホス、プロフェノホス、トリアゾホス、メタミドホス、ジメトアート、ホスファミドン、マラチオン、ホサロン、テルブホス、フェンスルホチオン、ホノホス、ホラート、ホキシム、メチダチオン、フェンチオン、ジアジノン等の有機リン系化合物;
 アルジカルブ、ベニオカルブ、2-(1-メチルプロピル)-フェニル-N-メチルカルバメート(BPMC)、2-(1-メチルプロピル)フェニルメチルカルバメート、ブトカルボキシム、ブトキシカルボキシム、カルバリル、カルボフラン、カルボスルファン、クロエトカルブ、イソプロカルブ、メソミル、オキサミル、ピリミカルブ、プロメカルブ、プロポクスル、トリアザマート、チオジカルブ、チオフロクス、ベンフラカルブ、フラチオカルブ、エチオフェンカルブ、フェノブカルブ等のカルバメート系化合物;
 トルフェンピラド、ピリダベン、テブフェンピラド、フェンピロキシマート等のピラゾール系化合物;
 ハロフェノジド、テブフェノジド、クロマフェノジド、メトキシフェノジド等のヒドラジン系化合物;
 クロルジメホルム、アミトラズ等のアミジン系化合物;
 N-シアノ-N’-メチル-N’-(6-クロロ-3-ピリジルメチル)アセトアミジン等のN-シアノアミジン系化合物;
 ジアフェンチウロン等のチオ尿素系化合物;
 ベンスルタップ等のネライストキシン系化合物;
 エンドスルファン、ベンゼンヘキサクロリド、1,1,1-トリクロロ-2,2-ビス(p-クロロフェニル)エタン(DDT)、ディルドリン、γ-ベンゼンヘキサクロライド(BHC)等の有機塩素系化合物;
 アバメクチン、エマメクチンベンゾアート、イベルメクチン、ミルベマイシン、スピノサド、アザジラクチン等のマクロリド系化合物;
 ブプロフェジン等のチアジアジン系化合物;
 エトキサゾール等のオキサゾリン化合物;
 デカン酸、オクタン酸等の炭素数6~12の脂肪酸及びこれらの脂肪酸のエステル化誘導体等の脂肪酸系化合物;
 トリデカノール、ヘキサデカノール等の高級アルコール系化合物;
 アクリナトリン、アレトリン、アルファメトリン、イミプロトリン、エスビオスリン、エスフェンバレラート、エムペントリン、サイパーメスロン、ベータ-サイパーメスロン、α-シアノ-3-フェニル-2-メチルベンジル-2,2-ジメチル-2-(2-クロロ-2-トリフルオロメチルビニル)シクロプロパン-1-プロパンカルボキシレート、シクロプロトリン、シフルトリン、シフェノトリン、シハロトリン、λ-シハロトリン、γ-シハロトリン、シペルメトリン、ジメフルトリン、デカメトリン、テトラフルメトリン、テトラメトリン、テラレスリン、テフルトリン、デルタメトリン、トラロメトリン、トランスフルトリン、バイオアレスリン、ビオレスメトリン、ビフェントリン、ピレトリン、フェノトリン、フェンプロパトリン、フェンフルトリン、フェンバレレート、フタルスリン、ブラトリン、フラメトリン、プラレトリン、プロフルスリン、ビオレスメトリン、フルシトリネート、フルムトリン、フルバリネート、プロフルトリン、ペルメトリン、5-ベンジル-3-フリルメチル-(E)-(1R,3S)-2,2-ジメチル-3-(2-オキソチオラン-3-イリデンメチル)シクロプロパンカルボキシラート、メソスリン、メトフルトリン、レスメトリン、エトフェンプロックス、シラフルオフェン等のピレスロイド系化合物及びこれらの化合物の異性体であるピレスロイド類;
 イミダクロプリド、アセタミプリド、クロチアニジン、チアメトキサム、ジノテフラン、ニテンピラム、チアクロプリド、フロニカミド、ジオフェノラン等のネオニコチノイド系化合物;
 2-メチルフェノール、3-メチルフェノール、4-メチルフェノール、4-エチルフェノール、2,4-ジメチルフェノール、2,5-ジメチルフェノール、3,4-ジメチルフェノール、2,6,-ジメチルフェノール、4-n-プロピルフェノール、4-n-ブチルフェノール、4-n-アミルフェノール、4-n-ヘキシルフェノール、チモール(5-メチル-2-イソプロピルフェノール)、2-フェニルフェノール、4-フェニルフェノール、2-ベンジルフェノール等の非塩素化フェノール系化合物;
 4-クロロ-3-メチルフェノール(PCMC、p-クロロ-m-クレゾール)、4-クロロ-3-エチルフェノール、2-n-アミル-4-クロロフェノール、2-n-ヘキシル-4-クロロフェノール、2-シクロヘキシル-4-クロロフェノール、4-クロロ-3,5-キシレノール(PCMX、p-クロロ-n-キシレノール)、2,4-ジクロロ-3,5-キシレノール(DCMX、ジクロロ-p-キシレノール)、4-クロロ-2-フェニルフェノール、2-ベンジル-4-クロロフェノール、ベンジル-4-クロロ-m-クレゾール、4-クロロベンジルジクロロ-m-クレゾール等の非塩素化フェノール系化合物;
 ホウ酸、ホウ砂等のホウ素含有化合物;
 銅、亜鉛、ニッケル、アルミニウム、モリブデンあるいは銀をカチオン部分として有する、リン酸塩、リン酸水素塩、硫酸塩、硫酸水素塩、炭酸塩、ホウ酸塩、硝酸塩、ナフテン酸塩、オレイン酸塩、ステアリン酸塩、オクタン酸塩、安息香酸塩、クエン酸塩、乳酸塩、酒石酸塩、2-エチルヘキサン酸塩、フッ化物、塩素化物、水酸化物あるいは酸化物;
 塩化物イオン、水酸化物イオン、有機酸イオンなどをアニオン部分として有する、ジデシルジメチルアンモニウム、ベンザルコニウム等のテトラアルキルアンモニウム塩型等のカチオン界面活性剤;
 シロマジン等のトリアジン類;
 フィプロニル、バニリプロール、エチプロール、アセトプロール等のフェニルピラゾール系化合物;
 インドキサカルブ、メチル 7-クロロ-2,5-ジヒドロ-2-[[(メトキシカルボニル)[4-(トリフルオロメトキシ)フェニル]アミノ]カルボニル]インデノ[1,2-e][1,3,4]オキサジアジン-4a(3H)カルボキシレート)等のオキサジアジン系化合物;
 クロルフェナピル等のピロール系化合物;
 ヒドラメチルノン、アミドフルメト等のフッ素含有化合物;
 昆虫ホルモン及びその誘導体;
 ジフルベンズロン、ノバルロン、ノビフルムロン、テフルベンズロン、トリフルムロン、ビストリフルロン、フルフェノクスロン、ルフェヌロン、クロルフルアズロン、ヘキサフルムロン、スルファルアミド、ピリプロキシフェン、メトプレン、ハイドロプレン、フェノキシカルブ等のIGR(昆虫成長制御物質)又は幼若ホルモン様物質;
