WO2011034115A1 - Dissociation method and dissociation agent for avidin and biotin - Google Patents

Dissociation method and dissociation agent for avidin and biotin Download PDF

Info

Publication number
WO2011034115A1
WO2011034115A1 PCT/JP2010/066005 JP2010066005W WO2011034115A1 WO 2011034115 A1 WO2011034115 A1 WO 2011034115A1 JP 2010066005 W JP2010066005 W JP 2010066005W WO 2011034115 A1 WO2011034115 A1 WO 2011034115A1
Authority
WO
WIPO (PCT)
Prior art keywords
biotin
derivative
avidin
water
target substance
Prior art date
Application number
PCT/JP2010/066005
Other languages
French (fr)
Japanese (ja)
Inventor
片寄 聡
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN201080040460.7A priority Critical patent/CN102575244B/en
Priority to EP10817228.9A priority patent/EP2479268B1/en
Priority to US13/394,563 priority patent/US8685655B2/en
Priority to JP2011531955A priority patent/JP5686098B2/en
Publication of WO2011034115A1 publication Critical patent/WO2011034115A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes

Definitions

  • the present invention relates to a dissociation method and dissociator for avidin or streptavidin and a biotin derivative.
  • Avidin or streptavidin has a strong specific affinity with biotin or a biotin derivative, and can easily be bound (mixed between avidin and biotin) when mixed under physiological conditions.
  • a binding substance or a binding between avidin or the like and a biotin derivative is collectively referred to as “ABC binding”) to form a conjugate of avidin or the like and biotin to form a target substance such as a cell (“target A technique for separating the material is also used (Patent Document 1).
  • an ABC bond is formed by mixing a biotin-labeled probe molecule in which biotin is previously bound to a probe molecule such as an antibody having binding properties with a target substance and an insoluble carrier on which avidin is immobilized under physiological conditions. If the target substance can be captured using this capture carrier, and then the ABC binding or the binding between the probe molecule and the target substance can be cleaved, the target can be captured. It is possible to separate substances (Patent Document 1).
  • Patent Document 2 a method using a biotin derivative having a lower affinity for avidin or the like than biotin
  • a method using an avidin variant having a lower affinity for biotin than avidin is known.
  • the above-mentioned capture carrier is prepared using a biotin derivative such as desthiobiotin (Patent Document 2) having a lower affinity for avidin or the like than biotin, and after capturing the target substance, a large amount of biotin
  • Patent Document 2 a method of cleaving ABC binding and separating a target substance by adding.
  • biotin is considered to function as a competitive inhibitor for the binding of desthiobiotin and avidin.
  • biotin is considered to function as a competitive inhibitor for the binding of desthiobiotin and avidin.
  • it is difficult to efficiently cleave ABC bonds, and it is difficult to efficiently separate target substances.
  • the present invention provides a method for efficiently dissociating avidin or the like and a biotin derivative having an affinity lower than that of biotin in a short time under mild conditions and a dissociator thereof.
  • the present inventors surprisingly found a water-soluble polymer to which biotin and the like are bound.
  • a dissociating agent it was found that avidin and the like and a biotin derivative having a lower affinity than biotin were dissociated extremely efficiently under mild conditions, and the present invention was completed.
  • the present invention relates to a conjugate of biotin derivative (1) having a lower affinity for avidin and avidin or a conjugate of streptavidin and biotin derivative (1) (hereinafter collectively referred to as “avidin-biotin complex”). And a biosoluble derivative (1) are dissociated with a biotin or a derivative thereof (2) and a water-soluble polymer (hereinafter referred to as “dissociator”). A method is provided.
  • the present invention also provides a method for separating a target substance, (A) a step of mixing a capture carrier and a target substance in an aqueous solvent to obtain a mixed solution 1; (B) a step of mixing the liquid mixture 1 with a water-soluble polymer to which biotin or a derivative thereof (2) is bound to obtain a liquid mixture 2; (C) A method including the step of separating the target substance from the mixed solution 2 is provided.
  • the capture carrier is a combination of the following (A) and (B).
  • Affinity immobilized on a substance having specific affinity for a target substance hereinafter referred to as “probe molecule” is higher than that of biotin.
  • the present invention provides a dissociator used for dissociating avidin or streptavidin and biotin derivative (1), which contains a water-soluble polymer to which biotin or a derivative thereof (2) is bound.
  • the bond between avidin and the biotin derivative (1) can be efficiently cleaved in a short time under mild conditions to dissociate the avidin and the biotin derivative (1). Further, by applying the method to the separation of the target substance, the target substance obtained by binding to the capture carrier can be easily separated. Even when the target substance is unstable with respect to temperature conditions and pH conditions such as proteins and cells, the target substance can be separated while maintaining its activity by using the method of the present invention.
  • the method for dissociating avidin and the like and the biotin derivative (1) according to an embodiment of the present invention includes a step of mixing an avidin-biotin complex and a water-soluble polymer to which biotin or a derivative thereof (2) is bound.
  • the dissociation method of the present invention is usually performed in a solvent containing water as a main component.
  • the avidin-biotin complex is preferably dissolved in the solvent.
  • the avidin-biotin complex is contained in the solvent together with the carrier. May be dispersed.
  • the avidin-biotin complex used in the present invention is a conjugate of avidin or streptavidin and a biotin derivative (3) having a lower affinity for avidin than biotin (a compound represented by the following formula (3)).
  • avidin or streptavidin commercially available products can be used, and these may be those obtained by separating and purifying those existing in nature, or artificially produced by genetic engineering techniques. It may be an avidin or a streptavidin derivative modified within a range not losing its ability to bind to biotin. Examples of the derivatives of avidin or streptavidin include chemically modified avidin or streptavidin such as succinylation, and a monomer of avidin or streptavidin which is usually a tetramer.
  • the biotin derivative (1) is not particularly limited as long as it is a biotin derivative having a lower affinity for avidin than biotin.
  • Avidin and biotin derivative (1) are effectively dissociated by mixing the avidin-biotin complex with a water-soluble polymer to which biotin or its derivative (2) is bound due to its lower affinity for avidin. can do.
  • Examples of such a biotin derivative (1) include desthiobiotin (a compound represented by the following formula (4)), 2-iminobiotin (a compound represented by the following formula (5)), 3,4- Derivatives that differ from biotin in the cyclic structure portion of biotin such as diaminobiotin (compound represented by the following formula (6)), and chemically modified products thereof.
  • a lower affinity for avidin than biotin means that the binding constant is one or more orders of magnitude smaller than that of avidin and biotin (10 15 M).
  • the binding constant between the compounds represented by the above formulas (4) to (6) and avidin is 10 6 M to 10 13 M.
  • the avidin-biotin complex used in the present invention may be immobilized on an insoluble carrier via avidin or the like. Since the avidin-biotin complex is immobilized on an insoluble carrier, the avidin-biotin complex can be easily separated from the dispersion containing the avidin-biotin complex by a method such as centrifugation or filtration.
  • the insoluble carrier used for immobilizing avidin and the like is not particularly limited in shape, and examples thereof include organic or inorganic particles, a flat substrate, a substrate having a fine channel, a microwell plate, and the like.
  • the organic particles are preferably particles made of an organic synthetic polymer mainly composed of polystyrene having an average particle size of 0.5 to 10 ⁇ m.
  • the particles are preferably magnetic particles in that they can be separated by magnetism. Examples of commercially available magnetic particles include Dynabeads M-450 Tosylactivated (manufactured by Invitrogen) and Magnosphere MS300 / Carboxyl (manufactured by JSR Corporation).
  • the magnetic particles are preferably produced according to a known method (for example, see Japanese Patent Publication No. 05-010808 or Japanese Patent Application Laid-Open No. 2007-288133), and can reduce nonspecific adsorption of proteins and cells. .
  • the method for immobilizing an insoluble carrier such as avidin is not particularly limited, and a known method (for example, see JP-A-2001-158800) can be used.
  • a known method for example, see JP-A-2001-158800
  • an amide bond is formed by reacting an amino group in a molecule such as avidin with a carboxyl group on the carrier surface in the presence of a dehydrating condensation agent such as water-soluble carbodiimide.
  • a dehydration condensing agent may be reacted in advance with the carboxyl group of the carrier, and then avidin or streptavidin may be added and reacted.
  • the avidin-biotin complex used in the present invention may be a conjugate of the following (A) and (B) (hereinafter referred to as “capture carrier”).
  • the probe molecule has a property capable of specifically binding to the target substance and is bound to the biotin derivative (1).
  • the probe molecule and the biotin derivative (1) may be directly bonded or may be bonded via a spacer.
  • the biotin derivative (1) immobilized on the probe molecule is a biotin derivative (1) having a lower affinity for avidin than the biotin described in the section on avidin-biotin complex.
  • the method for binding the biotin derivative (1) to the probe molecule is not particularly limited.
  • a method similar to the method for immobilizing avidin or the like on the surface of the carrier can be used.
  • the amide bond is formed by reacting the carboxyl group in the biotin molecule with the amino group in the probe molecule in the presence of a dehydrating condensation agent such as water-soluble carbodiimide.
  • a dehydrating condensation agent such as water-soluble carbodiimide.
  • FIG. 1 shows a conceptual diagram of a capture carrier bound to a target substance.
  • the target substance is not particularly limited.
  • cells for example, various cells of bacteria, fungi, animals or plants
  • viruses proteins (for example, various antigens or antibodies, enzymes), single-stranded or double-stranded
  • nucleic acids such as DNA or RNA
  • steroid lipids such as estrogen, glycolipids, polysaccharides and the like.
  • target cells Specific examples of cells that are target substances (hereinafter referred to as “target cells”) are not particularly limited.
  • normal cells for example, stem cells such as hematopoietic stem cells, blood cells such as leukocytes, etc.
  • cancer cells For example, circulating cancer cells in peripheral blood derived from breast cancer and lung cancer, exfoliated cancer cells present in stool derived from colon cancer, cancer cells in menstrual blood derived from uterine cancer, Cancer cells derived from bladder cancer or the like present in urine.
  • an avidin-biotin complex is mixed with a water-soluble polymer (hereinafter also referred to as “dissociator”) to which biotin or a derivative thereof (2) is bound.
  • dissociator a water-soluble polymer
  • the dissociator is most preferably a water-soluble polymer to which biotin is bound.
  • biotin derivatives (2) that can be used in the dissociating agent include biocytin (biocytin: biotin- ⁇ -N-lysine; a compound represented by the following formula (7)), biotin-N-hydroxysuccinimide ester (see below).
  • examples include derivatives different from biotin in the cyclic structure portion of biotin described in the section on avidin-biotin derivatives. Among these, for the cyclic structure portion of biotin, a derivative having the same structure as biotin is preferable because of its strong affinity with avidin.
