WO2011033934A1 - Fluid pressure transmission device - Google Patents

Fluid pressure transmission device Download PDF

Info

Publication number
WO2011033934A1
WO2011033934A1 PCT/JP2010/064921 JP2010064921W WO2011033934A1 WO 2011033934 A1 WO2011033934 A1 WO 2011033934A1 JP 2010064921 W JP2010064921 W JP 2010064921W WO 2011033934 A1 WO2011033934 A1 WO 2011033934A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid pressure
pressure
cylinder
high pressure
low
Prior art date
Application number
PCT/JP2010/064921
Other languages
French (fr)
Japanese (ja)
Inventor
寛則 和井田
裕介 山本
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2011033934A1 publication Critical patent/WO2011033934A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/001With multiple inputs, e.g. for dual control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • B25J15/0206Gripping heads and other end effectors servo-actuated comprising articulated grippers
    • B25J15/024Gripping heads and other end effectors servo-actuated comprising articulated grippers having fingers directly connected to actuator

Definitions

  • the present invention relates to a fluid pressure transmission device including a drive fluid pressure cylinder and a driven fluid pressure cylinder.
  • a hand apparatus provided with a plurality of finger mechanisms imitating human hands and a hand main body to which each finger mechanism is connected (see, for example, Japanese Patent Application Laid-Open No. 8-126984).
  • the finger mechanism of the hand device of Patent Document 1 is bent and stretched by a fluid pressure transmission device.
  • the fluid pressure transmission device is provided with a plurality of driven fluid pressure cylinders provided in the hand main body, and a plurality of drives provided outside the hand main body and connected to the driven fluid pressure cylinders via fluid pressure transmission pipes. And a fluid pressure cylinder.
  • the driven fluid pressure cylinder used for a joint or the like requiring precise operation corresponds to this.
  • One drive hydraulic cylinder is connected.
  • a drive fluid pressure cylinder having an inner diameter which can correspond to the maximum pressure and the maximum speed required for the driven fluid pressure cylinders and a drive source capable of obtaining an appropriate maximum output are used.
  • the entire fluid pressure transmission device can not be made large and lightening can not be achieved.
  • An object of the present invention is to provide a fluid pressure transmission device that can be reduced in size and weight.
  • the present invention has a piston advanced / retracted in a cylinder body by a high pressure drive source, and the piston moves forward by the high pressure drive source in the cylinder body
  • a high pressure drive fluid pressure cylinder generating high pressure fluid pressure
  • a piston advanced / retracted in the cylinder body by a low pressure drive source and the piston moves forward by the low pressure drive source, thereby producing a pressure in the cylinder body
  • a plurality of low pressure drive fluid pressure cylinders that generate a fluid pressure lower than that of the high pressure drive fluid pressure cylinder, and a plurality of fluid flow pressures respectively connected to the low pressure drive fluid pressure cylinders via low pressure side fluid pressure transfer paths.
  • the low pressure path state which prevents acting on the fluid pressure cylinder, and the fluid pressure of the low pressure driving fluid pressure cylinder is prevented from acting on the driven fluid pressure cylinder, and the fluid pressure of the high pressure driving fluid pressure cylinder is the driven It is characterized in that it is switchable to a high pressure path state which allows acting on the fluid pressure cylinder.
  • each flow path switching valve is switched between the low pressure path state and the high pressure path state by the controller, and the controller is all in the low pressure mode in which all flow path switching valves are in the low pressure path state. It is preferable to switch the flow passage switching valve to the high pressure mode in which the high pressure passage state is established.
  • the low pressure mode in which each driven fluid pressure cylinder can be operated at a relatively high speed with one low pressure drive fluid pressure cylinder, and all the driven fluid pressure cylinders with one high pressure drive fluid pressure cylinder It can be switched to a high pressure mode that can be operated with relatively strong force (torque).
  • the movable member can be quickly operated in the low pressure mode when it is required to quickly operate the movable member to which the pistons of the driven fluid pressure cylinders are connected. Further, when a large movable force (torque) is required for each movable member, the movable member can be operated with a strong force in the high pressure mode. From this, according to the fluid pressure transmission device of the present invention, it is possible to switch between the quick operation and the strong operation of the movable member.
  • a high pressure drive fluid pressure cylinder that generates a high pressure by using a drive source such as a high output motor, etc., without preparing the same number of driven fluid pressure cylinders as one high pressure drive fluid pressure cylinder and a plurality of Each driven fluid pressure cylinder can be operated with relatively strong force (torque) simply by providing the flow path switching valve, so the low pressure drive source for advancing and retracting the piston of the low pressure drive fluid pressure cylinder has a maximum output relatively Small ones can be used.
  • the fluid pressure transmission device can be reduced in size and weight.
  • the fluid pressure transmission device of the present invention includes, for example, a robot hand including a plurality of finger mechanisms that can be flexed and extended at joints, and the joints of the finger mechanisms flex and extend as the piston of the driven fluid pressure cylinder moves back and forth. It can be used for the device.
  • Explanatory drawing which shows the robot hand apparatus which applies the fluid pressure transmission apparatus of embodiment of this invention.
  • Explanatory drawing which shows the low pressure mode of the fluid pressure transmission apparatus of embodiment.
  • Explanatory drawing which shows the holding
  • Explanatory drawing which shows the high pressure mode of the fluid pressure transmission apparatus of embodiment.
  • the robot hand apparatus 1 includes a first finger mechanism 2, a second finger mechanism 3, and a base 4 to which both finger mechanisms 2 and 3 are connected.
  • the two finger mechanisms 2 and 3 have finger base members 21 and 31 pivotally supported by pivot shafts 4 a and 4 b provided on the base 4 and pivot shafts provided on the finger base members 21 and 31.
  • the finger tip members 22 and 32 pivotally supported pivotally by 21a and 31a are provided.
  • the base 4 is provided with first and second driven fluid pressure cylinders 51 and 52.
  • the driven fluid pressure cylinders 51, 52 include cylinder bodies 51a, 52a fixed to the outer surface (the back side of the hand) of the base 4, pistons 51b, 52b that can slide inside the cylinder bodies 51a, 52a, and pistons 51b, 51b, Rods 51c and 52c pivotally connected via a spherical joint (not shown) to 52b are provided.
  • the rod 51c of the first driven fluid pressure cylinder 51 is swingably connected to a base end portion of the finger base member 21 of the first finger mechanism 2 and to a portion outside the rotation shaft 4a.
  • the rod 52c of the second driven fluid pressure cylinder 52 is swingably connected to a base end portion of the finger base member 31 of the second finger mechanism 3 and to a portion outside the rotation shaft 4b.
  • the finger base member 21 of the first finger mechanism 2 is provided with a third driven fluid pressure cylinder 53.
  • the third driven fluid pressure cylinder 53 is provided via a cylinder main body 53a fixed to the outer surface of the finger base member 21, a piston 53b capable of sliding the inside of the cylinder main body 53a, and a spherical joint not shown on the piston 53b. And a pivotally connected rod 53c.
  • the rod 53c of the third driven fluid pressure cylinder 53 is swingably connected to a proximal end of the fingertip member 22 of the first finger mechanism and to a portion outside the pivot shaft 21a.
  • the finger base member 31 of the second finger mechanism 3 is provided with a fourth driven fluid pressure cylinder 54.
  • the fourth driven flow pressure-resistant cylinder 54 is provided via a cylinder body 54a fixed to the outer surface of the finger base member 31, a piston 54b capable of sliding the inside of the cylinder body 54a, and a spherical joint not shown on the piston 54b. And a pivotally connected rod 54c.
  • the rod 54c of the fourth driven fluid pressure cylinder 54 is swingably connected to a proximal end portion of the fingertip member 32 of the second finger mechanism and a portion outside the pivot shaft 31a.
  • first to fourth low pressure drive fluid pressures arranged outside the robot hand device 1 in the driven fluid pressure cylinders 51 to 54 via the low pressure side fluid pressure transfer paths 61 to 64.
  • the cylinders 71 to 74 are connected to one another.
  • the low pressure drive fluid pressure cylinders 71 to 74 include cylinder bodies 71a to 74a, pistons 71b to 74b which can slide inside the cylinder bodies 71a to 74a, and ball screws 71c to 74c connected to the pistons 71b to 74b. Have.
  • the driven pulleys 81a to 81d are screwed into the ball screws 71c to 74c.
  • low output motors M1 to M4 which are low pressure drive sources having a relatively small maximum drive force, are disposed.
  • Drive pulleys 82a to 82d are fixed to the rotational shafts of the low output motors M1 to M4, respectively.
  • Belts 83a to 83d are wound around the driven pulleys 81a to 81d and the drive pulleys 82a to 82d.
  • the rotational driving force of the low output motors M1 to M4 is converted into forward and backward motion of the ball screws 71c to 74c through the drive pulleys 82a to 82d, the belts 83a to 83d, and the driven pulleys 81a to 81d, and the pistons 71b to 74b are cylinders. It is advanced and retracted inside the main bodies 71a to 74a. In this way, the low pressure drive fluid pressure cylinders 71-74 generate relatively low pressure fluid pressure.
  • the low pressure side fluid communication paths 61 to 64 are connected to the high pressure side fluid communication path 65 via the flow path switching valves 91 to 94, respectively.
  • a high pressure drive fluid pressure cylinder 75 is connected to the high pressure side fluid transfer passage 65.
  • the high pressure drive fluid pressure cylinder 75 includes a cylinder body 75a, a piston 75b slidable inside the cylinder body 75a, and a ball screw 75c connected to the piston 75b.
  • the driven pulley 81e is engaged with the ball screw 75c.
  • a high output motor M5 is disposed, which is a high pressure drive source having a maximum drive force greater than that of the low pressure motors M1 to M4.
  • a drive pulley 82e is fixed to the rotation shaft of the high output motor M5.
  • a belt 83e is wound around the driven pulley 81e and the drive pulley 82e.
  • the rotational driving force of the high output motor M5 is converted to the forward and backward motion of the ball screw 75c through the drive pulley 82e, the belt 83e and the driven pulley 81e, and the piston 75b is advanced and retracted inside the cylinder body 75a.
  • the high pressure drive fluid pressure cylinder 75 generates a fluid pressure higher than that of the low pressure drive fluid pressure cylinders 71-74.
  • the flow path switching valves 91 to 94 provided at the connection between the low pressure side fluid transmission paths 61 to 64 and the high pressure side fluid transmission path 65 are low pressure drive fluid pressure cylinders 71 to 74 and corresponding driven fluid pressure cylinders 51 to 54, and communication between the high pressure drive fluid pressure cylinder 75 and the driven fluid pressure cylinder is cut off (see FIG. 2), and the low pressure drive fluid pressure cylinders 71 to 74 and the driven fluid pressure cylinder 51 It is configured to be able to switch to a high pressure path state (see FIG. 3) that causes communication between the high pressure drive fluid pressure cylinder 75 and the driven fluid pressure cylinders 51 to 54 while disconnecting communication with the H. 54.
  • the motors M1 to M5 and the flow path switching valves 91 to 94 are provided on the inner surface (surface on the palm side) of the base 4 of the robot hand device 1, the inner surfaces of the finger base members 21 and 31, and the fingertip members 22 and 32.
  • the controller Based on the pressure detected by the pressure sensor (not shown), the controller is controlled by a controller (not shown).
  • the controller switches the flow path switching valves 91 to 94 to the low pressure path state in the low pressure mode (see FIG. 2), and switches the flow path switching valves 91 to 94 to the high pressure path state in the high pressure mode (see FIG. 3). And) based on the pressure detected by the pressure sensor.
  • the pistons 51b to 54b of the driven fluid pressure cylinders 51 to 54 move forward and backward as the pistons 71b to 75b of the drive fluid pressure cylinders 71 to 75 connected move.
  • the finger base members 21 and 31 and the fingertip members 22 and 32 of the both finger mechanisms 2 and 3 turn about the turning shafts 4a 4b 21a 31a so as to be able to bend and extend freely.
  • the controller determines, based on the detection value of the pressure sensor, whether or not the finger mechanisms 2 and 3 can properly hold the object W (position).
  • the controller switches the flow path switching valves 91 to 94 to the low pressure mode, as shown in FIG. Let it be in the state shown. Then, the low output motors M1 to M4 are appropriately controlled so that the detection values from the respective pressure sensors of the robot hand device 1 are in a state suitable for gripping the object W (attitude and position of finger mechanism) Make it At this time, since the reaction force from the object W is substantially equal to 0, relatively quick operation is possible even if the driven fluid pressure cylinders 51 to 54 are operated using the low pressure drive fluid pressure cylinders 71 to 74. It can be put into a quick and appropriate state.
  • the controller controls the flow path switching valve 91 to 94 Is switched to the high pressure mode, and the high output motor M5 is controlled to cause the robot hand apparatus 1 to grip the object W, as shown in FIG.
  • the high pressure drive fluid pressure cylinders 75 are connected to the four driven fluid pressure cylinders 51 to 54, the operating speeds of the pistons 51b to 54b of the driven fluid pressure cylinders 51 to 54 are reduced.
  • the finger mechanisms 2 and 3 are in contact with the object W, the quick operation of the pistons 51b to 54b is not required, and the finger mechanisms 2 and 3 (in particular, the fingertip members 22 and 32 are not In order to support the weight, relatively high fluid pressure is required for the third and fourth driven fluid pressure cylinders 53, 54. Only the torque necessary for gripping the object W is required.
  • the high-power motor M5 is quickly positioned with respect to the object W with the finger mechanisms 2 and 3 in the low pressure mode using the low power motors M1 to M4.
  • the object W can be strongly held by the finger mechanisms 2 and 3 by the high pressure mode used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Actuator (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Provided is a fluid pressure transmission device which can be downsized and the weight of which can be reduced. The fluid pressure transmission device is provided with a high pressure driving fluid pressure cylinder (75); a plurality of low pressure driving fluid pressure cylinders (71 - 74); a plurality of driven fluid pressure cylinders (51 - 54) which are connected to the low pressure driving fluid pressure cylinders (71 - 74), respectively, via low pressure side fluid pressure transmission paths (61 - 64), respectively; and a high pressure side fluid pressure transmission path (65) which is connected to the high pressure driving fluid pressure cylinder (75). The high pressure side fluid pressure transmission path (65) is connected to the low pressure side fluid pressure transmission paths (61 - 64) via flow path selector valves (91- 94). The flow path selector valves (91- 94) are configured in such a way as to be switchable between a low pressure path state and a high pressure path state, the aforementioned low pressure path state being a state where the low pressure driving fluid pressure cylinders (71 - 74) and the driven fluid pressure cylinders (51 - 54) are connected, and the aforementioned high pressure path state being a state where the high pressure driving fluid pressure cylinder (75) and the driven fluid pressure cylinders (51 - 54) are connected.

Description

流体圧伝達装置Fluid pressure transmission device
 本発明は、駆動流体圧シリンダと従動流体圧シリンダとを備える流体圧伝達装置に関する。 The present invention relates to a fluid pressure transmission device including a drive fluid pressure cylinder and a driven fluid pressure cylinder.
 従来、人間の手を模した複数の指機構と、各指機構が接続されたハンド本体とを備えるハンド装置が知られている(例えば、日本国特開平8-126984号公報参照)。特許文献1のハンド装置の指機構は、流体圧伝達装置により屈伸される。この流体圧伝達装置は、ハンド本体内に設けられた複数の従動流体圧シリンダと、ハンド本体の外部に設けられ、各従動流体圧シリンダに流体圧伝達管を介して夫々接続された複数の駆動流体圧シリンダとを備える。 Conventionally, there has been known a hand apparatus provided with a plurality of finger mechanisms imitating human hands and a hand main body to which each finger mechanism is connected (see, for example, Japanese Patent Application Laid-Open No. 8-126984). The finger mechanism of the hand device of Patent Document 1 is bent and stretched by a fluid pressure transmission device. The fluid pressure transmission device is provided with a plurality of driven fluid pressure cylinders provided in the hand main body, and a plurality of drives provided outside the hand main body and connected to the driven fluid pressure cylinders via fluid pressure transmission pipes. And a fluid pressure cylinder.
 モータ等の駆動源により駆動流体圧シリンダで流体圧を発生させると、当該駆動流体圧シリンダに接続された従動流体圧シリンダに当該流体圧が付与される。そして、従動流体圧シリンダのピストンが進退し、このピストンに連結された指機構の関節の構成部品たる可動部材が可動する。このようにして、従動流体圧シリンダのピストンの進退により、指機構の関節の屈伸動作が行われる。 When fluid pressure is generated in the drive fluid pressure cylinder by a drive source such as a motor, the fluid pressure is applied to a driven fluid pressure cylinder connected to the drive fluid pressure cylinder. Then, the piston of the driven fluid pressure cylinder advances and retracts, and the movable member which is a component of the joint of the finger mechanism connected to the piston is moved. In this way, the movement of the joint of the finger mechanism is performed by advancing and retracting the piston of the driven fluid pressure cylinder.
 従来の駆動流体圧シリンダと従動流体圧シリンダと流体圧伝達管とで構成される流体圧伝達装置では、精密な動作を要求される関節等に用いられる従動流体圧シリンダには、これに対応する1つの駆動流体圧シリンダが接続される。 In a fluid pressure transmission device constituted by a conventional drive fluid pressure cylinder, a driven fluid pressure cylinder, and a fluid pressure transfer pipe, the driven fluid pressure cylinder used for a joint or the like requiring precise operation corresponds to this. One drive hydraulic cylinder is connected.
 この従動流体圧シリンダが複数設けられているものにおいては、当該従動流体圧シリンダに要求される最大圧力及び最大速度に対応できる内径の駆動流体圧シリンダや適切な最大出力を得られる駆動源を用いる必要がある。このため、精密な動作が要求される関節等に用いられる従動流体圧シリンダの数の増加に比例して、流体圧伝達装置全体が大型化し軽量化が図れなくなってしまう。 In the case where a plurality of driven fluid pressure cylinders are provided, a drive fluid pressure cylinder having an inner diameter which can correspond to the maximum pressure and the maximum speed required for the driven fluid pressure cylinders and a drive source capable of obtaining an appropriate maximum output are used. There is a need. For this reason, in proportion to the increase in the number of driven fluid pressure cylinders used for joints and the like where precise operation is required, the entire fluid pressure transmission device can not be made large and lightening can not be achieved.
 本発明は、小型化及び軽量化を図ることができる流体圧伝達装置を提供することを目的とする。 An object of the present invention is to provide a fluid pressure transmission device that can be reduced in size and weight.
 [1]上記目的を達成するため、本発明は、高圧用駆動源によりシリンダ本体内で進退されるピストンを有し、該高圧用駆動源により前記ピストンが前進することにより、前記シリンダ本体内で高圧の流体圧を発生させる高圧駆動流体圧シリンダと、低圧用駆動源によりシリンダ本体内で進退されるピストンを有し、該低圧用駆動源により前記ピストンが前進することにより、前記シリンダ本体内で前記高圧駆動流体圧シリンダよりも低圧の流体圧を発生させる複数の低圧駆動流体圧シリンダと、該各低圧駆動流体圧シリンダに低圧側流体圧伝達路を介して夫々接続される複数の流動流体圧シリンダと、前記高圧駆動流体圧シリンダに接続される高圧側流体圧伝達路とを備え、該高圧側流体圧伝達路は、前記各低圧側流体圧伝達路に流路切換弁を介して接続され、該各流路切換弁は、前記低圧駆動流体圧シリンダの流体圧が前記従動流体圧シリンダに作用することを許容すると共に前記高圧駆動流体圧シリンダの流体圧が前記従動流体圧シリンダに作用することを阻止する低圧路状態と、前記低圧駆動流体圧シリンダの流体圧が前記従動流体圧シリンダに作用することを阻止すると共に前記高圧駆動流体圧シリンダの流体圧が前記従動流体圧シリンダに作用することを許容する高圧路状態とに切換自在であることを特徴とする。 [1] In order to achieve the above object, the present invention has a piston advanced / retracted in a cylinder body by a high pressure drive source, and the piston moves forward by the high pressure drive source in the cylinder body A high pressure drive fluid pressure cylinder generating high pressure fluid pressure, and a piston advanced / retracted in the cylinder body by a low pressure drive source, and the piston moves forward by the low pressure drive source, thereby producing a pressure in the cylinder body A plurality of low pressure drive fluid pressure cylinders that generate a fluid pressure lower than that of the high pressure drive fluid pressure cylinder, and a plurality of fluid flow pressures respectively connected to the low pressure drive fluid pressure cylinders via low pressure side fluid pressure transfer paths. A cylinder and a high pressure side fluid pressure transmission path connected to the high pressure drive fluid pressure cylinder, the high pressure side fluid pressure transmission path being disconnected from each low pressure side fluid pressure transmission path Connected via a valve, the flow path switching valves allow the fluid pressure of the low pressure drive fluid pressure cylinder to act on the driven fluid pressure cylinder and the fluid pressure of the high pressure drive fluid pressure cylinder is driven The low pressure path state which prevents acting on the fluid pressure cylinder, and the fluid pressure of the low pressure driving fluid pressure cylinder is prevented from acting on the driven fluid pressure cylinder, and the fluid pressure of the high pressure driving fluid pressure cylinder is the driven It is characterized in that it is switchable to a high pressure path state which allows acting on the fluid pressure cylinder.
 [2]又、本発明においては、各流路切換弁はコントローラにより低圧路状態と高圧路状態とが切り換えられ、コントローラは、全ての流路切換弁を低圧路状態とする低圧モードと、全ての流路切換弁を高圧路状態とする高圧モードとに切り換えるようにすることが好ましい。 [2] Also, in the present invention, each flow path switching valve is switched between the low pressure path state and the high pressure path state by the controller, and the controller is all in the low pressure mode in which all flow path switching valves are in the low pressure path state. It is preferable to switch the flow passage switching valve to the high pressure mode in which the high pressure passage state is established.
 本発明によれば、各従動流体圧シリンダを夫々1つの低圧駆動流体圧シリンダで比較的速い速度で作動させることができる低圧モードと、全ての従動流体圧シリンダを1つの高圧駆動流体威圧シリンダで比較的強い力(トルク)で作動させることができる高圧モードとに切り換えることができる。そして、各従動流体圧シリンダのピストンが連結される可動部材の迅速な作動が求められている場合には、低圧モードで可動部材を素早く作動させることができる。又、各可動部材に大きい可動力(トルク)が求められている場合には、高圧モードで可動部材を強い力で作動させることができる。こにれより、本発明の流体圧伝達装置によれば、可動部材の素早い動作と、力強い動作とを切り換えることができる。 According to the present invention, the low pressure mode in which each driven fluid pressure cylinder can be operated at a relatively high speed with one low pressure drive fluid pressure cylinder, and all the driven fluid pressure cylinders with one high pressure drive fluid pressure cylinder It can be switched to a high pressure mode that can be operated with relatively strong force (torque). The movable member can be quickly operated in the low pressure mode when it is required to quickly operate the movable member to which the pistons of the driven fluid pressure cylinders are connected. Further, when a large movable force (torque) is required for each movable member, the movable member can be operated with a strong force in the high pressure mode. From this, according to the fluid pressure transmission device of the present invention, it is possible to switch between the quick operation and the strong operation of the movable member.
 そして、高出力のモータ等の駆動源を用いるなどして、高圧力を発生させる高圧駆動流体圧シリンダを、従動流体圧シリンダの数だけ用意することなく、一つの高圧駆動流体圧シリンダと複数の流路切換弁を設けるだけで、各従動流体圧シリンダを比較的強い力(トルク)で作動させることができるため、低圧駆動流体圧シリンダのピストンを進退させる低圧用駆動源を最大出力が比較的小さいものを用いることができる。 Then, a high pressure drive fluid pressure cylinder that generates a high pressure by using a drive source such as a high output motor, etc., without preparing the same number of driven fluid pressure cylinders as one high pressure drive fluid pressure cylinder and a plurality of Each driven fluid pressure cylinder can be operated with relatively strong force (torque) simply by providing the flow path switching valve, so the low pressure drive source for advancing and retracting the piston of the low pressure drive fluid pressure cylinder has a maximum output relatively Small ones can be used.
 これにより、流体圧伝達装置の小型化及び軽量化を図ることができる。 Thus, the fluid pressure transmission device can be reduced in size and weight.
 [3]又、本発明の流体圧伝達装置は、例えば、関節部で屈伸自在な複数の指機構を備え、従動流体圧シリンダのピストンの進退に伴い、指機構の関節部が屈伸するロボットハンド装置に用いることができる。 [3] Also, the fluid pressure transmission device of the present invention includes, for example, a robot hand including a plurality of finger mechanisms that can be flexed and extended at joints, and the joints of the finger mechanisms flex and extend as the piston of the driven fluid pressure cylinder moves back and forth. It can be used for the device.
本発明の実施形態の流体圧伝達装置を適用するロボットハンド装置を示す説明図。Explanatory drawing which shows the robot hand apparatus which applies the fluid pressure transmission apparatus of embodiment of this invention. 実施形態の流体圧伝達装置の低圧モードを示す説明図。Explanatory drawing which shows the low pressure mode of the fluid pressure transmission apparatus of embodiment. 実施形態のロボットハンド装置の把持状態を示す説明図。Explanatory drawing which shows the holding | grip state of the robot hand apparatus of embodiment. 実施形態の流体圧伝達装置の高圧モードを示す説明図。Explanatory drawing which shows the high pressure mode of the fluid pressure transmission apparatus of embodiment.
 図1~4を参照して、本発明の実施形態の流体圧伝達装置を用いたロボットハンド装置を説明する。図1に示すように、ロボットハンド装置1は、第1指機構2と、第2指機構3と、両指機構2,3が連結される基部4とを備える。両指機構2,3は、基部4に設けられた回動軸4a,4bに回動自在に軸支された指基部材21,31と、指基部材21,31に設けられた回動軸21a,31aに回動自在に軸支された指先部材22,32とを備える。 A robot hand device using a fluid pressure transmission device according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the robot hand apparatus 1 includes a first finger mechanism 2, a second finger mechanism 3, and a base 4 to which both finger mechanisms 2 and 3 are connected. The two finger mechanisms 2 and 3 have finger base members 21 and 31 pivotally supported by pivot shafts 4 a and 4 b provided on the base 4 and pivot shafts provided on the finger base members 21 and 31. The finger tip members 22 and 32 pivotally supported pivotally by 21a and 31a are provided.
 基部4には、第1と第2の2つの従動流体圧シリンダ51,52が設けられている。各従動流体圧シリンダ51,52は、基部4の外面(手の甲側)に固定されたシリンダ本体51a,52aと、シリンダ本体51a,52aの内部を摺動自在なピストン51b,52bと、ピストン51b,52bに図示省略した球面ジョイントを介して揺動自在に連結されたロッド51c,52cとを備えている。 The base 4 is provided with first and second driven fluid pressure cylinders 51 and 52. The driven fluid pressure cylinders 51, 52 include cylinder bodies 51a, 52a fixed to the outer surface (the back side of the hand) of the base 4, pistons 51b, 52b that can slide inside the cylinder bodies 51a, 52a, and pistons 51b, 51b, Rods 51c and 52c pivotally connected via a spherical joint (not shown) to 52b are provided.
 第1従動流体圧シリンダ51のロッド51cは、第1指機構2の指基部材21の基端部であって回動軸4aよりも外側の部分に、揺動自在に連結されている。第2従動流体圧シリンダ52のロッド52cは、第2指機構3の指基部材31の基端部であって回動軸4bよりも外側の部分に、揺動自在に連結されている。 The rod 51c of the first driven fluid pressure cylinder 51 is swingably connected to a base end portion of the finger base member 21 of the first finger mechanism 2 and to a portion outside the rotation shaft 4a. The rod 52c of the second driven fluid pressure cylinder 52 is swingably connected to a base end portion of the finger base member 31 of the second finger mechanism 3 and to a portion outside the rotation shaft 4b.
 第1指機構2の指基部材21には、第3従動流体圧シリンダ53が設けられている。第3従動流体圧シリンダ53は、指基部材21の外側面に固定されたシリンダ本体53aと、シリンダ本体53aの内部を摺動自在なピストン53bと、ピストン53bに図示省略した球面ジョイントを介して揺動自在に連結されたロッド53cとを備えている。 The finger base member 21 of the first finger mechanism 2 is provided with a third driven fluid pressure cylinder 53. The third driven fluid pressure cylinder 53 is provided via a cylinder main body 53a fixed to the outer surface of the finger base member 21, a piston 53b capable of sliding the inside of the cylinder main body 53a, and a spherical joint not shown on the piston 53b. And a pivotally connected rod 53c.
 第3従動流体圧シリンダ53のロッド53cは、第1指機構の指先部材22の基端部であって回動軸21aよりも外側の部分に、揺動自在に連結されている。 The rod 53c of the third driven fluid pressure cylinder 53 is swingably connected to a proximal end of the fingertip member 22 of the first finger mechanism and to a portion outside the pivot shaft 21a.
 第2指機構3の指基部材31には、第4従動流体圧シリンダ54が設けられている。第4従動流耐圧シリンダ54は、指基部材31の外側面に固定されたシリンダ本体54aと、シリンダ本体54aの内部を摺動自在なピストン54bと、ピストン54bに図示省略した球面ジョイントを介して揺動自在に連結されたロッド54cとを備えている。 The finger base member 31 of the second finger mechanism 3 is provided with a fourth driven fluid pressure cylinder 54. The fourth driven flow pressure-resistant cylinder 54 is provided via a cylinder body 54a fixed to the outer surface of the finger base member 31, a piston 54b capable of sliding the inside of the cylinder body 54a, and a spherical joint not shown on the piston 54b. And a pivotally connected rod 54c.
 第4従動流体圧シリンダ54のロッド54cは、第2指機構の指先部材32の基端部であって回動軸31aよりも外側の部分に、揺動自在に連結されている。 The rod 54c of the fourth driven fluid pressure cylinder 54 is swingably connected to a proximal end portion of the fingertip member 32 of the second finger mechanism and a portion outside the pivot shaft 31a.
 次に図2及び図3を参照して、実施形態のロボットハンド装置1に用いられる流体圧伝達装置を説明する。図2に示すように、各従動流体圧シリンダ51~54には、低圧側流体圧伝達路61~64を介して、ロボットハンド装置1の外部に配置された第1~第4低圧駆動流体圧シリンダ71~74が夫々接続されている。 Next, with reference to FIG. 2 and FIG. 3, the fluid pressure transmission apparatus used for the robot hand apparatus 1 of embodiment is demonstrated. As shown in FIG. 2, first to fourth low pressure drive fluid pressures arranged outside the robot hand device 1 in the driven fluid pressure cylinders 51 to 54 via the low pressure side fluid pressure transfer paths 61 to 64. The cylinders 71 to 74 are connected to one another.
 各低圧駆動流体圧シリンダ71~74は、シリンダ本体71a~74aと、シリンダ本体71a~74aの内部を摺動自在なピストン71b~74bと、ピストン71b~74bに連結されるボールネジ71c~74cとを備えている。各ボールネジ71c~74cには、従動プーリ81a~81dが螺合されている。 The low pressure drive fluid pressure cylinders 71 to 74 include cylinder bodies 71a to 74a, pistons 71b to 74b which can slide inside the cylinder bodies 71a to 74a, and ball screws 71c to 74c connected to the pistons 71b to 74b. Have. The driven pulleys 81a to 81d are screwed into the ball screws 71c to 74c.
 各低圧駆動流体圧シリンダ71~74の後方には、最大駆動力が比較的小さい低圧用駆動源たる低出力モータM1~M4が配置されている。各低出力モータM1~M4の回転軸には、駆動プーリ82a~82dが固定されている。従動プーリ81a~81dと駆動プーリ82a~82dには、ベルト83a~83dが巻き掛けられている。 Behind the respective low pressure drive fluid pressure cylinders 71 to 74, low output motors M1 to M4, which are low pressure drive sources having a relatively small maximum drive force, are disposed. Drive pulleys 82a to 82d are fixed to the rotational shafts of the low output motors M1 to M4, respectively. Belts 83a to 83d are wound around the driven pulleys 81a to 81d and the drive pulleys 82a to 82d.
 そして、低出力モータM1~M4の回転駆動力が、駆動プーリ82a~82d、ベルト83a~83d、従動プーリ81a~81dを介してボールネジ71c~74cの進退運動に変換され、ピストン71b~74bがシリンダ本体71a~74aの内部で進退される。このようにして、低圧駆動流体圧シリンダ71~74は、比較的低圧の流体圧を発生させる。 Then, the rotational driving force of the low output motors M1 to M4 is converted into forward and backward motion of the ball screws 71c to 74c through the drive pulleys 82a to 82d, the belts 83a to 83d, and the driven pulleys 81a to 81d, and the pistons 71b to 74b are cylinders. It is advanced and retracted inside the main bodies 71a to 74a. In this way, the low pressure drive fluid pressure cylinders 71-74 generate relatively low pressure fluid pressure.
 各低圧側流体伝達路61~64は、夫々流路切換弁91~94を介して高圧側流体伝達路65に接続されている。高圧側流体伝達路65には、高圧駆動流体圧シリンダ75が接続されている。高圧駆動流体圧シリンダ75は、シリンダ本体75aと、シリンダ本体75aの内部を摺動自在なピストン75bと、ピストン75bに連結されるボールネジ75cとを備えている。ボールネジ75cには、従動プーリ81eが噛合されている。 The low pressure side fluid communication paths 61 to 64 are connected to the high pressure side fluid communication path 65 via the flow path switching valves 91 to 94, respectively. A high pressure drive fluid pressure cylinder 75 is connected to the high pressure side fluid transfer passage 65. The high pressure drive fluid pressure cylinder 75 includes a cylinder body 75a, a piston 75b slidable inside the cylinder body 75a, and a ball screw 75c connected to the piston 75b. The driven pulley 81e is engaged with the ball screw 75c.
 高圧駆動流体圧シリンダ75の後方には、最大駆動力が低圧用モータM1~M4よりも大きい高圧用駆動源たる高出力モータM5が配置されている。高出力モータM5の回転軸には、駆動プーリ82eが固定されている。従動プーリ81eと駆動プーリ82eとには、ベルト83eが巻き掛けられている。 Behind the high pressure drive fluid pressure cylinder 75, a high output motor M5 is disposed, which is a high pressure drive source having a maximum drive force greater than that of the low pressure motors M1 to M4. A drive pulley 82e is fixed to the rotation shaft of the high output motor M5. A belt 83e is wound around the driven pulley 81e and the drive pulley 82e.
 そして、高出力モータM5の回転駆動力が、駆動プーリ82e、ベルト83e、従動プーリ81eを介してボールネジ75cの進退運動に変換され、ピストン75bがシリンダ本体75aの内部で進退される。このようにして、高圧駆動流体圧シリンダ75は、低圧駆動流体圧シリンダ71~74よりも高圧の流体圧を発生させる。 Then, the rotational driving force of the high output motor M5 is converted to the forward and backward motion of the ball screw 75c through the drive pulley 82e, the belt 83e and the driven pulley 81e, and the piston 75b is advanced and retracted inside the cylinder body 75a. Thus, the high pressure drive fluid pressure cylinder 75 generates a fluid pressure higher than that of the low pressure drive fluid pressure cylinders 71-74.
 各低圧側流体伝達路61~64と高圧側流体伝達路65の接続部に設けられた各流路切換弁91~94は、低圧駆動流体圧シリンダ71~74とこれに対応する従動流体圧シリンダ51~54とを連通させると共に、高圧駆動流体圧シリンダ75と従動流体圧シリンダとの連通を断つ低圧路状態(図2参照)と、低圧駆動流体圧シリンダ71~74と従動流体圧シリンダ51~54との連通を断つと共に、高圧駆動流体圧シリンダ75と従動流体圧シリンダ51~54とを連通させる高圧路状態(図3参照)とに切換自在に構成されている。 The flow path switching valves 91 to 94 provided at the connection between the low pressure side fluid transmission paths 61 to 64 and the high pressure side fluid transmission path 65 are low pressure drive fluid pressure cylinders 71 to 74 and corresponding driven fluid pressure cylinders 51 to 54, and communication between the high pressure drive fluid pressure cylinder 75 and the driven fluid pressure cylinder is cut off (see FIG. 2), and the low pressure drive fluid pressure cylinders 71 to 74 and the driven fluid pressure cylinder 51 It is configured to be able to switch to a high pressure path state (see FIG. 3) that causes communication between the high pressure drive fluid pressure cylinder 75 and the driven fluid pressure cylinders 51 to 54 while disconnecting communication with the H. 54.
 各モータM1~M5及び各流路切換弁91~94は、ロボットハンド装置1の基部4の内面(手の平側の面)、指基部材21,31及び指先部材22,32の内側面に設けられた圧力センサ(図示省略)で検出される圧力に基づいて、図外のコントローラにより制御される。又、コントローラは、全ての流路切換弁91~94を低圧路状態に切り換える低圧モード(図2参照)と、全ての流路切換弁91~94を高圧路状態に切り換える高圧モード(図3参照)とを前記圧力センサの検出圧に基づいて、適宜切り換える。 The motors M1 to M5 and the flow path switching valves 91 to 94 are provided on the inner surface (surface on the palm side) of the base 4 of the robot hand device 1, the inner surfaces of the finger base members 21 and 31, and the fingertip members 22 and 32. Based on the pressure detected by the pressure sensor (not shown), the controller is controlled by a controller (not shown). In addition, the controller switches the flow path switching valves 91 to 94 to the low pressure path state in the low pressure mode (see FIG. 2), and switches the flow path switching valves 91 to 94 to the high pressure path state in the high pressure mode (see FIG. 3). And) based on the pressure detected by the pressure sensor.
 各従動流体圧シリンダ51~54のピストン51b~54bは、接続された駆動流体圧シリンダ71~75のピストン71b~75bの進退に伴って進退する。これにより、両指機構2,3の指基部材21,31及び指先部材22,32が回動軸4a,4b,21a,31aを軸に屈伸自在に回動する。 The pistons 51b to 54b of the driven fluid pressure cylinders 51 to 54 move forward and backward as the pistons 71b to 75b of the drive fluid pressure cylinders 71 to 75 connected move. As a result, the finger base members 21 and 31 and the fingertip members 22 and 32 of the both finger mechanisms 2 and 3 turn about the turning shafts 4a 4b 21a 31a so as to be able to bend and extend freely.
 次に、実施形態の流体圧伝達装置の作動を、ロボットハンド装置1により、図1及び図4に示す対象物Wを把持する場合を例に説明する。先ず、コントローラは、各指機構2,3が対象物Wを適切に把持できる状態(位置)となっているか否かを前記圧力センサの検出値に基づいて判断する。 Next, the operation of the fluid pressure transmission device of the embodiment will be described by using the robot hand device 1 as an example in which the object W shown in FIGS. 1 and 4 is gripped. First, the controller determines, based on the detection value of the pressure sensor, whether or not the finger mechanisms 2 and 3 can properly hold the object W (position).
 図1のように、第2指機構3の圧力センサが対象物Wとの接触を検出していない場合には、コントローラは、流路切換弁91~94を低圧モードに切り換えて、図2に示す状態とする。そして、低出力モータM1~M4を適宜制御して、ロボットハンド装置1の各圧力センサからの検出値が、対象物Wを把持するのに適切な状態(指機構の姿勢や位置)となるようにする。このとき、対象物Wからの反力は略0に等しいため、低圧駆動流体圧シリンダ71~74を用いて従動流体圧シリンダ51~54を作動させても、比較的素早い作動が可能であり、素早く適切な状態とすることができる。 As shown in FIG. 1, when the pressure sensor of the second finger mechanism 3 does not detect the contact with the object W, the controller switches the flow path switching valves 91 to 94 to the low pressure mode, as shown in FIG. Let it be in the state shown. Then, the low output motors M1 to M4 are appropriately controlled so that the detection values from the respective pressure sensors of the robot hand device 1 are in a state suitable for gripping the object W (attitude and position of finger mechanism) Make it At this time, since the reaction force from the object W is substantially equal to 0, relatively quick operation is possible even if the driven fluid pressure cylinders 51 to 54 are operated using the low pressure drive fluid pressure cylinders 71 to 74. It can be put into a quick and appropriate state.
 ロボットハンド装置1の各圧力センサからの検出値が、対象物Wを把持するのに適切な状態(指機構の姿勢や位置)となった場合には、コントローラは、流路切換弁91~94を高圧モードに切り換えて、高出力モータM5を制御することにより、図4に示すように、ロボットハンド装置1で対象物Wを把持させる。 When the detection values from each pressure sensor of the robot hand device 1 are in a state suitable for gripping the object W (the posture or position of the finger mechanism), the controller controls the flow path switching valve 91 to 94 Is switched to the high pressure mode, and the high output motor M5 is controlled to cause the robot hand apparatus 1 to grip the object W, as shown in FIG.
 この場合、高圧駆動流体圧シリンダ75は、4つの従動流体圧シリンダ51~54に接続されることとなるため、各従動流体圧シリンダ51~54のピストン51b~54bの作動速度は遅くなる。しかしながら、各指機構2,3が対象物Wと接触状態にあるときには、ピストン51b~54bの速い作動は要求されず、各指機構2,3(特に、指先部材22,32は対象物Wの重量を支えるため、第3及び第4従動流体圧シリンダ53,54に比較的高い流体圧が要求される。)の対象物Wを把持する為に必要なトルクのみが要求される。 In this case, since the high pressure drive fluid pressure cylinders 75 are connected to the four driven fluid pressure cylinders 51 to 54, the operating speeds of the pistons 51b to 54b of the driven fluid pressure cylinders 51 to 54 are reduced. However, when the finger mechanisms 2 and 3 are in contact with the object W, the quick operation of the pistons 51b to 54b is not required, and the finger mechanisms 2 and 3 (in particular, the fingertip members 22 and 32 are not In order to support the weight, relatively high fluid pressure is required for the third and fourth driven fluid pressure cylinders 53, 54. Only the torque necessary for gripping the object W is required.
 実施形態の流体圧伝達装置を用いたロボットハンド装置1によれば、低出力モータM1~M4を用いる低圧モードにより、素早く指機構2,3の対象物Wに対する位置決めを行い、高出力モータM5を用いる高圧モードにより、指機構2,3で対象物Wを力強く把持させることができる。 According to the robot hand apparatus 1 using the fluid pressure transmission device of the embodiment, the high-power motor M5 is quickly positioned with respect to the object W with the finger mechanisms 2 and 3 in the low pressure mode using the low power motors M1 to M4. The object W can be strongly held by the finger mechanisms 2 and 3 by the high pressure mode used.
 従って、全ての従動流体圧シリンダ51~54用の高出力モータを設ける必要がなく、流体伝達装置の機能性を低下させることなく、小型化及び軽量化を図ることができる。 Therefore, it is not necessary to provide a high output motor for all the driven fluid pressure cylinders 51 to 54, and downsizing and weight reduction can be achieved without reducing the functionality of the fluid transmission device.
1…ロボットハンド装置、2…第1指機構、21…指基部材、21a…回動軸、22…指先部材、3…第2指機構、31…指基部材、31a…回動軸、32…指先部材、4…基部、4a,4b…回動軸、51…第1従動流体圧シリンダ、51a…シリンダ本体、51b…ピストン、51c…ロッド、52…第2従動流体圧シリンダ、52a…シリンダ本体、52b…ピストン、52c…ロッド、53…第3従動流体圧シリンダ、53a…シリンダ本体、53b…ピストン、53c…ロッド、54…第4従動流体圧シリンダ、54a…シリンダ本体、54b…ピストン、54c…ロッド、61~64…低圧側流体圧伝達路、65…高圧側流体圧伝達路、71~74…低圧駆動流体圧シリンダ、71a~74a…シリンダ本体、71b~74b…ピストン、71c~74c…ボールネジ、75…高圧駆動流体圧シリンダ、75a…シリンダ本体、75b…ピストン、75c…ボールネジ、81a~81e…従動プーリ、82a~82e…駆動プーリ、83a~83e…ベルト、91~94…流路切換弁。 DESCRIPTION OF SYMBOLS 1 ... Robot hand apparatus, 2 ... 1st finger mechanism, 21 ... finger base member, 21a ... rotation axis, 22 ... fingertip member, 3 ... 2nd finger mechanism, 31 ... finger base member, 31a ... rotation axis, 32 ... finger tip member, 4 ... base portion, 4a, 4b ... rotating shaft, 51 ... first driven fluid pressure cylinder, 51a ... cylinder body, 51b ... piston, 51c ... rod, 52 ... second driven fluid pressure cylinder, 52a ... cylinder Body, 52b: Piston, 52c: Rod, 53: Third driven fluid pressure cylinder, 53a: Cylinder body, 53b: Piston, 53c: Rod, 54: Fourth driven fluid pressure cylinder, 54a: Cylinder body, 54b: Piston, 54c: rod, 61 to 64: low pressure side fluid pressure transmission path, 65: high pressure side fluid pressure transmission path, 71 to 74: low pressure drive fluid pressure cylinder, 71a to 74a ... cylinder main body, 71b to 74b ... Stone, 71c to 74c: Ball screw, 75: High pressure drive fluid pressure cylinder, 75a: Cylinder body, 75b: Piston, 75c: Ball screw, 81a to 81e: Driven pulley, 82a to 82e: Drive pulley, 83a to 83e: Belt, 91 94 94: Channel switching valve.

Claims (3)

  1.  高圧用駆動源によりシリンダ本体内で進退されるピストンを有し、該高圧用駆動源により前記ピストンが前進することにより、前記シリンダ本体内で高圧の流体圧を発生させる高圧駆動流体圧シリンダと、
     低圧用駆動源によりシリンダ本体内で進退されるピストンを有し、該低圧用駆動源により前記ピストンが前進することにより、前記シリンダ本体内で前記高圧駆動流体圧シリンダよりも低圧の流体圧を発生させる複数の低圧駆動流体圧シリンダと、
     該各低圧駆動流体圧シリンダに低圧側流体圧伝達路を介して夫々接続される複数の流動流体圧シリンダと、
     前記高圧駆動流体圧シリンダに接続される高圧側流体圧伝達路とを備え、
     該高圧側流体圧伝達路は、前記各低圧側流体圧伝達路に流路切換弁を介して接続され、
     該各流路切換弁は、前記低圧駆動流体圧シリンダの流体圧が前記従動流体圧シリンダに作用することを許容すると共に前記高圧駆動流体圧シリンダの流体圧が前記従動流体圧シリンダに作用することを阻止する低圧路状態と、前記低圧駆動流体圧シリンダの流体圧が前記従動流体圧シリンダに作用することを阻止すると共に前記高圧駆動流体圧シリンダの流体圧が前記従動流体圧シリンダに作用することを許容する高圧路状態とに切換自在であることを特徴とする流体圧伝達装置。
    A high pressure drive fluid pressure cylinder having a piston advanced and retracted in a cylinder body by a high pressure drive source, and the high pressure drive source advancing the piston to generate high pressure fluid pressure in the cylinder body;
    The piston which is advanced and retracted in the cylinder body by the low pressure drive source, and the piston is advanced by the low pressure drive source generates a lower pressure fluid pressure than the high pressure drive fluid pressure cylinder in the cylinder body. A plurality of low pressure drive fluid pressure cylinders,
    A plurality of fluid pressure cylinders connected to the respective low pressure drive fluid pressure cylinders via low pressure side fluid pressure transmission paths;
    And a high pressure side fluid pressure transfer path connected to the high pressure drive fluid pressure cylinder,
    The high pressure side fluid pressure transfer path is connected to each of the low pressure side fluid pressure transfer paths via a flow path switching valve,
    The flow path switching valves allow the fluid pressure of the low pressure drive fluid pressure cylinder to act on the driven fluid pressure cylinder, and the fluid pressure of the high pressure drive fluid pressure cylinder acts on the driven fluid pressure cylinder. Low pressure path state preventing the fluid pressure of the low pressure driving fluid pressure cylinder from acting on the driven fluid pressure cylinder, and the fluid pressure of the high pressure driving fluid pressure cylinder acting on the driven fluid pressure cylinder A fluid pressure transmission device characterized by being switchable to a high pressure path state that permits.
  2.  請求項1記載の流体圧伝達装置において、前記各流路切換弁はコントローラにより前記低圧路状態と前記高圧路状態とが切り換えられ、
     前記コントローラは、全ての前記流路切換弁を前記低圧路状態とする低圧モードと、全ての前記流路切換弁を前記高圧路状態とする高圧モードとに切り換えることを特徴とする流体圧伝達装置。
    The fluid pressure transmission device according to claim 1, wherein the flow path switching valve is switched between the low pressure path state and the high pressure path state by a controller.
    A fluid pressure transmission device characterized in that the controller switches between a low pressure mode in which all the flow path switching valves are in the low pressure path state and a high pressure mode in which all the flow path switching valves are in the high pressure path state. .
  3.  請求項1又は請求項2記載の流体圧伝達装置を用いたロボットハンド装置であって、
     該ロボットハンド装置は関節部で屈伸自在な複数の指機構を備え、
     前記従動流体圧シリンダのピストンの進退に伴い、前記指機構の関節部が屈伸することを特徴とするロボットハンド装置。
    A robot hand device using the fluid pressure transmission device according to claim 1 or 2, wherein
    The robot hand apparatus includes a plurality of flexible finger mechanisms at joints.
    A robot hand apparatus characterized in that a joint portion of the finger mechanism bends and extends as the piston of the driven fluid pressure cylinder advances and retracts.
PCT/JP2010/064921 2009-09-15 2010-09-01 Fluid pressure transmission device WO2011033934A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009213063A JP2011064216A (en) 2009-09-15 2009-09-15 Fluid pressure transmission device
JP2009-213063 2009-09-15