 シトラール、シトロネラール、シトロネロール、オイゲノール、メチルオイゲノール、ゲラニオール、シンナミックアルデヒド、リナロール、ペリラアルデヒド、ネペタリック酸、メチルヘプテノン、デシルアルデヒド、ミルセン、酢酸ゲラニオール、チモール、リモネン、メントール、メントン、ユーカリプトール、シオネール、ピネン、シメン、テルピネン、サビネン、エレメン、セドレン、エレモール、ビドロール、セドロール、ヒノキチオール、ツヤプリシン、トロポロイド、ヒノキチン、ツヨプセン、ボルネオール、カンフェン、テルピネオール、テルピニルエステル、ジペンテン、ファランドレン、シネオール、カリオレフィン、バニリン、フルフラール、フルフリルアルコール、ピノカルベオール、ピノカルボン、ミルテノール、ベルベノン、カルボン、オイデスモール、ピペリトン、ツエン、ファンキルアルコール、メチルアンスラニレート、ビサボレン、ベルガプトール、ノニルアルデヒド、ノニルアルコール、ヌートカトン、オクチルアルデヒド、酢酸リナリル、酢酸ゲラニル、ネロリドール、オシメン、アンスラニル酸メチル、インドール、ジャスモン、ニーム、ベンツアルデヒド、プレゴン、パラジクロロベンゼン、ナフタリン、2-ボルナノン(樟脳)、ヒバ油、ユーカリ油、ハーブ油、リモネン、茶抽出液、竹抽出液等の植物抽出物及びこれらの化合物の誘導体又は異性体である天然系化合物;
 ジメチルフタレート、ジブチルフタレート、2-エチル-1,3-ヘキサンジオール、ジ-n-プロピルイソシンコメロネート、p-ジクロロベンゼン、ジ-n-ブチルサクシネート、カラン-3,4-ジオール、1-メチルプロピル2-(2-ヒドロキシエチル)-1-ピペリジンカルボキシラート、p-メンタン-3,8-ジオール、3-(N-ブチルアセトアルデヒド)プロピオン酸エチル、ピカリジン等の揮発性化合物。
 ビス-(2,3,3,3-テトラクロロプロピル)エ-テル(S-421)、N-(2-エチルヘキシル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド(MGK264)、α-[2-(2-ブトキシエトキシ)エトキシ]-4,5-メチレンジオキシ-2-プロピルトルエン(PBO)等の共力剤。
Azinophos-ethyl, azinophos-methyl, 1- (4-chlorophenyl) -4- (O-ethyl, S-propyl) phosphoryloxypyrazole (TIA-230), chloropyrifos, tetrachloropyrifos, coumaphos, detomen- S-methyl, diazinon, dichlorvos, dimethoate, etoprofos, etrimphos, fenitrothion, pyridafenthion, heptenophos, parathion, parathion-methyl, propetanephos, fosarone, foxime, pyrimiphos-ethyl, pyrimiphos-methyl, profenofos, prothiofos, sulfophos Phosphate compounds such as triazophos and trichlorfon;
Chlorpyrifos, Chlorpyrifos-methyl, Pirimiphos-methyl, Pirimiphos-ethyl, Fenitrothion, Profenophos, Sulprophos, Acephate, Methylparathion, Quinarphos, Adinphos-methyl, Demeton-s-methyl, Heptenophos, Thiometon, Pyracrophos, Etoprophos, Phostiazeto, Monomethophos, Monophos Organophosphorus compounds such as profenophos, triazophos, methamidophos, dimethoate, phosphamidone, malathion, hosalon, terbufos, phensulfothione, fonophos, folate, foxime, methidathion, fenthion, diazinone;
Aldicarb, Beniocarb, 2- (1-Methylpropyl) -phenyl-N-methylcarbamate (BPMC), 2- (1-methylpropyl) phenylmethylcarbamate, Butocarboxyme, Butoxycarboxyme, Carbaryl, Carbofuran, Carbosulfurphan Carbamate compounds such as, cloetocarb, isoprocarb, mesomil, oxamyl, pyrimicarb, promecarb, propoxur, triazamate, thiodicarb, thioflox, benfuracarb, furthiocarb, etiophencarb, fenobucarb;
Pyrazole compounds such as tolfenpyrad, pyridaben, tebufenpyrad, fenpyroximate;
Hydrazine compounds such as halofenozide, tebufenozide, chromafenozide, methoxyphenozide;
Amidine compounds such as chlordimeform, amitraz;
N-cyanoamidine compounds such as N-cyano-N′-methyl-N ′-(6-chloro-3-pyridylmethyl) acetamidine;
Thiourea compounds such as diafenthiuron;
Nereistoxin compounds such as bensultap;
Organochlorine compounds such as endosulfan, benzenehexachloride, 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane (DDT), dieldrin, γ-benzenehexachloride (BHC);
