WO2011035733A1 - 数据传输方法、装置及系统 - Google Patents

数据传输方法、装置及系统 Download PDF

Info

Publication number
WO2011035733A1
WO2011035733A1 PCT/CN2010/077342 CN2010077342W WO2011035733A1 WO 2011035733 A1 WO2011035733 A1 WO 2011035733A1 CN 2010077342 W CN2010077342 W CN 2010077342W WO 2011035733 A1 WO2011035733 A1 WO 2011035733A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
relay station
transmitted
donor base
base station
Prior art date
Application number
PCT/CN2010/077342
Other languages
English (en)
French (fr)
Inventor
陈璟
王可
马慧
蔺波
张爱琴
张冬梅
毕晓宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP10818427.6A priority Critical patent/EP2485561B1/en
Publication of WO2011035733A1 publication Critical patent/WO2011035733A1/zh
Priority to US13/432,504 priority patent/US9232404B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/1458Denial of Service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • H04W12/037Protecting confidentiality, e.g. by encryption of the control plane, e.g. signalling traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/12Detection or prevention of fraud
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • RN relay station
  • a relay station is a station that relays data between a base station and a terminal, so that the wireless signal can reach the destination through multiple transmissions (multiple hops).
  • the conventional base station may be referred to as a donor base station (Donor evolved NodeB; hereinafter referred to as DeNB).
  • DeNB Donor evolved NodeB
  • the radio interface between the relay station and the donor base station is an Un interface
  • the radio interface between the user equipment and the relay station is a Uu interface.
  • the relay station accesses the network in a similar manner to the user equipment; the relay station establishes a signaling bearer and a user data bearer with the network; all signaling and related to the user equipment residing on the relay station Data is transmitted through the user data bearer between the relay station and the network.
  • the user data bearer can only provide encryption protection, so the control plane signaling related to the user equipment residing on the relay station will only obtain encryption protection when transmitting between the relay station and the donor base station.
  • the control plane signaling related to the user equipment residing on the relay station includes an access layer (Access Stratum; AS) signaling and a non-access layer (Non Access) that the user equipment interacts with the network side.
  • Stratum hereinafter referred to as: NAS) signaling; further includes signaling for internal communication in the network side, such as the SI interface information defined in the Long Term Evolution (LTE) system, in order to provide services to the user equipment.
  • LTE Long Term Evolution
  • the S1 interface signaling includes signaling including sensitive information, such as signaling for transmitting a key Kenb for protecting Uu interface communication.
  • Embodiments of the present invention provide a data transmission method, apparatus, and system, to provide control plane signaling for transmitting control plane signaling related to user equipment residing on a relay station between a relay station and a donor base station. More perfect protection.
  • the embodiment of the invention provides a data transmission method, including:
  • Determining that the data to be transmitted is control plane signaling related to the user equipment residing on the relay station; transmitting the data to be transmitted by using the first user data bearer established between the relay station and the donor base station, the first user The data bearer provides integrity protection for the data to be transmitted.
  • the embodiment of the present invention further provides a relay station, which is capable of communicating with a donor base station, and includes: a bearer establishing module, configured to establish a first user data bearer between the relay station and the donor base station;
  • a first type identifying module configured to determine a data type of uplink data to be transmitted
  • a first transmission module configured to: when the first type identification module determines that the data type of the uplink data to be transmitted is control plane signaling related to a user equipment residing on the relay station, establish by using the bearer
  • the first user data bearer established by the module transmits the uplink data to be transmitted to the donor base station, and the first user data bearer provides integrity protection for the uplink data to be transmitted.
  • the embodiment of the invention further provides an evolved packet core network node, which is capable of communicating with the relay station by the donor base station, and includes:
  • a second type identifying module configured to determine a data type of downlink data to be transmitted
  • a third transmission module configured to: when the second type identification module determines that the data type of the downlink data to be transmitted is control plane signaling related to a user equipment residing on the relay station, by using the donor base station
  • the first transport bearer with the evolved packet core network node will be
  • the downlink data to be transmitted is sent to the donor base station, so that the donor base station sends the downlink data to be transmitted through the first user data bearer corresponding to the first transport bearer between the donor base station and the relay station.
  • the first user data bearer provides integrity protection for the downlink data to be transmitted.
  • An embodiment of the present invention further provides a data transmission system, including: a donor base station, the foregoing relay station, and the evolved packet core network node.
  • the embodiment of the present invention further provides a donor base station, which is capable of communicating with the relay station, and includes: a third type identifying module, configured to determine a data type of the downlink data to be transmitted;
  • a fifth transmission module configured to: when the third type identification module determines that the data type of the downlink data to be transmitted is control plane signaling related to a user equipment residing on the relay station, The first user data bearer between the donor base stations transmits the downlink data to be transmitted to the relay station, and the first user data bearer provides integrity protection for the downlink data to be transmitted.
  • the embodiment of the present invention further provides a data transmission system, including: the foregoing relay station and the donor base station.
  • the embodiment of the invention further provides a data transmission method, including:
  • Determining that the data to be transmitted is control plane signaling related to the user equipment residing on the relay station; performing integrity protection on the data to be transmitted through an Internet protocol security association between the relay station and the network side device; transfer data.
  • the embodiment of the invention further provides a data transmission device, including:
  • a fourth type identifying module configured to determine a data type of data to be transmitted
  • a protection module configured to: when the fourth type determining module determines that the data type of the data to be transmitted is control plane signaling related to a user equipment residing on the relay station, by using an Internet between the relay station and the network side device The protocol security association performs integrity protection on the to-be-transmitted data; and the data to be transmitted after the integrity protection of the protection module is transmitted by the bearer.
  • the first user data bearer between the relay station and the donor base station transmits control plane signaling related to the user equipment residing on the relay station, and the first user data is carried between the relay station and the donor base station for the control.
  • Surface signaling provides integrity protection; thus implemented and resident
  • the control plane signaling related to the user equipment on the relay station can obtain integrity protection when transmitted between the relay station and the donor base station.
  • FIG. 2 is a flow chart of another embodiment of a data transmission method according to the present invention.
  • 3(a) is a schematic diagram of an embodiment of a signaling plane protocol stack of the present invention.
  • 3(b) is a schematic diagram of an embodiment of a user plane protocol stack of the present invention.
  • FIG. 5 is a flowchart of still another embodiment of a data transmission method according to the present invention.
  • FIG. 6(a) is a schematic diagram of another embodiment of a signaling plane protocol stack of the present invention.
  • 6(b) is a schematic diagram of another embodiment of a user plane protocol stack of the present invention.
  • FIG. 7 is a flow chart of still another embodiment of a data transmission method according to the present invention.
  • FIG. 8 is a flowchart of still another embodiment of a data transmission method according to the present invention.
  • FIG. 9 is a schematic structural diagram of an embodiment of a relay station according to the present invention.
  • FIG. 10 is a schematic structural diagram of an embodiment of an evolved packet core network node according to the present invention.
  • FIG. 11 is a schematic structural diagram of an embodiment of a donor base station according to the present invention.
  • FIG. 12 is a schematic structural diagram of an embodiment of a data transmission system according to the present invention.
  • FIG. 13 is a schematic structural diagram of another embodiment of a data transmission system according to the present invention.
  • FIG. 14 is a schematic structural diagram of an embodiment of a data transmission apparatus according to the present invention.
  • FIG. 1 is a flowchart of an embodiment of a data transmission method according to the present invention. As shown in FIG. 1, the embodiment includes:
  • Step 101 Determine that the data to be transmitted is control plane signaling related to the user equipment residing on the relay station.
  • the identifier bit in the data packet header of the data to be transmitted may be parsed, and the data to be transmitted is determined according to the value of the identifier bit as control plane signaling related to the user equipment residing on the relay station; the identifier bit may include: ( Protocol ) / next header field, source Internet Protocol (IP) address, destination IP address, tunnel endpoint identifier (Tennel Endpoint Identifier; TEID) and packet data sink One or a combination of a Packet Data Convergence Protocol (hereinafter referred to as: PDCP) Header Control Plane/User Plane (C/U); where the C/U indicator is used to indicate the PDCP packet. Whether signaling or user data is transmitted.
  • IP Internet Protocol
  • TEID tunnel endpoint identifier
  • PDCP Packet Data Convergence Protocol
  • C/U Packet Data Convergence Protocol
  • Step 102 The foregoing data to be transmitted is transmitted by using a first user data bearer established between the relay station and the donor base station, where the first user data bearer provides integrity protection for the data to be transmitted.
  • the foregoing method for providing integrity protection includes: a relay station in a process of accessing a donor base station, the relay station negotiating security context information such as an integrity algorithm and an integrity key with a donor base station; the relay station and the donor base station may use the security context information as the first
  • the data transmitted on the user data bearer provides integrity protection such that the first user data bearer has the capability to provide integrity protection.
  • a dedicated data radio bearer (Data Radio Bearer; hereinafter referred to as DRB) may be used to carry signaling and perform integrity protection, where the dedicated DRB only carries signaling, and Host data.
  • DRB Data Radio Bearer
  • the dedicated DRB is used to carry the upper layer signaling on the relay link, and the dedicated DRB of the relay link is part of the first user data bearer.
  • the transmitting end device of the relay link acquires a control indication set for the first user data bearer, and Performing, according to the control instruction, a step of transmitting data to be transmitted by using a first user data bearer established between the relay station and the donor base station; specifically, performing, by the control indication, a first user data bearer established between the relay station and the donor base station.
  • the step of transmitting the data to be transmitted may be: configuring the attribute of the PDCP peer layer to enable integrity protection according to the control indication or the data to be transmitted is control plane signaling related to the user equipment residing on the relay station; And performing the step of transmitting the data to be transmitted by using a first user data bearer established between the relay station and the donor base station according to the configured attributes of the PDCP peer layer.
  • the packet data gateway of the relay station sets a control indication for the first user data bearer, where the control indication is used to indicate that the PDCP entity of the sending end device of the relay link provides integrity to the data to be transmitted. Protection; or, the control indication is used to indicate that the PDCP entity of the receiving end device of the relay link performs integrity detection on the received data.
  • the packet data gateway of the relay station can send the control indication to the service network of the relay station through the S5 message.
  • the service gateway of the relay station may send the control indication to the mobility management entity of the relay station through the Sl message, and the mobility management entity of the relay station may adopt the S1 application protocol (S1)
  • the application protocol hereinafter referred to as: S 1 AP
  • S 1 AP sends the control indication to the donor base station
  • the donor base station can send the control indication to the relay station by using a Radio Resource Control (hereinafter referred to as RRC) message, thereby implementing the donor base station and
  • RRC Radio Resource Control
  • the donor base station and the relay station respectively configure the attributes of the PDCP peer layer of the dedicated DRB of the relay link according to the control indication, and the attributes of the PDCP peer layer of the dedicated DRB of the relay link may include:
  • the data to be protected or to be transmitted is control plane signaling associated with the user equipment residing on the relay station.
  • the PDCP entity of the transmitting end device of the relay link When the attribute of the PDCP peer layer is configured to enable integrity protection, the PDCP entity of the transmitting end device of the relay link provides integrity protection for the data to be transmitted while processing the data to be transmitted; when the PDCP is peered When the attribute of the layer is configured to be the control plane signaling related to the user equipment residing on the relay station, the PDCP entity of the transmitting end device of the relay link processes the data to be transmitted. Provide integrity protection.
  • the packet data gateway of the relay station may further set a control indication to indicate whether the PDCP entity of the transmitting end device of the relay link needs to complete the data to be transmitted. Sexual protection; or, the control indication is used to indicate whether the PDCP entity of the receiving end device of the relay link performs integrity detection on the received data.
  • the attributes of the PDCP peer layer of the dedicated DRB of the relay link may include: enabling integrity protection, not enabling integrity protection, and the data to be transmitted is a control plane message related to the user equipment residing on the relay station.
  • the data to be transmitted or to be transmitted is user plane data related to the user equipment residing on the relay station.
  • the PDCP entity of the transmitting end device of the relay link provides integrity protection for the data to be transmitted while processing the data to be transmitted; otherwise, when the PDCP pair
  • the PDCP entity of the sender device does not provide integrity protection for the data to be transmitted; for the PDCP entity of the receiver device, the corresponding action is integrity detection of the data to be transmitted. This will not be repeated here.
  • the attribute of the PDCP peer layer is configured such that the data to be transmitted is control plane signaling related to the user equipment residing on the relay station
  • the PDCP entity of the transmitting end device of the relay link processes the data to be transmitted, Provides integrity protection for the data to be transmitted.
  • the PDCP peer layer is configured to transmit data as user plane data related to user equipment residing on the relay station
  • the PDCP entity of the sending device does not provide integrity protection for the data to be transmitted.
  • the corresponding action is to perform integrity detection on the data to be transmitted, and details are not described herein.
  • a shared DRB may be used to carry signaling and perform integrity protection, where the shared DRB carries both signaling and data, so that the extended relay link is not required.
  • the shared DRB carries the upper layer signaling on the relay link, and the shared DRB of the relay link is part of the first user data bearer.
  • the PDCP entity of the transmitting end device of the relay link can detect the data type of the data to be transmitted when processing the data to be transmitted, and determine, according to the detection result, the data to be transmitted is a control plane related to the user equipment residing on the relay station.
  • the PDCP entity of the transmitting end device of the relay link provides integrity protection for the data to be transmitted, and carries a control indication in the data to be transmitted, where the control indication is used to indicate that the data to be transmitted is integrity protected.
  • the device that receives the data to be transmitted may perform integrity detection on the received data to be transmitted according to the control indication.
  • control indication may be carried in a PDCP protocol data unit (PDU), and the control indication is set to be on, and is used to indicate that the PDCP entity of the sending end device of the relay link is The data to be transmitted is integrity-protected; the PDCP entity of the receiving end device of the relay link can perform integrity detection according to the control indication in the PDCP PDU when processing the PDCP PDU, that is, when the control indication is open, the receiving end device The PDCP entity performs integrity checks.
  • PDU PDCP protocol data unit
  • the embodiment of the present invention is not limited to this.
  • control indication may also be set in other manners, as long as it can indicate whether the PDCP entity of the transmitting end device of the relay link performs integrity protection.
  • the manner in which the control indication is set is not limited in the embodiment of the present invention.
  • the PDCP entity In order to detect the data type of the data to be transmitted, the PDCP entity needs to add a packet type detection function for detecting whether the data to be transmitted is control plane signaling related to the user equipment residing on the relay station or staying at the relay station.
  • the method for detecting the data type of the data to be transmitted is a preset rule, and the PDCP entity of the sending device or the receiving device can apply the rule to distinguish that the data to be transmitted is related to the user equipment residing on the relay station.
  • Control plane signaling is also user plane data associated with user equipment residing on the relay station.
  • the method for detecting the data type of the data to be transmitted may include: an IP data header service type identification method or an IP data header upper layer protocol identification method.
  • IP header service type identification method (1) IP header service type identification method:
  • the reliability field and/or delay field has a value equal to 1 indicating that the data to be transmitted is control plane signaling related to the user equipment residing on the relay station, reliable The value of the field and/or the delay field is equal to 0, indicating that the data to be transmitted is the user plane data related to the user equipment residing on the relay station; of course, the embodiment of the present invention is not limited thereto, and other setting manners may be used to indicate that the data to be transmitted is to be transmitted.
  • the data is the control plane signaling related to the user equipment residing on the relay station or the user plane data related to the user equipment residing on the relay station, which is not limited by the embodiment of the present invention.
  • the sender of the signaling when the sender of the signaling sends the signaling, the reliability field and/or the delay field of the service type field of the IP data header is set to 1, and the sender of the signaling may be the mobility management of the user equipment. Entity, packet data gateway of the relay station, donor base station or relay station; when the sender of the data transmits data, the reliability field and/or delay field of the service type field of the IP data header is set to zero.
  • the PDCP entity of the transmitting end device of the relay link may determine the data to be transmitted according to the reliability field and/or the value of the delay field of the service type field of the IP data header of the data to be transmitted. Is the control plane signaling associated with the user equipment residing on the relay station or the user plane data associated with the user equipment residing on the relay station.
  • the signaling is first carried by the Stream Control Transmission Protocol (SCTP) 7
  • SCTP Stream Control Transmission Protocol
  • UDP User Datagram Protocol
  • the PDCP entity of the transmitting end device of the relay link can detect the upper layer protocol identifier of the IP data header. If the upper layer protocol is identified as SCTP, the data to be transmitted can be determined to reside on the relay station.
  • User equipment related control plane signaling if the upper layer protocol is identified as UDP, it may be determined that the data to be transmitted is user plane data related to the user equipment residing on the relay station.
  • the embodiment of the present invention is not limited to this, and other methods may be used to detect the data type of the data to be transmitted, as long as the data type of the data to be transmitted can be detected, and the sending end device and the receiving end device adopt a consistent detection method. This embodiment of the present invention does not limit this.
  • the detection result may be further utilized to perform priority scheduling processing, for example, the priority related to the user equipment residing on the relay station may be preferentially scheduled. Face signaling, thus implementing a DRB Different priority processing.
  • the embodiment may further include: when determining that the data to be transmitted is user plane data related to the user equipment residing on the relay station, transmitting the data to be transmitted by using a second user data bearer established between the relay station and the donor base station
  • the second user data bearer provides encryption protection for the data to be transmitted.
  • the method for determining that the data to be transmitted is user plane data related to the user equipment residing on the relay station may refer to determining, in step 101, that the data to be transmitted is control plane signaling related to the user equipment residing on the relay station. The method will not be described here.
  • the relay station interacts with the donor base station through information in the process of accessing the network, during the process of the relay station accessing the donor base station, or after the user equipment resides on the relay station, at the relay station and the donor
  • a first user data bearer is established on the radio interface between the base stations, and the first user data bearer can provide integrity protection for the data to be transmitted between the relay station and the donor base station, and can also provide encryption protection.
  • the second user data bearer may be The relay station and the donor base station provide encryption protection for the data to be transmitted.
  • the data type of the data to be transmitted and the sequence of establishing the user data bearer are not limited, and only the user data bearer can be used for data transmission during data transmission.
  • the first user data bearer and the second user data bearer may be established first, and then, when data needs to be transmitted, the data type of the data to be transmitted is determined, and according to the data type, the first user data bearer or the second user data bearer is used. Transmitting the data to be transmitted; determining the data type of the data to be transmitted, and then establishing the first user data bearer or the second user data bearer according to the data type, and then transmitting the first user data bearer or the second user data bearer Data to be transmitted.
  • the control plane signaling related to the user equipment residing on the relay station is transmitted through the first user data bearer, so the first user data bearer may also be referred to as a signaling bearer, and the existing
  • the signaling bearer transmitted here is the control plane signaling related to the user equipment residing on the relay station, the same below.
  • the first user data bearer and the second user data bearer represent two types of user data bearers, and the “first” and “second” are only convenient for description, and do not represent the number of the number and the priority level. with.
  • the encryption protection in the embodiment of the present invention includes the user equipment and the network side selecting a null encryption algorithm.
  • the null encryption algorithm is also a possible encryption algorithm.
  • the user equipment and the network side select the null encryption algorithm for encryption protection, the communication between the user equipment and the network side is not actually encrypted.
  • the data to be transmitted when it is determined that the data to be transmitted is control plane signaling related to the user equipment residing on the relay station, the data to be transmitted is transmitted by using the first user data bearer, and the first user data is carried in the relay station and the donor base station. Encryption and integrity protection is provided between the data to be transmitted; thus, control plane signaling related to the user equipment residing on the relay station can be obtained, and integrity protection can be obtained when transmitting between the relay station and the donor base station, thereby avoiding Denial of service and other attacks.
  • a first user data bearer is a Bearer cipher and integrity (hereinafter referred to as Bci), and a second user is provided.
  • the data bearer is a bearer cipher only (hereinafter referred to as Bco).
  • the present embodiment uses the data to be transmitted as the uplink data to be transmitted on the relay station as an example.
  • the signaling plane protocol stack used in this embodiment is used as an example.
  • Figure 3 (a) is a schematic diagram of an embodiment of the signaling plane protocol stack of the present invention
  • the user plane protocol stack used in this embodiment is shown in Figure 3 (b)
  • Figure 3 (b) Is a schematic diagram of an embodiment of the user plane protocol stack of the present invention.
  • this embodiment may include:
  • Step 201 The relay station determines a data type of the uplink data, where the data type includes a control plane signal and user plane data.
  • the relay station may parse the identifier bit in the data packet header of the uplink data, and determine, according to the value of the identifier bit, whether the uplink data is control plane signaling related to the user equipment residing on the relay station, or user plane data; It may include one or a combination of a Protocol/next header field, a source IP address, a destination IP address, a TEID, and a PDCP header C/U indication.
  • the relay station can parse the Protocol/next header field in the data packet header of the uplink data. If the value of the field is 132, the uplink data can be determined to be resident on the relay station. User equipment related control plane signaling; if the value of this field is 17, it may be determined that the uplink data is user plane data related to the user equipment residing on the relay station.
  • the data type of the uplink data may be identified by other means, such as an IP address.
  • the mobility management entity Mobile Management Entity; hereinafter referred to as MME
  • MME Mobile Management Entity
  • the station can identify, by the destination IP address, whether the uplink data is user plane data of the PGW/SGW addressed to the user equipment or control plane signaling to the MME. Any method of identifying the data type of the uplink data should fall within the scope of protection of the embodiments of the present invention.
  • Step 202 When determining that the uplink data is control plane signaling related to the user equipment residing on the relay station, the relay station sends the uplink data to the donor base station by using the Bci; when determining that the uplink data is the user residing on the relay station When the device-related user plane data is used, the relay station transmits the above uplink data to the donor base station through the Bco.
  • the relay station establishes Bci and Bco between the relay station and the donor base station through the information exchange with the donor base station in the process of accessing the network, and the Bci can provide encryption and integrity for the uplink data between the relay station and the donor base station. Protection, Bco can provide encryption protection for uplink data between the relay station and the donor base station.
  • the relay station negotiates security context information such as an encryption algorithm, an integrity algorithm, an encryption key, and an integrity key with the donor base station.
  • the relay station and the donor base station provide encryption and integrity protection for the data transmitted on the Bci through these security context information, thereby enabling the BCI to provide integrity protection.
  • the relay station and the donor base station provide encryption protection for the data transmitted on the Bco through the negotiated encryption algorithm and security context information such as the encryption key, so that the Bco only has the capability of providing encryption protection.
  • a first transmission bearer corresponding to the Bci is established between the donor base station and the evolved packet core network node of the relay station; when the relay station establishes Bco with the donor base station, the donor base station and the relay station A second transport bearer corresponding to the Bco is established between the evolved packet core network nodes.
  • the first transmission bearer and the second transport bearer may be a General Packet Radio Service Tunneling Protocol (GTP) PH, where the evolved packet core network node of the relay station is a packet data gateway of the relay station (Packet) Data Network Gateway; hereinafter referred to as: PGW) / Service Gateway (hereinafter referred to as: SGW).
  • GTP General Packet Radio Service Tunneling Protocol
  • PGW Packet Data Gateway
  • SGW Service Gateway
  • the Bci and the first transport bearer correspond to the first evolved packet system (Evolved Packet System; hereinafter referred to as EPS) bearer between the relay station and the PGW/SGW of the relay station; the Bco and the second transport bearer correspond to the PGW/SGW of the relay station and the relay station
  • EPS evolved Packet System
  • the relay station and the PGW/SGW of the relay station establish two different evolved packet systems (Evolved Packet System; hereinafter referred to as EPS) bearers, respectively being the first EPS bearer and the second EPS.
  • EPS evolved Packet System
  • the first EPS bearer between the relay station and the donor base station is Bci
  • the first EPS bearer between the donor base station and the PGW/SGW of the relay station is the first transport bearer; for the same reason,
  • the second EPS bearer between the relay station and the donor base station is BC0, at the donor base station and the relay station
  • the second EPS bearer between the PGW/SGW is a second transport bearer.
  • the process of establishing the first EPS bearer and the second EPS bearer may be: establishing a Bci and a Bco between the relay station and the donor base station by using a radio bearer setup message, and a GTP tunnel or a proxy mobile Internet protocol between the donor base station and the PGW/SGW of the relay station.
  • PMIP Proxy Mobile Internet Protocol
  • the tunnel establishment process establishes a first transport bearer and a second transport bearer.
  • the Bci and the first transport bearer are combined into a first EPS bearer, and the Bco and the second transport bearer are combined into a second EPS bearer.
  • the first EPS bearer and the second EPS bearer may be established between the relay station and the PGW/SGW of the relay station after the relay station accesses the network, or after the user equipment resides on the relay station; In the process of accessing the network, a first EPS bearer is established between the relay station and the PGW/SGW of the relay station, and after the user equipment resides on the relay station, a second EPS is established between the relay station and the PGW/SGW of the relay station.
  • a second EPS bearer is established between the relay station and the PGW/SGW of the relay station, after the user equipment resides on the relay station, the PGW/ of the relay station and the relay station
  • a first EPS bearer is established between the SGWs.
  • Step 203 After receiving the uplink data sent by the Bci, the donor base station sends the uplink data to the PGW/SGW of the relay station by using the first transmission bearer. After receiving the uplink data sent by the Bco, the donor base station sends the uplink by using the second transmission bearer. The data is sent to the PGW/SGW of the relay station.
  • the donor base station after receiving the uplink data sent by the Bci, maps the uplink data to the first transmission bearer according to the mapping relationship between the bearer identifier of the Bci and the bearer identifier of the first transport bearer saved by the donor base station. Transmitting the uplink data to the PGW/SGW of the relay station by using the first transmission bearer;
  • the donor base station After the donor base station receives the uplink data sent by the BCO, the donor base station maps the uplink data to the second transmission bearer according to the mapping relationship between the saved bearer identifier of the Bco and the bearer identifier of the second transport bearer, and the second transport bearer is used by the second transport bearer.
  • the uplink data is sent to the PGW/SGW of the relay station.
  • the bearer identifier of the first transport bearer may be the TEID of the first transport bearer.
  • the bearer identifier of the second transport bearer may be the TEID of the second transport bearer.
  • the relay station when it is determined that the uplink data is control plane signaling related to the user equipment residing on the relay station, the relay station sends the uplink data to the donor base station through the Bci, and then the donor base The station transmits the uplink data to the PGW/SGW of the relay station through the first transmission bearer corresponding to the Bci, and the Bci provides encryption and integrity protection for the uplink data between the relay station and the donor base station, thereby realizing the user residing on the relay station.
  • the device-related control plane signaling can obtain integrity protection between the relay station and the donor base station, and can avoid attacks such as denial of service.
  • FIG. 4 is a flowchart of still another embodiment of a data transmission method according to the present invention.
  • the first user data bearer is Bci
  • the second user data bearer is Bco.
  • the data to be transmitted is an evolved packet core of the relay station.
  • the downlink data to be transmitted on the network node is taken as an example.
  • the signaling plane protocol stack used in this embodiment is shown in Figure 3 (a).
  • the user plane protocol stack used in this embodiment is shown in Figure 3 (b).
  • this embodiment may include:
  • Step 401 The evolved packet core network node of the relay station determines a data type of the downlink data, where the data type includes control plane signaling and user plane data.
  • the evolved packet core network node of the relay station is the PGW/SGW of the relay station.
  • the PGW/SGW of the relay station may parse the identifier bit in the data packet header of the downlink data, and determine, according to the value of the identifier bit, whether the downlink data is control plane signaling related to the user equipment residing on the relay station, or user plane data.
  • the above identifiers may include one or a combination of a Protocol/next header field, a source IP address, a destination IP address, a TEID, and a PDCP header C/U indication.
  • the PGW/SGW of the relay station can parse the Protocol/next header field in the data packet header of the downlink data. If the value of the field is 132, the downlink data can be determined to be resident. User equipment related control plane signaling remaining on the relay station; if the value of this field is 17, it may be determined that the downlink data is user plane data related to the user equipment residing on the relay station.
  • the data type of the uplink data may be identified by other means, such as an IP address.
  • the MME is different from the IP address of the PGW/SGW of the user equipment.
  • the PGW/SGW of the relay station can identify, by the source IP address, whether the downlink data is user plane data from the PGW/SGW of the user equipment or control plane signaling from the MME. Any method that can identify the data type of the downlink data should fall within the protection scope of the embodiment of the present invention.
  • Step 402 When it is determined that the downlink data is control plane signaling related to the user equipment residing on the relay station, the PGW/SGW of the relay station sends the downlink data to the donor base station by using the first transmission bearer; when determining that the downlink data is User device related user equipment residing on the relay station In the case of data, the PGW/SGW of the relay station transmits the above downlink data to the donor base station through the second transmission bearer.
  • the method for establishing the Bci, the Bco, the first transmission bearer, and the second transport bearer is the same as that provided in step 202, and details are not described herein again.
  • Bci provides encryption and integrity protection for the downlink data between the relay station and the donor base station
  • Bco provides encryption protection for the downlink data between the relay station and the donor base station.
  • Step 403 After receiving the downlink data sent by the first transmission bearer, the donor base station sends the downlink data to the relay station by using the Bci; after receiving the downlink data sent by the second transmission bearer, the donor base station sends the downlink data to the relay station by using the Bco. .
  • the donor base station after receiving the downlink data sent by the first transport bearer, maps the downlink data to the Bci according to the mapping relationship between the bearer identifier of the Bci and the bearer identifier of the first transport bearer saved by the donor base station.
  • the downlink data is sent to the relay station by the Bci; after the donor base station receives the downlink data sent by the second transport bearer, the donor base station performs the downlink data according to the mapping relationship between the saved bearer identifier of the Bco and the bearer identifier of the second transport bearer. Mapped to Bco, the downlink data is sent to the relay station through Bco.
  • the bearer identifier of the first transport bearer may be the TEID of the first transport bearer.
  • the bearer identifier of the second transport bearer may be the TEID of the second transport bearer.
  • step 402 and step 403 are equivalent to: when determining that the downlink data is control plane signaling related to the user equipment residing on the relay station, the PGW/SGW of the relay station sends the downlink data by using the first transmission bearer. To the donor base station, and further transmitting the downlink data to the relay station by using the Bci; when determining that the downlink data is user plane data related to the user equipment residing on the relay station, the PGW/SGW of the relay station passes the downlink by using the second transmission bearer The data is sent to the donor base station, and the downlink data is further transmitted to the relay station through the Bco.
  • the PGW/SGW of the relay station when determining that the downlink data is control plane signaling related to the user equipment residing on the relay station, sends the downlink data to the donor base station through the first transmission bearer, and then passes by the donor base station.
  • the Bci corresponding to the first transmission bearer transmits downlink data to the relay station, and the Bci provides encryption and integrity protection for the downlink data between the relay station and the donor base station, thereby implementing a control plane information related to the user equipment residing on the relay station.
  • attacks such as denial of service can be avoided.
  • FIG. 5 is a flowchart of still another embodiment of the data transmission method according to the present invention.
  • the first user data bearer is Bci
  • the second user data bearer is Bco.
  • the data to be transmitted is to be transmitted on the relay station.
  • the uplink data is taken as an example for description; the signaling plane protocol used in this embodiment
  • Figure 6 (a) shows a schematic diagram of another embodiment of the signaling plane protocol stack of the present invention;
  • the user plane protocol stack used in this embodiment is shown in Figure 6 (b)
  • Figure 6 (b) is a schematic diagram of another embodiment of the user plane protocol stack of the present invention.
  • this embodiment may include:
  • Step 501 The relay station determines a data type of the uplink data, where the data type includes a control plane signaling and user plane data.
  • the relay station may determine the data type of the uplink data by using the method provided in step 201, and details are not described herein again.
  • Step 502 when it is determined that the uplink data is control plane signaling related to the user equipment residing on the relay station, the relay station sends the uplink data to the donor base station by using the Bci; when determining that the uplink data is the user residing on the relay station When the device-related user plane data is used, the relay station transmits the above uplink data to the donor base station through the Bco.
  • the method for establishing Bci and Bco is the same as the method provided in step 202, and details are not described herein again.
  • the Bci and Bco may be established on the Un interface between the relay station and the donor base station in the process of the relay station accessing the donor base station, or in the process of the relay station accessing the donor base station after the relay station has the user equipment camped on; Establishing a Bci on the Un interface between the relay station and the donor base station, and establishing a Bco on the Un interface between the relay station and the donor base station after the user equipment resides on the relay station; or in the process of accessing the donor base station by the relay station Bco is established on the Un interface between the relay station and the donor base station, and after the user equipment resides on the relay station, the Bci is established on the Un interface between the relay station and the donor base station.
  • Bco represents a type of user data bearer between the relay station and the donor base station
  • the GTP tunnel represents the service flow transmitted by the user.
  • each user may have multiple GTP tunnels, and the data transmitted in the GTP tunnel passes.
  • the TEID in the GTP header is used to identify it.
  • the relay station and the donor base station maintain a mapping relationship between the TEID of the GTP tunnel corresponding to each user equipment and the carrier identifier of Bco.
  • the relay station recognizes that the uplink data is user plane data related to the user equipment residing on the relay station, the relay station further parses the TEID field in the GTP header of the uplink data, and then maps according to the saved TEID and the bearer identifier of the Bco. The relationship is mapped to the corresponding Bco, and then the uplink data is sent to the donor base station through the Bco.
  • the relay station when determining that the uplink data is control plane signaling related to the user equipment residing on the relay station, the relay station sends the uplink data to the donor base station by using the Bci, and the Bci is the uplink data between the relay station and the donor base station.
  • the Bci is the uplink data between the relay station and the donor base station.
  • FIG. 7 is a flowchart of still another embodiment of the data transmission method of the present invention.
  • the first user data bearer is Bci
  • the second user data bearer is Bco.
  • the data to be transmitted is used as a donor base station.
  • the downlink data to be transmitted is taken as an example.
  • the signaling plane protocol stack used in this embodiment is shown in FIG. 6( a ).
  • the user plane protocol stack used in this embodiment is shown in FIG. 6( b ).
  • this embodiment may include:
  • Step 701 The donor base station determines a data type of the downlink data, where the data type includes control plane signaling and user plane data.
  • the donor base station can determine the data type of the downlink data by referring to the method provided in step 401.
  • Step 702 When determining that the downlink data is control plane signaling related to the user equipment residing on the relay station, the donor base station sends the downlink data to the relay station by using the Bci; when determining that the downlink data is the user residing on the relay station When the device-related user plane data is used, the donor base station transmits the above downlink data to the relay station through the Bco.
  • the method for establishing Bci and Bco is the same as the method provided in step 202, and details are not described herein again.
  • Bco represents a type of user data bearer between the relay station and the donor base station
  • the GTP tunnel represents the service flow transmitted by the user.
  • each user may have multiple GTP tunnels, and the data transmitted in the GTP tunnel passes.
  • the TEID in the GTP header is used to identify it.
  • the relay station and the donor base station maintain a mapping relationship between the TEID of the GTP tunnel corresponding to each user equipment and the carrier identifier of Bco.
  • the donor base station identifies that the downlink data is user plane data related to the user equipment residing on the relay station
  • the donor base station further parses the TEID field in the GTP header of the downlink data, and then according to the saved TEID and the bearer identifier of the Bco.
  • the mapping relationship is mapped to the corresponding Bco, and then the downlink data is sent to the relay station through the Bco.
  • the donor base station when determining that the downlink data is control plane signaling related to the user equipment residing on the relay station, the donor base station sends the downlink data to the donor base station by using the Bci, and the Bci is the downlink between the relay station and the donor base station.
  • the data provides encryption and integrity protection; thereby enabling control plane signaling related to user equipment residing on the relay station to obtain integrity protection when transmitted between the relay station and the donor base station, and to avoid attacks such as denial of service.
  • FIG. 8 is a flowchart of still another embodiment of a data transmission method according to the present invention. As shown in FIG. 8, the embodiment may include:
  • Step 801 determining that the data to be transmitted is related to the user equipment residing on the relay station Face signaling.
  • the method provided in step 201 may be used to determine that the uplink data is control plane signaling related to the user equipment residing on the relay station; when the data to be transmitted is downlink data, reference may be made.
  • the method provided in step 401 determines that the downlink data is control plane signaling associated with the user equipment residing on the relay station.
  • Step 802 Perform integrity protection on the data to be transmitted by using an Internet Protocol security (IPsec) relationship between the relay station and the network side device.
  • IPsec Internet Protocol security
  • the relay station after the relay station accesses the network, the relay station establishes a user data bearer and an IPsec association with the network side device, and the IPsec association can provide integrity protection for the data to be transmitted.
  • the IPsec association may be established between the relay station and the donor base station, or may be established between the relay station and the evolved packet core network node of the relay station, and the evolved packet core network node of the relay station may be the MME or the PGW/SGW of the relay station.
  • the network side device When the data to be transmitted is the downlink data, the network side device identifies the data type of the downlink data, and when determining that the downlink data is the control plane signaling related to the user equipment residing on the relay station, the network side device associates the pair by IPsec.
  • the downlink data is used for integrity protection.
  • the network side device may be a PGW/SGW of the donor base station or the relay station.
  • the relay station When the data to be transmitted is uplink data, the relay station identifies the data type of the uplink data. When determining that the uplink data is control plane signaling related to the user equipment residing on the relay station, the relay station completes the uplink data through the IPsec association. Sexual protection.
  • Step 803 The data to be transmitted after the integrity protection is performed by the user data bearer transmission between the relay station and the network side device.
  • the data to be transmitted is the control plane signaling related to the user equipment residing on the relay station
  • the integrity protection of the data to be transmitted the user data between the relay station and the network side device is used.
  • the data to be transmitted after the transmission is transmitted for integrity protection.
  • the data to be transmitted is user plane data related to the user equipment residing on the relay station
  • the data to be transmitted can be directly transmitted through the user data bearer between the relay station and the network side device.
  • the relay station or the network side device when it is determined that the data to be transmitted is control plane signaling related to the user equipment residing on the relay station, the relay station or the network side device first performs integrity protection on the data transmission to be transmitted through IPsec association. Transmitting data; thereby enabling control plane signaling associated with user equipment residing on the relay station to be transmitted intact between the relay station and the donor base station Sexual protection can avoid attacks such as denial of service.
  • FIG. 9 is a schematic structural diagram of an embodiment of a relay station according to the present invention.
  • the relay station in this embodiment may implement the process of the embodiment shown in FIG. 2 or FIG. 5 of the present invention.
  • the relay station may include: a bearer establishing module 91.
  • the bearer establishing module 91 is configured to establish a first user data bearer between the relay station and the donor base station;
  • the first type identification module 92 is configured to determine a data type of the uplink data to be transmitted.
  • the first transmission module 93 is configured to: when the first type identification module 92 determines that the data type of the uplink data to be transmitted is the user that resides on the relay station.
  • the uplink data to be transmitted is transmitted to the donor base station by using the first user data bearer established by the bearer establishing module 91, and the first user data bearer provides integrity protection for the uplink data to be transmitted;
  • the data bearer can also provide encryption protection for the uplink data to be transmitted.
  • the bearer establishing module 91 is further configured to establish a second user data bearer between the relay station and the donor base station;
  • the relay station may further include: a second transmission module 94, configured to: when the first type identification module 92 determines that the data type of the uplink data to be transmitted is user plane data related to the user equipment residing on the relay station, The second user data bearer established by the module 91 transmits the uplink data to be transmitted to the donor base station, and the second user data bearer provides encryption protection for the uplink data to be transmitted.
  • a second transmission module 94 configured to: when the first type identification module 92 determines that the data type of the uplink data to be transmitted is user plane data related to the user equipment residing on the relay station.
  • the second user data bearer established by the module 91 transmits the uplink data to be transmitted to the donor base station, and the second user data bearer provides encryption protection for the uplink data to be transmitted.
  • the first type identification module 92 may specifically identify the identifier bit in the data packet header of the uplink data to be transmitted, and determine the data type of the uplink data to be transmitted according to the value of the identifier bit; the identifier bit may include: Protocol/next One or a combination of a header field, a source IP address, a destination IP address, a TEID, and a PDCP header C/U indication.
  • the bearer establishing module 91 may specifically establish a first user data bearer on a radio interface between the relay station and the donor base station after the relay station accesses the donor base station, or after the user equipment resides on the relay station;
  • the bearer establishing module 91 may specifically be in the process of the relay station accessing the donor base station, or After the user equipment resides on the relay station, a second user data bearer is established on the radio interface between the relay station and the donor base station.
  • the relay station may first obtain the first user data bearer setting. And the first transmission module 93 transmits the uplink data to be transmitted to the donor base station by using the first user data bearer established between the relay station and the donor base station according to the control indication; specifically, the first transmission module 93 may Configuring, according to the control indication, the attributes of the relay station PDCP peer layer to enable integrity protection or the uplink data to be transmitted is control plane signaling related to the user equipment residing on the relay station; and according to the configured PDCP peer layer attributes And transmitting the uplink data to be transmitted to the donor base station by using the first user data bearer established between the relay station and the donor base station.
  • the first transmission module 93 transmits the uplink data to be transmitted to the donor base station by using the first user data established between the relay station and the donor base station, and the relay station may be in the uplink data to be transmitted. And carrying a control indication, where the control indication is used to indicate that the uplink data to be transmitted is integrity protected, so that the donor base station can perform integrity detection on the received uplink data according to the control indication.
  • the first transmission module 93 is established by the bearer establishing module 91.
  • the first user data bearer sends the uplink data to be transmitted to the donor base station, and the first user data bearer provides integrity protection for the uplink data to be transmitted; thereby implementing control plane signaling related to the user equipment residing on the relay station at the relay station.
  • FIG. 10 is a schematic structural diagram of an embodiment of an evolved packet core network node according to an embodiment of the present invention.
  • the evolved packet core network node in this embodiment may implement the process of the embodiment shown in FIG. 4 of the present invention.
  • the evolved packet core network is shown in FIG.
  • the node may include: a second type identification module 1001 and a third transmission module 1002.
  • the second type identifying module 1001 is configured to determine a data type of the downlink data to be transmitted.
  • the third type transmitting module 1002 is configured to determine, when the second type identifying module 1001, the data type of the downlink data to be transmitted is to reside on the relay station.
  • the downlink data to be transmitted is sent to the donor base station by using the first transmission bearer between the donor base station and the evolved packet core network node, so that the donor base station passes the donor base station and the relay station.
  • the first user data bearer corresponding to the first transport bearer, and the downlink data to be transmitted is sent to the relay station,
  • a user data bearer provides integrity protection for the downlink data to be transmitted; the first user data bearer may also provide encryption protection for the downlink data to be transmitted.
  • the fourth transmission module 1003 is configured to: when the second type identification module 1001 determines that the data type of the downlink data to be transmitted is user plane data related to the user equipment residing on the relay station, by the donor base station and the evolved packet core network node
  • the second transmission bearer transmits the downlink data to be transmitted to the donor base station, so that the donor base station sends the downlink data to be transmitted to the relay station by using the second user data bearer corresponding to the second transport bearer between the donor base station and the relay station.
  • the second user data bearer provides encryption protection for the downlink data to be transmitted.
  • the second type identification module 1001 may specifically identify the identifier bit in the data packet header of the downlink data to be transmitted, and determine the data type of the downlink data to be transmitted according to the value of the identifier bit; the identifier bit may include: Protocol/next One or a combination of a header field, a source IP address, a destination IP address, a TEID, and a PDCP header C/U indication.
  • the evolved packet core network node in this embodiment may be a PGW/SGW of the relay station.
  • the third transmission module 1002 goes down through the first transmission bearer.
  • the data is sent to the donor base station, and the donor base station transmits the downlink data to be transmitted to the relay station through the first user data transmission bearer corresponding to the first transmission bearer, and the first user data transmission is between the relay station and the donor base station to be downlink data to be transmitted.
  • Providing integrity protection such that control plane signaling associated with user equipment residing on the relay station is between the relay station and the donor base station, and between the donor base station and the evolved packet core network node of the relay station, Get integrity protection to avoid attacks such as denial of service.
  • FIG. 11 is a schematic structural diagram of an embodiment of a donor base station according to the present invention.
  • the donor base station in this embodiment may implement the process of the embodiment shown in FIG. 7.
  • the donor base station may include: a third type identification module. 1101 and a fifth transmission module 1102.
  • the third type identifying module 1101 is configured to determine a data type of the downlink data to be transmitted.
  • the fifth type transmitting module 1102 is configured to: when the third type identifying module 1101 determines that the data type of the downlink data to be transmitted is and resides on the relay station.
  • the downlink data to be transmitted is transmitted to the relay station by the first user data bearer between the relay station and the donor base station, and the first user data bearer provides integrity protection for the downlink data to be transmitted;
  • a user data bearer can also provide encryption protection for downlink data to be transmitted.
  • the donor base station may further include: a sixth transmission module 1103, configured to:
  • the third type identification module 1101 determines that the data type of the downlink data to be transmitted is the user plane data related to the user equipment residing on the relay station
  • the downlink data is to be transmitted through the second user data bearer between the relay station and the donor base station.
  • the second user data bearer Transmitted to the relay station, the second user data bearer provides encryption protection for the downlink data to be transmitted.
  • the third type identification module 1101 may specifically identify the identifier bit in the data packet header of the downlink data to be transmitted, and determine the data type of the downlink data to be transmitted according to the value of the identifier bit; the identifier bit may include: Protocol/next One or a combination of a header field, a source IP address, a destination IP address, a TEID, and a PDCP header C/U indication.
  • the donor base station may first obtain the first user data bearer. And setting, by the fifth transmission module 1102, the downlink data to be transmitted to be transmitted to the relay station by using the first user data bearer established between the relay station and the donor base station according to the control indication; specifically, the fifth transmission module 1102
  • the attribute of the donor base station PDCP peer layer may be configured to enable integrity protection or the downlink data to be transmitted is control plane signaling related to the user equipment residing on the relay station according to the control indication; and according to the configured PDCP peer layer The attribute transmits the downlink data to be transmitted to the relay station through the first user data bearer established between the relay station and the donor base station.
  • the fifth transmission module 1102 may transmit the downlink data to be transmitted to the relay station by using the first user data established between the relay station and the donor base station, and the donor base station may be in the downlink data to be transmitted. And carrying a control indication, where the control indication is used to indicate that the downlink data to be transmitted is integrity protected, so that the relay station can perform integrity detection on the received downlink data according to the control indication.
  • the fifth transmission module 1102 passes the first user data bearer.
  • the downlink data is sent to the donor base station, and the first user data bearer provides integrity protection for the downlink data to be transmitted between the relay station and the donor base station; thereby implementing control plane signaling related to the user equipment residing on the relay station at the relay station.
  • the data transmission system of this embodiment may include: a relay station 1201, a donor base station 1202, and an evolved packet core network node 1203 of a relay station.
  • the transmission process of the uplink data is as described in the embodiment shown in FIG. 2 of the present invention; the transmission process of the downlink data is as shown in FIG. 4 of the present invention. The embodiment is described; it will not be described here.
  • the relay station 1201 can be implemented by the relay station of the embodiment shown in FIG. 9 of the present invention; the donor base station 1202 can adopt the existing donor base station; and the evolved packet core network node 1203 of the relay station can pass the evolution of the embodiment shown in FIG. 10 of the present invention. Packet core network node implementation.
  • the above data transmission system realizes that the control plane signaling related to the user equipment residing on the relay station can obtain integrity protection when transmitted between the relay station and the donor base station, and can avoid attacks such as denial of service.
  • FIG. 13 is a schematic structural diagram of another embodiment of a data transmission system according to the present invention.
  • the data transmission system of this embodiment may include: a relay station 1301 and a donor base station 1302.
  • the transmission process of the uplink data is as described in the embodiment shown in FIG. 5 of the present invention
  • the transmission process of the downlink data is as described in the embodiment shown in FIG. 7 of the present invention
  • the relay station 1301 can be implemented by the relay station of the embodiment shown in the present invention 9; the donor base station 1302 can be implemented by the donor base station of the embodiment shown in Fig. 11 of the present invention.
  • the above data transmission system realizes that the control plane signaling related to the user equipment residing on the relay station can obtain integrity protection when transmitted between the relay station and the donor base station, and can avoid attacks such as denial of service.
  • FIG. 14 is a schematic structural diagram of an embodiment of a data transmission apparatus according to the present invention.
  • the data transmission apparatus of this embodiment may be: a relay station or a network side device, and implements the process of the embodiment shown in FIG. 8 of the present invention; wherein the network side device includes a donor An evolved packet core network node of a base station or a relay station, and the evolved packet core network node of the relay station may be a PGW/SGW of the relay station.
  • the data transmission apparatus may include: a fourth type identification module 1401, a protection module 1402, and a seventh transmission module 1403.
  • the fourth type identification module 1401 is configured to determine a data type of data to be transmitted.
  • the protection module 1402 is configured to: when the fourth type identification module 1401 determines that the data type of the data to be transmitted is related to the user equipment residing on the relay station. In the control plane signaling, the integrity of the data to be transmitted is protected by the IPsec association between the relay station and the network side device; the data to be transmitted after the integrity protection is carried by the transmission protection module 1402.
  • the fourth type identifying module 1401 may specifically parse the identifier bit in the data packet header of the data to be transmitted, and determine the data type of the data to be transmitted according to the value of the identifier bit.
  • the identifier bit may include: a protocol/next header field. One or a combination of source IP address, destination IP address, TEID, and PDCP header C/U indication.
  • the protection module 1402 first performs integrity protection on the data to be transmitted.
  • the seventh transmission module 1403 the data to be transmitted after the integrity protection is performed by the user data bearer transmission protection module 1402 between the relay station and the network side device; thereby implementing control related to the user equipment residing on the relay station.
  • the plane signaling is transmitted between the relay station and the donor base station, integrity protection can be obtained, and attacks such as denial of service can be avoided.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the embodiment, or may be correspondingly changed in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into a plurality of sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

数据传输方法、 装置及系统 本申请要求于 2009 年 9 月 28 日提交中国专利局、 申请号为 200910093753.0、发明名称为"数据传输方法、 装置及系统"的中国专利申请 和于 2010年 2月 3 日提交中国专利局、 申请号为 201010105867.5、 发明名 称为"数据传输方法、装置及系统"的中国专利申请的优先权,其全部内容通 过引用结合在本申请中。 技术领域 本发明涉及通信技术领域, 特别涉及一种数据传输方法、 装置及系统。 背景技术 随着通讯技术的不断发展, 中继 (Relay )技术被作为一种提高小区容 量和扩展覆盖范围的关键技术提出。通过在网络中部署中继站( Relay Node; 以下简称: RN ),对基站和终端之间的无线通信信号进行增强, 可以有效的 解决现有蜂窝系统所面临的问题。 同时, 由于中继站具有软件成本、 硬件 成本以及部署成本相对较低和部署灵活等特性, 从而被越来越多的运营商 和设备厂商所关注和研究。
简而言之, 中继站是中转基站和终端之间的数据的站点, 使得无线信 号可以经过多次传输(多跳)到达目的地。 在接入了中继站之后, 常规基 站可以被称为施主基站(Donor evolved NodeB; 以下简称: DeNB )。 在第 三代合作伙伴计划( Third Generation Partnership Project; 以下简称: 3GPP ) 标准中, 中继站与施主基站之间的无线接口为 Un接口, 用户设备与中继站 之间的无线接口为 Uu接口。
在现有技术提供的中继站实现方案中, 中继站采用与用户设备类似的 方式接入网络; 中继站与网络建立信令承载和用户数据承载; 所有与驻留 在中继站上的用户设备相关的信令和数据都通过中继站和网络之间的用户 数据承载进行传送。 但是用户数据承载只能提供加密保护, 因此与驻留在 中继站上的用户设备相关的控制面信令在中继站和施主基站之间传输时, 将只能获得加密保护。
与驻留在中继站上的用户设备相关的控制面信令包括用户设备与网络 侧交互的接入层( Access Stratum;以下简称: AS )信令、非接入层( Non Access Stratum; 以下简称: NAS )信令; 此外还包括为了能够向用户设备提供业 务, 在网络侧内部交互的信令, 如长期演进(Long Term Evolution; 以下简 称: LTE ) 系统中定义的 SI接口信令等。 其中, S1接口信令包括包含敏感 信息的信令, 如传送用于保护 Uu接口通信的密钥 Kenb的信令。 由于这些 信令只能在中继站的用户数据承载上传输, 因此根据现有的中继站实现方 案这些信令只能获得加密保护; 在具有加密保护的前提下, 攻击者仍然可 以通过篡改信令的方式来操纵中继站获得的密钥 Kenb, 从而可能导致拒绝 服务等攻击。 发明内容
本发明实施例提供一种数据传输方法、 装置及系统, 以实现在中继站 与施主基站之间传输与驻留在该中继站上的用户设备相关的控制面信令 时, 为该控制面信令提供更加完善的保护。
本发明实施例提供一种数据传输方法, 包括:
确定待传输数据为与驻留在中继站上的用户设备相关的控制面信令; 通过在所述中继站与施主基站之间建立的第一用户数据承载传输所述 待传输数据, 所述第一用户数据承载为所述待传输数据提供完整性保护。
本发明实施例还提供一种中继站, 能够与施主基站进行通信, 包括: 承载建立模块, 用于在所述中继站与所述施主基站之间建立第一用户 数据承载;
第一类型识别模块, 用于确定待传输上行数据的数据类型;
第一传输模块, 用于当所述第一类型识别模块确定所述待传输上行数 据的数据类型为与驻留在所述中继站上的用户设备相关的控制面信令时, 通过所述承载建立模块建立的第一用户数据承载将所述待传输上行数据传 输至所述施主基站, 所述第一用户数据承载为所述待传输上行数据提供完 整性保护。
本发明实施例还提供一种演进分组核心网节点, 能够通过施主基站与 中继站进行通信, 包括:
第二类型识别模块, 用于确定待传输下行数据的数据类型;
第三传输模块, 用于当所述第二类型识别模块确定所述待传输下行数 据的数据类型为与驻留在所述中继站上的用户设备相关的控制面信令时, 通过所述施主基站与所述演进分组核心网节点之间的第一传输承载将所述 待传输下行数据发送至所述施主基站, 以便所述施主基站通过所述施主基 站与所述中继站之间与所述第一传输承载对应的第一用户数据承载, 将所 述待传输下行数据发送至所述中继站, 所述第一用户数据承载为所述待传 输下行数据提供完整性保护。
本发明实施例还提供一种数据传输系统, 包括: 施主基站、 上述中继 站和上述演进分组核心网节点。
本发明实施例还提供一种施主基站, 能够与中继站进行通信, 包括: 第三类型识别模块, 用于确定待传输下行数据的数据类型;
第五传输模块, 用于当所述第三类型识别模块确定所述待传输下行数 据的数据类型为与驻留在所述中继站上的用户设备相关的控制面信令时, 通过所述中继站与所述施主基站之间的第一用户数据承载将所述待传输下 行数据传输至所述中继站, 所述第一用户数据承载为所述待传输下行数据 提供完整性保护。
本发明实施例还提供一种数据传输系统, 其特征在于, 包括: 上述中 继站和上述施主基站。
本发明实施例还提供一种数据传输方法, 包括:
确定待传输数据为与驻留在中继站上的用户设备相关的控制面信令; 通过中继站与网络侧设备之间的因特网协议安全关联对所述待传输数 据进行完整性保护; 性保护之后的待传输数据。
本发明实施例还提供一种数据传输装置, 包括:
第四类型识别模块, 用于确定待传输数据的数据类型;
保护模块, 用于当所述第四类型确定模块确定所述待传输数据的数据 类型为与驻留在中继站上的用户设备相关的控制面信令时, 通过中继站与 网络侧设备之间的因特网协议安全关联对所述待传输数据进行完整性保 护; 据承载传输所述保护模块进行完整性保护之后的待传输数据。
本发明实施例通过中继站与施主基站之间的第一用户数据承载传输与 驻留在中继站上的用户设备相关的控制面信令, 该第一用户数据承载在中 继站与施主基站之间为该控制面信令提供完整性保护; 从而实现了与驻留 在中继站上的用户设备相关的控制面信令在中继站与施主基站之间传输 时, 能够获得完整性保护。 附图说明 图 1为本发明数据传输方法一个实施例的流程图;
图 2为本发明数据传输方法另一个实施例的流程图;
图 3 ( a )为本发明信令面协议栈一个实施例的示意图;
图 3 ( b )为本发明用户面协议栈一个实施例的示意图;
图 4为本发明数据传输方法再一个实施例的流程图;
图 5为本发明数据传输方法又一个实施例的流程图;
图 6 ( a )为本发明信令面协议栈另一个实施例的示意图;
图 6 ( b )为本发明用户面协议栈另一个实施例的示意图;
图 7为本发明数据传输方法又再一个实施例的流程图;
图 8为本发明数据传输方法再又一个实施例的流程图;
图 9为本发明中继站一个实施例的结构示意图;
图 10为本发明演进分组核心网节点一个实施例的结构示意图;
图 11为本发明施主基站一个实施例的结构示意图;
图 12为本发明数据传输系统一个实施例的结构示意图;
图 13为本发明数据传输系统另一个实施例的结构示意图;
图 14为本发明数据传输装置一个实施例的结构示意图。
具体实施方式 图 1为本发明数据传输方法一个实施例的流程图, 如图 1所示, 该实 施例包括:
步骤 101,确定待传输数据为与驻留在中继站上的用户设备相关的控制 面信令。
具体地, 可以解析待传输数据的数据包头中的标识位, 根据该标识位 的值确定待传输数据是与驻留在中继站上的用户设备相关的控制面信令; 上述标识位可以包括: 协议( Protocol ) /下一数据包头( next header )字段、 源因特网协议(Internet Protocol; 以下简称: IP )地址、 目的 IP地址、 隧 道端点标识(Tunnel Endpoint Identifier; 以下简称: TEID )和分组数据汇 聚协议 ( Packet Data Convergence Protocol; 以下简称: PDCP ) 头控制面 / 用户面( Control plane or User plane; 以下简称: C/U )指示之一或组合; 其 中, C/U指示用于指示 PDCP包中传输的是信令还是用户数据。
步骤 102,通过在中继站与施主基站之间建立的第一用户数据承载传输 上述待传输数据, 其中, 第一用户数据承载为该待传输数据提供完整性保 护。
上述提供完整性保护的方法包括: 中继站在接入施主基站的过程中, 中继站与施主基站协商完整性算法和完整性密钥等安全上下文信息; 中继 站和施主基站可以通过这些安全上下文信息为第一用户数据承载上传输的 数据提供完整性保护, 从而使得第一用户数据承载具备提供完整性保护的 能力。
在本实施例的一种实现方式中, 可以使用专用的数据无线承载(Data Radio Bearer; 以下简称: DRB )来承载信令并进行完整性保护, 其中, 该 专用的 DRB 只承载信令, 不承载数据。 本实施例在中继链路采用专用的 DRB承载上层信令,该中继链路的专用的 DRB是第一用户数据承载的一部 分。
在这种实现方式中, 确定待传输数据为与驻留在中继站上的用户设备 相关的控制面信令之后, 中继链路的发送端设备获取为第一用户数据承载 设置的控制指示, 并根据该控制指示执行通过在中继站与施主基站之间建 立的第一用户数据承载传输待传输数据的步骤; 具体地, 根据该控制指示 执行通过在中继站与施主基站之间建立的第一用户数据承载传输待传输数 据的步骤可以为: 才艮据该控制指示将 PDCP对等层的属性配置为启用完整 性保护或该待传输数据为与驻留在中继站上的用户设备相关的控制面信 令; 并根据配置的 PDCP对等层的属性, 执行通过在中继站与施主基站之 间建立的第一用户数据承载传输该待传输数据的步骤。 其中, 当中继链路 的发送端设备为施主基站时, 中继链路的接收端设备为中继站; 或者, 当 中继链路的发送端设备为中继站时, 中继链路的接收端设备为施主基站。
具体地, 在建立第一用户数据承载时, 中继站的分组数据网关为第一 用户数据承载设置控制指示, 该控制指示用于指示中继链路的发送端设备 的 PDCP 实体对待传输数据提供完整性保护; 或者, 该控制指示用于指示 中继链路的接收端设备的 PDCP 实体对接收到的数据进行完整性检测。 中 继站的分组数据网关可以通过 S5消息将该控制指示发送至中继站的服务网 关, 中继站的服务网关可以通过 Sl l 消息将该控制指示发送至中继站的移 动性管理实体, 中继站的移动性管理实体可以通过 S1 应用协议 (S1
Application Protocol; 以下简称: S 1 AP )消息将该控制指示发送至施主基站, 施主基站可以通过无线资源控制( Radio Resource Control; 以下简称: RRC ) 消息将该控制指示发送至中继站, 从而施主基站和中继站可以获取为第一 用户数据承载设置的控制指示。
然后, 施主基站和中继站各自根据该控制指示, 配置中继链路的专用 的 DRB的 PDCP对等层的属性, 该中继链路的专用的 DRB的 PDCP对等 层的属性可以包括: 启用完整性保护或待传输数据为与驻留在中继站上的 用户设备相关的控制面信令。
当该 PDCP对等层的属性被配置为启用完整性保护时, 中继链路的发 送端设备的 PDCP 实体在处理待传输数据时, 为该待传输数据提供完整性 保护; 当该 PDCP对等层的属性被配置为待传输数据为与驻留在中继站上 的用户设备相关的控制面信令时, 中继链路的发送端设备的 PDCP 实体在 处理待传输数据时, 为该待传输数据提供完整性保护。
以上仅是控制指示的一种设置方式, 本发明实施例并不仅限于此, 中 继站的分组数据网关还可以设置控制指示用于指示中继链路的发送端设备 的 PDCP 实体是否对待传输数据提供完整性保护; 或者, 该控制指示用于 指示中继链路的接收端设备的 PDCP 实体是否对接收到的数据进行完整性 检测。 相应地, 中继链路的专用的 DRB的 PDCP对等层的属性可以包括: 启用完整性保护、 不启用完整性保护、 待传输数据为与驻留在中继站上的 用户设备相关的控制面信令或者待传输数据为与驻留在中继站上的用户设 备相关的用户面数据。 当该 PDCP对等层的属性被配置为启用完整性保护 时, 中继链路的发送端设备的 PDCP 实体在处理待传输数据时, 为该待传 输数据提供完整性保护; 反之当该 PDCP对等层被配置为不启用完整性保 护时, 则发送端设备的 PDCP 实体不为待传输数据提供完整性保护; 对于 接收端设备的 PDCP 实体, 相应的动作是对待传输数据进行完整性检测, 在此不再赘述。
当该 PDCP对等层的属性被配置为待传输数据为与驻留在中继站上的 用户设备相关的控制面信令时, 中继链路的发送端设备的 PDCP 实体在处 理待传输数据时, 为该待传输数据提供完整性保护。 反之当该 PDCP对等 层被配置为待传输数据为与驻留在中继站上的用户设备相关的用户面数据 时, 则发送端设备的 PDCP 实体不为待传输数据提供完整性保护; 对于接 收端设备的 PDCP 实体, 相应的动作是对待传输数据进行完整性检测, 在 此不再赘述。
在本实施例的另一种实现方式中, 可以使用共用的 DRB来承载信令并 进行完整性保护, 其中, 该共用的 DRB既承载信令, 又承载数据, 从而不 需要扩展中继链路的 DRB 的数量。 本实施例在中继链路采用共用的 DRB 承载上层信令, 该中继链路的共用的 DRB是第一用户数据承载的一部分。
中继链路的发送端设备的 PDCP 实体在处理待传输数据时, 可以对待 传输数据的数据类型进行检测, 当根据检测结果确定待传输数据为与驻留 在中继站上的用户设备相关的控制面信令时, 该中继链路的发送端设备的 PDCP实体为该待传输数据提供完整性保护,并在待传输数据中携带控制指 示, 该控制指示用于指示待传输数据进行了完整性保护, 以便接收到该待 传输数据的设备可以根据该控制指示对接收到的待传输数据进行完整性检 测。具体地,该控制指示可以携带在 PDCP协议数据单元( Protocol Data Unit; 以下简称: PDU ) 中, 并将该控制指示设置为打开, 用于指示中继链路的 发送端设备的 PDCP 实体对该待传输数据进行了完整性保护; 中继链路的 接收端设备的 PDCP实体在处理 PDCP PDU时, 可以根据 PDCP PDU中的 控制指示进行完整性检测, 即当控制指示为打开时, 接收端设备的 PDCP 实体进行完整性检测。 当然本发明实施例并不仅限于此, 以上只是设置控 制指示的一种示例, 该控制指示还可以其他方式设置, 只要可以指示出中 继链路的发送端设备的 PDCP 实体是否执行了完整性保护即可, 本发明实 施例对控制指示的设置方式不作限定。
为了实现对待传输数据的数据类型进行检测, PDCP实体需增加数据包 类型检测功能, 用于检测出待传输数据是与驻留在中继站上的用户设备相 关的控制面信令还是与驻留在中继站上的用户设备相关的用户面数据。 检 测待传输数据的数据类型的方法, 是一种预设的规则, 发送端设备或接收 端设备的 PDCP 实体可以应用这个规则, 区分出待传输数据是与驻留在中 继站上的用户设备相关的控制面信令还是与驻留在中继站上的用户设备相 关的用户面数据。 具体地,检测待传输数据的数据类型的方法可以包括: IP 数据头服务类型标识法或 IP数据头上层协议标识法。
( 1 ) IP数据头服务类型标识法:
在 IP数据头的服务类型 (Type of Service; 以下简称: TOS )字段中的 可靠性(Reliability ) 字段和 /或延迟(delay ) 字段设置: 可靠性字段和 /或 延迟字段的值等于 1 表示待传输数据是与驻留在中继站上的用户设备相关 的控制面信令, 可靠性字段和 /或延迟字段的值等于 0表示待传输数据是与 驻留在中继站上的用户设备相关的用户面数据; 当然本发明实施例并不仅 限于此, 还可采用其他设置方式表示待传输数据是与驻留在中继站上的用 户设备相关的控制面信令还是与驻留在中继站上的用户设备相关的用户面 数据, 本发明实施例对此不作限定。
本实施例中, 信令的发出者发送信令时, 将 IP数据头的服务类型字段 的可靠性字段和 /或延迟字段设置为 1, 该信令的发出者可以是用户设备的 移动性管理实体、 中继站的分组数据网关、 施主基站或中继站; 数据的发 出者发送数据时,将 IP数据头的服务类型字段的可靠性字段和 /或延迟字段 设置为 0。
中继链路的发送端设备的 PDCP 实体, 收到待传输数据之后, 可以根 据该待传输数据的 IP数据头的服务类型字段的可靠性字段和 /或延迟字段 的值, 确定该待传输数据是与驻留在中继站上的用户设备相关的控制面信 令还是与驻留在中继站上的用户设备相关的用户面数据。
( 2 ) IP数据头上层协议标识法:
由于在中继系统中, 信令先采用流控制传输协议 ( Stream Control Transmission Protocol; 以下简称: SCTP ) 7|载, 进而采用 IP 载; 数据先 采用用户数据报协议 ( User Datagram Protocol; 以下简称: UDP )承载, 进 而采用 IP承载。 利用 IP数据头的上层协议标识, 可以标识出上层协议是 SCTP还是 UDP,进而可以确定更上层是信令还是数据。所以中继链路的发 送端设备的 PDCP实体, 收到待传输数据之后, 可以检测 IP数据头的上层 协议标识, 如果标识上层协议为 SCTP, 则可以确定待传输数据为与驻留在 中继站上的用户设备相关的控制面信令; 如果标识上层协议为 UDP, 则可 以确定待传输数据为与驻留在中继站上的用户设备相关的用户面数据。
当然本发明实施例并不仅限于此, 还可以采用其他方法检测待传输数 据的数据类型, 只要可以检测出待传输数据的数据类型, 且发送端设备和 接收端设备采用一致的检测方法即可, 本发明实施例对此不作限定。
进一步地, 中继链路的 PDCP实体一旦检测出待传输数据的数据类型, 还可以进一步利用检测结果, 进行优先级调度处理, 例如: 可以优先调度 与驻留在中继站上的用户设备相关的控制面信令, 从而实现一个 DRB上的 不同优先级处理。
本实施例还可以包括, 当确定待传输数据为与驻留在中继站上的用户 设备相关的用户面数据时, 通过在该中继站与施主基站之间建立的第二用 户数据承载传输上述待传输数据, 第二用户数据承载为该待传输数据提供 加密保护。 具体地, 确定待传输数据为与驻留在中继站上的用户设备相关 的用户面数据的方法可以参照步骤 101 中确定待传输数据为与驻留在中继 站上的用户设备相关的控制面信令的方法, 在此不再赘述。
本实施例中, 中继站在接入网络的过程中, 与施主基站通过信息交互, 在中继站接入该施主基站的过程中, 或者, 在中继站上有用户设备驻留之 后, 在该中继站与该施主基站之间的无线接口上建立第一用户数据承载, 第一用户数据承载可以在中继站与施主基站之间为待传输数据提供完整性 保护, 还可以提供加密保护。
在中继站接入该施主基站的过程中, 或者, 在中继站上有用户设备驻 留之后, 在该中继站与该施主基站之间的无线接口上建立第二用户数据承 载, 第二用户数据承载可以在中继站与施主基站之间为待传输数据提供加 密保护。
本实施例对确定待传输数据的数据类型与建立用户数据承载的先后顺 序不作限定, 只需要保证数据传输时有用户数据承载可用于传输数据即可。 例如: 可以先建立第一用户数据承载和第二用户数据承载, 然后在需要传 输数据时, 确定待传输数据的数据类型, 再根据该数据类型, 通过第一用 户数据承载或第二用户数据承载传输该待传输数据; 也可以先确定待传输 数据的数据类型, 再根据该数据类型建立第一用户数据承载或第二用户数 据承载, 然后通过第一用户数据承载或第二用户数据承载传输该待传输数 据。
本发明实施例中, 与驻留在中继站上的用户设备相关的控制面信令通 过第一用户数据承载传输, 因此也可将第一用户数据承载称为一种信令承 载, 与现有的信令承载的主要区别在于, 此处的信令承载上传输的是与驻 留在中继站上的用户设备相关的控制面信令, 下同。
本发明实施例中, 第一用户数据承载和第二用户数据承载表示两类用 户数据承载, "第一" 和 "第二" 仅为描述方便, 不代表数量的多少和优先 级的高低, 下同。
本发明实施例中的加密保护包括用户设备与网络侧选择空加密算法进 行加密保护这种情形, 空加密算法也是一种可能的加密算法, 当用户设备 和网络侧选择空加密算法进行加密保护时, 用户设备和网络侧之间的通信 实际上并没有得到加密保护。
上述实施例中, 当确定待传输数据为与驻留在中继站上的用户设备相 关的控制面信令时, 通过第一用户数据承载传输该待传输数据, 第一用户 数据承载在中继站与施主基站之间为待传输数据提供加密和完整性保护; 从而实现了与驻留在中继站上的用户设备相关的控制面信令在中继站与施 主基站之间传输时, 能够获得完整性保护, 可以避免受到拒绝服务等攻击。
图 2为本发明数据传输方法另一个实施例的流程图, 本实施例中, 第 一用户数据承载为提供加密和完整性保护的承载 ( Bearer cipher and integrity; 以下简称: Bci ), 第二用户数据承载为只提供加密保护的承载 ( Bearer cipher only; 以下简称: Bco ); 本实施例以待传输数据为中继站上 待传输的上行数据为例进行说明; 本实施例采用的信令面协议栈如图 3 ( a ) 所示, 图 3 ( a )为本发明信令面协议栈一个实施例的示意图; 本实施例采 用的用户面协议栈如图 3 ( b )所示, 图 3 ( b )为本发明用户面协议栈一个 实施例的示意图。
如图 2所示, 本实施例可以包括:
步骤 201, 中继站确定上行数据的数据类型, 该数据类型包括控制面信 令和用户面数据。
具体地, 中继站可以解析上行数据的数据包头中的标识位, 根据该标 识位的值确定上行数据是与驻留在中继站上的用户设备相关的控制面信 令, 还是用户面数据; 上述标识位可以包括: Protocol/next header字段、 源 IP地址、 目的 IP地址、 TEID和 PDCP头 C/U指示之一或组合。
以标识位为 Protocol/next header字段为例,中继站可以通过解析上行数 据的数据包头中的 Protocol/next header字段, 若该字段的值为 132, 则可以 确定该上行数据为与驻留在中继站上的用户设备相关的控制面信令; 若该 字段的值为 17, 则可以确定该上行数据为与驻留在中继站上的用户设备相 关的用户面数据。
以上只是识别上行数据的数据类型的一种示例, 本实施例并不局限于 此, 除了 Protocol/next header字段之外,还可以通过其他方式对上行数据的 数据类型进行识别, 如 IP地址; 因为移动性管理实体( Mobile Management Entity; 以下简称: MME )与用户设备的 PGW/SGW的 IP地址不同, 中继 站可以通过目的 IP地址来识别上行数据是发往用户设备的 PGW/SGW的用 户面数据,还是发往 MME的控制面信令。任何可以识别上行数据的数据类 型的方法均应落入本发明实施例的保护范围。
步骤 202,当确定上行数据为与驻留在中继站上的用户设备相关的控制 面信令时, 中继站通过 Bci将上述上行数据发送至施主基站; 当确定上行数 据为与驻留在中继站上的用户设备相关的用户面数据时, 中继站通过 Bco 将上述上行数据发送至施主基站。
本实施例中, 中继站在接入网络的过程中, 与施主基站通过信息交互, 在中继站与施主基站之间建立 Bci和 Bco, Bci可以在中继站与施主基站之 间为上行数据提供加密和完整性保护, Bco可以在中继站与施主基站之间为 上行数据提供加密保护。 具体地, 中继站在接入施主基站的过程中, 中继 站与施主基站协商加密算法、 完整性算法、 加密密钥和完整性密钥等安全 上下文信息。中继站和施主基站通过这些安全上下文信息为 Bci上传输的数 据提供加密和完整性保护,从而使得 Bci具备提供完整性保护的能力。 中继 站和施主基站通过协商的加密算法和加密密钥等安全上下文信息为 Bco上 传输的数据提供加密保护, 从而使得 Bco仅具备提供加密保护的能力。
中继站在与施主基站建立 Bci时,在该施主基站与该中继站的演进分组 核心网节点之间建立与 Bci对应的第一传输承载;中继站在与施主基站建立 Bco 时, 在该施主基站与该中继站的演进分组核心网节点之间建立与 Bco 对应的第二传输承载。
其中, 第一传输承载和第二传输承载可以为通用无线分组业务隧道协 议 ( General Packet Radio Service Tunneling Protocol; 以下简称: GTP ) PH 其中, 中继站的演进分组核心网节点为中继站的分组数据网关( Packet Data Network Gateway; 以下简称: PGW ) /服务网关( Service Gateway; 以下简 称: SGW )。
Bci和第一传输承载对应中继站与中继站的 PGW/SGW之间的第一演 进的分组系统(Evolved Packet System; 以下简称: EPS )承载; Bco和第 二传输承载对应中继站与中继站的 PGW/SGW之间的第二 EPS承载; 在实 际实现时, 中继站与中继站的 PGW/SGW建立两个不同的演进的分组系统 ( Evolved Packet System; 以下简称: EPS )承载, 分别为第一 EPS承载和 第二 EPS ^f 载; 在中继站与施主基站之间的第一 EPS 7|载为 Bci, 在施主 基站与中继站的 PGW/SGW之间的第一 EPS承载为第一传输承载; 同理, 在中继站与施主基站之间的第二 EPS承载为 BC0, 在施主基站与中继站的
PGW/SGW之间的第二 EPS承载为第二传输承载。
建立第一 EPS承载与第二 EPS承载的过程具体可以为: 中继站与施主 基站之间通过无线承载建立消息建立 Bci 和 Bco, 施主基站与中继站的 PGW/SGW之间通过 GTP隧道或代理移动因特网协议( Proxy Mobile Internet Protocol; 以下简称: PMIP )隧道建立流程建立第一传输承载和第二传输承 载。 Bci和第一传输承载组合为第一 EPS承载, Bco和第二传输承载组合为 第二 EPS承载。
其中, 可以在中继站接入网络的过程中, 或者, 在中继站上有用户设 备驻留之后, 在中继站与该中继站的 PGW/SGW之间建立第一 EPS承载和 第二 EPS承载; 也可以在中继站接入网络的过程中, 在中继站与该中继站 的 PGW/SGW之间建立第一 EPS承载, 在中继站上有用户设备驻留之后, 在该中继站与该中继站的 PGW/SGW之间建立第二 EPS承载; 还可以在中 继站接入网络的过程中, 在中继站与该中继站的 PGW/SGW之间建立第二 EPS 承载, 在该中继站上有用户设备驻留之后, 在该中继站与该中继站的 PGW/SGW之间建立第一 EPS承载。
步骤 203, 接收到通过 Bci发送的上行数据之后, 施主基站通过第一传 输承载将上行数据发送至中继站的 PGW/SGW; 接收到通过 Bco发送的上 行数据之后, 施主基站通过第二传输承载将上行数据发送至中继站的 PGW/SGW。
本实施例中,施主基站接收到通过 Bci发送的上行数据之后,根据该施 主基站保存的 Bci的承载标识和第一传输承载的承载标识的映射关系,将该 上行数据映射到第一传输承载, 通过第一传输承载将该上行数据发送至中 继站的 PGW/SGW;
施主基站接收到通过 Bco发送的上行数据之后, 施主基站根据保存的 Bco的承载标识和第二传输承载的承载标识的映射关系,将上行数据映射到 第二传输承载, 通过第二传输承载将该上行数据发送至中继站的 PGW/SGW。
本实施例中, 第一传输承载的承载标识可以为第一传输承载的 TEID; 同样, 第二传输承载的承载标识可以为第二传输承载的 TEID。
上述实施例中, 当确定上行数据为与驻留在中继站上的用户设备相关 的控制面信令时, 中继站通过 Bci将上行数据发送至施主基站,再由施主基 站通过与 Bci对应的第一传输承载将上行数据发送至中继站的 PGW/SGW, Bci在中继站与施主基站之间为上行数据提供加密和完整性保护,从而实现 了与驻留在中继站上的用户设备相关的控制面信令在中继站与施主基站之 间能够获得完整性保护, 可以避免受到拒绝服务等攻击。
图 4为本发明数据传输方法再一个实施例的流程图, 本实施例中, 第 一用户数据承载为 Bci, 第二用户数据承载为 Bco; 本实施例以待传输数据 为中继站的演进分组核心网节点上待传输的下行数据为例进行说明; 本实 施例采用的信令面协议栈如图 3 ( a )所示, 本实施例采用的用户面协议栈 如图 3 ( b )所示。
如图 4所示, 本实施例可以包括:
步骤 401, 中继站的演进分组核心网节点确定下行数据的数据类型, 该 数据类型包括控制面信令和用户面数据。
本实施例中, 中继站的演进分组核心网节点为中继站的 PGW/SGW。 具体地, 中继站的 PGW/SGW可以解析下行数据的数据包头中的标识位, 根据该标识位的值确定下行数据是与驻留在中继站上的用户设备相关的控 制面信令, 还是用户面数据; 上述标识位可以包括: Protocol/next header字 段、 源 IP地址、 目的 IP地址、 TEID和 PDCP头 C/U指示之一或组合。
以标识位为 Protocol/next header字段为例, 中继站的 PGW/SGW可以 通过解析下行数据的数据包头中的 Protocol/next header字段,若该字段的值 为 132,则可以确定该下行数据为与驻留在中继站上的用户设备相关的控制 面信令; 若该字段的值为 17, 则可以确定该下行数据为与驻留在中继站上 的用户设备相关的用户面数据。
以上只是识别下行数据的数据类型的一种示例, 本实施例并不局限于 此, 除了 Protocol/next header字段之外,还可以通过其他方式对上行数据的 数据类型进行识别, 如 IP地址; 因为 MME与用户设备的 PGW/SGW的 IP 地址不同, 中继站的 PGW/SGW可以通过源 IP地址来识别下行数据是来自 用户设备的 PGW/SGW的用户面数据, 还是来自 MME的控制面信令。 任 何可以识别下行数据的数据类型的方法均应落入本发明实施例的保护范 围。
步骤 402,当确定下行数据为与驻留在中继站上的用户设备相关的控制 面信令时, 中继站的 PGW/SGW通过第一传输承载将上述下行数据发送至 施主基站; 当确定下行数据为与驻留在中继站上的用户设备相关的用户面 数据时, 中继站的 PGW/SGW通过第二传输承载将上述下行数据发送至施 主基站。
本实施例中, 建立 Bci、 Bco、 第一传输承载和第二传输承载的方法与 步骤 202提供的方法相同, 在此不再赘述。 其中, Bci在中继站与施主基站 之间为下行数据提供加密和完整性保护; Bco在中继站与施主基站之间为下 行数据提供加密保护。
步骤 403,接收到通过第一传输承载发送的下行数据之后,施主基站通 过 Bci将下行数据发送至中继站;接收到通过第二传输承载发送的下行数据 之后, 施主基站通过 Bco将下行数据发送至中继站。
本实施例中, 施主基站接收到通过第一传输承载发送的下行数据之后, 根据该施主基站保存的 Bci 的承载标识和第一传输承载的承载标识的映射 关系, 将该下行数据映射到 Bci, 通过 Bci将该下行数据发送至中继站; 施主基站接收到通过第二传输承载发送的下行数据之后, 施主基站根 据保存的 Bco的承载标识和第二传输承载的承载标识的映射关系, 将该下 行数据映射到 Bco, 通过 Bco将该下行数据发送至中继站。
本实施例中, 第一传输承载的承载标识可以为第一传输承载的 TEID; 同样, 第二传输承载的承载标识可以为第二传输承载的 TEID。
本实施例中, 步骤 402和步骤 403相当于, 当确定下行数据为与驻留 在中继站上的用户设备相关的控制面信令时, 中继站的 PGW/SGW通过第 一传输承载将上述下行数据发送至施主基站,并进一步通过 Bci将上述下行 数据发送至中继站; 当确定下行数据为与驻留在中继站上的用户设备相关 的用户面数据时, 中继站的 PGW/SGW通过第二传输承载将上述下行数据 发送至施主基站, 并进一步通过 Bco将上述下行数据发送至中继站。
上述实施例中, 当确定下行数据为与驻留在中继站上的用户设备相关 的控制面信令时, 中继站的 PGW/SGW通过第一传输承载将下行数据发送 至施主基站,再由施主基站通过与第一传输承载对应的 Bci将下行数据发送 至中继站, Bci在中继站与施主基站之间为下行数据提供加密和完整性保 护, 从而实现了与驻留在中继站上的用户设备相关的控制面信令在中继站 与施主基站之间能够获得完整性保护, 可以避免受到拒绝服务等攻击。
图 5 为本发明数据传输方法又一个实施例的流程图, 本实施例中, 第 一用户数据承载为 Bci, 第二用户数据承载为 Bco; 本实施例以待传输数据 为中继站上待传输的上行数据为例进行说明; 本实施例采用的信令面协议 栈如图 6 ( a )所示, 图 6 ( a ) 为本发明信令面协议栈另一个实施例的示意 图; 本实施例采用的用户面协议栈如图 6 ( b )所示, 图 6 ( b )为本发明用 户面协议栈另一个实施例的示意图。
如图 5所示, 本实施例可以包括:
步骤 501, 中继站确定上行数据的数据类型, 该数据类型包括控制面信 令和用户面数据。
具体地, 中继站可以采用步骤 201 中提供的方法确定上行数据的数据 类型, 在此不再赘述。
步骤 502,当确定上行数据为与驻留在中继站上的用户设备相关的控制 面信令时, 中继站通过 Bci将上述上行数据发送至施主基站; 当确定上行数 据为与驻留在中继站上的用户设备相关的用户面数据时, 中继站通过 Bco 将上述上行数据发送至施主基站。
本实施例中, 建立 Bci和 Bco的方法与步骤 202提供的方法相同, 在 此不再赘述。 可以在中继站接入施主基站的过程中, 或者, 在中继站上有 用户设备驻留之后,在中继站与施主基站之间的 Un接口上建立 Bci和 Bco; 也可以在中继站接入施主基站的过程中,在中继站与施主基站之间的 Un接 口上建立 Bci, 在中继站上有用户设备驻留之后, 在中继站与施主基站之间 的 Un接口上建立 Bco; 还可以在中继站接入施主基站的过程中, 在中继站 与施主基站之间的 Un接口上建立 Bco, 在中继站上有用户设备驻留之后, 在中继站与施主基站之间的 Un接口上建立 Bci。
本实施例中, Bco 代表中继站和施主基站之间的一类用户数据承载, GTP隧道代表了用户传输的业务流, 实际上对应每个用户可以有多个 GTP 隧道, GTP隧道中传输的数据通过 GTP包头中 TEID来标识。 中继站与施 主基站保存每个用户设备对应的 GTP隧道的 TEID和 Bco的 载标识的映 射关系。 当中继站识别出上行数据为与驻留在中继站上的用户设备相关的 用户面数据时, 中继站还要进一步解析上行数据的 GTP包头中的 TEID字 段,然后根据保存的 TEID与 Bco的承载标识的映射关系,将该上行数据映 射到对应的 Bco上, 然后通过该 Bco将上述上行数据发送至施主基站。
上述实施例中, 当确定上行数据为与驻留在中继站上的用户设备相关 的控制面信令时, 中继站通过 Bci将上行数据发送至施主基站, Bci在中继 站与施主基站之间为该上行数据提供加密和完整性保护; 从而实现了与驻 留在中继站上的用户设备相关的控制面信令在中继站与施主基站之间传输 时, 能够获得完整性保护, 可以避免受到拒绝服务等攻击。
图 7为本发明数据传输方法又再一个实施例的流程图, 本实施例中, 第一用户数据承载为 Bci, 第二用户数据承载为 Bco; 本实施例以待传输数 据为施主基站上待传输的下行数据为例进行说明; 本实施例采用的信令面 协议栈如图 6 ( a )所示, 本实施例采用的用户面协议栈如图 6 ( b )所示。
如图 7所示, 本实施例可以包括:
步骤 701,施主基站确定下行数据的数据类型, 该数据类型包括控制面 信令和用户面数据。
具体地, 施主基站可以参照步骤 401 提供的方法确定下行数据的数据 类型。
步骤 702,当确定下行数据为与驻留在中继站上的用户设备相关的控制 面信令时,施主基站通过 Bci将上述下行数据发送至中继站; 当确定下行数 据为与驻留在中继站上的用户设备相关的用户面数据时,施主基站通过 Bco 将上述下行数据发送至中继站。
本实施例中, 建立 Bci与 Bco的方法与步骤 202中提供的方法相同, 在此不再赘述。
本实施例中, Bco 代表中继站和施主基站之间的一类用户数据承载, GTP隧道代表了用户传输的业务流, 实际上对应每个用户可以有多个 GTP 隧道, GTP隧道中传输的数据通过 GTP包头中 TEID来标识。 中继站与施 主基站保存每个用户设备对应的 GTP隧道的 TEID和 Bco的 载标识的映 射关系。 当施主基站识别出下行数据为与驻留在中继站上的用户设备相关 的用户面数据时,施主基站还要进一步解析下行数据的 GTP包头中的 TEID 字段,然后根据保存的 TEID与 Bco的承载标识的映射关系,将该下行数据 映射到对应的 Bco上, 然后通过该 Bco将上述下行数据发送至中继站。
上述实施例中, 当确定下行数据为与驻留在中继站上的用户设备相关 的控制面信令时, 施主基站通过 Bci将下行数据发送至施主基站, Bci在中 继站与施主基站之间为该下行数据提供加密和完整性保护; 从而实现了与 驻留在中继站上的用户设备相关的控制面信令在中继站与施主基站之间传 输时, 能够获得完整性保护, 可以避免受到拒绝服务等攻击。
图 8为本发明数据传输方法再又一个实施例的流程图, 如图 8所示, 该实施例可以包括:
步骤 801,确定待传输数据为与驻留在中继站上的用户设备相关的控制 面信令。
具体地, 当待传输数据为上行数据时, 可以参照步骤 201 提供的方法 确定上行数据为与驻留在中继站上的用户设备相关的控制面信令; 当待传 输数据为下行数据时, 可以参照步骤 401 提供的方法确定下行数据为与驻 留在中继站上的用户设备相关的控制面信令。
步骤 802, 通过中继站与网络侧设备之间的因特网协议安全(Internet Protocol security; 以下简称: IPsec ) 关联对待传输数据进行完整性保护。
本实施例中, 中继站接入网络之后, 中继站与网络侧设备建立用户数 据承载和 IPsec关联, IPsec关联可以为待传输数据提供完整性保护。该 IPsec 关联可以建立在中继站与施主基站之间, 也可以建立在中继站与中继站的 演进分组核心网节点之间, 该中继站的演进分组核心网节点可以为 MME 或中继站的 PGW/SGW。
当待传输数据为下行数据时, 网络侧设备对下行数据的数据类型进行 识别, 当确定下行数据为与驻留在中继站上的用户设备相关的控制面信令 时, 网络侧设备通过 IPsec关联对下行数据进行完整性保护; 本实施例中, 网络侧设备可以为施主基站或中继站的 PGW/SGW。
当待传输数据为上行数据时, 中继站对上行数据的数据类型进行识别, 当确定上行数据为与驻留在中继站上的用户设备相关的控制面信令时, 中 继站通过 IPsec关联对上行数据进行完整性保护。
步骤 803,通过中继站与网络侧设备之间的用户数据承载传输进行完整 性保护之后的待传输数据。
本实施例中, 当待传输数据为与驻留在中继站上的用户设备相关的控 制面信令时, 在对该待传输数据进行完整性保护之后, 通过中继站与网络 侧设备之间的用户数据承载传输进行完整性保护之后的待传输数据。
当待传输数据为与驻留在中继站上的用户设备相关的用户面数据时, 可以直接通过中继站与网络侧设备之间的用户数据承载传输该待传输数 据。
上述实施例中, 当确定待传输数据为与驻留在中继站上的用户设备相 关的控制面信令时, 中继站或网络侧设备先通过 IPsec关联对该待传输数据 输进行完整性保护之后的待传输数据; 从而实现了与驻留在中继站上的用 户设备相关的控制面信令在中继站与施主基站之间传输时, 能够获得完整 性保护, 可以避免受到拒绝服务等攻击。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序 代码的介质。
图 9为本发明中继站一个实施例的结构示意图, 本实施例中的中继站 可以实现本发明图 2或图 5所示实施例的流程, 如图 9所示, 该中继站可 以包括: 承载建立模块 91、 第一类型识别模块 92和第一传输模块 93。
其中, 承载建立模块 91, 用于在中继站与施主基站之间建立第一用户 数据承载;
第一类型识别模块 92, 用于确定待传输上行数据的数据类型; 第一传输模块 93,用于当第一类型识别模块 92确定待传输上行数据的 数据类型为与驻留在中继站上的用户设备相关的控制面信令时, 通过承载 建立模块 91 建立的第一用户数据承载将该待传输上行数据传输至施主基 站, 第一用户数据承载为待传输上行数据提供完整性保护; 第一用户数据 承载还可以为待传输上行数据提供加密保护。
本实施例中, 承载建立模块 91还用于在中继站与施主基站之间建立第 二用户数据承载;
该中继站还可以进一步包括: 第二传输模块 94, 用于当第一类型识别 模块 92确定待传输上行数据的数据类型为与驻留在中继站上的用户设备相 关的用户面数据时, 通过承载建立模块 91建立的第二用户数据承载将该待 传输上行数据传输至施主基站, 第二用户数据承载为待传输上行数据提供 加密保护。
本实施例中, 第一类型识别模块 92具体可以解析待传输上行数据的数 据包头中的标识位, 根据该标识位的值确定待传输上行数据的数据类型; 上述标识位可以包括: Protocol/next header字段、 源 IP地址、 目的 IP地址、 TEID和 PDCP头 C/U指示之一或组合。
承载建立模块 91具体可以在中继站接入施主基站的过程中, 或者, 在 中继站上有用户设备驻留之后, 在该中继站与该施主基站之间的无线接口 上建立第一用户数据承载;
承载建立模块 91具体可以在中继站接入施主基站的过程中, 或者, 在 中继站上有用户设备驻留之后, 在该中继站与该施主基站之间的无线接口 上建立第二用户数据承载。
在本实施例的一种实现方式中, 第一类型识别模块 92确定待传输数据 为与驻留在中继站上的用户设备相关的控制面信令之后, 中继站可以先获 取为第一用户数据承载设置的控制指示, 然后第一传输模块 93根据该控制 指示, 通过在中继站与施主基站之间建立的第一用户数据承载将上述待传 输上行数据传输至施主基站; 具体地, 第一传输模块 93可以根据该控制指 示将中继站 PDCP对等层的属性配置为启用完整性保护或待传输上行数据 为与驻留在中继站上的用户设备相关的控制面信令; 并根据配置的 PDCP 对等层的属性, 通过在中继站与施主基站之间建立的第一用户数据承载将 待传输上行数据传输至施主基站。
在本实施例的另一种实现方式中, 第一传输模块 93通过在中继站与施 主基站之间建立的第一用户数据将待传输上行数据传输至施主基站之前, 中继站可以在待传输上行数据中携带控制指示, 该控制指示用于指示待传 输上行数据进行了完整性保护, 以便施主基站可以根据该控制指示对接收 到的上行数据进行完整性检测。
上述实施例中, 当第一类型识别模块 92确定待传输上行数据的数据类 型为与驻留在中继站上的用户设备相关的控制面信令时, 第一传输模块 93 通过承载建立模块 91建立的第一用户数据承载将待传输上行数据发送至施 主基站, 第一用户数据承载为待传输上行数据提供完整性保护; 从而实现 了与驻留在中继站上的用户设备相关的控制面信令在中继站与施主基站之 间传输时, 能够获得完整性保护, 可以避免受到拒绝服务等攻击。
图 10为本发明演进分组核心网节点一个实施例的结构示意图, 本实施 例的演进分组核心网节点可以实现本发明图 4所示实施例的流程, 如图 10 所示, 该演进分组核心网节点可以包括: 第二类型识别模块 1001和第三传 输模块 1002。
其中, 第二类型识别模块 1001, 用于确定待传输下行数据的数据类型; 第三传输模块 1002,用于当第二类型识别模块 1001确定待传输下行数 据的数据类型为与驻留在中继站上的用户设备相关的控制面信令时, 通过 施主基站与该演进分组核心网节点之间的第一传输承载将该待传输下行数 据发送至施主基站, 以便该施主基站通过该施主基站与中继站之间与第一 传输承载对应的第一用户数据承载, 将待传输下行数据发送至中继站, 第 一用户数据承载为待传输下行数据提供完整性保护; 第一用户数据承载还 可以为待传输下行数据提供加密保护。
本实施例中的演进分组核心网节点还可以进一步包括:
第四传输模块 1003,用于当第二类型识别模块 1001确定待传输下行数 据的数据类型为与驻留在中继站上的用户设备相关的用户面数据时, 通过 施主基站与演进分组核心网节点之间的第二传输承载将待传输下行数据发 送至施主基站, 以便该施主基站通过该施主基站与中继站之间与第二传输 承载对应的第二用户数据承载, 将该待传输下行数据发送至中继站, 第二 用户数据承载为待传输下行数据提供加密保护。
本实施例中, 第二类型识别模块 1001具体可以解析待传输下行数据的 数据包头中的标识位, 根据该标识位的值确定待传输下行数据的数据类型; 上述标识位可以包括: Protocol/next header字段、 源 IP地址、 目的 IP地址、 TEID和 PDCP头 C/U指示之一或组合。
本实施例中的演进分组核心网节点可以为中继站的 PGW/SGW。
上述实施例中, 当第二类型识别模块 1001确定待传输下行数据的数据 类型为与驻留在中继站上的用户设备相关的控制面信令时, 第三传输模块 1002通过第一传输承载将下行数据发送至施主基站, 再由施主基站通过与 第一传输承载对应的第一用户数据传输承载将待传输下行数据发送至中继 站, 第一用户数据传输在中继站与施主基站之间为待传输下行数据提供完 整性保护, 从而实现了与驻留在中继站上的用户设备相关的控制面信令在 中继站与施主基站之间, 以及在施主基站与该中继站的演进分组核心网节 点之间传输时, 能够获得完整性保护, 可以避免受到拒绝服务等攻击。
图 11为本发明施主基站一个实施例的结构示意图, 本实施例的施主基 站可以实现本发明图 7所示实施例的流程, 如图 11所示, 该施主基站可以 包括: 第三类型识别模块 1101和第五传输模块 1102。
其中, 第三类型识别模块 1101, 用于确定待传输下行数据的数据类型; 第五传输模块 1102,用于当第三类型识别模块 1101确定待传输下行数 据的数据类型为与驻留在中继站上的用户设备相关的控制面信令时, 通过 中继站与该施主基站之间的第一用户数据承载将待传输下行数据传输至中 继站, 第一用户数据承载为待传输下行数据提供完整性保护; 第一用户数 据承载还可以为待传输下行数据提供加密保护。
本实施例中, 施主基站还可以进一步包括: 第六传输模块 1103, 用于 当第三类型识别模块 1101确定待传输下行数据的数据类型为与驻留在中继 站上的用户设备相关的用户面数据时, 通过中继站与施主基站之间的第二 用户数据承载将待传输下行数据传输至中继站, 第二用户数据承载为待传 输下行数据提供加密保护。
本实施例中, 第三类型识别模块 1101具体可以解析待传输下行数据的 数据包头中的标识位, 根据该标识位的值确定待传输下行数据的数据类型; 上述标识位可以包括: Protocol/next header字段、 源 IP地址、 目的 IP地址、 TEID和 PDCP头 C/U指示之一或组合。
在本实施例的一种实现方式中, 第三类型识别模块 1101确定待传输数 据为与驻留在中继站上的用户设备相关的控制面信令之后, 施主基站可以 先获取为第一用户数据承载设置的控制指示, 然后第五传输模块 1102可以 根据该控制指示, 通过在中继站与施主基站之间建立的第一用户数据承载 将上述待传输下行数据传输至中继站; 具体地, 第五传输模块 1102可以根 据该控制指示将施主基站 PDCP对等层的属性配置为启用完整性保护或待 传输下行数据为与驻留在中继站上的用户设备相关的控制面信令; 并根据 配置的 PDCP对等层的属性, 通过在中继站与施主基站之间建立的第一用 户数据承载将待传输下行数据传输至中继站。
在本实施例的另一种实现方式中, 第五传输模块 1102通过在中继站与 施主基站之间建立的第一用户数据将待传输下行数据传输至中继站之前, 施主基站可以在待传输下行数据中携带控制指示, 该控制指示用于指示待 传输下行数据进行了完整性保护, 以便中继站可以根据该控制指示对接收 到的下行数据进行完整性检测。
上述实施例中, 当第三类型识别模块 1101确定待传输下行数据的数据 类型为与驻留在中继站上的用户设备相关的控制面信令时, 第五传输模块 1102通过第一用户数据承载将下行数据发送至施主基站, 第一用户数据承 载在中继站与施主基站之间为该待传输下行数据提供完整性保护; 从而实 现了与驻留在中继站上的用户设备相关的控制面信令在中继站与施主基站 之间传输时, 能够获得完整性保护, 可以避免受到拒绝服务等攻击。
图 12为本发明数据传输系统一个实施例的结构示意图, 如图 12所示, 本实施例的数据传输系统可以包括: 中继站 1201、施主基站 1202和中继站 的演进分组核心网节点 1203。 在该数据传输系统中, 上行数据的传输过程 如本发明图 2所示实施例所述; 下行数据的传输过程如本发明图 4所示实 施例所述; 在此不再赘述。
具体地, 中继站 1201可以通过本发明图 9所示实施例的中继站实现; 施主基站 1202 可以采用现有的施主基站; 中继站的演进分组核心网节点 1203可以通过本发明图 10所示实施例的演进分组核心网节点实现。
上述数据传输系统实现了与驻留在中继站上的用户设备相关的控制面 信令在中继站与施主基站之间传输时, 能够获得完整性保护, 可以避免受 到拒绝服务等攻击。
图 13为本发明数据传输系统另一个实施例的结构示意图, 如图 13所 示, 本实施例的数据传输系统可以包括: 中继站 1301和施主基站 1302。 在 该数据传输系统中, 上行数据的传输过程如本发明图 5 所示实施例所述; 下行数据的传输过程如本发明图 7所示实施例所述; 在此不再赘述。
具体地, 中继站 1301可以通过本发明 9所示实施例的中继站实现; 施 主基站 1302可以通过本发明图 11所示实施例的施主基站实现。
上述数据传输系统实现了与驻留在中继站上的用户设备相关的控制面 信令在中继站与施主基站之间传输时, 能够获得完整性保护, 可以避免受 到拒绝服务等攻击。
图 14为本发明数据传输装置一个实施例的结构示意图, 本实施例的数 据传输装置可以为: 中继站或网络侧设备, 实现本发明图 8所示实施例的 流程; 其中, 网络侧设备包括施主基站或中继站的演进分组核心网节点, 该中继站的演进分组核心网节点可以为中继站的 PGW/SGW。
如图 14所示, 该数据传输装置可以包括: 第四类型识别模块 1401、 保 护模块 1402和第七传输模块 1403。
其中, 第四类型识别模块 1401, 用于确定待传输数据的数据类型; 保 护模块 1402,用于当第四类型识别模块 1401确定待传输数据的数据类型为 与驻留在中继站上的用户设备相关的控制面信令时, 通过中继站与网络侧 设备之间的 IPsec关联对待传输数据进行完整性保护; 载传输保护模块 1402进行完整性保护之后的待传输数据。
本实施例中, 第四类型识别模块 1401具体可以解析待传输数据的数据 包头中的标识位, 根据该标识位的值确定待传输数据的数据类型; 上述标 识位可以包括: Protocol/next header字段、 源 IP地址、 目的 IP地址、 TEID 和 PDCP头 C/U指示之一或组合。 上述实施例中, 当第四类型识别模块 1401确定待传输数据的数据类型 为与驻留在中继站上的用户设备相关的控制面信令时, 保护模块 1402先对 该待传输数据进行完整性保护, 然后再由第七传输模块 1403通过中继站与 网络侧设备之间的用户数据承载传输保护模块 1402进行完整性保护之后的 待传输数据; 从而实现了与驻留在中继站上的用户设备相关的控制面信令 在中继站与施主基站之间传输时, 能够获得完整性保护, 可以避免受到拒 绝服务等攻击。
本领域技术人员可以理解附图只是实施例的示意图, 附图中的模块或 流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描 述进行分布于实施例的装置中, 也可以进行相应变化位于不同于本实施例 的一个或多个装置中。 上述实施例的模块可以合并为一个模块, 也可以进 一步拆分成多个子模块。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案而非对其 进行限制, 尽管参照较佳实施例对本发明进行了详细的说明, 本领域的普 通技术人员应当理解: 其依然可以对本发明的技术方案进行修改或者等同 替换, 而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技 术方案的精神和范围。

Claims

权利要求
1、 一种数据传输方法, 其特征在于, 包括:
确定待传输数据为与驻留在中继站上的用户设备相关的控制面信令; 通过在所述中继站与施主基站之间建立的第一用户数据承载传输所述 待传输数据, 所述第一用户数据承载为所述待传输数据提供完整性保护。
2、 根据权利要求 1所述的数据传输方法, 其特征在于, 还包括: 确定待传输数据为与驻留在中继站上的用户设备相关的用户面数据; 通过在所述中继站与施主基站之间建立的第二用户数据承载传输所述 待传输数据, 所述第二用户数据承载为所述待传输数据提供加密保护。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 在所述通过在所述 中继站与施主基站之间建立的第一用户数据承载传输所述待传输数据之 前, 还包括:
在所述中继站接入所述施主基站的过程中, 或者, 在所述中继站上有 用户设备驻留之后, 在所述中继站与所述施主基站之间的无线接口上建立 所述第一用户数据承载。
4、 根据权利要求 1或 2所述的方法, 其特征在于, 所述待传输数据为 所述中继站上待传输的上行数据, 所述确定待传输数据为与驻留在中继站 上的用户设备相关的控制面信令包括:
所述中继站确定所述上行数据为与驻留在中继站上的用户设备相关的 控制面信令;
所述通过在所述中继站与施主基站之间建立的第一用户数据承载传输 所述待传输数据包括:
所述中继站通过所述第一用户数据承载将所述上行数据发送至所述施 主基站, 以便所述施主基站通过第一传输承载将所述上行数据发送至所述 中继站的演进分组核心网节点, 其中, 所述第一传输承载为建立在所述施 主基站与所述中继站的演进分组核心网节点之间的与所述第一用户数据承 载对应的传输承载。
5、 根据权利要求 2所述的方法, 其特征在于, 所述待传输数据为所述 中继站上待传输的上行数据, 所述确定待传输数据为与驻留在中继站上的 用户设备相关的用户面数据包括:
所述中继站确定所述上行数据为与驻留在中继站上的用户设备相关的 用户面数据;
所述通过在所述中继站与施主基站之间建立的第二用户数据承载传输 所述待传输数据包括:
所述中继站通过所述第二用户数据承载将所述上行数据发送至所述施 主基站, 以便所述施主基站通过第二传输承载将所述上行数据发送至所述 中继站的演进分组核心网节点, 其中, 所述第二传输承载为建立在所述施 主基站与所述中继站的演进分组核心网节点之间的与所述第二用户数据承 载对应的传输承载。
6、 根据权利要求 1或 2所述的方法, 其特征在于, 所述待传输数据为 所述中继站的演进分组核心网节点上待传输的下行数据, 所述确定待传输 数据为与驻留在中继站上的用户设备相关的控制面信令包括:
所述中继站的演进分组核心网节点确定所述下行数据为与驻留在中继 站上的用户设备相关的控制面信令;
所述通过在所述中继站与施主基站之间建立的第一用户数据承载传输 所述待传输数据之前, 还包括:
所述中继站的演进分组核心网节点通过建立在所述施主基站与所述中 继站的演进分组核心网节点之间的与所述第一用户数据承载对应的第一传 输承载, 将所述下行数据发送至所述施主基站;
所述通过在所述中继站与施主基站之间建立的第一用户数据承载传输 所述待传输数据, 包括:
所述中继站的演进分组核心网节点进一步通过在所述中继站与施主基 站之间建立的第一用户数据承载将所述下行数据发送至所述中继站。
7、 根据权利要求 2所述的方法, 其特征在于, 所述待传输数据为所述 中继站的演进分组核心网节点上待传输的下行数据, 所述确定待传输数据 为与驻留在中继站上的用户设备相关的用户面数据包括:
所述中继站的演进分组核心网节点确定所述下行数据为与驻留在中继 站上的用户设备相关的用户面数据;
所述通过在所述中继站与施主基站之间建立的第二用户数据承载传输 所述待传输数据之前, 还包括:
所述中继站的演进分组核心网节点通过建立在所述施主基站与所述中 继站的演进分组核心网节点之间的与所述第二用户数据承载对应的第二传 输承载, 将所述下行数据发送至所述施主基站;
所述通过在所述中继站与施主基站之间建立的第二用户数据承载传输 所述待传输数据, 包括:
所述中继站的演进分组核心网节点进一步通过在所述中继站与施主基 站之间建立的第二用户数据承载将所述下行数据发送至所述中继站。
8、 根据权利要求 1所述的方法, 其特征在于, 所述待传输数据为所述 中继站上待传输的上行数据, 所述确定待传输数据为与驻留在中继站上的 用户设备相关的控制面信令包括:
所述中继站确定所述上行数据为与驻留在中继站上的用户设备相关的 控制面信令;
所述通过在所述中继站与施主基站之间建立的第一用户数据承载传输 所述待传输数据包括:
所述中继站通过所述第一用户数据承载将所述上行数据发送至所述施 主基站。
9、 根据权利要求 2所述的方法, 其特征在于, 所述待传输数据为所述 中继站上待传输的上行数据, 所述确定待传输数据为与驻留在中继站上的 用户设备相关的用户面数据包括: 所述中继站确定所述上行数据为与驻留在中继站上的用户设备相关的 用户面数据;
所述通过在所述中继站与施主基站之间建立的第二用户数据承载传输 所述待传输数据包括:
所述中继站通过所述第二用户数据承载将所述上行数据发送至所述施 主基站。
10、 根据权利要求 1 所述的方法, 其特征在于, 所述待传输数据为所 述施主基站上待传输的下行数据, 所述确定待传输数据为与驻留在中继站 上的用户设备相关的控制面信令包括:
所述施主基站确定所述下行数据为与驻留在中继站上的用户设备相关 的控制面信令;
所述通过在所述中继站与施主基站之间建立的第一用户数据承载传输 所述待传输数据包括:
所述施主基站通过所述第一用户数据承载将所述下行数据发送至所述 中继站。
11、 根据权利要求 2所述的方法, 其特征在于, 所述待传输数据为所 述施主基站上待传输的下行数据, 所述确定待传输数据为与驻留在中继站 上的用户设备相关的用户面数据包括:
所述施主基站确定所述下行数据为与驻留在中继站上的用户设备相关 的用户面数据;
所述通过在所述中继站与施主基站之间建立的第二用户数据承载传输 所述待传输数据包括:
所述施主基站通过所述第二用户数据承载将所述下行数据发送至所述 中继站。
12、 根据权利要求 1 所述的方法, 其特征在于, 所述确定待传输数据 为与驻留在中继站上的用户设备相关的控制面信令之后, 还包括:
获取为所述第一用户数据承载设置的控制指示, 并根据所述控制指示 执行所述通过在所述中继站与施主基站之间建立的第一用户数据承载传输 所述待传输数据的步骤。
13、 根据权利要求 12所述的方法, 其特征在于, 所述根据所述控制指 示执行所述通过在所述中继站与施主基站之间建立的第一用户数据承载传 输所述待传输数据的步骤包括:
根据所述控制指示将分组数据汇聚协议 PDCP对等层的属性配置为: 启用完整性保护, 或者配置为: 所述待传输数据为与驻留在中继站上的用 户设备相关的控制面信令;
根据配置的 PDCP对等层的属性, 执行所述通过在所述中继站与施主 基站之间建立的第一用户数据承载传输所述待传输数据的步骤。
14、 根据权利要求 1 所述的方法, 其特征在于, 所述确定待传输数据 为与驻留在中继站上的用户设备相关的控制面信令包括:
解析所述待传输数据的数据包头中的标识位, 根据所述标识位的值确 定所述待传输数据为与驻留在中继站上的用户设备相关的控制面信令; 所 述标识位包括: 协议 /下一数据包头字段、 源因特网协议 IP地址、 目的 IP 地址、 隧道端点标识和 PDCP头控制面 /用户面指示之一或组合。
15、 根据权利要求 1 所述的方法, 其特征在于, 所述通过在所述中继 站与施主基站之间建立的第一用户数据承载传输所述待传输数据之前, 还 包括:
在所述待传输数据中携带控制指示, 所述控制指示用于指示所述待传 输数据进行了完整性保护, 以便接收到所述待传输数据的设备根据所述控 制指示对接收到的所述待传输数据进行完整性检测。
16、 一种中继站, 能够与施主基站进行通信, 其特征在于, 包括: 承载建立模块, 用于在所述中继站与所述施主基站之间建立第一用户 数据承载;
第一类型识别模块, 用于确定待传输上行数据的数据类型;
第一传输模块, 用于当所述第一类型识别模块确定所述待传输上行数 据的数据类型为与驻留在所述中继站上的用户设备相关的控制面信令时, 通过所述承载建立模块建立的第一用户数据承载将所述待传输上行数据传 输至所述施主基站, 所述第一用户数据承载为所述待传输上行数据提供完 整性保护。
17、 根据权利要求 16所述的中继站, 其特征在于, 所述承载建立模块 还用于在所述中继站与所述施主基站之间建立第二用户数据承载;
所述中继站还包括:
第二传输模块, 用于当所述第一类型识别模块确定所述待传输上行数 据的数据类型为与驻留在所述中继站上的用户设备相关的用户面数据时, 通过所述承载建立模块建立的第二用户数据承载将所述待传输上行数据传 输至所述施主基站, 所述第二用户数据承载为所述待传输上行数据提供加 密保护。
18、 根据权利要求 16所述的中继站, 其特征在于, 所述承载建立模块 具体用于在所述中继站接入所述施主基站的过程中, 或者, 在所述中继站 上有用户设备驻留之后, 在所述中继站与所述施主基站之间的无线接口上 建立所述第一用户数据承载。
19、 根据权利要求 16所述的中继站, 其特征在于, 所述第一类型识别 模块具体用于解析所述待传输上行数据的数据包头中的标识位, 根据所述 标识位的值确定所述待传输上行数据的数据类型; 所述标识位包括: 协议 / 下一数据包头字段、 源因特网协议 IP地址、 目的 IP地址、 隧道端点标识和 PDCP头控制面 /用户面指示之一或组合。
20、 一种演进分组核心网节点, 能够通过施主基站与中继站进行通信, 其特征在于, 包括:
第二类型识别模块, 用于确定待传输下行数据的数据类型;
第三传输模块, 用于当所述第二类型识别模块确定所述待传输下行数 据的数据类型为与驻留在所述中继站上的用户设备相关的控制面信令时, 通过所述施主基站与所述演进分组核心网节点之间的第一传输承载将所述 待传输下行数据发送至所述施主基站, 以便所述施主基站通过所述施主基 站与所述中继站之间与所述第一传输承载对应的第一用户数据承载, 将所 述待传输下行数据发送至所述中继站, 所述第一用户数据承载为所述待传 输下行数据提供完整性保护。
21、 根据权利要求 20所述的演进分组核心网节点, 其特征在于, 还包 括:
第四传输模块, 用于当所述第二类型识别模块确定所述待传输下行数 据的数据类型为与驻留在所述中继站上的用户设备相关的用户面数据时, 通过所述施主基站与所述演进分组核心网节点之间的第二传输承载将所述 待传输下行数据发送至所述施主基站, 以便所述施主基站通过所述施主基 站与所述中继站之间与所述第二传输承载对应的第二用户数据承载, 将所 述待传输下行数据发送至所述中继站, 所述第二用户数据承载为所述待传 输下行数据提供加密保护。
22、 根据权利要求 20所述的演进分组核心网节点, 其特征在于, 所述 第二类型识别模块具体用于解析所述待传输下行数据的数据包头中的标识 位, 根据所述标识位的值确定所述待传输下行数据的数据类型; 所述标识 位包括: 协议 /下一数据包头字段、 源因特网协议 IP地址、 目的 IP地址、 隧道端点标识和 PDCP头控制面 /用户面指示之一或组合。
23、 一种数据传输系统, 其特征在于, 包括: 施主基站、 根据权利要 求 16-19任意一项所述的中继站和根据权利要求 20-22任意一项所述的演进 分组核心网节点。
24、 一种施主基站, 能够与中继站进行通信, 其特征在于, 包括: 第三类型识别模块, 用于确定待传输下行数据的数据类型;
第五传输模块, 用于当所述第三类型识别模块确定所述待传输下行数 据的数据类型为与驻留在所述中继站上的用户设备相关的控制面信令时, 通过所述中继站与所述施主基站之间的第一用户数据承载将所述待传输下 行数据传输至所述中继站, 所述第一用户数据承载为所述待传输下行数据 提供完整性保护。
25、 根据权利要求 24所述的施主基站, 其特征在于, 还包括: 第六传输模块, 用于当所述第三类型识别模块确定所述待传输下行数 据的数据类型为与驻留在所述中继站上的用户设备相关的用户面数据时, 通过所述中继站与所述施主基站之间的第二用户数据承载将所述待传输下 行数据传输至所述中继站, 所述第二用户数据承载为所述待传输下行数据 提供加密保护。
26、 根据权利要求 24所述的施主基站, 其特征在于, 所述第三类型识 别模块具体用于解析所述待传输下行数据的数据包头中的标识位, 根据所 述标识位的值确定所述待传输下行数据的数据类型; 所述标识位包括: 协 议 /下一数据包头字段、 源因特网协议 IP地址、 目的 IP地址、 隧道端点标 识和 PDCP头控制面 /用户面指示之一或组合。
27、 一种数据传输系统, 其特征在于, 包括: 根据权利要求 16-19任意 一项所述的中继站和根据权利要求 24-26任意一项所述的施主基站。
28、 一种数据传输方法, 其特征在于, 包括:
确定待传输数据为与驻留在中继站上的用户设备相关的控制面信令; 通过中继站与网络侧设备之间的因特网协议安全关联对所述待传输数 据进行完整性保护; 性保护之后的待传输数据。
29、 根据权利要求 28所述的方法, 其特征在于, 还包括:
所述中继站接入网络之后, 与所述网络侧设备建立所述用户数据承载 和所述因特网协议安全关联。
30、 根据权利要求 28所述的方法, 其特征在于, 所述确定待传输数据 为与驻留在中继站上的用户设备相关的控制面信令包括:
解析所述待传输数据的数据包头中的标识位, 根据所述标识位的值确 定所述待传输数据为与驻留在所述中继站上的用户设备相关的控制面信 令; 所述标识位包括: 协议 /下一数据包头字段、 源因特网协议 IP地址、 目 的 IP地址、 隧道端点标识和 PDCP头控制面 /用户面指示之一或组合。
31、 一种数据传输装置, 其特征在于, 包括:
第四类型识别模块, 用于确定待传输数据的数据类型;
保护模块, 用于当所述第四类型确定模块确定所述待传输数据的数据 类型为与驻留在中继站上的用户设备相关的控制面信令时, 通过中继站与 网络侧设备之间的因特网协议安全关联对所述待传输数据进行完整性保 护; 据承载传输所述保护模块进行完整性保护之后的待传输数据。
32、 根据权利要求 31所述的数据传输装置, 其特征在于, 所述第四类 型识别模块具体用于解析所述待传输数据的数据包头中的标识位, 根据所 述标识位的值确定所述待传输数据的数据类型; 所述标识位包括: 协议 /下 一数据包头字段、 源因特网协议 IP地址、 目的 IP地址、 隧道端点标识和 PDCP头控制面 /用户面指示之一或组合。
33、 根据权利要求 31或 32所述的数据传输装置, 其特征在于, 所述 数据传输装置包括: 中继站、 施主基站或中继站的演进分组核心网节点。
PCT/CN2010/077342 2009-09-28 2010-09-27 数据传输方法、装置及系统 WO2011035733A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10818427.6A EP2485561B1 (en) 2009-09-28 2010-09-27 Method and devices for data transmission
US13/432,504 US9232404B2 (en) 2009-09-28 2012-03-28 Method, apparatus, and system for data transmission

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200910093753 2009-09-28
CN200910093753.0 2009-09-28
CN2010101058675A CN102036256B (zh) 2009-09-28 2010-02-03 数据传输方法、装置及系统
CN201010105867.5 2010-02-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/432,504 Continuation US9232404B2 (en) 2009-09-28 2012-03-28 Method, apparatus, and system for data transmission

Publications (1)

Publication Number Publication Date
WO2011035733A1 true WO2011035733A1 (zh) 2011-03-31

Family

ID=43795416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077342 WO2011035733A1 (zh) 2009-09-28 2010-09-27 数据传输方法、装置及系统

Country Status (6)

Country Link
US (1) US9232404B2 (zh)
EP (2) EP2900033B1 (zh)
CN (2) CN102036256B (zh)
ES (1) ES2612564T3 (zh)
PT (1) PT2900033T (zh)
WO (1) WO2011035733A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140016539A1 (en) * 2012-07-13 2014-01-16 Tejas Networks Ltd. Independent resource request method for initial nas signalling
CN107105516A (zh) * 2011-11-28 2017-08-29 Sk电信有限公司 用于支持基于多网络的数据传输服务的设备和方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101831448B1 (ko) * 2010-02-02 2018-02-26 엘지전자 주식회사 이동 통신 시스템에서 pdcp 기능을 선택적으로 적용하는 방법
WO2012045370A1 (en) * 2010-10-08 2012-04-12 Nokia Siemens Networks Oy Relay nodes
CN102457965B (zh) * 2010-10-15 2014-06-18 电信科学技术研究院 载波聚合场景下中继节点的资源分配方法和设备
WO2012078092A2 (en) * 2010-12-10 2012-06-14 Telefonaktiebolaget L M Ericsson (Publ) Enabling and disabling integrity protection for data radio bearers
EP2822211B1 (en) 2012-03-21 2017-08-09 Huawei Technologies Co., Ltd. Evolved packet system bearer establishment method and base station
WO2014056983A1 (en) * 2012-10-09 2014-04-17 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for establishing and using pdn connections
US9672527B2 (en) * 2013-01-21 2017-06-06 Tejas Networks Limited Associating and consolidating MME bearer management functions
CN108601025B (zh) 2014-03-21 2019-04-23 华为技术有限公司 检测中间人攻击的方法与装置
ES2703555T3 (es) * 2014-05-05 2019-03-11 Ericsson Telefon Ab L M Protección de intercambio de mensajes WLCP entre TWAG y UE
US10142965B2 (en) * 2014-08-01 2018-11-27 Alcatel Lucent Methods and devices for providing application services to users in communications network
US10244580B2 (en) 2014-10-16 2019-03-26 Nokia Of America Corporation Methods and devices for providing application services to users in communications network
WO2016141213A1 (en) * 2015-03-04 2016-09-09 Intel IP Corporation Opportunistic access of millimeterwave radio access technology based on edge cloud mobile proxy
CN115474245A (zh) * 2015-06-30 2022-12-13 华为技术有限公司 一种数据传输方法、无线网络节点和通信系统
US10362011B2 (en) * 2015-07-12 2019-07-23 Qualcomm Incorporated Network security architecture
US10205507B2 (en) * 2015-08-28 2019-02-12 Tejas Networks, Ltd. Relay architecture, relay node, and relay method thereof
RU2712428C2 (ru) * 2015-11-02 2020-01-28 Телефонактиеболагет Лм Эрикссон (Пабл) Беспроводная связь
US10205610B2 (en) 2016-02-29 2019-02-12 Alcatel Lucent Uplink packet routing in a system-on-a-chip base station architecture
US10015719B2 (en) * 2016-02-29 2018-07-03 Alcatel-Lucent Downlink packet routing in a system-on-a-chip base station architecture
US10303636B2 (en) 2016-02-29 2019-05-28 Nokia Of America Corporation Routing paging packets in a system-on-a-chip base station architecture
WO2018023726A1 (en) * 2016-08-05 2018-02-08 Nokia Technologies Oy Method and apparatus for signaling transmission/processing in a wireless communication system
CN109863772B (zh) * 2017-04-12 2021-06-01 华为技术有限公司 一种安全策略的处理方法和相关设备
CN108810899A (zh) 2017-04-28 2018-11-13 维沃移动通信有限公司 完整性检测方法、终端及网络侧设备
CN112203281B (zh) * 2017-06-15 2023-07-21 维沃移动通信有限公司 一种数据无线承载完整性保护配置方法、终端及网络设备
CN109218325B (zh) 2017-08-11 2020-03-10 华为技术有限公司 数据完整性保护方法和装置
CN109547396B (zh) * 2017-09-22 2021-01-08 维沃移动通信有限公司 完整性保护方法、终端和基站
US11233722B2 (en) * 2017-12-12 2022-01-25 Futurewei Technologies, Inc. System and method for network topology management
US11418952B2 (en) * 2018-01-11 2022-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Optimized PDCP handling in integrated access backhaul (IAB) networks
CN110035042B (zh) * 2018-01-12 2020-08-07 华为技术有限公司 一种数据传输方法及装置
WO2019158681A1 (en) * 2018-02-16 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Protecting a message transmitted between core network domains
US11564277B2 (en) * 2018-08-16 2023-01-24 Lg Electronics Inc. Method and apparatus for supporting early data transmission in inactive state in wireless communication system
CN111383011B (zh) * 2018-12-29 2023-09-29 华为技术有限公司 一种处理中继攻击的方法以及安全单元
WO2020164506A1 (en) 2019-02-14 2020-08-20 JRD Communication (Shenzhen) Ltd. Iab security
EP4016949A4 (en) * 2019-08-18 2022-08-10 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001252A (zh) * 2006-06-25 2007-07-18 华为技术有限公司 一种注册方法和一种用户面安全算法的协商方法及装置
WO2007130637A2 (en) * 2006-05-05 2007-11-15 Interdigital Technology Corporation Apparatuses for performing ciphering with pdcp layer sequence number or by pdcp entities
CN101299832A (zh) * 2008-06-20 2008-11-05 华为技术有限公司 基站和控制器之间的接口数据传输的方法、系统及设备
CN101473668A (zh) * 2006-06-19 2009-07-01 交互数字技术公司 用于对初始信令消息中的原始用户标识进行安全保护的方法和设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI102936B (fi) 1996-03-04 1999-03-15 Nokia Telecommunications Oy Pakettimuotoisen lähetyksen turvallisuuden parantaminen matkaviestinjä rjestelmässä
US7620041B2 (en) 2004-04-15 2009-11-17 Alcatel-Lucent Usa Inc. Authentication mechanisms for call control message integrity and origin verification
CN100527884C (zh) * 2006-01-04 2009-08-12 华为技术有限公司 一种实现小区间切换的方法
KR101333918B1 (ko) * 2006-01-05 2013-11-27 엘지전자 주식회사 이동 통신 시스템의 점-대-다 서비스 통신
CN101336537A (zh) * 2006-02-03 2008-12-31 艾利森电话股份有限公司 用于通信网络中的方法和装置
CN101080097B (zh) 2006-05-25 2012-01-04 华为技术有限公司 一种实现多媒体呼叫业务的方法、系统及装置
CN101150498B (zh) 2006-09-18 2012-06-20 华为技术有限公司 多跳无线中继通信系统及其下行数据传输方法
US8687804B2 (en) * 2006-11-01 2014-04-01 Microsoft Corporation Separating control and data operations to support secured data transfers
CN101296482B (zh) 2007-04-28 2012-12-12 华为技术有限公司 实现消息认证的方法、基站、中继站及中继通信系统
US8315243B2 (en) * 2007-08-14 2012-11-20 Qualcomm Incorporated Transport of PDCP control PDUs within MAC frames
FI20075761A0 (fi) * 2007-10-29 2007-10-29 Nokia Siemens Networks Oy Käyttäjälaitetunnisteen allokointi
CN101483888B (zh) 2008-01-07 2013-06-12 上海贝尔股份有限公司 无线接入系统的数据传输方法及基站、中继站和无线接入系统
CN101534236A (zh) 2008-03-11 2009-09-16 华为技术有限公司 中继站通信时的加密方法及装置
US8599802B2 (en) * 2008-03-14 2013-12-03 Interdigital Patent Holdings, Inc. Method and apparatus to deliver public warning messages
US8387129B2 (en) * 2008-06-09 2013-02-26 Qualcomm Incorporated Method and apparatus for verifying data packet integrity in a streaming data channel
US9270700B2 (en) * 2008-12-12 2016-02-23 Microsoft Technology Licensing, Llc Security protocols for mobile operator networks
US8526454B2 (en) * 2009-03-27 2013-09-03 Nokia Corporation Apparatus and method for bit remapping in a relay enhanced communication system
US8532056B2 (en) * 2009-04-13 2013-09-10 Qualcomm Incorporated Device mobility for split-cell relay networks
CN104023411B (zh) * 2009-04-21 2018-08-07 Lg电子株式会社 在无线通信系统中使用中继节点的方法
CN101883359A (zh) 2009-05-04 2010-11-10 华为技术有限公司 一种中继站入网的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007130637A2 (en) * 2006-05-05 2007-11-15 Interdigital Technology Corporation Apparatuses for performing ciphering with pdcp layer sequence number or by pdcp entities
CN101473668A (zh) * 2006-06-19 2009-07-01 交互数字技术公司 用于对初始信令消息中的原始用户标识进行安全保护的方法和设备
CN101001252A (zh) * 2006-06-25 2007-07-18 华为技术有限公司 一种注册方法和一种用户面安全算法的协商方法及装置
CN101299832A (zh) * 2008-06-20 2008-11-05 华为技术有限公司 基站和控制器之间的接口数据传输的方法、系统及设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107105516A (zh) * 2011-11-28 2017-08-29 Sk电信有限公司 用于支持基于多网络的数据传输服务的设备和方法
US20140016539A1 (en) * 2012-07-13 2014-01-16 Tejas Networks Ltd. Independent resource request method for initial nas signalling
US9232501B2 (en) * 2012-07-13 2016-01-05 Tejas Networks Ltd. Independent resource request method for initial NAS signalling

Also Published As

Publication number Publication date
PT2900033T (pt) 2016-12-30
EP2485561A4 (en) 2012-11-21
ES2612564T3 (es) 2017-05-17
EP2900033A1 (en) 2015-07-29
CN103188681B (zh) 2016-08-10
EP2485561B1 (en) 2015-02-18
CN102036256B (zh) 2013-03-20
US9232404B2 (en) 2016-01-05
US20120182929A1 (en) 2012-07-19
CN102036256A (zh) 2011-04-27
CN103188681A (zh) 2013-07-03
EP2485561A1 (en) 2012-08-08
EP2900033B1 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2011035733A1 (zh) 数据传输方法、装置及系统
US8867428B2 (en) Split-cell relay application protocol
JP5088091B2 (ja) 基地局装置、通信方法及び移動通信システム
US10660008B2 (en) Data transmission system, method, and apparatus
CN108307536B (zh) 一种路由方法和设备
CN102405610B (zh) 在无线通信系统中使用中继节点的方法
US9027111B2 (en) Relay node authentication method, apparatus, and system
TWI422242B (zh) 處理資料傳遞之中繼站及控制資料傳遞的相關方法
CN110463270A (zh) 用于动态数据中继的系统和方法
US9226142B2 (en) Mobile communication system, communication control method, and radio base station
EP3749046B1 (en) Processing methods for wireless backhaul communication, related devices and computer readable storage media
US9832683B2 (en) Communication system, user terminal, and communication control method utilizing plural bearers for cellular and WLAN communication
EP3220673B1 (en) Communication control method, user terminal, cellular base station, and access point
KR20110090812A (ko) 이동 통신 시스템에서 pdcp 기능을 선택적으로 적용하는 방법
WO2012019467A1 (zh) 获取邻接基站/中继节点接口信息的方法及无线中继系统
JP2017531969A (ja) 無線リソース制御rrc接続方法および装置ならびにrrc再接続方法および装置
WO2018188482A1 (zh) 连接建立方法及装置
US20230086337A1 (en) Methods, infrastructure equipment and wireless communications networks
WO2015064475A1 (ja) 通信制御方法、認証サーバ及びユーザ端末
WO2014111049A1 (zh) 小区优化方法及装置
WO2023286690A1 (ja) 通信制御方法
RU2780823C2 (ru) Устройство и способ обработки беспроводной связи по транзитному соединению

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010818427

Country of ref document: EP