WO2011036323A1 - Módulo solar fotovoltaico de alta concentración - Google Patents

Módulo solar fotovoltaico de alta concentración Download PDF

Info

Publication number
WO2011036323A1
WO2011036323A1 PCT/ES2010/070595 ES2010070595W WO2011036323A1 WO 2011036323 A1 WO2011036323 A1 WO 2011036323A1 ES 2010070595 W ES2010070595 W ES 2010070595W WO 2011036323 A1 WO2011036323 A1 WO 2011036323A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
housing
solar module
high concentration
receivers
Prior art date
Application number
PCT/ES2010/070595
Other languages
English (en)
French (fr)
Inventor
Fernando Celaya Prieto
Antonio De Dios Pardo
Carlos MARTÍN MAROTO
Francisco David PEÑA CONSUEGRA
Original Assignee
Abengoa Solar New Technologies, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Solar New Technologies, S.A. filed Critical Abengoa Solar New Technologies, S.A.
Priority to US13/498,060 priority Critical patent/US9130096B2/en
Priority to EP10818449.0A priority patent/EP2482331A4/en
Publication of WO2011036323A1 publication Critical patent/WO2011036323A1/es
Priority to ZA2012/02551A priority patent/ZA201202551B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention belongs to the technical field of photovoltaic solar modules for the use of solar energy for the production of electrical energy, specifically to high concentration photovoltaic solar modules, and more specifically to modules formed by a parquet of Fresnel concentrating lenses, a secondary optical system, and high efficiency photovoltaic cells.
  • Solar energy conversion modules that convert sunlight to electrical energy typically employ photovoltaic cells that directly convert solar energy into electrical energy.
  • Photovoltaic solar cells are devices capable of transforming solar radiation into electricity, in a direct way. The amount of energy created by the cell is directly related to the amount of solar energy absorbed by the cell, and the amount of energy absorbed by the cell is a function of both the size and surface area of the cell, and the intensity of the sunlight and the wavelength that affects it.
  • HCPV High photovoltaic concentration
  • the high manufacturing cost of the photovoltaic modules mainly the cost of the cells, which are mostly imported from other countries, makes the sale prices excessively high.
  • the photovoltaic cell is the most expensive component of a solar energy converter. Therefore, increasing the electrical output of the converter by increasing the surface area of the cells can be very expensive, and other methods are usually used to increase the intensity of sunlight that affects the cell. Such methods include using concentrating lenses and / or mirrors to focus sunlight on the cell.
  • the module size also affects the cost in other less direct modes. Since most solar energy converters are manufactured away from their installation site, transportation and final assembly costs can be significant. Clearly, transport costs can be minimized by reducing the size of the converter module, and simplifying the overall structure can be expected to reasonably reduce assembly costs, as well as the cost of the solar collector itself.
  • the photovoltaic plant that generates electric power located on the roof is more prevalent than in solar plants, so technological advances must go to that location.
  • a related objective is to provide a solar energy converter of this type 'using a single lens or optical concentrator supplemented with a secondary optical element for each cell.
  • the application system of concentrating lenses of solar radiation on photovoltaic cells to increase the capacity of electric energy production of the same consists in the use of a concentrating lens made of glass, methacrylate, polyurethane, polyethylene, polypropylene or any other type of material of a similar nature, which is transparent to allow sunlight to pass through.
  • Fresnel lenses have the property of being concentrating elements of great power of solar radiation, and consequently allow the use of said energy in the photovoltaic energy field.
  • Circular and concentric grooves are engraved on said lens along the entire diameter of the lens, this being the element that gives the lens its power to concentrate solar radiation.
  • it is a conventional solar radiation concentrating lens, whose dimensions are usually between 10 and 30 centimeters in diameter, and these measurements can vary depending on the needs for which it has to be used.
  • the lens is located on a frame or frame that has a double bottom of smaller measure to locate in the photovoltaic cell, located between 10 and 30 centimeters apart with the concentrating lens. Oriented the whole towards the position of the sun, the rays hit the lens passing through it, until it reaches the photovoltaic cell, which receives said solar radiation increased in its power by the effect of a greater radiation surface as it passes through the concentrating lens and the optical element additional secondary
  • the units thus arranged that is to say the assembly of a concentrating lens, superimposed on a photovoltaic cell at a distance between 10 to 30 centimeters, and supported both elements on a box, housing or frame, can be placed in series to form the photovoltaic modules , and in the number needed to reach the power in watts that you want to determine in each module, taking into account the energy production capacity of each cell based on the higher performance obtained by the efficiency of the concentrating lens.
  • the elements of the aforementioned modules are very sensitive to moisture, and contact with it causes an accelerated degradation that can limit its life time in acceptable operating conditions. Although encapsulation systems of these elements are incorporated, it is very important that the container is sealed and prevents the entry of moisture or other external elements to avoid these effects.
  • IEC 62108 which must comply with any product of high photovoltaic concentration that will be part of this market. This standard requires the performance of a series of tests that simulate the expected behavior of the system in the field.
  • the present invention solves the problems existing in the state of the art, by means of a high concentration photovoltaic solar module formed by a housing which inside has photovoltaic receivers fixed to its base, interconnected with each other, and which, preferably, can be removable from the base of said housing.
  • Each of the photovoltaic receivers includes a receiver surface over which at least one photovoltaic cell, a protection diode, and the respective photovoltaic receiver connectors are arranged.
  • the module also has a plurality of Fresnel concentrating lenses that are arranged in the upper part of the housing, in a plane parallel to that of the photovoltaic receivers, and close the housing tightly.
  • the number of Fresnel concentrating lenses is equal to the number of photovoltaic receivers, and each of the lenses is arranged on one of said photovoltaic receivers.
  • the photovoltaic module has secondary optical elements, each arranged on the photovoltaic cell of each photovoltaic receiver. These secondary optical elements preferably have a truncated inverted pyramid shape.
  • the shape of the housing of the module of the invention allows for less internal air, because it has a reduced space since the indoor air, subjected to weather conditions for a long time, can condense generating humidity inside.
  • the module may also be compatible with the installation of a de-humidification system that allows maintaining the relative humidity inside the module at very low levels, minimizing the. effects that moisture can produce on the active elements of the system.
  • the housing allows Fresnel lenses to be positioned frontally and forming a row, to constitute the desired lens parquet.
  • the present invention relates to a module with a new system for applying solar radiation concentrating lenses on photovoltaic cells, for increasing the capacity of electric energy production thereof. This is achieved due to the greater intensity of solar radiation received by the photovoltaic cell, by interposing between it and the solar rays a concentrating lens, of greater surface area than the cell, and a secondary element that in turn acts as a concentrator, homogenizer of flow and chromatic mixer capable of increasing the potential of radiation projected on the photovoltaic cell, improving the angle of acceptance, and consequently increasing the capacity of electric energy production of said photovoltaic cell.
  • the housing of the photovoltaic module object of the present invention is made of plastic injection, and it has integrated a plurality of cavities in its base, each of these cavities for housing a photovoltaic receiver, and a plurality of metal sheets needed for the interconnection of photovoltaic receivers.
  • the tight seal allows the components of the module to be isolated from the weather, preventing the entry of water, dust or other elements into its interior, which could degrade its operation, thus guaranteeing durations of the solar module exceeding 25 years.
  • the Fresnel concentrating lenses rest on a perimeter wing of the upper part of the housing, and this closure can be done in two different ways.
  • the Fresnel concentrating lenses close against the housing by means of plastic closing elements that are distributed along the perimeter wing of the upper part of the housing, and which are removable therefrom.
  • a gasket can be placed between the plurality of Fresnel concentrating lenses and the housing of superior sealing
  • the Fresnei concentrating lenses close against the housing by an overmolding of said lenses on the housing, so that no additional closure element would be required.
  • IP65 is an index according to the international standard IEC 60529 that indicates the level of protection of the system against intrusion of solid objects, dust, accidental contacts or water.
  • the two digits of index IP65 indicate that the module of the invention does not allow any penetration of dust, maintains the integrity of the internal electrical contacts and does not allow the entry of water even with a strong jet in any direction and, In the case of closure by means of closure elements, it allows it to be completely removable.
  • the arrangement of the Fresnei lenses, concentrators of the potentiation of solar radiation on the set of photovoltaic cells of the receivers located in the module therefore also serves as a cover for the module where the cells are located, thus maintaining the concentration of heat accumulated inside the module. That is to say, that the concentrating lens fulfills the double function of potentiation of solar radiation and that of serving as protection of the cells for a better use of the temperature.
  • the present photovoltaic solar module starts from the basic principle of operation of photovoltaic cells, which generate an electric energy upon receiving a solar radiation intensity. Therefore, by placing a solar radiation concentrating lens, with a larger surface area, in front of the photovoltaic cell, the solar energy power on the photovoltaic cell is increased, thereby achieving greater radiation and, consequently, greater production of electrical energy on the part of it. This position must be carefully calculated to ensure the perfect alignment of the center of the Fresnei lens with its respective photovoltaic receiver. Therefore, the module housing of the present invention has the preset cavities that ensure the positioning of the photovoltaic receivers in their most optimal position, during the manufacturing and assembly process.
  • the housing has integrated plastic clamping parts, for clamping each of the secondary optical elements.
  • This module consists of high efficiency photovoltaic cells made with multiple unions of elements of the lll-V groups.
  • the photovoltaic cells are small in size, and sunlight affects them through special Fresnel lenses, which allows operation at very high concentration rates (above 400 soles).
  • each solar module object of the invention provides between 35 watts of power with an ambient temperature of 25 C °, although the system is basically scalable, so that modules of significantly lower or higher power could be conceived based on the same principles .
  • the photovoltaic solar module object of the present invention has means of protection against blurring, formed in turn by a housing protection plate, for each of the photovoltaic receivers, placed between the concentrator lens and the photovoltaic receiver.
  • This protection plate has an opening through which the concentrated sunlight only and exclusively reaches the secondary optical element, thus preventing the plastic housing from being damaged in the area around the photovoltaic receivers, due to the incidence of sunlight.
  • the module has heat sinks to eliminate the heat accumulated by the incidence of solar radiation.
  • These heatsinks are arranged on the outer face of the housing base, each corresponding to a photovoltaic receiver, and dissipate the heat emitted by each photovoltaic receiver and are also removable, acting as an element of opening and closing the housing by its base.
  • all heatsinks are integrated in a removable bottom cover, which groups them together, and acts as a single opening and closing element of the housing at its base.
  • This dissipation system is suitable for a high concentration (of the order of 400 to 500 soles, although scalable at concentration ratios greater than 800 soles) on multi-junction photovoltaic cells of less than a square centimeter.
  • the dissipation system is both economical and efficient, so the cost reduction
  • Figure 1 shows a side view of two different embodiments of the high concentration photovoltaic module object of the present invention.
  • Figure 1a shows a module with lower cover that integrates the heatsinks and support bases and contact with the photovoltaic receivers.
  • Figure 1b shows a module without lower cover in which the heatsinks in contact with the receiver are appreciated.
  • Figure 2 shows the bottom of the module of Figure 1a where the bottom cover and the heatsinks can be seen.
  • Figure 3a shows a bottom plan view of the lower area of the module of Figure 1a, with the lower cover removed, where the fixation of the photovoltaic receiver can be observed from below using plastic tabs included in the housing and, likewise, can be observed the metal sheets used to connect the receivers in series within the module.
  • Figure 3b shows a top plan view of the lower area of the module of Figure 1a, where the photovoltaic receiver can be seen.
  • Figure 4a shows a general view of the lower part of the housing of the module of Figure 1a, where 10 cavities can be seen by way of example where they contact the receivers and which, in turn, by the metal structure of fins made by extrusion , perform the function of thermal dissipation.
  • Figure 4b shows a detail of this lower part of the housing, where a sealing gasket can be observed.
  • Figure 5a shows a top view of the module of Figure 1a where the receivers can be seen in the base of the interconnected housing.
  • Figure 5b shows the assembled lens matrices to place on the housing.
  • the figures also show the type of lens-housing closure by means of closure elements.
  • Figure 6 shows a photovoltaic receiver with. all the elements that are part of it.
  • Figure 7 shows a rear view of the module of Figure 1b.
  • Figure 8a shows a top view of the module of Figure 1b, without the lens parquet placed, where the means of protection against blurring can be seen.
  • Figure 8b shows the module of Figure 8a, with the defocusing protection means removed, whereby the arrangement of the receivers, the interconnection sheets between receivers, and the plastic clamping parts of the secondary optical elements are appreciated .
  • Figure 9 shows different views of a particular embodiment of the heatsinks of the module of Figure 1 b.
  • Figure 10a shows different views of the interconnection between the photovoltaic receivers
  • Figure 10b shows the clamping part of the secondary optical element.
  • Figure 11 shows the closure of the Fresnel lenses against the housing by means of plastic closure elements and a seal.
  • the object of the present invention is a high concentration photovoltaic solar module formed by a housing 1 which inside has photovoltaic receivers 2 located in the base 3 thereof, and which are interconnected each.
  • Each of the photovoltaic receivers 2 has a receiver surface 4, which is preferably made of ceramic or metal alloy, on which at least one photovoltaic cell 5, a protection diode 6, and the respective receiver connectors are arranged.
  • Figure 6 shows in detail the essential components of photovoltaic receiver 2.
  • the solar module object of the invention has Fresnel 7 concentrating lenses, which act as the primary optical element and which are located at the top of the housing 1, closing it tightly, in a plane parallel to that of the photovoltaic receivers 2.
  • the concentrating lenses, Fresnel 7 are equal in number to the photovoltaic receivers 2, and each of them is arranged on one of said photovoltaic receivers 2
  • the Fresnel 7 concentrator lens parquet is made by laminating a polymer material with the grooves that define the lens, on glass.
  • the solar module has a secondary optical element 8 arranged on the photovoltaic cell 5 of each of the photovoltaic receivers 2, as can be seen in Figures 6 and 10b, which allow an increase in the degree of light concentration solar.
  • the existence of a primary optical element 7 and a secondary optical element 8 improves the angle of acceptance of light and concentration, and gives uniform illumination of the cell, thereby improving the energy efficiency of the photovoltaic cell.
  • the housing 1 of the solar module is made of plastic injection, preferably PET reinforced with fiberglass, or polymer material of similar characteristics, manufactured as airtight structure.
  • the shape of the plastic housing 1 prevents condensation inside the module, as in the modules existing in the state of the art, in which the indoor air, subjected to weathering conditions for a long time, can condense generating moisture inside.
  • the solar module object of the present invention can also be compatible with the installation of a de-humidification system so as to maintain the relative humidity inside the module at very low levels, minimizing the effects that the humidity over the active elements of the system.
  • the housing 1 comprises integrated in it a plurality of cavities 9 in its base 3, each for housing a photovoltaic receiver 2, which improves the stability of the receiver 2 in the module, in addition to facilitating assembly.
  • the photovoltaic receivers 2 are fixed to the housing 1 by means of plastic tabs 18, which provide a firm and simple fixing to assemble and disassemble.
  • the tabs 18 are shown in Figure 3.
  • the housing 1 further comprises a plurality of metal sheets 10 for interconnecting the photovoltaic receivers 2.
  • the photovoltaic receivers 2 are removable from the inner face of the base 3 of the housing 1, specifically of the cavities 9 in which they are housed, as can be seen in the figures, to make the closure of the Fresnel concentrator lenses 7, according to a specific embodiment these rest on a perimeter wing 19 of the upper part of the housing 1, and they close against the housing 1 by means of plastic closing elements 11 that are distributed along the perimeter wing 19 of the upper part of the housing 1, being removable therefrom.
  • This closure system may preferably comprise an upper sealing gasket 2, which is arranged between the plurality of Fresnel concentrating lenses 7 and the housing 1, as can be seen in Figure 4b.
  • the Fresnel concentrator lenses 7 close against the housing 1 by an overmolding of said Fresnel concentrator lenses 7 on the housing 1, at the time it is being manufactured by injection.
  • the Fresnel 7 concentrating lens park is integral to the housing 1 and remains as an integrated element therein, and therefore, unlike the previous one, in this one the lenses 7 are not removable to access the interior of the module.
  • the secondary optical elements 8 have a truncated inverted pyramid shape, with curved or straight lines, in order to achieve an optimal concentration of sunlight on the cell Photovoltaic 5, and are made of BK7 material (glass, borosilicate, of excellent optical qualities).
  • the housing 1 comprises integrated plastic clamping parts 13 for securing these secondary optical elements 8, providing greater stability and efficiency to the module.
  • Figure 8a shows a particular embodiment of the invention, which has means of protection against blurring.
  • These defocusing protection means are formed by a protection plate 14 of the housing 1 for each of the photovoltaic receivers 2, which is disposed between the Fresnel concentrator lens 7 and said photovoltaic receiver 2.
  • the protection plate 14 has an opening 15, through which concentrated sunlight reaches only the secondary optical element 8, preventing damage to the housing 1.
  • the solar module has heat sinks 16, for the elimination of heat emitted by photovoltaic receivers 2 outside.
  • These heat sinks 16, are arranged on the outer face of the base 3 of the housing 1, each corresponding to a photovoltaic receiver 2, as can be seen in Figure 2
  • these heatsinks 16 are removable, and additionally act as an opening and closing element of the housing 1 by its base 3.
  • the heat sinks 16 that the solar module has are all integrated in a single removable lower cover 17, which acts as an opening and closing element of the housing 1 by its base 3.
  • the manufacturing process of the housing 1 is carried out by injection of special plastic (PET additionally reinforced with fiberglass or similar polymer material) with manufacturing equipment similar to those used in other industries such as automotive or electronics.
  • the housing 1 is manufactured with an L-shaped perimeter wing 19 on which the Fresnel concentrating lens parquet 7 will subsequently rest, on the base 3 the housing 1 has the housings or cavities 9 made for the photovoltaic receivers 2 so that its subsequent placement will be carried out in a simple and precise way, and on the sides it comprises two positive cable and negative cable cable glands for connection with the external cables of the module, as well as a decompression valve.
  • the assembly process of the solar module according to a particular embodiment comprises the following steps:
  • This operation is performed as many times as the number of Fresnel 7 concentrating lenses has the lens parquet.
  • a characterization of the module is carried out by means of a solar simulator to determine its power, perform its l-V curve and classify the module according to these results.
  • the housing 1 itself has an important functional integration that includes interconnection of photovoltaic receivers 2 by means of conductive metal sheets 10, clamping piece 13 of the secondary optical elements 8, contact and wiring for external connection (positive and negative), protection element for blur, overmolded clamping and turning shafts, overpressure valve, cavity option for dehumidification system, integrated heatsinks

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Módulo solar fotovoltaico de alta concentración, formado por una carcasa (1) que en su interior tiene receptores fotovoltaicos (2) en su base (3) interconectados entre sí, y en su parte superior tiene lentes concentradoras Fresnel (7) en un plano paralelo al de los receptores fotovoltaicos (2), que Ia cierran de forma estanca, cada una de las lentes concentradoras Fresnel (7) dispuesta sobre uno de dichos receptores fotovoltaicos (2). Además incluye elementos ópticos secundarios (8), dispuesto cada uno de ellos sobre Ia célula fotovoltaica (5) de cada receptor fotovoltaico (2). La carcasa (1 ) está realizada en inyección de plástico, y tiene integrada en elia una pluralidad de cavidades (9) en Ia base (3), cada una de ellas para el alojamiento de un receptor fotovoltaico (2), y una pluralidad de láminas metálicas (10) para la interconexión de los receptores fotovoltaicos (2).

Description

MÓDULO SOLAR FOTOVOLTAICO DE ALTA CONCENTRACIÓN
CAMPO TÉCNICO DE LA INVENCIÓN
La presente Invención pertenece al campo técnico de los módulos solares fotovoltaicos para el aprovechamiento de la energía solar para la producción de energía eléctrica, concretamente a módulos solares fotovoltaicos de alta concentración, y más concretamente a módulos formados por un parquet de lentes concentradoras Fresnel, un sistema óptico secundario, y células fotovoltaicas de alta eficiencia.
ANTECEDENTES DE LA INVENCIÓN
En la actualidad, la energía solar es considerada frecuentemente como una alternativa renovable a la energía generada por combustible fósil que es utilizada actualmente de modo predominante. El coste es un factor principal en la determinación del tipo de fuente de energía a utilizar, y puede esperarse de un modo razonable que cuando la energía creada a través de la conversión de potencia solar sea de coste competitivo con la generada por combustibles fósiles, la energía solar alcanzará un uso más amplio.
Los módulos de conversión de energía solar que convierten la luz solar en energía eléctrica emplean típicamente células fotovoltaicas que convierten directamente la energía solar en energía eléctrica. Las células solares fotovoltaicas son dispositivos capaces de transformar la radiación solar en electricidad, de un modo directo. La cantidad de energía creada por la célula está relacionada directamente con la cantidad de energía solar que absorbe la célula, y la cantidad de energía que absorbe la célula es una función tanto del tamaño como del área superficial de ésta, y de la intensidad de la luz solar y la longitud de onda que incide en ella.
La alta concentración fotovoltaica (Hlgh Concentraron Photovoltaic "HCPV", en sus siglas en Inglés) es una tecnología incipiente que está empezando a posicionarse como una alternativa de bajo coste para la generación de electricidad.
El alto costo de fabricación de los módulos fotovoltaicos, principalmente el costo de las células, las cuales en su mayoría son importadas de otros países, hacen que los precios de.venta sean excesivamente altos. En términos relativos, la célula fotovoltaica es ei componente más costoso de un convertidor de energía solar. Por lo tanto, el incremento de la producción eléctrica del convertidor aumentando el área superficial de las células, puede llegar muy costoso, y se emplean normalmente otros métodos para incrementar la intensidad de la luz solar que incide en la célula. Tales métodos incluyen utilizar lentes concentradoras y/o espejos para el enfoque de la luz solar sobre la célula.
El tamaño del módulo afecta también al coste en otros modos menos directos. Puesto que la mayoría de los convertidores de energía solar son fabricados alejados de su sitio de instalación, los costes de transporte y de montaje final pueden ser significativos. Claramente, los costes de transporte pueden reducirse al mínimo disminuyendo el tamaño del módulo convertidor, y la simplificación de la estructura general puede esperarse que reduzca razonablemente los costes del montaje, así como el coste del propio colector solar.
Efectivamente, en material semiconductor, para instalar un megavatio pico de módulos fotovoltaicos convencionales se requiere un espacio equivalente a la superficie de un campo de fútbol, es decir, aproximadamente 8000 m2. Por el contrario, en el caso de alta concentración fotovoltaica, la superficie de semiconductor necesaria se reduce a ocho metros cuadrados, lo que demuestra las ventajas económicas de esta tecnología, pues el empleo de espacio para instalaciones o huertos de paneles de módulos solares de alta concentración es mucho menor.
Con respeto a lo anterior es importante destacar que las células convencionales fotovoltaicas se fabrican con silicio, por el contrario las que se utilizan en alta concentración, se realizan con elementos de los grupos lll-V del sistema periódico, elementos como el galio, indio, fósforo y otros de la misma índole, normalmente sobre sustratos de germanio, formando células tándem de múltiple unión que permiten utilizar el espectro solar de una manera mucho más eficiente.
Para el caso de células de silicio, por ser de una sola unión, el límite teórico de conversión, determinado por su eficiencia, se sitúa en el 40%, en condiciones de concentración. Por el contrario, para células de uniones múltiples, el límite teórico se sitúa en el 86,4 %, por lo que el potencial de mejora es muy alto.
En la actualidad, las células comerciales de silicio, para un sol, presentan eficiencias máximas del veintiuno por ciento 21% (silicio monocristalino), mientras que las células triple unión presentan eficiencias de alrededor del 37%.
Realmente, la mayoría de instalaciones fotovoltaicas convencionales de silicio presentan eficiencias inferiores al 15%. En consecuencia, la superficie total de capíación solar fotovoltaica puede reducirse drásticamente mediante el uso de la alta concentración fotovoltaica (casi la mitad en la actualidad, es decir, el 50% de la • superficie requerida por fotovoltaica convencional, y con potencial de reducir, incluso, este porcentaje). Esta reducción de superficie total requerida para una potencia pico equivalente instalada, mediante el uso de la tecnología de alta concentración fotovoltaica, permite reducir el costo de importantes elementos de las instalaciones, tales como menor cantidad de terreno necesario, menor numero de seguidores solares, reducción de distancias de cableado y otros elementos estructurales, y reducción de costes de transporte como consecuencia de la disminución de volumen y peso de elementos requeridos.
Como consecuencia de lo mencionado anteriormente, el coste por Vatio instalado tiene un gran potencial de reducción.
En algunos países, tales como España, se prima más la instalación fotovoltaica generadora dé energía eléctrica ubicada en cubierta que en planta solares, por lo que los avances tecnológicos deben ir encaminados a dicha ubicación.
Un objetivo relacionado es proporcionar un convertidor de energía solar de este tipo ' que utiliza una lente individual o concentradora óptica complementada con un elemento óptico secundario para cada célula.
El sistema de aplicación de lentes concentradoras de radiación solar sobre células fotovoltaicas para el aumento de la capacidad de producción de energía eléctrica de las mismas, consiste en la utilización de una lente concentradora realizada en vidrio, metacrilato, poliuretano, poiietileno, polipropileno o cualquier otro tipo de material de índole similar, que resulte transparente para permitir el paso de los rayos solares. En este caso, las lentes de Fresnel tienen la propiedad de ser elementos concentradores de gran potencia de la radiación solar, y consecuentemente permiten el aprovechamiento de dicha energía en el campo de energía fotovoltaica.
Sobre dicha lente se graban unos surcos circulares y concéntricos a lo ancho de todo el diámetro de la lente, siendo este el elemento que dota a la lente de su poder de concentración de la radiación solar. En definitiva se trata de una lente concentradora de radiación solar, de tipo convencional, cuyas dimensiones suelen ser entre 10 a 30 centímetros de diámetro, pudiendo variar dichas medidas en función de las necesidades para la cual tenga que ser utilizada.
La lente se ubica sobre un marco o bastidor que dispone de un doble fondo de menor medida para ubicar en el la célula fotovoltaica, situada entre 10 a 30 centímetros de separación con la lente concentradora. Orientado el conjunto hacia la posición del sol, los rayos inciden sobre la lente pasando a través de ella, hasta alcanzar a la célula fotovoltaica, la cual recibe dicha radiación solar aumentada en su potencia por efecto de una mayor superficie de radiación a su paso a través de la lente concentradora y el elemento óptico secundario adicional.
Las unidades así dispuestas, es decir el conjunto de una lente concentradora, superpuesta sobre una célula fotovoltaica a una distancia entre 10 a 30 centímetros, y soportados ambos elementos sobre una caja, carcasa o bastidor, pueden ser colocadas en serie para formar los módulos fotovoltaicos, y en el numero necesario para alcanzar la potencia en watios que se quiera determinar en cada módulo, teniendo en cuenta la capacidad de producción de energía de cada célula en función del mayor rendimiento que se obtiene por la eficacia de la lente concentradora.
Por otro lado, es importante destacar que al contrario que otras tecnologías ya probadas en instalaciones durante muchos años, la alta concentración fotovoltaica no tiene aún plantas operando durante un tiempo prolongado. Es fundamental, por tanto, realizar dispositivos que den garantías de fiabilidad a largo plazo.
La mayor parte de módulos de alta concentración fotovoltaica conocidos en el mercado son de tipo cerrado, como muestra la patente ES2229950, donde una estructura o carcasa envolvente que tiene las lentes en su superficie externa superior, contiene los elementos activos, tales como las células, diodo de protección, y el cableado necesario.
Los elementos de los módulos citados son muy sensibles a la humedad, y el contacto con ella produce una degradación acelerada que puede limitar su tiempo de vida en condiciones aceptables de funcionamiento. Aunque se incorporan sistemas de encapsulado de estos elementos, es importantísimo que el recipiente sea estanco e impida la entrada de humedad u otros elementos externos para evitar estos efectos.
Los módulos existentes en el mercado no han resuelto de forma satisfactoria la estanqueidad necesaria, como es el caso de la patente ES2267382, cuya estructura además de no asegurar la estanqueidad debido a que está formado por un tramo central en forma de "U" y dos aletas laterales que se fijan por medios de fijación como resinas, en caso de rotura o avería de alguna pieza en su interior, es necesario romper el módulo para acceder a su interior. Así mismo, un factor a tener en cuenta es el problema de la humedad relativa que se produce en el interior del módulo, que tiene consecuencias directas sobre los elementos activos del sistema. Por otra parte, los cierres de los módulos actuales requieren el uso de materiales adhesivos que impiden o dificultan el reemplazo de lentes u otros elementos del módulo.
Además, para el sistema se requiere una alta rigidez estructural que permita a la estructura comportarse adecuadamente ante las exigencias que va a tener que soportar en la vida útil de la instalación, que será de unos 25 años. El sistema estará a la intemperie soportando condiciones climáticas extremas. Para simular el comportamiento del sistema se ha definido una norma internacional, la IEC 62108, que ha de cumplir de forma obligatoria cualquier producto de alta concentración fotovoltaica que vaya a formar parte de este mercado. Esta norma requiere la realización de una serie de ensayos que permiten simular el comportamiento esperado del sistema en campo.
Era por tanto deseable un sistema que proporcionara una alta concentración fotovoltaica, evitando los inconvenientes existentes en los anteriores sistemas del estado de la técnica.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención resuelve los problemas existentes en el estado de la técnica, mediante un módulo solar fotovoltaico de alta concentración formado por una carcasa que en su interior tiene unos receptores fotovoltaicos fijados a su base, interconectados entre sí, y que de forma preferente, pueden ser desmontables de la base de dicha carcasa. Cada uno de los receptores fotovoltaicos incluye una superficie de receptor sóbre la que se dispone al menos una célula fotovoltaica, un diodo de protección, y los respectivos conectares del receptor fotovoltaico.
Ei módulo, además presenta una pluralidad de lentes concentradoras Fresnel que están dispuestas en la parte superior de la carcasa, en un plano paralelo al de los receptores fotovoltaicos, y cierran la carcasa de forma estanca. El número de lentes concentradoras Fresnel es igual al número de receptores fotovoltaicos, y cada una de las lentes está dispuesta sobre uno de dichos receptores fotovoltaicos.
Adicionalmente, el módulo fotovoltaico tiene unos elementos ópticos secundarios, dispuesto cada uno de ellos sobre la célula fotovoltaica de cada receptor fotovoltaico. Estos elementos ópticos secundarios, preferentemente tienen forma de pirámide invertida truncada. La forma de de la carcasa del módulo de la invención permite que exista menos aire interno, por poseer un espacio reducido ya que el aire interior, sometido a las condiciones climáticas de intemperie durante un tiempo prolongado, puede condensarse generando humedad en el interior. El módulo, podrá, además, ser compatible con la instalación de un sistema de des-humidificación que permita mantener la humedad relativa en el interior del módulo a niveles muy bajos, minimizando los. efectos que pueda producir la humedad sobre los elementos activos del sistema. Asimismo, la carcasa permite que las lentes Fresnel estén colocadas frontalmente y formando una hilera, para constituir el parquet de lentes deseado.
La presente invención se refiere a un módulo con un nuevo sistema de aplicación de lentes concentradoras de radiación solar sobre células fotovoltaicas, para el aumento de la capacidad de producción de energía eléctrica de las mismas. Esto se consigue debido a la mayor intensidad de radiación solar recibida por la célula fotovoltaica, al interponer entre ella y los rayos solares una lente concentradora, de mayor superficie que la célula, y un elemento secundario que hace a su vez de concentrador, homogeneizador de flujo y mezclador cromático capaz de aumentar el potencial de radiación proyectado sobre la célula fotovoltaica, mejorando el ángulo de aceptancia, y aumentando, en consecuencia la capacidad de producción de energía eléctrica de dicha célula fotovoltaica.
La carcasa del módulo fotovoltaico objeto de la presente invención está realizada en inyección de plástico, y tiene integrada en ella una pluralidad de cavidades en su base, cada una de estas cavidades para el alojamiento de un receptor fotovoltaico, y una pluralidad de láminas metálicas necesaria para la interconexión de los receptores fotovoltaicos.
El cierre estanco permite aislar de la intemperie los componentes del módulo, evitando la entrada de agua, polvo u otros elementos a su interior, que podrían degradar el funcionamiento del mismo, garantizando así duraciones del módulo solar superiores a 25 años.
Para cerrar el módulo por su parte superior, las lentes concentradoras Fresnel apoyan sobre un ala perimetral de la parte superior de la carcasa, y este cierre se puede realizar de dos formas diferentes. Según una forma particular de realización, las lentes concentradoras Fresnel cierran contra la carcasa mediante elementos plásticos de cierre que se reparten a lo largo del ala perimetral de la parte superior de ta carcasa, y que son desmontables de ésta. Para mejorar la estanqueidad del cierre, entre la pluralidad de lentes concentradoras Fresnel y la carcasa se puede colocar una junta de estanqueidad superior Según una forma de realización alternativa, las lentes concentradoras Fresnei cierran contra la carcasa mediante un sobremoldeo de dichas lentes sobre fa carcasa, por lo que no se necesitaría ningún elemento de cierre adicional.
Estos cierres estancos deí présente módulo solar permiten un IP65, que es un índice de acuerdo a la norma internacional CEI 60529 que indica el nivel de protección del sistema contra intrusión de objetos sólidos, polvo, contactos accidentales o agua. En este caso, los dos dígitos de índice IP65, indican que el módulo de la invención no permite ninguna penetración de polvo, mantiene la integridad de los contactos eléctricos interiores y no permite la entrada de agua incluso con un fuerte chorro en cualquier dirección y, en el caso de cierre mediante elementos de cierre, permite que sea completamente desmontable.
La disposición de las lentes Fresnei, concentradoras de la potenciación de la radiación solar sobre el conjunto de células fotovoltaicas de los receptores situados en el módulo, sirve por tanto, además, como cubierta del módulo donde se ubican las células, manteniendo así la concentración de calor acumulado dentro del módulo. Es decir, que la lente concentradora cumple la doble función de potenciación de la radiación solar y la de servir como protección de las células para un mejor aprovechamiento de la temperatura.
El presente módulo solar fotovoltaico parte del principio básico de funcionamiento de las células fotovoltaicas, las cuales generan una energía eléctrica al recibir una intensidad de radiación solar. Por ello, al situar una lente concentradora de radiación solar, de mayor superficie, delante de la célula fotovoltaica, se aumenta la potencia de energía solar sobre la célula fotovoltaica, consiguiendo con ello una mayor radiación y, en consecuencia, mayor producción de energía eléctrica por parte de la misma. Dicha posición debe ser minuciosamente calculada para asegurar el perfecto alineamiento del centro de la lente Fresnei con su respectivo receptor fotovoltaico. Por ello la carcasa del módulo de la presente invención presenta las cavidades prefijadas que aseguran el posicionamiento de los receptores fotovoltaicos en su posición más óptima, durante el proceso de fabricación y montaje.
Además, preferentemente, la carcasa tiene integradas unas piezas plásticas de sujeción, para la sujeción de cada uno de los elementos ópticos secundarios.
Todo esto supone un ahorro importantísimo en el material empleado en la construcción de los módulos fotovoltaicos, ya que se reduce de forma considerable el número de células fotovoltaicas a utilizar, que es esencialmente el elemento fundamental en el encarecimiento de su precio de costo.
Estas consideraciones suponen un avance importante en la implantación de la energía solar para su utilización en los sistemas de producción de energía eléctrica, al poder ser obtenido con un costo muy inferior en comparación con los otros sistemas de generación de energía mediante sistemas fotovoltaicos convencionales.
El presente módulo está formado por células fotovoltaicas de alta eficiencia realizadas con uniones múltiples de elementos de los grupos lll-V. Las células fotovoltaicas son de tamaño reducido y sobre las mismas incide la luz solar a través de lentes especiales tipo Fresnel, lo que permite operar a ratios de concentración muy elevados (por encima de 400 soles).
Mediante el uso de los elementos anteriormente descritos es posible obtener eficiencias por encima del 24%, lo que hace de esta tecnología un importante candidato a acceder a nichos de mercado fotovoltaico de alto volumen, por el hecho de permitir generar electricidad de forma más económica que otras tecnologías.
En concreto, cada módulo solar objeto de la invención proporciona entre 35 vatios de potencia con una temperatura ambiente de 25 C°, aunque el sistema es básicamente escalable, por lo que se podrían concebir módulos de potencias sensiblemente inferiores o superiores basados en los mismos principios.
De acuerdo con una realización preferente del módulo solar fotovoltaico objeto de la presente invención, éste cuenta con medios de protección contra el' desenfoque, formados a su vez por una placa de protección de la carcasa, para cada uno de los receptores fotovoltaicos, colocada entre la lente concentradora y el receptor fotovoltaico. Esta placa de protección tiene una abertura a través de la cual la luz solar concentrada alcanza única y exclusivamente al elemento óptico secundario, evitando de esta forma que se dañe la carcasa de plástico en la zona de alrededor de los receptores fotovoltaicos, debido a la incidencia de la luz solar.
De forma preferente, el módulo dispone de disipadores de calor para eliminar el calor acumulado por la incidencia de la radiación solar. Estos disipadores, según una realización particular, están dispuestos en la cara exterior de la base de la carcasa, cada uno de ellos en correspondencia con un receptor fotovoltaico, y disipan el calor emitido por cada receptor fotovoltaico y además son desmontables, actuando como elemento de apertura y cierre de la carcasa por su base. Según una realización alternativa, todos los disipadores están integrados en una tapa inferior desmontable, que los agrupa, y que actúa como un único elemento de apertura y cierre de la carcasa por su base.
Este sistema de disipación es adecuado para una alta concentración (del orden de 400 a 500 soles, aunque escalable a ratios de concentración superiores a 800 soles) sobre células fotovoltaicas multi-unión de menos de un centímetro cuadrado. El sistema de disipación es al mismo tiempo económico y eficiente, por lo que la reducción de costes
I
introducida por la reducción de superficie de elemento fotovoltaico no se ve negativamente compensada por el coste adicional del sistema de disipación. DESCRIPCIÓN DE LAS FIGURAS
A continuación, para facilitar la comprensión de la invención, a modo ilustrativo pero no limitativo se describirá una realización de la invención que hace referencia a una serie de figuras.
La figura 1 muestra una vista lateral de dos realizaciones diferentes del módulo de alta concentración fotovoltaica objeto de la presente invención. La figura 1a muestra un módulo con tapa inferior que integra los disipadores y bases de apoyo y contacto con los receptores fotovoltaicos. La figura 1b muestra un módulo sin tapa inferior en el que se aprecian los disipadores en contacto con el receptor.
La figura 2 muestra la parte inferior del módulo de la figura 1a donde pueden observarse la tapa inferior y los disipadores.
La figura 3a muestra una vista en planta inferior de la zona inferior del módulo de la figura 1a, con la tapa inferior quitada, donde pueden observarse la fijación del receptor fotovoltaico desde abajo utilizando lengüetas de plástico incluidas en la carcasa y, asimismo, pueden observarse las láminas metálicas que sirven para conectar en serie los receptores dentro del módulo. La figura 3b muestra una vista en planta superior de la zona inferior del módulo de la figura 1a, donde puede verse el receptor fotovoltaico. La figura 4a muestra una vista general de la parte inferior de la carcasa del módulo de la figura 1a, donde pueden verse a modo de ejemplo 10 cavidades donde contactan los receptores y que, a su vez, mediante la estructura metálica de aletas realizadas por extrusión, realizan la función de disipación térmica. La figura 4b muestra un detalle de esta parte inferior de la carcasa, donde puede observarse una junta de estanqueidad. La figura 5a muestra una vista superior del módulo de la figura 1a donde pueden apreciarse los receptores en la base de la carcasa interconectados. La figura 5b muestra las matrices de lentes ensambladas para situar sobre la carcasa. Asimismo las figuras muestran el tipo de cierre lente-carcasa mediante elementos de cierre. La figura 6 muestra un receptor fotovoltaico con. todos los elementos que forman parte del mismo.
La figura 7 muestra una vista posterior del módulo de la figura 1b.
La figura 8a muestra una vista superior del módulo de la figura 1b, sin el parquet de lentes colocado, donde pueden apreciarse los medios de protección contra el • desenfoque. La figura 8b muestra el módulo de la figura 8a, con los medios de protección contra el desenfoque retirados, por lo que se aprecia la disposición de los receptores, las láminas de interconexión entre receptores, y las piezas plásticas de sujeción de los elementos ópticos secundarios.
La figura 9 muestra diferentes vistas de una realización particular de ios disipadores del módulo de la figura 1 b.
La figura 10a muestra diferentes vistas de la interconexión entre los receptores fotovoltaicos, y la figura 10b muestra la pieza de sujeción del elemento óptico secundario.
La figura 11 muestra el cierre de las lentes de Fresnel contra la carcasa mediante elementos plásticos de cierre y una junta de estanquidad.
En estas figuras se hace referencia a un conjunto de elementos que son:
1. carcasa del módulo solar fotovoltaico
2. receptores fotovoltaicos
3. base de la carcasa
4. superficie de receptor
5. célula fotovoltaica
6. diodo de protección
7. lentes concentradoras Fresnel
8. elementos ópticos secundarios
9. cavidades para el alojamiento de los receptores fotovoltaicos
10. láminas metálicas de interconexión de receptores
. 11. elementos plásticos dé cierre
12. junta de estanqueidad superior
13. piezas plásticas de sujeción
14. placa de protección de la carcasa
15. abertura de la placa de protección de la carcasa
16. disipadores de calor 17. tapa inferior
18. lengüetas de fijación de los receptores fotovoltaicos
19. ala perimetral de la parte superior de la carcasa DESCRIPCIÓN DE REALIZACIONES PREFERENTES DE LA INVENCIÓN
Tal y como se puede observar en las figuras, el objeto de la presente invención es un módulo solar fotovoltaico de alta concentración formado por una carcasa 1 que en su interior tiene unos receptores fotovoltaicos 2 situados en la base 3 de ésta, y que están interconectados entre sí. Cada uno de los receptores fotovoltaicos 2 tiene una superficie de receptor 4, que preferentemente está realizada en cerámica o bien en aleación metálica, sobre la que se dispone al menos una célula fotovoltaica 5, un diodo de protección 6, y los respectivos conectares del receptor fotovoltaico 2. La figura 6 muestra con detalle los componentes esenciales del receptor fotovoltaico 2.
Adicionalmente, como se puede observar en las figuras 1 a, 1 b, 5a, 5b y 11 , el módulo solar objeto de la invención tiene unas lentes concentradoras Fresnel 7, que actúan como elemento óptico primario y que se sitúan en la parte superior de la carcasa 1 , cerrándola de forma estanca, en un plano paralelo al de los receptores fotovoltaicos 2. Las lentes concentradoras , Fresnel 7 son iguales en número a los receptores fotovoltaicos 2, y cada una de ellas está dispuesta sobre uno de dichos receptores fotovoltaicos 2. El parquet de lentes concentradoras Fresnel 7 se realiza laminando un material polímero con los surcos que definen la lente, sobre vidrio.
Por último, el módulo solar presenta un elemento óptico secundario 8 dispuesto sobre la célula fotovoltaica 5 de cada uno de los receptores fotovoltaicos 2, como se puede ver en las figuras 6 y 10b, los cuales permiten un incremento del grado de concentración de la luz solar. La existencia de un elemento óptico primario 7 y un elemento óptico secundario 8 mejora él ángulo de aceptación de la luz y la concentración, y confiere una iluminación uniforme de la célula, mejorando así el rendimiento energético de la célula fotovoltaica.
La carcasa 1 del módulo solar está realizada en inyección de plástico, preferentemente PET reforzado con fibra de vidrio, o material polímero de similares características, fabricada como estructura hermética. La forma de la carcasa 1 de plástico impide la condensación en el interior del módulo, como sucede en los módulos existentes en el estado de la técnica, en los que el aire interior, sometido a las condiciones climáticas de intemperie durante un tiempo prolongado, puede condensarse generando humedad en el interior. El módulo solar objeto de la presente invención, puede, además, ser compatible con la instalación de un sistema de des-humidificación de manera que permite mantener la humedad relativa en el interior del módulo a niveles muy bajos, minimizando los efectos que pueda producir la humedad sobre los elementos activos del sistema.
La carcasa 1 comprende integrada en ella una pluralidad de cavidades 9 en su base 3, cada una de ellas para el alojamiento de un receptor fotovoltaico 2, lo que mejora la estabilidad del receptor 2 en el módulo, además de facilitar el montaje. De acuerdo con una realización particular de la invención, los receptores fotovoltaicos 2 se fijan a la carcasa 1 mediante lengüetas 18 de plástico, que proporcionan una fijación firme y sencilla de montar y desmontar. Las lengüetas 18 aparecen representadas en la figura 3.
La carcasa 1 comprende además una pluralidad de láminas metálicas 10 para realizar las interconexiones de los receptóres fotovoltaicos 2. Según una realización particular de la invención los receptores fotovoltaicos 2 son desmontables de la cara interna de la base 3 de la carcasa 1 , concretamente de las cavidades 9 en las que se alojan, Tal y como se puede apreciar en las figuras, para realizar el cierre de las lentes concentradoras Fresnel 7, según una realización concreta éstas apoyan sobre un ala perimetral 19 de la parte superior de la carcasa 1 , y cierran contra la carcasa 1 mediante elementos plásticos de cierre 11 que se reparten a lo largo del ala perimetral 19 de la parte superior de la carcasa 1 , siendo desmontables de ésta. Este sistema de cierre puede comprender, de forma preferente, una junta de estanqueidad superior 2, que va dispuesta entre !a pluralidad de lentes concentradoras Fresnel 7 y la carcasa 1 , tal y como se puede observar en la figura 4b.
Según una realización alternativa del sistema de cierre, las lentes concentradoras Fresnel 7 cierran contra la carcasa 1 mediante un sobremoldeo de dichas lentes concentradoras Fresnel 7 sobre la carcasa 1 , en el momento que se está fabricando por inyección. Mediante esta realización el parque de lentes concentradoras Fresnel 7 es solidario a la carcasa 1 y queda como un elemento integrado a la misma, y por lo tanto, a diferencia de la anterior, en ésta las lentes 7 no son desmontables para acceder al interior del módulo.
De acuerdo con una realización particular de la invención, los elementos ópticos secundarios 8 tienen forma de pirámide invertida truncada, con líneas curvas o rectas, con el objeto de conseguir una óptima concentración de la luz solar sobre la célula fotovoltaica 5, y están realizados en material BK7 (vidrio, borosilicato, de excelentes cualidades ópticas).
Preferentemente, y tal y como se observa en las figuras 8b y 10b, la carcasa 1 comprende integradas piezas plásticas de sujeción 13 para la sujeción de estos elementos ópticos secundarios 8, proporcionando una mayor estabilidad y eficiencia al módulo.
La figura 8a muestra una realización particular de la invención, la cual tiene medios de protección contra el desenfoque. Estos medios de protección contra el desenfoque están formados por una placa de protección 14 de la carcasa 1 para cada uno de los receptores fotovoltaicos 2, la cual se dispone entre la lente concentradora Fresnel 7 y dicho receptor fotovoltaico 2. La placa de protección 14 tiene una abertura 15, a través de la cual la luz solar concentrada alcanza únicamente al elemento óptico secundario 8, evitando que dañe la carcasa 1.
Para evitar el calentamiento excesivo, el módulo solar tiene unos disipadores de calor 16, para la eliminación del calor emitido por los receptores fotovoltaicos 2 al exterior. Estos disipadores de calor 16, según una realización particular de la invención están dispuestos en la cara exterior de la base 3 de la carcasa 1 , cada uno de ellos en correspondencia con un receptor fotovoltaico 2, tal y como se puede observar en la figura 2. Según una realización particular, que se puede observar en las figuras 7b y 9, estos disipadores 16 son desmontables, y actúan adicionalmente como elemento de apertura y cierre de la carcasa 1 por su base 3.
De acuerdo con otra realización particular de la invención, los disipadores de calor 16 que tiene el módulo solar están todos ellos integrados en una única tapa inferior 17 desmontable, que actúa como elemento de apertura y cierre de ta carcasa 1 por su base 3.
El proceso de fabricación de la carcasa 1 se realiza por inyección de plástico especial (PET reforzado adicionalmente con fibra de vidrio o material polímero semejante) con equipos de fabricación similares a los que se utilizan en otro tipo de industrias como la de automoción o electrónica. La carcasa 1 se fabrica con un ala perimetral 19 en forma de L sobre la que posteriormente apoyará el parquet de lentes concentradoras Fresnel 7, en la base 3 la carcasa 1 tiene realizados los alojamientos o cavidades 9 para los receptores fotovoltaicos 2 de forma que su colocación posterior se realizará de forma sencilla y precisa, y en los laterales comprende dos cavidades pasamuros de cable positivo y de cable negativo para la conexión con los cables exteriores del módulo, así como una válvula de descompresión. Eí proceso de ensamblaje del módulo solar según una realización particular, comprende las siguientes etapas:
Inserción de manera manual o automática sobre el alojamiento o cavidad 9 marcado en la base 3 de la carcasa 1 de ios receptores fotovoltaicos 2, previamente ensamblados que comprenden la superficie 4 cerámica o de aleación metálica, la célula fótovoltaica 5, el diodo de protección 6 y los conectores, mediante un componente con propiedades de transferencia térmica.
Esta operación se realiza tantas veces como número de lentes concentradoras Fresnel 7 tenga el parquet de lentes.
Colocación de tapa inferior con disipadores 16, o bien colocación de todos los disipadores 16 individuales.
Colocación de la junta de estanqueidad 12 en él ala perimetral exterior 19. Esta operación no es necesaria si el parquet de lentes concentradoras Fresnel 7 se realiza sobremoldeado sobre la carcasa 1.
Colocar el parquet de lentes concentradoras Fresnel 7 sobre el ala perimetral 19 en L. Esta operación tampoco es necesario realizarlas si el parquet de lentes concentradoras Fresnel 7 va sobremoldeado sobre la carcasa 1.
Cerrar mediante la pieza de cierre. Igualmente no necesaria para el caso de sobremoldeo.
Atornillado de las piezas iaterales.de agarre al seguidor solar. Tampoco necesario en el caso de sobremoldeo.
Finalmente, se realiza una caracterización del módulo mediante un simulador solar para determinar la potencia del mismo, realizar su curva l-V y clasificar el módulo en función de estos resultados.
Como puede observarse, una de las grandes ventajas de esta invención es la extraordinaria sencillez del proceso de montaje del módulo. La propia carcasa 1 presenta una importante integración funcional que incluye interconexionado de los receptores fotovoltaicos 2 mediante láminas metálicas 10 conductoras, pieza de sujeción 13 de los elementos ópticos secundarios 8, contacto y cableado para conexionado externo (positivo y negativo), elemento de protección para desenfoque, ejes de sujeción y giro sobremoldeados, válvula de sobrepresión, opción de cavidad para sistema de deshumidificación, disipadores integrados
Una vez descrita de forma clara la invención, se hace constar que las realizaciones particulares anteriormente descritas son susceptibles de modificaciones de detalle siempre que no-alteren el principio fundamenta] y la esencia de la invención.

Claims

RE NDICACIONES
1. Módulo solar fotovoltaico de alta concentración, que comprende
- una carcasa (1 ) que en su interior comprendé
una pluralidad de receptores fotovoltaicos (2) dispuestos en la base (3) de dicha carcasa (1 ) e interconectados entre sí, comprendiendo cada uno de ellos
una superficie de receptor (4) sobre la que se dispone
al menos una célula fotovoltaica (5),
- un diodo de protección (6),
y los respectivos conectares de! receptor fotovoltaico (2), una pluralidad de lentes concentradoras Fresnel (7)
dispuestas en la parte superior de la carcasa (1), cerrándola de forma estanca, en un plano paralelo al de los receptores fotovoltaicos (2),
- iguales en número a los receptores fotovoltaicos (2), cada una de las lentes concentradoras Fresnel (7) dispuesta sobre uno de dichos receptores fotovoltaicos (2),
y una pluralidad de elementos ópticos secundarios (8), dispuesto cada uno de ellos sobre la célula fotovoltaica (5) de cada receptor fotovoltaico (2),
dicho módulo solar fotovoltaico caracterizado porque
la carcasa (1 ) está realizada en inyección de plástico,
y porque dicha carcasa (1 ) comprende integrada en ella
una pluralidad de cavidades (9) en la base (3), cada una de ellas para el alojamiento de un receptor fotovoltaico (2),
- y una pluralidad de láminas metálicas (10) para la interconexión de los receptores fotovoltaicos (2).
2. Módulo solar fotovoltaico de alta concentración, según la reivindicación 1 , caracterizado porque el plástico de la carcasa es tipo PET reforzado con fibra de vidrio.
3. Módulo solar fotovoltaico de alta concentración, según cualquiera de las reivindicaciones anteriores, caracterizado porque las lentes concentradoras Fresnel (7) apoyan sobre un ala perimetral (19) de la parte superior de la carcasa (1 ).
4. Módulo solar fotovoltaico de alta concentración, según la reivindicación anterior, caracterizado porque las lentes concentradoras Fresnel (7) cierran contra la carcasa (1) mediante elementos, plásticos de cierre (11 ) repartidos a lo largo del ala perimetral (19) de la parte superior de la carcasa (1 ), y que son desmontables de ésta.
5. Módulo solar fotovoltaico de alta concentración, según cualquiera de las reivindicaciones anteriores, caracterizado porque entre la pluralidad de lentes concentradoras Fresnel (7) y la carcasa (1 ) se dispone una junta de estanqueidad superior (12.).
6. Módulo solar fotovoltaico de alta concentración, según cualquiera de las reivindicaciones 1 a 3, caracterizado porque las lentes concentradoras Fresnel (7) cierran contra la carcasa (1 ) mediante un sobremoldeo de dichas lentes concentradoras Fresnel (7) sobre la carcasa (1).
7. Módulo solar fotovoltaico de alta concentración, según cualquiera de las reivindicaciones anteriores, caracterizado porque la carcasa (1) comprende integradas piezas plásticas de sujeción (13) para la sujeción de los elementos ópticos secundarios (8).
8. Módulo solar fotovoltaico de alta concentración, según cualquiera de las reivindicaciones anteriores, caracterizado porque los elementos ópticos secundarios (8) tienen forma de pirámide invertida truncada.
9. Módulo solar fotovoltaico de alta concentración, según cualquiera de las reivindicaciones anteriores, caracterizado porque los elementos ópticos secundarios (8) están realizados en materia! BK7.
10. Módulo solar fotovoltaico de alta concentración, según cualquiera de las reivindicaciones anteriores, caracterizado porque la superficie de receptor (4) del receptor fotovoltaico (8) está realizado en un material seleccionado entre cerámica y aleación metálica.
11. Módulo solar fotovoltaico de alta concentración, según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende medios de protección contra el desenfoque, que comprenden a su vez una placa de protección (14)' de la carcasa (1) para cada Uno de los receptores fotovoltaicos (2), dispuesta entre la lente concentradora Fresnel (7) y dicho receptor fotovoltaico (2), que tiene una abertura (15) a través de la cual la luz solar concentrada alcanza únicamente al elemento óptico secundario (8), evitando que dañe la carcasa (1 ).
12. Módulo solar fotovoltaico de alta concentración, según cualquiera de las reivindicaciones anteriores, caracterizado porque los receptores fotovoltaicos (2) son desmontables de la cara interna de la base (3) de la carcasa (1 ).
13. Módulo solar fotovoltaico de alta concentración, según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende una pluralidad de disipadores de calor (16) dispuestos en la cara exterior de la base (3) de la carcasa (1), cada uno de ellos en correspondencia con un receptor fotovoltaico (2), que disipan el calor emitido por cada receptor fotovoltaico (2) y son desmontables, actuando como elemento de apertura y cierre de la carcasa (1) por su base (3).
14. Módulo solar fotovoltaico de alta concentración, según cualquiera de las reivindicaciones 1 a 12, caracterizado porque comprende una pluralidad de disipadores de calor (16) que disipan el calor emitido por cada receptor fotovoltaico (2), cada uno de ellos en correspondencia con un receptor fotovoltaico (2), y todos ellos integrados en una tapa inferior (17) desmontable que actúa como elemento de apertura y cierre de la carcasa (1 ) por su base (3).
15. Módulo solar fotovoltaico de alta concentración, según cualquiera de las reivindicaciones anteriores, caracterizado porque los receptores fotovoltaicos (2) se fijan a la carcasa (1) mediante lengüetas (18) de plástico.
PCT/ES2010/070595 2009-09-23 2010-09-14 Módulo solar fotovoltaico de alta concentración WO2011036323A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/498,060 US9130096B2 (en) 2009-09-23 2010-09-14 High-concentration photovoltaic solar module
EP10818449.0A EP2482331A4 (en) 2009-09-23 2010-09-14 PHOTOVOLTAIC MODULE WITH HIGH CONCENTRATION
ZA2012/02551A ZA201202551B (en) 2009-09-23 2012-04-10 High-concentration photovoltaic solar module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200930720A ES2357931B1 (es) 2009-09-23 2009-09-23 Módulo solar fotovoltaico de alta concentración.
ESP200930720 2009-09-23

Publications (1)

Publication Number Publication Date
WO2011036323A1 true WO2011036323A1 (es) 2011-03-31

Family

ID=43795433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070595 WO2011036323A1 (es) 2009-09-23 2010-09-14 Módulo solar fotovoltaico de alta concentración

Country Status (5)

Country Link
US (1) US9130096B2 (es)
EP (1) EP2482331A4 (es)
ES (1) ES2357931B1 (es)
WO (1) WO2011036323A1 (es)
ZA (1) ZA201202551B (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2856507A4 (en) * 2012-05-29 2016-01-27 Essence Solar Solutions Ltd FRAME HOLDER FOR AN OPTICAL ELEMENT

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014066957A1 (en) 2012-10-29 2014-05-08 "Chukov Bg" Eood High concentrator photovoltaic module
US11894804B2 (en) * 2014-06-27 2024-02-06 Sumitomo Electric Industries, Ltd. Photovoltaic module, photovoltaic panel, and production method for photovoltaic module
WO2016068367A1 (ko) * 2014-10-31 2016-05-06 주식회사 애니캐스팅 베이스플레이트의 처짐을 방지할 수 있는 고집광형 태양전지모듈
US10910506B1 (en) * 2015-04-09 2021-02-02 Solaero Technologies Corp. Solar cell with gradation in the top window layer
TWI595743B (zh) * 2015-10-14 2017-08-11 Indoor light recycling module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018213A1 (en) * 1994-12-08 1996-06-13 Pacific Solar Pty. Limited Multilayer solar cells with bypass diode protection
US6399874B1 (en) * 2001-01-11 2002-06-04 Charles Dennehy, Jr. Solar energy module and fresnel lens for use in same
WO2006070425A1 (en) * 2004-12-29 2006-07-06 Enea Integrated structural element for concentrating photovoltaic module
ES2267382A1 (es) 2005-04-27 2007-03-01 Sol3G, S.L. Submodulo para modulos de concentracion fotovoltaica, modulo de concentracion fotovoltaica, instalacion de energia solar, metodo de empaquetado y procedimiento de calibracion de posicion para modulos de concentracion fotovoltaica.
US20070215198A1 (en) * 2006-03-16 2007-09-20 United Technologies Corporation Solar cell system with thermal management
US20090107541A1 (en) * 2007-10-30 2009-04-30 Linke Edward J Concentrated Solar Photovoltaic Module
US20090159125A1 (en) * 2007-12-21 2009-06-25 Eric Prather Solar cell package for solar concentrator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965653A (en) * 1997-02-26 1999-10-12 Orient Chemical Industries, Ltd. Polyethylene terephthalate resin composition, molded product and resin modifying method
FR2863775B1 (fr) * 2003-12-15 2006-04-21 Photowatt Internat Sa Module photovoltaique avec un dispositif electronique dans l'empilage lamine.
US20080210290A1 (en) 2006-04-14 2008-09-04 Dau Wu Plasma inside vapor deposition apparatus and method for making multi-junction silicon thin film solar cell modules and panels
US20090266395A1 (en) * 2007-11-08 2009-10-29 Sunrgi Solar concentration and cooling devices, arrangements and methods
WO2009090843A1 (ja) * 2008-01-17 2009-07-23 Sharp Kabushiki Kaisha 集光型太陽光発電ユニットおよび集光型太陽光発電ユニット製造方法
US20100065120A1 (en) * 2008-09-12 2010-03-18 Solfocus, Inc. Encapsulant with Modified Refractive Index

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018213A1 (en) * 1994-12-08 1996-06-13 Pacific Solar Pty. Limited Multilayer solar cells with bypass diode protection
US6399874B1 (en) * 2001-01-11 2002-06-04 Charles Dennehy, Jr. Solar energy module and fresnel lens for use in same
ES2229950A1 (es) 2001-01-11 2005-04-16 Solar Systems Technology Incorporated Modulo de energia solar.
WO2006070425A1 (en) * 2004-12-29 2006-07-06 Enea Integrated structural element for concentrating photovoltaic module
ES2267382A1 (es) 2005-04-27 2007-03-01 Sol3G, S.L. Submodulo para modulos de concentracion fotovoltaica, modulo de concentracion fotovoltaica, instalacion de energia solar, metodo de empaquetado y procedimiento de calibracion de posicion para modulos de concentracion fotovoltaica.
US20070215198A1 (en) * 2006-03-16 2007-09-20 United Technologies Corporation Solar cell system with thermal management
US20090107541A1 (en) * 2007-10-30 2009-04-30 Linke Edward J Concentrated Solar Photovoltaic Module
US20090159125A1 (en) * 2007-12-21 2009-06-25 Eric Prather Solar cell package for solar concentrator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2482331A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2856507A4 (en) * 2012-05-29 2016-01-27 Essence Solar Solutions Ltd FRAME HOLDER FOR AN OPTICAL ELEMENT
US9825194B2 (en) 2012-05-29 2017-11-21 Essence Solar Solutions Ltd. Self aligning soldering
US9917224B2 (en) 2012-05-29 2018-03-13 Essence Solar Solutions Ltd. Photovoltaic module assembly

Also Published As

Publication number Publication date
ES2357931A1 (es) 2011-05-04
ES2357931B1 (es) 2012-03-12
US20120240978A1 (en) 2012-09-27
ZA201202551B (en) 2013-06-26
EP2482331A4 (en) 2015-06-03
US9130096B2 (en) 2015-09-08
EP2482331A1 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
ES2357929B1 (es) Modulo de alta concentracion fotovoltaica
ES2538815T3 (es) Panel solar fotovoltaico de concentración
ES2400182T3 (es) Sistema de iluminación diurno y recolección solar de tipo concentración dentro de cerramientos de edificios en vidrio
WO2011036323A1 (es) Módulo solar fotovoltaico de alta concentración
US20120305077A1 (en) Concentrated photovoltaic and thermal system
US8101850B2 (en) Asymmetric parabolic compound concentrator with photovoltaic cells
US20110192460A1 (en) Solar Power Generator
ES2326456B1 (es) Planta de baja concentracion solar y metodo para maximizar la produccion de energia electrica de sus modulos fotovoltaicos.
KR20120018792A (ko) 태양광 집광 패널
US20090314347A1 (en) Solar multistage concentrator, and greenhouse
KR20140097057A (ko) 돔형 태양광발전장치
KR20090045474A (ko) 광학시트 부착형 태양광모듈
KR20140095035A (ko) 돔형 태양광발전장치
Yamada et al. Development of silicone-encapsulated CPV module based on LED package technology
RU2354005C1 (ru) Фотоэлектрический модуль
KR101554144B1 (ko) 집광형 태양광발전장치
Plesniak et al. High performance concentrating photovoltaic module designs for utility scale power generation
KR101599002B1 (ko) 태양광 가로등
KR20150140019A (ko) 양면 수광형 태양광발전장치
WO2011051503A1 (es) Módulo fotovoltaico de alta concentración aplicable para instalaciones de energía solar de alto rendimiento
US11264945B2 (en) Verta solar sun panel
KR20160005418A (ko) 돔형 태양광발전장치
KR20170142638A (ko) 태양광 소형 집광장치
KR20160004523A (ko) 돔형 태양광발전장치
KR20150138614A (ko) 양면 수광형 태양광발전장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818449

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010818449

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3541/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13498060

Country of ref document: US