Macrolide compounds such as abamectin, emamectin benzoate, ivermectin, milbemycin, spinosad, azadirachtin;
Thiadiazine compounds such as buprofezin;
Oxazoline compounds such as etoxazole;
Fatty acid compounds such as fatty acids having 6 to 12 carbon atoms such as decanoic acid and octanoic acid and esterified derivatives of these fatty acids;
Higher alcohol compounds such as tridecanol and hexadecanol;
Acrinathrin, alletrin, alphamethrin, imiprothrin, esbioslin, esfenvalerate, empentrin, cypermethrone, beta-cypermethrone, α-cyano-3-phenyl-2-methylbenzyl-2,2-dimethyl-2- ( 2-chloro-2-trifluoromethylvinyl) cyclopropane-1-propanecarboxylate, cycloprotorin, cyfluthrin, cyphenothrin, cyhalothrin, λ-cyhalothrin, γ-cyhalothrin, cypermethrin, dimethylfluthrin, decamethrin, tetraflumethrin, Tetramethrin, terrareslin, tefluthrin, deltamethrin, tralomethrin, transfluthrin, bioarethrin, violesmethrin, bifenthrin, pyrethrin, phenothrin, fenpropa Phosphorus, fenfluthrin, fenvalerate, phthalthrin, brathrin, flamethrin, praretrin, profluthrin, violesmethrin, flucitrinate, flumtrin, fulvalinate, profluthrin, permethrin, 5-benzyl-3-furylmethyl- (E)-(1R, 3S) -2,2-dimethyl-3- (2-oxothiolane-3-ylidenemethyl) cyclopropanecarboxylate, pyrethroid compounds such as mesothrin, metfurthrin, resmethrin, etofenprox, silafluophene, and isomers of these compounds Pyrethroids;
Neonicotinoid compounds such as imidacloprid, acetamiprid, clothianidin, thiamethoxam, dinotefuran, nitenpyram, thiacloprid, flonicamid, diophenolane;
2-methylphenol, 3-methylphenol, 4-methylphenol, 4-ethylphenol, 2,4-dimethylphenol, 2,5-dimethylphenol, 3,4-dimethylphenol, 2,6, -dimethylphenol, 4 -N-propylphenol, 4-n-butylphenol, 4-n-amylphenol, 4-n-hexylphenol, thymol (5-methyl-2-isopropylphenol), 2-phenylphenol, 4-phenylphenol, 2- Non-chlorinated phenolic compounds such as benzylphenol;
4-chloro-3-methylphenol (PCMC, p-chloro-m-cresol), 4-chloro-3-ethylphenol, 2-n-amyl-4-chlorophenol, 2-n-hexyl-4-chlorophenol 2-cyclohexyl-4-chlorophenol, 4-chloro-3,5-xylenol (PCMX, p-chloro-n-xylenol), 2,4-dichloro-3,5-xylenol (DCMX, dichloro-p-xylenol) ), Non-chlorinated phenolic compounds such as 4-chloro-2-phenylphenol, 2-benzyl-4-chlorophenol, benzyl-4-chloro-m-cresol, 4-chlorobenzyldichloro-m-cresol;
Boron-containing compounds such as boric acid and borax;
Phosphate, hydrogen phosphate, sulfate, hydrogen sulfate, carbonate, borate, nitrate, naphthenate, oleate with copper, zinc, nickel, aluminum, molybdenum or silver as the cation moiety, Stearate, octanoate, benzoate, citrate, lactate, tartrate, 2-ethylhexanoate, fluoride, chlorate, hydroxide or oxide;
Cationic surfactants such as tetraalkylammonium salt types such as didecyldimethylammonium and benzalkonium, having chloride ions, hydroxide ions, organic acid ions and the like as anion moieties;
