WO2011034792A1 - Individualized time-to-live for reputation scores of computer files - Google Patents

Individualized time-to-live for reputation scores of computer files Download PDF

Info

Publication number
WO2011034792A1
WO2011034792A1 PCT/US2010/048475 US2010048475W WO2011034792A1 WO 2011034792 A1 WO2011034792 A1 WO 2011034792A1 US 2010048475 W US2010048475 W US 2010048475W WO 2011034792 A1 WO2011034792 A1 WO 2011034792A1
Authority
WO
WIPO (PCT)
Prior art keywords
score
reputation score
file
reputation
ttl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2010/048475
Other languages
English (en)
French (fr)
Inventor
Vijay Seshadri
Zulfikar Ramzan
James Hoagland
Adam L. Glick
Adam Wright
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gen Digital Inc
Original Assignee
Symantec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Symantec Corp filed Critical Symantec Corp
Priority to EP10763494.1A priority Critical patent/EP2478460B1/en
Priority to CA2770265A priority patent/CA2770265C/en
Priority to JP2012528934A priority patent/JP5610451B2/ja
Publication of WO2011034792A1 publication Critical patent/WO2011034792A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1416Event detection, e.g. attack signature detection
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/552Detecting local intrusion or implementing counter-measures involving long-term monitoring or reporting
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/56Computer malware detection or handling, e.g. anti-virus arrangements
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/57Certifying or maintaining trusted computer platforms, e.g. secure boots or power-downs, version controls, system software checks, secure updates or assessing vulnerabilities
    • G06F21/577Assessing vulnerabilities and evaluating computer system security
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2101Auditing as a secondary aspect
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2115Third party