  • a dissociating agent may be added to and mixed with a liquid sample containing an avidin-biotin complex under physiological conditions.
  • physiological conditions for example, conditions of 20 to 40 ° C., about 1 atm, pH 5 to 9 and the like are preferable.
  • the dissociating agent of the present invention can be dissociated avidin or the like and the biotin derivative (1) efficiently.
  • a dissociation agent is added to an aqueous sample containing an avidin-biotin complex
  • avidin contained in the dissociation agent or a derivative thereof (2) competes with the biotin derivative (1) bound to avidin, etc.
  • the biotin derivative (1) can be dissociated.
  • the dissociation agent in which biotin or its derivative (2) is bound to the water-soluble polymer is more efficient than biotin or its derivative (2) that is not bound to the water-soluble polymer, although the reason is not necessarily clear.
  • avidin and the biotin derivative (1) can be dissociated.
  • the water-soluble polymer is not particularly limited as long as it is a water-soluble polymer and can bind to biotin or a derivative (2) thereof, but it binds to the water-soluble polymer using a carboxyl group possessed by biotin.
  • Water-soluble polymers having functional groups such as amino groups, sulfhydryl groups, and carboxyl groups are preferred.
  • Examples include organic synthetic polymers having reactive functional groups such as amino groups in addition to water-soluble proteins and polysaccharides.
  • the water-soluble proteins for example, BSA (bovine serum albumin), etc. HSA (human serum albumin) are preferred.
  • the polysaccharide include CMC (carboxymethyl cellulose) and chitosan.
  • synthetic polymers such as PAA (polyacrylic acid) and polyallylamine, and polyamino acids such as polylysine and polyaspartic acid are preferable.
  • water soluble when dissolved in a concentration of 1 mg / ml, refers to the property of dissolving without clouding.
  • the biotin-binding water-soluble polymer is preferably 1,000 to 1,000,000.
  • the avidin-biotin complex can be dissociated with high efficiency.
  • the molecular weight of the biotin-conjugated water-soluble polymer can be measured, for example, by gel permeation chromatography.
  • the average number of molecules of biotin or its derivative (2) bound per molecule of the water-soluble polymer is preferably as much as possible within the range in which the water-solubility is not lost. More preferably, it is more preferably 5 to 1,000, and particularly preferably 10 to 100.
  • the more biotin or its derivative (2) bound per molecule of water-soluble polymer the higher the dissociation efficiency between avidin and the biotin derivative (1).
  • the average value of the number of molecules of biotin or its derivative (2) bound per molecule of the water-soluble polymer can be measured by the method (HABA method) described in Examples described later.
  • biotin or a derivative thereof (2) is reacted with a water-soluble polymer having at least one of a carboxyl group and an amino group.
  • the method of obtaining is mentioned.
  • the water-soluble polymer contains an amino group
  • a method of dehydrating and condensing the amino group in the water-soluble polymer and the carboxyl group of biotin can be mentioned.
  • the water-soluble polymer contains a carboxyl group
  • a method of dehydrating and condensing the carboxyl group in the water-soluble polymer and the amino group of a biotin derivative having an amino group can be mentioned.
  • the method for separating a target substance of the present invention comprises (a) a step of mixing a capture carrier and a target substance in an aqueous solvent to obtain a mixed liquid 1, and (b) a mixed liquid 1 and biotin or a derivative thereof (2). A step of mixing the water-soluble polymer to which is bound to obtain the mixed solution 2, and (c) a step of separating the target substance from the mixed solution 2.
  • the capture carrier is (A) Avidin or streptavidin immobilized on an insoluble carrier and (B) a biotin derivative (2) immobilized on a substance having specific affinity for a target substance (hereinafter referred to as “probe molecule”) It is a combination.
  • Step of obtaining the liquid mixture 1 by mixing the capture carrier and the target substance in an aqueous solvent This step is a step of binding the capture carrier and the target substance. Specifically, by mixing the capture carrier and the target substance, the probe molecule contained in the capture carrier and the target substance or a molecule having affinity with the probe molecule contained in the target substance are specifically bound. .
  • the capturing carrier and the target substance are as described above.
  • the aqueous solvent a solvent containing water having a pH of 5 to 9 as a main solvent is preferable, and a buffer solution such as a phosphate buffer or a Tris buffer is more preferable.
  • the capturing carrier and the target substance In order to mix the capturing carrier and the target substance, it is preferable to mix the capturing carrier dispersed in the aqueous solvent and the target substance dissolved or dispersed in the same or different aqueous solvent. After mixing, it is preferable to mix at 10 to 40 ° C. for 1 to 60 minutes. By mixing under such conditions, the capture carrier and the target substance are efficiently bound.
  • the amount of the capture carrier to be mixed can be appropriately adjusted depending on the amount of the target substance contained in the sample.
  • This step is a step of adding a dissociator to cleave the bond between avidin and the like in the capture carrier and the biotin derivative (1) to dissociate the avidin and the biotin derivative (1).
  • a dissociator In order to mix the mixed solution 1 and the dissociating agent, it is preferable to mix the dissociating agent solution dissolved in the aqueous solvent and the mixed solution 1. After mixing, it is preferable to mix at 10 to 40 ° C. for 1 to 60 minutes. By mixing under such conditions, avidin and the biotin derivative (1) are efficiently dissociated.
  • This step may include a step of separating the capture carrier from the liquid mixture 2. When the capture carrier includes magnetic particles, the capture carrier can be easily separated using a magnetic stand.
  • Step of separating target substance from liquid mixture 2 This step is a step of separating the target substance contained in the mixed solution 2, and the target substance is separated from the insoluble carrier or the like by this step.
  • This step can be carried out by any method, but when the capture carrier contains magnetic particles, the capture carrier can be easily separated using a magnetic stand.
  • a method of centrifuging under a centrifugal condition that does not allow the target substance to settle, or a method such as filtering with a filter having a pore size that does not capture the target substance may be used. it can.
  • Preparation Example 1 Preparation of desthiobiotin-binding probe molecule (anti-Ep-CAM antibody) 5 mg of desthiobiotin (manufactured by MP Biomedicals) was dissolved in 0.5 ml of dimethyl sulfoxide. In this solution, N-hydroxysuccinimide (NHS) and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC hydrochloride) were each 5.36 mg (1.2% with respect to the carboxyl group of desthiobiotin). Equivalent) and reacted at room temperature for 60 minutes.
  • NHS N-hydroxysuccinimide
  • EDC hydrochloride 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • Ep-CAM antibody an epithelial specific antigen dissolved in 1 ml of PBS (phosphate buffered saline), was separated from this reaction solution (anti-Ep-CAM antibody: clone Ber-EP4, purchased from Dako International) ) 2 mg, and further reacted at room temperature for 3.5 hours. Unreacted desthiobiotin was removed by ultrafiltration to obtain a desthiobiotin-conjugated anti-Ep-CAM antibody.
  • PBS phosphate buffered saline
  • Preparation Example 3 Preparation of dissociator (1) (synthesis of bovine serum albumin (BSA) conjugated with biotin) 200 mg of biotin (molecular weight: 244.31) was dissolved in 2.76 ml of dimethyl sulfoxide, and 173 mg of NHS and EDC hydrochloride (1.1 equivalent to the carboxyl group of biotin) was added and reacted at room temperature for 60 minutes. 0.508 ml and 1.27 ml were separated from this reaction solution, and 1 g each of BSA (manufactured by SIGMA) was added to a solution in 50 ml of 10 mM phosphate buffer solution (pH 7.0). Reacted for hours.
  • BSA bovine serum albumin
  • BSA-Biotin6 6 molecules of biotin-bonded dissociator
  • BSA-Biotin10 10 molecules of biotin-bonded dissociator
  • the amount of biotin bound to BSA was quantified according to the HABA method (4-hydroxyazobenzene-2-carboxylic acid, NM Green, Methods in Enzymology, vol. 18, p418-424, 1970) by Green et al.
  • Preparation Example 4 Preparation of dissociator (2) (synthesis of polyacrylic acid bound with biotin derivative) 0.1 g of polyacrylic acid (PAA, manufactured by Wako Pure Chemical Industries, Ltd.) having a molecular weight of 250,000 is dissolved in 5 ml of 10 mM phosphate buffer solution (pH 7.0), and 133 mg of EDC hydrochloride (based on the carboxyl group of polyacrylic acid) 0.5 equivalent).
  • PAA polyacrylic acid
  • EDC hydrochloride based on the carboxyl group of polyacrylic acid
  • a dimethyl sulfoxide solution (10 mg / ml) of a compound represented by the formula (7) which is a biotin derivative having an amino group (Biotin-PEO-LC-Amine; manufactured by Thermo Fisher Scientific Co., Ltd.) 835 ml or 1.67 ml was added, and further reacted at room temperature for 3.5 hours. Unreacted biotin was removed by ultrafiltration to obtain water-soluble biotin-conjugated PAA. Quantification of biotin bound to PAA was performed according to the HABA method.
  • PAA-Biotin15 a dissociation agent to which 15 biotin derivatives are bound on average per PAA molecule
  • PAA-Biotin40 a dissociation agent to bind 40 biotin derivatives on average per PAA molecule
  • Preparation Example 5 Preparation of target cells Remove the medium from the culture dish in which HT-29 cells (target cells) are cultured, add 1 ml of PBS containing 2 mM EDTA, and hold at 37 ° C for 5 minutes to remove the cells from the culture dish. After peeling, the cells were separated into single cells by pipetting and diluted with PBS to obtain a cell dispersion having a cell concentration of 2.0 ⁇ 10 5 cells / ml.
  • HT-29 cells express Ep-CAM antigen.
  • the number of cells was determined by measuring the amount of genomic DNA by quantitative PCR.
  • Proteinase K proteolytic enzyme
  • Example 1 Each 1 mg of the capture carrier obtained in Preparation Example 2 was placed in a test tube and dispersed in 1 ml of PBS containing 0.6% by mass citric acid and 0.5% by mass BSA to obtain a capture carrier solution. To this carrier solution for capture, 50 ⁇ l of the cell dispersion obtained in Preparation Example 5 was added and mixed at 4 ° C. for 30 minutes to bind the carrier for capture and HT-29 cells. The capture carrier was then separated using a magnetic stand and washed three times with PBS to separate target cells bound to the capture carrier from unbound cells and other solute components. When the number of cells bound to the separated capture carrier was measured, it was 8,500 cells, 85% of the cells used in the examples.
  • the concentration of biotin in the dissociation solution is a value of mass% of biotin calculated from the concentration of the dissociator and the degree of biotinylation of the dissociator.
  • Example 2 to 4 The dissociation efficiency was determined in the same manner as in Example 1 except that the dissociating agent shown in Table 1 was used instead of BSA-Biotin6.
  • Example 1 Dissociation efficiency was determined in the same manner as in Example 1 except that a PBS solution of 10 mM biotin was used instead of the PBS solution of 0.2% by mass BSA-Biotin6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Provided are a dissociation method and dissociation agent for avidin or streptavidin and biotin derivatives which make it possible to efficiently isolate a target material in a short time under mild conditions. The dissociation method for avidin or streptavidin and biotin derivatives includes mixing avidin or streptavidin bound with desthiobiotin with a water-soluble polymer with which biotin or a derivative thereof has bound.