Triazines such as cyromazine;
Phenylpyrazole compounds such as fipronil, vaniliprole, ethiprole, acetoprole;
Indoxacarb, methyl 7-chloro-2,5-dihydro-2-[[(methoxycarbonyl) [4- (trifluoromethoxy) phenyl] amino] carbonyl] indeno [1,2-e] [1,3 4] oxadiazine compounds such as oxadiazine-4a (3H) carboxylate);
Pyrrole compounds such as chlorfenapyr;
Fluorine-containing compounds such as hydramethylnon and amidoflumet;
Insect hormones and derivatives thereof;
IGR (Insect Growth) such as diflubenzuron, novallon, nobiflumuron, teflubenzuron, triflumuron, bistrifluron, flufenoxuron, rufenuron, chlorfluazuron, hexaflumuron, sulfaramide, pyriproxyfen, methoprene, hydroprene, phenoxycarb Regulatory substances) or juvenile hormone-like substances;
Citral, citronellal, citronellol, eugenol, methyl eugenol, geraniol, cinnamic aldehyde, linalool, perilaldehyde, nepetalic acid, methyl heptenone, decyl aldehyde, myrcene, geraniol acetate, thymol, limonene, menthol, menthone, eucalyptol, cineal, pinene , Cymene, terpinene, sabinene, elemen, cedrene, elemol, bidrol, cedrol, hinokitiol, tsuyaprisin, tropoid, hinokitin, tyoopsen, borneol, camphene, terpineol, terpinyl ester, dipentene, farandrene, cineol, cariolefin, vanillin, furfural , Furfuryl alcohol, pinocarveol, pinocarvone, myrteno , Berbenone, carvone, eudesmol, piperitone, twen, funkyl alcohol, methyl anthranilate, bisabolene, bergaptol, nonyl aldehyde, nonyl alcohol, nootkatone, octyl aldehyde, linalyl acetate, geranyl acetate, nerolidol, osimene, methyl anthranilate , Plant extracts such as indole, jasmon, neem, benzaldehyde, pulegone, paradichlorobenzene, naphthalene, 2-bornanone (camphor), hiba oil, eucalyptus oil, herb oil, limonene, tea extract, bamboo extract and the like Natural compounds that are derivatives or isomers of the compounds;
Dimethyl phthalate, dibutyl phthalate, 2-ethyl-1,3-hexanediol, di-n-propylisocincomeronate, p-dichlorobenzene, di-n-butyl succinate, caran-3,4-diol, 1- Volatile compounds such as methylpropyl 2- (2-hydroxyethyl) -1-piperidinecarboxylate, p-menthane-3,8-diol, ethyl 3- (N-butylacetaldehyde) propionate, and picaridine.
Bis- (2,3,3,3-tetrachloropropyl) ether (S-421), N- (2-ethylhexyl) bicyclo [2.2.1] hept-5-ene-2,3-di Synergists such as carboximide (MGK264), α- [2- (2-butoxyethoxy) ethoxy] -4,5-methylenedioxy-2-propyltoluene (PBO).
 これらの殺虫剤、防虫剤、忌避剤あるいは共力剤は、単独でも組み合わせても使用可能である。本発明において使用されるこのような殺虫剤、防虫剤、忌避剤あるいは共力剤の濃度は、これら薬剤の有する生理活性の強度応じて適宜、調整することが望ましい。 These insecticides, insect repellents, repellents or synergists can be used alone or in combination. The concentration of such insecticide, insect repellent, repellent or synergist used in the present invention is desirably adjusted as appropriate according to the strength of physiological activity possessed by these agents.
