WO2011033664A1 - High-frequency element - Google Patents

High-frequency element Download PDF

Info

Publication number
WO2011033664A1
WO2011033664A1 PCT/JP2009/066428 JP2009066428W WO2011033664A1 WO 2011033664 A1 WO2011033664 A1 WO 2011033664A1 JP 2009066428 W JP2009066428 W JP 2009066428W WO 2011033664 A1 WO2011033664 A1 WO 2011033664A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
magnetization
free layer
layer
high frequency
Prior art date
Application number
PCT/JP2009/066428
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 才田
志保 中村
博史 森瀬
剛 近藤
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2009/066428 priority Critical patent/WO2011033664A1/en
Publication of WO2011033664A1 publication Critical patent/WO2011033664A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/212Frequency-selective devices, e.g. filters suppressing or attenuating harmonic frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/215Frequency-selective devices, e.g. filters using ferromagnetic material

Definitions

  • the present invention relates to a high-frequency element that attenuates a signal of an unnecessary band frequency from high-frequency power.
  • the issue is how to suppress the effects of interference from radio waves in the adjacent frequency bands.
  • a filter for attenuating a signal in an unnecessary frequency band is incorporated in each device as an effective solution.
  • antenna design is an important key in wireless communication.
  • the antenna length is determined by the wavelength of the received radio wave. For example, the antenna length that can efficiently receive a 2 GHz radio wave is about 3.8 cm (1/4 wavelength) to 15 cm. The higher the radio wave, the shorter the antenna length can be designed.
  • BEF Battery Elimination Filter
  • a trap filter a filter that attenuates a frequency component of an unnecessary band from received power.
  • an inductance L and a capacitance C have self-resonant frequencies, respectively. Therefore, the designed ideal frequency characteristics and actual filter characteristics have been difficult to shift, and because the filter is composed of L and C, the size is at least several mm square and has good attenuation characteristics. There was a problem in terms of making the filter small.
  • metamaterials are known in which the refractive index is artificially changed by changing the metal structure to adjust the dielectric constant and permeability so that the resonance frequency is given to the GHz band and the THz band (non-patent document). Reference 1).
  • metal coils having a diameter of less than 1 mm are periodically arranged to absorb electromagnetic waves in the vicinity of 5 GHz.
  • the resonance frequency is determined by the values of L and C due to the coil structure.
  • the size of one coil In order to have a resonance frequency in the GHz band, the size of one coil has to be about several hundred microns, and there is a problem that the size is increased in order to configure a filter. Further, in order to increase the absorption efficiency of electromagnetic waves, it is necessary to arrange a plurality of coils, and the absorption efficiency and the in-plane occupation area have a trade-off relationship.
  • the present invention has been made in consideration of the above circumstances, and provides a high-frequency element that is small in size and capable of attenuating unnecessary band components while transmitting a plurality of desired frequencies.
  • the high-frequency device includes a first electrode, a second electrode provided on the first electrode, and the first electrode and the second electrode.
  • a plurality of magnetoresistive effect elements provided, each magnetoresistive effect element having a magnetization pinned layer in which the magnetization direction is pinned, and magnetization free excited by magnetization vibration depending on the direction and strength of flow of the spin injection current
  • a plurality of magnetoresistive elements having a layer, a spacer layer provided between the magnetization pinned layer and the magnetization free layer, and having different cross-sectional areas of the magnetization free layer,
  • An input terminal for inputting a signal and an output terminal for outputting a signal are provided separately from each other on the second electrode.
  • the high-frequency element includes a first electrode, a second electrode provided on the first electrode, and a third electrode provided on the second electrode.
  • a first magnetoresistive effect element group provided between the first electrode and the second electrode, each magnetoresistive effect element having a magnetization pinned layer having a magnetization direction fixed;
  • Each magnetoresistive element has a magnetization pinned layer in which the magnetization direction is fixed, and a direction in which the spin injection current flows.
  • the unnecessary band component can be attenuated while transmitting a plurality of desired frequencies.
  • FIGS. 5A to 5C are plan views showing an example of the arrangement of magnetoresistive elements.
  • FIG. 6A is a cross-sectional view when the magnetization directions of the magnetization free layer and the magnetization pinned layer are substantially parallel to the film surface
  • FIG. 6B shows the magnetization direction of the magnetization free layer and the magnetization pinned layer as the film surface.
  • 6C is a cross-sectional view when the magnetization direction of the magnetization free layer is substantially parallel to the film surface and the magnetization direction of the magnetization pinned layer is substantially perpendicular to the film surface.
  • 7A to 7C are cross-sectional views showing the shape of the magnetization fixed layer. Sectional drawing which shows an example of a magnetoresistive effect element.
  • the perspective view which shows the high frequency filter of 3rd Example. The figure which shows the resonant frequency characteristic of the magnetoresistive effect element used for 3rd Example.
  • the figure which shows the frequency characteristic of the high frequency filter of 3rd Example. The perspective view which shows the high frequency filter by the modification of 3rd Example.
  • the perspective view which shows the high frequency filter of 4th Example. The perspective view which shows the high frequency filter of 5th Example. Sectional drawing which shows the high frequency filter of 6th Example.
  • the figure which shows the frequency characteristic of the high frequency filter of one Embodiment The figure which shows the precession frequency characteristic of the magnetoresistive effect element provided with the magnetization free layer which has magnetization perpendicular
  • the figure which shows the frequency characteristic of the high frequency filter of one Embodiment The figure which shows the frequency characteristic of the high frequency filter of one Embodiment.
  • the figure which shows the frequency characteristic of the high frequency filter of one Embodiment. The figure which shows the frequency characteristic of the high frequency filter of one Embodiment.
  • FIG. 31A is a perspective view showing a high-frequency filter according to one embodiment
  • FIG. 31B is a diagram showing transmission characteristics of the high-frequency filter according to one embodiment
  • FIG. 32A is a perspective view showing a high-frequency filter according to one embodiment
  • FIG. 32B is a diagram showing transmission characteristics of the high-frequency filter according to one embodiment. The figure which shows the permeation
  • FIG. 34A is a perspective view showing a high-frequency filter according to one embodiment
  • FIG. 34B is a cross-sectional view showing the high-frequency filter according to one embodiment.
  • FIG. 35A is a perspective view showing the high-frequency filter according to the embodiment, and FIG.
  • FIGS. 35B is a cross-sectional view showing the high-frequency filter according to the embodiment.
  • FIGS. 37A and 37B are perspective views showing a high-frequency filter according to an embodiment.
  • 38 (a) and 38 (b) are perspective views showing a high-frequency filter according to an embodiment.
  • FIGS. 39A and 39B are perspective views showing a high-frequency filter according to an embodiment.
  • 40 (a) and 40 (b) are perspective views showing a high-frequency filter according to an embodiment.
  • 41 (a) and 41 (b) are perspective views showing a high-frequency filter according to an embodiment.
  • 42 (a) and 42 (b) are perspective views showing a high-frequency filter according to an embodiment.
  • FIG. 1 is a circuit diagram of a transmission / reception system in which a high-frequency filter according to an embodiment is used.
  • 45 (a) and 45 (b) are perspective views showing a high-frequency filter according to an embodiment.
  • 46 (a) and 46 (b) are perspective views showing a high-frequency filter according to an embodiment.
  • FIG. 1 is a cross-sectional view of the high-frequency filter 1 of the present embodiment
  • FIG. 2 is a perspective view.
  • the high-frequency filter 1 of this embodiment includes a plurality of magnetoresistive elements 20 1 to 20 n (n ⁇ ) provided between the first electrode 10, the second electrode 12, and the first and second electrodes. 2), and an input terminal 32 and an output terminal 34 provided on the surface of the second electrode 12 opposite to the magnetoresistive effect elements 20 1 to 20 n (n ⁇ 2).
  • the magnetization free layer 23 and the spacer layer 22 provided between the magnetization fixed layer 21 and the magnetization free layer 23 have a laminated structure in which they are laminated in this order.
  • the magnetization pinned layer 21 is electrically connected to the first electrode 10, and the magnetization free layer 23 is electrically connected to the second electrode 12. That is, the magnetoresistive effect elements 20 1 to 20 n (n ⁇ 2) are connected in parallel between the first electrode 10 and the second electrode 12. Unlike the present embodiment, the magnetization free layer 23 is electrically connected to the first electrode 10, the spacer layer 22 is provided on the magnetization free layer 23, and the magnetization pinned layer 21 is provided on the spacer layer 22. It may be configured to be electrically connected to the second electrode 10.
  • the magnetoresistive effect elements 20 1 to 20 n (n ⁇ 2) have different cross-sectional areas of the magnetization free layer 23.
  • the cross-sectional area of the magnetization free layer 23 means the area of the surface of the magnetization free layer 23 in contact with the spacer layer 22. Therefore, the magnetoresistive effect elements 20 1 to 20 n (n ⁇ 2) have different resonance frequencies.
  • the magnetoresistive effect elements 20 1 to 20 n (n ⁇ 2) may include magnetoresistive effect elements having the same resonance frequency, but include magnetoresistive effect elements having different resonance frequencies. Yes.
  • the magnetoresistive effect elements 20 1 to 20 n (n ⁇ 2) are divided into a first magnetoresistive effect element group and a second magnetoresistive effect element group.
  • the high frequency filter of the present embodiment attenuates the frequency region including the frequency f 1 and the frequency f 2 and passes the frequency region therebetween.
  • a plurality of magnetoresistance effect elements 20 1 to 20 n (n ⁇ 2) are connected in parallel between the first electrode 10 and the second electrode 12. Therefore, it becomes a small high frequency filter.
  • the first electrode 10 may be grounded.
  • the magnetoresistive effect elements 20 1 to 20 n (n ⁇ 2) arranged on the first electrode 10 are magnetoresistive effect elements having the same cross-sectional area as shown in FIG. 20 may be arranged close to each other. Further, as shown in FIG. 5B, the magnetoresistive effect elements 20a and 20b having different cross-sectional areas may be arranged close to each other. In addition, as shown in FIG. 5C, magnetoresistive elements 20a, 20b, 20c, and 20d having different cross-sectional areas may be randomly arranged.
  • the magnetization fixed layer 21 and the magnetization free layer 23 may be in-plane magnetization films as shown in FIG.
  • the in-plane magnetization film means that the magnetization is substantially parallel to the film surface (upper surface).
  • the magnetization pinned layer 21 and the magnetization free layer 23 may be perpendicular magnetization films as shown in FIG.
  • the perpendicular magnetization film means that the magnetization is substantially perpendicular to the film surface (upper surface).
  • the magnetization fixed layer 21 may be a perpendicular magnetization film and the magnetization free layer 23 may be an in-plane magnetization film.
  • the magnetization pinned layer 21 may have a configuration in which the cross-sectional area increases in the middle from the spacer layer 22 side to the electrode side as shown in FIG. Further, as shown in FIG. 7B, the longitudinal section (cross-sectional view cut along a plane perpendicular to the film surface) may have a taper shape, or as shown in FIG. You may have.
  • the film surface shape of the magnetoresistive effect element that is, the film surface shape of the magnetization free layer 23 may be elliptical as shown in FIG.
  • the magnetization free layer 23 may be any one of a circle, a rectangle, and a polygon. Moreover, it is good also as a film surface shape from which a major axis and a minor axis differ. In this case, the length (major axis) in the major axis direction is desirably 500 nm or less and 10 nm or more in order to obtain good filter characteristics.
  • the magnetization direction of the magnetization pinned layer is pinned by the antiferromagnetic layer.
  • This antiferromagnetic layer is provided on the opposite side to the spacer layer with respect to the magnetization pinned layer.
  • the material of the antiferromagnetic layer includes Fe—Mn, Pt—Mn, Pt—Cr—Mn, Ni—Mn, Pd—Mn, Pd—Pt—Mn, Ir—Mn, Pt—Ir—Mn, NiO. Fe 2 O 3 , a magnetic semiconductor, or the like can be used.
  • the magnetization pinned layer 21 of the magnetoresistive effect element 20 has a laminated structure having ferromagnetic layers 21a and 21c antiferromagnetically coupled via the Ru layer 21b as shown in FIG. Also good.
  • the magnetization free layer and the magnetization pinned layer include, for example, a magnetic metal containing one or more elements selected from the group of Fe (iron), Co (cobalt), Ni (nickel), Mn (manganese), and Cr (chromium) It consists of.
  • the magnetization free layer one or more elements selected from the group of Fe, Co, Ni, Mn, and Cr, Pt (platinum), Pd (palladium), Ir (iridium), Ru (ruthenium), An alloy formed by a combination with one or more elements selected from the group of Rh (rhodium) may be used.
  • the magnetization free layer and the magnetization pinned layer may be formed of, for example, an amorphous alloy of a rare earth-transition metal such as TbFeCo or GdFeCo,
  • the spacer layer may be either a nonmagnetic barrier layer or a nonmagnetic metal layer.
  • an insulating material as a tunnel barrier layer can be used. Specifically, Al (aluminum), Ti (titanium), Zn (zinc), Zr (zirconium), Ta (tantalum), Co (cobalt), Ni (nickel), Si (silicon), Mg (magnesium),
  • the nonmagnetic barrier layer can be composed of an oxide, nitride or fluoride containing at least one element selected from the group of Fe (iron).
  • the nonmagnetic barrier layer includes Al 2 O 3 , SiO 2 , MgO, AlN, Ta-0, Al—Zr—O, Bi 2 O 3 , MgF 2 , CaF 2 , SrTiO 3 , AlLaO 3 , Al—N.
  • Si—N—O, nonmagnetic semiconductors ZnOx, InMn, GaN, GaAs, TiOx, Zn, Te, or those doped with a transition metal
  • the nonmagnetic metal layer may be any of nonmagnetic metal elements such as Cu, Ag, Au, Cr, Zn, Ga, Nb, Mo, Ru, Pd, Hf, Ta, W, Pt, Bi, or An alloy containing any one or more of these can be used.
  • a nonmagnetic metal can be used for the first and second electrodes.
  • the nonmagnetic metal any one of Au, Cu, Cr, Zn, Ga, Nb, Mo, Ru, Pd, Ag, Hf, Ta, W, Pt, Bi, Al, or these An alloy containing any one or more of them can be used. In consideration of electromagration resistance and low resistance, it is desirable to use Cu, Al, or an alloy containing them.
  • FIG. 9 is a perspective view showing the high frequency filter of the present embodiment.
  • the high frequency filter of the present embodiment is the same as the high frequency filter of the first embodiment, where the distance between the facing of the input terminal 32 and the output terminal 34 is a / It is comprised so that it may become 10 or less.
  • the high-frequency filter of the present embodiment can be easily matched with the front-stage and rear-stage circuits.
  • this embodiment also has the same effect as the first embodiment.
  • FIG. 10 shows the high frequency filter device of the first embodiment.
  • the high frequency filter device of this embodiment transmits the 2 GHz band.
  • the high frequency filter device of this example has a configuration in which the high frequency filter 1 of the first embodiment shown in FIG. 2 and ground lines 42 and 44 are provided on both sides of the high frequency filter 1, that is, on both sides of the second electrode 12. ing.
  • the gaps (intervals) g 1 and g 2 between the ground lines 42 and 44 and the high frequency filter 1 are both 2 ⁇ m.
  • the high frequency filter 1 is a coplanar line.
  • the input terminal 32 and the output terminal 34 have a cross-sectional area of 100 ⁇ m ⁇ 2.5 ⁇ m in a plane parallel to the film surface, and the first and second electrodes 10 and 12 have a cross-sectional area of 623 ⁇ m in a plane parallel to the film surface. ⁇ 2.5 ⁇ m.
  • magnetoresistive elements 20 having different magnetization free layers having eight different cross-sectional areas are arranged at an interval of 100 nm.
  • the MR ratio of each magnetoresistive element 20 is 150%.
  • the ground lines 42 and 44 both have a cross-sectional area of 623 ⁇ m ⁇ 7 ⁇ m in a plane parallel to the film surface.
  • FIG. 11 shows the resonance frequency characteristics of the magnetoresistive effect element 20 having the different magnetization free layers having eight different cross-sectional areas used in the high-frequency filter device of the present embodiment configured as described above.
  • these magnetoresistive elements 20 have resonance frequencies in the 1.8 GHz band used for mobile phones and the 3 GHz or higher band used for UWB. Therefore, the high frequency filter device of this embodiment has the filter characteristics shown in FIG.
  • radio waves in the 2 GHz band are transmitted, and components in the unnecessary frequency band are absorbed and attenuated.
  • the ground lines 42 and 44 are provided on both sides of the second electrode 12. However, the ground line 42 is disposed above the second electrode 12 via the gap g 1 and is also connected to the ground line. 44 may be provided with a gap g 2 below the first electrode 10.
  • a structure without the ground line 44 may be provided.
  • FIG. 14 shows a high frequency filter device according to a second embodiment of the present invention.
  • the high-frequency filter device of this example transmits 2 GHz band.
  • the cross-sectional area of the first electrode 10 is larger than the cross-sectional area of the second electrode 12. It has a larger configuration.
  • the cross-sectional area of the input terminal 32 and the output terminal 34 is 100 ⁇ m ⁇ 2.5 ⁇ m, and the cross-sectional area of the second electrode 12 is 623 ⁇ m ⁇ 2.5 ⁇ m.
  • the first electrode 10 has a microstrip line structure. Between the first electrode 10 and the second electrode 12, magnetoresistive effect elements 20 having different magnetization free layers having eight different cross-sectional areas were arranged at an interval of 100 nm. Each magnetoresistive effect element 20 has a characteristic of MR 150% and has the resonance frequency characteristic shown in FIG. Then, the filter characteristics of the high-frequency filter device of the present embodiment have the same filter characteristics as shown in FIG.
  • FIG. 15 shows a high frequency filter device according to a second embodiment of the present invention.
  • the high-frequency filter device of this example transmits the 2 GHz band and the 8 GHz to 10 GHz band.
  • the high-frequency filter 1 of the first embodiment shown in FIG. 2 and ground lines 42 and 44 on both sides of the high-frequency filter 1 are provided. It is the provided structure.
  • the gaps g 1 and g 2 between the ground lines 42 and 44 and the high frequency filter 1 are both 2 ⁇ m.
  • the high frequency filter 1 is a coplanar line.
  • the cross-sectional area of the input terminal 32 and the output terminal 34 is 100 ⁇ m ⁇ 6.1 ⁇ m, and the cross-sectional areas of the first and second electrodes 10 and 12 are 623 ⁇ m ⁇ 6.1 ⁇ m. Between the first electrode 10 and the second electrode 12, magnetoresistive effect elements 20 having 20 different magnetization free layers with cross-sectional areas are arranged at an interval of 100 nm.
  • the ground lines 42 and 44 are both 623 ⁇ m ⁇ 10 ⁇ m.
  • FIG. 16 shows the resonance frequency characteristics of the magnetoresistive effect element 20 having 20 different magnetization free layers with different cross-sectional areas.
  • the MR of the magnetoresistive element is 150%.
  • the filter characteristics of the high-frequency filter device of this example are as shown in FIG. Radio waves in the 2 GHz band and the 8 GHz to 10 GHz band are transmitted, and the unnecessary frequency band components are absorbed and attenuated.
  • FIG. 1 A high frequency filter device according to a fourth embodiment of the present invention is shown in FIG.
  • the high frequency filter device of this example transmits the 2 GHz band and the 8 GHz to 10 GHz band.
  • the second electrode 12 of the first electrode 10 is connected to the second electrode 12.
  • the area of the facing surface is configured to be larger than the area of the surface of the second electrode 12 facing the first electrode.
  • the cross-sectional area of the input terminal 32 and the output terminal 34 is 100 ⁇ m ⁇ 6.1 ⁇ m
  • the cross-sectional area of the second electrode 12 is 312 ⁇ m ⁇ 6.1 ⁇ m
  • the first electrode 10 has a microstrip line structure.
  • magnetoresistive effect elements 20 having 20 different magnetization free layers with cross-sectional areas are arranged at an interval of 100 nm.
  • the first electrode 10 is at ground potential.
  • the magnetoresistive effect element 20 has the same resonance frequency characteristic as shown in FIG. Therefore, the high-frequency filter device of this embodiment also has the filter characteristics shown in FIG.
  • a high frequency filter device according to a fifth embodiment of the present invention is shown in FIG.
  • the high frequency filter device of this embodiment transmits 2 GHz band and 8 GHz to 10 GHz band.
  • This embodiment has first to third electrodes 10, 12, 14, and is between the first electrode 10 and the second electrode 12, and between the second electrode 12 and the third electrode 14.
  • a high frequency filter 1 ⁇ / b> A provided with a plurality of magnetoresistive effect elements 20 therebetween is provided.
  • the first to third electrodes are laminated in the order of the first electrode 10, the second electrode 12, and the third electrode 14.
  • the plurality of magnetoresistive effect elements 20 between the first electrode 10 and the second electrode 12 are electrically insulated from each other by the insulating film 28, and between the second electrode 12 and the third electrode 14.
  • the plurality of magnetoresistive elements 20 are electrically insulated from each other by the insulating film 29. Then, ground lines 42 and 44 are provided on both sides of the high-frequency filter 1A. The gaps g 1 and g 2 between the ground lines 42 and 44 and the high frequency filter 1A are both 2 ⁇ m.
  • the cross-sectional areas of the first to third electrodes 10, 12, and 14 are 312 ⁇ m ⁇ 6.1 ⁇ m, respectively.
  • the magnetoresistive effect element 20 provided between the first electrode 10 and the second electrode 12 and between the second electrode 12 and the third electrode 14 has 20 different free cross-sectional areas.
  • the magnetoresistive effect element 20 having a layer is disposed at an interval of 100 nm.
  • the first and third electrodes are at ground potential.
  • the high-frequency filter device of this embodiment also has the same filter characteristics as shown in FIG. According to this embodiment, it is possible to realize a minute high frequency filter device having a size of about 0.3 mm ⁇ 0.03 mm.
  • FIG. 21 shows a high frequency filter device according to a sixth embodiment of the present invention.
  • the high-frequency filter device of the present example is a filter that transmits a 2 GHz band.
  • the magnetoresistive elements 20 1 to 20 n (n ⁇ 2) are magnetized.
  • the fixing layer 21 and the spacer layer 22 are shared.
  • this embodiment Even in the example structure, good filter characteristics can be obtained.
  • the magnetization pinned layer 21 and the spacer layer 22 are shared, the pinning ability of the magnetization pinned layer 21 is enhanced, and there is an effect of more stable oscillation.
  • An antiferromagnetic layer (not shown) may be provided on the surface of the magnetization pinned layer opposite to the spacer layer 22.
  • the current value flowing through the elements be constant in order to efficiently attenuate a desired frequency.
  • the current value here refers to the amount of current flowing through the input terminal 32 of the upper electrode (second electrode).
  • the alternating current mentioned later refers to the amount of alternating current when the electric power received by the antenna is passed as a current to the high frequency filter via a transmission line (which may be an electric circuit or a waveguide).
  • a method of adjusting the current value in order to effectively use the high-frequency filter of each embodiment and example of the present invention a method of superimposing and flowing an alternating current to be attenuated in a state where a direct current is applied, and an alternating current And a method in which the current is amplified to a constant value.
  • an alternating current may be amplified and a direct current may be superimposed on it.
  • CoFe is used for the magnetization free layer and the magnetization pinned layer and the film thickness is 3 nm and 10 nm, respectively, and Cu with a film thickness of 8 nm is used as the spacer layer, it is free when 0.55 mA is applied as a direct current.
  • the magnetization of the layer continues precession.
  • pairs of lengths of major axis and minor axis are (30 nm, 30 nm), (30 nm, 100 nm), (100 nm, 200 nm), Six magnetoresistive effect elements (70 nm, 200 nm), (40 nm, 100 nm), and (300 nm, 300 nm) having an elliptical cross-sectional shape are prepared, and the magnetization of the magnetization free layer is prepared.
  • the precession frequency was examined. A magnetic field of 100 Oe was applied in the direction of the easy axis (the major axis direction of the magnetization free layer). As a result, it was found that the characteristic shown in FIG.
  • desired filter characteristics can be obtained by applying a DC magnetic field to the magnetoresistive effect element.
  • a permanent magnet or a coil is used as a magnetic field applying unit that applies a DC magnetic field.
  • the state of the precession of magnetization in the magnetization free layer of the magnetoresistive effect element changes depending on the direction and strength of the magnetic field.
  • the magnetic field may be applied in either the in-plane direction or the perpendicular direction of the magnetization free layer, but the magnetization free It is desirable to apply in the vicinity of the direction parallel to or antiparallel to the easy axis direction of the layer. In this case, a wide band can be covered by using a plurality of magnetoresistance effect elements having different cross-sectional areas.
  • pairs of lengths of major axis and minor axis are (30 nm, 30 nm), (30 nm, 100 nm), (100 nm, 200 nm), (70 nm, 200 nm), ( Six magnetoresistive effect elements having a cross-sectional shape of an ellipse, which are 40 nm, 100 nm) and (300 nm, 300 nm), were arranged.
  • power of 1 ⁇ W ( ⁇ 30 dBm) was received by the antenna, AC current due to reception was passed through the high frequency filter.
  • a magnetic field of 150 Oe was applied in a direction antiparallel to the magnetization direction of the magnetization free layer.
  • a filter characteristic for cutting noise around 2 GHz indicated by a broken line in FIG. 23 was obtained.
  • a broken line indicates a characteristic such as a fill when no DC current is passed, and a solid line indicates a filter characteristic when a DC current is passed.
  • pairs of lengths of major axis and minor axis are (30 nm, 30 nm), (50 nm, 200 nm), (30 nm, 100 nm), (100 nm, 200 nm), respectively, between the first electrode and the second electrode.
  • Six types of magnetoresistive effect elements 70 nm, 100 nm) and (40 nm, 50 nm) having an elliptical cross section were arranged.
  • power of 1 ⁇ W ( ⁇ 30 dBm) was received by the antenna, and alternating current due to reception was applied.
  • a magnetic field of 100 Oe was applied in a direction parallel to the magnetization direction of the magnetization free layer.
  • a filter characteristic for cutting noise around 5 GHz indicated by a broken line in FIG. 24 was obtained.
  • the broken line indicates the filter characteristics when no DC current is passed
  • the solid line indicates the filter characteristics when DC current is passed.
  • pairs of lengths of major axis and minor axis are (30 nm, 30 nm), (30 nm, 100 nm), (100 nm, 200 nm), (70 nm, 200 nm), respectively, between the first electrode and the second electrode.
  • Six magnetoresistive effect elements 40 nm, 100 nm) and (300 nm, 300 nm) having an elliptical cross-sectional shape were arranged.
  • the received power at the antenna was -70 dBm
  • the signal intensity was amplified to 40 dB using an amplifier.
  • the major axis and minor axis length pairs between the first electrode and the second electrode are (30 nm, 30 nm), (30 nm, 100 nm), (100 nm, 200 nm), (70 nm, 200 nm), (40 nm, respectively. , 100 nm), (300 nm, 300 nm), and six magnetoresistive elements having an elliptical cross section.
  • power of 1 ⁇ W ( ⁇ 30 dBm) was received by the antenna, an AC current was received while a DC current of 0.55 mA was passed through the high frequency filter.
  • a magnetic field of 150 Oe was applied in a direction antiparallel to the magnetization direction of the magnetization free layer.
  • a reduction in noise level was confirmed compared to the case where no direct current was superimposed.
  • a pair of lengths of major axis and minor axis between the upper electrode and the lower electrode is (30 nm, 30 nm), (50 nm, 200 nm), (30 nm, 100 nm), (100 nm, 200 nm), (70 nm, 100 nm), respectively.
  • (40 nm, 50 nm) which are magnetoresistive elements having an elliptical cross section.
  • 1 ⁇ W ( ⁇ 30 dBm) of power was received by the antenna, and an AC current was received while a DC current of 0.55 mA was passed through the high frequency filter.
  • a magnetic field of 100 Oe was applied in a direction parallel to the magnetization direction of the magnetization free layer.
  • a filter characteristic for cutting noise around 5 GHz indicated by a solid line in FIG. 24 was obtained. A reduction in noise level was confirmed compared to the case where no direct current was superimposed.
  • pairs of lengths of major axis and minor axis are (30 nm, 30 nm), (30 nm, 100 nm), (100 nm, 200 nm), (70 nm, 200 nm), respectively, between the first electrode and the second electrode.
  • Six magnetoresistive effect elements 40 nm, 100 nm) and (300 nm, 300 nm) having an elliptical cross-sectional shape were arranged.
  • the received power at the antenna was -70 dBm
  • the signal intensity was amplified to 40 dB using an amplifier.
  • the magnetization free layer and the magnetization pinned layer are perpendicular magnetization films.
  • the magnetization directions of the magnetization free layer and the magnetization pinned layer are substantially perpendicular to the film surface.
  • the shape of the magnetization free layer may be an ellipse or a rectangle as in the case of using the in-plane magnetization film. Moreover, it is good also as a polygon.
  • the resonance frequency can be changed not only by the shape anisotropy but also by the magnetic anisotropy constant (Kerg / cm 3 ).
  • the magnetoresistive effect elements can be arranged more closely, and thus the area can be reduced.
  • the cross-sectional shape is circular and the diameter is 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, and 100 nm.
  • the precession frequency of the magnetization free layer of the magnetoresistive effect element was investigated. A 300 Oe magnetic field was applied in the direction of the easy axis of the magnetization free layer. As a result, the characteristics shown in FIG. 25 were obtained.
  • the cross-sectional shape is circular between the first electrode and the second electrode, and the diameter is 32 nm, 34 nm, 38 nm, 40 nm, 42 nm, 46 nm, 52 nm, 58 nm, 73 nm, 76 nm, 82 nm, 94 nm, 100 nm, 132 nm.
  • a high-frequency filter according to any one of the first to second embodiments and examples of the present invention in which 16 magnetoresistive effect elements of 150 nm and 200 nm are arranged was produced.
  • the magnetization free layer FePd having a film thickness of 3 nm was used, the saturation magnetization Ms was 1000 emu / cm 3 , and the anisotropy constant K was 6 Merg / cm 3 .
  • the spacer layer was made of MgO having a thickness of 1 nm, and the magnetic pinned layer was made of FePd having a thickness of 8 nm. The filter characteristics when direct current was applied to this high frequency filter and when it was not supplied were examined.
  • the received power at the antenna was ⁇ 60 dBm, it was amplified by 30 dB using an amplifier and input to the high frequency filter. As a result, only 5 GHz was transmitted between 1.5 GHz and 9 GHz. It was confirmed that the SN ratio was improved as compared with the case where the received power was not amplified.
  • a DC magnetic field is further applied to the magnetoresistive effect element.
  • a method for applying a DC magnetic field there are a method using a permanent magnet and a method using a coil.
  • the characteristics of precession of the magnetization free layer of the magnetoresistive effect element change depending on the direction and strength of the magnetic field.
  • the magnetic field can be applied in either the direction parallel to the film surface of the magnetization free layer or the direction perpendicular to the film surface.
  • FePd having a saturation magnetization Ms of 100 emu / cm 3 was used as the magnetization free layer and the magnetization pinned layer.
  • MgO was used as the spacer layer.
  • the film thicknesses of the magnetization free layer, the spacer layer, and the magnetization pinned layer were 3 nm, 1 nm, and 8 nm, respectively.
  • Between the first electrode and the second electrode there are 10 types of magnetoresistive effect elements having a circular cross section and a diameter of 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm.
  • An arranged high frequency filter was created.
  • a magnetic field of 300 Oe was applied in a direction parallel to the magnetization of the magnetization free layer.
  • a signal that received 1 ⁇ W of power with the antenna was input to the high-frequency filter.
  • a filter characteristic that transmits only 20 GHz in a band of 17 GHz to 24 GHz indicated by a broken line in FIG. 27 can be obtained.
  • the filter characteristics indicated by the solid line are those when a direct current is applied.
  • the received power at the antenna was ⁇ 60 dBm
  • the signal was amplified by 30 dB and input to the high frequency filter. It was confirmed that the S / N ratio was improved compared to the case where the signal was not amplified, and only 20 GHz was transmitted in the 17 GHz-24 GHz band.
  • the received power at the antenna was ⁇ 60 dBm
  • the signal was amplified by 30 dB and a direct current of 0.8 mA was superimposed and input to the high frequency filter. It was confirmed that the S / N ratio was improved compared to the case where the signal was not amplified, and only 20 GHz was transmitted in the 17 GHz-24 GHz band.
  • the magnetization direction of the magnetization free layer is set substantially parallel to the film surface, and the magnetization direction of the magnetization fixed layer is set substantially perpendicular to the film surface.
  • the magnetization direction of the magnetization free layer may be a direction substantially perpendicular to the film surface, and the magnetization direction of the magnetization pinned layer may be a direction substantially parallel to the film surface.
  • the magnetization free layer is an in-plane magnetization film
  • the magnetization pinned layer is a perpendicular magnetization film
  • the cross-sectional shape is circular and the diameters are 113 nm, 117 nm, 122 nm, 127 nm, 141 nm, 149 nm, 160 nm, 172 nm, 189 nm, 211 nm, and 244 nm.
  • the precession frequency of the magnetization free layer was examined for a certain 11 types of magnetoresistive effect elements. As a result, the characteristics shown in FIG. 28 were confirmed.
  • a DC magnetic field is applied to the magnetoresistive element.
  • a method for applying a DC magnetic field there are a method using a permanent magnet and a method using a coil.
  • the characteristics of precession of the magnetization free layer of the magnetoresistive effect element change depending on the direction and strength of the magnetic field.
  • the magnetic field direction may be applied to either the direction parallel to the film surface of the magnetization free layer or the direction perpendicular to the film surface. It is desirable to apply a magnetic field in a direction parallel or antiparallel to the magnetization of the pinned layer.
  • a high frequency in which eight types of magnetoresistive effect elements having a circular cross-sectional shape and a diameter of 57 nm, 58 nm, 62 nm, 67 nm, 74 nm, 80 nm, 90 nm, and 97 nm are disposed between the first electrode and the second electrode Created a filter.
  • a magnetic field of 100 Oe was applied in a direction perpendicular to the film surface of the magnetization free layer (parallel to the magnetization of the magnetization pinned layer) and 1 ⁇ W of power was received by the antenna, an AC current from the reception was passed through the high frequency filter.
  • the filter characteristic indicated by the solid line in FIG. 29 is a characteristic when a direct current is applied.
  • the signal is amplified by 30 dB and input to the high frequency filter.
  • a magnetic field of 100 Oe was applied in a direction perpendicular to the film surface of the magnetization free layer (parallel to the magnetization of the magnetization pinned layer). It was confirmed that the S / N ratio was improved as compared with the case where the signal was not amplified, and only 2 GHz was transmitted in the band of 1 GHz to 3 GHz.
  • the signal was amplified by 30 dB and a DC current of 0.55 mA was superimposed and input to the high frequency filter.
  • a magnetic field of 100 Oe was applied in a direction perpendicular to the film surface of the magnetization free layer (parallel to the magnetization of the magnetization pinned layer). It was confirmed that the S / N ratio was improved as compared with the case where the signal was not amplified, and only 2 GHz was transmitted in the band of 1 GHz to 3 GHz.
  • Cu having a thickness of 8 nm was used as the spacer layer, and FePd having a thickness of 8 nm, Ku of 8 Merg / cm 3 , and Ms of 1000 emu / cm 3 was used as the spacer layer.
  • a signal that received 1 ⁇ W of power with the antenna was input to the high-frequency filter. As a result, a filter characteristic that transmits only 5 GHz in the band of 1.5 GHz to 7 GHz indicated by a broken line in FIG. 30 was confirmed.
  • the received power at the antenna was ⁇ 60 dBm
  • the signal was amplified by 30 dB and input to the high frequency filter. It was confirmed that the S / N ratio was improved as compared with the case where the signal was not amplified, and only 5 GHz was transmitted in the band of 1.5 GHz to 7 GHz.
  • the high frequency filter used when no direct current is applied is used. In this case, when 1 ⁇ W of electric power was received by the antenna, an alternating current flowing by reception was input to the high-frequency filter while a direct current of 0.55 mA was passed. As a result, a filter characteristic that transmits only 5 GHz in a band of 1.5 GHz to 7 GHz indicated by a solid line in FIG. 30 was confirmed.
  • the received power at the antenna was ⁇ 60 dBm
  • the signal was amplified by 30 dB and a DC current of 0.55 mA was superimposed and input to the high frequency filter. It was confirmed that the S / N ratio was improved as compared with the case where the signal was not amplified, and only 5 GHz was transmitted in the band of 1.5 GHz to 7 GHz.
  • the transmission characteristic S21 is ⁇ 3 dB or more.
  • ⁇ 3 dB means that half of the input power is transmitted. From this, it was found that by designing the size of “electrode length a / 10 or less”, the transmission amount can be ⁇ 3 dB or more in a band of 40 GHz or less, and a space-saving structure can be achieved. .
  • the width direction wide and designing the length direction short by designing the width direction wide and designing the length direction short, a space-saving structure and greater transmission characteristics can be obtained.
  • the model size was changed so that the electrode length was 250 ⁇ m and the horizontal width was 15 ⁇ m so that the occupied area would be the same as the case where the electrode length was 750 ⁇ m and the horizontal width was 5 ⁇ m.
  • the calculation result in this case is shown in FIG.
  • the transmittance at 40 GHz was improved to -0.11 dB or more (98% or more).
  • the loss can be reduced to 3 dB or less by setting the electrode length to a / 10 or less.
  • a ground line for converging an electric field generated from a signal line or a ground plane close to each other reduces reflection of an input signal and increases a transmission component.
  • a ground line or an electrode functioning as a ground plane may be disposed in the vicinity of the signal line.
  • the transmission amount can be 80% or more by setting the gap between the signal line and the ground line to 3 ⁇ m or less.
  • the transmission amount can be about 80% or more.
  • ground line or ground plane near the signal line
  • a microstrip line structure in which a signal line is placed on the ground plane via a dielectric, or a dielectric surrounded by a ground plane.
  • a stripline structure in which signal lines are arranged.
  • the method of applying a magnetic field to the magnetoresistive element is a method using a permanent magnet 70 as shown in FIGS. 34 (a) and 34 (b) and FIGS. 35 (a) and 35 (b), As shown in FIG. 36, a method using a coil 80 used in a hard disk may be used. In any case, “parallel direction”, “direction orthogonal to the film surface”, or “direction orthogonal to the direction orthogonal to the film surface” with respect to the magnetization direction of the magnetization free layer of the magnetoresistive effect element 20 A magnetic field may be applied to the.
  • a high frequency filter 1 according to an embodiment of the present invention is provided on an insulating substrate (for example, a sapphire substrate) 60.
  • the permanent magnet 70 is provided above.
  • the high frequency filter 1 is covered with the upper lid 62 and packaged.
  • the permanent magnet 70 is provided above the high-frequency filter 1, but may be provided below.
  • the high-frequency filter 1 according to the embodiment of the present invention is provided on an insulating substrate (for example, a sapphire substrate) 60, and this high-frequency filter is provided.
  • 1 has a configuration in which permanent magnets 70a and 70b are provided on a pair of opposing side surfaces.
  • the high frequency filter 1 is covered with the upper cover 62, and is packaged.
  • the third example shown in FIG. 36 has a configuration in which a pair of coils 80a and 80b are provided on the side surface of the high-frequency filter in one embodiment of the present invention.
  • the magnetization free layer has magnetization substantially parallel to the film surface
  • the magnetization fixed layer has magnetization substantially perpendicular to the film surface.
  • FIG. 1 An example in which a direct current is applied without applying a magnetic field is shown in FIG.
  • Noise level was improved by superimposing DC current.
  • FIGS. 37 (a) and 37 (b) examples using amplifiers for amplifying signals input to the input terminals are shown in FIGS. 38 (a) and 38 (b), respectively. Also in this example, the noise level was improved by superimposing the direct current.
  • a coil may be used instead of the permanent magnet.