Description

アビジンとビオチン誘導体の解離方法及び解離剤Dissociation method and dissociator for avidin and biotin derivative
 本発明は、アビジン又はストレプトアビジンとビオチン誘導体の解離方法及び解離剤に関する。 The present invention relates to a dissociation method and dissociator for avidin or streptavidin and a biotin derivative.
 アビジン又はストレプトアビジン(以下、「アビジン等」という。)がビオチン又はビオチン誘導体と強い特異的親和性を有しており、両者を生理的条件下に混合すると容易に結合(アビジン等とビオチンとの結合又はアビジン等とビオチン誘導体との結合を総称して「ABC結合」という。)を形成してアビジン等とビオチンとの結合体を形成することを利用して、細胞などの標的物質(「標的材料」ともいう。)を分離する技術が利用されている(特許文献1)。
 例えば、標的物質と結合性を有する抗体等のプローブ分子にビオチンを予め結合させたビオチン標識プローブ分子と、アビジン等が固定化された不溶性担体とを生理的条件下に混合してABC結合を形成させることにより標的物質の捕捉用担体を調製し、この捕捉用担体を用いて標的物質を捕捉することが可能であり、その後にABC結合又はプローブ分子と標的物質の結合を切断することができれば標的物質を分離することが可能である(特許文献1)。
Avidin or streptavidin (hereinafter referred to as “avidin and the like”) has a strong specific affinity with biotin or a biotin derivative, and can easily be bound (mixed between avidin and biotin) when mixed under physiological conditions. A binding substance or a binding between avidin or the like and a biotin derivative is collectively referred to as “ABC binding”) to form a conjugate of avidin or the like and biotin to form a target substance such as a cell (“target A technique for separating the material is also used (Patent Document 1).
For example, an ABC bond is formed by mixing a biotin-labeled probe molecule in which biotin is previously bound to a probe molecule such as an antibody having binding properties with a target substance and an insoluble carrier on which avidin is immobilized under physiological conditions. If the target substance can be captured using this capture carrier, and then the ABC binding or the binding between the probe molecule and the target substance can be cleaved, the target can be captured. It is possible to separate substances (Patent Document 1).
 しかし、アビジン等とビオチンとの親和性は極めて高いため、生理的条件下でABC結合を切断することは非常に困難であり、アビジン等とビオチン誘導体を解離させるには、例えば、pH1.5程度のグアニジン塩酸塩で処理するか、還元剤を添加したSDSポリアクリルアミドゲル電気泳動用の緩衝液を用いて煮沸するなど、過激な条件が必要である。このため、タンパクや細胞など、極端なpHや熱や塩濃度、あるいは物理的な剪断力によってダメージを受けるような標的物質を分離対象とする場合には、生理活性を保持した状態で標的物質を分離することは、一般に困難であった。
 このため、標的物質を分離し易くするため、アビジン等に対する親和性がビオチンよりも低いビオチン誘導体を用いる方法(特許文献2)、ビオチンに対する親和性がアビジンよりも低いアビジン変異体を用いる方法(特許文献3)が知られている。例えば、ビオチンに替えて、アビジン等に対する親和性がビオチンよりも低いデスチオビオチンなどのビオチン誘導体(特許文献2)を用いて上記捕捉用担体を調製し、標的物質を捕捉した後、大量のビオチンを添加することによって、ABC結合を切断し、標的物質を分離する方法が知られている。この場合、ビオチンは、デスチオビオチンとアビジン等の結合に対する競合阻害剤として機能しているものと考えられている。しかし、ビオチンを競合阻害剤として用いるこの方法では、ABC結合を効率良く切断することは難しく、標的物質を効率良く分離することは困難である。
However, since the affinity between avidin or the like and biotin is extremely high, it is very difficult to cleave the ABC bond under physiological conditions, and in order to dissociate the avidin and the biotin derivative, for example, about pH 1.5 Extreme conditions such as treatment with guanidine hydrochloride or boiling with a buffer for SDS polyacrylamide gel electrophoresis to which a reducing agent is added are necessary. For this reason, when targeting a target substance that is damaged by extreme pH, heat, salt concentration, or physical shearing force, such as proteins and cells, the target substance must be retained in a state that retains physiological activity. Separation has generally been difficult.
For this reason, in order to facilitate separation of the target substance, a method using a biotin derivative having a lower affinity for avidin or the like than biotin (Patent Document 2), a method using an avidin variant having a lower affinity for biotin than avidin (patent Document 3) is known. For example, instead of biotin, the above-mentioned capture carrier is prepared using a biotin derivative such as desthiobiotin (Patent Document 2) having a lower affinity for avidin or the like than biotin, and after capturing the target substance, a large amount of biotin There is known a method of cleaving ABC binding and separating a target substance by adding. In this case, biotin is considered to function as a competitive inhibitor for the binding of desthiobiotin and avidin. However, in this method using biotin as a competitive inhibitor, it is difficult to efficiently cleave ABC bonds, and it is difficult to efficiently separate target substances.
特表2010-512537号公報Special table 2010-512537 特開平02-184677号公報Japanese Patent Laid-Open No. 02-184777 特開平10-028589号公報Japanese Patent Laid-Open No. 10-028589
 本発明は、穏和な条件にて短時間でアビジン等と前記親和性がビオチンよりも低いビオチン誘導体を効率良く解離させる方法及びその解離剤を提供する。 The present invention provides a method for efficiently dissociating avidin or the like and a biotin derivative having an affinity lower than that of biotin in a short time under mild conditions and a dissociator thereof.
 そこで本発明者は、アビジン等と前記親和性がビオチンよりも低いビオチン誘導体とを効率良く解離させる手段を見出すべく種々検討した結果、全く意外にも、ビオチン等を結合させた水溶性高分子を解離剤として用いれば、穏和な条件下で極めて効率良く、アビジン等と前記親和性がビオチンよりも低いビオチン誘導体とが解離することを見出し、本発明を完成した。 Thus, as a result of various studies to find a means for efficiently dissociating avidin and the like and a biotin derivative having a lower affinity than biotin, the present inventors surprisingly found a water-soluble polymer to which biotin and the like are bound. When used as a dissociating agent, it was found that avidin and the like and a biotin derivative having a lower affinity than biotin were dissociated extremely efficiently under mild conditions, and the present invention was completed.
 すなわち、本発明は、アビジンとアビジンに対する親和性がビオチンよりも低いビオチン誘導体(1)の結合体又はストレプトアビジンと前記ビオチン誘導体(1)の結合体(以下、総称して「アビジン-ビオチン複合体」という。)と、ビオチン又はその誘導体(2)が結合した水溶性高分子(以下、「解離剤」という。)を混合する工程を有する、アビジン又はストレプトアビジンとビオチン誘導体(1)を解離させる方法を提供するものである。 That is, the present invention relates to a conjugate of biotin derivative (1) having a lower affinity for avidin and avidin or a conjugate of streptavidin and biotin derivative (1) (hereinafter collectively referred to as “avidin-biotin complex”). And a biosoluble derivative (1) are dissociated with a biotin or a derivative thereof (2) and a water-soluble polymer (hereinafter referred to as “dissociator”). A method is provided.
 また本発明は、標的物質を分離する方法であって、
(a)捕捉用担体と標的物質とを水系溶剤中で混合して混合液1を得る工程、
(b)混合液1とビオチン又はその誘導体(2)が結合した水溶性高分子とを混合して混合液2を得る工程、
(c)混合液2から標的物質を分離する工程を含む、方法を提供するものである。
 ただし、捕捉用担体は、下記(A)と(B)との結合物である。
(A)不溶性担体に固定化したアビジン若しくはストレプトアビジン
(B)標的物質に対して特異的親和性を有する物質(以下、「プローブ分子」という。)に固定化した、アビジンに対する親和性がビオチンよりも低いビオチン誘導体(1)
The present invention also provides a method for separating a target substance,
(A) a step of mixing a capture carrier and a target substance in an aqueous solvent to obtain a mixed solution 1;
(B) a step of mixing the liquid mixture 1 with a water-soluble polymer to which biotin or a derivative thereof (2) is bound to obtain a liquid mixture 2;
(C) A method including the step of separating the target substance from the mixed solution 2 is provided.
However, the capture carrier is a combination of the following (A) and (B).
(A) Avidin immobilized on an insoluble carrier or streptavidin (B) Affinity immobilized on a substance having specific affinity for a target substance (hereinafter referred to as “probe molecule”) is higher than that of biotin. Low biotin derivative (1)
 さらに、本発明は、ビオチン又はその誘導体(2)が結合した水溶性高分子を含有する、アビジン又はストレプトアビジンとビオチン誘導体(1)を解離するために用いられる解離剤を提供するものである。 Furthermore, the present invention provides a dissociator used for dissociating avidin or streptavidin and biotin derivative (1), which contains a water-soluble polymer to which biotin or a derivative thereof (2) is bound.
 本発明方法によれば、アビジン等とビオチン誘導体(1)との結合を穏和な条件にて短時間で効率良く切断してアビジン等とビオチン誘導体(1)を解離させることができる。また、同方法を標的物質の分離に適用することにより、捕捉用担体に結合させて得た標的物質を容易に分離することができる。標的物質がタンパクや細胞など温度条件やpH条件などに対して不安定である場合であっても、本発明方法を用いることによりその活性を保持した状態で標的物質を分離することができる。 According to the method of the present invention, the bond between avidin and the biotin derivative (1) can be efficiently cleaved in a short time under mild conditions to dissociate the avidin and the biotin derivative (1). Further, by applying the method to the separation of the target substance, the target substance obtained by binding to the capture carrier can be easily separated. Even when the target substance is unstable with respect to temperature conditions and pH conditions such as proteins and cells, the target substance can be separated while maintaining its activity by using the method of the present invention.
本発明の一態様において用いられる捕捉用担体が標的細胞と結合した状態を示す概念図である。It is a conceptual diagram which shows the state which the support | carrier for capture | acquisition used in 1 aspect of this invention couple | bonded with the target cell.
 以下、本発明の一実施形態に係るアビジン等とビオチン誘導体(1)の解離方法及び解離剤について、具体的に説明する。
 (アビジン等とビオチン誘導体の解離方法)
 本発明の一実施形態に係るアビジン等とビオチン誘導体(1)の解離方法は、アビジン-ビオチン複合体と、ビオチン又はその誘導体(2)が結合した水溶性高分子とを混合する工程を有する。本発明の解離方法は、通常、水を主成分とする溶媒中で行われる。その場合、アビジン-ビオチン複合体は当該溶媒に溶解していることが好ましいが、アビジン-ビオチン複合体が不溶性の担体に結合している場合等においてはアビジン-ビオチン複合体はその担体と共に溶媒中に分散されていてもよい。
Hereinafter, the dissociation method and dissociation agent of avidin and the biotin derivative (1) according to an embodiment of the present invention will be specifically described.
(Method of dissociating avidin and biotin derivatives)
The method for dissociating avidin and the like and the biotin derivative (1) according to an embodiment of the present invention includes a step of mixing an avidin-biotin complex and a water-soluble polymer to which biotin or a derivative thereof (2) is bound. The dissociation method of the present invention is usually performed in a solvent containing water as a main component. In that case, the avidin-biotin complex is preferably dissolved in the solvent. However, when the avidin-biotin complex is bound to an insoluble carrier, the avidin-biotin complex is contained in the solvent together with the carrier. May be dispersed.
 (アビジン-ビオチン複合体)
 本発明で使用されるアビジン-ビオチン複合体は、アビジン又はストレプトアビジンと、アビジンに対する親和性がビオチン(下記式(3)で表される化合物)よりも低いビオチン誘導体(3)の結合体である。ここで、アビジン又はストレプトアビジンは、一般に市販されているものを用いることができ、これらは、自然界に存在するものを分離・精製したものでもよく、あるいは、遺伝子工学的技術によって人工的に生産されたものであってもよく、ビオチンに対する結合能を失わない範囲で改変されたアビジン又はストレプトアビジンの誘導体であってもよい。アビジン又はストレプトアビジンの誘導体としては、例えば、スクシニル化等の化学的に修飾したアビジン又はストレプトアビジン、通常は4量体であるアビジン又はストレプトアビジンの単量体等が挙げられる。
(Avidin-biotin complex)
The avidin-biotin complex used in the present invention is a conjugate of avidin or streptavidin and a biotin derivative (3) having a lower affinity for avidin than biotin (a compound represented by the following formula (3)). . Here, as avidin or streptavidin, commercially available products can be used, and these may be those obtained by separating and purifying those existing in nature, or artificially produced by genetic engineering techniques. It may be an avidin or a streptavidin derivative modified within a range not losing its ability to bind to biotin. Examples of the derivatives of avidin or streptavidin include chemically modified avidin or streptavidin such as succinylation, and a monomer of avidin or streptavidin which is usually a tetramer.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ビオチン誘導体(1)としては、アビジンに対する親和性がビオチンよりも低いビオチン誘導体であれば特に限定されない。アビジンに対する親和性がビオチンよりも低いことにより、アビジン-ビオチン複合体をビオチン又はその誘導体(2)が結合した水溶性高分子と混合することにより効果的にアビジン等とビオチン誘導体(1)を解離することができる。
 このようなビオチン誘導体(1)としては、例えば、デスチオビオチン(下記式(4)で表される化合物)、2-イミノビオチン(下記式(5)で表される化合物)、3,4-ジアミノビオチン(下記式(6)で表される化合物)等のビオチンの環状構造部分においてビオチンと相違する誘導体、及びこれらの化学修飾物等が挙げられる。
The biotin derivative (1) is not particularly limited as long as it is a biotin derivative having a lower affinity for avidin than biotin. Avidin and biotin derivative (1) are effectively dissociated by mixing the avidin-biotin complex with a water-soluble polymer to which biotin or its derivative (2) is bound due to its lower affinity for avidin. can do.
Examples of such a biotin derivative (1) include desthiobiotin (a compound represented by the following formula (4)), 2-iminobiotin (a compound represented by the following formula (5)), 3,4- Derivatives that differ from biotin in the cyclic structure portion of biotin such as diaminobiotin (compound represented by the following formula (6)), and chemically modified products thereof.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 アビジンに対する親和性がビオチンよりも低いとは、結合定数がアビジンとビオチンのそれ(1015M)よりも1オーダー以上小さいことを意味する。例えば上記式(4)~(6)で表される化合物とアビジンとの結合定数は10M~1013Mである。 A lower affinity for avidin than biotin means that the binding constant is one or more orders of magnitude smaller than that of avidin and biotin (10 15 M). For example, the binding constant between the compounds represented by the above formulas (4) to (6) and avidin is 10 6 M to 10 13 M.
 (不溶性担体に固定化されたアビジン-ビオチン複合体)
 本発明で使用されるアビジン-ビオチン複合体は、アビジン等を介して不溶性担体に固定化されていてもよい。アビジン-ビオチン複合体が不溶性担体に固定化されていることにより、アビジン-ビオチン複合体を含む分散液から遠心分離、ろ過等の方法によりアビジン-ビオチン複合体を容易に分離することができる。
 アビジン等を固定化するために使用する不溶性担体としては、その形状は特に限定されないが、例えば、有機若しくは無機の粒子、平板状基板、微細流路を有する基板、マイクロウェルプレート等が挙げられる。このうち、有機粒子としては、平均粒子径が0.5~10μmのポリスチレン等を主成分とする有機合成高分子からなる粒子が好ましい。さらに、磁気による分離が可能である点で、粒子は磁性粒子であることが好ましい。
 磁性粒子の市販品としては、例えば、Dynabeads M-450 Tosylactivated(Invitrogen社製)や、Magnosphere MS300/Carboxyl(JSR株式会社製)等が挙げられる。磁性粒子は、公知の方法(例えば、特公平05-010808号、又は、特開2007-288133号など参照)に従って製造されることが好ましく、タンパクや細胞などの非特異吸着を低減することができる。
(Avidin-biotin complex immobilized on an insoluble carrier)
The avidin-biotin complex used in the present invention may be immobilized on an insoluble carrier via avidin or the like. Since the avidin-biotin complex is immobilized on an insoluble carrier, the avidin-biotin complex can be easily separated from the dispersion containing the avidin-biotin complex by a method such as centrifugation or filtration.
The insoluble carrier used for immobilizing avidin and the like is not particularly limited in shape, and examples thereof include organic or inorganic particles, a flat substrate, a substrate having a fine channel, a microwell plate, and the like. Among these, the organic particles are preferably particles made of an organic synthetic polymer mainly composed of polystyrene having an average particle size of 0.5 to 10 μm. Furthermore, the particles are preferably magnetic particles in that they can be separated by magnetism.
Examples of commercially available magnetic particles include Dynabeads M-450 Tosylactivated (manufactured by Invitrogen) and Magnosphere MS300 / Carboxyl (manufactured by JSR Corporation). The magnetic particles are preferably produced according to a known method (for example, see Japanese Patent Publication No. 05-010808 or Japanese Patent Application Laid-Open No. 2007-288133), and can reduce nonspecific adsorption of proteins and cells. .
 アビジン等の不溶性担体への固定化方法としては、特に限定されず、公知の方法(例えば特開2001-158800号公報参照)を用いることができる。例えば、カルボキシル基を表面に有する不溶性担体を用いる場合、水溶性カルボジイミドなどの脱水縮合剤の存在下で、アビジン等の分子中のアミノ基を、担体表面のカルボキシル基に反応させてアミド結合を形成することにより、アビジン等を不溶性担体に固定化することができる。このような方法においては、予め、担体が有するカルボキシル基に脱水縮合剤を反応させ、その後、アビジン又はストレプトアビジンを加えて反応させることもできる。 The method for immobilizing an insoluble carrier such as avidin is not particularly limited, and a known method (for example, see JP-A-2001-158800) can be used. For example, when an insoluble carrier having a carboxyl group on the surface is used, an amide bond is formed by reacting an amino group in a molecule such as avidin with a carboxyl group on the carrier surface in the presence of a dehydrating condensation agent such as water-soluble carbodiimide. By doing so, avidin and the like can be immobilized on an insoluble carrier. In such a method, a dehydration condensing agent may be reacted in advance with the carboxyl group of the carrier, and then avidin or streptavidin may be added and reacted.
(捕捉用担体)
 本発明で使用されるアビジン-ビオチン複合体は、下記(A)と(B)との結合物(以下、「捕捉用担体」という。)であってもよい。
(A)不溶性担体に固定化したアビジン若しくはストレプトアビジン
(B)標的物質に対して特異的親和性を有する物質(以下、「プローブ分子」という。)に固定化したビオチン誘導体(1)
(Capture carrier)
The avidin-biotin complex used in the present invention may be a conjugate of the following (A) and (B) (hereinafter referred to as “capture carrier”).
(A) Avidin or streptavidin immobilized on an insoluble carrier (B) Biotin derivative immobilized on a substance having specific affinity for a target substance (hereinafter referred to as “probe molecule”) (1)
 プローブ分子としては、特に限定されないが、例えば、標的物質に対する抗体、レクチン、酵素等のタンパクの他、糖類等が挙げられる。プローブ分子は、標的物質と特異的に結合しうる性質を有し、ビオチン誘導体(1)と結合している。プローブ分子とビオチン誘導体(1)は、直接に結合していてもよいし、スペーサーを介して結合していてもよい。
 プローブ分子に固定化するビオチン誘導体(1)は、アビジンに対する親和性が、アビジン-ビオチン複合体の項に記載したビオチンよりも低いビオチン誘導体(1)である。
 プローブ分子にビオチン誘導体(1)を結合する方法としては、特に限定されないが、例えば、上述のアビジン等を担体の表面に固定化する方法と同様の方法を用いることができる。例えば、アミノ基を有するプローブ分子を用いる場合、水溶性カルボジイミドなどの脱水縮合剤の存在下で、ビオチンの分子中のカルボキシル基を、プローブ分子中のアミノ基に反応させてアミド結合を形成することにより、ビオチン結合プローブ分子を得ることができる。
Although it does not specifically limit as a probe molecule, For example, in addition to proteins, such as an antibody with respect to a target substance, a lectin, and an enzyme, saccharides etc. are mentioned. The probe molecule has a property capable of specifically binding to the target substance and is bound to the biotin derivative (1). The probe molecule and the biotin derivative (1) may be directly bonded or may be bonded via a spacer.
The biotin derivative (1) immobilized on the probe molecule is a biotin derivative (1) having a lower affinity for avidin than the biotin described in the section on avidin-biotin complex.
The method for binding the biotin derivative (1) to the probe molecule is not particularly limited. For example, a method similar to the method for immobilizing avidin or the like on the surface of the carrier can be used. For example, when using a probe molecule having an amino group, the amide bond is formed by reacting the carboxyl group in the biotin molecule with the amino group in the probe molecule in the presence of a dehydrating condensation agent such as water-soluble carbodiimide. Thus, a biotin-binding probe molecule can be obtained.
 アビジン-ビオチン複合体として分離用担体を用いることにより、アビジン-ビオチン複合体が標的物質に特異的に結合するため、捕捉用担体に結合した標的物質を特異的に分離することができる。
 図1に、標的物質と結合した捕捉用担体の概念図を示す。
By using a separation carrier as the avidin-biotin complex, since the avidin-biotin complex specifically binds to the target substance, the target substance bound to the capture carrier can be specifically separated.
FIG. 1 shows a conceptual diagram of a capture carrier bound to a target substance.
(標的物質)
 標的物質としては、特に限定されないが、例えば、細胞(例えば、細菌、真菌、動物又は植物の各種細胞)、ウイルス、タンパク(例えば、各種抗原又は抗体、酵素)、1本鎖若しくは2本鎖のDNA若しくはRNA等の核酸、エストロゲン等のステロイド脂質、糖脂質、多糖等が挙げられる。標的物質である細胞(以下、「標的細胞」という。)の具体例としては、特に限定されないが、例えば、正常細胞(例えば造血幹細胞などの幹細胞、白血球などの血球細胞等)、がん細胞(例えば、乳がんや肺がんなどに由来する末梢血中の循環がん細胞、大腸がんなどに由来する糞便中に存在する剥離がん細胞、子宮がんなどに由来する経血中のがん細胞、尿中に存在する膀胱がんなどに由来するがん細胞等)が挙げられる。本発明の標的物質を分離する方法によって、標的物質の分離を効率よく行うことができる。
(Target substance)
The target substance is not particularly limited. For example, cells (for example, various cells of bacteria, fungi, animals or plants), viruses, proteins (for example, various antigens or antibodies, enzymes), single-stranded or double-stranded Examples thereof include nucleic acids such as DNA or RNA, steroid lipids such as estrogen, glycolipids, polysaccharides and the like. Specific examples of cells that are target substances (hereinafter referred to as “target cells”) are not particularly limited. For example, normal cells (for example, stem cells such as hematopoietic stem cells, blood cells such as leukocytes, etc.), cancer cells ( For example, circulating cancer cells in peripheral blood derived from breast cancer and lung cancer, exfoliated cancer cells present in stool derived from colon cancer, cancer cells in menstrual blood derived from uterine cancer, Cancer cells derived from bladder cancer or the like present in urine). By the method for separating a target substance of the present invention, the target substance can be efficiently separated.
(解離剤)
 本発明のアビジン等とビオチン誘導体(1)の解離方法において、アビジン-ビオチン複合体と、ビオチン又はその誘導体(2)が結合した水溶性高分子(以下、「解離剤」ともいう。)を混合することにより、アビジン等とビオチン誘導体(1)との結合を切断して、アビジン等とビオチン誘導体(1)を解離させることができる。
(Dissociator)
In the method for dissociating avidin and the like and the biotin derivative (1) of the present invention, an avidin-biotin complex is mixed with a water-soluble polymer (hereinafter also referred to as “dissociator”) to which biotin or a derivative thereof (2) is bound. By doing so, the bond between avidin and the biotin derivative (1) can be cleaved, and avidin and the biotin derivative (1) can be dissociated.
 解離剤としては、ビオチンが結合した水溶性高分子が最も好ましい。
 解離剤において用いることができるビオチン誘導体(2)としては、ビオサイチン(biocytin:ビオチン-ε-N-リジン;下記式(7)で表される化合物)、ビオチン-N-ヒドロキシコハク酸イミドエステル(下記式(8)で表される化合物)、下記式(9)で表される化合物(Biotinyl-3,6,9-trioxaundecanediamine)等のビオチンの環状構造部分についてはビオチンと同一の構造を有する誘導体又はアビジン-ビオチン誘導体の項に記載したビオチンの環状構造部分においてビオチンと相違する誘導体を挙げることができる。これらの中では、ビオチンの環状構造部分についてはビオチンと同一の構造を有する誘導体が、アビジンとの親和性が強いため好ましい。
The dissociator is most preferably a water-soluble polymer to which biotin is bound.
Examples of biotin derivatives (2) that can be used in the dissociating agent include biocytin (biocytin: biotin-ε-N-lysine; a compound represented by the following formula (7)), biotin-N-hydroxysuccinimide ester (see below). A compound represented by the formula (8)), a derivative represented by the following formula (9) (Biotinyl-3,6,9-trioxaundecanediamine), etc. Examples include derivatives different from biotin in the cyclic structure portion of biotin described in the section on avidin-biotin derivatives. Among these, for the cyclic structure portion of biotin, a derivative having the same structure as biotin is preferable because of its strong affinity with avidin.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 アビジン等とビオチン誘導体(1)を解離させるためには、例えば、アビジン-ビオチン複合体を含有する液状試料に、生理的条件下で解離剤を添加して混和すればよい。生理的条件下としては、例えば、20~40℃、約1気圧、pH5~9等の条件が好ましい。 In order to dissociate avidin or the like and biotin derivative (1), for example, a dissociating agent may be added to and mixed with a liquid sample containing an avidin-biotin complex under physiological conditions. As physiological conditions, for example, conditions of 20 to 40 ° C., about 1 atm, pH 5 to 9 and the like are preferable.
 本発明の解離剤を用いることにより、アビジン等とビオチン誘導体(1)を効率的に解離させることができる。アビジン-ビオチン複合体を含有する水系試料に解離剤を添加すると、解離剤に含まれるアビジン又はその誘導体(2)がアビジン等に結合しているビオチン誘導体(1)と競合して、アビジン等とビオチン誘導体(1)を解離させることができる。そして、ビオチン又はその誘導体(2)が水溶性高分子に結合した解離剤は、理由は必ずしも明らかではないが、水溶性高分子等に結合していないビオチン又はその誘導体(2)よりも効率的にアビジン等とビオチン誘導体(1)を解離させることができる。 By using the dissociating agent of the present invention can be dissociated avidin or the like and the biotin derivative (1) efficiently. When a dissociation agent is added to an aqueous sample containing an avidin-biotin complex, avidin contained in the dissociation agent or a derivative thereof (2) competes with the biotin derivative (1) bound to avidin, etc. The biotin derivative (1) can be dissociated. And, the dissociation agent in which biotin or its derivative (2) is bound to the water-soluble polymer is more efficient than biotin or its derivative (2) that is not bound to the water-soluble polymer, although the reason is not necessarily clear. In addition, avidin and the biotin derivative (1) can be dissociated.
 水溶性高分子としては、水溶性の高分子であってビオチン又はその誘導体(2)と結合することができる限り特に限定されないが、ビオチンの有するカルボキシル基を用いて水溶性高分子と結合するためのアミノ基、スルフヒドリル基、カルボキシル基等の官能基を有する水溶性高分子が好ましく、例えば、水溶性タンパク、多糖の他、アミノ基等の反応性官能基を有する有機合成高分子が挙げられる。水溶性タンパクとしては、例えば、BSA(ウシ血清アルブミン)、HSA(ヒト血清アルブミン)などが好ましい。多糖としては、例えば、CMC(カルボキシメチルセルロース)、キトサンなどが挙げられる。反応性官能基を有する有機合成高分子としては、例えば、PAA(ポリアクリル酸)、ポリアリルアミンなどの合成高分子、ポリリジン、ポリアスパラギン酸などのポリアミノ酸が好ましい。 The water-soluble polymer is not particularly limited as long as it is a water-soluble polymer and can bind to biotin or a derivative (2) thereof, but it binds to the water-soluble polymer using a carboxyl group possessed by biotin. Water-soluble polymers having functional groups such as amino groups, sulfhydryl groups, and carboxyl groups are preferred. Examples include organic synthetic polymers having reactive functional groups such as amino groups in addition to water-soluble proteins and polysaccharides. The water-soluble proteins, for example, BSA (bovine serum albumin), etc. HSA (human serum albumin) are preferred. Examples of the polysaccharide include CMC (carboxymethyl cellulose) and chitosan. As the organic synthetic polymer having a reactive functional group, for example, synthetic polymers such as PAA (polyacrylic acid) and polyallylamine, and polyamino acids such as polylysine and polyaspartic acid are preferable.
 本発明において、「水溶性」とは、1mg/mlの濃度に溶解したときに、白濁することなく溶解する性質をいう。 In the present invention, the term "water soluble", when dissolved in a concentration of 1 mg / ml, refers to the property of dissolving without clouding.
 また、ビオチン結合水溶性高分子の分子量には特に制限は無いが、1,000~100万であることが好ましい。ビオチン結合水溶性高分子の分子量を上記範囲内とすることで、アビジン-ビオチン複合体を高効率に解離することができる。ビオチン結合水溶性高分子の分子量は、例えばゲルパーミエーションクロマトグラフィーで測定することができる。 Although not particularly limited in molecular weight of the biotin-binding water-soluble polymer is preferably 1,000 to 1,000,000. By setting the molecular weight of the biotin-conjugated water-soluble polymer within the above range, the avidin-biotin complex can be dissociated with high efficiency. The molecular weight of the biotin-conjugated water-soluble polymer can be measured, for example, by gel permeation chromatography.
 水溶性高分子1分子当たりに結合しているビオチン又はその誘導体(2)の分子数の平均値は、水溶性が失われない範囲で、可能な限り多いことが好ましく、2~2,000個であることがより好ましく、5~1,000個であることがさらに好ましく、10~100個であることが特に好ましい。水溶性高分子1分子当たりに結合するビオチン又はその誘導体(2)が多いほど、アビジン等とビオチン誘導体(1)の解離効率を高めることができる。水溶性高分子1分子当たりに結合しているビオチン又はその誘導体(2)の分子数の平均値は、後述する実施例に記載された方法(HABA法)にて測定することができる。 The average number of molecules of biotin or its derivative (2) bound per molecule of the water-soluble polymer is preferably as much as possible within the range in which the water-solubility is not lost. More preferably, it is more preferably 5 to 1,000, and particularly preferably 10 to 100. The more biotin or its derivative (2) bound per molecule of water-soluble polymer, the higher the dissociation efficiency between avidin and the biotin derivative (1). The average value of the number of molecules of biotin or its derivative (2) bound per molecule of the water-soluble polymer can be measured by the method (HABA method) described in Examples described later.
 水溶性高分子にビオチン又はその誘導体(2)を結合する方法としては、例えば、カルボキシル基及びアミノ基のうち少なくとも1種を有する水溶性高分子に、ビオチン又はその誘導体(2)を反応させて得る方法が挙げられる。水溶性高分子がアミノ基を含む場合、水溶性高分子中のアミノ基とビオチンのカルボキシル基とを脱水縮合する方法が挙げられる。水溶性高分子がカルボキシル基を含む場合、水溶性高分子中のカルボキシル基と、アミノ基を持つビオチン誘導体のアミノ基とを脱水縮合する方法が挙げられる。 As a method for binding biotin or a derivative thereof (2) to the water-soluble polymer, for example, biotin or a derivative thereof (2) is reacted with a water-soluble polymer having at least one of a carboxyl group and an amino group. The method of obtaining is mentioned. When the water-soluble polymer contains an amino group, a method of dehydrating and condensing the amino group in the water-soluble polymer and the carboxyl group of biotin can be mentioned. When the water-soluble polymer contains a carboxyl group, a method of dehydrating and condensing the carboxyl group in the water-soluble polymer and the amino group of a biotin derivative having an amino group can be mentioned.
(標的物質を分離する方法)
 本発明の標的物質を分離する方法は、(a)捕捉用担体と標的物質とを水系溶剤中で混合して混合液1を得る工程、(b)混合液1とビオチン又はその誘導体(2)が結合した水溶性高分子とを混合して混合液2を得る工程、(c)混合液2から標的物質を分離する工程を含む。ここで、捕捉用担体は、
(A)不溶性担体に固定化したアビジン若しくはストレプトアビジンと(B)標的物質に対して特異的親和性を有する物質(以下、「プローブ分子」という。)に固定化したビオチン誘導体(2)との結合物である。
(Method for separating target substances)
The method for separating a target substance of the present invention comprises (a) a step of mixing a capture carrier and a target substance in an aqueous solvent to obtain a mixed liquid 1, and (b) a mixed liquid 1 and biotin or a derivative thereof (2). A step of mixing the water-soluble polymer to which is bound to obtain the mixed solution 2, and (c) a step of separating the target substance from the mixed solution 2. Here, the capture carrier is
(A) Avidin or streptavidin immobilized on an insoluble carrier and (B) a biotin derivative (2) immobilized on a substance having specific affinity for a target substance (hereinafter referred to as “probe molecule”) It is a combination.
(捕捉用担体と標的物質とを水系溶剤中で混合して混合液1を得る工程)
 本工程は、捕捉用担体と標的物質を結合させる工程である。具体的には、捕捉用担体と標的物質とを混合することにより、捕捉用担体に含まれるプローブ分子と標的物質又は標的物質中に含まれるプローブ分子と親和性を有する分子が特異的に結合する。
 捕捉用担体及び標的物質については、前述の通りである。水系溶剤としては、pH5~9の水を主たる溶媒として含む溶剤が好ましく、リン酸緩衝液、Tris緩衝液などの緩衝液がさらに好ましい。
 捕捉用担体と標的物質を混合するには、水系溶剤に分散した捕捉用担体と、同一又は異なる水系溶剤に溶解又は分散した標的物質とを混合することが好ましい。混合後は、10~40℃で1~60分間混和することが好ましい。このような条件で混和することにより、捕捉用担体と標的物質が効率よく結合する。
 混合する捕捉用担体の量は、試料中に含まれる標的物質の量により適宜調節することができる。
(Step of obtaining the liquid mixture 1 by mixing the capture carrier and the target substance in an aqueous solvent)
This step is a step of binding the capture carrier and the target substance. Specifically, by mixing the capture carrier and the target substance, the probe molecule contained in the capture carrier and the target substance or a molecule having affinity with the probe molecule contained in the target substance are specifically bound. .
The capturing carrier and the target substance are as described above. As the aqueous solvent, a solvent containing water having a pH of 5 to 9 as a main solvent is preferable, and a buffer solution such as a phosphate buffer or a Tris buffer is more preferable.
In order to mix the capturing carrier and the target substance, it is preferable to mix the capturing carrier dispersed in the aqueous solvent and the target substance dissolved or dispersed in the same or different aqueous solvent. After mixing, it is preferable to mix at 10 to 40 ° C. for 1 to 60 minutes. By mixing under such conditions, the capture carrier and the target substance are efficiently bound.
The amount of the capture carrier to be mixed can be appropriately adjusted depending on the amount of the target substance contained in the sample.
(混合液1とビオチン又はその誘導体が結合した水溶性高分子とを混合して混合液2を得る工程)
 本工程は、解離剤を添加して捕捉用担体中のアビジン等とビオチン誘導体(1)との結合を切断し、アビジン等とビオチン誘導体(1)を解離させる工程である。混合液1と解離剤を混合するには、水系溶剤に溶解した解離剤の溶液と混合液1を混合することが好ましい。混合後は、10~40℃で1~60分間混和することが好ましい。このような条件で混和することにより、アビジン等とビオチン誘導体(1)が効率よく解離する。
 本工程は、混合液2から捕捉用担体を分離する工程を含んでもよい。捕捉用担体が磁性粒子を含む場合には、磁気スタンドを用いて簡便に捕捉用担体を分離することができる。
(The process of obtaining the liquid mixture 2 by mixing the liquid mixture 1 and a water-soluble polymer to which biotin or a derivative thereof is bound)
This step is a step of adding a dissociator to cleave the bond between avidin and the like in the capture carrier and the biotin derivative (1) to dissociate the avidin and the biotin derivative (1). In order to mix the mixed solution 1 and the dissociating agent, it is preferable to mix the dissociating agent solution dissolved in the aqueous solvent and the mixed solution 1. After mixing, it is preferable to mix at 10 to 40 ° C. for 1 to 60 minutes. By mixing under such conditions, avidin and the biotin derivative (1) are efficiently dissociated.
This step may include a step of separating the capture carrier from the liquid mixture 2. When the capture carrier includes magnetic particles, the capture carrier can be easily separated using a magnetic stand.
(混合液2から標的物質を分離する工程)
 本工程は、混合液2に含まれる標的物質を分離する工程であり、本工程により標的物質は不溶性担体等から分離される。本工程は、任意の方法により行うことができるが、捕捉用担体が磁性粒子を含む場合には、磁気スタンドを用いて簡便に捕捉用担体を分離することができる。捕捉用担体が磁性粒子を含まない場合には、標的物質を沈降させない程度の遠心条件で遠心分離する方法や、標的物質を捕捉しない程度の孔径を有するフィルターでろ過する等の方法を用いることができる。
(Step of separating target substance from liquid mixture 2)
This step is a step of separating the target substance contained in the mixed solution 2, and the target substance is separated from the insoluble carrier or the like by this step. This step can be carried out by any method, but when the capture carrier contains magnetic particles, the capture carrier can be easily separated using a magnetic stand. When the capture carrier does not contain magnetic particles, a method of centrifuging under a centrifugal condition that does not allow the target substance to settle, or a method such as filtering with a filter having a pore size that does not capture the target substance may be used. it can.
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらによって制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
[調製例1]:デスチオビオチン結合プローブ分子(抗Ep-CAM抗体)の作製
 デスチオビオチン(MP Biomedicals社製)5mgを0.5mlのジメチルスルホキシドに溶解させた。この溶液にN-ヒドロキシスクシンイミド(NHS)及び1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC塩酸塩)を各5.36mg(デスチオビオチンのカルボキシル基に対して1.2等量)加え、室温で60分間反応した。この反応液から3μlを分け取り、1mlのPBS(リン酸緩衝生理食塩水)に溶解した上皮特異抗原であるEp-CAMに対する抗体(抗Ep-CAM抗体:clone Ber-EP4、ダコインターナショナル社より購入)2mgに加え、さらに室温で3.5時間反応した。未反応のデスチオビオチンを限外ろ過で除去し、デスチオビオチン結合抗Ep-CAM抗体を得た。
[Preparation Example 1]: Preparation of desthiobiotin-binding probe molecule (anti-Ep-CAM antibody) 5 mg of desthiobiotin (manufactured by MP Biomedicals) was dissolved in 0.5 ml of dimethyl sulfoxide. In this solution, N-hydroxysuccinimide (NHS) and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC hydrochloride) were each 5.36 mg (1.2% with respect to the carboxyl group of desthiobiotin). Equivalent) and reacted at room temperature for 60 minutes. An antibody against Ep-CAM, an epithelial specific antigen dissolved in 1 ml of PBS (phosphate buffered saline), was separated from this reaction solution (anti-Ep-CAM antibody: clone Ber-EP4, purchased from Dako International) ) 2 mg, and further reacted at room temperature for 3.5 hours. Unreacted desthiobiotin was removed by ultrafiltration to obtain a desthiobiotin-conjugated anti-Ep-CAM antibody.
[調製例2]:アビジン-ビオチン複合体(捕捉用担体)の調製
 ストレプトアビジン磁性粒子(Invitrogen社 Dynabeads M-280 Streptavidin)1mg及び調製例1で得られたデスチオビオチン結合抗Ep-CAM抗体2μgをテストチューブに取り、PBS中で30分間混合し、ストレプトアビジンとデスチオビオチンを結合させた。次いで、磁気スタンドを使って反応液中から磁気粒子を分離し、0.05%Tween20含有PBSで3回洗浄して未反応のデスチオビオチン結合プローブ分子を除去して、デスチオビオチン結合プローブ分子とストレプトアビジン磁性粒子が結合したアビジン-ビオチン複合体(捕捉用担体)を得た。
[Preparation Example 2]: Preparation of avidin-biotin complex (capture carrier) 1 mg of streptavidin magnetic particles (Invitrogen Dynabeads M-280 Streptavidin) and 2 μg of desthiobiotin-conjugated anti-Ep-CAM antibody obtained in Preparation Example 1 Was taken in a test tube and mixed in PBS for 30 minutes to bind streptavidin and desthiobiotin. Next, magnetic particles are separated from the reaction solution using a magnetic stand, washed 3 times with PBS containing 0.05% Tween 20 to remove unreacted desthiobiotin-binding probe molecules, and desthiobiotin-binding probe molecules. Thus, an avidin-biotin complex (capture carrier) was obtained in which streptavidin and magnetic particles were bound.
[調製例3]:解離剤の調製(1)(ビオチンが結合したウシ血清アルブミン(BSA)の合成)
 ビオチン(分子量:244.31)200mgをジメチルスルホキシド2.76mlに溶解し、NHS及びEDC塩酸塩を173mg(ビオチンのカルボキシル基に対して1.1等量)加えて60分間室温で反応した。この反応液から0.508ml、1.27mlを分け取り、それぞれ1gのBSA(SIGMA社製)を50mlの10mMリン酸緩衝溶液(pH7.0)に溶解した溶液に加え、さらに室温で3.5時間反応した。未反応のビオチンを限外ろ過で除去し、水溶性のビオチン結合BSAを得た。以上により、BSA1分子当たり平均で、それぞれ6分子のビオチンが結合した解離剤(BSA-Biotin6という。)及び10分子のビオチンが結合した解離剤(BSA-Biotin10という。)が得られた。BSAに結合したビオチン量は、グリーンらによるHABA法(4-hydroxyazobenzene-2-carboxylic acid、N.M.Green, Methods in Enzymology, vol.18, p418-424, 1970)に従って定量した。
[Preparation Example 3]: Preparation of dissociator (1) (synthesis of bovine serum albumin (BSA) conjugated with biotin)
200 mg of biotin (molecular weight: 244.31) was dissolved in 2.76 ml of dimethyl sulfoxide, and 173 mg of NHS and EDC hydrochloride (1.1 equivalent to the carboxyl group of biotin) was added and reacted at room temperature for 60 minutes. 0.508 ml and 1.27 ml were separated from this reaction solution, and 1 g each of BSA (manufactured by SIGMA) was added to a solution in 50 ml of 10 mM phosphate buffer solution (pH 7.0). Reacted for hours. Unreacted biotin was removed by ultrafiltration to obtain water-soluble biotin-bound BSA. As a result, on average, 6 molecules of biotin-bonded dissociator (referred to as BSA-Biotin6) and 10 molecules of biotin-bonded dissociator (referred to as BSA-Biotin10) were obtained per BSA molecule. The amount of biotin bound to BSA was quantified according to the HABA method (4-hydroxyazobenzene-2-carboxylic acid, NM Green, Methods in Enzymology, vol. 18, p418-424, 1970) by Green et al.
[調製例4]:解離剤の調製(2)(ビオチン誘導体が結合したポリアクリル酸の合成)
 分子量25万のポリアクリル酸(PAA、和光純薬工業製)0.1gを5mlの10mMリン酸緩衝溶液(pH7.0)に溶解し、EDC塩酸塩を133mg(ポリアクリル酸のカルボキシル基に対して0.5等量)加えた。続いて、アミノ基を有するビオチン誘導体である前記式(7)で表される化合物(Biotin-PEO-LC-Amine;サーモフィッシャーサイエンティフィック社製)のジメチルスルホキシド溶液(10mg/ml)を0.835ml又は1.67ml加え、さらに室温で3.5時間反応した。未反応のビオチンを限外ろ過で除去し、水溶性のビオチン結合PAAを得た。PAAに結合したビオチンの定量をHABA法に従って行った。以上により、PAA1分子当たり平均で15分子のビオチン誘導体が結合した解離剤(PAA-Biotin15という。)、PAA1分子当たり平均で40分子のビオチン誘導体が結合した解離剤(PAA-Biotin40という。)が得られた。
[Preparation Example 4]: Preparation of dissociator (2) (synthesis of polyacrylic acid bound with biotin derivative)
0.1 g of polyacrylic acid (PAA, manufactured by Wako Pure Chemical Industries, Ltd.) having a molecular weight of 250,000 is dissolved in 5 ml of 10 mM phosphate buffer solution (pH 7.0), and 133 mg of EDC hydrochloride (based on the carboxyl group of polyacrylic acid) 0.5 equivalent). Subsequently, a dimethyl sulfoxide solution (10 mg / ml) of a compound represented by the formula (7) which is a biotin derivative having an amino group (Biotin-PEO-LC-Amine; manufactured by Thermo Fisher Scientific Co., Ltd.) 835 ml or 1.67 ml was added, and further reacted at room temperature for 3.5 hours. Unreacted biotin was removed by ultrafiltration to obtain water-soluble biotin-conjugated PAA. Quantification of biotin bound to PAA was performed according to the HABA method. As described above, a dissociation agent (referred to as PAA-Biotin15) to which 15 biotin derivatives are bound on average per PAA molecule, and a dissociation agent (referred to as PAA-Biotin40) to bind 40 biotin derivatives on average per PAA molecule. It was.
[調製例5]標的細胞の調製
 HT-29細胞(標的細胞)を培養している培養皿から培地を取り除き、2mM EDTAを含むPBS1mlを加え、37℃で5分間保持して細胞を培養皿から剥がした後、ピペッティングで単細胞に分離し、PBSで希釈して2.0×10細胞/mlの細胞濃度の細胞分散液を得た。HT-29細胞は、Ep-CAM抗原を発現している。
[Preparation Example 5] Preparation of target cells Remove the medium from the culture dish in which HT-29 cells (target cells) are cultured, add 1 ml of PBS containing 2 mM EDTA, and hold at 37 ° C for 5 minutes to remove the cells from the culture dish. After peeling, the cells were separated into single cells by pipetting and diluted with PBS to obtain a cell dispersion having a cell concentration of 2.0 × 10 5 cells / ml. HT-29 cells express Ep-CAM antigen.
[細胞数の測定]
 細胞数は、ゲノムDNA量を定量PCR法により測定して求めた。
(1)捕捉用担体に結合した細胞数の測定
 各実施例・比較例で得られた捕捉用担体と標的細胞の結合体の全量に0.8mg/mlProteinase K(タンパク分解酵素;QIAGEN社製)の10mM Tris-HCl緩衝液(pH8.3)溶液を50μl加え、55℃で15分加熱し、DNAを溶出させた。続いて、95℃で20分間加熱してProteinase Kを失活させた。得られたDNA溶液20μlを30μlの定量PCR用カクテル(ロシュ社、FastStart Taq使用)に加えて定量PCRを実施した。検量線には、一定数量の細胞から同法により回収したDNA溶液を用いた。定量PCR用の装置は、Applied Biosystems社7500 Real-Time PCR Systemを使用した。
(2)捕捉用担体から分離した細胞数の測定
 捕捉用担体と標的細胞の結合体の全量に替えて、各実施例・比較例で解離剤(比較例においてはビオチン)を用いて得られた解離後の細胞分散液全量250μ中の100μlを用いた他は、捕捉用担体に結合した細胞数の測定と同様にして測定し、解離後の細胞分散液全量中の細胞数を測定した。
[Measurement of cell number]
The number of cells was determined by measuring the amount of genomic DNA by quantitative PCR.
(1) Measurement of the number of cells bound to the capture carrier 0.8 mg / ml Proteinase K (proteolytic enzyme; manufactured by QIAGEN) in the total amount of the capture carrier and target cell conjugate obtained in each Example / Comparative Example 50 μl of 10 mM Tris-HCl buffer (pH 8.3) was added and heated at 55 ° C. for 15 minutes to elute the DNA. Subsequently, Proteinase K was inactivated by heating at 95 ° C. for 20 minutes. 20 μl of the obtained DNA solution was added to 30 μl of a cocktail for quantitative PCR (Roche, using FastStart Taq), and quantitative PCR was performed. For the calibration curve, a DNA solution recovered from a certain number of cells by the same method was used. As an apparatus for quantitative PCR, Applied Biosystems 7500 Real-Time PCR System was used.
(2) Measurement of the number of cells separated from the capture carrier Obtained by using a dissociator (biotin in the comparative example) in each of the examples and comparative examples instead of the total amount of the capture carrier and target cell conjugate The number of cells in the total amount of the cell dispersion after dissociation was measured in the same manner as the measurement of the number of cells bound to the capture carrier except that 100 μl in the total amount of the cell dispersion after dissociation was 250 μm.
[解離効率]
 アビジン等とビオチン誘導体の解離効率は、下式により求めた。
 解離効率(%)=捕捉用担体から分離した細胞数÷捕捉用担体に結合した細胞数×100
[Dissociation efficiency]
The dissociation efficiency between avidin and the biotin derivative was determined by the following equation.
Dissociation efficiency (%) = number of cells separated from capture carrier ÷ number of cells bound to capture carrier × 100
[実施例1]
 調製例2で得られた捕捉用担体各1mg分をテストチューブに取り分け、0.6質量%クエン酸及び0.5質量%BSAを含むPBS1ml分散させて捕捉用担体液を得た。この捕捉用担体液に調製例5で得られた細胞分散液50μlを加え、4℃で30分間混和して、捕捉用担体とHT-29細胞を結合させた。次いで、磁気スタンドを使って捕捉用担体を分離し、PBSで3回洗浄することによって、捕捉用担体に結合した標的細胞を未結合細胞やその他の溶質成分から分離した。分離した捕捉用担体に結合していた細胞数を測定したところ、実施例に供した細胞の85%の8,500細胞であった。
 標的細胞に結合した捕捉用担体に、調製例3で得られた0.2質量%BSA-Biotin6のPBS溶液250μlを添加し、室温で20分間穏やかに混和した。その後、磁気スタンドを使って粒子を分離し、上清中の解離したHT-29細胞を回収した。光学顕微鏡により観察したところ、上清中の前記細胞はその形態を保持した状態で存在していた。
 標的細胞の解離効率を表1に示す。なお、表1において、「解離溶液中のビオチン濃度」とは、解離剤の濃度と解離剤のビオチン化度から計算されたビオチンの質量%の値である。
[Example 1]
Each 1 mg of the capture carrier obtained in Preparation Example 2 was placed in a test tube and dispersed in 1 ml of PBS containing 0.6% by mass citric acid and 0.5% by mass BSA to obtain a capture carrier solution. To this carrier solution for capture, 50 μl of the cell dispersion obtained in Preparation Example 5 was added and mixed at 4 ° C. for 30 minutes to bind the carrier for capture and HT-29 cells. The capture carrier was then separated using a magnetic stand and washed three times with PBS to separate target cells bound to the capture carrier from unbound cells and other solute components. When the number of cells bound to the separated capture carrier was measured, it was 8,500 cells, 85% of the cells used in the examples.
To the capture carrier bound to the target cells, 250 μl of 0.2 mass% BSA-Biotin 6 PBS solution obtained in Preparation Example 3 was added, and gently mixed for 20 minutes at room temperature. Thereafter, the particles were separated using a magnetic stand, and dissociated HT-29 cells in the supernatant were recovered. When observed with an optical microscope, the cells in the supernatant were present while maintaining their morphology.
Table 1 shows the dissociation efficiency of the target cells. In Table 1, “the concentration of biotin in the dissociation solution” is a value of mass% of biotin calculated from the concentration of the dissociator and the degree of biotinylation of the dissociator.
[実施例2~4]
 BSA-Biotin6に替えて表1に記載の解離剤を用いた他は実施例1と同様にして解離効率を求めた。
[Examples 2 to 4]
The dissociation efficiency was determined in the same manner as in Example 1 except that the dissociating agent shown in Table 1 was used instead of BSA-Biotin6.
[比較例1]
 0.2質量%BSA-Biotin6のPBS溶液に替えて10mMビオチンのPBS溶液を用いた他は実施例1と同様にして解離効率を求めた。
[Comparative Example 1]
Dissociation efficiency was determined in the same manner as in Example 1 except that a PBS solution of 10 mM biotin was used instead of the PBS solution of 0.2% by mass BSA-Biotin6.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示されるように、解離剤としてビオチンが結合した水溶性高分子を用いた実施例1~4においては、解離剤に替えてビオチンを用いた比較例1と比較して、解離溶液中のビオチン濃度が極めて小さいにもかかわらず、極めて高い効率でアビジン等とビオチン誘導体を解離させ、標的細胞を分離できることが確認された。 As shown in Table 1, in Examples 1 to 4 using a water-soluble polymer to which biotin was bound as a dissociating agent, compared with Comparative Example 1 using biotin instead of the dissociating agent, In spite of the extremely small biotin concentration, it was confirmed that avidin and the like and biotin derivatives can be dissociated and the target cells can be separated with extremely high efficiency.

Claims (11)

  1.  アビジンとアビジンに対する親和性がビオチンよりも低いビオチン誘導体(1)の結合体又はストレプトアビジンと前記ビオチン誘導体(1)の結合体(以下、総称して「アビジン-ビオチン複合体」という。)と、ビオチン又はその誘導体(2)が結合した水溶性高分子(以下、「解離剤」という。)を混合する工程を有する、アビジン又はストレプトアビジンとビオチン誘導体(1)を解離させる方法。 A conjugate of biotin derivative (1) having a lower affinity for avidin and avidin or a conjugate of streptavidin and biotin derivative (1) (hereinafter collectively referred to as “avidin-biotin complex”); A method of dissociating avidin or streptavidin and biotin derivative (1), comprising a step of mixing a water-soluble polymer (hereinafter referred to as “dissociator”) to which biotin or a derivative thereof (2) is bound.
  2.  前記ビオチン誘導体(1)が、ビオチンの環状構造部分においてビオチンと相違する誘導体である、請求項1に記載の方法。 The method according to claim 1, wherein the biotin derivative (1) is a derivative different from biotin in a cyclic structure portion of biotin.
  3.  前記ビオチン誘導体(1)が、デスチオビオチン、2-イミノビオチン、3,4-ジアミノビオチンから選択される1種以上である、請求項2に記載の方法。 The method according to claim 2, wherein the biotin derivative (1) is at least one selected from desthiobiotin, 2-iminobiotin, and 3,4-diaminobiotin.
  4.  前記解離剤の分子量が、ゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算数平均分子量として1,000~1,000,000である請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the dissociator has a molecular weight of 1,000 to 1,000,000 as a polystyrene-equivalent number average molecular weight measured by gel permeation chromatography.
  5.  前記解離剤が、1分子当たり平均で2~2,000個のビオチン又はその誘導体(2)が結合した水溶性高分子である、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the dissociator is a water-soluble polymer having an average of 2 to 2,000 biotin or a derivative thereof (2) bound thereto per molecule.
  6.  前記解離剤は、水溶性タンパク、水溶性多糖又は水溶性有機合成高分子のいずれかとビオチン又はその誘導体(2)の結合体である、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the dissociator is a conjugate of biotin or a derivative thereof (2) with any one of a water-soluble protein, a water-soluble polysaccharide or a water-soluble organic synthetic polymer.
  7.  前記ビオチン誘導体(2)が、ビオチンの環状構造部分についてはビオチンと同一の構造を有する誘導体である、請求項1~6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein the biotin derivative (2) is a derivative having the same structure as biotin with respect to the cyclic structure portion of biotin.
  8.  前記アビジン-ビオチン複合体は、不溶性担体に固定化したアビジン若しくはストレプトアビジンとビオチン誘導体の結合体である、請求項1~7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the avidin-biotin complex is a conjugate of avidin or streptavidin immobilized on an insoluble carrier and a biotin derivative.
  9.  標的物質を分離する方法であって、
    捕捉用担体と標的物質とを水系溶剤中で混合して混合液1を得る工程、
    混合液1とビオチン又はその誘導体(2)が結合した水溶性高分子とを混合して混合液2を得る工程、
    混合液2から標的物質を分離する工程を含む、方法。
     ただし、捕捉用担体は、下記(A)と(B)との結合物である。
    (A)不溶性担体に固定化したアビジン若しくはストレプトアビジン
    (B)標的物質に対して特異的親和性を有する物質(以下、「プローブ分子」という。)に固定化した、アビジンに対する親和性がビオチンよりも低いビオチン誘導体(1)
    A method for separating a target substance,
    A step of mixing a capture carrier and a target substance in an aqueous solvent to obtain a mixed solution 1;
    A step of mixing the liquid mixture 1 with a water-soluble polymer to which biotin or a derivative thereof (2) is bound to obtain a liquid mixture 2;
    A method comprising a step of separating a target substance from the liquid mixture 2.
    However, the capture carrier is a combination of the following (A) and (B).
    (A) Avidin immobilized on an insoluble carrier or streptavidin (B) Affinity immobilized on a substance having specific affinity for a target substance (hereinafter referred to as “probe molecule”) is higher than that of biotin. Low biotin derivative (1)
  10.  前記標的物質が細胞である、請求項9に記載の方法。 The method according to claim 9, wherein the target substance is a cell.
  11.  ビオチン又はその誘導体(2)が結合した水溶性高分子を含有する、アビジン又はストレプトアビジンとビオチン誘導体(1)を解離するために用いられる解離剤。 A dissociator used to dissociate avidin or streptavidin and biotin derivative (1), which contains a water-soluble polymer to which biotin or its derivative (2) is bound.
PCT/JP2010/066005 2009-09-17 2010-09-16 Dissociation method and dissociation agent for avidin and biotin WO2011034115A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080040460.7A CN102575244B (en) 2009-09-17 2010-09-16 Dissociation method and dissociation agent for avidin and biotin
EP10817228.9A EP2479268B1 (en) 2009-09-17 2010-09-16 Dissociation method and dissociation agent for avidin and biotinderivatives
US13/394,563 US8685655B2 (en) 2009-09-17 2010-09-16 Dissociation method and dissociation agent for avidin and biotin derivatives
JP2011531955A JP5686098B2 (en) 2009-09-17 2010-09-16 Dissociation method and dissociator for avidin and biotin derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-215732 2009-09-17
JP2009215732 2009-09-17

Publications (1)

Publication Number Publication Date
WO2011034115A1 true WO2011034115A1 (en) 2011-03-24

Family

ID=43758716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066005 WO2011034115A1 (en) 2009-09-17 2010-09-16 Dissociation method and dissociation agent for avidin and biotin

Country Status (5)

Country Link
US (1) US8685655B2 (en)
EP (1) EP2479268B1 (en)
JP (1) JP5686098B2 (en)
CN (1) CN102575244B (en)
WO (1) WO2011034115A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013071918A1 (en) * 2011-11-14 2013-05-23 Pluriselect Gmbh Method for isolating cells and bioparticles
JP2014515264A (en) * 2011-05-19 2014-06-30 セクエノム, インコーポレイテッド Products and processes for multiplex nucleic acid identification
US10233489B2 (en) 2015-04-24 2019-03-19 Agena Bioscience, Inc. Multiplexed method for the identification and quantitation of minor alleles and polymorphisms
JP2020016614A (en) * 2018-07-27 2020-01-30 シスメックス株式会社 Method for measuring biological particles, method for detecting nonspecific signal, method for measuring biological particles, and reagent kit for detecting biological particles
US10640817B2 (en) 2015-04-24 2020-05-05 Agena Bioscience, Inc. Multiplex methods for detection and quantification of minor variants
JP2021515220A (en) * 2018-03-01 2021-06-17 アカデミア シニカAcademia Sinica Devices and methods for detecting cancer cells
US11525824B2 (en) 2018-07-27 2022-12-13 Sysmex Corporation Bioparticle measuring method
JP7245907B2 (en) 2018-09-25 2023-03-24 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド Methods and compositions for removing biotin interference from assays using conjugated molecular traps

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE538541C2 (en) 2015-01-19 2016-09-13 Fogelstrand Per Method for preparing a biological sample for use in an immunolabeling process
CN107209176B (en) * 2015-01-21 2020-08-14 克罗姆尼贡公司 Method for forming immune mark complex and use thereof
EP3250928A1 (en) * 2015-01-26 2017-12-06 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Methods for a quantitative release of biotinylated peptides and proteins from streptavidin complexes
CN105807053B (en) * 2016-04-15 2019-04-02 苏州药明康德新药开发股份有限公司 A kind of application of the tumour dissociation reagent in FCM analysis
CN106124783B (en) * 2016-06-30 2018-10-02 深圳市亚辉龙生物科技股份有限公司 Coated nanometer magnetic bead of modified cuorin and preparation method thereof
KR20220136080A (en) * 2020-02-03 2022-10-07 일루미나, 인코포레이티드 Biotin-streptavidin cleavage composition and library fragment cleavage

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184677A (en) 1989-01-10 1990-07-19 Internatl Reagents Corp Desthiobiotin derivative and labeling agent comprising the same derivative
JPH0510808B2 (en) 1982-04-23 1993-02-10 Sintef
JPH1028589A (en) 1996-04-01 1998-02-03 Boehringer Mannheim Gmbh Recombinant inactive core streptoavidine variant
JP2000510702A (en) * 1996-05-13 2000-08-22 シークエノム・インコーポレーテツド Biotin complex dissociation method
JP2001158800A (en) 1999-12-03 2001-06-12 Jsr Corp Avidin particle
WO2002046395A1 (en) * 2000-12-07 2002-06-13 Keio University C-terminal modified protein and process for producing the same, modifying agent and translation template to be used in produfing c-terminal modified protein, and method of detecting protein interaction with the use of c-termial modified protein
JP2004525354A (en) * 2000-12-28 2004-08-19 イーベーアー ゲゼルシャフト ミット ベシュレンクテル ハフツング Reversible MHC multimer staining method for functional purification of antigen-specific T-cells
JP2005507997A (en) * 2001-10-26 2005-03-24 イムニベスト・コーポレイション Multi-parameter analysis of comprehensive nucleic acid and morphological features for the same sample
JP2007288133A (en) 2006-03-24 2007-11-01 Jsr Corp Magnetic particles, and manufacturing method thereof
JP2010512537A (en) 2006-12-11 2010-04-22 ジェンザイム・コーポレーション Indirect lateral flow sandwich assay

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391571B1 (en) 1997-04-01 2002-05-21 Roche Diagnostics Gmbh Recombinant inactive avidin mutants
GB9828192D0 (en) * 1998-12-21 1999-02-17 Ortho Clinical Diagnostics Macro-complexed ligand binders
US20050208598A1 (en) * 2004-02-13 2005-09-22 Cox W G Biotin recognition sensors and high-throughput assays
AU2007353319A1 (en) * 2006-11-15 2008-11-20 Invitrogen Dynal As Methods for reversibly binding a biotin compound to a support

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510808B2 (en) 1982-04-23 1993-02-10 Sintef
JPH02184677A (en) 1989-01-10 1990-07-19 Internatl Reagents Corp Desthiobiotin derivative and labeling agent comprising the same derivative
JPH1028589A (en) 1996-04-01 1998-02-03 Boehringer Mannheim Gmbh Recombinant inactive core streptoavidine variant
JP2000510702A (en) * 1996-05-13 2000-08-22 シークエノム・インコーポレーテツド Biotin complex dissociation method
JP2001158800A (en) 1999-12-03 2001-06-12 Jsr Corp Avidin particle
WO2002046395A1 (en) * 2000-12-07 2002-06-13 Keio University C-terminal modified protein and process for producing the same, modifying agent and translation template to be used in produfing c-terminal modified protein, and method of detecting protein interaction with the use of c-termial modified protein
JP2004525354A (en) * 2000-12-28 2004-08-19 イーベーアー ゲゼルシャフト ミット ベシュレンクテル ハフツング Reversible MHC multimer staining method for functional purification of antigen-specific T-cells
JP2005507997A (en) * 2001-10-26 2005-03-24 イムニベスト・コーポレイション Multi-parameter analysis of comprehensive nucleic acid and morphological features for the same sample
JP2007288133A (en) 2006-03-24 2007-11-01 Jsr Corp Magnetic particles, and manufacturing method thereof
JP2010512537A (en) 2006-12-11 2010-04-22 ジェンザイム・コーポレーション Indirect lateral flow sandwich assay

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HIRSCH JD ET AL.: "Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation", ANAL. BIOCHEM., vol. 308, no. 2, 2002, pages 343 - 357, XP002462135 *
HU BH ET AL.: "Method for screening and MALDI-TOF MS sequencing of encoded combinatorial libraries", ANAL. CHEM., vol. 79, no. 19, 2007, pages 7275 - 7285, XP009121545 *
MURATSUGU M ET AL.: "Comparison of the Solid Phase-supported Receptor and Ligand Competitive Assays for Biotin", J. HEALTH SCIENCE, vol. 55, no. 6, December 2009 (2009-12-01), pages 939 - 945, XP008152463 *
N. M. GREEN: "4-hydroxyazobenzene-2-carboxylic acid", METHODS IN ENZYMOLOGY, vol. 18, 1970, pages 418 - 424
PREVITE MJ ET AL.: "Microwave triggered metal enhanced chemiluminescence: Quantitative protein determination", ANAL. CHEM., vol. 78, no. 23, 2006, pages 8020 - 8027, XP008152457 *
See also references of EP2479268A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10604791B2 (en) 2011-05-19 2020-03-31 Agena Bioscience, Inc. Products and processes for multiplex nucleic acid identification
JP2014515264A (en) * 2011-05-19 2014-06-30 セクエノム, インコーポレイテッド Products and processes for multiplex nucleic acid identification
US11667958B2 (en) 2011-05-19 2023-06-06 Agena Bioscience, Inc. Products and processes for multiplex nucleic acid identification
WO2013071918A1 (en) * 2011-11-14 2013-05-23 Pluriselect Gmbh Method for isolating cells and bioparticles
US10513728B2 (en) 2015-04-24 2019-12-24 Agena Bioscience, Inc. Multiplexed method for the identification and quantitation of minor alleles and polymorphisms
US10640817B2 (en) 2015-04-24 2020-05-05 Agena Bioscience, Inc. Multiplex methods for detection and quantification of minor variants
US10865439B2 (en) 2015-04-24 2020-12-15 Agena Bioscience, Inc. Multiplexed method for the identification and quantitation of minor alleles and polymorphisms
US10233489B2 (en) 2015-04-24 2019-03-19 Agena Bioscience, Inc. Multiplexed method for the identification and quantitation of minor alleles and polymorphisms
US11680289B2 (en) 2015-04-24 2023-06-20 Agena Bioscience, Inc. Multiplexed method for the identification and quantitation of minor alleles and polymorphisms
JP2021515220A (en) * 2018-03-01 2021-06-17 アカデミア シニカAcademia Sinica Devices and methods for detecting cancer cells
CN110779852A (en) * 2018-07-27 2020-02-11 希森美康株式会社 Method for measuring biological particles, and kit for detecting biological particles
JP2020016614A (en) * 2018-07-27 2020-01-30 シスメックス株式会社 Method for measuring biological particles, method for detecting nonspecific signal, method for measuring biological particles, and reagent kit for detecting biological particles
JP7153494B2 (en) 2018-07-27 2022-10-14 シスメックス株式会社 Method for measuring bioparticles, method for detecting non-specific signals, method for measuring bioparticles, and reagent kit for detecting bioparticles
US11525824B2 (en) 2018-07-27 2022-12-13 Sysmex Corporation Bioparticle measuring method
JP7245907B2 (en) 2018-09-25 2023-03-24 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド Methods and compositions for removing biotin interference from assays using conjugated molecular traps

Also Published As

Publication number Publication date
CN102575244B (en) 2015-07-22
JP5686098B2 (en) 2015-03-18
US8685655B2 (en) 2014-04-01
EP2479268B1 (en) 2020-11-04
JPWO2011034115A1 (en) 2013-02-14
US20120171763A1 (en) 2012-07-05
CN102575244A (en) 2012-07-11
EP2479268A1 (en) 2012-07-25
EP2479268A4 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5686098B2 (en) Dissociation method and dissociator for avidin and biotin derivative
RU2746407C1 (en) Chromatographic isolation of cells and other complex biological materials
US11666603B2 (en) Methods and compositions for purification or isolation of microvesicles and exosomes
JP2009521672A (en) Biomolecule preparation
Cheubong et al. Molecularly imprinted polymer nanogel-based fluorescence sensing of pork contamination in halal meat extracts
JP7462972B2 (en) Biomagnetic microspheres and methods of preparation and use thereof
EP2725359B1 (en) Cell separation method using a release system for cell-antibody-substrate conjugates containing a polyethylene glycol spacer unit
JPWO2019039179A1 (en) Exosome isolation method and exosome isolation kit
JP2016509069A (en) Protein purification with high conductivity in the presence of nonionic organic polymers
US20210245074A1 (en) Methods And Compositions For Purification Or Isolation Of Microvesicles And Exosomes
CN113564214A (en) Integrated preparation method for in-vitro synthesis and purification of protein, kit and application thereof
AU2007340463B2 (en) Use of heat-resistant biotin-binding protein, and solid support having the protein attached thereto
CN110564730B (en) CD40L aptamer and application thereof
KR20210045452A (en) Nucleic Acid Isolation and Related Methods
WO2015119288A1 (en) Method for capturing target substance, solid-phase carrier for capturing target substance, and method for producing solid-phase carrier
JP2011506354A (en) Extraction method of membrane protein
US9354237B2 (en) Methods for isolating proteins
Gu et al. Exosomes biogenesis and potentials in disease diagnosis and drug delivery
KR101801227B1 (en) Nucleic Acid Aptamer Capable of Specifically Binding to Follistatin and Uses Thereof
JP6241564B1 (en) Sugar chain-capturing polymer particles
JP2000219698A (en) Material for separating substance, system for separating substance and method for separating substance
Wang et al. Cellulose Nanofibrils of High Immunoaffinity for Efficient Enrichment of Small Extracellular Vesicles
WO2023175016A1 (en) Method for producing delivery vesicles
WO2024072822A2 (en) Dispersing and wetting agents and compositions and methods of use thereof
CN116622468A (en) Antifouling micro-bubble for biological orthogonal capture and preparation and application thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040460.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817228

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011531955

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13394563

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010817228

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE