WO2011033901A1 - Planar illumination device and liquid crystal display device provided with the same - Google Patents

Planar illumination device and liquid crystal display device provided with the same Download PDF

Info

Publication number
WO2011033901A1
WO2011033901A1 PCT/JP2010/064002 JP2010064002W WO2011033901A1 WO 2011033901 A1 WO2011033901 A1 WO 2011033901A1 JP 2010064002 W JP2010064002 W JP 2010064002W WO 2011033901 A1 WO2011033901 A1 WO 2011033901A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
illumination device
planar illumination
luminance
Prior art date
Application number
PCT/JP2010/064002
Other languages
French (fr)
Japanese (ja)
Inventor
昌広 横田
健 高橋
修 小野
秀三 松田
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2011033901A1 publication Critical patent/WO2011033901A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/006Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to produce indicia, symbols, texts or the like
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0083Details of electrical connections of light sources to drivers, circuit boards, or the like
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs

Definitions

  • Embodiments described herein relate to a thin planar illumination device using a point light source such as an LED, and a liquid crystal display device including the same.
  • a planar illumination device is a device that emits light emitted from a light source from a planar radiation surface.
  • a surface illuminator is used as an illuminator by itself, and is also used in a liquid crystal display device in combination with a liquid crystal display panel.
  • the planar illumination device includes an LED mounted on an LED substrate, and a diffusion layer disposed with a distance D from these light sources.
  • the LEDs that are point light sources are arranged in a matrix over the entire surface of the LED substrate at a predetermined arrangement pitch.
  • the light emitted from each light source is overlapped with the light from other light sources on the diffusion layer by expanding the space of the interval D, so that the illuminance is uniform over the entire surface.
  • the light radiated from the diffusion layer to the front surface is illuminated with uniform brightness over the entire surface.
  • Local dimming In a large liquid crystal display device, a technique called local dimming tends to be introduced as a technique for driving a planar illumination device using a point light source (for example, Patent Document 1). Local dimming is a technique for individually adjusting the amount of light emitted from each point light source or a plurality of point light source groups, and is a technique for dramatically improving the contrast and power consumption of an image display device.
  • the planar illumination device is divided into a plurality of dimming areas composed of point light sources or point light source groups arranged in a matrix, and in local dimming driving, dimming is performed to the required luminance for each dimming area according to the display image.
  • the planar illumination device is driven with the maximum luminance over the entire surface regardless of the display image, so that the power consumption increases.
  • the power consumption of the LED light source is 200 to 300 W in the case of a standard 500 cd / m 2 display, accounting for about 80% of the total power of the liquid crystal display device.
  • the power consumption of the LED light source is greatly reduced.
  • the light emission area is very small, so the power consumption of the light source is almost zero.
  • the power consumption is reduced to about half compared to the conventional driving.
  • the entire planar illumination device emits light even when displaying a black image, so that the screen is whitened by the light leaking from the liquid crystal display panel and the contrast deteriorates, and the limit is about 1: 1000.
  • the planar illumination device when the black image is displayed, the planar illumination device itself becomes dark, so the contrast ratio is substantially improved to 1: 100000 level, and the black image can be displayed even in a dark room.
  • the following two problems to be improved remain.
  • One of them is a decrease in luminance gradation during partial lighting. This is a phenomenon that occurs when there are few light control areas that emit light, and is a phenomenon in which the brightness of the corresponding light control area decreases because light leaks outward from the light control areas that emit light.
  • the luminance when only one area is lit by 512-division local dimming drive is about 10 to 20% of the luminance of one area when the planar lighting device is fully lit. It will fall. For this reason, in the image with much black, the brightness of the crescent moon is remarkably impaired.
  • the other one is contrast.
  • the contrast is 1: 100000 due to local dimming, but this is a luminance difference between the illuminated region and a region far from the illuminated region.
  • the luminance difference (contrast) between adjacent regions is important.
  • the luminance due to leakage light at a location 20 mm away from the edge of the area is about 50% of the center luminance of the area. For this reason, a sufficient contrast between adjacent regions cannot be ensured.
  • planar illumination device As another planar illumination device, a planar illumination device is proposed in which a point light source is enclosed by a reflective film, the brightness uniformity of each light source is ensured by the upper transmission reflective film, and a plurality of these point light sources are arranged side by side. (For example, Patent Document 2).
  • a plurality of point light sources such as LEDs are arranged as the light source of the surface illumination device, and these light sources are dimmed for each region so that illumination can be performed not only with uniform luminance but also with an arbitrary luminance distribution.
  • the conventional planar illumination device there is a large amount of light leaking from one dimming area to an adjacent area, and there is a problem that the luminance in the partially lit area decreases or the contrast between adjacent areas deteriorates. is there.
  • it is going to solve these there exists a subject by which the boundary between area
  • FIG. 1 is a cross-sectional view illustrating a liquid crystal display device including a planar illumination device according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a planar illumination device according to a comparative example.
  • FIG. 3 is a diagram showing luminance attenuation of one light source luminance profile when the distance D between the light source and the diffusion layer is changed.
  • FIG. 4 is a diagram showing the relationship between the actually measured interval D and the 1 dimming area lighting luminance rate.
  • FIG. 5A is a diagram showing a display state of the planar illumination device and the liquid crystal display panel according to the present embodiment.
  • FIG. 5B is a diagram showing a display state of a planar illumination device and a liquid crystal display panel by local mixing according to a comparative example.
  • FIG. 6 is a cross-sectional view illustrating a liquid crystal display device including the planar illumination device according to the second embodiment.
  • FIG. 7 is a diagram showing the relationship between the transmittance of the light guide layer and the attenuation of light.
  • FIG. 8 is a diagram schematically showing an isoluminance shape of a light source of the planar illumination device according to the first and second embodiments.
  • FIG. 9 is a diagram schematically showing an isoluminance shape of a light source of a surface illumination device according to a comparative example.
  • the planar illumination device includes a plurality of light sources and a diffusion layer that receives light from the light sources, and the diffusion layer is provided in a non-contact manner with respect to the light source, and the diffusion layer is formed from the light source.
  • the interval up to is D, D ⁇ 8 mm.
  • the planar illumination device is provided between a plurality of light sources, a diffusion layer that receives light from the light sources, and the light source and the diffusion layer, and at least partially reflects and partially transmits light.
  • a light-transmitting film of one layer, and at least one light-guide layer provided between the light source and the reflective-transmitting film, and the transmittance T per mm of the light-guiding layer is T ⁇ 90% It is said.
  • FIG. 1 is a cross-sectional view illustrating a liquid crystal display device including the planar illumination device according to the first embodiment.
  • the liquid crystal display device includes a rectangular liquid crystal display panel 30 and a planar illumination device 20 disposed to face the back side of the liquid crystal display panel 30.
  • the liquid crystal display panel 30 includes a rectangular array substrate 32, a rectangular counter substrate 34 disposed to face the array substrate 32 with a gap therebetween, and a liquid crystal layer sealed between the array substrate 32 and the counter substrate 34. 36.
  • the planar illumination device 20 is formed in a rectangular surface shape having a size corresponding to the liquid crystal display panel 30, and is provided adjacent to the array substrate 32 of the liquid crystal display panel 30.
  • the planar lighting device 20 includes a rectangular circuit board 10, a lower reflection film 12 that is formed on the upper surface of the circuit board 10 to diffuse or diffusely reflect light, and a lower reflection film 23 on the circuit board 10.
  • a plurality of LEDs 16 disposed on the LED 16, and a rectangular diffusion layer 14 disposed above the LEDs 16 and facing the LEDs with a distance D therebetween.
  • a transmission / reflection film 18 that partially transmits and partially reflects light is provided.
  • a light guide layer 21 is sandwiched between the lower reflective film 12 and the transmissive reflective film 18.
  • the light guide layer 21 is formed transparently or formed of air.
  • the outer peripheral part of the diffusion layer 14 and the circuit board 10 is held by a frame (not shown).
  • the LEDs 16 that are point light sources are arranged in a matrix over the entire surface of the circuit board 10 at an arrangement pitch L, and are electrically connected to the circuit board 10. Each LED 16 irradiates light toward the transmission / reflection film 18.
  • the planar lighting device 20 is disposed in a state where the diffusion layer 14 faces the back surface of the liquid crystal display panel 30. The light emitted from the planar illumination device 20 transmits the liquid crystal display panel 30 to display an image.
  • the planar illumination device 20 has a control unit 22 that controls the lighting of the LED 16.
  • the control unit 22 is connected to the circuit board 10 and is connected to a main control unit (not shown) of the liquid crystal display device. Based on the video luminance signal sent from the main control unit of the liquid crystal display device, the control unit 22 adjusts the light emission amount for each LED 16 or for each of the adjacent LEDs 16 as one unit.
  • a quantity adjusting unit 24 is provided. That is, the control unit 22 performs dimming of the planar lighting device 20 according to the video information by local mixing that individually drives the plurality of LEDs 16.
  • FIG. 2 shows a planar illumination device according to a comparative example, and shows the light reaching the point P on the diffusion layer from the LED.
  • the planar illumination device includes a rectangular circuit board 10, a lower reflective film 12 that is formed on the upper surface of the circuit board 10 and diffuses or diffusely reflects light, and a lower reflective film 213 on the circuit board 10.
  • the LEDs 16 are arranged in a matrix over the entire surface of the circuit board 10 at an arrangement pitch L.
  • the position of the point P on the diffusing layer 14 is separated from the LED by a surface direction distance r with respect to the optical axis of the LED 16 and a distance D between the LED and the diffusing layer 14, and the geometrical ray moving distance is ⁇ (r 2 + D 2 ). Since the illuminance from the LED 16 at the point P is inversely proportional to the square of the light beam travel distance, it is proportional to 1 / (r 2 + D 2 ). This is a theoretical calculation that completely ignores the light distribution distribution of the point light source, but it includes the essence of considering leakage, and it has been confirmed experimentally that the luminance profile that attenuates from the point light source almost matches the actual measurement. It has been.
  • FIG. 3 shows the luminance attenuation of one light source luminance profile when the interval D is changed.
  • the horizontal axis represents the surface direction distance r, and the vertical axis represents the relative luminance with the central luminance being 1.
  • the distance D is about 15 mm.
  • the luminance is about half of the central luminance at a location 20 mm away from the lighting area, which causes a decrease in central luminance due to leakage and deterioration of contrast in the vicinity.
  • the distance D is decreased, as shown in FIG. 3, it is understood that the attenuation increases and leakage to the adjacent area is suppressed.
  • the planar illumination device needs 1: 100.
  • the distance D should be 2 mm or less.
  • the diffusion layer 14 is provided in a non-contact manner with respect to the LED 16, and the shortest distance D between the LED 16 and the diffusion layer 14 is set to 2 mm. ing.
  • a transmission / reflection film 18 that partially transmits and partially reflects light is provided on the LED side of the diffusion layer 14.
  • the uneven pitch of the LED due to the narrowing of the interval D is compensated by the transmittance pattern of the transmissive reflection film 18 to form a uniform planar illumination device over the entire surface.
  • FIG. 4 shows data obtained by experimentally verifying the degree of improvement in luminance reduction of the one-area lighting luminance when the interval D is changed in the planar illumination device according to the present embodiment.
  • the one-area lighting luminance is a relative luminance with 100% as the total area lighting luminance when only one area in local dimming is lit with full gradation.
  • the interval D can only be reduced to about 15 mm, and the one-area lighting luminance has not reached 30%.
  • FIG. 5A shows a display state of the planar illumination device and the liquid crystal display panel according to the present embodiment
  • FIG. 5B shows a display state of the planar illumination device and the liquid crystal display panel according to the conventional local mixing according to the comparative example. Is shown in comparison.
  • a screen displaying a crescent moon in the night sky is shown.
  • FIG. 5B in the local mixing of the comparative example, light leaks over a relatively wide range around the crescent moon, and contrast is low around the crescent moon.
  • the planar illumination device according to the embodiment it can be seen that the amount of light leaking is small and the contrast around the crescent moon is improved.
  • FIG. 6 is a cross-sectional view of the liquid crystal display device according to the second embodiment.
  • an opaque light guide plate having a transmittance of 80% per 1 mm is used by dispersing light diffusion particles in the light guide plate.
  • the shortest distance D (thickness of the light guide layer 21) D between the LED 16 and the diffusion layer 14 is, for example, 2 mm.
  • the transmittance here is based on the measurement method shown in JIS standard K7361, and is the ratio of light that escapes to the front surface when light is vertically incident from the back surface of the light guide layer 21.
  • the other configuration of the planar illumination device is the same as that of the first embodiment described above, and the same reference numerals are given to the same parts, and detailed description thereof is omitted.
  • the luminance rate when only the LED 16 in one dimming area is lit is improved to over 60%.
  • the contrast is improved by speeding up the luminance attenuation to the adjacent region. Details are described below.
  • the theoretical expression of luminance attenuation adds the transmission attenuation effect to the attenuation due to the distance described above. 1 / (r 2 + D 2 ) ⁇ exp ( ⁇ T ⁇
  • the exponent term indicates the light attenuation effect by the opaque light guide layer 21, and this attenuation indicates that the light attenuates to the transmittance T every time the light travels through the light guide layer by 1 mm.
  • FIG. 7 is a graph showing a luminance attenuation curve.
  • the horizontal axis represents the distance r from the LED, and the vertical axis represents the relative luminance with the central luminance being 1. From this figure, it can be seen that the attenuation increases as the transmittance of the light guide layer 21 is lowered.
  • the local dimming drive is performed by narrowing the distance D between the point light source and the diffusion layer 14 to 8 mm or less, or by forming the light guide layer 21 as a light guide layer having a light scattering property of 90% or less.
  • the light leakage is controlled by using the interval between the light guide layers, and in the second embodiment, the opacity of the entire light guide layer is used to improve the one-area lighting luminance. It is good also as a structure. That is, the interval D may be 4 mm, and 2 mm of this half may be an opaque light guide layer. In this case, since the opaque light guide layer portion leaks relatively less than the transparent light guide layer portion, it is possible to obtain substantially the same one-area lighting luminance as the transparent light guide layer having a spacing of 2 mm. In addition, the cost of the opaque light guide plate can be reduced by half compared with the case where all the gaps of 4 mm are filled.
  • FIG. 8 shows the isoluminance line shape formed by the LED 16 in the planar lighting device according to the first and second embodiments
  • FIG. 9 shows the isoluminance formed by the LED 16 in the planar lighting device according to the comparative example. The line shape is shown.
  • the LEDs that are the point light sources are arranged in a grid pattern with the arrangement pitch L in the vertical and horizontal directions.
  • the diagonal LED spacing becomes wider than the vertical and horizontal spacing, as shown in FIG. 9, in the circular isoluminance line in which the luminance is isotropically attenuated, uneven luminance in the diagonal direction is obtained. It is easy to come out. Therefore, in the first and second embodiments, as shown in FIG. 8, by optimizing the transmittance pattern of the transmission / reflection film 18 for each direction, the non-circular shape in which the isoluminance lines look like a lattice shape. The shape makes it difficult to cause uneven brightness.
  • FIG. 8 shows a substantially rectangular isoluminance line, but this can be changed according to the LED arrangement. That is, if the LED array is a fine hexagonal array, the isoluminance lines may be substantially hexagonal.
  • a planar illumination device that appropriately controls light leakage to an adjacent region, is less likely to reduce partial lighting brightness even when driven by local dimming, and can provide sufficient partial contrast is provided. can do.
  • the light-scattering light guide layer 21 shown in the second embodiment is configured to disperse transparent particles having a refractive index different from that of the base material, but other configurations can be used as long as the transmittance is controlled. But you can. For example, a configuration in which bubbles are contained in the transparent base material of the light guide layer, an unevenness on the surface of the base material, or a space in the base material may be scattered.
  • the essence of the present invention is to control light leakage to the adjacent region by narrowing the distance D between the light source and the diffusion layer to 8 mm or less, or by reducing the transmittance of the light guide layer to 90% or less.
  • a means other than the transmission / reflection film shown in the first and second embodiments may be used.
  • a lens for diffusing the light distribution attached on the light source, a partial reflection film attached to a position corresponding to the light source of the diffusion layer, or a scattering member may be used.
  • planar illumination device used as the backlight unit of the liquid crystal display device has been described.
  • planar illumination device used as a single illumination device may be used.
  • the LED as the point light source may be white or monochromatic, and is not limited in terms of the type of LED.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

Disclosed is a planar illumination device provided with a plurality of light sources and a diffusion layer which receives light from the light sources. The diffusion layer is positioned without making contact with the light sources, and D ≤ 8 mm when the minimum separation from the light sources to the diffusion layer is taken as D.

Description

面状照明装置およびこれを備えた液晶表示装置Planar illumination device and liquid crystal display device including the same
 ここで述べる実施形態は、LEDなどの点光源を用いた薄型の面状照明装置、およびこれを備えた液晶表示装置に関する。 Embodiments described herein relate to a thin planar illumination device using a point light source such as an LED, and a liquid crystal display device including the same.
 面状照明装置は、光源から出た光を平面状の放射面から放射する装置である。このような面照明装置はそれ自体で照明装置として使用される他に、液晶表示パネルと組合わせて液晶表示装置にも使われている。 A planar illumination device is a device that emits light emitted from a light source from a planar radiation surface. Such a surface illuminator is used as an illuminator by itself, and is also used in a liquid crystal display device in combination with a liquid crystal display panel.
 最近の傾向として、水銀レスの観点から面状照明装置の光源は、従来主流の陰極線管からLEDに置き換える動きが盛んである。一般に、面状照明装置は、LED基板に実装されたLEDと、これらの光源と間隔Dを隔てて配置された拡散層とを備えている。点光源であるLEDは、所定の配列ピッチでLED基板の全面に渡ってマトリックス状に配置されている。各々の光源から出た光は、間隔Dの空間を拡がることで拡散層上にて他の光源からの光と重ね合わされ、全面に亘って照度が均一となるように構成されている。これにより、拡散層から前面に放射される光は、全面に亘り均一な輝度で照明する。 As a recent trend, from the viewpoint of mercury-free, the light source of the planar lighting device has been actively replaced with the LED from the mainstream cathode ray tube. In general, the planar illumination device includes an LED mounted on an LED substrate, and a diffusion layer disposed with a distance D from these light sources. The LEDs that are point light sources are arranged in a matrix over the entire surface of the LED substrate at a predetermined arrangement pitch. The light emitted from each light source is overlapped with the light from other light sources on the diffusion layer by expanding the space of the interval D, so that the illuminance is uniform over the entire surface. Thereby, the light radiated from the diffusion layer to the front surface is illuminated with uniform brightness over the entire surface.
 また、大型の液晶表示装置において、点光源を用いた面状照明装置を駆動する技術として、ローカルディミングと呼ばれる技術が導入される傾向にある(例えば、特許文献1)。ローカルディミングは、個々の点光源あるいは複数の点光源グループの発光量を個別に調光するもので、画像表示装置のコントラストと消費電力を飛躍的に改善する技術である。 In a large liquid crystal display device, a technique called local dimming tends to be introduced as a technique for driving a planar illumination device using a point light source (for example, Patent Document 1). Local dimming is a technique for individually adjusting the amount of light emitted from each point light source or a plurality of point light source groups, and is a technique for dramatically improving the contrast and power consumption of an image display device.
 ローカルディミングによる改善効果と従来の課題を説明する。ここでは、例えば、夜空に三日月を表示した画面を想定し、ローカルディミングと従来駆動(非ローカルディミング)とを比較する。面状照明装置は、マトリックス状に配置した点光源あるいは点光源グループからなる複数の調光エリアに分割され、ローカルディミング駆動では表示画像に合わせて調光エリア毎に必要輝度に調光される。 Explain the improvement effect by local dimming and conventional problems. Here, for example, assuming a screen displaying a crescent moon in the night sky, local dimming and conventional driving (non-local dimming) are compared. The planar illumination device is divided into a plurality of dimming areas composed of point light sources or point light source groups arranged in a matrix, and in local dimming driving, dimming is performed to the required luminance for each dimming area according to the display image.
 従来駆動(非ローカルディミング)では、表示画像によらず、面状照明装置は全面に亘って最大輝度で駆動されるため、消費電力が大きくなる。50インチクラスの液晶表示装置において、LED光源の消費電力は、標準的な500cd/m2表示の場合で200~300Wにもなり、液晶表示装置の全電力の8割程度を占める。 In the conventional driving (non-local dimming), the planar illumination device is driven with the maximum luminance over the entire surface regardless of the display image, so that the power consumption increases. In a 50-inch class liquid crystal display device, the power consumption of the LED light source is 200 to 300 W in the case of a standard 500 cd / m 2 display, accounting for about 80% of the total power of the liquid crystal display device.
 一方、ローカルディミングにおいては、表示画像として必要とされるだけの発光量しか駆動しないため、LED光源の消費電力が大きく低減する。例えば、三日月の画像では発光領域が非常に小さいため、光源の消費電力は概ねゼロとなる。また、一般的な放送画像であっても、従来駆動に比較して、消費電力は半分程度にまで低減される。従来駆動では黒画像表示においても面状照明装置全体が発光しているため、液晶表示パネルを漏れ出た光で画面が白浮きしてコントラストが劣化し、1:1000程度が限界であった。これについても、ローカルディミングでは、黒画像表示時、面状照明装置自体が暗くなるため、コントラスト比は実質的に1:100000レベルまで改善し、暗い部屋の中でも黒画像表示が可能となる。 On the other hand, in local dimming, only the light emission amount required for the display image is driven, so that the power consumption of the LED light source is greatly reduced. For example, in the crescent moon image, the light emission area is very small, so the power consumption of the light source is almost zero. Further, even for a general broadcast image, the power consumption is reduced to about half compared to the conventional driving. In conventional driving, the entire planar illumination device emits light even when displaying a black image, so that the screen is whitened by the light leaking from the liquid crystal display panel and the contrast deteriorates, and the limit is about 1: 1000. Also in this case, in the local dimming, when the black image is displayed, the planar illumination device itself becomes dark, so the contrast ratio is substantially improved to 1: 100000 level, and the black image can be displayed even in a dark room.
 しかしながら、従来の面状照明装置を用いたローカルディミング駆動では、以下に述べる2つの改善すべき課題が残されている。 
 その1つが、部分点灯時の輝度階調低下である。これは、発光している調光エリアが少ないときに起こる現象で、発光している調光エリアから外側へ光が漏れるために該当する調光エリアの輝度が低下していく現象である。従来の面状照明装置において、例えば、512分割したローカルディミング駆動で1エリアだけ点灯させたときの輝度は、面状照明装置を全点灯した時の1エリアの輝度に対し10~20%程度に落ちてしまう。このため、黒の多い画像では三日月部分の輝き感が著しく損なわれる。
However, in the local dimming drive using the conventional planar illumination device, the following two problems to be improved remain.
One of them is a decrease in luminance gradation during partial lighting. This is a phenomenon that occurs when there are few light control areas that emit light, and is a phenomenon in which the brightness of the corresponding light control area decreases because light leaks outward from the light control areas that emit light. In a conventional planar lighting device, for example, the luminance when only one area is lit by 512-division local dimming drive is about 10 to 20% of the luminance of one area when the planar lighting device is fully lit. It will fall. For this reason, in the image with much black, the brightness of the crescent moon is remarkably impaired.
 他の1つは、コントラストである。前述の説明では、ローカルディミングによりコントラストが1:100000になると述べたが、これは点灯した領域とそこから遠くに離れた領域での輝度差である。実際の表示では、近接した領域間の輝度差(コントラスト)が重要であり、調光エリアから外側へ光が漏れると、本来黒であるべき領域が白浮きしてしまい、コントラストは劣化する。例えば、512分割したローカルディミング駆動で1エリアだけ点灯させた場合、該当エリア端から20mm離れた場所の漏れ光による輝度は、該当エリア中心輝度の50%程度もある。このため、近接した領域間でのコントラストが十分に確保できていない。 The other one is contrast. In the above description, it has been described that the contrast is 1: 100000 due to local dimming, but this is a luminance difference between the illuminated region and a region far from the illuminated region. In actual display, the luminance difference (contrast) between adjacent regions is important. When light leaks from the light control area to the outside, the region that should be black naturally floats and the contrast deteriorates. For example, when only one area is turned on by 512-division local dimming driving, the luminance due to leakage light at a location 20 mm away from the edge of the area is about 50% of the center luminance of the area. For this reason, a sufficient contrast between adjacent regions cannot be ensured.
 また、他の面状照明装置として、点光源を反射膜で囲い込み、上側の透過反射膜で光源毎の輝度均一性を確保し、これらの点光源を複数並べて構成された面状照明装置が提案されている(例えば、特許文献2)。 As another planar illumination device, a planar illumination device is proposed in which a point light source is enclosed by a reflective film, the brightness uniformity of each light source is ensured by the upper transmission reflective film, and a plurality of these point light sources are arranged side by side. (For example, Patent Document 2).
 しかしながら、このような面状照明装置では、光源毎に反射壁で囲う構成で光源毎の独立性が高いため、幾つかの問題を生じる。第一に、面状照明装置をローカルディミング駆動の液晶表示装置に用いた場合、調光階調を変えた光源間の境界で輝度の変化がはっきりと視認されてしまう。これは反射側壁部分で輝度が急激に変化するためで、この境界ムラを目立たなくさせるにはなだらかな隣接領域へ漏れ出して減衰するようなプロファイルが必須である。第二に、光源は個々の色度や輝度のばらつきをもっているため、全面に亘って均一な電力で点灯する面状照明装置においては、光源間の境界で色度あるいは輝度の急激な変化が視認されてしまう。光源間の色度や輝度の差を小さくするように光源の仕様を限定する場合、コストアップを招いてしまう。これを回避するためには、隣接領域への自然な光漏れ出しにより色度、輝度の境界での変動をなだらかにする必要がある。 However, in such a planar lighting device, since each light source is surrounded by a reflecting wall and the independence of each light source is high, there are some problems. First, when the planar illumination device is used in a local dimming-driven liquid crystal display device, a change in luminance is clearly recognized at the boundary between light sources with different light control gradations. This is because the brightness changes abruptly at the reflection side wall portion, and in order to make this boundary unevenness inconspicuous, a profile that leaks into a gentle adjacent region and attenuates is essential. Second, since the light source has variations in individual chromaticity and brightness, in a surface illumination device that lights with uniform power over the entire surface, a sudden change in chromaticity or brightness is visually recognized at the boundary between the light sources. Will be. When the specification of the light source is limited so as to reduce the difference in chromaticity and luminance between the light sources, the cost increases. In order to avoid this, it is necessary to smooth the fluctuation at the boundary of chromaticity and luminance by natural light leakage to the adjacent area.
 以上のように、面状照明装置の光源としてLEDのような点光源を複数配置して、これらを個々の領域毎に調光して均一輝度だけでなく任意の輝度分布でも照明できるようにする面状照明装置が求められている。しかしながら、従来の面状照明装置では、1つの調光エリアから隣接する領域に漏れ出す光量が多く、部分点灯領域での輝度が低下したり、あるいは、近接領域間でのコントラストが劣化する課題がある。また、これらを解決しようとすれば、領域間の境界がムラとして視認される課題がある。 As described above, a plurality of point light sources such as LEDs are arranged as the light source of the surface illumination device, and these light sources are dimmed for each region so that illumination can be performed not only with uniform luminance but also with an arbitrary luminance distribution. There is a need for a planar lighting device. However, in the conventional planar illumination device, there is a large amount of light leaking from one dimming area to an adjacent area, and there is a problem that the luminance in the partially lit area decreases or the contrast between adjacent areas deteriorates. is there. Moreover, if it is going to solve these, there exists a subject by which the boundary between area | regions is visually recognized as a nonuniformity.
特許第2582644号Japanese Patent No. 2582644 特開2008-27886号公報JP 2008-27886 A
図1は、第1の実施形態に係る面状照明装置を備えた液晶表示装置を示す断面図。FIG. 1 is a cross-sectional view illustrating a liquid crystal display device including a planar illumination device according to the first embodiment. 図2は、比較例に係る面状照明装置を示す断面図。FIG. 2 is a cross-sectional view showing a planar illumination device according to a comparative example. 図3は、光源と拡散層との間隔Dを変えたときの1光源輝度プロファイルの輝度減衰を示す図。FIG. 3 is a diagram showing luminance attenuation of one light source luminance profile when the distance D between the light source and the diffusion layer is changed. 図4は、実測した間隔Dと1調光エリア点灯輝度率の関係を示す図。FIG. 4 is a diagram showing the relationship between the actually measured interval D and the 1 dimming area lighting luminance rate. 図5Aは、本実施形態に係る面状照明装置および液晶表示パネルの表示状態を示す図。FIG. 5A is a diagram showing a display state of the planar illumination device and the liquid crystal display panel according to the present embodiment. 図5Bは、比較例に係るローカルミディングによる面状照明装置および液晶表示パネルの表示状態を示す図。FIG. 5B is a diagram showing a display state of a planar illumination device and a liquid crystal display panel by local mixing according to a comparative example. 図6は、第2の実施形態に係る面状照明装置を備えた液晶表示装置を示す断面図。FIG. 6 is a cross-sectional view illustrating a liquid crystal display device including the planar illumination device according to the second embodiment. 図7は、導光層の透過率と光の減衰との関係を示す図。FIG. 7 is a diagram showing the relationship between the transmittance of the light guide layer and the attenuation of light. 図8は、前記第1および第2の実施形態に係る面状照明装置の光源の等輝度形状を概略的に示す図。FIG. 8 is a diagram schematically showing an isoluminance shape of a light source of the planar illumination device according to the first and second embodiments. 図9は、比較例に係る面状照明装置の光源の等輝度形状を概略的に示す図。FIG. 9 is a diagram schematically showing an isoluminance shape of a light source of a surface illumination device according to a comparative example.
 実施形態によれば、面状照明装置は、複数の光源と、光源からの光を受ける拡散層とを備え、前記拡散層は前記光源に対して非接触に設けられ、前記光源から前記拡散層までの間隔をDとするとき、D≦8mmとしている。 According to the embodiment, the planar illumination device includes a plurality of light sources and a diffusion layer that receives light from the light sources, and the diffusion layer is provided in a non-contact manner with respect to the light source, and the diffusion layer is formed from the light source. When the interval up to is D, D ≦ 8 mm.
 他の実施形態に係る面状照明装置は、複数の光源と、光源からの光を受ける拡散層と、前記光源と拡散層との間に設けられ、光を一部反射し一部透過する少なくとも1層の反射透過膜と、前記光源と反射透過膜との間に設けられた少なくとも1層の導光層と、を備え、前記導光層の1mmあたりの透過率Tは、T≦90%としている。 The planar illumination device according to another embodiment is provided between a plurality of light sources, a diffusion layer that receives light from the light sources, and the light source and the diffusion layer, and at least partially reflects and partially transmits light. A light-transmitting film of one layer, and at least one light-guide layer provided between the light source and the reflective-transmitting film, and the transmittance T per mm of the light-guiding layer is T ≦ 90% It is said.
 以下、図面を参照しながら、種々のこの発明の実施形態に係る面状照明装置を備えた液晶表示装置について詳細に説明する。 
 図1は、第1の実施形態に係る面状照明装置を備えた液晶表示装置を示す断面図である。図1に示すように、液晶表示装置は、矩形状の液晶表示パネル30、およびこの液晶表示パネル30の背面側に対向して配設された面状照明装置20を備えている。
Hereinafter, various liquid crystal display devices including planar illumination devices according to embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view illustrating a liquid crystal display device including the planar illumination device according to the first embodiment. As shown in FIG. 1, the liquid crystal display device includes a rectangular liquid crystal display panel 30 and a planar illumination device 20 disposed to face the back side of the liquid crystal display panel 30.
 液晶表示パネル30は、矩形状のアレイ基板32、アレイ基板32と隙間を置いて対向配置された矩形状の対向基板34、およびこれらアレイ基板32と対向基板34との間に封入された液晶層36を備えている。面状照明装置20は、液晶表示パネル30に対応した大きさの矩形面状に形成され、液晶表示パネル30のアレイ基板32と隣接対向して設けられている。 The liquid crystal display panel 30 includes a rectangular array substrate 32, a rectangular counter substrate 34 disposed to face the array substrate 32 with a gap therebetween, and a liquid crystal layer sealed between the array substrate 32 and the counter substrate 34. 36. The planar illumination device 20 is formed in a rectangular surface shape having a size corresponding to the liquid crystal display panel 30, and is provided adjacent to the array substrate 32 of the liquid crystal display panel 30.
 面状照明装置20は、矩形状の回路基板10と、この回路基板10の上面に形成され光を乱反射あるいは拡散反射する下側反射膜12と、下側反射膜23を介して回路基板10上に配設された多数のLED16と、LED16の上方に配設されLEDと間隔Dを置いて対向した矩形状の拡散層14と、を備えている。拡散層14のLED側に光を一部透過し一部反射する透過反射膜18が設けられている。下側反射膜12と透過反射膜18との間には導光層21が挟まれている。導光層21は、透明に形成され、あるいは、空気により形成されている。拡散層14および回路基板10の外周部は、図示しないフレームにより保持される。 The planar lighting device 20 includes a rectangular circuit board 10, a lower reflection film 12 that is formed on the upper surface of the circuit board 10 to diffuse or diffusely reflect light, and a lower reflection film 23 on the circuit board 10. A plurality of LEDs 16 disposed on the LED 16, and a rectangular diffusion layer 14 disposed above the LEDs 16 and facing the LEDs with a distance D therebetween. On the LED side of the diffusion layer 14, a transmission / reflection film 18 that partially transmits and partially reflects light is provided. A light guide layer 21 is sandwiched between the lower reflective film 12 and the transmissive reflective film 18. The light guide layer 21 is formed transparently or formed of air. The outer peripheral part of the diffusion layer 14 and the circuit board 10 is held by a frame (not shown).
 点光源であるLED16は、配列ピッチLで回路基板10の全面に渡ってマトリックス状に配置され、回路基板10に電気的に接続されている。各LED16は、透過反射膜18に向けて光を照射する。面状照明装置20は、拡散層14が液晶表示パネル30の背面と対向した状態で配設されている。面状照明装置20から出射された光は、液晶表示パネル30を透過することで画像表示を行う。 The LEDs 16 that are point light sources are arranged in a matrix over the entire surface of the circuit board 10 at an arrangement pitch L, and are electrically connected to the circuit board 10. Each LED 16 irradiates light toward the transmission / reflection film 18. The planar lighting device 20 is disposed in a state where the diffusion layer 14 faces the back surface of the liquid crystal display panel 30. The light emitted from the planar illumination device 20 transmits the liquid crystal display panel 30 to display an image.
 面状照明装置20は、LED16の点灯を制御する制御部22を有している。この制御部22は、回路基板10に接続されるとともに、液晶表示装置の図示しない主制御部に接続されている。制御部22は、液晶表示装置の主制御部から送られた映像輝度信号に基づき、LED16毎に、あるいは、隣接する複数のLED16を1ユニットとして、この1ユニット毎に、発光量を調整する発光量調整部24を備えている。すなわち、制御部22は、複数のLED16を個別に駆動するローカルミディングによって、映像情報に合わせて面状照明装置20の調光を行う。 The planar illumination device 20 has a control unit 22 that controls the lighting of the LED 16. The control unit 22 is connected to the circuit board 10 and is connected to a main control unit (not shown) of the liquid crystal display device. Based on the video luminance signal sent from the main control unit of the liquid crystal display device, the control unit 22 adjusts the light emission amount for each LED 16 or for each of the adjacent LEDs 16 as one unit. A quantity adjusting unit 24 is provided. That is, the control unit 22 performs dimming of the planar lighting device 20 according to the video information by local mixing that individually drives the plurality of LEDs 16.
 全面を複数の調光エリアに分割して点灯駆動する面状照明装置において、1調光エリアだけ点灯したときに全点灯時の輝度よりも輝度が劣化することを述べたが、これは該当する点光源が該当するエリアのみならず隣接するエリアにまで光を供給しているためである。 In a planar lighting device that is lit and driven by dividing the entire surface into a plurality of dimming areas, it has been stated that when only one dimming area is lit, the luminance deteriorates compared to the luminance when fully lit. This is because the point light source supplies light not only to the corresponding area but also to an adjacent area.
 図2は、比較例に係る面状照明装置を示し、LEDから拡散層上の点Pに到達する光を示している。この面状照明装置は、矩形状の回路基板10と、この回路基板10の上面に形成され光を乱反射あるいは拡散反射する下側反射膜12と、下側反射膜213を介して回路基板10上に配設された多数のLED16と、LED16の上方に配設され下側反射膜12と間隔Dを置いて対向した矩形状の拡散層14と、を備えている。LED16は、配列ピッチLで回路基板10の全面に渡ってマトリックス状に配置されている。 FIG. 2 shows a planar illumination device according to a comparative example, and shows the light reaching the point P on the diffusion layer from the LED. The planar illumination device includes a rectangular circuit board 10, a lower reflective film 12 that is formed on the upper surface of the circuit board 10 and diffuses or diffusely reflects light, and a lower reflective film 213 on the circuit board 10. A plurality of LEDs 16, and a rectangular diffusion layer 14 disposed above the LEDs 16 and facing the lower reflective film 12 with a distance D therebetween. The LEDs 16 are arranged in a matrix over the entire surface of the circuit board 10 at an arrangement pitch L.
 拡散層14上の点Pの位置は、LED16の光軸に対する面方向距離r、LEDと拡散層14との間隔DだけLEDから離れ、幾何学的な光線移動距離は、√(r2+D2)である。点PでのLED16からの照度は、光線移動距離の自乗に逆比例するため、  1/(r2+D2) に比例する。これは点光源が有する配光分布を全く無視した理論計算であるが、漏れ出しを考えるうえでの本質を含んでおり、点光源から減衰する輝度プロファイルでは実測とほぼ一致することが実験で確かめられている。 The position of the point P on the diffusing layer 14 is separated from the LED by a surface direction distance r with respect to the optical axis of the LED 16 and a distance D between the LED and the diffusing layer 14, and the geometrical ray moving distance is √ (r 2 + D 2 ). Since the illuminance from the LED 16 at the point P is inversely proportional to the square of the light beam travel distance, it is proportional to 1 / (r 2 + D 2 ). This is a theoretical calculation that completely ignores the light distribution distribution of the point light source, but it includes the essence of considering leakage, and it has been confirmed experimentally that the luminance profile that attenuates from the point light source almost matches the actual measurement. It has been.
 この式を解釈することにより、該当する調光エリアに極力光を集中させ隣接するエリアに極力光を漏れ出さないようにするには、LED16と拡散層14との間隔Dを極力小さくする必要がある。 By interpreting this equation, it is necessary to make the distance D between the LED 16 and the diffusion layer 14 as small as possible in order to concentrate the light as much as possible in the corresponding dimming area and prevent the light from leaking out to the adjacent area. is there.
 図3は、間隔Dを変えたときの1光源輝度プロファイルの輝度減衰を示している。横軸は面方向距離rを、縦軸は中心輝度を1とした相対輝度を示している。 
 従来方式では、最近になって光源部にレンズを取り付けて光を拡散させることで間隔Dを小さくする技術も出始めているが、この場合でも間隔Dは15mm程度となる。図3から分かるように、点灯領域から20mm離れた場所では中心輝度の半分程度の輝度があり、漏れによる中心輝度の低下や近傍でのコントラスト劣化を招く。
FIG. 3 shows the luminance attenuation of one light source luminance profile when the interval D is changed. The horizontal axis represents the surface direction distance r, and the vertical axis represents the relative luminance with the central luminance being 1.
In the conventional system, recently, a technique for reducing the distance D by attaching a lens to the light source unit and diffusing the light has started to appear, but even in this case, the distance D is about 15 mm. As can be seen from FIG. 3, the luminance is about half of the central luminance at a location 20 mm away from the lighting area, which causes a decrease in central luminance due to leakage and deterioration of contrast in the vicinity.
 一方、この間隔Dを小さくしていくと、図3に示すように、減衰が大きくなり隣接への漏れが抑制されていくことが分かる。点光源から面方向に20mm離れたところでコントラスト比1:100000を確保するには、液晶表示パネルのコントラスト比を1:1000とすると、面状照明装置では1:100が必要となる。図に示すように、r=20mmで1/100まで輝度を減衰させようとすれば、間隔Dを2mm以下とすればよいことが分かる。 On the other hand, as the distance D is decreased, as shown in FIG. 3, it is understood that the attenuation increases and leakage to the adjacent area is suppressed. In order to ensure a contrast ratio of 1: 100,000 at a distance of 20 mm from the point light source in the plane direction, when the contrast ratio of the liquid crystal display panel is 1: 1000, the planar illumination device needs 1: 100. As shown in the figure, if the luminance is attenuated to 1/100 at r = 20 mm, it can be seen that the distance D should be 2 mm or less.
 図1に示すように、本実施形態に係る面状照明装置によれば、拡散層14はLED16に対して非接触で設けられ、LED16と拡散層14との最短の間隔Dを2mmに設定している。拡散層14のLED側に、光を一部透過し一部反射する透過反射膜18を設けられている。間隔Dを狭めたことによるLEDのピッチムラを透過反射膜18の透過率パターンで補償し、全面に亘って均一な面状照明装置を構成している。 As shown in FIG. 1, according to the planar lighting device according to the present embodiment, the diffusion layer 14 is provided in a non-contact manner with respect to the LED 16, and the shortest distance D between the LED 16 and the diffusion layer 14 is set to 2 mm. ing. On the LED side of the diffusion layer 14, a transmission / reflection film 18 that partially transmits and partially reflects light is provided. The uneven pitch of the LED due to the narrowing of the interval D is compensated by the transmittance pattern of the transmissive reflection film 18 to form a uniform planar illumination device over the entire surface.
 図4は、本実施形態に係る面状照明装置において、間隔Dを変えたときの1エリア点灯輝度の輝度低下改善度合いを小片試作機にて実験検証したデータを示している。1エリア点灯輝度は、ローカルディミングでの1エリアのみをフル階調で点灯したときの、全領域点灯輝度を100%とした相対輝度である。 FIG. 4 shows data obtained by experimentally verifying the degree of improvement in luminance reduction of the one-area lighting luminance when the interval D is changed in the planar illumination device according to the present embodiment. The one-area lighting luminance is a relative luminance with 100% as the total area lighting luminance when only one area in local dimming is lit with full gradation.
 従来方式では、間隔Dは15mm程度までしか小さくすることができず、1エリア点灯輝度は30%に達しなかった。 
 一方、本実施形態では間隔Dを小さく設定することができ、従来方式で不可能であった1エリア点灯輝度を35%以上にするには、間隔Dを8mm以内に設定すればよいことが実験から確認されている。本実施形態のD=2mmでは、図4に示した小片実験値には及ばないものの、1エリア点灯輝度は50%程度にまで改善されている。なお、隣接する調光エリア間の境界のムラについては、従来の面照明装置で生じたような問題は起こっていない。
In the conventional method, the interval D can only be reduced to about 15 mm, and the one-area lighting luminance has not reached 30%.
On the other hand, in the present embodiment, the interval D can be set small, and in order to make the one-area lighting brightness 35% or more, which was impossible with the conventional method, it is only necessary to set the interval D within 8 mm. It has been confirmed from. With D = 2 mm in the present embodiment, the one-area lighting luminance is improved to about 50%, although it does not reach the small piece experimental value shown in FIG. In addition, about the nonuniformity of the boundary between adjacent light control areas, the problem which arose with the conventional surface illuminating device has not occurred.
 図5Aは、本実施形態に係る面状照明装置および液晶表示パネルの表示状態を示し、図5Bは、比較例に係る従来のローカルミディングによる面状照明装置および液晶表示パネルの表示状態と、を比較して示している。ここでは、夜空に三日月を表示した画面を示している。図5Bに示すように、比較例のローカルミディングでは、三日月の周囲の比較的広い範囲に亘って光が漏れ、三日月の周囲でコントラストが低いのに対して、図5Aに示すように、本実施形態に係る面状照明装置によれば、漏れ出す光量が少なく、三日月の周囲のコントラストが向上していることが分かる。 5A shows a display state of the planar illumination device and the liquid crystal display panel according to the present embodiment, and FIG. 5B shows a display state of the planar illumination device and the liquid crystal display panel according to the conventional local mixing according to the comparative example. Is shown in comparison. Here, a screen displaying a crescent moon in the night sky is shown. As shown in FIG. 5B, in the local mixing of the comparative example, light leaks over a relatively wide range around the crescent moon, and contrast is low around the crescent moon. According to the planar illumination device according to the embodiment, it can be seen that the amount of light leaking is small and the contrast around the crescent moon is improved.
 次に、第2の実施形態に係る面状照明装置を備えた液晶表示装置について説明する。 
 図6は、第2の実施形態に係る液晶表示装置の断面図である。
Next, a liquid crystal display device including the planar illumination device according to the second embodiment will be described.
FIG. 6 is a cross-sectional view of the liquid crystal display device according to the second embodiment.
 第2の実施形態によれば、導光層21として、導光板に光拡散粒子を分散し、1mmあたりの透過率80%の不透明な導光板を用いている。LED16と拡散層14との最短の間隔(導光層21の厚さ)Dは、例えば、2mmに形成されている。ここでの透過率は、JIS規格K7361に示された測定方法によるもので、導光層21の裏面から光を垂直入射させたときに前面に抜け出す光の割合である。面状照明装置の他の構成は、前述した第1の実施形態と同一であり、同一の部分には同一の参照符号を付してその詳細な説明を省略する。 According to the second embodiment, as the light guide layer 21, an opaque light guide plate having a transmittance of 80% per 1 mm is used by dispersing light diffusion particles in the light guide plate. The shortest distance D (thickness of the light guide layer 21) D between the LED 16 and the diffusion layer 14 is, for example, 2 mm. The transmittance here is based on the measurement method shown in JIS standard K7361, and is the ratio of light that escapes to the front surface when light is vertically incident from the back surface of the light guide layer 21. The other configuration of the planar illumination device is the same as that of the first embodiment described above, and the same reference numerals are given to the same parts, and detailed description thereof is omitted.
 この面照明装置では、1調光エリアのLED16のみを点灯したときの輝度率が60%強にまで改善している。また、第2の実施形態においては、隣接する領域への輝度減衰を早めてコントラストを改善させている。以下に詳細を記載する。 In this surface illumination device, the luminance rate when only the LED 16 in one dimming area is lit is improved to over 60%. In the second embodiment, the contrast is improved by speeding up the luminance attenuation to the adjacent region. Details are described below.
 1mmあたりの透過率Tの不透明な導光層21とすることで、輝度減衰の理論式は前述した距離による減衰に透過減衰効果を加えて 
    1/(r2+D2)×exp(-T×|r|) 
となる。ここで、指数項は不透明な導光層21による光減衰効果を示しており、この減衰は導光層中を光が1mm進むごとに透過率Tに減衰していくことを表している。
By using the opaque light guide layer 21 with a transmittance T per 1 mm, the theoretical expression of luminance attenuation adds the transmission attenuation effect to the attenuation due to the distance described above.
1 / (r 2 + D 2 ) × exp (−T × | r |)
It becomes. Here, the exponent term indicates the light attenuation effect by the opaque light guide layer 21, and this attenuation indicates that the light attenuates to the transmittance T every time the light travels through the light guide layer by 1 mm.
 図7は、輝度減衰カーブをグラフに示したものである。横軸はLEDからの距離r、縦軸は中心輝度を1とした相対輝度である。この図から、導光層21の透過率を下げていくことで減衰が強まることが判る。 FIG. 7 is a graph showing a luminance attenuation curve. The horizontal axis represents the distance r from the LED, and the vertical axis represents the relative luminance with the central luminance being 1. From this figure, it can be seen that the attenuation increases as the transmittance of the light guide layer 21 is lowered.
 r=20mmの場所において、面状照明装置としてコントラスト比を1:100確保しようとすると、前述した第1の実施形態では間隔Dを2mmに設定する必要がある。第2の実施形態によれば、導光層21の光散乱透過率による減衰が加わるため、間隔D=2mm、透過率80%とすると、LEDからr=20mm離れた場所の輝度は1/10000にまで減衰する。図6より、透過率90%の光散乱導光層を用いた場合は、1/100に減衰させるために間隔Dは6mmあってもよいことが分かる。また、間隔Dを6mm以上とした場合でも、導光層の光散乱透過率による減衰効果が得られる。 In a place where r = 20 mm, if it is intended to ensure a contrast ratio of 1: 100 as a planar illumination device, the distance D needs to be set to 2 mm in the first embodiment described above. According to the second embodiment, attenuation due to the light scattering transmittance of the light guide layer 21 is added. Therefore, when the interval D = 2 mm and the transmittance 80%, the luminance at a location r = 20 mm away from the LED is 1/10000. Attenuates to As can be seen from FIG. 6, when a light scattering light guide layer having a transmittance of 90% is used, the distance D may be 6 mm in order to attenuate to 1/100. Even when the distance D is set to 6 mm or more, an attenuation effect by the light scattering transmittance of the light guide layer can be obtained.
 以上のように、点光源と拡散層14との間隔Dを8mm以下に狭める、あるいは導光層21として透過率90%以下の光散乱性を有する導光層とすることにより、ローカルディミング駆動する面状照明装置においてr=20mm近傍でのコントラスト比1:100000を確保しつつ、1エリア点灯輝度を全点灯輝度の35%以上まで改善させることができる。 As described above, the local dimming drive is performed by narrowing the distance D between the point light source and the diffusion layer 14 to 8 mm or less, or by forming the light guide layer 21 as a light guide layer having a light scattering property of 90% or less. In the planar illumination device, the one-area lighting luminance can be improved to 35% or more of the total lighting luminance while ensuring a contrast ratio of 1: 100000 near r = 20 mm.
 第1の実施形態では導光層の間隔、第2の実施形態では導光層全体の不透明性を利用することで漏れ光を制御して1エリア点灯輝度を向上させたが、両者を合わせた構造としてもよい。すなわち、間隔Dは4mmとして、この半分の2mmを不透明な導光層としてもよい。この場合、不透明な導光層部分は透明な導光層部分に比べて相対的にほとんど漏れ出さないため、実質的に間隔2mmの透明導光層とほぼ同じ1エリア点灯輝度を得ることができ、かつ、不透明な導光板のコストも間隔4mmを全て埋める場合より半減に抑えることができる。 In the first embodiment, the light leakage is controlled by using the interval between the light guide layers, and in the second embodiment, the opacity of the entire light guide layer is used to improve the one-area lighting luminance. It is good also as a structure. That is, the interval D may be 4 mm, and 2 mm of this half may be an opaque light guide layer. In this case, since the opaque light guide layer portion leaks relatively less than the transparent light guide layer portion, it is possible to obtain substantially the same one-area lighting luminance as the transparent light guide layer having a spacing of 2 mm. In addition, the cost of the opaque light guide plate can be reduced by half compared with the case where all the gaps of 4 mm are filled.
 図8は、第1および第2の実施形態に係る面状照明装置におけるLED16が形成する等輝度線形状を示めし、図9は、比較例に係る面状照明装置におけるLED16が形成する等輝度線形状を示めしている。 FIG. 8 shows the isoluminance line shape formed by the LED 16 in the planar lighting device according to the first and second embodiments, and FIG. 9 shows the isoluminance formed by the LED 16 in the planar lighting device according to the comparative example. The line shape is shown.
 第1および第2の実施形態、並びに、比較例において、点光源であるLEDを縦横に配列ピッチLで格子状に配列している。この場合、対角方向のLED間隔が縦横方向の間隔よりも広がってしまうため、図9に示すように、等方的に輝度が減衰する円状の等輝度線では対角方向での輝度ムラが出やすい。そこで、第1および第2の実施形態では、図8に示すように、透過反射膜の18の透過率パターンを方向毎に最適化することで、等輝度線が格子状にみあった非円形形状とし、輝度ムラが起きにくくしている。 In the first and second embodiments and the comparative example, the LEDs that are the point light sources are arranged in a grid pattern with the arrangement pitch L in the vertical and horizontal directions. In this case, since the diagonal LED spacing becomes wider than the vertical and horizontal spacing, as shown in FIG. 9, in the circular isoluminance line in which the luminance is isotropically attenuated, uneven luminance in the diagonal direction is obtained. It is easy to come out. Therefore, in the first and second embodiments, as shown in FIG. 8, by optimizing the transmittance pattern of the transmission / reflection film 18 for each direction, the non-circular shape in which the isoluminance lines look like a lattice shape. The shape makes it difficult to cause uneven brightness.
 図8では略矩形状の等輝度線を提示したが、これはLED配列にあわせて変えることができる。すなわち、LED配列が細密六方配列であれば、等輝度線は略六角形であればよい。 FIG. 8 shows a substantially rectangular isoluminance line, but this can be changed according to the LED arrangement. That is, if the LED array is a fine hexagonal array, the isoluminance lines may be substantially hexagonal.
 以上のような構成とすることで、隣接領域への光漏れを適切に制御し、ローカルディミング駆動した場合でも部分点灯輝度が落ちにくく、部分的なコントラストも十分に確保できる面状照明装置を提供することができる。 With the configuration as described above, a planar illumination device that appropriately controls light leakage to an adjacent region, is less likely to reduce partial lighting brightness even when driven by local dimming, and can provide sufficient partial contrast is provided. can do.
 また、第2の実施形態で示した光散乱性の導光層21は、母材と異なる屈折率を持つ透明粒子を分散する構成としているが、透過率を制御するものであれば他の構成でもよい。例えば、導光層の透明母材に気泡を含有する構成、母材表面の凸凹、あるいは母材内部の空隙などで光を散乱する構成でもよい。 In addition, the light-scattering light guide layer 21 shown in the second embodiment is configured to disperse transparent particles having a refractive index different from that of the base material, but other configurations can be used as long as the transmittance is controlled. But you can. For example, a configuration in which bubbles are contained in the transparent base material of the light guide layer, an unevenness on the surface of the base material, or a space in the base material may be scattered.
 また、本発明の本質は、光源と拡散層との間隔Dを8mm以下に狭めること、あるいは導光層の透過率を90%以下に小さくすることにより、隣接領域への光の漏れ出しに対する制御の考え方を開示したものであり、具体的な実現手段としては、第1および第2の実施形態で示した透過反射膜以外の手段で構成してもよい。例えば、光源上に取り付けた配光を拡散させるレンズや、拡散層の光源上に対応する位置にとりつけた部分反射膜、あるいは散乱部材であってもよい。 Further, the essence of the present invention is to control light leakage to the adjacent region by narrowing the distance D between the light source and the diffusion layer to 8 mm or less, or by reducing the transmittance of the light guide layer to 90% or less. As a specific realization means, a means other than the transmission / reflection film shown in the first and second embodiments may be used. For example, a lens for diffusing the light distribution attached on the light source, a partial reflection film attached to a position corresponding to the light source of the diffusion layer, or a scattering member may be used.
 また、上述した実施形態では、液晶表示装置のバックライトユニットとして用いられる面状照明装置を説明したが、照明装置単体として用いられる面状照明装置であってもよい。点光源としてのLEDは、白色のものでも、単色のものでも適用可能であり、LEDの種類に関して限定を受けるものではない。 In the above-described embodiment, the planar illumination device used as the backlight unit of the liquid crystal display device has been described. However, the planar illumination device used as a single illumination device may be used. The LED as the point light source may be white or monochromatic, and is not limited in terms of the type of LED.
 この発明は上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化可能である。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 The present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

Claims (15)

  1.  複数の光源と、前記光源からの光を受ける拡散層とを備え、前記拡散層は前記光源に対して非接触に設けられ、前記光源から前記拡散層までの最短の間隔をDとするとき、 
     D≦8mmである面状照明装置。
    A plurality of light sources, and a diffusion layer that receives light from the light source, the diffusion layer is provided in a non-contact manner with respect to the light source, and when the shortest distance from the light source to the diffusion layer is D,
    A planar illumination device in which D ≦ 8 mm.
  2.  前記光源と前記拡散層との間に設けられ、前記光源からの光を一部反射し一部透過する少なくとも1層の反射透過膜を備えている請求項1に記載の面状照明装置。 The planar illumination device according to claim 1, further comprising at least one reflection / transmission film provided between the light source and the diffusion layer and partially reflecting and partially transmitting light from the light source.
  3.  前記光源の近傍に設けられ、前記光源から出た光を横方向へ拡散させる光学レンズ系を備えている請求項1に記載の面状照明装置。 The planar illumination device according to claim 1, further comprising an optical lens system provided in the vicinity of the light source and diffusing light emitted from the light source in a lateral direction.
  4.  前記光源の近傍に設けられ、前記光源から出た光を横方向へ拡散させる反射体あるいは散乱体を備えている請求項1に記載の面状照明装置。 The planar illumination device according to claim 1, further comprising a reflector or a scatterer provided in the vicinity of the light source and diffusing light emitted from the light source in a lateral direction.
  5.  前記1つの光源が形成する輝度プロファイルは、等輝度線が光源配列の規則性に合わせて非円形になっている請求項1に記載の面状照明装置。 The planar illumination device according to claim 1, wherein the luminance profile formed by the one light source is such that the isoluminance lines are non-circular according to the regularity of the light source arrangement.
  6.  複数の光源と、前記光源からの光を受ける拡散層と、前記光源と拡散層との間に設けられ、光を一部反射し一部透過する少なくとも1層の反射透過膜と、前記光源と反射透過膜との間に設けられた少なくとも1層の導光層と、を備え、
     前記導光層の1mmあたりの透過率Tは、T≦90%である面状照明装置。
    A plurality of light sources; a diffusion layer that receives light from the light sources; at least one reflective / transmissive film that is provided between the light source and the diffusion layer and that partially reflects and partially transmits light; and the light source And at least one light guide layer provided between the reflective transmission film,
    A planar illumination device having a transmittance T per mm of the light guide layer of T ≦ 90%.
  7.  前記光源から前記拡散層までの最短の間隔をDとするとき、D≦8mmとなる請求項6に記載の面状照明装置。 The planar illumination device according to claim 6, wherein D ≦ 8 mm, where D is the shortest distance from the light source to the diffusion layer.
  8.  前記導光層の透過率は、前記導光層内に分散され前記導光層の母材と屈折率の異なる粒子、あるいは気泡、もしくは導光層表面の凸凹、あるいは導光層内部の空隙により規定されている請求項6に記載の面状照明装置。 The transmittance of the light guide layer depends on particles dispersed in the light guide layer and having a refractive index different from that of the base material of the light guide layer, or bubbles, irregularities on the surface of the light guide layer, or voids in the light guide layer. The planar illumination device according to claim 6, wherein the planar illumination device is defined.
  9.  前記1つの光源が形成する輝度プロファイルは、隣接する前記光源あるいは一括調光される光源グループの境界においてなだらかに輝度が減衰し、隣接する領域に拡がる請求項1ないし8のいずれか1項に記載の面状照明装置。 9. The luminance profile formed by the one light source gradually decreases in brightness at a boundary between the adjacent light sources or a group of light sources subjected to collective dimming, and spreads in an adjacent region. Planar lighting device.
  10.  前記1つの光源が形成する輝度プロファイルは、隣接する前記光源間あるいは一括調光される前記光源グループ間の境界において遮られることなく全面に渡って拡がっている請求項1ないし8のいずれか1項に記載の面状照明装置。 9. The luminance profile formed by the one light source spreads over the entire surface without being blocked at a boundary between the adjacent light sources or between the light source groups that are collectively dimmed. The surface illumination device described in 1.
  11.  前記光源は、点状の光源である請求項1ないし8のいずれか1項に記載の面状照明装置。 The planar illumination device according to any one of claims 1 to 8, wherein the light source is a point light source.
  12.  前記1つの光源のみをフル階調で点灯したときの中心輝度に対して輝度が1/100に減衰する距離が、前記1つの光源から20mm以内である請求項1ないし8のいずれか1項に記載の面状照明装置。 The distance at which the luminance attenuates to 1/100 with respect to the central luminance when only the one light source is lit at full gradation is within 20 mm from the one light source. The surface illumination device described.
  13.  前記光源の発光量を、前記光源毎、もしくは隣接する複数の光源を1光源ユニットとするユニット毎に、部分調整する発光量調整部を備えている請求項1ないし8のいずれか1項に記載の面状照明装置。 9. The light emission amount adjustment unit according to claim 1, further comprising: a light emission amount adjustment unit that partially adjusts the light emission amount of the light source for each light source or for each unit including a plurality of adjacent light sources as one light source unit. Planar lighting device.
  14.  前記1つの光源ユニットをフル階調で点灯したときの輝度プロファイルの中心輝度は、全光源ユニットをフル階調で点灯したときの輝度の35%以上である請求項13に記載の面状照明装置。 The planar illumination device according to claim 13, wherein the center luminance of the luminance profile when the one light source unit is lit at full gradation is 35% or more of the luminance when all the light source units are lit at full gradation. .
  15.  液晶表示パネルと、
     前記液晶表示パネルの背面に対向して配置され、前記液晶表示パネルに光を照射する請求項1ないし8のいずれか1項に記載の面状照明装置と、
     を備えた液晶表示装置。
    A liquid crystal display panel;
    The planar illumination device according to any one of claims 1 to 8, wherein the planar illumination device is disposed so as to face a back surface of the liquid crystal display panel and irradiates the liquid crystal display panel with light.
    A liquid crystal display device.
PCT/JP2010/064002 2009-09-17 2010-08-19 Planar illumination device and liquid crystal display device provided with the same WO2011033901A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-216075 2009-09-17
JP2009216075A JP2011065891A (en) 2009-09-17 2009-09-17 Surface illumination device and liquid crystal display device having the same

Publications (1)

Publication Number Publication Date
WO2011033901A1 true WO2011033901A1 (en) 2011-03-24

Family

ID=43758514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064002 WO2011033901A1 (en) 2009-09-17 2010-08-19 Planar illumination device and liquid crystal display device provided with the same

Country Status (2)

Country Link
JP (1) JP2011065891A (en)
WO (1) WO2011033901A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3591463A1 (en) * 2011-09-09 2020-01-08 Lg Innotek Co. Ltd Lighting unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251075A (en) * 2005-03-08 2006-09-21 Sony Corp Back light apparatus and liquid crystal display
WO2009047891A1 (en) * 2007-10-11 2009-04-16 Kuraray Co., Ltd. Planar light source element array and image display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251075A (en) * 2005-03-08 2006-09-21 Sony Corp Back light apparatus and liquid crystal display
WO2009047891A1 (en) * 2007-10-11 2009-04-16 Kuraray Co., Ltd. Planar light source element array and image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3591463A1 (en) * 2011-09-09 2020-01-08 Lg Innotek Co. Ltd Lighting unit
USRE48690E1 (en) 2011-09-09 2021-08-17 Lg Innotek Co., Ltd. Light unit and a LCD liquid crystal display comprising the light unit

Also Published As

Publication number Publication date
JP2011065891A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP4461197B1 (en) Planar illumination device and liquid crystal display device including the same
JP4777691B2 (en) Multicolor LED array with improved luminance profile and color uniformity
KR101167301B1 (en) Back light unit of liquid crystal display device
JP4607682B2 (en) Backlight device of liquid crystal display device and liquid crystal display device using the same
JP5011151B2 (en) Liquid crystal display equipment
JP4314157B2 (en) Planar light source device and display device using the same
EP2166275B1 (en) Illuminating device and liquid crystal display
JP2006286906A (en) Light emitting diode device and back-light apparatus and liquid crystal display apparatus using the same
JP2012174371A (en) Lighting apparatus, and liquid crystal display
JP2007240858A (en) Lighting device, video display device, and video signal control method
KR102222297B1 (en) Reflector for uniform brightness and liquid crystal display device having thereof
JP2012174372A (en) Lighting apparatus, and liquid crystal display
JP2012174370A (en) Lighting apparatus, and liquid crystal display
US20120113682A1 (en) Surface lighting apparatus
JP2018137044A (en) Planar light source and display
KR20200127064A (en) Diffusion plate and backlight unit having light guide function
WO2019056985A1 (en) Light guide plate, backlight module and display device
JP2005228535A (en) Planar light source device and liquid crystal display
KR101114854B1 (en) A backlight unit
KR101186868B1 (en) Back light and liquid crystal display device having thereof
KR101107715B1 (en) Direct Type Back Light
JP2009099270A (en) Hollow surface lighting device
WO2011033901A1 (en) Planar illumination device and liquid crystal display device provided with the same
KR101327852B1 (en) Backlight unit
JP2023005241A (en) Display device and backlight device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10817014

Country of ref document: EP

Kind code of ref document: A1