 また、これらの殺虫剤、防虫剤、忌避剤あるいは共力剤は、マイクロカプセル化ディートと共に同一の室内用布製品又は衣料において使用する方法、別々の室内用布製品又は衣料において使用する方法、或いは、散布剤や揮散剤として使用する方法のいずれの方法も可能である。 In addition, these insecticides, insect repellents, repellents or synergists can be used in the same indoor fabric product or garment together with the microencapsulated diet, in separate indoor fabric products or garment, or Any method of using as a spraying agent or a volatilizing agent is possible.
 次に本発明を、実施例を用いて説明するが、本発明はこれらのみに限定されるものではない。なお、下記の例中「%」は重量%を示す。 Next, the present invention will be described using examples, but the present invention is not limited to these examples. In the following examples, “%” indicates wt%.
製造例:
[マイクロカプセル化ディートの製造]
 スチレン-無水マレイン酸樹脂を少量の水酸化ナトリウムと共に溶解して調製したpH=4.5の3%水溶液(200部)中に、ディート(すなわち、ジエチルトルアミド)(135部)を加え、ウルトラホモジナイザーにてエマルジヨンの粒径が3~12μmになるまで乳化を行った。次に、メラミン(6部)及び37%ホルムアルデヒド水溶液(15部)を65部の水に加え、20%水酸化ナトリウム水溶液でpH=9.5とし、80℃で15分間加熱してメラミン-ホルムアルデヒド初期縮合物を調製した。該縮合物を前記乳化物に加え、液温75℃で2時間撹拌し、ディートを内包した徐放性のメラミン樹脂壁マイクロカプセル分散液を得た。芯物質量に対する壁膜量の割合は、8.6%であった。また、マイクロカプセル化ディートの平均粒子径は6μmであった。このマイクロカプセル化ディート分散液を水で希釈し、ディートとしての濃度を10%に調整した。
Production example:
[Manufacture of microencapsulated diet]
Diet (ie, diethyl toluamide) (135 parts) was added to a 3% aqueous solution (200 parts) of pH = 4.5 prepared by dissolving styrene-maleic anhydride resin with a small amount of sodium hydroxide. The emulsion was emulsified with a homogenizer until the particle size of the emulsion became 3-12 μm. Next, melamine (6 parts) and 37% formaldehyde aqueous solution (15 parts) are added to 65 parts of water, adjusted to pH = 9.5 with 20% sodium hydroxide aqueous solution, and heated at 80 ° C. for 15 minutes for melamine-formaldehyde. An initial condensate was prepared. The condensate was added to the emulsion and stirred at a liquid temperature of 75 ° C. for 2 hours to obtain a sustained-release melamine resin wall microcapsule dispersion containing diet. The ratio of the wall film amount to the core material amount was 8.6%. The average particle size of the microencapsulated diet was 6 μm. This microencapsulated diet dispersion was diluted with water to adjust the concentration as a diet to 10%.
[マイクロカプセル化ディートの不織布への展着処理]
 上記のディート濃度10%に調整したマイクロカプセル化ディート分散液5部と、アクリル樹脂バインダー(固形分40%)3部を、水92部に均一に混合して繊維加工用のディート分散液とした。次に、ポリエステルのスパンレース不織布(80g/m2)に、上記の繊維加工用のディート分散液を噴霧し、180℃で1分間の熱処理を行い、該不織布にマイクロカプセル化ディートを展着させた。
 得られた不織布は、1m2当たりに、マイクロカプセル化ディートをディートとして8g含有するものであった。
[Spreading treatment on non-woven fabric of microencapsulated diet]
5 parts of microencapsulated diet dispersion adjusted to the above-mentioned diet concentration of 10% and 3 parts of acrylic resin binder (solid content 40%) were uniformly mixed in 92 parts of water to obtain a diet dispersion for fiber processing. . Next, the above-mentioned fiber dispersion is sprayed onto a polyester spunlace nonwoven fabric (80 g / m 2 ) and heat treated at 180 ° C. for 1 minute to spread the microencapsulated diet on the nonwoven fabric. It was.
The obtained nonwoven fabric contained 8 g of microencapsulated diet per 1 m 2 as diet.
実施例1:
[蚊の防除効果1:コガタアカイエカ(Culex tritaeniorhynchus)]
 20メッシュのステンレス金網を張った、縦20cm、横10cm、高さ10cmの直方体の小さなカゴの周りを実施例1で製造した不織布で1重に覆い、これを室温(10~30℃)に6ケ月間放置した。
 対照として、ポリエステルのスパンレース不織布(80g/m2)を同様のカゴの周りに1重に覆い、この不織布にディートを10%の濃度で含有するエタノール溶液を噴霧することにより、不織布1m2当たりにディートを12g含有させ、同様にこれを室温(10~30℃)に6ケ月間放置した。
Example 1:
[Mosquito control effect 1: Culex tritaeniorhynchus]
A small cage of 20 cm in length, 10 cm in width and 10 cm in height, covered with a 20 mesh stainless steel wire mesh, is covered with the non-woven fabric produced in Example 1, and this is covered at room temperature (10-30 ° C.) 6 Left for a month.