Definitions

  • the disclosure generally relates to the field of computer security, in particular to determining whether a computer file is malicious.
  • Malware can attack modern computers. Malware threats include computer viruses, worms, Trojan horse programs, spyware, adware, crimeware, and phishing websites. Malicious entities sometimes attack servers that store sensitive or confidential data that can be used to the malicious entity's own advantage.
  • malware is becoming less effective.
  • Modern malware is often targeted and delivered to only a relative handful of computers.
  • a Trojan horse program can be designed to target computers in a particular department of a particular enterprise.
  • Such malware might never be encountered by security analysts, and thus the security software might never be configured with signatures for detecting such malware.
  • Mass-distributed malware in turn, can contain polymorphisms that make every instance of the malware unique. As a result, it is difficult to develop signature strings that reliably detect all instances of the malware.
  • a reputation system can determine the reputation of a file encountered on a computer in order to assess the likelihood that the file is malware.
  • One way to develop the reputation for a file is to collect reports from networked computers on which the file is found and base the reputation on information within the reports.
  • a file's reputation can change over time as more reports are collected. There is a need for a way to efficiently provide the changing reputation scores to the networked computers and other entities that use the reputation scores to detect malware.
  • Embodiments of the present disclosure include methods (and corresponding systems and computer program products) for generating and utilizing individualized time-to- lives (TTLs) for reputation scores of computer files.
  • TTLs time-to- lives
  • One aspect of the present disclosure is a computer-implemented method for generating an individualized time -to-live (TTL) for a reputation score of a file, comprising: receiving a request from a client system, the request comprising an identifier of the file; generating a reputation score of the file, the reputation score representing an assessment of a trustworthiness of the file; determining a TTL for the reputation score based on the reputation score, the TTL describing a validity period for the reputation score; and transmitting the reputation score and the TTL to the client system in response to the request.
  • TTL time -to-live
  • Another aspect of the present disclosure is a computer system for generating an individualized time-to-live (TTL) for a reputation score of a file, comprising: a computer- readable storage medium comprising executable computer program code for: a
  • the communication module for receiving a request from a client system, the request comprising an identifier of the file; a reputation score generation module for generating a reputation score of the file, the reputation score representing an assessment of a trustworthiness of the file; and a TTL determination module for determining a TTL for the reputation score based on the reputation score, the TTL describing a validity period for the reputation score; wherein the communication module is further configured for transmitting the reputation score and the TTL to the client system in response to the request.
  • Still another aspect of the present disclosure is a computer-readable storage medium encoded with executable computer program code for generating an individualized time -to-live (TTL) for a reputation score of a file, the computer program code comprising program code for: receiving a request from a client system, the request comprising an identifier of the file; generating a reputation score of the file, the reputation score
  • TTL time -to-live
  • the reputation score representing an assessment of a trustworthiness of the file; determining a TTL for the reputation score based on the reputation score, the TTL describing a validity period for the reputation score; and transmitting the reputation score and the TTL to the client system in response to the request.
  • FIG. 1 is a high-level block diagram of a computing environment according to one embodiment of the present disclosure.
  • FIG. 2 is a high-level block diagram illustrating an example of a computer for use in the computing environment shown in FIG. 1 according to one embodiment of the present disclosure.
  • FIG. 3 is a high-level block diagram illustrating modules within a security module according to one embodiment of the present disclosure.
  • FIG. 4 is a high-level block diagram illustrating modules within a security system according to one embodiment of the present disclosure.
  • FIG. 5 is a flow diagram illustrating a process for determining whether a computer file is malicious based on a reputation score and an individualized time -to-live (TTL) for the reputation score according to one embodiment of the present disclosure.
  • TTL time -to-live
  • FIG. 6 is a flow diagram illustrating a process for continuously generating a current reputation score and an accompanying individualized TTL for the reputation score for a computer file according to one embodiment of the present disclosure.
  • FIG. 1 is a high-level block diagram that illustrates a computing environment 100 for generating and utilizing an individualized time-to-live (TTL) for a reputation score of a computer file, according to one embodiment of the present disclosure.
  • the computing environment 100 includes a client system 110 and a security system 120 connected through a network 130. Only one of each entity is illustrated in order to simplify and clarify the present description. There can be other entities in the computing
  • the client system 110 is an electronic device that can host malicious software.
  • the client system 110 is a conventional computer system executing, for example, a Microsoft Windows-compatible operating system (OS), Apple OS X, and/or a Linux distribution.
  • the client system 110 is another device having computer functionality, such as a personal digital assistant (PDA), mobile telephone, video game system, etc.
  • PDA personal digital assistant
  • the client system 110 typically stores numerous computer files that can host malicious software.
  • Malicious software is generally defined as software that executes on the client system 110 surreptitiously or that has some surreptitious functionality. Malware can take many forms, such as parasitic viruses that attach to legitimate files, worms that exploit weaknesses in the computer's security in order to infect the computer and spread to other computers, Trojan horse programs that appear legitimate but actually contain hidden malicious code, and spyware that monitors keystrokes and/or other actions on the computer in order to capture sensitive information or display
  • the client system 110 executes a security module 115 for detecting the presence of malware.
  • the security module 115 can be, for example, incorporated into the OS of the computer or part of a separate comprehensive security package.
  • the security module 115 is provided by the entity that operates the security system 120.
  • the security module 115 can communicate with the security system 120 via the network 130 .
  • the security module 115 transmits a request for a reputation score of a file to the security system 120, and receives the reputation score and an associated TTL in return.
  • the security module 115 determines whether the file is malicious based on the received reputation score during the period of time defined by the TTL (called the validity period) and other factors such as observed behaviors of the file, and discards the reputation score thereafter.
  • the reputation score represents an assessment of the trustworthiness of the associated file.
  • the reputation score can be a continuous value ranging from 0 to 1, which a score of 0 indicating a very low trustworthiness (e.g., the file is malicious) and a score of 1 indicating a very high trustworthiness (e.g., the file is legitimate).
  • the TTL specifies the period of time that the associated reputation score is valid. Depending upon the embodiment, the TTL can be specified as a length of time after a specified event (e.g., the reputation score is valid for one week after receipt of the score by the client system 110), as an explicit date (e.g., the reputation score is valid until July 1, 2012), or in another manner.
  • the security system 120 is a hardware device and/or software program configured to receive information about computer files (e.g., their behaviors) from the client systems 110 and other sources, generate reputation scores for these files, and determine associated TTLs based on the reputation scores and confidence in the reputation scores.
  • the security system 120 also receives requests from the client systems 110 for reputation scores of particular files, and provides their current reputation scores and TTLs in response.
  • An example of the security system 120 is a web-based system providing security software and services allowing the security module 115 to detect and remediate malware on the client systems 110.
  • the security system 120 generates the reputation score for a file based on attributes that correlate to the trustworthiness of the file. For example, the security system 120 can analyze a reputation of the source(s) of the file (e.g., whether the file was
  • a digital signature e.g., a file digitally signed by a reputable entity is more trustworthy than a file signed by a less reputable entity or a file without a digital signature
  • the file is prevalent among the client systems 110, to name a few.
  • the security system 120 determines a confidence score for a generated reputation score.
  • the confidence score measures the confidence the security system 120 has in the reputation score (i.e., the likelihood of the reputation score reflecting the true trustworthiness of the underlying file).
  • the confidence score can be a continuous value ranging from 0 to 1 , which a score of 0 indicating a very low confidence (e.g., the indication value of the reputation score is very low) and a score of 1 indicating a very high confidence (e.g., the reputation score almost certainly reflects the true
  • the security system 120 determines the confidence score based on attributes that correlate to the confidence in the generated reputation score, such as the value of the reputation score, the underlying file's age (i.e., how long the security system 120 has known about the file), and the file's prevalence across the user base of the security system 120. [0028]
  • the security system 120 computes the TTL based on attributes that correlate to the trustworthiness of the file (i.e., the reputation score) and the confidence score for the reputation score. Generally, the security system 120 sets long TTLs for reputation scores with high confidence scores, and sets short TTLs for reputation scores with low confidence scores.
  • the TTL represents an assessment of the length of time it takes for the security system 120 to collect enough additional related information that may cause the security system 120 to generate a materially different reputation score for the file. If the assessment of trustworthiness of a file is unlikely to change for a long time, the TTL is long, and otherwise short. By setting long TTLs for reputation scores with high confidence scores, the client system 110 relies on such reputation scores for a long period of time before requesting an update from the security system 120.
  • cloud computing refers to a style of computing in which dynamically scalable and often virtualized resources are provided as a service over the Internet.
  • cloud computing customers generally do not own the physical infrastructure serving as host to the software platform in question, but instead rent usage of resources from a third-party provider, where consume these resources as a service and pay only for resources used.
  • the network 130 enables communications between the client system 110 and the security system 120.
  • the network 130 uses standard
  • the network 130 can include links using technologies such as Ethernet, 802.11, worldwide interoperability for microwave access (WiMAX), 3G, digital subscriber line (DSL), asynchronous transfer mode (ATM), InfiniBand, PCI Express Advanced Switching, etc.
  • the networking protocols used on the network 130 can include multiprotocol label switching (MPLS), the transmission control protocol/Internet protocol (TCP/IP), the User Datagram Protocol (UDP), the hypertext transport protocol (HTTP), the simple mail transfer protocol (SMTP), the file transfer protocol (FTP), etc.
  • the data exchanged over the network 130 can be represented using technologies and/or formats including the hypertext markup language (HTML), the extensible markup language (XML), etc.
  • links can be encrypted using conventional encryption technologies such as secure sockets layer (SSL), transport layer security (TLS), virtual private networks (VPNs), Internet Protocol security (IPsec), etc.
  • SSL secure sockets layer
  • TLS transport layer security
  • VPNs virtual private networks
  • IPsec Internet Protocol security
  • the entities can use custom and/or dedicated data communications technologies instead of, or in addition to, the ones described above.
  • the network 130 can also include links to other networks such as the Internet.
  • FIG. 2 is a high-level block diagram illustrating an example computer 200.
  • the computer 200 includes at least one processor 202 coupled to a chipset 204.
  • the chipset 204 includes a memory controller hub 220 and an input/output (I/O) controller hub 222.
  • a memory 206 and a graphics adapter 212 are coupled to the memory controller hub 220, and a display 218 is coupled to the graphics adapter 212.
  • a storage device 208, keyboard 210, pointing device 214, and network adapter 216 are coupled to the I/O controller hub 222.
  • embodiments of the computer 200 have different architectures.
  • the storage device 208 is a computer-readable storage medium such as a hard drive, compact disk read-only memory (CD-ROM), DVD, or a solid-state memory device.
  • the memory 206 holds instructions and data used by the processor 202.
  • the pointing device 214 is a mouse, track ball, or other type of pointing device, and is used in combination with the keyboard 210 to input data into the computer system 200.
  • the graphics adapter 212 displays images and other information on the display 218.
  • the network adapter 216 couples the computer system 200 to one or more computer networks.
  • the computer 200 is adapted to execute computer program modules for providing functionality described herein.
  • module refers to computer program logic used to provide the specified functionality.
  • a module can be implemented in hardware, firmware, and/or software.
  • program modules are stored on the storage device 208, loaded into the memory 206, and executed by the processor 202.
  • the types of computers 200 used by the entities of FIG. 1 can vary depending upon the embodiment and the processing power required by the entity.
  • the security system 120 might comprise multiple blade servers working together to provide the functionality described herein.
  • the client system 110 might comprise a mobile telephone with limited processing power.
  • the computers 200 can lack some of the components described above, such as keyboards 210, graphics adapters 212, and displays 218. EXAMPLE ARCHITECTURAL OVERVIEW OF THE SECURITY MODULE
  • FIG. 3 is a high-level block diagram illustrating a detailed view of modules within the security module 115 according to one embodiment. Some embodiments of the security module 115 have different and/or other modules than the ones described herein. Similarly, the functions can be distributed among the modules in accordance with other embodiments in a different manner than is described here. As illustrated, the security module 115 includes a file monitor module 310, a security analysis engine 320, a
  • the file monitor module 310 continuously monitors computer files within the client system 110 and collects related information such as their sources (e.g., the websites from which the files were downloaded), digital signatures, behaviors, and system properties such as the dates of creation and the dates of last modification. Such related information is collectively called the "metadata" of the associated files.
  • the security analysis engine 320 determines whether the monitored files are malicious based on factors such as their metadata and reputation scores. In one
  • the security analysis engine 320 makes the determination for a file when a suspicious behavior (e.g., an attempt to write to the system registry) is observed for that file. For example, the security analysis engine 320 can determines that a first file with a good reputation (i.e., high reputation score) that attempts to write to the registry is probably not malware, and that a second file with a bad reputation (i.e., low reputation score) that attempts to write to the registry is probably malware.
  • a good reputation i.e., high reputation score
  • a bad reputation i.e., low reputation score
  • the security analysis engine 320 coordinates with the communication module 330 to request a current reputation score and an associated TTL from the security system 120. Otherwise, if the file is associated with a valid reputation score (e.g., the validity period has not ended), the security analysis engine 320 determines whether the file is malicious based on the reputation score and other factors such as the metadata.
  • the security analysis engine 320 creates a black list of files determined malicious and a white list of files determined legitimate. If the verdict for a file (i.e., whether the file is malicious) changes, for example, because of a subsequent reputation score change, the security analysis engine 320 updates the black list and/or white list accordingly.
  • the communication module 330 communicates with the security system 120 to determine the reputation scores and corresponding TTLs for the monitored files.
  • the communication module 330 transmits an identifier of the file (e.g., a digital fingerprint) and related information (e.g., the metadata) to the security system 120, and receives a reputation score and an accompanying TTL in response.
  • the file instead of or in addition to the identifier, the file itself can be transmitted to the security system 120.
  • the communication module 330 stores the reputation score and the TTL in the data store 340 together with other related information for the file.
  • the data store 340 stores data used by the client system 110. Examples of such data include identifiers of the computer files resided on the client system 110 and their metadata, reputation scores, and associated TTLs, and information about the security system 120 (e.g., IP address).
  • the data store 340 may be a relational database or any other type of database.
  • FIG. 4 is a high-level block diagram illustrating a detailed view of modules within the security system 120 according to one embodiment. Some embodiments of the security system 120 have different and/or other modules than the ones described herein.
  • the security system 120 includes a communication module 410, a reputation score generation module 420, a confidence determination module 430, a TTL determination module 440, and a data store 450.
  • the communication module 410 receives inquiries from the security modules 115 running on the client systems 110 and provides responses to the security modules 115.
  • the inquiries include identifiers of computer files and may also include metadata for the files.
  • the responses include reputation scores for the identified files and TTLs of the reputation scores.
  • the communication module 410 contacts the reputation score generation module 420 and the TTL determination module 440 for the current reputation scores and associated TTLs, accordingly.
  • the communication module 410 also receives information related to computer files from client systems 110 and other resources and stores the received
  • the reputation score generation module 420 generates reputation scores for computer files. As described above, a reputation score is an assessment of the trustworthiness of the associated file. The reputation score generation module 420 generates the reputation score based on attributes that correlate to the trustworthiness of the file. Examples of such attributes include the prevalence (or popularity) of the file among the user base of the security system 120, the reputation of sources of the file, the reputation scores of other files resided on the same client systems 110 with the file, and the observed behaviors of the file, to name a few. In one embodiment, the reputation score generation module 420 continuously generates reputation scores as requests and information about computer files are received from the client systems 1 10 and other sources.
  • the confidence determination module 430 determines the confidence scores for the reputation scores generated by the reputation score generation module 420. As described above, a confidence score measures the confidence the security system 120 has in the generated reputation score. The confidence determination module 430 determines the confidence score based on attributes that correlate to the confidence in the generated reputation score. Examples of such attributes include the value of the reputation score, the file's age (i.e., how long the security system 120 has known about the file), and the file's prevalence across the user base of the security system 120.
  • a reputation score that is on or near the extreme ends of the spectrum serves as an indication of high confidence in the reputation score, since such a reputation score is unlikely to change materially over time. For example, if a reputation score is close to 0, the low end of the spectrum, indicating that the associated file is almost certainly malicious, the chance that the reputation score will change substantially over time is close to zero.
  • reputation scores are organized into the following reputation bands: extreme (higher than 0.95 or less than 0.05), decisive (between 0.95 and 0.8 or between 0.05 and 0.2), marginally decisive (between 0.7 and 0.8 or between 0.2 and 0.3), and indecisive (between 0.3 and 0.7).
  • the length of time the security system 120 has known about a file is another indicator of confidence in the reputation score of the file. If a file is relatively new to the security system 120, the confidence of the reputation score is low since the security system 120 probably has not collected enough information to make a good assessment of its trustworthiness. As the file becomes more familiar to the security system 120, the confidence in the reputation score increases, since the security system 120 is likely to have collected more information and can make a better assessment. In addition, if the security system 120 has known about the file for a long time, the chance of new information that will materially change the reputation score surfacing in the near future is also low.
  • file ages are organized into the following age bands: old (greater than 6 months), middle-aged (equal or less than 6 months, older than 3 months), young (equal or less than 3 months, older than 1.5 months); very young (equal or less than 1.5 months).
  • file prevalence is also an indicator of confidence in the reputation score of the file. Files that are more prevalent tend to be better known to the security system 120, and as a result the security system 120 tends to have more information about such prevalent files, boosting confidence of their reputation scores.
  • file prevalence is categorized into the following prevalence bands: very high (more than 50,000 machines), high (equal or less than 50,000, more than 25,000), medium (equal or less than 25,000, more than 10,000), low (equal or less than 10,000, more than 1,000), very low (equal or less than 1,000).
  • the confidence determination module 430 determines the confidence scores by collectively considering multiple confidence indicators such as the ones described above. For example, the confidence determination module 430 can determine the confidence scores by walking through the following table:
  • the confidence determination module 430 can take the confidence score for the reputation score of a file from the first row (from top down) in the table for which the attributes of the file meet or exceed what is specified in each category. To simplify the issue, the confidence scores determined using the above table has one of the following four values: very high, high, low, and very low.
  • the TTL determination module 440 determines TTLs for reputation scores generated by the reputation score generation module 420. As described above, a TTL describes the validity period for its associated reputation score. The TTL determination module 440 determines a TTL based on the associated reputation score and the confidence score determined for the reputation score. Continuing with the above example, the TTL determination module 440 can determine the TTLs by walking through the following table in a similar manner:
  • the TTLs determined using the above table has one of the following four values: one year, one month, one week, and one day.
  • the data store 450 stores data used by the security system 120. Examples of such data include information related to computer files (e.g., identifiers such as digital fingerprints, metadata, past/current reputation scores and TTLs), websites, digital signatures, and client systems 110, to name a few. Information related to files can be grouped together and indexed by file identifiers to facilitate rapid retrieval. Similar to the data store 340, the data store 450 may be a relational database or any other type of database.
  • FIG. 5 is a flow diagram illustrating a process 500 for the security module 115 to determine whether a computer file is malicious based on a reputation score and an individualized TTL for the reputation score, according to one embodiment.
  • Other embodiments can perform the steps of the process 500 in different orders.
  • other embodiments can include different and/or additional steps than the ones described herein.
  • the security module 115 running on the client system 110 identifies 510 a computer file for security examination. For example, the security module 115 monitors files residing on the client system 110, observes an attempt to perform a suspicious activity by one of the monitored files, and identifies 510 that file for security examination.
  • the security module 115 determines 520 whether the identified file has a valid reputation score available. For example, the security module 115 searches in the data store 340 for the presence of a reputation score associated with the identified file and the accompanying TTL. If no such reputation score is present or the available reputation score is already expired (i.e., as indicated by the TTL), the security module 115 determines 520 that no valid reputation score is available. Otherwise, if a reputation score for the identified file is present in the data store 340 and the validity period defined by the accompanying TTL has not ended, the security module 115 assumes the reputation score to be a valid assessment of the trustworthiness of the identified file, and determines 520 that the identified file has a valid reputation score available.
  • the security module 115 determines 550 whether the file is malicious based on the reputation score and other factors such as the observed behaviors of the identified file. The security module 115 can further determine whether to allow any attempt to perform suspicious activities by the identified file based on whether the file is determined malicious.
  • the security module 115 requests 530 a reputation score for the identified file from the security system 120. For example, the security module 115 transmits to the security system 120 a request including an identifier of the file (e.g., the digital fingerprint). The security module 115 may also transmit metadata (e.g., observed behavior) for the identified file to the security system 120 along with the request. The security module 115 then receives 540 a reputation score and an
  • the security module 115 determines 550 whether the file is malicious as described above.
  • FIG. 6 is a flow diagram illustrating a process 600 for the security system 120 to continuously generate a current reputation score and an accompanying individualized TTL for the reputation score for a computer file, according to one embodiment.
  • Other embodiments can include different and/or additional steps than the ones described herein.
  • the security system 120 receives 610 information related to a computer file. Examples of the related information include an identifier of the computer file (e.g., digital signature), observed behaviors, source(s), prevalence (e.g., the client systems 110 hosting the file), and age (e.g., how long the file exists on a particular the client system 110), to name a few.
  • the security system 120 receives 610 the information from sources such as the security module 115 running on the client system 110, the data store 450, and other sources.
  • the security system 120 stores the related information received from the security module 1 15 in the data store 450.
  • the security system 120 generates 620 a current reputation score for the file based on the received information, determines 630 a confidence score for the generated reputation score, and determines 640 a TTL for the generated reputation score based on factors including the reputation score and the confidence score.
  • the reputation score along with the TTL and the confidence score can be stored in the data store 450 as the current reputation score for the computer file.
  • the process 600 is repeated continuously to generate updated reputation scores and TTLs that account for newly-received related information for the file.
  • the security system 120 may repeat the process 600 when new related information is received, when receiving a request for the current reputation score and TTL of the file, or at a predetermined time interval.
  • the security system 120 receives 610 a request for a reputation score for a file along with metadata of that file from the security module 115, generates 620 a reputation score taking into account the received metadata, and determines 630, 640 a confidence score and a TTL, and returns the reputation score and the TTL to the security module 115.
  • This approach intelligently determines an individualized TTL for a reputation score of a particular file based on attributes of the file that reflect the confidence in the reputation score. As a result, the number of requests the security modules 115 transmit to the security system 120 regarding files that are highly likely to be good or bad (i.e., files with high-confidence reputation scores) are reduced, and therefore the performances of the client systems 110 and the security system 120 are improved.
  • this approach advantageously achieves a tradeoff between providing satisfying realtime security to the client systems 110 and maintaining backend performance and scalability.
  • At least a part of the security system 120 can be
  • the security module 115 running on the client system 110 such that the client system 110 locally generates reputation scores and TTLs for computer files and does not regenerate the reputation scores until their TTLs expire.
  • the TTL provided by the security system 120 can be further customized by the client system 110 based on its local security policy. For example, if the client system 110 has low security policies in place (e.g., computers in an Internet cafe) then the client system 1 10 can extend the TTLs of the reputation scores by a pre-determined and customizable factor. On the other hand, if the client system 110 enforces stringent local security policies, then the client system 1 10 may reduce the TTLs provided by the security system 120.
  • any reference to "one embodiment” or “an embodiment” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment.
  • the appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
  • Coupled and “connected” along with their derivatives. It should be understood that these terms are not intended as synonyms for each other. For example, some embodiments may be described using the term “connected” to indicate that two or more elements are in direct physical or electrical contact with each other. In another example, some embodiments may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. The embodiments are not limited in this context.
  • the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion.
  • a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • "or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Information Transfer Between Computers (AREA)
  • Computer And Data Communications (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
PCT/US2010/048475 2009-09-15 2010-09-10 Individualized time-to-live for reputation scores of computer files Ceased WO2011034792A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10763494.1A EP2478460B1 (en) 2009-09-15 2010-09-10 Individualized time-to-live for reputation scores of computer files
CA2770265A CA2770265C (en) 2009-09-15 2010-09-10 Individualized time-to-live for reputation scores of computer files
JP2012528934A JP5610451B2 (ja) 2009-09-15 2010-09-10 コンピュータファイルの評判スコアの個別有効期間

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/560,261 US8800030B2 (en) 2009-09-15 2009-09-15 Individualized time-to-live for reputation scores of computer files
US12/560,261 2009-09-15

Publications (1)

Publication Number Publication Date
WO2011034792A1 true WO2011034792A1 (en) 2011-03-24

Family

ID=43064680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/048475 Ceased WO2011034792A1 (en) 2009-09-15 2010-09-10 Individualized time-to-live for reputation scores of computer files

Country Status (5)

Country Link
US (1) US8800030B2 (enExample)
EP (1) EP2478460B1 (enExample)
JP (1) JP5610451B2 (enExample)
CA (1) CA2770265C (enExample)
WO (1) WO2011034792A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143132A (ja) * 2012-01-10 2013-07-22 Xecure Lab Co Ltd 悪意のある書類ファイルのデジタル指紋を取得する方法

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2653834B2 (ja) 1988-06-07 1997-09-17 マツダ株式会社 過給機付エンジンの吸気装置
GB0513375D0 (en) 2005-06-30 2005-08-03 Retento Ltd Computer security
US8312536B2 (en) 2006-12-29 2012-11-13 Symantec Corporation Hygiene-based computer security
US8250657B1 (en) 2006-12-29 2012-08-21 Symantec Corporation Web site hygiene-based computer security
US8499063B1 (en) 2008-03-31 2013-07-30 Symantec Corporation Uninstall and system performance based software application reputation
US8769702B2 (en) 2008-04-16 2014-07-01 Micosoft Corporation Application reputation service
US8595282B2 (en) 2008-06-30 2013-11-26 Symantec Corporation Simplified communication of a reputation score for an entity
US8413251B1 (en) 2008-09-30 2013-04-02 Symantec Corporation Using disposable data misuse to determine reputation
US8904520B1 (en) 2009-03-19 2014-12-02 Symantec Corporation Communication-based reputation system
US8381289B1 (en) 2009-03-31 2013-02-19 Symantec Corporation Communication-based host reputation system
US8341745B1 (en) 2010-02-22 2012-12-25 Symantec Corporation Inferring file and website reputations by belief propagation leveraging machine reputation
US10210162B1 (en) 2010-03-29 2019-02-19 Carbonite, Inc. Log file management
US9390263B2 (en) 2010-03-31 2016-07-12 Sophos Limited Use of an application controller to monitor and control software file and application environments
US8839432B1 (en) * 2010-04-01 2014-09-16 Symantec Corporation Method and apparatus for performing a reputation based analysis on a malicious infection to secure a computer
US8510836B1 (en) * 2010-07-06 2013-08-13 Symantec Corporation Lineage-based reputation system
US9235586B2 (en) * 2010-09-13 2016-01-12 Microsoft Technology Licensing, Llc Reputation checking obtained files
US8782149B2 (en) * 2010-11-09 2014-07-15 Comcast Interactive Media, Llc Smart address book
US8863291B2 (en) 2011-01-20 2014-10-14 Microsoft Corporation Reputation checking of executable programs
US8732587B2 (en) * 2011-03-21 2014-05-20 Symantec Corporation Systems and methods for displaying trustworthiness classifications for files as visually overlaid icons
US9319420B1 (en) 2011-06-08 2016-04-19 United Services Automobile Association (Usaa) Cyber intelligence clearinghouse
US9824198B2 (en) 2011-07-14 2017-11-21 Docusign, Inc. System and method for identity and reputation score based on transaction history
US9715325B1 (en) 2012-06-21 2017-07-25 Open Text Corporation Activity stream based interaction
US9124472B1 (en) 2012-07-25 2015-09-01 Symantec Corporation Providing file information to a client responsive to a file download stability prediction
GB2506605A (en) * 2012-10-02 2014-04-09 F Secure Corp Identifying computer file based security threats by analysis of communication requests from files to recognise requests sent to untrustworthy domains
JP5874659B2 (ja) 2013-02-28 2016-03-02 Jfeスチール株式会社 2ピース缶用ラミネート金属板および2ピースラミネート缶体
WO2014142986A1 (en) * 2013-03-15 2014-09-18 Mcafee, Inc. Server-assisted anti-malware client
WO2014143012A1 (en) 2013-03-15 2014-09-18 Mcafee, Inc. Remote malware remediation
US9311480B2 (en) 2013-03-15 2016-04-12 Mcafee, Inc. Server-assisted anti-malware client
US9432437B1 (en) * 2013-08-15 2016-08-30 Sprint Communications Company L.P. Dynamic telemetry client message routing
US9065849B1 (en) * 2013-09-18 2015-06-23 Symantec Corporation Systems and methods for determining trustworthiness of software programs
US9607086B2 (en) 2014-03-27 2017-03-28 Mcafee, Inc. Providing prevalence information using query data
US10735550B2 (en) * 2014-04-30 2020-08-04 Webroot Inc. Smart caching based on reputation information
US9323924B1 (en) * 2014-05-09 2016-04-26 Symantec Corporation Systems and methods for establishing reputations of files
US10686759B2 (en) 2014-06-22 2020-06-16 Webroot, Inc. Network threat prediction and blocking
GB2584585B8 (en) * 2014-12-15 2021-11-03 Sophos Ltd Monitoring variations in observable events for threat detection
US9774613B2 (en) 2014-12-15 2017-09-26 Sophos Limited Server drift monitoring
US9419989B2 (en) * 2014-12-15 2016-08-16 Sophos Limited Threat detection using URL cache hits
US9571512B2 (en) 2014-12-15 2017-02-14 Sophos Limited Threat detection using endpoint variance
US9736349B2 (en) * 2014-12-24 2017-08-15 Intel Corporation Adaptive video end-to-end network with local abstraction
WO2016178127A1 (en) 2015-05-03 2016-11-10 Arm Technologies Israel Ltd. System, device, and method of managing trustworthiness of electronic devices
US10395133B1 (en) 2015-05-08 2019-08-27 Open Text Corporation Image box filtering for optical character recognition
US10599844B2 (en) 2015-05-12 2020-03-24 Webroot, Inc. Automatic threat detection of executable files based on static data analysis
US10050980B2 (en) * 2015-06-27 2018-08-14 Mcafee, Llc Enterprise reputations for uniform resource locators
US10289686B1 (en) 2015-06-30 2019-05-14 Open Text Corporation Method and system for using dynamic content types
US10606844B1 (en) * 2015-12-04 2020-03-31 Ca, Inc. Method and apparatus for identifying legitimate files using partial hash based cloud reputation
US11122063B2 (en) * 2017-11-17 2021-09-14 Accenture Global Solutions Limited Malicious domain scoping recommendation system
US10728034B2 (en) 2018-02-23 2020-07-28 Webroot Inc. Security privilege escalation exploit detection and mitigation
US20200004839A1 (en) * 2018-06-29 2020-01-02 Microsoft Technology Licensing, Llc Download management
US11314863B2 (en) 2019-03-27 2022-04-26 Webroot, Inc. Behavioral threat detection definition and compilation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090187442A1 (en) * 2008-01-23 2009-07-23 Microsoft Corporation Feedback augmented object reputation service

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020078382A1 (en) * 2000-11-29 2002-06-20 Ali Sheikh Scalable system for monitoring network system and components and methodology therefore
US7748038B2 (en) * 2004-06-16 2010-06-29 Ironport Systems, Inc. Method and apparatus for managing computer virus outbreaks
US7953814B1 (en) * 2005-02-28 2011-05-31 Mcafee, Inc. Stopping and remediating outbound messaging abuse
US7908653B2 (en) 2004-06-29 2011-03-15 Intel Corporation Method of improving computer security through sandboxing
US10043008B2 (en) * 2004-10-29 2018-08-07 Microsoft Technology Licensing, Llc Efficient white listing of user-modifiable files
US20060253584A1 (en) * 2005-05-03 2006-11-09 Dixon Christopher J Reputation of an entity associated with a content item
JP5118020B2 (ja) * 2005-05-05 2013-01-16 シスコ アイアンポート システムズ エルエルシー 電子メッセージ中での脅威の識別
US8528089B2 (en) * 2006-12-19 2013-09-03 Mcafee, Inc. Known files database for malware elimination
US8312536B2 (en) * 2006-12-29 2012-11-13 Symantec Corporation Hygiene-based computer security
US8959568B2 (en) 2007-03-14 2015-02-17 Microsoft Corporation Enterprise security assessment sharing
US7953969B2 (en) * 2007-04-16 2011-05-31 Microsoft Corporation Reduction of false positive reputations through collection of overrides from customer deployments
US8312546B2 (en) * 2007-04-23 2012-11-13 Mcafee, Inc. Systems, apparatus, and methods for detecting malware
US8352511B2 (en) * 2007-08-29 2013-01-08 Partnet, Inc. Systems and methods for providing a confidence-based ranking algorithm
US8931086B2 (en) * 2008-09-26 2015-01-06 Symantec Corporation Method and apparatus for reducing false positive detection of malware
US9081958B2 (en) * 2009-08-13 2015-07-14 Symantec Corporation Using confidence about user intent in a reputation system
US8621630B2 (en) * 2011-06-17 2013-12-31 Microsoft Corporation System, method and device for cloud-based content inspection for mobile devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090187442A1 (en) * 2008-01-23 2009-07-23 Microsoft Corporation Feedback augmented object reputation service

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOSANG ET AL: "A survey of trust and reputation systems for online service provision", DECISION SUPPORT SYSTEMS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 43, no. 2, 10 February 2007 (2007-02-10), pages 618 - 644, XP005744882, ISSN: 0167-9236, DOI: DOI:10.1016/J.DSS.2005.05.019 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143132A (ja) * 2012-01-10 2013-07-22 Xecure Lab Co Ltd 悪意のある書類ファイルのデジタル指紋を取得する方法

Also Published As

Publication number Publication date
JP2013504824A (ja) 2013-02-07
EP2478460B1 (en) 2015-04-22
JP5610451B2 (ja) 2014-10-22
US20110067101A1 (en) 2011-03-17
CA2770265C (en) 2016-10-11
EP2478460A1 (en) 2012-07-25
US8800030B2 (en) 2014-08-05
CA2770265A1 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
CA2770265C (en) Individualized time-to-live for reputation scores of computer files
US9246931B1 (en) Communication-based reputation system
US8239944B1 (en) Reducing malware signature set size through server-side processing
US8015284B1 (en) Discerning use of signatures by third party vendors
US8413244B1 (en) Using temporal attributes to detect malware
AU2018217323B2 (en) Methods and systems for identifying potential enterprise software threats based on visual and non-visual data
US8381289B1 (en) Communication-based host reputation system
US8756691B2 (en) IP-based blocking of malware
US8621233B1 (en) Malware detection using file names
US8095964B1 (en) Peer computer based threat detection
US8312537B1 (en) Reputation based identification of false positive malware detections
US9178906B1 (en) Detecting and remediating malware dropped by files
US8341745B1 (en) Inferring file and website reputations by belief propagation leveraging machine reputation
US8726391B1 (en) Scheduling malware signature updates in relation to threat awareness and environmental safety
US8413235B1 (en) Malware detection using file heritage data
US9065845B1 (en) Detecting misuse of trusted seals
KR101497742B1 (ko) 인증, 데이터 전송 및 피싱에 대한 보호를 위한 방법 및 시스템
US8510836B1 (en) Lineage-based reputation system
US8190647B1 (en) Decision tree induction that is sensitive to attribute computational complexity
US8239953B1 (en) Applying differing security policies for users who contribute differently to machine hygiene
JP2015535115A (ja) マルウェア定義パッケージサイズを縮小するためのテレメトリの使用
WO2014137321A1 (en) Modification of application store output
US8516100B1 (en) Method and apparatus for detecting system message misrepresentation using a keyword analysis
JP2016525750A (ja) 合法的オブジェクトの誤用の識別
US20250390576A1 (en) Specific file detection baked into machine learning pipelines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10763494

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2770265

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012528934

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010763494

Country of ref document: EP