WO2011035673A1 - Method and device for uplink data transmission based on relay station - Google Patents

Method and device for uplink data transmission based on relay station Download PDF

Info

Publication number
WO2011035673A1
WO2011035673A1 PCT/CN2010/076321 CN2010076321W WO2011035673A1 WO 2011035673 A1 WO2011035673 A1 WO 2011035673A1 CN 2010076321 W CN2010076321 W CN 2010076321W WO 2011035673 A1 WO2011035673 A1 WO 2011035673A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
subframe
relay
backhaul
access
Prior art date
Application number
PCT/CN2010/076321
Other languages
French (fr)
Chinese (zh)
Inventor
梁枫
毕峰
杨瑾
袁明
吴栓栓
李岩
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011035673A1 publication Critical patent/WO2011035673A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

A method and device for uplink data transmission are disclosed by the invention. In above-mentioned method, a relay station receives uplink data and transmits uplink data with uplink relay sub-frames; wherein, all or part of the uplink relay sub-frames are configured according to the sounding reference signal (SRS) sub-frames of user and guard intervals are set in them, or, the user uplink sub-frames corresponding to all or part of the relay uplink sub-frames are configured as SRS sub-frames, and guard intervals are set in all or part of the uplink relay sub-frames. According to the technique scheme of the invention, omitting is avoided when data signals are received, and signal combination with the user is achieved by the relay station when it is performing uplink transmission.