Publications (1)

Publication Number Publication Date
WO2011033934A1 true WO2011033934A1 (en) 2011-03-24

Family

ID=43758543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064921 WO2011033934A1 (en) 2009-09-15 2010-09-01 Fluid pressure transmission device

Country Status (2)

Country Link
JP (1) JP2011064216A (en)
WO (1) WO2011033934A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021088012A (en) * 2019-12-02 2021-06-10 株式会社Preferred Networks Hand device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933754B2 (en) * 1980-01-22 1984-08-17 日立建機株式会社 shield tunneling machine
JPS62110391U (en) * 1985-12-27 1987-07-14
JPH0557661A (en) * 1991-08-30 1993-03-09 Sony Corp Robot arm
JPH08126984A (en) * 1994-09-09 1996-05-21 Honda Motor Co Ltd Link device and artificial hand

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933754B2 (en) * 1980-01-22 1984-08-17 日立建機株式会社 shield tunneling machine
JPS62110391U (en) * 1985-12-27 1987-07-14
JPH0557661A (en) * 1991-08-30 1993-03-09 Sony Corp Robot arm
JPH08126984A (en) * 1994-09-09 1996-05-21 Honda Motor Co Ltd Link device and artificial hand

Also Published As

Publication number Publication date
JP2011064216A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP5313094B2 (en) Fluid pressure transmission device and robot hand device
JP6499669B2 (en) Robot hand and robot
CN104781053B (en) Mechanical hand
JP6994766B2 (en) Variable Rigidity Series Elastic Actuators, Robot Manipulators, and Methods of Controlling the Rigidity of Actuator Joints
KR101639723B1 (en) a robot hand
US10279483B2 (en) Co-handling robot comprising robot control means
WO2006025446A1 (en) Joint driving device
US20080023974A1 (en) Joint apparatus and hand apparatus for robot using the same
JP2021502263A5 (en)
JP4959088B2 (en) Control arm
US20200206961A1 (en) Backdrivable and haptic feedback capable robotic forceps, control system and method
CN108818577B (en) Self-adaptive robot finger device for linearly and parallelly clamping oscillating bar and sliding groove
JP5468814B2 (en) 5 finger type hand device
KR101454779B1 (en) Gripper improving backlash and control characteristics
JP2006192523A (en) Articulated finger mechanism
JP2006198748A (en) Joint device and mechanical universal hand using joint device
WO2011033934A1 (en) Fluid pressure transmission device
CN108189055B (en) Rack cosine telescopic straight-line parallel clamping self-adaptive finger device
CN107243915B (en) Parallel-clamping coupling switching self-adaptive robot finger device with duplex racks
JP2008194789A (en) Inner force sense presentation device, and power assist arm equipped therewith, and power assist device
CN108189057B (en) Fluid acceleration tail end telescopic linear parallel clamping self-adaptive robot finger device
WO2019097980A1 (en) Gripping system and gripping method
US20230249366A1 (en) Manipulator module
JP2003071771A (en) Sliding chuck
WO2018008665A1 (en) Hand robot control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10817047

Country of ref document: EP

Kind code of ref document: A1