As a control, a polyester spunlace nonwoven fabric (80 g / m 2 ) is covered in a single layer around a similar cage, and this nonwoven fabric is sprayed with an ethanol solution containing 10% deet to give 1 m 2 of nonwoven fabric. In the same manner, 12 g of diet was contained, and this was allowed to stand at room temperature (10 to 30 ° C.) for 6 months.
 次に、実施例1で製造した不織布で覆われた直方体の小さなカゴを、20メッシュのステンレス金網を張った縦40cm、横40cm、高さ40cmの直方体の大きなカゴの中に置いた。そして小さなカゴの中にマウスを1匹入れ、更に、大きなカゴの中にコガタアカイエカ(Culex tritaeniorhynchus)を50匹放ち、4時間後の死虫数をカウントして、死虫率を求めた。
 また、対照として、ディートのエタノール溶液を噴霧した不織布で覆われた直方体の小さなカゴにおいても、マウス及びコガタアカイエカを用いた同様の試験を行い、死虫率を求めた。
Next, the small rectangular parallelepiped basket covered with the nonwoven fabric produced in Example 1 was placed in a large rectangular parallelepiped basket having a length of 40 cm, a width of 40 cm, and a height of 40 cm with a 20-mesh stainless wire mesh. Then, one mouse was put in a small cage, and 50 Culex tritaeniorhynchus were released in a large cage, and the number of dead insects after 4 hours was counted to determine the death rate.
In addition, as a control, a similar test using a mouse and a Culex mosquito was performed on a small rectangular basket covered with a nonwoven fabric sprayed with an ethanol solution of Diet to determine the death rate.
 その結果、先の製造例にて製造した不織布を用いた場合の死虫率は75%であったが、一方、ディートのエタノール溶液を噴霧した不織布を用いた場合の死虫率は6%であった。
 この結果は、本発明の防除方法によって、長期間、蚊が効果的に防除可能であることが示された。
As a result, the death rate when using the nonwoven fabric produced in the previous production example was 75%, while the death rate when using a nonwoven fabric sprayed with diet ethanol was 6%. there were.
This result showed that mosquitoes can be effectively controlled for a long time by the control method of the present invention.
実施例2:
[蚊の防除効果2:Anopheles gambiae]
 実施例1のコガタアカイエカに替えて、Anopheles gambiaeを用いたほかは、実施例1と同様の条件にて試験を行った。
 その結果、先の製造例にて製造した不織布を用いた場合の死虫率は81%であったが、一方、ディートのエタノール溶液を噴霧した不織布を用いた場合の死虫率は5%であった。
 すなわち、Anopheles gambiaeを対象とした場合にも、本発明の防除方法によって、長期間、蚊が効果的に防除可能であることが示された。
Example 2:
[Mosquito control effect 2: Anopheles gambiae]
The test was conducted under the same conditions as in Example 1 except that Anopheles gambiae was used instead of the Culex mosquito in Example 1.
As a result, the death rate when using the nonwoven fabric produced in the previous production example was 81%, while the death rate when using the nonwoven fabric sprayed with diet ethanol was 5%. there were.
That is, it was shown that mosquitoes can be effectively controlled for a long period of time by the control method of the present invention even when Anopheles gambiae is targeted.
実施例3:
[蚊の防除効果3:ヒトスジシマカ(Aedes albopictus)]
 実施例1のコガタアカイエカに替えて、ヒトスジシマカ(Aedes albopictus)を用いたほかは、実施例1と同様の条件にて試験を行った。
 その結果、先の製造例にて製造した不織布を用いた場合の死虫率は72%であったが、一方、ディートのエタノール溶液を噴霧した不織布を用いた場合の死虫率は8%であった。
 すなわち、ヒトスジシマカを対象とした場合にも、本発明の防除方法によって、長期間、蚊が効果的に防除可能であることが示された。
Example 3:
[Mosquito control effect 3: Aedes albopictus]
The test was conducted under the same conditions as in Example 1 except that Aedes albopictus was used in place of the Culex mosquito in Example 1.
As a result, the death rate when using the nonwoven fabric produced in the previous production example was 72%, whereas the death rate when using the nonwoven fabric sprayed with diet ethanol was 8%. there were.
That is, it was shown that mosquitoes can be effectively controlled over a long period of time by the control method of the present invention even when targeting the human striped mosquito.
実施例4:
[蚊の防除効果4:加工毛布を用いた吸血試験]
 先の製造例にて製造したマイクロカプセル化ディートを含有する繊維加工用のディート分散液に、レーヨンのスパンレース不織布(80g/m2)を浸漬し、その後、180℃で1分間の熱処理を行い、該不織布にマイクロカプセル化ディートを展着させた。得られた不織布は、1m2当たりに、マイクロカプセル化ディートをディートとして8g含有するものであった。この不織布を用いて仕上げた布帛を毛布に加工した。
 比較例として、マイクロカプセル化ディートの代わりにペルメスリンを用いて同様の手順で展着させた不織布(ペルメスリン 500mg/m2)、また参照例としてマイクロカプセル化ディートやペルメスリンの処理を施していない不織布を用いて、夫々毛布に加工した。
 そしてこれら毛布を室温(10~30℃)に6ケ月間放置し、その後の吸血試験に供した。
Example 4:
[Mosquito control effect 4: Blood absorption test using processed blanket]
A rayon spunlace nonwoven fabric (80 g / m 2 ) is immersed in a fiber processing diet dispersion containing the microencapsulated diet produced in the previous production example, followed by heat treatment at 180 ° C. for 1 minute. The microencapsulated diet was spread on the nonwoven fabric. The obtained nonwoven fabric contained 8 g of microencapsulated diet per 1 m 2 as diet. A fabric finished using this nonwoven fabric was processed into a blanket.
As a comparative example, a nonwoven fabric (permethrin 500 mg / m 2 ) spread using the same procedure using permethrin instead of a microencapsulated diet, and a nonwoven fabric that has not been treated with microencapsulated diet or permethrin as a reference example Each was processed into a blanket.
These blankets were allowed to stand at room temperature (10 to 30 ° C.) for 6 months, and then subjected to a subsequent blood absorption test.
 幅60cm、奥行30cm、高さ30cmの透明な両前腕挿入型アクリルケージにコガタアカイエカ(Culex tritaeniorhynchus)を100匹放った。
 被験者の片腕にのみマイクロカプセル化ディート又はペルメスリン加工した毛布、或いは未処理の毛布を巻きつけ、コガタアカイエカが放たれたアクリルケージに両腕を挿入した。
 30分後、両腕をアクリルケージから抜きとり、夫々の腕についてコガタアカイエカに刺された数を数え、下記式を用いて防御率を算出した。
 防御率=100×(Pc-Pt)/Pc
 Pc:毛布が巻かれていない腕の刺された数
 Pt:マイクロカプセル化ディート又はペルメスリン加工した毛布或いは未処理の毛布が巻かれた腕の刺された数
 なお、マイクロカプセル化ディート加工した毛布、ペルメスリン加工した毛布、未処理の毛布の夫々について、5人の被験者を用いて吸血試験を行い、防御率の平均値を算出した。
100 Culex tritaeniorhynchus were released in a transparent forearm insertion type acrylic cage having a width of 60 cm, a depth of 30 cm, and a height of 30 cm.
A microencapsulated diet or permethrin-treated blanket or an untreated blanket was wrapped around only one arm of the test subject, and both arms were inserted into an acrylic cage from which the mosquito was released.
After 30 minutes, both arms were removed from the acrylic cage, and the number of each arm stabbed in the mosquito was counted, and the protection rate was calculated using the following formula.
Defense rate = 100 × (Pc−Pt) / Pc
Pc: Number of stabbed arms with no blanket wound Pt: Number of arm stabbed with microencapsulated diet or permesulin-processed or untreated blanket Note that microencapsulated diet-processed blanket, permethrin-processed Each of the blanket and the untreated blanket was subjected to a blood-sucking test using five subjects, and the average value of the protection rate was calculated.
 その結果、未処理の毛布における防御率は30%であったのに対して、ペルメスリン加工した毛布の防御率は25%、マイクロカプセル化ディート加工した毛布の防御率は70%であった。
 本結果からも、本発明の防除方法によって、蚊が効果的に防除可能であることが示された。
As a result, the protection rate of the untreated blanket was 30%, whereas the protection rate of the blanket treated with permethrin was 25%, and the protection rate of the blanket treated with microencapsulated diet was 70%.
From these results, it was shown that mosquitoes can be effectively controlled by the control method of the present invention.

Claims (4)

  1. マラリア原虫又はデングウィルスを媒介する蚊の攻撃に対して防除する方法であって、マイクロカプセル化ディートが付着、混入、配合又は分散された不織布を布材料として用い仕上げた布帛を、室内用布製品又は衣料に適用することを特徴とする、方法。 A method for controlling against the attack of mosquitoes that transmit malaria parasites or dengue viruses, and a fabric finished with a non-woven fabric to which microencapsulated diet is attached, mixed, blended or dispersed as a fabric material. Or a method characterized by applying to clothing.
  2. 前記不織布が、綿繊維、レーヨン繊維、ポリエステル繊維及び、綿、レーヨン又はポリエステルを含む混紡繊維からなる、請求項1に記載の方法。 The method according to claim 1, wherein the nonwoven fabric comprises cotton fibers, rayon fibers, polyester fibers, and blended fibers including cotton, rayon, or polyester.
  3. 前記マイクロカプセル化ディートが、3ないし50μmの平均粒子径を有するマイクロカプセルの形態にある、請求項1に記載の防除方法。 The control method according to claim 1, wherein the microencapsulated diet is in the form of microcapsules having an average particle size of 3 to 50 μm.
  4. 前記布帛は、布帛1m2当たりディート質量として2ないし50gの量でマイクロカプセル化ディートを含む不織布からなる、請求項1に記載の防除方法。 The control method according to claim 1, wherein the fabric is made of a non-woven fabric containing microencapsulated diet in an amount of 2 to 50 g as a deet mass per 1 m 2 of fabric.
PCT/JP2009/066534 2009-09-24 2009-09-24 Method for controlling mosquitoes WO2011036744A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066534 WO2011036744A1 (en) 2009-09-24 2009-09-24 Method for controlling mosquitoes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066534 WO2011036744A1 (en) 2009-09-24 2009-09-24 Method for controlling mosquitoes

Publications (1)

Publication Number Publication Date
WO2011036744A1 true WO2011036744A1 (en) 2011-03-31

Family

ID=43795515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066534 WO2011036744A1 (en) 2009-09-24 2009-09-24 Method for controlling mosquitoes

Country Status (1)

Country Link
WO (1) WO2011036744A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001768A (en) * 2017-06-09 2019-01-10 大和化学工業株式会社 Pest controlling microcapsule composition, and fiber and unwoven fabric structure treated by microcapsule

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192702A (en) * 1987-02-04 1988-08-10 Toppan Moore Co Ltd Slowly releasing insect-proofing microcapsule preparation
JPH0222202A (en) * 1988-07-11 1990-01-25 Showa Denko Kk Insecticidal formulation and insecticidal material
JPH05132402A (en) * 1991-11-11 1993-05-28 Hosokawa Kigyo Kk Insect proofing and repelling treating agent and insect proofing and repelling structural body
WO2001050859A1 (en) * 2000-01-10 2001-07-19 Tucci & Associates, Inc. Slow-release insect-repellent composition and uses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192702A (en) * 1987-02-04 1988-08-10 Toppan Moore Co Ltd Slowly releasing insect-proofing microcapsule preparation
JPH0222202A (en) * 1988-07-11 1990-01-25 Showa Denko Kk Insecticidal formulation and insecticidal material
JPH05132402A (en) * 1991-11-11 1993-05-28 Hosokawa Kigyo Kk Insect proofing and repelling treating agent and insect proofing and repelling structural body
WO2001050859A1 (en) * 2000-01-10 2001-07-19 Tucci & Associates, Inc. Slow-release insect-repellent composition and uses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001768A (en) * 2017-06-09 2019-01-10 大和化学工業株式会社 Pest controlling microcapsule composition, and fiber and unwoven fabric structure treated by microcapsule

Similar Documents

Publication Publication Date Title
TWI411717B (en) Insecticidal textile, method of making and method of using
CN101543225B (en) Insecticide mother liquor and use thereof
US20070009563A1 (en) Process for coating fiber or fabric with insecticide using a temperature of 150°c-190°c for drying
JP2018095636A (en) Pest control agent
US20120195950A1 (en) Laundry Additive for the Treatment and Prevention of Bed Bugs
JP4554008B2 (en) How to control adult mosquitoes
DE3881208T2 (en) Pest-repellent microcapsules with delayed release.
JP7119335B2 (en) Insect repellent fiber structure and method for producing the same
CN112680962A (en) Novel insecticide finishing liquid for treating mosquito-repellent fabric and using method
Van Langenhove et al. Insect repellent finishes for textiles
JP2010195766A (en) Method for controlling pyrethroid-resistant insect pest
JP5277343B2 (en) How to control adult mosquitoes
WO2011036744A1 (en) Method for controlling mosquitoes
KR20050100587A (en) The textile coating system composite using a microcapsule with an antibacterial function and a noxious insect extermination function, and his manufacture method
JPH08245324A (en) Insect-proofing composition and insect-proofing fabric
Chavan et al. Advanced insect repellent agents for protective textiles and clothing
US20200390094A1 (en) Insect-resistant fabrics having a combination of active ingredients
JP5210811B2 (en) How to control adult mosquitoes
SA518391180B1 (en) Insect Pest Control Material
JP2018104831A (en) Insect proof fabric product
JP2002205903A (en) Method for applying insecticidal composition to insect proof net and insecticidal composition
JPH02200602A (en) Insectproof fiber and production thereof
Chavan et al. Green engineered functional textile materials
JP7119336B2 (en) Insect repellent fiber structure and method for producing the same
JP2019001768A (en) Pest controlling microcapsule composition, and fiber and unwoven fabric structure treated by microcapsule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP