WO2011035508A1 - 一种可实现平台配置保护的双向平台鉴别方法及其系统 - Google Patents
一种可实现平台配置保护的双向平台鉴别方法及其系统 Download PDFInfo
- Publication number
- WO2011035508A1 WO2011035508A1 PCT/CN2009/075389 CN2009075389W WO2011035508A1 WO 2011035508 A1 WO2011035508 A1 WO 2011035508A1 CN 2009075389 W CN2009075389 W CN 2009075389W WO 2011035508 A1 WO2011035508 A1 WO 2011035508A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- endpoint
- platform
- platform component
- information
- component
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/321—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving a third party or a trusted authority
Definitions
- the invention belongs to the field of network security technologies, and in particular relates to a bidirectional platform identification method and system thereof capable of implementing platform configuration protection.
- the platform identity authentication is mainly to verify the platform signature and verify the validity of the platform identity certificate corresponding to the platform signature key.
- the platform identity certificate may be an Attestation Identity Key (AIK) certificate
- the platform signature may be an AIK signature.
- Platform component verification is mainly to verify the correctness of the platform components, such as: whether the platform components have been tampered with, the Trusted Computing Group (TCG) is based on platform integrity, and the platform component evaluation is mainly the decision platform. Whether the component is compliant with the evaluation strategy.
- Platform authentication can be applied to a variety of different application scenarios. For example, based on the client's trustworthiness to control client access to the network; determine whether Digital Rights Management (DRM) client software is in a trusted state, has implemented certain strategies to prevent illegal use, Copy or redistribute intellectual property.
- DRM Digital Rights Management
- the current platform identification methods are all based on the Client/Server model. See Figure 1 for a schematic diagram of the structure of the platform authentication model based on Client/Server in the prior art.
- the client needs to report the detailed platform component information of the client to the server, that is, the server completely knows the platform configuration of the client, so that the server can implement the verification and evaluation of the platform component of the client.
- the server is the service provider of the client and the client trusts the server completely, the client does not need to implement protection for its own platform configuration. If the client and the server do not have such a complete trust relationship, the client needs to implement protection for its own platform configuration. This situation is particularly prominent in the two-way platform authentication process. Therefore, it is necessary to establish a two-way platform authentication method and system thereof that can implement platform configuration protection.
- the present invention provides a platform configuration that can effectively protect endpoint A and endpoint B, and implements platform configuration protection for finer-grained protection of platform configurations of endpoint A and endpoint B. Two-way platform identification method and system thereof.
- the present invention provides a two-way platform authentication method that can implement platform configuration protection, and the method includes the following steps:
- Endpoint B sends the platform component request metric parameter to endpoint A to endpoint A.
- Step 2 After receiving the information in step 1, endpoint A sends the information identified by the platform component request metric parameter of endpoint A to endpoint B.
- Step 3 After receiving the information in step 2, the endpoint B sends the platform identity certificate of the endpoint A to the trusted center TC, the platform component metric value of the information identified by the platform component of the endpoint A, and the platform for the endpoint A.
- Component request metrics identified by platform component request metrics for endpoint A Platform component evaluation strategy for information, platform configuration protection policy for information identified by platform component request metric parameters of endpoint A, platform identity certificate for endpoint B, platform component metric for information identified by platform component request metric parameters for endpoint B, Platform configuration protection policy for platform component request metric parameters of endpoint B, platform component evaluation policy for information identified by platform component request metric parameters of endpoint B, and platform configuration request metric parameters for endpoint B;
- the platform component requests the platform configuration protection policy of the information identified by the
- Step 4 After receiving the information in step 3, the trusted center TC sends the verification result of the platform identity certificate of the endpoint A to the endpoint B, the platform component evaluation result of the endpoint A, the platform component patching information of the endpoint A, and the platform of the endpoint B.
- the security key between the two is encrypted and protected.
- the platform component of the endpoint B needs to be encrypted and protected by the security key between the endpoint B and the trusted center TC.
- Step 5 After receiving the information in step 4, the endpoint B sends the information about the platform configuration of the platform component that does not disclose the platform component metric of the information of the platform component request metric parameter of the endpoint B to the endpoint A, and the endpoint B The platform component requests the platform signature of the platform component metric for the information identified by the metric parameter, the platform identity certificate for endpoint B, and the information in step 4;
- Step 6 After endpoint A receives the information in step 5, endpoint A sends an access decision generated by endpoint A to endpoint B.
- Step 2.1 Verify that the platform component request metric parameter of the endpoint A meets the platform component request metric parameter set by the endpoint A for the endpoint A.
- the platform configuration protection policy of the identified information if it does not match If yes, discard the information in step 1, otherwise perform steps 2.2 and 2.3;
- Step 2.2 According to the platform component request metric parameter of the endpoint A, obtain the platform component metric value of the information identified by the platform component request metric parameter of the endpoint A;
- Step 2.3 Send the platform component metric to the endpoint B requesting the information of the platform component request metric parameter of the endpoint A, the platform signature of the platform component metric of the information of the platform component request metric parameter of the endpoint A, and the platform of the endpoint A
- An identity certificate a platform configuration protection policy for the information identified by the platform component of the endpoint A requesting the metric parameter, a platform component request metric parameter for the endpoint B, and a platform component evaluation policy for the information identified by the platform component request metric parameter of the endpoint B;
- the platform component evaluation policy of the platform component requesting the information identified by the metric parameter needs to be encrypted and protected by the security key between the endpoint A and the trusted center TC.
- Step 3.1 verify the platform signature in the platform component metric value of the information of the platform component requesting the metric parameter of the endpoint A, if the verification is not Pass, then discard the information in step 2.3, otherwise go to step 3.2;
- Step 3.2 Verify that the platform component request metric parameter of the endpoint B meets the platform configuration protection policy set by the endpoint B to the information of the platform component request metric parameter of the endpoint B. If not, the information in step 2.3 is discarded. Otherwise, perform steps 3.3 and 3.4;
- Step 3.3 According to the platform component request metric parameter of the endpoint B, obtain the platform component metric value of the information identified by the platform component request metric parameter of the endpoint B;
- Step 3.4 Send the platform identity certificate of the endpoint A to the trusted center TC, the platform component metric value of the information identified by the platform component requesting the metric parameter of the endpoint A, the platform component request metric parameter to the endpoint A, and the platform component of the endpoint A
- the platform component evaluation policy requesting the information identified by the metric parameter, the platform configuration protection policy for the information identified by the platform component request metric parameter of the endpoint A, the platform identity certificate of the endpoint B, and the information identifying the metric parameter of the platform component of the endpoint B
- Platform component metrics a value, a platform component request metric parameter for endpoint B, a platform component evaluation policy for the information identified by the platform component request metric parameter of the endpoint B, and a platform configuration protection policy for the information identified by the platform component request metric parameter of the endpoint B
- Step 4.1 Verify the platform identity certificate of the endpoint A and the platform identity certificate of the endpoint B, and generate the verification of the platform identity certificate of the endpoint A. The result and the verification result of the platform identity certificate of endpoint B;
- Step 4.2 A platform configuration protection policy according to a platform component requesting metric parameters for endpoint A, a platform component evaluation policy for requesting metric parameters of platform component of endpoint A, and a platform configuration protection policy for requesting metric parameters of platform component of endpoint A, Checking and evaluating the platform component metrics for the information identified by the platform component of the endpoint A requesting the metric parameters, generating the platform component evaluation results of the endpoint A and the platform component patching information of the endpoint A; wherein, if the platform component of the endpoint A requests the metric The platform component evaluation policy of the information identified by the parameter does not meet the platform configuration protection policy for the information identified by the platform component request metric parameter of the endpoint A, and the corresponding error indication is given in the platform component evaluation result of the endpoint A;
- Step 4.3 A platform configuration protection policy according to a platform component requesting metric parameter for the endpoint B, a platform component evaluation policy for requesting the metric parameter identifier information of the platform component of the endpoint B, and a platform configuration requesting information for the platform component request metric parameter of the endpoint B, Checking and evaluating the platform component metrics for the information identified by the platform component of the endpoint B, and generating the platform component evaluation results of the endpoint B and the platform component patching information of the endpoint B; wherein, if the platform component of the endpoint B requests the metric The platform component evaluation policy of the information identified by the parameter does not meet the platform configuration protection policy of the information identified by the platform component request metric parameter of the endpoint B, and the corresponding error index is given in the platform component evaluation result of the endpoint B.
- Step 4.4 Send the verification result of the platform identity certificate of the endpoint A to the endpoint B, the platform component evaluation result of the endpoint A, the platform component patching information of the endpoint A, the verification result of the platform identity certificate of the endpoint B, and the platform component evaluation result of the endpoint B.
- the platform component patching information needs to be encrypted and protected by the security key between the endpoint B and the trusted center TC.
- Step 5.1 Verify the user signature of the trusted center TC. If the verification fails, discard the information in step 4.4; otherwise, execute Step 5.2 and step 5.3;
- Step 5.2 If the platform authentication of the endpoint A is completed, the access decision is generated according to the verification result of the platform identity certificate of the endpoint A and the platform component evaluation result of the endpoint A; otherwise, the round platform authentication protocol is terminated with the endpoint A. a round of platform authentication protocol;
- Step 5.3 Sending to the endpoint A, the platform component metric value of the platform component request metric parameter identifier information of the endpoint B does not leak the platform configuration information of the endpoint B, and the platform for requesting the metric parameter identifier of the platform component of the endpoint B
- Step 6.1 Verify the platform signature in the platform component metric value of the information of the platform component requesting the metric parameter of the endpoint B, if the verification is not Pass, then discard the information in step 5.3, otherwise perform step 6.2;
- Step 6.2 Verify the user signature of the trusted center TC in step 5.3. If the verification fails, discard the information in step 5.3; otherwise, go to step 6.3;
- Step 6.3 If the platform authentication of the endpoint B is completed, the access decision is generated according to the verification result of the platform identity certificate of the endpoint B and the platform component evaluation result of the endpoint B; otherwise, the round platform authentication protocol is terminated with the endpoint B. Another round of platform authentication protocol.
- the invention also provides a bidirectional platform authentication system capable of implementing platform configuration protection, wherein the bidirectional platform authentication system capable of implementing platform configuration protection comprises a trusted center TC, an endpoint A and an endpoint B in the network; the endpoint A and the endpoint B trusts the Trusted Center TC.
- the endpoint A includes: a generating unit for generating a platform component request metric parameter for the endpoint B and a platform component evaluation policy for generating information identifying the platform component request metric parameter of the endpoint B; for verifying the platform component for the endpoint A Whether the request metric parameter conforms to the platform configuration protection policy set by the endpoint A to the information identified by the platform component request metric parameter of the endpoint A, and the platform signature in the platform component metric that verifies the information identified by the platform component request metric parameter of the endpoint B And a verification unit for verifying the signature of the user of the trusted center TC; an acquisition unit for obtaining the platform component metric value of the information identified by the platform component request metric parameter of the endpoint A according to the platform component request metric parameter of the endpoint A, and for The generating unit of the access decision is generated according to the verification result of the platform identity certificate of the endpoint B and the platform component evaluation result of the endpoint B.
- the endpoint B includes: a platform identity certificate for transmitting the endpoint A to the trusted center TC, a platform component metric for requesting the information of the platform component of the endpoint A, and a platform component request metric for the endpoint A,
- the platform component of the endpoint A requests the platform component evaluation policy of the information identified by the metric parameter, the platform configuration protection policy for the information identified by the platform component request metric parameter of the endpoint A, the platform identity certificate of the endpoint B, and the platform component request metric for the endpoint B
- the platform component metrics for the information identified by the parameters, the platform component request metrics for endpoint B, the platform component evaluation policy for the information identified by the platform component request metrics for endpoint B, and the platform component request metric parameters identified for endpoint B a sending unit of the platform configuration protection policy; a generating unit for generating a platform component request metric parameter for the endpoint A and generating a platform component evaluation policy for identifying the information of the platform component request metric parameter of the endpoint A; for verifying the endpoint
- the trusted center TC includes: a platform identity certificate for processing endpoint A received from endpoint B, a platform component metric for information identified by platform component request metric parameters of endpoint A, and a platform component request metric for endpoint A
- Encryption-protected processing unit verification result of platform identity certificate for generating endpoint A, platform component evaluation result of endpoint A, platform component patching information of endpoint A, verification result of platform identity certificate of endpoint B, platform component of endpoint B
- the endpoint A and the endpoint B are connected to each other through a platform authentication protocol; the endpoint B and the trusted center TC are connected to each other through a platform authentication protocol.
- the invention Effectively protect the platform configuration of endpoint A and endpoint B.
- the invention encrypts and transmits the platform component metric information of the platform to the trusted center TC at the endpoint A and the endpoint B, and sends the platform component evaluation policy of the other party to the trusted center TC, and the trusted center TC implements the endpoint A and The checksum evaluation of the platform component metric information of endpoint B effectively protects the platform configuration of endpoint A and endpoint B.
- the platform configuration of Endpoint A and Endpoint B implements finer-grained protection.
- the endpoint component A and the endpoint B of the present invention set the platform component protection policy of the own platform, which effectively prevents the endpoint A and the endpoint B from interrogating the other party's platform by setting the measurement parameter of the platform component of the other party and evaluating the strategy of the platform component of the other party. Configuration, which enables more granular protection of the platform configuration of Endpoint A and Endpoint B.
- FIG. 1 is a schematic structural diagram of a platform authentication model based on Client/Server in the prior art
- FIG. 2 is a schematic structural diagram of a bidirectional platform authentication model capable of implementing platform configuration protection in the present invention
- FIG. 3 is a TPA architecture based on TePA in the present invention. Schematic diagram of the two-way platform identification model. detailed description
- FIG. 2 is a schematic structural diagram of a bidirectional platform authentication model capable of implementing platform configuration protection according to the present invention.
- the embodiment of the invention provides a two-way platform authentication method for implementing platform configuration protection, which may specifically include the following steps:
- Step 1 Endpoint B generates a 160-bit random number ⁇ , then sends a call to Endpoint A and a platform component request metric for Endpoint A, where 3 ⁇ 4nw identifies which platform components in Endpoint A and which integrity information needs to be measured.
- Step 2 After receiving the information in step 1, endpoint A first determines whether 3 ⁇ 4r//? meets the platform configuration protection of ProbPoiicies A for endpoint A to 3 ⁇ 4? /7. If not, discards the step 1 Information, otherwise use the hash function SHA1 to calculate SHA1 ( N B , K M ), where ⁇ is the secure channel for mutual authentication established between endpoint A and endpoint B, and then execute the ⁇ -Qwofe command to obtain the information identified by 3 ⁇ 4r from the local TPM.
- SHA1 N B , K M
- PCR Platform Configuration Register
- AIK signature value ⁇ 3 ⁇ 4 ⁇
- c3 ⁇ 4/j ⁇ is the endpoint ⁇ using SHA1 (N B , KAB ) and PCR ⁇ AIK signature
- 3 ⁇ 4 ⁇ -y4 is endpoint A AIK private key
- SML Stored Measurement Log
- Step 3 After receiving the information in step 2, endpoint B first calculates SHA1 (N B , KAB) and verifies ⁇ ⁇ — ⁇ . If the verification fails, the information in step 2 is discarded. Otherwise, it is determined whether the endpoint is met. B configures the protection policy ProtPo/e for the platform of the identified information. If it does not, terminate it. Otherwise, use the hash function SHA1 to calculate SHA1 (N A , K ⁇ ), and then execute the TPM_Tex command to obtain the local TPM.
- SHA1 N B , KAB
- Po!icies B are the corresponding values in step 2
- N rc is a random number generated by endpoint B
- the platform assembly metric information can be leaked information platform endpoint B configuration
- Parms A, Parms B , SML B , Prai ⁇ /c ⁇ o ra/ ⁇ /zci ⁇ need to use the security key between endpoint B and trusted center TC for power protection.
- Step 4 After receiving the information in step 3, the trusted center TC first verifies the validity of Cert (AIK ⁇ -A) and Cert ( ⁇ K ⁇ , and generates corresponding AIK certificate verification results R and R, and then respectively Use ( ⁇ 3 ⁇ 4 and ⁇ 3 ⁇ 4 to verify the correctness of ⁇ / ⁇ and & ⁇ ! ⁇ , ie analyze the processing &1 ⁇ ⁇ and SMi ⁇ and recalculate ⁇ ⁇ 3 ⁇ 4, if the recalculated PR ⁇ PC is the same as in step 3 If ⁇ and PC match each other, the received ⁇ and 53 ⁇ 4& ⁇ are valid and have not been tampered with, otherwise they are invalid, and then they are separated according to ParmsA, EvalPoliciesA, ProtPoliciesA and Parms B , 5 EvalPolicies B , ProtPohcies B ⁇ m test, i ⁇ SML SML B , and respectively generate the component-level evaluation result Re of the endpoint A, the component-
- Step 5 After receiving the information in step 4, endpoint B first verifies ij rc . If the verification fails, the information in step 4 is discarded. Otherwise, if the platform authentication of the endpoint is completed, then according to R and Re. Access decision (ie, allow, prohibit, or quarantine), otherwise the round-platform authentication protocol will end with
- Step 6 After receiving the information in step 5, endpoint A first calculates SHA1 N A , K M ), and then checks
- the information sent by endpoint B in step 5 above may include the access decision made by endpoint B in step 5.
- the endpoint A can send the access decision made by the endpoint A in step 6 to the endpoint B.
- the platform authentication protocol message between the endpoint A and the endpoint B is securely transmitted by using ⁇ .
- TNC Trusted Network Connect
- TPC Trusted Network Connect
- TePA Tri-element Peer Authentication
- FIG 3 The structure diagram of the bidirectional platform authentication model based on the TePA-based TNC architecture in the present invention, wherein the integrity collector of the upper end of the TNC client, the integrity collector of the upper end of the TNC access point, and the integrity check of the upper end of the evaluation policy server are anyone can be multiple.
- the three columns from left to right are the access requester, the access controller, and the policy manager.
- the top three rows are the integrity measurement layer, the trusted platform evaluation layer, and the network access control layer.
- the top-down components are the integrity collector, the TNC client, and the network access requester.
- the top-down components are the integrity collector, the TNC access point, and the network access controller.
- the top-down components are the integrity checker, the evaluation policy server, and the authentication policy server.
- IF-IM The Integrity Measurement Interface
- TNC Client-TNC Access Point Interface It is the interface between the TNC client and the TNC access point; the Evaluation Policy Service Interface (IF-EPS) is the interface between the TNC access point and the evaluation policy server; Trusted network transmission interface (Trusted) network Transport Interface, IF- TNT) is the interface between the network access requestor and the network access controller, in view of the other strategies January 1 J Gen Service Interface (Authentication policy Service Interface, IF- APS) is a network access control and identification of those strategies The interface between the providers, the Integrity Measurement Collector Interface (IF-IGC) is the interface between the integrity collector and the TNC client, and between the integrity collector and the TNC access point. The Integrity Measurement Verifier Interface (IF-IMV) is the interface between the integrity checker and the evaluation policy server.
- IF-EPS Evaluation Policy Service Interface
- Trusted network transmission interface Trusted network transmission interface (Trusted) network Transport Interface, IF- TNT) is the interface between the network access requestor and the network access controller, in view of the other strategies January 1
- the implementation steps of the above-described bidirectional platform authentication method that can implement platform configuration protection may be as follows:
- Step 1 The TNC access point generates a 160-bit random number N4C, and then sends it to the TNC client.
- Step 2 After receiving the information in step 1, the TNC client performs the following steps:
- Step 201 Determine whether the Parms conforms to the platform of the information requested by the access requester, configure the protection policy Pra o/ce ⁇ , if not, discard the information in step 1, otherwise perform steps 202 to 205;
- Step 202 Calculate SHA1 (N AC , KAB ) by using the hash function SHA1, where ⁇ is a secure channel that can be mutually authenticated between the access requester and the access controller by the network access control layer, and then SHA1 (N AC , KAB) And Par ⁇ is sent to the integrity collector at the top of the TNC client;
- Step 203 the integrity collector at the top of the TNC client obtains the ⁇ j? from the local TPM according to the SHA1 N AC , K M ) and the ⁇ 3 ⁇ 4 ⁇ 3 ⁇ 4 command.
- Cert(AIK ⁇ -AR) and ⁇ ⁇ are sent to the TNC client, where Cer ⁇ / ⁇ is the AIK certificate of the access requester;
- Step 204 The integrity collector at the upper end of the TNC client obtains the platform component metrics of the information identified by the Panw ⁇ , which are encapsulated by the IF-IM interface, and may include the PC3 ⁇ 4 ⁇ a 3 ⁇ 4r sent in step 203.
- ⁇ SML value of the identified information? Slfi ⁇ is a platform component metric of the information identified by the device, and information about the platform configuration of the access requester may be leaked, and then the platform component metric of the information identified by the IF-IM package is sent to the TNC client;
- Step 205 The TNC client sends the information sent in step 203 to the TNC access point, the information sent in step 204, ProtPoliciesAR, NAR, Parms AC and EvaWolicies AC , where N4? is a 160-bit random number generated by the TNC client.
- 3 ⁇ 4/m3 ⁇ 4 c is a platform component request metric parameter for the access controller, which identifies which platform components in the access controller and which integrity information needs to be measured
- the EvaWolicies AC is the access requester for the identification information of the access requester.
- the platform component evaluation policy, the information sent in step 204, ProtPoliciesAR and EvalPolicies AC is protected by a security key between the access requester and the policy manager.
- Step 3 After receiving the information in step 205, the TNC access point performs the following steps:
- Step 301 TNC access point calculating SHA1 (N AC, K M) , and verifies if the authentication fails, the information is discarded in step 205, and otherwise determine compliance 3 ⁇ 4m3 ⁇ 4 c internet access controller to the identified information 3 ⁇ 4r c Configure the protection policy Prai3 ⁇ 4/zce c , if not, discard the information of step 205, otherwise perform steps 302 ⁇ 305;
- Step 302 using the hash function SHA1 calculated SHA1 (NAR, KAB), and then transmits the SHAl (NAR, K M) 3 ⁇ 4r c TNC access point to integrity of the upper end of the collector;
- Step 303 The integrity collector at the upper end of the TNC access point obtains the PCR value PCR ⁇ AIK signature ⁇ value of the identification information from the local TPM according to the SHA1 (NAR, KM) and the TPM-G3 ⁇ 4ote command, where ⁇ is the local ⁇ utilization ⁇ 3 ⁇ 4 ⁇ c for SHAl NAR, K M ) and the AIK signature, AIK sk — AC i asks the controller's AIK private key, and then
- Step 304 the integrity of the upper end of the collector TNC access point based on acquisition 3 ⁇ 4r c Pa c platform assembly identified metric information, which is the use of the IF-IM interface package may include dead transmitted in step C 303 ⁇ 3 ⁇ 4 c SML value of the identification information SVf / ⁇ c, SMT ⁇ c is a measure of the platform assembly 3 ⁇ 4r c can be identified by the information in the information leakage internet access controller configuration, and then send the package to the TNC IF-IM of the access point a platform component metric that identifies information;
- Step 305 The TNC access point sends Nn, CertiAIKpk.AR) to the evaluation policy server, the information sent in step 204), ParmsAR, EvalPoliciesAR, ProtPoliciesAR, NAR, CertAIK p k-Ac), the information sent in step 304, Paley AC , EvalPolicies AC and ProtPolicies AC , where the information sent in step 204, the corresponding encryption value in ProtPoliciesAR and EvaWolicies AC step 205, N4 PM is a random number generated by the TNC access point, and EvalPoliciesAR is the access controller pair 3 ⁇ 4rm ⁇ Platform component evaluation strategy for identified information, Cert (AJK ⁇ - AC ) is an AIK certificate for accessing the controller, ParmsAR, Parms AC , information sent in step 304, ProtPolicies AC and EvalPoliciesAj ⁇ to utilize access controllers and policies
- the security key between the managers is cryptographically protected.
- Step 4 After receiving the information in step 305, the evaluation policy server performs the following steps: Step 401: Verify the validity of Cert (AK ⁇ and Ceri( ⁇ Kpn), and generate a corresponding AIK certificate verification result Re ⁇ ? And R c ;
- Step 402 Verify that the EvalPoliciesAR conforms to the ProtPoliciesAR.
- the information sent in step 204 in step 305 the 3 ⁇ 4 3 ⁇ 4 ⁇ Era/3 ⁇ 4/ce3 ⁇ 4?
- the integrity checker at the upper end of the assessment policy server, the integrity checker at the upper end of the assessment policy server is sent in accordance with step 204 in the received 3 ⁇ 4r3 and ra/o/ce ⁇ checksum evaluation steps 305.
- the patch information R 3 ⁇ 4 « is then sent to the evaluation policy server; for the part of the platform component that does not meet, the platform component evaluation result Re3 ⁇ 4? of the access requester is directly generated, and the corresponding non-compliance indication is given in the access
- the requester's platform component patch information Rern ⁇ is directly blanked. Similarly, iEvalPolicies AC will not cooperate with ProtPolicws AC .
- the information sent in step 304 in step 305, the part of the platform component that conforms to ProtPolwiesAc, and the ra/Po /zcze ⁇ c is sent to the integrity checker at the upper end of the evaluation policy server, and the integrity checker at the upper end of the evaluation policy server is based on the received Step A ( ⁇ EvalPoli.cies AC a step 305)
- the component directly generates the platform component evaluation result Re c of the access controller, and gives a corresponding non-compliance indication in Re c , and the platform component patching information of the access controller We c directly sets the step 403 and evaluates the upper end of the policy server.
- Step 404 The evaluation policy server sends R ⁇ , Re Ac, ⁇ ⁇ — ⁇ , Res ⁇ , RemsAR, Res Ac, Rems AC and ⁇ ⁇ - ⁇ to the TNC access point, where ⁇ / 3 ⁇ 4 ⁇ is the policy manager User signature of its user private sk PM N AC - PM , CertiAIKpk.AR), Re ⁇ , N , Cer(H p n) and Re., ⁇ ⁇ — p C is the user private key of the policy manager using it PM signatures for users of Nn A/ , PCRAR, ParmsAR, EvalPoliciesAR, ProtPoliciesAR, Res ⁇ , RemsAR, NAR, PCRAC, P rms AC , EvalPolicies AC , ProtPolicies AC , Re c ?ew c, Rew ⁇ 3 ⁇ 4?
- Step 5 After receiving the information in step 404, the TNC access point first verifies O PM- PCR. If the verification fails, the information in step 404 is discarded. Otherwise, if the platform authentication of the access requester has been completed, an access decision (ie, permission, prohibition or isolation) is made according to R E3 ⁇ 4I?, otherwise the round platform authentication protocol After the end, another round of platform authentication protocol will be executed with the TNC client, and then the information in N C-PM, EvalPoliciesAR, Cert (AIK PK . AC ), PCRAC, ProtPolicies AC , AIK-B 'Step 4 will be sent to Endpoint A. Co/3 ⁇ 4 c , where ⁇ 0?
- EvalPoliciesAR and ProtPolicies AC are the corresponding values in step 305, ⁇ 0 « ⁇ is the access decision made by the access point. It exists only when the TNC access point has completed the platform authentication for the access requester. In addition, if ⁇ is not empty, the TNC access point needs to The integrity collector at its top announces 3 ⁇ 4 c .
- Step 6 After receiving the information in step 5, the TNC client first calculates SHA1 ( NAR , K ), and verifies that if the verification fails, the information in step 5 is discarded, otherwise the ⁇ 3 ⁇ 4 ⁇ / ⁇ and ⁇ -PCR are verified. If the risk certificate does not pass, discard the information in step 5, otherwise, if the platform authentication to the access controller has been completed, an access decision (ie, allow, prohibit, or quarantine) is made according to 3 ⁇ 44 C and Re c , and The TNC access point sends N AC and ActioriAR, where ci o ⁇ is the access decision made by the TNC client.
- NAR NAR , K
- Step 7 After receiving the information in step 6, the TNC access point reports the ActioriAR to the integrity collector at its upper end.
- the platform authentication protocol message between the TNC client and the TNC access point is securely transmitted by using ⁇ .
- the TNC access point corrects the corresponding platform component evaluation strategy. If the Re c indicates that the access controller platform component evaluation platform strategy and access to the controller configuration protection policy conflicts, the TNC client platform component correction appropriate assessment strategies; will perform another round of platform authentication agreement with TNC clients An additional round of platform authentication protocol will be performed with the TNC access point.
- the platform authentication protocol if the platform authentication protocol is not the first round platform authentication protocol, the platform authentication protocol does not include the AIK certificate verification.
- one-way platform identification that can realize platform configuration protection can be realized by selecting a platform authentication protocol parameter in one direction.
- the invention provides a two-way platform authentication method capable of implementing platform configuration protection, and a bidirectional platform authentication system capable of implementing platform configuration protection, the system comprising a trusted center TC, an endpoint A and an endpoint B in the network; Both the endpoint A and the endpoint B trust the trusted center TC;
- the endpoint A includes: a generating unit for generating a platform component request metric parameter for the endpoint B and a platform component evaluation policy for generating information identifying the platform component request metric parameter of the endpoint B; for verifying the platform component for the endpoint A Whether the request metric parameter conforms to the platform configuration protection policy set by the endpoint A to the information identified by the platform component request metric parameter of the endpoint A, and the platform signature in the platform component metric that verifies the information identified by the platform component request metric parameter of the endpoint B And a verification unit for verifying the signature of the user of the trusted center TC; an acquisition unit for obtaining the platform component metric value of the information identified by the platform component request metric parameter of the endpoint A according to the platform component request metric parameter of the endpoint A, and for Generating an access decision generating unit according to the verification result of the platform identity certificate of the endpoint B and the platform component evaluation result of the endpoint B;
- the endpoint B includes: a platform identity certificate for sending the endpoint A to the trusted center TC, and the endpoint The platform component metric of the information identified by the platform component of A, the platform component request metric parameter for endpoint A, the platform component evaluation policy for the information identified by the platform component request metric parameter of endpoint A, and the platform component of endpoint A
- the platform configuration protection policy requesting the information identified by the metric parameter, the platform identity certificate of the endpoint B, the platform component metric value of the information identified by the platform component request metric parameter of the endpoint B, the metric parameter of the platform component requesting the endpoint B, and the endpoint B
- the endpoint A and the endpoint B are connected to each other through a platform authentication protocol; the endpoint B and the trusted center TC are connected to each other through a platform authentication protocol.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Storage Device Security (AREA)
- Information Transfer Between Computers (AREA)
Abstract
本发明涉及一种可实现平台配置保护的双向平台鉴别方法及其系统。该系统包括网络中的可信中心TC、端点A以及端点B;端点A和端点B都信任可信中心TC;端点A和端点B通过平台鉴别协议互相连通;端点B和可信中心TC通过平台鉴别协议互相连通。本发明有效地保护了端点A和端点B的平台配置,对端点A和端点B的平台配置实现了更细粒度的保护。
Description
一种可实现平台配置保护的双向平台鉴别方法及其系统 技术领域
本发明属于网络安全技术领域, 尤其涉及一种可实现平台配置保护的双 向平台鉴别方法及其系统。
背景技术
随着信息化的不断发展, 病毒、 蠕虫等恶意软件的问题异常突出。 目前 已经出现了超过三万五千种的恶意软件, 每年都有超过四千万的计算机被感 染。 为了解决这些问题, 除了用户鉴别之外还需要增加对用户所在平台的识 别和鉴别, 即: 平台鉴别, 包括平台身份鉴别和平台组件校验及评估, 目的 是确定用户所在平台是否处于一个可信赖状态。 平台身份鉴别主要是验证平 台签名, 以及验证平台签名密钥对应的平台身份证书的有效性, 其中平台身 份证书可为身份证明密钥 ( Attestation Identity Key , AIK )证书, 平台签名可 为 AIK签名, 它是通过执行 TPM— Quote命令从本地可信平台模块 (Trusted Platform Module, TPM ) 来获取的。 平台组件校验主要是验证平台组件的正 确性,如:平台组件是否被篡改,国际可信计算组织( Trusted Computing Group, TCG )是基于平台完整性来实现的, 而平台组件评估主要是判定平台组件是 否符合评估策略。 平台鉴别可以运用于各种不同的应用场景。 例如, 基于客 户端的可信赖性来控制客户端对网络的访问; 判定数字版权管理 (Digital Rights Management, DRM )客户端软件是否处于一个可信赖状态, 是否已执 行了一定的策略来防止非法使用、 复制或重新分配知识产权。 目前的平台鉴 别方法都^^于 Client/Server (客户端 /服务器)模型的, 参见图 1 , 图 1为现有 技术中基于 Client/Server的平台鉴別模型结构示意图。
在这些基于 Client/Server模型的平台鉴别方法中, Client需要向 Server报告 Client的详细平台组件信息, 即 Server完全知道 Client的平台配置, 以便 Server 可以实现对 Client的平台组件校验及评估。 但是, 这不利于 Client对自身平台
配置的保护。若 Server为 Client的服务提供方,且 Client完全信赖 Server,则 Client 不需要对自身平台配置实现保护。若 Client和 Server不存在这种完全信赖关系, 则 Client需要对自身平台配置实现保护, 这种情况在双向平台鉴别过程中尤其 突出。 因此, 需要建立一种可实现平台配置保护的双向平台鉴别方法及其系 统。
发明内容
为了解决背景技术中存在的上述技术问题, 本发明提供了一种可有效地 保护端点 A和端点 B的平台配置以及对端点 A和端点 B的平台配置实现更细粒 度保护的可实现平台配置保护的双向平台鉴别方法及其系统。
本发明提供了一种可实现平台配置保护的双向平台鉴别方法, 所述方法 包括以下步骤:
步骤 1、 端点 B向端点 A发送对端点 A的平台组件请求度量参数; 步骤 2、 端点 A收到步骤 1中的信息后, 向端点 B发送对端点 A的平台组件 请求度量参数所标识信息的平台组件度量值、 对端点 A的平台组件请求度量 参数所标识信息的平台组件度量值的平台签名、 端点 A的平台身份证书、 对 端点 A的平台组件请求度量参数所标识信息的平台配置保护策略、对端点 B的 平台组件请求度量参数和对端点 B的平台组件请求度量参数所标识信息的平 台组件评估策略; 其中, 对端点 A的平台组件请求度量参数所标识信息的平 台组件度量值中可泄露端点 A的平台配置的信息、对端点 A的平台组件请求度 量参数所标识信息的平台配置保护策略,对端点 B的平台组件请求度量参数所 标识信息的平台组件评估策略需要利用端点 A和可信中心 TC ( Trusted Center, TC )之间的安全密钥进行加密保护;
步骤 3、 端点 B收到步骤 2中的信息后, 向可信中心 TC发送端点 A的平台 身份证书、 对端点 A的平台组件请求度量参数所标识信息的平台组件度量值、 对端点 A的平台组件请求度量参数、对端点 A的平台组件请求度量参数所标识
信息的平台组件评估策略、 对端点 A的平台组件请求度量参数所标识信息的 平台配置保护策略、 端点 B的平台身份证书、 对端点 B的平台组件请求度量参 数所标识信息的平台组件度量值、对端点 B的平台组件请求度量参数、对端点 B的平台组件请求度量参数所标识信息的平台组件评估策略和对端点 B的平 台组件请求度量参数所标识信息的平台配置保护策略; 其中, 对端点 A的平 台组件请求度量参数、 对端点 B的平台组件请求度量参数、 对端点 B的平台组 件请求度量参数所标识信息的平台组件度量值中可泄露端点 B的平台配置的 信息、对端点 B的平台组件请求度量参数所标识信息的平台配置保护策略,对 端点 A的平台组件请求度量参数所标识信息的平台组件评估策略需要利用端 点 B和可信中心 TC之间的安全密钥进行加密保护;
步骤 4、 可信中心 TC收到步骤 3中的信息后, 向端点 B发送端点 A的平台 身份证书的验证结果、 端点 A的平台组件评估结果、 端点 A的平台组件修补信 息、 端点 B的平台身份证书的验证结果、 端点 B的平台组件评估结果、 端点 B 的平台组件修补信息和可信中心 TC对以上信息的用户签名; 其中端点 A的平 台组件修补信息需要利用端点 A和可信中心 TC之间的安全密钥进行加密保 护,端点 B的平台组件修补信息需要利用端点 B和可信中心 TC之间的安全密钥 进行加密保护;
步骤 5、 端点 B收到步骤 4中的信息后, 向端点 A发送对端点 B的平台组件 请求度量参数所标识信息的平台组件度量值中不会泄露端点 B的平台配置的 信息、对端点 B的平台组件请求度量参数所标识信息的平台组件度量值的平台 签名、 端点 B的平台身份证书和步骤 4中的信息;
步骤 6、 端点 A收到步骤 5中的信息后, 端点 A向端点 B发送端点 A生成的 访问决策。
当端点 A收到步骤 1中的信息后, 上述步骤 2的具体实现方式是: 步骤 2.1、验证对端点 A的平台组件请求度量参数是否符合端点 A所设置的 对端点 A的平台组件请求度量参数所标识信息的平台配置保护策略, 若不符
合, 则丢弃步骤 1中的信息, 否则执行步骤 2.2和步骤 2.3;
步骤 2.2、依据对端点 A的平台组件请求度量参数去获取对端点 A的平台组 件请求度量参数所标识信息的平台组件度量值;
步骤 2.3、向端点 B发送对端点 A的平台组件请求度量参数所标识信息的平 台组件度量值、 对端点 A的平台组件请求度量参数所标识信息的平台组件度 量值的平台签名、 端点 A的平台身份证书、 对端点 A的平台组件请求度量参数 所标识信息的平台配置保护策略、对端点 B的平台组件请求度量参数和对端点 B的平台组件请求度量参数所标识信息的平台组件评估策略; 其中, 对端点 A 的平台组件请求度量参数所标识信息的平台组件度量值中可泄露端点 A的平 台配置的信息、 对端点 A的平台组件请求度量参数所标识信息的平台配置保 护策略,对端点 B的平台组件请求度量参数所标识信息的平台组件评估策略需 要利用端点 A和可信中心 TC之间的安全密钥进行加密保护。
当端点 B收到步骤 2中的信息后, 上述步骤 3的具体实现方式是: 步骤 3.1、 验证对端点 A的平台组件请求度量参数所标识信息的平台组件 度量值中的平台签名, 若验证不通过, 则丟弃步骤 2.3中的信息, 否则执行步 骤 3.2;
步骤 3.2、验证对端点 B的平台组件请求度量参数是否符合端点 B所设置的 对端点 B的平台组件请求度量参数所标识信息的平台配置保护策略, 若不符 合, 则丟弃步骤 2.3中的信息, 否则执行步骤 3.3和步骤 3.4;
步骤 3.3、依据对端点 B的平台组件请求度量参数去获取对端点 B的平台组 件请求度量参数所标识信息的平台组件度量值;
步骤 3.4、 向可信中心 TC发送端点 A的平台身份证书、 对端点 A的平台组 件请求度量参数所标识信息的平台组件度量值、 对端点 A的平台组件请求度 量参数、 对端点 A的平台组件请求度量参数所标识信息的平台组件评估策略、 对端点 A的平台组件请求度量参数所标识信息的平台配置保护策略、 端点 B的 平台身份证书、对端点 B的平台组件请求度量参数所标识信息的平台组件度量
值、 对端点 B的平台组件请求度量参数、 对端点 B的平台组件请求度量参数所 标识信息的平台组件评估策略和对端点 B的平台组件请求度量参数所标识信 息的平台配置保护策略; 其中, 对端点 A的平台组件请求度量参数、 对端点 B 的平台组件请求度量参数、对端点 B的平台组件请求度量参数所标识信息的平 台组件度量值中可泄露端点 B的平台配置的信息、 对端点 B的平台组件请求度 量参数所标识信息的平台配置保护策略, 对端点 A的平台组件请求度量参数 所标识信息的平台组件评估策略需要利用端点 B和可信中心 TC之间的安全密 钥进行加密保护。
当可信中心 TC收到步驟 3中的信息后, 上述步骤 4的具体实现方式是: 步骤 4.1、验证端点 A的平台身份证书和端点 B的平台身份证书, 生成端点 A的平台身份证书的验证结果和端点 B的平台身份证书的验证结果;
步骤 4.2、依据对端点 A的平台组件请求度量参数、对端点 A的平台组件请 求度量参数所标识信息的平台组件评估策略和对端点 A的平台组件请求度量 参数所标识信息的平台配置保护策略, 校验和评估对端点 A的平台组件请求 度量参数所标识信息的平台组件度量值, 生成端点 A的平台组件评估结果和 端点 A的平台组件修补信息; 其中, 若对端点 A的平台组件请求度量参数所标 识信息的平台组件评估策略不符合对端点 A的平台组件请求度量参数所标识 信息的平台配置保护策略, 则在端点 A的平台组件评估结果中给出相应的错 误指示;
步骤 4.3、依据对端点 B的平台组件请求度量参数、对端点 B的平台组件请 求度量参数所标识信息的平台组件评估策略和对端点 B的平台组件请求度量 参数所标识信息的平台配置保护策略,校验和评估对端点 B的平台组件请求度 量参数所标识信息的平台组件度量值,生成端点 B的平台组件评估结果和端点 B的平台组件修补信息; 其中, 若对端点 B的平台组件请求度量参数所标识信 息的平台组件评估策略不符合对端点 B的平台组件请求度量参数所标识信息 的平台配置保护策略, 则在端点 B的平台组件评估结果中给出相应的错误指
步骤 4.4、 向端点 B发送端点 A的平台身份证书的验证结果、 端点 A的平台 组件评估结果、 端点 A的平台组件修补信息、 端点 B的平台身份证书的验证结 果、 端点 B的平台组件评估结果、 端点 B的平台组件修补信息和可信中心 TC 对以上信息的用户签名; 其中, 端点 A的平台组件修补信息需要利用端点 A和 可信中心 TC之间的安全密钥进行加密保护, 端点 B的平台组件修补信息需要 利用端点 B和可信中心 TC之间的安全密钥进行加密保护。
当端点 B收到步骤 4中的信息后, 上述步骤 5的具体实现方式是: 步骤 5.1、 验证可信中心 TC的用户签名, 若验证不通过, 则丟弃步骤 4.4 中的信息; 否则, 执行步骤 5.2和步骤 5.3 ;
步骤 5.2、若已完成对端点 A的平台鉴别, 则依据端点 A的平台身份证书的 验证结果和端点 A的平台组件评估结果生成访问决策; 否则本轮平台鉴别协 议结束后将与端点 A执行另外一轮平台鉴别协议;
步骤 5.3、向端点 A发送对端点 B的平台组件请求度量参数所标识信息的平 台组件度量值中不会泄露端点 B的平台配置的信息、 对端点 B的平台组件请求 度量参数所标识信息的平台组件度量值的平台签名、端点 B的平台身份证书和 步骤 4.4中的信息。
当端点 A收到步骤 5中的信息后 , 上述步骤 6的具体实现方式是: 步骤 6.1、 验证对端点 B的平台组件请求度量参数所标识信息的平台组件 度量值中的平台签名, 若验证不通过, 则丢弃步骤 5.3中的信息, 否则执行步 骤 6.2;
步骤 6.2、 验证步骤 5.3中可信中心 TC的用户签名, 若验证不通过, 则丟 弃步骤 5.3中的信息; 否则, 执行步骤 6.3 ;
步骤 6.3、若已完成对端点 B的平台鉴别, 则依据端点 B的平台身份证书的 验证结果和端点 B的平台组件评估结果生成访问决策;否则本轮平台鉴別协议 结束后将与端点 B执行另外一轮平台鉴别协议。
本发明还提供一种可实现平台配置保护的双向平台鉴别系统, 所述可实 现平台配置保护的双向平台鉴别系统包括网络中的可信中心 TC、 端点 A以及 端点 B; 所述端点 A和端点 B都信任可信中心 TC。
所述端点 A包括: 用于生成对端点 B的平台组件请求度量参数以及生成对 端点 B的平台组件请求度量参数所标识信息的平台组件评估策略的生成单元; 用于验证对端点 A的平台组件请求度量参数是否符合端点 A所设置的对端点 A 的平台组件请求度量参数所标识信息的平台配置保护策略、验证对端点 B的平 台组件请求度量参数所标识信息的平台组件度量值中的平台签名以及验证可 信中心 TC的用户签名的验证单元; 用于依据对端点 A的平台组件请求度量参 数去获取对端点 A的平台组件请求度量参数所标识信息的平台组件度量值的 获取单元以及用于依据端点 B的平台身份证书的验证结果和端点 B的平台组 件评估结果生成访问决策的生成单元。
所述端点 B包括: 用于向可信中心 TC发送端点 A的平台身份证书、对端点 A的平台组件请求度量参数所标识信息的平台组件度量值、对端点 A的平台组 件请求度量参数、 对端点 A的平台组件请求度量参数所标识信息的平台组件 评估策略、 对端点 A的平台组件请求度量参数所标识信息的平台配置保护策 略、 端点 B的平台身份证书、 对端点 B的平台组件请求度量参数所标识信息的 平台组件度量值、 对端点 B的平台组件请求度量参数、 对端点 B的平台组件请 求度量参数所标识信息的平台组件评估策略和对端点 B的平台组件请求度量 参数所标识信息的平台配置保护策略的发送单元; 用于生成对端点 A的平台 组件请求度量参数以及生成对端点 A的平台组件请求度量参数所标识信息的 平台组件评估策略的生成单元; 用于验证对端点 A的平台组件请求度量参数 所标识信息的平台组件度量值中的平台签名、验证对端点 B的平台组件请求度 量参数是否符合端点 B所设置的对端点 B的平台组件请求度量参数所标识信 息的平台配置保护策略以及验证可信中心 TC的用户签名的验证单元; 用于依 据对端点 B的平台组件请求度量参数去获取对端点 B的平台组件请求度量参
数所标识信息的平台组件度量值的获取单元; 以及, 用于依据端点 A的平台 身份证书的验证结果和端点 A的平台组件评估结果生成访问决策的生成单 元;
所述可信中心 TC包括: 用于处理从端点 B收到的端点 A的平台身份证书、 对端点 A的平台组件请求度量参数所标识信息的平台组件度量值、对端点 A的 平台组件请求度量参数、 对端点 A的平台组件请求度量参数所标识信息的平 台组件评估策略、 对端点 A的平台组件请求度量参数所标识信息的平台配置 保护策略、 端点 B的平台身份证书、 对端点 B的平台组件请求度量参数所标识 信息的平台组件度量值、 对端点 B的平台组件请求度量参数、 对端点 B的平台 组件请求度量参数所标识信息的平台组件评估策略和对端点 B的平台组件请 求度量参数所标识信息的平台配置保护策略, 其中对端点 A的平台组件请求 度量参数、 对端点 B的平台组件请求度量参数、 对端点 B的平台组件请求度量 参数所标识信息的平台组件度量值中可泄露端点 B的平台配置的信息、对端点 B的平台组件请求度量参数所标识信息的平台配置保护策略和对端点 A的平 台组件请求度量参数所标识信息的平台组件评估策略需要利用端点 B和可信 中心 TC之间的安全密钥进行加密保护的处理单元; 用于生成端点 A的平台身 份证书的验证结果、端点 A的平台组件评估结果、端点 A的平台组件修补信息、 端点 B的平台身份证书的验证结果、 端点 B的平台组件评估结果、 端点 B的平 台组件修补信息以及可信中心 TC对这些信息的用户签名的生成单元;
所述端点 A和端点 B通过平台鉴别协议互相连通; 所述端点 B和可信中心 TC通过平台鉴别协议互相连通。
本发明的优点是:
1、 有效地保护了端点 A和端点 B的平台配置。 本发明在端点 A和端点 B将 自身平台的平台组件度量信息加密传输给可信中心 TC, 并将对对方的平台组 件评估策略发送给可信中心 TC , 由可信中心 TC来实现端点 A和端点 B的平台 组件度量信息的校验和评估, 有效地保护了端点 A和端点 B的平台配置。
2、对端点 A和端点 B的平台配置实现了更细粒度的保护。 本发明的端点 A 和端点 B设置了自身平台的平台组件保护策略, 有效地防止了端点 A和端点 B 通过设置对对方的平台组件度量请求参数和对对方的平台组件评估策略来探 询对方的平台配置, 从而对端点 A和端点 B的平台配置实现了更细粒度的保 护。 附图说明
图 1为现有技术中基于 Client/Server的平台鉴别模型结构示意图; 图 2为本发明中可实现平台配置保护的双向平台鉴别模型的结构示意图; 图 3为本发明中基于 TePA的 TNC架构的双向平台鉴別模型的结构示意图。 具体实施方式
参见图 2 , 图 2为本发明中可实现平台配置保护的双向平台鉴别模型的结 构示意图。 本发明实施例提供了一种可实现平台配置保护的双向平台鉴别方 法, 具体可以包括以下步骤:
步骤 1、 端点 B产生一个 160比特随机数^, 然后向端点 A发送^和对端点 A的平台组件请求度量参 ¾ ¾r ,其中 ¾nw 标识端点 A中的哪些平台组件 以及哪些完整性信息需要度量。
步骤 2、 端点 A收到步骤 1中的信息后, 首先判断 ¾r//? 是否符合端点 A对 ¾? /7 所标识信息的平台配置保护 略 ProtPoiiciesA , 若不符合 , 则丢弃步骤 1中的信息, 否则利用杂凑函数 SHA1计算 SHA1 ( NB, KM ), 其中 ^为端点 A 和端点 B之间建立的可双向认证的安全通道,然后执行 ΓΡΜ— Qwofe命令从本地 TPM获取 ¾r 所标识信息的平台配置寄存器 ( Platform Configuration Register, PCR )值 和 AIK签名值 ί¾^ , 其中 c¾/j^是端点 Α利用 对 SHA1 ( NB, KAB )和 PCR 々AIK签名, ¾^-y4是端点 A的 AIK私钥, 接着再获 取¾ 所标识信息的存储度量日志 (Stored Measurement Log , SML )值
SMLA, 最后向端点 B发送 SMLA, Cert(AIKPK-A), σΑΙΚ.Α, ProtPoliciesA, NA , ParmsB和 EvalPohciesB , 其中 Cert(AIK≠_A) 端点 A的 AIK证书, N4是端点 Α产生的一个 160比特随机数, ¾^ 是对端点 A的平台组件请求度量参数, 它标识端点 B中的哪些平台组件以及哪些完整性信息需要度量, EvalPoliciesB 为端点 A对 ^¾所标识信息的平台组件评估策略, ^C^ Slf^构 匪 sA 所标识信息的平台组件度量值, SV/ 是 《^7 所标识信息的平台组件度量值 中可泄露端点 A的平台配置的信息, SMLA、 ProtPoliciesA和 EvalPoliciesB 要 利用端点 A和可信中心 TC之间的安全密钥进行加密保护。
步骤 3、 端点 B收到步骤 2中的信息后, 首先计算 SHA1 (NB, KAB), 并验 证 σΑΙΚ—Α, 若验证不通过, 则丟弃步骤 2中的信息, 否则判断 是否符合 端点 B对¾ 1¾所标识信息的平台配置保护策略 ProtPo/ e , 若不符合, 则 终止, 否则利用杂凑函数 SHA1计算 SHA1 (NA, K^), 然后执行 TPM— Quote 命令从本地 TPM获取 《 所标识信息的 PCR PC¾和 AIK签名 值, 其 中 c¾/ B是端点 B利用 /¾ ^对 SHA1 (NA, KAB ) 和 PCR^々AIK签名, AIKSK—B 是端点 B的 AIK私钥, 接着再获取 所标识信息的 SML值 最后向 可信中心 TC发送 Nij-rc, Cert(AIKpk.A), PCRA, SMLA, ParmsA, EvalPoliciesA, ProtPoliciesA, NA, CertAIKpk-B), PCRB, SMLB, ParmsB, EvalPoliciesB和 ProtPoliciesB , 其中 SMLA、 PmtPohciesA和 Eva!Po!iciesB是歩骤 2中的对应值, N rc是端点 B产生的一个随机数, EvalPoliciesA 端点 8对^¾ 所标识信息 的平台组件评估策略, Cert(AIKPK-B) 端点 B的一个 AIK证书, PCRB和 SMLB构 成¾ 所标识信息的平台组件度量值, SMLB ParmsB所标 i、信息的平台组 件度量值中可泄露端点 B的平台配置的信息, ParmsA、 ParmsB、 SMLB、 Prai^/c^^o ra/^/zci^需要利用端点 B和可信中心 TC之间的安全密钥进 行力 p密保护。
步骤 4、 可信中心 TC收到步骤 3中的信息后, 首先验证 Cert(AIK≠—A)和 Cert(^K^ 的有效性, 并生成相应的 AIK证书验证结果 R 和 R , 然后分别
利用 (^¾和^ ¾来验证 ^ /^和&^!^的正确性 ,即分析处理&1^ ^和 SMi^并重 新计算 ρ ^σΡΟ¾, 若重新计算的 P R ^PC 分别与步骤 3中的 /^ 和 PC 互相匹配, 则所接收到的^ ^和 5¾&β是有效和未被篡改的, 否则是无 效 , 接着分另 ll才艮据 ParmsA、 EvalPoliciesA、 ProtPoliciesA和 ParmsB、 5 EvalPoliciesB, ProtPohciesB^m验、 i ^SML SMLB, 并分别生成端点 A的 组件级评估结果 Re 、 端点 A的组件级修补信息 Re 和端点 B的组件级评估 结果 Re 、端点 B的组件级修补信息 Rew ,最后向端点 B发送 R , Re , RemsA, ReB, ResB, RemsB和 Ore, 其中 crc是可信中心 TC利用可信中心 TC的用户私钥 sbrc对 NB-TC, Cert(AIKpk—A), PCRA, Pm 'A, EvalPoliciesA,
l o ResA, RemsA, NA, CertAIKpk-B) , ReB, PCRB, ParmsB, EvalPoliciesB, ProtPoliciesB, ¾ 和 //7 的用户签名, R£m¾需要利用端点 A和可信中心 TC之间的安全密 钥进行加密保护, w 需要利用端点 B和可信中心 TC之间的安全密钥进行加 密保护, EvalPoliciesA ^ ProtPoliciesA » EvalPoliciesB和 ProtPoliciesB ^ 3 的对应值, Pa丽 ParmsB分 M是步骤 1和步骤 2中的对应值。 若 EvalPoliciesA
15 不符合 ProtPoliciesA, ^EvalPoliciesB不符合 ProtPoliciesB, 贝 分另1 J在?e ^Re 中给出相应的错误提示。
步骤 5、 端点 B收到步骤 4中的信息后, 首先验证 ijrc, 若验证不通过, 则 丢弃步骤 4中的信息, 否则若已完成对端点 Α的平台鉴别, 则根据 R 和 Re 做出访问决策(即允许、 禁止或隔离), 否则本轮平台鉴别协议结束后将与端
20 点 A执行另一轮平台鉴别协议, 然后向端点 A发送 N^rc, EvalPoliciesA, Cert(AIKpk.B), PCRB, ProtPoliciesB, / -?和步骤 4中的信息, 其中 PC¾是对 端点 B的平台组件请求度量参数所标识信息的平台组件度量值中不会泄露端 点 B的平台配置的信息, EvalPoliciesA和 ProtPoliciesB 3中的对应值。
步骤 6、 端点 A收到步骤 5中的信息后, 首先计算 SHA1 NA, KM), 并验
25 证 (7 , 若验证不通过, 则丟弃步骤 5中的信息, 否则验证 σττ, 若验证不通 过, 则丟弃步驟 5中的信息, 否则若已完成对端点 Β的平台鉴别, 则根据 R
和 Re 做出访问决策(即允许、 禁止或隔离), 否则本轮平台鉴别协议结束后 将与端点 B执行另一轮平台鉴别协议。
上述步骤 5中端点 B发送的信息可包含步骤 5中端点 B做出的访问决策。 上述步骤 6完成后,端点 A可向端点 B发送步骤 6中端点 A做出的访问决策。 在上述可实现平台配置保护的双向平台鉴别方法中, 端点 A和端点 B之间 的平台鉴别协议消息是利用 ^进行安全传输的。
在上述可实现平台配置保护的双向平台鉴别方法中, 若 Re ^指示端点 A 需要进行平台修补, 则端点 A完成平台修补后将与端点 B执行另外一轮平台鉴 别协议; 若 指示端点 B需要进行平台修补, 则端点 B完成平台修补后将 与端点 A执行另外一轮平台鉴别协议。
在上述可实现平台配置保护的双向平台鉴别方法中,若 6 指示端点 A的 平台组件评估策略与端点 A的平台配置保护策略相沖突, 则端点 B修正相应的 平台组件评估策略后将与端点 A执行另外一轮平台鉴别协议;若 ^¾ 指示端点 B的平台组件评估策略与端点 B的平台配置保护策略相冲突, 则端点 A修正相 应的平台组件评估策略后将与端点 B执行另外一轮平台鉴别协议。
由于 TCG所提出的可信网络连接 ( Trusted Network Connect, TNC )架构 存在问题,所以一种基于三元对等鉴别( Tri-element Peer Authentication, TePA ) 的 TNC架构被提出, 参见图 3 , 图 3为本发明中基于 TePA的 TNC架构的双向平 台鉴别模型的结构示意图, 其中 TNC客户端上端的完整性收集者、 TNC接入 点上端的完整性收集者和评估策略服务者上端的完整性校验者都可以是多 个。 在图 3中, 从左至右三列分别为访问请求者、 访问控制器和策略管理器, 从上至下三行分别为完整性度量层、 可信平台评估层和网络访问控制层。 在 访问请求者中, 从上至下的组件分别为完整性收集者、 TNC客户端和网络访 问请求者。 在访问控制器中, 从上至下的组件分别为完整性收集者、 TNC接 入点和网絡访问控制者。 在策略管理器中, 从上至下的组件分别为完整性校 验者、 评估策略服务者和鉴别策略服务者。 组件之间存在相应的接口: 完整
性度量接口 ( Integrity Measurement Interface, IF- IM ) 是完整性收集者 和完整性校验者之间的接口; TNC客户端 - TNC接入点接口 ( TNC Client-TNC Access Point Interface, IF-TNCCAP )是 TNC客户端和 TNC接入点之间的接口; 评估策略服务接口 (Evaluation Policy Service Interface, IF- EPS )是 TNC 接入点和评估策略服务者之间的接口; 可信网络传输接口 (Trusted Network Transport Interface, IF- TNT)是网络访问请求者和网络访问控制者之间的 接口, 鉴另1 J策略月艮务接口 ( Authentication Policy Service Interface, IF-APS )是网络访问控制者和鉴别策略服务者之间的接口, 完整性度量收集 者接口 ( Integrity Measurement Collector Interface, IF- IMC) 是完整性 收集者和 TNC客户端之间, 以及完整性收集者和 TNC接入点之间的接口, 完整 性度量校验接口 ( Integrity Measurement Verifier Interface, IF-IMV ) 是完整性校验者和评估策略服务者之间的接口。
若本发明应用于图 3所示的基于 TePA的 TNC架构,则上述可实现平台配置 保护的双向平台鉴别方法的实施步骤可以如下:
步骤 1、 TNC接入点产生一个 160比特随机数 N4C, 然后向 TNC客户端发送
步骤 2、 TNC客户端收到步骤 1中的信息后, 执行如下步骤:
步骤 201、 判断 Parms 是否符合访问请求者 ¾r ^所标识信息的平台 配置保护策略 Pra o/ce^, 若不符合, 则丢弃步骤 1中的信息, 否则执行步 骤 202〜步骤 205;
步骤 202、 利用杂凑函数 SHA1计算 SHA1 (NAC, KAB ), 其中 ^是网络访 问控制层为访问请求者和访问控制器之间建立的可双向认证的安全通道, 然 后将 SHA1 (NAC, KAB ) 和 Par ^发送给 TNC客户端上端的完整性收集者; 步骤 203、 TNC客户端上端的完整性收集者依据 SHA1 NAC, KM ) 和 执行 ρ¾ο¾命令从本地 TPM获取 ^ ^j?所标识信息的 PCR值
0½和入1 签名值(7«, 其中(7«是本地 TPM利用 对 SHA1 (NAC, ^ ) 和 PCR^^AIK签名, 是访问请求者的 AIK私钥, 然后将
Cert(AIK≠-AR)和 σΜ发送给 TNC客户端, 其中 Cer^/^^^ 是访问请求者的 AIK证书;
步骤 204、 TNC客户端上端的完整性收集者依据 Panw^获取^r ^?所标 识信息的平台组件度量值, 它们是利用 IF-IM接口封装的, 可包括步骤 203中 发送的 PC¾^a ¾r ^所标识信息的 SML值 ?, Slfi^是¾r ¾?所标识 信息的平台组件度量值中可泄露访问请求者的平台配置的信息, 然后向 TNC 客户端发送 IF-IM封装的 ^r ^所标识信息的平台组件度量值;
步骤 205、 TNC客户端向 TNC接入点发送步骤 203中发送的信息, 步骤 204 中发送的信息, ProtPoliciesAR, NAR, ParmsAC和 EvaWoliciesAC, 其中 N4?是 TNC 客户端产生的一个 160比特随机数, ¾/m¾c是对访问控制器的平台组件请求 度量参数, 它标识访问控制器中的哪些平台组件以及哪些完整性信息需要度 量, EvaWoliciesAC为访问请求者对¾^77 ^斤标识信息的平台组件评估策略, 步骤 204中发送的信息、 ProtPoliciesAR和 EvalPoliciesAC ;要矛用访问请求者和 策略管理器之间的安全密钥进行加密保护。
步骤 3、 TNC接入点收到步骤 205中的信息后, 执行如下步骤:
步骤 301、 TNC接入点计算 SHA1 (NAC, KM), 并验证 若验证不 通过, 则丟弃步骤 205中的信息, 否则判断 ¾m¾c是否符合访问控制器对 ¾r c所标识信息的平台配置保护策略 Prai¾/zce c, 若不符合, 则丟弃步 骤 205的信息, 否则执行步骤 302 ~步骤 305;
步骤 302、利用杂凑函数 SHA1计算 SHA1 (NAR, KAB ), 然后将 SHAl (NAR, KM ) ¾r c发送给 TNC接入点上端的完整性收集者;
步骤 303、 TNC接入点上端的完整性收集者依据 SHAl ( NAR, KM ) 和 执行 TPM— G¾ote命令从本地 TPM获取 标识信息的 PCR值 PCR^^AIK签名 σϋ值, 其中 σϋ是本地 ΤΡΜ利用 ^¾^c对 SHAl NAR,
KM ) 和 的 AIK签名, AIKsk—AC i方问控制器的 AIK私钥, 然后将
Cert(Hp C^(¾^c发送给 TNC接入点, 其中 CertAIKpk—Ad访问控制器的 AIK证书;
步骤 304、 TNC接入点上端的完整性收集者依据 Pa c获取¾r c所标 识信息的平台组件度量值, 它们是利用 IF-IM接口封装的, 可包括步骤 303中 发送的尸 C ^ ¾ c所标识信息的 SML值 SVf/^c, SMT^c是¾r c所标识 信息的平台组件度量值中可泄露访问控制器的平台配置的信息, 然后向 TNC 接入点发送 IF-IM封装的 所标识信息的平台组件度量值;
步骤 305、 TNC接入点向评估策略服务者发送 Nn, CertiAIKpk.AR), 步骤 204 )中发送的信息, ParmsAR, EvalPoliciesAR, ProtPoliciesAR, NAR, CertAIKpk-Ac), 步骤 304中发送的信息, Pa丽 AC, EvalPoliciesAC和 ProtPoliciesAC,其中步骤 204 中发送的信息、 ProtPoliciesAR和 EvaWoliciesAC 骤 205中对应的加密值, N4 PM是 TNC接入点产生的一个随机数, EvalPoliciesAR是访问控制器对 ¾rm ^所标识信息的平台组件评估策略, Cert(AJK≠—AC)是访问控制器的一个 AIK证书, ParmsAR、 ParmsAC、 步骤 304中发送的信息、 ProtPoliciesAC和 EvalPoliciesAj^要利用访问控制器和策略管理器之间的安全密钥进行加密保 护。
步骤 4、 评估策略服务者收到步骤 305中的信息后, 执行如下步骤: 步骤 401、验证 Cert(AK^^和 Ceri(^Kpn)的有效性, 并生成相应的 AIK 证书验证结果 Re^?和 R c;
步骤 402、 验证 EvalPoliciesAR是否符合 ProtPoliciesAR , 对于符合 ProtPoliciesAR的那部分平台组件, 则将步骤 305中的步骤 204中发送的信息、 符合 的那部分平台组件的 ¾ ¾^^Era/¾/ce¾?发送给评估策 略服务者上端的完整性校验者, 评估策略服务者上端的完整性校验者依据所 接收到的 ¾r ¾?和 ra/ o/ce^校验及评估步骤 305中的步骤 204中发送的 信息, 并生成访问请求者的平台组件评估结果 Re ^和访问请求者的平台组件
修补信息 R ¾«, 然后发送给评估策略服务者;对于不符合 的那 部分平台组件, 则直接生成访问请求者的平台组件评估结果 Re¾?, 并在 中给出相应的不符合指示, 而访问请求者的平台组件修补信息 Rern^直接置 空。 同理, iEvalPoliciesAC 否将合 ProtPolicwsAC, 对于符合 ProiPo/ e c 的那部分平台组件, 则将步骤 305中的步骤 304中发送的信息、 符合 ProtPolwiesAc的那部分平台组件的 ¾r c和 ra/Po/zcze^c发送给评估策略服 务者上端的完整性校验者, 评估策略服务者上端的完整性校验者依据所接收 到的 Pa丽 A(^EvalPoli.ciesAC a估步骤 305中的步骤 304中发送的信息, 并生成访问控制器的平台组件评估结果 We c和访问控制器的平台组件修补 信息 Rew c, 然后发送给评估策略服务者; 对于不符合 ProPo/ce^c的那部 分平台组件, 则直接生成访问控制器的平台组件评估结果 Re c, 并在 Re c 中给出相应的不符合指示, 而访问控制器的平台组件修补信息 We c直接置 步骤 403、 评估策略服务者上端的完整性校检者向评估策略服务者发送 PC M和 PCRAC
步驟 404、 评策略服务者向 TNC接入点发送 R^, Re Ac, σΡΜ—ΑΙΚ, Res^, RemsAR, Res Ac, RemsAC和 σΡΜ-Ρα{, 其中 σ/¾ ^ 是策略管理器利用它的用户私 skPM NAC-PM, CertiAIKpk.AR), Re^, N , Cer(Hpn)和 Re. 的用户签名, σΡΜ— pC是策略管理器利用它的用户私钥 PM对 NnA/, PCRAR, ParmsAR, EvalPoliciesAR , ProtPoliciesAR, Res^, RemsAR, NAR, PCRAC, P rmsAC, EvalPoliciesAC, ProtPoliciesAC, Re c ?ew c的用户签名, Rew<¾?需要利用 访问请求者和策略管理器之间的安全密钥进行加密保护, W£m¾c需要利用访 问控制器和策略管理器之间的安全密钥进行加密保护, EvalPol esAR、 ProtPoliciesM、 EvalPoliciesAC ProtPoliciesAd 3Q5中的对应值, ParmsM ¾TO c分别是步骤 1和步骤 205中的对应值。
步骤 5、 TNC接入点收到步骤 404中的信息后, 首先验证 OPM-PCR ,
若验证不通过, 则丢弃步骤 404中的信息, 否则若已完成对访问请求者的平台 鉴别, 则根据 和 RE¾I?做出访问决策(即允许、 禁止或隔离), 否则本轮平 台鉴别协议结束后将与 TNC客户端执行另一轮平台鉴别协议, 然后向端点 A 发送 N C-PM, EvalPoliciesAR , Cert(AIKPK.AC) , PCRAC , ProtPoliciesAC , AIK-B ' 步骤 4中的信息和 c o/¾c , 其中 ^0? 是¾^^^所标识信息的平台组件度量 值中不会泄露访问控制器的平台配置的信息, EvalPoliciesAR和 ProtPoliciesAC 是步骤 305中的对应值, ^0«^是丁 (接入点所做出的访问决策,它仅当 TNC 接入点已完成对访问请求者的平台鉴别时存在。 此外, 若 ^^^为非空, 则 TNC接入点需要向它上端的完整性收集者通告¾ c。
步骤 6、 TNC客户端收到步骤 5中的信息后, 首先计算 SHA1 ( NAR , K ), 并验证 若验证不通过, 则丢弃步骤 5中的信息, 否则验证<¾^/^和 σρΜ—PCR , 若险证不通过, 则丟弃步骤 5中的信息, 否则若已完成对访问控制器 的平台鉴别, 则根据¾4C和 Re c做出访问决策(即允许、 禁止或隔离), 并向 TNC接入点发迭 NAC和 ActioriAR , 其中 ci o^^是 TNC客户端所做出的访问决 策, 它仅当 TNC客户端已完成对访问控制器的平台鉴别时存在, 否则本轮平 台鉴别协议结束后将与 TNC接入点执行另一轮平台鉴别协议。此外,若 RemsAR 为非空, 则 TNC客户端需要向它上端的完整性收集者通告 Re ^; 若步骤 5中 的信息中包含 ActwnAC , 则 TNC客户端需要向它上端的完整性收集者通告 Actio iAc:。
步骤 7、 TNC接入点收到步骤 6中的信息后, 向它上端的完整性收集者通 告 ActioriAR。
在上述可实现平台配置保护的双向平台鉴别方法中, TNC客户端和 TNC接 入点之间的平台鉴别协议消息是利用^ 进行安全传输的。
在上述可实现平台配置保护的双向平台鉴别方法中,若 R ¾ ?指示 TNC客 户端上端的完整性收集者需要进行平台修补, 则 TNC客户端上端的完整性收 集者完成平台修补后将通知 TNC客户端与 TNC接入点执行另外一轮平台鉴别
协议; 若 R£m¾c指示 TNC接入点上端的完整性收集者需要进行平台修补, 则 TNC接入点上端的完整性收集者完成平台修补后将通知 TNC接入点与 TNC客 户端执行另外一轮平台鉴别协议。
在上述可实现平台配置保护的双向平台鉴别方法中, 若 Re¾ ?指示访问请 求者的平台组件评估策略与访问请求者的平台配置保护策略相冲突, 则 TNC 接入点修正相应的平台组件评估策略后将与 TNC客户端执行另外一轮平台鉴 别协议; 若 Re c指示访问控制器的平台组件评估策略与访问控制器的平台配 置保护策略相冲突, 则 TNC客户端修正相应的平台组件评估策略后将与 TNC 接入点执行另外一轮平台鉴别协议。
不管是以何种方式来实现本发明所述的这种双向平台鉴别方法, 在上述 两种实施方法中, 若平台鉴别协议不是首轮平台鉴别协议, 则平台鉴别协议 中不包含 AIK证书验证的相关信息。 在上述两种实施方法中, 通过选用一个 方向的平台鉴别协议参数就能实现可实现平台配置保护的单向平台鉴别。
本发明在提供可实现平台配置保护的双向平台鉴别方法的同时, 还提供 了一种可实现平台配置保护的双向平台鉴别系统, 该系统包括网络中的可信 中心 TC、 端点 A以及端点 B ; 所述端点 A和端点 B都信任可信中心 TC;
所述端点 A包括: 用于生成对端点 B的平台组件请求度量参数以及生成对 端点 B的平台组件请求度量参数所标识信息的平台组件评估策略的生成单元; 用于验证对端点 A的平台组件请求度量参数是否符合端点 A所设置的对端点 A 的平台组件请求度量参数所标识信息的平台配置保护策略、验证对端点 B的平 台组件请求度量参数所标识信息的平台组件度量值中的平台签名以及验证可 信中心 TC的用户签名的验证单元; 用于依据对端点 A的平台组件请求度量参 数去获取对端点 A的平台组件请求度量参数所标识信息的平台组件度量值的 获取单元以及用于依据端点 B的平台身份证书的验证结果和端点 B的平台组 件评估结果生成访问决策的生成单元;
所述端点 B包括: 用于向可信中心 TC发送端点 A的平台身份证书、对端点
A的平台组件请求度量参数所标识信息的平台组件度量值、对端点 A的平台组 件请求度量参数、 对端点 A的平台组件请求度量参数所标识信息的平台组件 评估策略、 对端点 A的平台组件请求度量参数所标识信息的平台配置保护策 略、 端点 B的平台身份证书、 对端点 B的平台组件请求度量参数所标识信息的 平台组件度量值、 对端点 B的平台组件请求度量参数、 对端点 B的平台组件请 求度量参数所标识信息的平台组件评估策略和对端点 B的平台组件请求度量 参数所标识信息的平台配置保护策略的发送单元; 用于生成对端点 A的平台 组件请求度量参数以及生成对端点 A的平台组件请求度量参数所标识信息的 平台组件评估策略的生成单元; 用于验证对端点 A的平台组件请求度量参数 所标识信息的平台组件度量值中的平台签名、验证对端点 B的平台组件请求度 量参数是否符合端点 B所设置的对端点 B的平台组件请求度量参数所标识信 息的平台配置保护策略以及验证可信中心 TC的用户签名的验证单元; 用于依 据对端点 B的平台组件请求度量参数去获取对端点 B的平台组件请求度量参 数所标识信息的平台组件度量值的获取单元, 以及用于依据端点 A的平台身 份证书的险证结果和端点 A的平台组件评估结果生成访问决策的生成单元; 所述可信中心 TC包括: 用于处理从端点 B收到的端点 A的平台身份证书、 对端点 A的平台组件请求度量参数所标识信息的平台组件度量值、对端点 A的 平台组件请求度量参数、 对端点 A的平台组件请求度量参数所标识信息的平 台组件评估策略、 对端点 A的平台组件请求度量参数所标识信息的平台配置 保护策略、 端点 B的平台身份证书、 对端点 B的平台组件请求度量参数所标识 信息的平台组件度量值、 对端点 B的平台组件请求度量参数、 对端点 B的平台 组件请求度量参数所标识信息的平台组件评估策略和对端点 B的平台组件请 求度量参数所标识信息的平台配置保护策略, 其中对端点 A的平台组件请求 度量参数、 对端点 B的平台组件请求度量参数、 对端点 B的平台组件请求度量 参数所标识信息的平台组件度量值中可泄露端点 B的平台配置的信息、对端点 B的平台组件请求度量参数所标识信息的平台配置保护策略和对端点 A的平
台组件请求度量参数所标识信息的平台组件评估策略需要利用端点 B和可信 中心 TC之间的安全密钥进行加密保护的处理单元; 用于生成端点 A的平台身 份证书的验证结果、端点 A的平台组件评估结果、端点 A的平台组件修补信息、 端点 B的平台身份证书的验证结果、 端点 B的平台组件评估结果、 端点 B的平 台组件修补信息以及可信中心 TC对这些信息的用户签名的生成单元;
所述端点 A和端点 B通过平台鉴别协议互相连通; 所述端点 B和可信中心 TC通过平台鉴别协议互相连通。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims
1、 一种可实现平台配置保护的双向平台鉴别方法, 其特征在于: 所述方 法包括以下步骤:
步驟 1、 端点 B向端点 A发送对端点 A的平台组件请求度量参数; 步骤 2、 端点 A收到步骤 1中的信息后, 向端点 B发送对端点 A的平台组件 请求度量参数所标识信息的平台组件度量值、 对端点 A的平台组件请求度量 参数所标识信息的平台组件度量值的平台签名、 端点 A的平台身份证书、 对 端点 A的平台组件请求度量参数所标识信息的平台配置保护策略、对端点 B的 平台组件请求度量参数和对端点 B的平台组件请求度量参数所标识信息的平 台组件评估策略; 其中, 对端点 A的平台组件请求度量参数所标识信息的平 台组件度量值中可泄露端点 A的平台配置的信息、对端点 A的平台组件请求度 量参数所标识信息的平台配置保护策略,对端点 B的平台组件请求度量参数所 标识信息的平台组件评估策略需要利用端点 A和可信中心 TC之间的安全密钥 进行加密保护;
步骤 3、 端点 B收到步骤 2中的信息后, 向可信中心 TC发送端点 A的平台 身份证书、 对端点 A的平台组件请求度量参数所标识信息的平台组件度量值、 对端点 A的平台组件请求度量参数、对端点 A的平台组件请求度量参数所标识 信息的平台组件评估策略、 对端点 A的平台组件请求度量参数所标识信息的 平台配置保护策略、 端点 B的平台身份证书、 对端点 B的平台组件请求度量参 数所标识信息的平台组件度量值、对端点 B的平台组件请求度量参数、对端点 B的平台组件请求度量参数所标识信息的平台组件评估策略和对端点 B的平 台组件请求度量参数所标识信息的平台配置保护策略; 其中, 对端点 A的平 台组件请求度量参数、 对端点 B的平台组件请求度量参数、 对端点 B的平台组 件请求度量参数所标识信息的平台组件度量值中可泄露端点 B的平台配置的 信息、对端点 B的平台组件请求度量参数所标识信息的平台配置保护策略,对 端点 A的平台组件请求度量参数所标识信息的平台组件评估策略需要利用端 点 B和可信中心 TC之间的安全密钥进行加密保护;
步骤 4、 可信中心 TC收到步骤 3中的信息后, 向端点 B发送端点 A的平台 身份证书的验证结果、 端点 A的平台组件评估结果、 端点 A的平台组件修补信 息、 端点 B的平台身份证书的验证结果、 端点 B的平台组件评估结果、 端点 B 的平台组件修补信息和可信中心 TC对以上信息的用户签名; 其中端点 A的平 台组件修补信息需要利用端点 A和可信中心 TC之间的安全密钥进行加密保 护,端点 B的平台组件修补信息需要利用端点 B和可信中心 TC之间的安全密钥 进行加密保护;
步驟 5、 端点 B收到步骤 4中的信息后, 向端点 A发送对端点 B的平台组件 请求度量参数所标识信息的平台组件度量值中不会泄露端点 B的平台配置的 信息、对端点 B的平台组件请求度量参数所标识信息的平台组件度量值的平台 签名、 端点 B的平台身份证书和步骤 4中的信息;
步骤 6端点 A收到步骤 5中的信息后, 端点 A向端点 B发送端点 A生成的访 问决策。
2、 根据权利要求 1所述的可实现平台配置保护的双向平台鉴别方法, 其 特征在于: 当端点 A收到步骤 1中的信息后, 所述步骤 2包括:
步骤 2.1、验证对端点 A的平台组件请求度量参数是否符合端点 A所设置的 对端点 A的平台组件请求度量参数所标识信息的平台配置保护策略, 若不符 合, 则丟弃步骤 1中的信息, 否则执行步骤 2.2和步骤 2.3;
步骤 2.2、依据对端点 A的平台组件请求度量参数去获取对端点 A的平台组 件请求度量参数所标识信息的平台组件度量值;
步骤 2.3、向端点 B发送对端点 A的平台组件请求度量参数所标识信息的平 台组件度量值、 对端点 A的平台组件请求度量参数所标识信息的平台组件度 量值的平台签名、 端点 A的平台身份证书、 对端点 A的平台组件请求度量参数 所标识信息的平台配置保护策略、对端点 B的平台组件请求度量参数和对端点 B的平台组件请求度量参数所标识信息的平台组件评估策略; 其中, 对端点 A 的平台组件请求度量参数所标识信息的平台组件度量值中可泄露端点 A的平 台配置的信息、 对端点 A的平台组件请求度量参数所标识信息的平台配置保 护策略,对端点 B的平台组件请求度量参数所标识信息的平台组件评估策略需 要利用端点 A和可信中心 TC之间的安全密钥进行加密保护。
3、 根据权利要求 2所述的可实现平台配置保护的双向平台鉴别方法, 其 特征在于: 当端点 B收到步骤 2中的信息后, 所述步骤 3包括:
步骤 3.1、 验证对端点 A的平台组件请求度量参数所标识信息的平台组件 度量值中的平台签名, 若验证不通过, 则丢弃步骤 2.3中的信息, 否则执行步 骤 3.2;
步骤 3.2、验证对端点 B的平台组件请求度量参数是否符合端点 B所设置的 对端点 B的平台组件请求度量参数所标识信息的平台配置保护策略, 若不符 合, 则丟弃步骤 2.3中的信息, 否则执行步骤 3.3和步骤 3.4;
步骤 3.3、依据对端点 B的平台组件请求度量参数去获取对端点 B的平台组 件请求度量参数所标识信息的平台组件度量值;
步骤 3.4、 向可信中心 TC发送端点 A的平台身份证书、 对端点 A的平台组 件请求度量参数所标识信息的平台组件度量值、 对端点 A的平台组件请求度 量参数、 对端点 A的平台组件请求度量参数所标识信息的平台组件评估策略、 对端点 A的平台组件请求度量参数所标识信息的平台配置保护策略、 端点 B的 平台身份证书、对端点 B的平台组件请求度量参数所标识信息的平台组件度量 值、 对端点 B的平台组件请求度量参数、 对端点 B的平台组件请求度量参数所 标识信息的平台组件评估策略和对端点 B的平台组件请求度量参数所标识信 息的平台配置保护策略; 其中, 对端点 A的平台组件请求度量参数、 对端点 B 的平台组件请求度量参数、对端点 B的平台组件请求度量参数所标识信息的平 台组件度量值中可泄露端点 B的平台配置的信息、 对端点 B的平台组件请求度 量参数所标识信息的平台配置保护策略, 对端点 A的平台组件请求度量参数 所标识信息的平台组件评估策略需要利用端点 B和可信中心 TC之间的安全密 钥进行加密保护。
4、 根据权利要求 3所述的可实现平台配置保护的双向平台鉴别方法, 其 特征在于: 当可信中心 TC收到步骤 3中的信息后, 所述步骤 4包括:
步骤 4.1、验证端点 A的平台身份证书和端点 B的平台身份证书, 生成端点 A的平台身份证书的验证结果和端点 B的平台身份证书的验证结果;
步骤 4.2、依据对端点 A的平台组件请求度量参数、对端点 A的平台组件请 求度量参数所标识信息的平台组件评估策略和对端点 A的平台组件请求度量 参数所标识信息的平台配置保护策略, 校验和评估对端点 A的平台组件请求 度量参数所标识信息的平台组件度量值, 生成端点 A的平台组件评估结果和 端点 A的平台组件修补信息; 其中, 若对端点 A的平台组件请求度量参数所标 识信息的平台组件评估策略不符合对端点 A的平台组件请求度量参数所标识 信息的平台配置保护策略, 则在端点 A的平台组件评估结果中给出相应的错 误指示;
步骤 4.3、依据对端点 B的平台组件请求度量参数、对端点 B的平台组件请 求度量参数所标识信息的平台组件评估策略和对端点 B的平台组件请求度量 参数所标识信息的平台配置保护策略,校验和评估对端点 B的平台组件请求度 量参数所标识信息的平台组件度量值,生成端点 B的平台组件评估结果和端点 B的平台组件修补信息; 其中, 若对端点 B的平台组件请求度量参数所标识信 息的平台组件评估策略不符合对端点 B的平台组件请求度量参数所标识信息 的平台配置保护策略, 则在端点 B的平台组件评估结果中给出相应的错误指 示;
步骤 4.4、 向端点 B发送端点 A的平台身份证书的验证结果、 端点 A的平台 组件评估结果、 端点 A的平台组件修补信息、 端点 B的平台身份证书的验证结 果、 端点 B的平台组件评估结果、 端点 B的平台组件修补信息和可信中心 TC 对以上信息的用户签名; 其中, 端点 A的平台组件修补信息需要利用端点 A和 可信中心 TC之间的安全密钥进行加密保护, 端点 B的平台组件修补信息需要 利用端点 B和可信中心 TC之间的安全密钥进行加密保护。
5、 根据权利要求 4所述的可实现平台配置保护的双向平台鉴别方法, 其 特征在于: 当端点 B收到步骤 4中的信息后, 所述步骤 5包括:
步骤 5.1、 验证可信中心 TC的用户签名, 若验证不通过, 则丢弃步骤 4.4 中的信息; 否则, 执行步骤 5.2和步骤 5.3 ;
步骤 5.2、若已完成对端点 A的平台鉴别, 则依据端点 A的平台身份证书的 验证结果和端点 A的平台组件评估结果生成访问决策; 否则本轮平台鉴别协 议结束后将与端点 A执行另外一轮平台鉴别协议;
步驟 5.3、向端点 A发送对端点 B的平台组件请求度量参数所标识信息的平 台组件度量值中不会泄露端点 B的平台配置的信息、 对端点 B的平台组件请求 度量参数所标识信息的平台组件度量值的平台签名、端点 B的平台身份证书和 步骤 4.4中的信息。
6、 根据权利要求 5所述的可实现平台配置保护的双向平台鉴别方法, 其 特征在于: 当端点 A收到步骤 5中的信息后, 所述步骤 6包括:
步骤 6.1、 验证对端点 B的平台组件请求度量参数所标识信息的平台组件 度量值中的平台签名, 若验证不通过, 则丟弃步骤 5.3中的信息, 否则执行步 骤 6.2;
步骤 6.2、 验证步骤 5.3中可信中心 TC的用户签名, 若验证不通过, 则丢 弃步骤 5.3中的信息; 否则, 执行步骤 6.3 ;
步骤 6.3、若已完成对端点 B的平台鉴别, 则依据端点 B的平台身份证书的 验证结果和端点 B的平台组件评估结果生成访问决策;否则本轮平台鉴别协议 结束后将与端点 B执行另外一轮平台鉴别协议。
7、 一种可实现平台配置保护的双向平台鉴别系统, 其特征在于: 所述可 实现平台配置保护的双向平台鉴别系统包括网络中的可信中心 TC、 端点 A以 及端点 B; 所述端点 A和端点 B都信任可信中心 TC;
所述端点 A包括: 用于生成对端点 B的平台组件请求度量参数以及生成对 端点 B的平台组件请求度量参数所标识信息的平台组件评估策略的生成单元; 用于验证对端点 A的平台组件请求度量参数是否符合端点 A所设置的对端点 A 的平台组件请求度量参数所标识信息的平台配置保护策略、验证对端点 B的平 台组件请求度量参数所标识信息的平台组件度量值中的平台签名以及验证可 信中心 TC的用户签名的验证单元; 用于依据对端点 A的平台组件请求度量参 数去获取对端点 A的平台组件请求度量参数所标识信息的平台组件度量值的 获取单元; 以及, 用于依据端点 B的平台身份证书的验证结果和端点 B的平台 组件评估结果生成访问决策的生成单元;
所述端点 B包括: 用于向可信中心 TC发送端点 A的平台身份证书、 对端 点 A的平台组件请求度量参数所标识信息的平台组件度量值、对端点 A的平台 组件请求度量参数、 对端点 A的平台组件请求度量参数所标识信息的平台组 件评估策略、 对端点 A的平台组件请求度量参数所标识信息的平台配置保护 策略、 端点 B的平台身份证书、 对端点 B的平台组件请求度量参数所标识信息 的平台组件度量值、 对端点 B的平台组件请求度量参数、 对端点 B的平台组件 请求度量参数所标识信息的平台组件评估策略和对端点 B的平台组件请求度 量参数所标识信息的平台配置保护策略的发送单元; 用于生成对端点 A的平 台组件请求度量参数以及生成对端点 A的平台组件请求度量参数所标识信息 的平台组件评估策略的生成单元; 用于验证对端点 A的平台组件请求度量参 数所标识信息的平台组件度量值中的平台签名、验证对端点 B的平台组件请求 度量参数是否符合端点 B所设置的对端点 B的平台组件请求度量参数所标识 信息的平台配置保护策略以及验证可信中心 TC的用户签名的险证单元; 用于 依据对端点 B的平台组件请求度量参数去获取对端点 B的平台组件请求度量 参数所标识信息的平台组件度量值的获取单元; 以及, 用于依据端点 A的平 台身份证书的险证结果和端点 A的平台组件评估结果生成访问决策的生成单 元;
所述可信中心 TC包括: 用于处理从端点 B收到的端点 A的平台身份证书、 对端点 A的平台组件请求度量参数所标识信息的平台组件度量值、对端点 A的 平台组件请求度量参数、 对端点 A的平台组件请求度量参数所标识信息的平 台组件评估策略、 对端点 A的平台组件请求度量参数所标识信息的平台配置 保护策略、 端点 B的平台身份证书、 对端点 B的平台组件请求度量参数所标识 信息的平台组件度量值、 对端点 B的平台组件请求度量参数、 对端点 B的平台 组件请求度量参数所标识信息的平台组件评估策略和对端点 B的平台组件请 求度量参数所标识信息的平台配置保护策略, 其中对端点 A的平台组件请求 度量参数、 对端点 B的平台组件请求度量参数、 对端点 B的平台组件请求度量 参数所标识信息的平台组件度量值中可泄露端点 B的平台配置的信息、对端点 B的平台组件请求度量参数所标识信息的平台配置保护策略和对端点 A的平 台组件请求度量参数所标识信息的平台组件评估策略需要利用端点 B和可信 中心 TC之间的安全密钥进行加密保护的处理单元; 用于生成端点 A的平台身 份证书的验证结果、端点 A的平台组件评估结果、端点 A的平台组件修补信息、 端点 B的平台身份证书的验证结果、 端点 B的平台组件评估结果、 端点 B的平 台组件修补信息以及可信中心 TC对这些信息的用户签名的生成单元;
所述端点 A和端点 B通过平台鉴别协议互相连通;所述端点 B和可信中 心 TC通过平台鉴别协议互相连通。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910024004 CN101656719B (zh) | 2009-09-22 | 2009-09-22 | 一种可实现平台配置保护的双向平台鉴别方法 |
CN200910024004.2 | 2009-09-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011035508A1 true WO2011035508A1 (zh) | 2011-03-31 |
Family
ID=41710810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/075389 WO2011035508A1 (zh) | 2009-09-22 | 2009-12-08 | 一种可实现平台配置保护的双向平台鉴别方法及其系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101656719B (zh) |
WO (1) | WO2011035508A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101795281B (zh) * | 2010-03-11 | 2012-03-28 | 西安西电捷通无线网络通信股份有限公司 | 一种适合可信连接架构的平台鉴别实现方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050216736A1 (en) * | 2004-03-24 | 2005-09-29 | Smith Ned M | System and method for combining user and platform authentication in negotiated channel security protocols |
CN101242268A (zh) * | 2007-08-03 | 2008-08-13 | 西安西电捷通无线网络通信有限公司 | 一种基于三元对等鉴别的可信网络连接系统 |
CN101394283A (zh) * | 2008-11-04 | 2009-03-25 | 西安西电捷通无线网络通信有限公司 | 一种基于三元对等鉴别(TePA)的可信平台验证方法 |
-
2009
- 2009-09-22 CN CN 200910024004 patent/CN101656719B/zh active Active
- 2009-12-08 WO PCT/CN2009/075389 patent/WO2011035508A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050216736A1 (en) * | 2004-03-24 | 2005-09-29 | Smith Ned M | System and method for combining user and platform authentication in negotiated channel security protocols |
CN101242268A (zh) * | 2007-08-03 | 2008-08-13 | 西安西电捷通无线网络通信有限公司 | 一种基于三元对等鉴别的可信网络连接系统 |
CN101394283A (zh) * | 2008-11-04 | 2009-03-25 | 西安西电捷通无线网络通信有限公司 | 一种基于三元对等鉴别(TePA)的可信平台验证方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101656719A (zh) | 2010-02-24 |
CN101656719B (zh) | 2011-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8255977B2 (en) | Trusted network connect method based on tri-element peer authentication | |
KR101104486B1 (ko) | 보안 향상을 위한 안전 네트워크 연결 방법 | |
RU2445695C2 (ru) | Система управления доступом в надежную сеть на основе трехэлементной равноправной идентификации | |
US8191113B2 (en) | Trusted network connect system based on tri-element peer authentication | |
US8336081B2 (en) | Trusted network connect system for enhancing the security | |
TWI773199B (zh) | 安全運算裝置、安全運算方法、驗證器及裝置驗證方法 | |
JP5259724B2 (ja) | 3エレメントピア認証に基づく信頼されているネットワークアクセス制御方法 | |
JP5414898B2 (ja) | 有線lanのセキュリティアクセス制御方法及びそのシステム | |
WO2010066187A1 (zh) | 一种基于三元对等鉴别的可信网络连接握手方法 | |
WO2010066169A1 (zh) | 一种基于三元对等鉴别的可信网络连接实现方法 | |
WO2012013011A1 (zh) | 一种适合可信连接架构的平台鉴别策略管理方法及设备 | |
WO2011109959A1 (zh) | 一种适合可信连接架构的平台鉴别实现方法及系统 | |
CN103780395B (zh) | 网络接入证明双向度量的方法和系统 | |
US11502827B1 (en) | Exporting remote cryptographic keys | |
WO2011035508A1 (zh) | 一种可实现平台配置保护的双向平台鉴别方法及其系统 | |
CN113449343B (zh) | 基于量子技术的可信计算系统 | |
Khan | 7. DASCE: DATA SECURITY FOR CLOUD ENVIRONMENT WITH SEMI-TRUSTED THIRD PARTY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09849694 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09849694 Country of ref document: EP Kind code of ref document: A1 |