Description

基于中继站的上行数据传输方法^置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种基于中继站的上行数据传输 方法及装置。 背景技术 中继技术作为一门新兴技术, 引起了越来越广泛的注意, 被视为超三代 / 第四代 ( Beyond Third Generation/The Fourth Generation, 简称为 3G/4G ) 移 动通信的关键技术。 由于未来无线通信或蜂窝系统要求增加覆盖范围, 支持 更高速率传输, 因此对无线通信技术提出了新的挑战。 同时, 系统建造和维 护的费用问题更加突出。 随着传输速率及通信距离的增加, 电池的耗能问题 也变得突出, 而且未来的无线通信将会釆用更高频率, 由此造成的路径损耗 衰减更加严重。 通过中继技术, 可以将传统的单跳链路分成多个多跳链路, 由于距离缩短, 因此将极大地减小路径损耗, 有助于提高传输质量, 扩大通 信范围, 从而为用户提供更快速更优质的月艮务。 图 1为中继网络架构示意图。 如图 1所示, 在中继网络中, 包括: 基站、 中继站、 以及参与月艮务的用户, 中继站参与月艮务的用户与中继站之间的链路 被称为接入链路 ( Access Link ), 中继站与基站间的链路被称为回程链路 The present invention relates to the field of communications, and in particular to a method and apparatus for uplink data transmission based on a relay station. BACKGROUND OF THE INVENTION As an emerging technology, relay technology has attracted more and more attention, and is regarded as a key technology of mobile communication of Beyond Third Generation/The Fourth Generation (3G/4G). Since future wireless communication or cellular systems require increased coverage and support for higher rate transmission, new challenges are placed on wireless communication technologies. At the same time, the cost of system construction and maintenance is even more acute. As the transmission rate and communication distance increase, the problem of battery energy consumption becomes prominent, and future wireless communication will use higher frequencies, resulting in more serious path loss attenuation. Through the relay technology, the traditional single-hop link can be divided into multiple multi-hop links. As the distance is shortened, the path loss will be greatly reduced, which will improve the transmission quality and expand the communication range, thereby providing users with more Fast and better month. Figure 1 is a schematic diagram of a trunk network architecture. As shown in FIG. 1 , in the relay network, including: a base station, a relay station, and a user participating in the monthly service, the link between the user participating in the monthly service and the relay station of the relay station is called an access link (Access Link). ), the link between the relay station and the base station is called the backhaul link.
( Backhaul Link ), 基站参与服务的用户和基站之间的链路被称为直传链路(Backhaul Link), the link between the user participating in the service and the base station is called a direct transmission link.
( Direct Link )。 对于带内中继 (In-band relaying ), 回程链路、 接入链路和直传链路都工 作在相同的频谱上。 一般情况下, 当中继站在向基站进行上行传输的同时, 如果中继站也在接收来自用户的上行发射, 则会使得中继站自身的接收端与 发射端之间产生千扰, 因此会造成通信质量的严重恶化。 因此, 对于带内中 继, 规定回程链路和接入链路上不能同时进行上行传输, 并且, 当中继站在 上行发射状态与上行接收状态之间转换时, 需要一定长度的转换时间作为保 护间隔( Guard Period, 简称为 GP ), 中继站在 GP上不进行任何上行的发射 和接收, 以避免在转换过程中产生发射端与接收端的自千 4尤。 因此, 此处将 中继上行子帧分为两种: 中继站进行上行发射的子帧称为上行回程 Backhaul 子帧, 中继站进行上行接收的子帧称为上行接入 Access子帧, 当这两种子帧 相邻时, 子帧间需要设置保护间隔 GP, 并且, 中继上行子帧是配置在用户 的上行子帧的, 与用户上行子帧相对应, 具体可以参见图 2。 图 2为中继上行子帧配置示意图。 如图 2所示, 将子帧 #0、 #1、 #5、 #6 配置为上行 Backhaul子帧, 将 #2、 #3、 #4、 #7、 #8、 #9配置为上行 Access 子帧。 目前所提出的方法如下: 在上行 Backhaul子帧的首尾分别预留一定长度 的时隙作为中继站从接收到发射和从发射到接收的转换间隔, 并且可以再对 此子帧进行时域上的偏移以减少转换间隔的长度。 但是, 该方法存在以下缺 点: 在子帧前端预留 GP, 会导致中继站上行发射不能与用户上行发射正常 进行信号合并, 并且子帧的偏移会导致用户的相邻上行子帧出现重叠状况, 带来数据损失。 发明内容 针对相关技术中在子帧前端预留 GP, 会导致中继站上行发射不能与用 户上行发射正常进行信号合并, 并且子帧的偏移会导致用户的相邻上行子帧 出现重叠状况, 带来数据损失的问题而提出本发明, 为此, 本发明的主要目 的在于提供一种改进的基于中继站的上行数据传输方法及装置, 以解决上述 问题至少之一。 根据本发明的一个方面, 提供了一种基于中继站的上行数据传输方法。 根据本发明的基于中继站的上行数据传输方法包括: 中继站通过上行中 继子帧进行上行数据接收和上行数据发射; 其中, 全部或部分上行中继子帧 根据用户的测量参考信号 ( Sounding Reference Signal , 简称为 SRS ) 子帧配 置并设置保护间隔, 或者, 全部或部分中继上行子帧对应的用户上行子帧配 置为 SRS子帧, 并且全部或部分上行中继子帧设置保护间隔。 根据本发明的另一方面, 提供了一种基于中继站的上行数据传输装置。 根据本发明的基于中继站的上行数据传输装置包括: 传输单元, 用于通 过中继上行子帧进行上行数据接收和上行数据发射; 其中, 全部或部分中继 上行子帧根据用户的测量参考信号 SRS子帧配置并设置保护间隔, 或者, 全 部或部分中继上行子帧对应的用户上行子帧配置为 SRS子帧,并且全部或部 分中继上行子帧设置保护间隔。 通过本发明, 中继站通过中继上行子帧进行上行数据接收和上行数据发 射时, 将部分或全部上行中继子帧配置在用户的 SRS子帧上, 或者, 将部分 或全部上行中继子帧所对应的用户上行子帧配置为 SRS子帧,并且才艮据情况 为中继站设置保护间隔。 解决了相关技术中在子帧前端预留 GP, 会导致中 继站上行发射不能与用户上行发射正常进行信号合并, 并且子帧的偏移会导 致用户的相邻上行子帧出现重叠状况, 带来数据损失的问题, 进而可以避免 在接收数据信号时发生遗漏,实现中继站在上行发射时与用户进行信号合并。 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说 明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优 点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结构来实 现和获得。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1为中继网络架构示意图; 图 2为中继上行子帧配置示意图; 图 3为才艮据本发明实施例的第一种上行 Access子帧结构示意图; 图 4为才艮据本发明实施例的第二种上行 Access子帧结构示意图; 图 5为才艮据本发明实施例的第一种上行 Backhaul子帧结构示意图; 图 6为才艮据本发明实施例的第二种上行 Backhaul子帧结构示意图; 图 7为才艮据本发明实施例一的用户上行 SRS子帧配置示意图; 图 8为根据本发明实施例一的中继上行 SRS子帧配置及其子帧结构示意 图; 图 9为才艮据本发明实施例二的用户上行 SRS子帧配置示意图; 图 10为才艮据本发明实施例二的中继上行 SRS子帧配置及其子帧结构示 意图; 图 11为才艮据本发明实施例三的中继上行子帧配置示意图; 图 12为根据本发明实施例三的用户上行 SRS子帧配置、 中继上行子帧 配置及其子帧结构示意图; 图 13为才艮据本发明实施例四的中继上行子帧配置示意图; 图 14为根据本发明实施例四的用户上行 SRS子帧配置、 中继上行子帧 配置及其子帧结构示意图; 图 15 为根据本发明实施例的基于中继站的上行数据传输装置的结构框 图。 具体实施方式 本发明实施例提供了一种基于中继站的上行数据传输方法及装置, 设计 思路如下: 中继站通过上行中继子帧进行上行数据接收和上行数据发射时, 通过利用现有的 SRS 子帧结构来实现中继站在上行发射与接收之间的射频 转换, 因为用户在 SRS子帧的最后一个单载波频分多址 SC-FDMA符号上不 进行数据信号的发射,所以若中继站在上行 Access子帧中将此符号作为保护 间隔就不会漏掉数据信号的接收,并且若中继站在上行 Backhaul子帧中将这 个符号作为保护间隔就可以实现中继站在上行发射时与用户进行信号合并, 兼容旧版本的用户, 保持正常的定时关系, 从而不会导致由于相邻子帧重叠 带来的数据损失。 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。 根据本发明实施例, 首先提供了一种基于中继站的上行数据传输方法。 才艮据本发明实施例的基于中继站的上行数据传输方法包括以下处理: 中 继站通过上行中继子帧进行上行数据接收和上行数据发射; 其中, 全部或部 分上行中继子帧根据用户的 SRS子帧配置并设置保护间隔, 或者, 全部或部 分中继上行子帧对应的用户上行子帧配置为 SRS子帧,并且全部或部分上行 中继子帧设置保护间隔。 中继站进行上行数据发射的上行中继子帧包括: 上行 Backhaul子帧; 中 继站进行上行数据接收的上行中继子帧包括: 上行 Access子帧。 优选地, 在中继站通过中继上行子帧进行上行数据接收和上行数据发射 之前, 需要预先进行配置。 (Direct Link). For in-band relaying, the backhaul link, the access link, and the direct transmission link all operate on the same spectrum. In general, when the relay station performs uplink transmission to the base station, if the relay station is also receiving uplink transmission from the user, it will cause interference between the receiving end and the transmitting end of the relay station, thus causing serious communication quality. deterioration. Therefore, for in-band relay, it is specified that uplink transmission cannot be performed simultaneously on the backhaul link and the access link, and when the relay station switches between the uplink transmission state and the uplink reception state, a certain length of conversion time is required as the guard interval. (Guard Period, GP for short), the relay station does not perform any uplink transmission and reception on the GP to avoid the generation of the transmitter and receiver terminals during the conversion process. Therefore, the relay uplink subframes are classified into two types: a subframe in which the relay station performs uplink transmission is called an uplink backhaul backhaul subframe, and a subframe in which the relay station performs uplink reception is called an uplink access Access subframe, when these two seeds are used. frame When adjacent, the guard interval GP needs to be set between the subframes, and the relay uplink subframe is configured in the uplink subframe of the user, and corresponds to the uplink subframe of the user. For details, refer to FIG. 2 . 2 is a schematic diagram of a configuration of a relay uplink subframe. As shown in Figure 2, configure subframes #0, #1, #5, and #6 as uplink Backhaul subframes, and configure #2, #3, #4, #7, #8, and #9 as uplink access sub-frames. frame. The proposed method is as follows: A time slot of a certain length is reserved at the beginning and the end of the uplink Backhaul subframe as a transition interval between the received transmission and the transmission to the reception, and the time domain may be further biased for the subframe. Move to reduce the length of the transition interval. However, the method has the following disadvantages: the GP is reserved at the front end of the subframe, and the uplink transmission of the relay station cannot be combined with the normal uplink transmission of the user, and the offset of the subframe may cause overlapping of the adjacent uplink subframes of the user. Bring data loss. SUMMARY OF THE INVENTION In the related art, the GP is reserved in the front end of the subframe, and the uplink transmission of the relay station cannot be combined with the normal uplink transmission of the user, and the offset of the subframe may cause overlapping of the adjacent uplink subframes of the user. The present invention has been made in view of the problem of data loss. To this end, it is a primary object of the present invention to provide an improved relay station-based uplink data transmission method and apparatus to solve at least one of the above problems. According to an aspect of the present invention, a relay station based uplink data transmission method is provided. The relay station-based uplink data transmission method according to the present invention includes: the relay station performs uplink data reception and uplink data transmission by using an uplink relay subframe; wherein all or part of the uplink relay subframe is based on a user's measurement reference signal (Sounding Reference Signal, referred to as The SRS is configured to set the guard interval, or the user uplink subframe corresponding to all or part of the relay uplink subframe is configured as an SRS subframe, and all or part of the uplink relay subframes are set with a guard interval. According to another aspect of the present invention, an uplink data transmission apparatus based on a relay station is provided. The relay station-based uplink data transmission apparatus according to the present invention includes: a transmission unit, configured to perform uplink data reception and uplink data transmission by relaying an uplink subframe; wherein, all or part of the relay uplink subframe is based on a measurement reference signal SRS of the user The subframe is configured and the guard interval is set. Alternatively, the user uplink subframe corresponding to all or part of the relay uplink subframe is configured as an SRS subframe, and all or part of the relay uplink subframes are set to a guard interval. According to the present invention, when the relay station performs uplink data reception and uplink data transmission by using the relay uplink subframe, part or all of the uplink relay subframes are configured on the SRS subframe of the user, or corresponding to some or all of the uplink relay subframes. The user uplink subframe is configured as an SRS subframe, and the guard interval is set for the relay according to the situation. The GP is reserved in the front end of the subframe in the related art, and the uplink transmission of the relay station cannot be combined with the normal uplink transmission of the user, and the offset of the subframe may cause overlapping of the adjacent uplink subframes of the user, which brings data. The problem of loss, in turn, can avoid omission when receiving the data signal, and realize the signal combining with the user when the relay station transmits in the uplink. Other features and advantages of the invention will be set forth in the description which follows, and The objectives and other advantages of the invention will be realized and attained by the <RTI BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, In the drawings: FIG. 1 is a schematic diagram of a trunk network architecture; FIG. 2 is a schematic diagram of a relay uplink subframe configuration; FIG. 3 is a schematic diagram of a first uplink access subframe structure according to an embodiment of the present invention; FIG. 5 is a schematic structural diagram of a first uplink Backhaul subframe according to an embodiment of the present invention; FIG. 6 is a schematic diagram of a first uplink Backhaul subframe according to an embodiment of the present invention; FIG. 7 is a schematic diagram of a user uplink SRS subframe configuration according to the first embodiment of the present invention; FIG. 8 is a schematic diagram of a relay uplink SRS subframe configuration and a subframe thereof according to the first embodiment of the present invention; FIG. 9 is a schematic diagram of a configuration of a user uplink SRS subframe according to Embodiment 2 of the present invention; FIG. 10 is a schematic diagram of a relay uplink SRS subframe configuration and a subframe structure thereof according to Embodiment 2 of the present invention; FIG. 11 is a schematic diagram of a configuration of a relay uplink subframe according to Embodiment 3 of the present invention; FIG. 12 is a schematic diagram of a user uplink SRS subframe configuration, a relay uplink subframe configuration, and a subframe structure thereof according to Embodiment 3 of the present invention; FIG. 13 is a schematic diagram of a configuration of a relay uplink subframe according to Embodiment 4 of the present invention; FIG. 14 is a schematic diagram of a user uplink SRS subframe configuration, a relay uplink subframe configuration, and a subframe structure thereof according to Embodiment 4 of the present invention; FIG. 15 is a structural block diagram of a relay station-based uplink data transmission apparatus according to an embodiment of the present invention. The embodiments of the present invention provide an uplink data transmission method and device based on a relay station, and the design idea is as follows: When the relay station performs uplink data reception and uplink data transmission through an uplink relay subframe, the existing SRS subframe structure is utilized. To implement radio frequency conversion between the uplink transmitting and receiving of the relay station, because the user does not transmit the data signal on the last single carrier frequency division multiple access SC-FDMA symbol of the SRS subframe, so if the relay station is in the uplink access subframe The use of this symbol as a guard interval will not miss the reception of the data signal, and if the relay station uses this symbol as a guard interval in the uplink Backhaul subframe, the relay station can perform signal combining with the user when transmitting in the uplink, and is compatible with the old version of the user. , maintain a normal timing relationship, so as not to cause data loss due to overlapping of adjacent subframes. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. The invention will be described in detail below with reference to the drawings in conjunction with the embodiments. According to an embodiment of the present invention, an uplink data transmission method based on a relay station is first provided. The relay station-based uplink data transmission method according to the embodiment of the present invention includes the following processing: the relay station performs uplink data reception and uplink data transmission by using an uplink relay subframe; wherein all or part of the uplink relay subframe is configured according to the user's SRS subframe. And setting a guard interval, or configuring a user uplink subframe corresponding to all or part of the relay uplink subframe as an SRS subframe, and setting a guard interval for all or part of the uplink relay subframe. The uplink relay subframe in which the relay station performs uplink data transmission includes: an uplink Backhaul subframe; the uplink relay subframe in which the relay station performs uplink data reception includes: an uplink access subframe. Preferably, before the relay station performs uplink data reception and uplink data transmission by relaying the uplink subframe, it needs to be configured in advance.
4十对上行 Access 子帧, 配置处理方式如下: 将全部或部分上行 Access 子帧配置在用户的 SRS子帧上, 或者, 将全部或部分上行 Access子帧对应 的用户上行子帧配置为 SRS子帧。 The configuration of the uplink access subframes is as follows: All or part of the uplink access subframes are configured on the SRS subframe of the user, or all uplink subframes corresponding to all or part of the uplink access subframes are configured as SRS sub-frames. frame.
4十对上行 Access子帧而言, 当上行 Access子帧与上行 Backhaul子帧 目 邻时, 需要设置保护间隔实现中继站在上行发射与接收之间的射频转换, 优 选地, 设置保护间隔包括以下方式: For the uplink access subframe, if the uplink access subframe is adjacent to the uplink Backhaul subframe, the guard interval needs to be set to implement radio frequency conversion between the uplink transmitting and receiving of the relay station. Preferably, the guard interval is set as follows. :
( 1 )对于上行 Access子帧中配置后的各个上行 Access子帧, 如果该上 行 Access子帧的上一个相邻子帧为上行 Backhaul子帧,则 ^!夺该上行 Backhaul 子帧的最后一个 SC-FDMA符号设置为保护间隔。 (1) For each uplink access subframe configured in the uplink access subframe, if the previous neighboring subframe of the uplink access subframe is an uplink Backhaul subframe, ^! The last SC-FDMA symbol of the upstream Backhaul subframe is set to the guard interval.
( 2 )对于上行 Access子帧中配置后的各个上行 Access子帧, 如果该上 行 Access子帧的下一个 目 4p子帧为上行 Backhaul子帧, 则 ^"该上行 Access 子帧的最后一个 SC-FDMA符号设置为保护间隔, 或者, 将该上行 Backhaul 子帧的第一个 SC-FDMA符号设置为保护间隔。 具体可以参见图 3和图 4, 由图可知, 为了不漏掉数据信号的接收, 不 能将上行 Access子帧的第一个 SC-FDMA符号设置为保护间隔,可以将上行 Access子帧的上一个上行 Backhaul子帧的最后一个 SC-FDMA符号设置为保 护间隔。 并且, 可以将上行 Access子帧的最后一个 SC-FDMA符号设置为保 护间隔, 或者, 将该上行 Backhaul子帧的第一个 SC-FDMA符号设置为保护 间隔。 将全部或部分上行 Backhaul子帧配置在用户的 SRS子帧上, 或者, 将 全部或部分上行 Backhaul子帧对应的用户上行子帧配置为 SRS子帧。 针对上行 Backhaul子帧,配置处理方式如下:将全部或部分上行 Backhaul 子帧配置在用户的 SRS子帧上, 或者, 将全部或部分上行 Backhaul子帧对 应的用户上行子帧配置为 SRS子帧。 (2) For each uplink access subframe configured in the uplink access subframe, if the next destination 4p subframe of the uplink access subframe is an uplink Backhaul subframe, then "the last SC- of the uplink Access subframe" The FDMA symbol is set to the guard interval, or the first SC-FDMA symbol of the uplink Backhaul subframe is set as the guard interval. For details, refer to FIG. 3 and FIG. 4, as shown in the figure, in order not to miss the reception of the data signal, The first SC-FDMA symbol of the uplink Access subframe cannot be set to the guard interval, and the last SC-FDMA symbol of the previous uplink Backhaul subframe of the uplink Access subframe can be set as the guard interval. The last SC-FDMA symbol of the subframe is set to the guard interval, or the first SC-FDMA symbol of the uplink Backhaul subframe is set as the guard interval. All or part of the uplink Backhaul subframe is configured in the user's SRS subframe. Or, the user uplink subframe corresponding to all or part of the uplink Backhaul subframe is configured as an SRS subframe. For the uplink Backhaul subframe, - processing as follows: all or part of the uplink sub-frame disposed on Backhaul SRS subframe of users, or all or part of the uplink subframe Backhaul uplink subframe corresponding to the user configured SRS subframe.
4十对上行 Backhaul子帧而言, 当上行 Backhaul子帧与上行 Access子帧 相邻时, 需要设置保护间隔实现中继站在上行发射与接收之间的射频转换, 优选地, 设置保护间隔包括以下方式: 40 pairs of uplink Backhaul subframes, when the uplink Backhaul subframe and the uplink Access subframe When adjacent, a guard interval needs to be set to implement radio frequency conversion between the uplink transmission and reception of the relay station. Preferably, the protection interval is set as follows:
( 1 )对于上行 Backhaul子帧中配置后的各个上行 Backhaul子帧, 如果 该上行 Backhaul 子帧的下一个相邻子帧为上行 Access 子帧, 则将该上行 Backhaul子帧的最后一个 SC-FDMA符号设置为保护间隔。 (1) For each uplink Backhaul subframe configured in the uplink Backhaul subframe, if the next adjacent subframe of the uplink Backhaul subframe is an uplink Access subframe, the last SC-FDMA of the uplink Backhaul subframe is The symbol is set to the guard interval.
( 2 )对于上行 Backhaul子帧中配置后的各个上行 Backhaul子帧, 如果 该上行 Backhaul 子帧的上一个相邻子帧为上行 Access 子帧, 则将该上行 Access 子帧的最后一个 SC-FDMA 符号设置为保护间隔, 或者, 将该上行 Backhaul子帧的第一个 SC-FDMA符号设置为保护间隔。 具体可以参见图 5和图 6 ,如图所示,当上行 Backhaul子帧与上行 Access 子帧相邻时,可以设置该上行 Backhaul子帧的第一个 SC-FDMA符号为保护 间隔,也可以设置该上行 Backhaul子帧的最后一个 SC-FDMA符号为保护间 隔, 或者同时设置第一个 SC-FDMA符号和最后一个 SC-FDMA符号为保护 间隔。 具体设置方式可以根据具体情况而定。 图 7为根据本发明实施例一的用户上行 SRS子帧配置示意图。如图 7所 示, FDD模式下, SRS子帧配置为方式 8, 即用户上行子帧 #2、 #3、 #7和 #8 是 SRS子帧。 其中, 在现有长期演进(Long Term Evolution, 简称为 LTE ) 系统中, SRS子帧的配置分别对应频分双工( Frequency Division Duplex,简称为 FDD ) 和时分双工 (Time Division Duplex, 简称为 TDD )各有 16种方式, 每种方 式定义一种 SRS子帧配置的周期和位置。例如,在上面提到的方式 8中, SRS 子帧配置的周期是 5ms, 位置是每 5ms的第三和第四个子帧上。 图 8为根据本发明实施例一的中继上行 SRS子帧配置及其子帧结构示意 图。 ^口图 8所示, 4夺子中贞#0、 #1、 #2、 #4、 #5、 #6、 #8和 #9 己置为上行 Access 子帧, 将子帧 #3和 #7配置为上行 Backhaul子帧, 并且设置子帧 #2和 #3的最 后一个 SC-FDMA符号以及子帧 #7的第一个和最后一个 SC-FDMA符号配置 为保护间隔。 通过该实施例可知, 中继站在保护间隔上不会漏掉数据信号, 并且在子 帧 #3上可以实现中继站与用户的上行发射信号空口合并。 图 9为根据本发明实施例二的用户上行 SRS子帧配置示意图。如图 9所 示,上下行配置为方式 0的 TDD模式下, SRS子帧配置为方式 2, 即子帧 #1、 #3、 #6和 #8为 SRS子帧, 其中子帧 # 1和 #6是特殊子帧。 图 10为才艮据本发明实施例二的中继上行 SRS子帧配置及其子帧结构示 意图。 如图 10所示, 将子帧 #2、 #3和 #9配置为上行 Access子帧, 将子帧 #4、 #7 和 #8 配置为上行 Backhaul 子帧, 并且设置子帧 #3 和 #8 的最后一个 SC-FDMA符号配置为保护间隔。 通过该实施例可知, 中继站在保护间隔上不会漏掉数据信号, 并且在子 帧 #4和子帧 #8上可以实现中继站与用户的上行发射信号空口合并。 图 11为根据本发明实施例三的用户上行 SRS子帧配置示意图。 如图 11 所示, 在 FDD模式下进行中继上行子帧配置, 子帧 #0、 #1、 #2、 #8和 #9为 上行 Access子帧, 子帧 #3、 #4、 #5、 #6和 #7为上行 Backhaul子帧。 图 12为才艮据本发明实施例三的中继上行 SRS子帧配置及其子帧结构示 意图。如图 12所示,将子帧 #2和 #7所对应的用户上行子帧配置为 SRS子帧, 即 SRS子帧配置方式 5 , 并且将中继子帧 #2、 #7的最后一个 SC-FDMA符号 配置为保护间隔。 通过该实施例, 因为对应的用户子帧 #2被配置为了 SRS 子帧, 因此使 得中继站在保护间隔上不会漏掉数据信号, 又因为对应的用户子帧 #7也被配 置为了 SRS 子帧, 则保证了中继站在子帧 #7上可以实现与用户的上行发射 信号空口合并。 图 13为根据本发明实施例四的中继上行子帧配置示意图。如图 13所示, 上下行配置为方式 0的 TDD模式下, 中继上行子帧配置如图 13所示, 子帧 #3、 #4、 #7和 #8为上行 Access子帧, 子帧 #2和 #9为上行 Backhaul子帧。 图 14为根据本发明实施例四的用户上行 SRS子帧配置、 中继上行子帧 配置及其子帧结构示意图。 如图 14所示, 可以釆用 SRS子帧配置方式 11 , 将子帧 #2和 #8所对应的用户上行子帧配置为 SRS子帧, SRS子帧配置方式 11同时也会将特殊子帧 #1和 #6配置为 SRS子帧, 并且将中继子帧 #2、 #8的 最后一个 SC-FDMA符号配置为保护间隔。 通过该实施例, 因为对应的用户子帧 #2被配置为了 SRS 子帧, 因此中 继站在子帧 #2上可以实现与用户的上行发射信号空口合并, 又因为对应的用 户子帧 #8也被配置为了 SRS 子帧, 使得中继站在保护间隔上不会漏掉数据 信号。 根据本发明实施例, 还提供了一种基于中继站的上行数据传输装置。 图 15 为根据本发明实施例的基于中继站的上行数据传输装置的结构框 图。 如图 15所示, 该上行数据传输装置包括: 传输单元 1。 传输单元 1 , 用于通过中继上行子帧进行上行数据接收和上行数据发射; 其中, 全部或部分中继上行子帧才艮据用户的 SRS子帧配置并设置保护间隔, 或者, 全部或部分中继上行子帧对应的用户上行子帧配置为 SRS子帧, 并且 全部或部分中继上行子帧设置保护间隔。 优选地, 上述中继站进行上行数据发射的上行中继子帧包括: 上行 Backhaul子帧。 优选地,上述中继站进行上行数据接收的上行中继子帧包括:上行 Access 子帧。 优选地, 如图 15所示, 该装置还可以包括第一配置单元 2 , 用于将全部 或部分上行 Access子帧配置在用户的 SRS子帧上, 或者, ^!夺全部或部分上 行 Access子帧对应的用户上行子帧配置为 SRS子帧。 优选地, 如图 15所示, 上述装置还可以包括: 第一设置单元 3 , 与第一 配置单元 2相连接, 该第一设置单元 3包括第一设置模块 30, 用于将全部或 部分上行 Access子帧配置在用户的 SRS子帧上, 或者, 将全部或部分上行 Access子帧对应的用户上行子帧配置为 SRS子帧。 优选地, 如图 15所示, 第一设置单元 3还可以包括: 第二设置模块 32 , 用于在上行 Access子帧中配置后的一个上行 Access子帧的下一个相邻子帧 为上行 Backhaul子帧时, 将该上行 Access子帧的最后一个 SC-FDMA符号 设置为保护间隔, 或者, 将该上行 Backhaul子帧的第一个 SC-FDMA符号设 置为保护间隔。 优选地, 如图 15所示, 该装置可以包括第二配置单元 4 , 用于将全部或 部分上行 Backhaul子帧配置在用户的 SRS子帧上, 或者, 夺全部或部分上 行 Backhaul子帧对应的用户上行子帧配置为 SRS子帧。 优选地, 如图 15所示, 该装置可以包括第二设置单元 5 , 与第二配置单 元 4相连接, 其中, 该第二设置单元 5可以包括: 第三设置模块 50 , 用于在 上行 Backhaul子帧中配置后的一个上行 Backhaul子帧的下一个相邻子帧为 上行 Access子帧时, 将该上行 Backhaul子帧的最后一个 SC-FDMA符号设 置为保护间隔。 优选地, 如图 15所示, 该第二设置单元 4可以包括: 第四设置模块 52 , 用于在上行 Backhaul子帧中配置后的一个上行 Backhaul子帧的上一个相邻 子帧为上行 Access子帧时, 将该上行 Access子帧的最后一个 SC-FDMA符 号设置为保护间隔, 或者, 将该上行 Backhaul子帧的第一个 SC-FDMA符号 设置为保护间隔。 通过上述实施例, 提供了一种基于中继站的上行数据传输装置, 用于实 现上述数据传输方法, 当中继站在上行发射和接收之间转换时, 可以避免在 接收数据信号时发生遗漏, 实现中继站在上行发射时与用户进行信号合并。 综上所述, 通过本发明的上述实施例, 提供的基于中继站的上行数据传 输方案,通过利用现有的 SRS子帧结构来实现中继站在上行发射与接收之间 的射频转换, 避免在接收数据信号时发生遗漏, 并且可以实现中继站在上行 发射时与用户进行信号合并, 兼容旧版本的用户, 保持正常的定时关系, 不 会导致由相邻子帧重叠带来的数据损失。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。 (2) For each uplink Backhaul subframe configured in the uplink Backhaul subframe, if the previous neighboring subframe of the uplink Backhaul subframe is an uplink Access subframe, the last SC-FDMA of the uplink Access subframe is The symbol is set to the guard interval, or the first SC-FDMA symbol of the uplink Backhaul subframe is set as the guard interval. For details, refer to FIG. 5 and FIG. 6. As shown in the figure, when the uplink Backhaul subframe is adjacent to the uplink Access subframe, the first SC-FDMA symbol of the uplink Backhaul subframe may be set as a guard interval, or may be set. The last SC-FDMA symbol of the uplink Backhaul subframe is a guard interval, or both the first SC-FDMA symbol and the last SC-FDMA symbol are set as guard intervals. The specific setting method can be determined according to the specific situation. FIG. 7 is a schematic diagram of a configuration of a user uplink SRS subframe according to Embodiment 1 of the present invention. As shown in FIG. 7, in the FDD mode, the SRS subframe is configured as mode 8, that is, the user uplink subframes #2, #3, #7, and #8 are SRS subframes. In the existing Long Term Evolution (LTE) system, the SRS subframe configuration corresponds to Frequency Division Duplex (FDD) and Time Division Duplex (Time Division Duplex, for short). There are 16 ways for each of TDD), each of which defines the period and location of an SRS subframe configuration. For example, in the above-mentioned mode 8, the period of the SRS subframe configuration is 5 ms, and the position is on the third and fourth subframes every 5 ms. FIG. 8 is a schematic diagram of a relay uplink SRS subframe configuration and a subframe structure thereof according to the first embodiment of the present invention. ^ mouth shown in Figure 8, 4 子子中贞#0, #1, #2, #4, #5, #6, #8, and #9 have been set as uplink Access sub-frames, sub-frames #3 and # 7 is configured as an uplink Backhaul subframe, and sets the last SC-FDMA symbol of subframes #2 and #3 and the first and last SC-FDMA symbols of subframe #7 are configured as guard intervals. It can be seen from this embodiment that the relay station does not miss the data signal on the guard interval, and the uplink station and the user's uplink transmit signal air interface can be merged on the subframe #3. FIG. 9 is a schematic diagram of a configuration of a user uplink SRS subframe according to Embodiment 2 of the present invention. As shown in FIG. 9 , in the TDD mode in which the uplink and downlink are configured as mode 0, the SRS subframe is configured as mode 2, that is, subframes #1, #3, #6, and #8 are SRS subframes, where subframe #1 and #6 is a special subframe. FIG. 10 is a schematic diagram of a relay uplink SRS subframe configuration and a subframe structure thereof according to Embodiment 2 of the present invention. As shown in FIG. 10, subframes #2, #3, and #9 are configured as uplink Access subframes, subframes #4, #7, and #8 are configured as uplink Backhaul subframes, and subframes #3 and # are set. The last SC-FDMA symbol of 8 is configured as a guard interval. It can be seen from this embodiment that the relay station does not miss the data signal on the guard interval, and the uplink transmission signal air interface of the relay station and the user can be combined on the subframe #4 and the subframe #8. FIG. 11 is a schematic diagram of a configuration of a user uplink SRS subframe according to Embodiment 3 of the present invention. As shown in FIG. 11, the relay uplink subframe configuration is performed in the FDD mode, and subframes #0, #1, #2, #8, and #9 are uplink access subframes, and subframes #3, #4, and #5 are used. , #6 and #7 are uplink Backhaul subframes. FIG. 12 is a schematic diagram of a relay uplink SRS subframe configuration and a subframe structure thereof according to Embodiment 3 of the present invention. As shown in FIG. 12, the user uplink subframe corresponding to the subframes #2 and #7 is configured as an SRS subframe, that is, the SRS subframe configuration mode 5, and the last SC- of the subframes #2 and #7 will be relayed. The FDMA symbol is configured as a guard interval. With this embodiment, since the corresponding user subframe #2 is configured as an SRS subframe, the relay station does not miss the data signal on the guard interval, and the corresponding user subframe #7 is also configured as the SRS subframe. , to ensure that the relay station on the subframe #7 can achieve the merger with the user's uplink transmit signal. FIG. 13 is a schematic diagram of a configuration of a relay uplink subframe according to Embodiment 4 of the present invention. As shown in FIG. 13, in the TDD mode in which the uplink and downlink are configured in mode 0, the relay uplink subframe configuration is as shown in FIG. 13, and the subframes #3, #4, #7, and #8 are uplink access subframes, and subframes. #2 and #9 are uplink Backhaul subframes. FIG. 14 is a schematic diagram of a user uplink SRS subframe configuration, a relay uplink subframe configuration, and a subframe structure thereof according to Embodiment 4 of the present invention. As shown in FIG. 14, the SRS subframe configuration mode 11 can be used, and the user uplink subframe corresponding to the subframes #2 and #8 is configured as an SRS subframe, and the SRS subframe configuration mode 11 also has a special subframe. #1 and #6 are configured as SRS subframes, and the last SC-FDMA symbols of the relay subframes #2, #8 are configured as guard intervals. With this embodiment, since the corresponding user subframe #2 is configured as an SRS subframe, The sub-frame #2 can be combined with the user's uplink transmit signal air interface, and the corresponding user sub-frame #8 is also configured as an SRS sub-frame, so that the relay station does not miss the data signal on the guard interval. According to an embodiment of the present invention, an uplink data transmission apparatus based on a relay station is also provided. FIG. 15 is a structural block diagram of a relay station-based uplink data transmission apparatus according to an embodiment of the present invention. As shown in FIG. 15, the uplink data transmission apparatus includes: a transmission unit 1. The transmission unit 1 is configured to perform uplink data reception and uplink data transmission by using a relay uplink subframe, where all or part of the relay uplink subframe is configured according to the SRS subframe of the user, and the guard interval is set, or all or part of The user uplink subframe corresponding to the relay uplink subframe is configured as an SRS subframe, and the guard interval is set in all or part of the relay uplink subframe. Preferably, the uplink relay subframe in which the relay station performs uplink data transmission includes: an uplink Backhaul subframe. Preferably, the uplink relay subframe in which the relay station performs uplink data reception includes: an uplink Access subframe. Preferably, as shown in FIG. 15, the apparatus may further include a first configuration unit 2, configured to configure all or part of the uplink access subframes on the SRS subframe of the user, or, ^! The user uplink subframe corresponding to all or part of the uplink access subframe is configured as an SRS subframe. Preferably, as shown in FIG. 15, the apparatus may further include: a first setting unit 3 connected to the first configuration unit 2, the first setting unit 3 includes a first setting module 30, configured to uplink all or part The access subframe is configured on the SRS subframe of the user, or the user uplink subframe corresponding to all or part of the uplink access subframe is configured as an SRS subframe. Preferably, as shown in FIG. 15, the first setting unit 3 may further include: a second setting module 32, where the next adjacent subframe of the one uplink access subframe configured in the uplink access subframe is an uplink Backhaul In the case of a subframe, the last SC-FDMA symbol of the uplink Access subframe is set as a guard interval, or the first SC-FDMA symbol of the uplink Backhaul subframe is set as a guard interval. Preferably, as shown in FIG. 15, the apparatus may include a second configuration unit 4 configured to configure all or part of the uplink Backhaul subframes on the SRS subframe of the user, or to capture all or part of the uplink Backhaul subframes. The user uplink subframe is configured as an SRS subframe. Preferably, as shown in FIG. 15, the device may include a second setting unit 5 connected to the second configuration unit 4, wherein the second setting unit 5 may include: a third setting module 50, configured to be in the upstream Backhaul When the next adjacent subframe of one uplink Backhaul subframe configured in the subframe is an uplink Access subframe, the last SC-FDMA symbol of the uplink Backhaul subframe is set as a guard interval. Preferably, as shown in FIG. 15, the second setting unit 4 may include: a fourth setting module 52, configured to use, in an uplink Backhaul subframe, an uplink subframe of an uplink Backhaul subframe as an uplink access In the case of a subframe, the last SC-FDMA symbol of the uplink Access subframe is set as a guard interval, or the first SC-FDMA symbol of the uplink Backhaul subframe is set as a guard interval. Through the foregoing embodiments, an uplink data transmission apparatus based on a relay station is provided, which is used to implement the foregoing data transmission method. When a relay station switches between uplink transmission and reception, it can avoid omission when receiving a data signal, and implement a relay station. Signals are combined with the user during uplink transmission. In summary, the uplink data transmission scheme based on the relay station provided by the foregoing embodiment of the present invention implements radio frequency conversion between the uplink transmission and reception of the relay station by using the existing SRS subframe structure, and avoids receiving data. The signal is missed, and the relay station can perform signal combining with the user when transmitting in the uplink. It is compatible with the old version of the user and maintains a normal timing relationship without causing data loss caused by overlapping of adjacent subframes. Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Claims

权 利 要 求 书 Claim
1. 一种基于中继站的上行数据传输方法, 其特征在于, 包括: A method for transmitting uplink data based on a relay station, comprising:
中继站通过上行中继子帧进行上行数据接收和上行数据发射; 其中, 全部或部分上行中继子帧根据用户的测量参考信号 SRS子帧 配置并设置保护间隔, 或者, 全部或部分中继上行子帧对应的用户上行 子帧配置为 SRS子帧,并且所述全部或部分上行中继子帧设置保护间隔。  The relay station performs the uplink data reception and the uplink data transmission by using the uplink relay subframe; wherein all or part of the uplink relay subframes are configured according to the measurement reference signal SRS subframe of the user, and the guard interval is configured, or all or part of the relay uplink subframes are correspondingly configured. The user uplink subframe is configured as an SRS subframe, and all or part of the uplink relay subframe sets a guard interval.
2. 根据权利要求 1所述的方法, 其特征在于, 2. The method of claim 1 wherein
中继站进行上行数据发射的上行中继子帧包括: 上行回程 Backhaul 子帧;  The uplink relay subframe in which the relay station performs uplink data transmission includes: an uplink backhaul Backhaul subframe;
中继站进行上行数据接收的上行中继子帧包括: 上行接入 Access子 帧。  The uplink relay subframe in which the relay station performs uplink data reception includes: an uplink access Access subframe.
3. 根据权利要求 2所述的方法, 其特征在于, 在中继站通过中继上行子帧 进行上行数据接收和上行数据发射之前, 所述方法还包括: The method according to claim 2, wherein before the relay station performs uplink data reception and uplink data transmission by using the relay uplink subframe, the method further includes:
^!夺全部或部分上行 Access子帧配置在用户的 SRS子帧上, 或者, ^!夺全部或部分上行 Access子帧对应的用户上行子帧配置为 SRS子帧。  ^! Capture all or part of the uplink Access subframe configured on the user's SRS subframe, or, ^! The user uplink subframe corresponding to all or part of the uplink access subframe is configured as an SRS subframe.
4. 根据权利要求 3所述的方法, 其特征在于, 所述设置保护间隔包括: 对于所述上行 Access子帧中配置后的一个上行 Access子帧, 如果 该上行 Access子帧的上一个相邻子帧为上行 Backhaul子帧, 则将该上 行 Backhaul子帧的最后一个单载波频分多址 SC-FDMA符号设置为所述 保护间隔。 The method according to claim 3, wherein the setting the guard interval comprises: for an uplink access subframe configured in the uplink access subframe, if a previous neighbor of the uplink access subframe is adjacent If the subframe is an uplink Backhaul subframe, the last single carrier frequency division multiple access SC-FDMA symbol of the uplink Backhaul subframe is set as the guard interval.
5. 根据权利要求 3所述的方法, 其特征在于, 所述设置保护间隔包括: 对于所述上行 Access子帧中配置后的一个上行 Access子帧, 如果 该上行 Access子帧的下一个相邻子帧为上行 Backhaul子帧, 则将该上 行 Access子帧的最后一个 SC-FDMA符号设置为所述保护间隔, 或者, 将该上行 Backhaul子帧的第一个 SC-FDMA符号设置为所述保护间隔。 The method according to claim 3, wherein the setting the guard interval comprises: for an uplink access subframe configured in the uplink access subframe, if the next neighbor of the uplink access subframe is adjacent If the subframe is an uplink Backhaul subframe, set the last SC-FDMA symbol of the uplink Access subframe to the guard interval, or set the first SC-FDMA symbol of the uplink Backhaul subframe to the protection. interval.
6. 根据权利要求 2所述的方法, 其特征在于, 在中继站通过中继上行子帧 进行上行数据接收和上行数据发射之前, 所述方法还包括: ^!夺全部或部分上行 Backhaul子帧配置在用户的 SRS子帧上, 或者, ;]夺所述全部或部分上行 Backhaul 子帧对应的用户上行子帧配置为 SRS 子帧。 The method according to claim 2, wherein before the relay station performs uplink data reception and uplink data transmission by using the relay uplink subframe, the method further includes: ^! All or part of the uplink Backhaul subframe is configured on the SRS subframe of the user, or the user uplink subframe corresponding to all or part of the uplink Backhaul subframe is configured as an SRS subframe.
7. 根据权利要求 6所述的方法, 其特征在于, 所述设置保护间隔包括: 对于所述上行 Backhaul子帧中配置后的一个上行 Backhaul子帧,如 果该上行 Backhaul子帧的下一个相邻子帧为上行 Access子帧, 则将该 上行 Backhaul子帧的最后一个 SC-FDMA符号设置为所述保护间隔。 The method according to claim 6, wherein the setting the guard interval comprises: for an uplink Backhaul subframe configured in the uplink Backhaul subframe, if the next neighbor of the uplink Backhaul subframe is adjacent If the subframe is an uplink Access subframe, the last SC-FDMA symbol of the uplink Backhaul subframe is set as the guard interval.
8. 根据权利要求 6所述的方法, 其特征在于, 所述设置保护间隔包括: 对于所述上行 Backhaul子帧中配置后的一个上行 Backhaul子帧,如 果该上行 Backhaul子帧的上一个相邻子帧为上行 Access子帧, 则将该 上行 Access子帧的最后一个 SC-FDMA符号设置为所述保护间隔,或者, 将该上行 Backhaul子帧的第一个 SC-FDMA符号设置为所述保护间隔。 The method according to claim 6, wherein the setting the guard interval comprises: for an uplink Backhaul subframe configured in the uplink Backhaul subframe, if a previous neighbor of the uplink Backhaul subframe is adjacent If the subframe is an uplink Access subframe, set the last SC-FDMA symbol of the uplink Access subframe to the guard interval, or set the first SC-FDMA symbol of the uplink Backhaul subframe to the protection. interval.
9. 一种基于中继站的上行数据传输装置, 其特征在于, 包括: 9. An uplink data transmission apparatus based on a relay station, comprising:
传输单元, 用于通过中继上行子帧进行上行数据接收和上行数据发 射;  a transmitting unit, configured to perform uplink data reception and uplink data transmission by using a relay uplink subframe;
其中, 全部或部分中继上行子帧根据用户的测量参考信号 SRS子帧 配置并设置保护间隔, 或者, 全部或部分中继上行子帧对应的用户上行 子帧配置为 SRS子帧,并且所述全部或部分中继上行子帧设置保护间隔。  All or part of the relay uplink subframes are configured according to the measurement reference signal SRS subframe of the user, and the guard interval is configured, or the user uplink subframe corresponding to all or part of the relay uplink subframe is configured as an SRS subframe, and the All or part of the relay uplink subframe sets the guard interval.
10. 根据权利要求 9所述的装置, 其特征在于, 10. Apparatus according to claim 9 wherein:
所述中继站进行上行数据发射的上行中继子帧包括: 上行 Backhaul 子帧;  The uplink relay subframe in which the relay station performs uplink data transmission includes: an uplink Backhaul subframe;
所述中继站进行上行数据接收的上行中继子帧包括: 上行 Access子 帧。  The uplink relay subframe in which the relay station performs uplink data reception includes: an uplink access subframe.
11. 根据权利要求 10所述的装置, 其特征在于, 还包括: The device according to claim 10, further comprising:
第一配置单元, 用于^ 1全部或部分上行 Access 子帧配置在用户的 SRS子帧上, 或者, ^!夺全部或部分上行 Access子帧对应的用户上行子帧 配置为 SRS子帧。 A first configuration unit for ^ 1 Access all or part of the uplink sub-frame disposed on the SRS subframe user, or, ^! The user uplink subframe corresponding to all or part of the uplink access subframe is configured as an SRS subframe.
12. 根据权利要求 11所述的装置, 其特征在于, 还包括: 第一设置单元, 所 述第一设置单元包括: 第一设置模块, 其中, 所述第一设置模块, 用于在所述上行 Access子帧中配置后的一个上 行 Access子帧的上一个相邻子帧为上行 Backhaul子帧时, 则将该上行 Backhaul子帧的最后一个单载波频分多址 SC-FDMA符号设置为所述保 护间隔。 The device according to claim 11, further comprising: a first setting unit, wherein the first setting unit comprises: a first setting module, wherein The first setting module is configured to: when the previous neighboring subframe of the uplink access subframe configured in the uplink access subframe is an uplink Backhaul subframe, the last one of the uplink Backhaul subframes The carrier frequency division multiple access SC-FDMA symbol is set to the guard interval.
13. 根据权利要求 11所述的装置, 其特征在于, 还包括: 第一设置单元, 所 述第一设置单元包括: 第二设置模块, 其中, The device according to claim 11, further comprising: a first setting unit, wherein the first setting unit comprises: a second setting module, wherein
所述第二设置模块, 用于在所述上行 Access子帧中配置后的一个上 行 Access 子帧的下一个相邻子帧为上行 Backhaul 子帧时, 夺该上行 Access子帧的最后一个 SC-FDMA符号设置为所述保护间隔, 或者, 将 该上行 Backhaul子帧的第一个 SC-FDMA符号设置为所述保护间隔。  The second setting module is configured to: when the next adjacent subframe of the uplink access subframe configured in the uplink access subframe is an uplink Backhaul subframe, capture the last SC of the uplink access subframe. The FDMA symbol is set to the guard interval, or the first SC-FDMA symbol of the uplink Backhaul subframe is set as the guard interval.
14. 根据权利要求 10所述的装置, 其特征在于, 还包括: The device according to claim 10, further comprising:
第二配置单元, 用于将全部或部分上行 Backhaul子帧配置在用户的 SRS子帧上, 或者, 将所述全部或部分上行 Backhaul子帧对应的用户上 行子帧配置为 SRS子帧。  And a second configuration unit, configured to configure all or part of the uplink Backhaul subframes on the SRS subframe of the user, or configure the user uplink subframes corresponding to all or part of the uplink Backhaul subframes as SRS subframes.
15. 根据权利要求 14所述的装置, 其特征在于, 还包括: 第二设置单元, 其 中, 所述第二设置单元包括: The device according to claim 14, further comprising: a second setting unit, wherein the second setting unit comprises:
第三设置模块, 用于在所述上行 Backhaul子帧中配置后的一个上行 Backhaul 子帧的下一个相邻子帧为上行 Access 子帧时, ^!夺该上行 Backhaul子帧的最后一个 SC-FDMA符号设置为所述保护间隔。  a third setting module, configured to: when an next adjacent subframe of an uplink Backhaul subframe configured in the uplink Backhaul subframe is an uplink Access subframe, ^! The last SC-FDMA symbol of the uplink Backhaul subframe is set to the guard interval.
16. 根据权利要求 14所述的装置, 其特征在于, 还包括: 第二设置单元, 其 中, 所述第二设置单元包括: The device according to claim 14, further comprising: a second setting unit, wherein the second setting unit comprises:
第四设置模块, 用于在所述上行 Backhaul子帧中配置后的一个上行 Backhaul子帧的上一个 4目4|5子帧为上行 Access子帧时, ^"该上行 Access 子帧的最后一个 SC-FDMA符号设置为所述保护间隔, 或者, 将该上行 Backhaul子帧的第一个 SC-FDMA符号设置为所述保护间隔。  a fourth setting module, configured to: when the last 4 mesh 4|5 subframe of an uplink Backhaul subframe configured in the uplink Backhaul subframe is an uplink Access subframe, ^" the last one of the uplink Access subframe The SC-FDMA symbol is set to the guard interval, or the first SC-FDMA symbol of the uplink Backhaul subframe is set as the guard interval.
PCT/CN2010/076321 2009-09-27 2010-08-24 Method and device for uplink data transmission based on relay station WO2011035673A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910178819.6A CN102035592B (en) 2009-09-27 2009-09-27 Method and device for transmitting uplink data by using relay station
CN200910178819.6 2009-09-27

Publications (1)

Publication Number Publication Date
WO2011035673A1 true WO2011035673A1 (en) 2011-03-31

Family

ID=43795380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076321 WO2011035673A1 (en) 2009-09-27 2010-08-24 Method and device for uplink data transmission based on relay station

Country Status (2)

Country Link
CN (1) CN102035592B (en)
WO (1) WO2011035673A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023249716A1 (en) * 2022-06-21 2023-12-28 Qualcomm Incorporated Measurement of sounding reference signal via uplink relay

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10149201B2 (en) 2015-01-30 2018-12-04 Telefonaktiebolaget Lm Ericsson (Publ) Method and network node for transmission coordination on wireless backhaul path

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330325A (en) * 2008-07-29 2008-12-24 中兴通讯股份有限公司 Transmission method for upstream channel measuring reference signal
CN101374015A (en) * 2007-08-20 2009-02-25 中兴通讯股份有限公司 Wireless transmission method supporting relay mode and physical layer frame structure
CN101401336A (en) * 2006-07-24 2009-04-01 富士通株式会社 Transmitter and method for creating subframe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101401336A (en) * 2006-07-24 2009-04-01 富士通株式会社 Transmitter and method for creating subframe
CN101374015A (en) * 2007-08-20 2009-02-25 中兴通讯股份有限公司 Wireless transmission method supporting relay mode and physical layer frame structure
CN101330325A (en) * 2008-07-29 2008-12-24 中兴通讯股份有限公司 Transmission method for upstream channel measuring reference signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023249716A1 (en) * 2022-06-21 2023-12-28 Qualcomm Incorporated Measurement of sounding reference signal via uplink relay

Also Published As

Publication number Publication date
CN102035592A (en) 2011-04-27
CN102035592B (en) 2014-09-10

Similar Documents

Publication Publication Date Title
US20220272697A1 (en) Method for slot format for backhaul and access link in wireless communication system and terminal using same method
EP2356757B1 (en) Network element and method of operating a network element
US20120014286A1 (en) Configuration method and configuration device for the backhaul link in a long term evolution system
US9425914B2 (en) Method and device for relay deployment in a TDD communication network
WO2011000216A1 (en) Air interface synchronization method, apparatus and system
US8873463B2 (en) Method and apparatus for transmitting/receiving data in a relay communication system
WO2011091748A1 (en) Method, enhanced node base and system for transmitting data
CN102111208B (en) System and method for receiving system information for first class relay station
CN103222204A (en) Apparatus and method to reduce interference between frequency-ivision duplex and time-division duplex signals in a communication system
KR101973465B1 (en) Backhaul link subframe structure in mobile communication system and method for transmitting information thereof
KR101467844B1 (en) Method for transmitting data in a relay system and system therefor
CN114503459A (en) Techniques for multiple transmit/receive point (multiple TRP) operation via a repeater
JP2010050971A (en) Method and apparatus for operating wireless communications system
WO2011035681A1 (en) Method and apparatus for configuring subframes for positioning service
KR20140060213A (en) Relay system in mobile vehicle
JP2002171215A (en) Radio communication system and radio repeater system
US20090075589A1 (en) Broadband range extension relay for wireless networks
WO2011035673A1 (en) Method and device for uplink data transmission based on relay station
CN102812736A (en) System and method for extending communication coverage in a wireless network
CN102045843A (en) Method and system for allocating and transmitting downlink subfames in second-class relay station
CN109076621A (en) Secondary link communication technology in radio communications system
CN102487294B (en) Relay communication method and relay station
KR101712914B1 (en) Method and apparatus of relaying operation using uplink resource
WO2012155813A1 (en) Method and system for adjusting border of downlink sub-frame
CN102035593B (en) Class II relay station and sending method of descending control information thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10818367

Country of ref document: EP

Kind code of ref document: A1