  • the magnetoresistive effect element used in this example when the magnetization free layer and the magnetization fixed layer have magnetization substantially parallel to the film surface, the magnetization free layer and the magnetization fixed layer have magnetization substantially perpendicular to the film surface. Or one of the magnetization free layer and the magnetization pinned layer may have magnetization substantially parallel to the film surface and the other may have magnetization substantially perpendicular to the film surface.
  • FIG. 1 An example in which no direct current is superimposed is shown in FIG. An example in which direct current is applied is shown in FIG. Noise level was improved by superimposing DC current.
  • FIGS. 40A and 40B An example using an amplifier for amplifying an input signal will be described.
  • An example in which no direct current is superimposed is shown in FIG. It was confirmed that the SN ratio was improved by amplifying the alternating current.
  • An example in which a direct current is applied is shown in FIG. Noise level was improved by superimposing DC current.
  • the amplifier is provided in the previous stage of the high-frequency filter, but may be provided in the subsequent stage.
  • the permanent magnet is provided in parallel to the pair of opposing side surfaces of the high-frequency filter, but in FIGS. 41 (a), 41 (b), FIGS. As shown, it may be arranged above or below the high frequency filter.
  • FIG. 41A shows an example in the case where the direct current is not superimposed
  • FIG. 41B shows an example in the case where the direct current is superimposed.
  • 42 (a) and 42 (b) show examples in which signals are amplified using amplifiers in FIGS. 41 (a) and 41 (b), respectively.
  • FIG. 43 shows a circuit of a transmission / reception system in the microwave band using the high-frequency filter of one embodiment of the present invention.
  • the transmission / reception system includes a reception unit and a transmission unit, and the high-frequency filters 100A and 100B according to the embodiment of the present invention are used for the transmission unit and the reception unit, respectively.
  • the signal received by the antenna is input to the high frequency filter 1 of the receiving unit via the switch.
  • the output of the high frequency filter 100A is mixed with the signal of the local oscillator in the mixer of the receiving unit, and sent to the intermediate frequency bandpass filter (IFBPF) of the receiving unit.
  • IFBPF intermediate frequency bandpass filter
  • the output of this IFBPF is sent to the baseband.
  • a signal transmitted from the baseband is sent to the IFBPF of the transmission unit.
  • the output of IFBPF is mixed with the signal of the local oscillator in the mixer of the transmission unit and sent to the high frequency filter 100B of the transmission unit.
  • the output of the high frequency filter 100B is amplified by a transmission amplifier and then sent to an antenna via a switch for transmission.
  • the high frequency filters 100A and 100B may include an amplifier for amplification and a power supply for direct current application. By setting it as such a transmission / reception system, the unnecessary frequency component contained in a received signal can be removed. Also, unnecessary frequency components included in the transmission signal can be removed when transmitting. In this transmission / reception system, an amplification amplifier may be provided after the high frequency filters 100A and 100B.
  • FIG. 44 shows a circuit diagram of a MIMO transmission / reception system using the high frequency filter according to the embodiment of the present invention. With the configuration as shown in FIG. 44, it is possible to attenuate unnecessary signals that leak to the receiving side during transmission.
  • FIGS. 45 (a) and 45 (b) and FIGS. 46 (a) and 46 (b) by using a coil and a capacitor, the subsequent stage of the high-frequency filter 1 according to the embodiment of the present invention. It is possible to prevent unnecessary DC current from flowing. In this case, since direct current cannot pass through the capacitor, it flows to the coil side.
  • 45A shows an example in which a direct current is superimposed without applying a magnetic field to the high-frequency filter 1
  • FIG. 45B amplifies the signal with an amplifier in the example shown in FIG. 45A.
  • An example of the case is shown.
  • 46A shows an example in which a magnetic field is applied to the high-frequency filter 1 and a direct current is superimposed
  • FIG. 46B shows a case in which the signal is amplified by an amplifier in the example shown in FIG. 46A.

Abstract

A compact high-frequency element makes it possible to transmit a plurality of desired frequencies and attenuate unnecessary band components. The high-frequency element comprises: a first electrode (10); a second electrode (12) provided above the first electrode; a plurality of magnetoresistive effect elements (201 to 20n) provided between the first electrode and the second electrode and each having a magnetization fixed layer (21) in which the direction of magnetization is fixed, a magnetization free layer (23) in which magnetization oscillation is excited depending on the flowing direction and strength of spin injection current, and a spacer layer (22) provided between the magnetization fixed layer and the magnetization free layer, wherein the cross-sectional areas of the magnetization free layers are different from each other; and an input terminal (32) for receiving a signal and an output terminal (34) for outputting a signal, both of which are separately provided on the second electrode.

Description

高周波用素子High frequency element
 本発明は、高周波電力中から不要帯域周波数の信号を減衰させる高周波用素子に関する。 The present invention relates to a high-frequency element that attenuates a signal of an unnecessary band frequency from high-frequency power.
 無線通信の高周波帯域利用が進み、家庭内においても無線LAN(Local Area Network)やBluetoothの無線通信が使われ始めている。これによってAV機器の接続をコードレス化したり、機器を連動して動作させることができるようになりつつある。店頭では、製品在庫管理やセキュリティの観点から、RFID(Radio Frequency IDentification)の普及が進みつつある。ここでは、ゲート型アンテナとRFIDタグを組み合わせてセキュリティ管理をする方法や、製品を収納した段ボールに製品情報タグを貼り付けてハンディー型リーダーで読み取り在庫管理する方法などがある。無線LANやBluetooth、RFIDでは2GHz帯域と5GHz帯域が利用され、用途毎に帯域内の特定周波数が割り振られて利用されている。また、3.4GHz~4.8GHz、あるいは7.25GHz~10.25GHzのUWB(Ultra Wide Band)帯域を利用して、信号強度を抑えつつ複数の周波数に情報を分散させる無線通信もある。 The use of high-frequency bands for wireless communication is progressing, and wireless LAN (Local Area Network) and Bluetooth wireless communication are beginning to be used in the home. As a result, the connection of AV devices can be made cordless or the devices can be operated in conjunction with each other. In storefronts, RFID (Radio Frequency IDentification) is spreading from the viewpoint of product inventory management and security. Here, there are a method of managing security by combining a gate type antenna and an RFID tag, and a method of pasting a product information tag on a cardboard containing products and reading it with a handy reader and managing inventory. In wireless LAN, Bluetooth, and RFID, a 2 GHz band and a 5 GHz band are used, and a specific frequency within the band is allocated and used for each application. There is also wireless communication that uses UWB (Ultra Wide Band) band of 3.4 GHz to 4.8 GHz or 7.25 GHz to 10.25 GHz to distribute information to a plurality of frequencies while suppressing signal strength.
 無線通信では近接する周波数帯域の電波による干渉の影響を如何に抑えられるかが課題となる。利用者が無線通信の干渉を意識することなく良好な通信品質を実現するためには、個々の機器に不要周波数帯域の信号を減衰させるフィルタを内蔵させることが有力な解決策として考えられる。 In wireless communications, the issue is how to suppress the effects of interference from radio waves in the adjacent frequency bands. In order to realize good communication quality without the user being aware of radio communication interference, it can be considered that a filter for attenuating a signal in an unnecessary frequency band is incorporated in each device as an effective solution.
 ところで、無線通信においてアンテナ設計が重要なカギとなる。アンテナ長は受信する電波の波長によって決まり、例えば2GHzの電波を効率よく受信できるアンテナ長は3.8cm(1/4波長)~15cm程度となる。高い周波数の電波ほど、アンテナ長を短く設計することができる。アンテナの設計は2通りある。一つは、利用する特定帯域にのみ利得を持たせる設計である。もう一つは、複数の用途を想定して広い周波数帯域の電波を受信可能なアンテナ形状とし、フィルタで不要帯域を減衰させるものである。いずれのアンテナを利用する場合においても、受信電力中から不要帯域の周波数成分を減衰させることが重要となる。 By the way, antenna design is an important key in wireless communication. The antenna length is determined by the wavelength of the received radio wave. For example, the antenna length that can efficiently receive a 2 GHz radio wave is about 3.8 cm (1/4 wavelength) to 15 cm. The higher the radio wave, the shorter the antenna length can be designed. There are two antenna designs. One is a design in which a gain is given only to a specific band to be used. The other is an antenna shape that can receive radio waves in a wide frequency band assuming a plurality of uses, and an unnecessary band is attenuated by a filter. Whichever antenna is used, it is important to attenuate the frequency component of the unnecessary band from the received power.
 受信電力中から不要帯域の周波数成分を減衰させるフィルタにおいて、LC回路でBEF(Band Elimination Filter(以下、トラップフィルタとも言う)を構成する方法がある。しかし、インダクタンスLとキャパシタンスCはそれぞれ自己共振周波数を持つため、設計した理想的な周波数特性と実際のフィルタ特性がずれる困難があった。また、LとCでフィルタを構成するためサイズが少なくとも数mm角程度以上となり、良好な減衰特性を持つフィルタを小型で作る観点で課題があった。 There is a method of configuring a BEF (Band Elimination Filter (hereinafter also referred to as a trap filter) in an LC circuit in a filter that attenuates a frequency component of an unnecessary band from received power. However, an inductance L and a capacitance C have self-resonant frequencies, respectively. Therefore, the designed ideal frequency characteristics and actual filter characteristics have been difficult to shift, and because the filter is composed of L and C, the size is at least several mm square and has good attenuation characteristics. There was a problem in terms of making the filter small.
 一方、伝送線路でBEFを構成する方法がある。入出力端子間にスタブ(開放端)を並列接続させたものである。この場合、スタブ側を見た時の入力インピーダンスは、減衰させたい周波数成分の奇数倍において0となるため、奇数倍の周波数が全てトラップされてしまう。このため、RFIDとUWBの電波を透過させて他の不要帯域を減衰させるようなフィルタを作ることが非常に困難であるという課題があった。 On the other hand, there is a method of configuring a BEF with a transmission line. A stub (open end) is connected in parallel between the input and output terminals. In this case, the input impedance when looking at the stub side is 0 at an odd multiple of the frequency component to be attenuated, and all the odd multiple frequencies are trapped. For this reason, there is a problem that it is very difficult to make a filter that transmits radio waves of RFID and UWB and attenuates other unnecessary bands.
 一方、入力電流量が一定であるような利用を想定した小型フィルタの例として、スピン注入素子を用いることが報告されている(例えば、特許文献1参照)。この小型フィルタは、入出力端子間に2つのスピン注入素子をそれぞれ直列と並列に接続させ、スピン注入素子がGHz帯域の周波数に共鳴を持つことを利用して透過帯域を制限するフィルタである。しかし、本願発明者達の検討結果によれば、このフィルタは、不要な周波数成分を減衰させる際に、広帯域を減衰させるフィルタを作ることが困難であるという課題があった。 On the other hand, it has been reported that a spin injection device is used as an example of a small filter that is assumed to be used such that the amount of input current is constant (see, for example, Patent Document 1). This small filter is a filter that limits the transmission band by using two spin injection elements connected in series and in parallel between the input and output terminals, and utilizing the fact that the spin injection elements have resonance at frequencies in the GHz band. However, according to the examination results of the present inventors, this filter has a problem that it is difficult to make a filter that attenuates a wide band when an unnecessary frequency component is attenuated.
 また、金属の構造を変えて誘電率や透磁率を調整することで、人工的に屈折率を変化させてGHz帯域やTHz帯域に共鳴周波数を持たせたメタマテリアルが知られている(非特許文献1)。このメタマテリアルを使った応用の一例として、直径1mm未満の金属のコイルを周期的に並べて5GHz付近の電磁波を吸収させたことが報告されている。しかし、本願発明者達の検討結果によれば、このようなメタマテリアルでは、共鳴周波数はコイルの構造に起因するLとCの値によって決定される。そして、GHz帯域に共鳴周波数を持つためには、1つのコイルの大きさを数百ミクロン程度としなければならず、フィルタを構成するためにはサイズが大きくなるという課題があった。また、電磁波の吸収効率を上げるためにはコイルを複数個配置する必要があり、吸収効率と面内占有面積がトレードオフの関係になっていた。 In addition, metamaterials are known in which the refractive index is artificially changed by changing the metal structure to adjust the dielectric constant and permeability so that the resonance frequency is given to the GHz band and the THz band (non-patent document). Reference 1). As an example of an application using this metamaterial, it has been reported that metal coils having a diameter of less than 1 mm are periodically arranged to absorb electromagnetic waves in the vicinity of 5 GHz. However, according to the examination results of the inventors of the present application, in such a metamaterial, the resonance frequency is determined by the values of L and C due to the coil structure. In order to have a resonance frequency in the GHz band, the size of one coil has to be about several hundred microns, and there is a problem that the size is increased in order to configure a filter. Further, in order to increase the absorption efficiency of electromagnetic waves, it is necessary to arrange a plurality of coils, and the absorption efficiency and the in-plane occupation area have a trade-off relationship.
 上述したように、小型で周辺回路との整合が容易であり、所望の複数の周波数を透過させつつ不要帯域成分を減衰させることができる高周波用フィルタ(高周波用素子)があれば有用であると考えられる。  As described above, it is useful to have a high-frequency filter (high-frequency element) that is small in size and easy to match with peripheral circuits and can attenuate unnecessary band components while transmitting a plurality of desired frequencies. Conceivable. *
特開2007-189686号公報JP 2007-189686 A
 本発明は、上記事情を考慮してなされたものであって、小型でかつ、所望の複数の周波数を透過させつつ不要帯域成分を減衰させることが可能な高周波用素子を提供する。  The present invention has been made in consideration of the above circumstances, and provides a high-frequency element that is small in size and capable of attenuating unnecessary band components while transmitting a plurality of desired frequencies. *
 本発明の第1の態様による高周波用素子は、第1の電極と、前記第1の電極上に設けられた第2の電極と、前記第1の電極と前記第2の電極との間に設けられた複数の磁気抵抗効果素子であって、各磁気抵抗効果素子は磁化の向きが固着された磁化固着層と、スピン注入電流の流れる向きと強さに応じて磁化振動励起される磁化自由層と、前記磁化固着層と前記磁化自由層との間に設けられたスペーサー層とを有し、前記磁化自由層の断面積が異なるものを有している複数の磁気抵抗効果素子と、前記第2の電極上に離間して設けられ、信号が入力する入力端子および信号を出力する出力端子と、を備えていることを特徴とする。 The high-frequency device according to the first aspect of the present invention includes a first electrode, a second electrode provided on the first electrode, and the first electrode and the second electrode. A plurality of magnetoresistive effect elements provided, each magnetoresistive effect element having a magnetization pinned layer in which the magnetization direction is pinned, and magnetization free excited by magnetization vibration depending on the direction and strength of flow of the spin injection current A plurality of magnetoresistive elements having a layer, a spacer layer provided between the magnetization pinned layer and the magnetization free layer, and having different cross-sectional areas of the magnetization free layer, An input terminal for inputting a signal and an output terminal for outputting a signal are provided separately from each other on the second electrode.
 また、本発明の第2の態様による高周波用素子は、第1の電極と、前記第1の電極上に設けられた第2の電極と、前記第2の電極上に設けられた第3の電極と、前記第1の電極と前記第2の電極との間に設けられた第1の磁気抵抗効果素子群であって、各磁気抵抗効果素子は磁化の向きが固着された磁化固着層と、スピン注入電流の流れる向きと強さに応じて磁化振動励起される磁化自由層と、前記磁化固着層と前記磁化自由層との間に設けられたスペーサー層とを有し、前記磁化自由層の断面積が異なるものを有している第1の磁気抵抗効果素子群と、前記第2の電極と前記第3の電極との間に設けられた第2の磁気抵抗効果素子群であって、各磁気抵抗効果素子は磁化の向きが固着された磁化固着層と、スピン注入電流の流れる向きと強さに応じて磁化振動励起される磁化自由層と、前記磁化固着層と前記磁化自由層との間に設けられたスペーサー層とを有し、前記磁化自由層の断面積が異なるものを有している第2の磁気抵抗効果素子群と、を備えていることを特徴とする。 The high-frequency element according to the second aspect of the present invention includes a first electrode, a second electrode provided on the first electrode, and a third electrode provided on the second electrode. A first magnetoresistive effect element group provided between the first electrode and the second electrode, each magnetoresistive effect element having a magnetization pinned layer having a magnetization direction fixed; A magnetization free layer excited by magnetization oscillation according to the direction and strength of the spin injection current, and a spacer layer provided between the magnetization pinned layer and the magnetization free layer, and the magnetization free layer A first magnetoresistive element group having different cross-sectional areas, and a second magnetoresistive element group provided between the second electrode and the third electrode, Each magnetoresistive element has a magnetization pinned layer in which the magnetization direction is fixed, and a direction in which the spin injection current flows. A magnetization free layer that is excited according to the magnetization vibration, and a spacer layer provided between the magnetization pinned layer and the magnetization free layer, wherein the magnetization free layer has a different cross-sectional area. And a second magnetoresistive element group.
 本発明によれば、小型でかつ、所望の複数の周波数を透過させつつ不要帯域成分を減衰させることができる。 According to the present invention, the unnecessary band component can be attenuated while transmitting a plurality of desired frequencies.
第1実施形態の高周波フィルタを示す断面図。Sectional drawing which shows the high frequency filter of 1st Embodiment. 第1実施形態の高周波フィルタを示す斜視図。The perspective view which shows the high frequency filter of 1st Embodiment. 第1実施形態の高周波フィルタに用いられる磁気抵抗効果素子の周波数特性を示す図。The figure which shows the frequency characteristic of the magnetoresistive effect element used for the high frequency filter of 1st Embodiment. 第1実施形態の高周波フィルタの周波数特性を示す図。The figure which shows the frequency characteristic of the high frequency filter of 1st Embodiment. 図5(a)乃至5(c)は、磁気抵抗効果素子の配置の一例を示す平面図。FIGS. 5A to 5C are plan views showing an example of the arrangement of magnetoresistive elements. 図6(a)は磁化自由層および磁化固着層の磁化の向きが膜面に略平行である場合の断面図、図6(b)は磁化自由層および磁化固着層の磁化の向きが膜面に略垂直である場合の断面図、図6(c)は磁化自由層の磁化の向きが膜面に略平行でかつ磁化固着層の磁化の向きが膜面に略垂直である場合の断面図。FIG. 6A is a cross-sectional view when the magnetization directions of the magnetization free layer and the magnetization pinned layer are substantially parallel to the film surface, and FIG. 6B shows the magnetization direction of the magnetization free layer and the magnetization pinned layer as the film surface. FIG. 6C is a cross-sectional view when the magnetization direction of the magnetization free layer is substantially parallel to the film surface and the magnetization direction of the magnetization pinned layer is substantially perpendicular to the film surface. . 図7(a)乃至図7(c)は磁化固着層の形状を示す断面図。7A to 7C are cross-sectional views showing the shape of the magnetization fixed layer. 磁気抵抗効果素子の一例を示す断面図。Sectional drawing which shows an example of a magnetoresistive effect element. 第2実施形態の高周波フィルタを示す斜視図。The perspective view which shows the high frequency filter of 2nd Embodiment. 第1実施例の高周波フィルタを示す斜視図。The perspective view which shows the high frequency filter of 1st Example. 第1実施例に用いられる磁気抵抗効果素子の共鳴周波数特性を示す図。The figure which shows the resonant frequency characteristic of the magnetoresistive effect element used for 1st Example. 第1実施例の高周波フィルタの周波数特性を示す図。The figure which shows the frequency characteristic of the high frequency filter of 1st Example. 第1実施例の変形例による高周波フィルタを示す斜視図。The perspective view which shows the high frequency filter by the modification of 1st Example. 第2実施例の高周波フィルタを示す斜視図。The perspective view which shows the high frequency filter of 2nd Example. 第3実施例の高周波フィルタを示す斜視図。The perspective view which shows the high frequency filter of 3rd Example. 第3実施例に用いられる磁気抵抗効果素子の共鳴周波数特性を示す図。The figure which shows the resonant frequency characteristic of the magnetoresistive effect element used for 3rd Example. 第3実施例の高周波フィルタの周波数特性を示す図。The figure which shows the frequency characteristic of the high frequency filter of 3rd Example. 第3実施例の変形例による高周波フィルタを示す斜視図。The perspective view which shows the high frequency filter by the modification of 3rd Example. 第4実施例の高周波フィルタを示す斜視図。The perspective view which shows the high frequency filter of 4th Example. 第5実施例の高周波フィルタを示す斜視図。The perspective view which shows the high frequency filter of 5th Example. 第6実施例の高周波フィルタを示す断面図。Sectional drawing which shows the high frequency filter of 6th Example. 膜面に平行な磁化を有する磁化自由層を備えた磁気抵抗効果素子の歳差運動周波数特性を示す図。The figure which shows the precession frequency characteristic of the magnetoresistive effect element provided with the magnetization free layer which has magnetization parallel to a film surface. 一実施形態の高周波フィルタの周波数特性を示す図。The figure which shows the frequency characteristic of the high frequency filter of one Embodiment. 一実施形態の高周波フィルタの周波数特性を示す図。The figure which shows the frequency characteristic of the high frequency filter of one Embodiment. 膜面に垂直な磁化を有する磁化自由層を備えた磁気抵抗効果素子の歳差運動周波数特性を示す図。The figure which shows the precession frequency characteristic of the magnetoresistive effect element provided with the magnetization free layer which has magnetization perpendicular | vertical to a film surface. 一実施形態の高周波フィルタの周波数特性を示す図。The figure which shows the frequency characteristic of the high frequency filter of one Embodiment. 一実施形態の高周波フィルタの周波数特性を示す図。The figure which shows the frequency characteristic of the high frequency filter of one Embodiment. 磁化自由層が膜面に平行な磁化を有し、磁化固着層が膜面に垂直な磁化を有する磁気抵抗効果素子の歳差運動周波数特性を示す図。The figure which shows the precession frequency characteristic of the magnetoresistive effect element in which a magnetization free layer has magnetization parallel to a film surface, and a magnetization fixed layer has magnetization perpendicular | vertical to a film surface. 一実施形態の高周波フィルタの周波数特性を示す図。The figure which shows the frequency characteristic of the high frequency filter of one Embodiment. 一実施形態の高周波フィルタの周波数特性を示す図。The figure which shows the frequency characteristic of the high frequency filter of one Embodiment. 図31(a)は一実施形態の高周波フィルタを示す斜視図、図31(b)は一実施形態の高周波フィルタの透過特性を示す図。FIG. 31A is a perspective view showing a high-frequency filter according to one embodiment, and FIG. 31B is a diagram showing transmission characteristics of the high-frequency filter according to one embodiment. 図32(a)は一実施形態の高周波フィルタを示す斜視図、図32(b)は一実施形態の高周波フィルタの透過特性を示す図。FIG. 32A is a perspective view showing a high-frequency filter according to one embodiment, and FIG. 32B is a diagram showing transmission characteristics of the high-frequency filter according to one embodiment. 一実施形態の高周波フィルタの透過特性を示す図。The figure which shows the permeation | transmission characteristic of the high frequency filter of one Embodiment. 図34(a)は一実施形態の高周波フィルタを示す斜視図、図34(b)は一実施形態の高周波フィルタを示す断面図。FIG. 34A is a perspective view showing a high-frequency filter according to one embodiment, and FIG. 34B is a cross-sectional view showing the high-frequency filter according to one embodiment. 図35(a)は一実施形態の高周波フィルタを示す斜視図、図35(b)は一実施形態の高周波フィルタを示す断面図。FIG. 35A is a perspective view showing the high-frequency filter according to the embodiment, and FIG. 35B is a cross-sectional view showing the high-frequency filter according to the embodiment. 一実施形態の高周波フィルタを示す斜視図。The perspective view which shows the high frequency filter of one Embodiment. 図37(a)、37(b)は一実施形態の高周波フィルタを示す斜視図。FIGS. 37A and 37B are perspective views showing a high-frequency filter according to an embodiment. 図38(a)、38(b)は一実施形態の高周波フィルタを示す斜視図。38 (a) and 38 (b) are perspective views showing a high-frequency filter according to an embodiment. 図39(a)、39(b)は一実施形態の高周波フィルタを示す斜視図。FIGS. 39A and 39B are perspective views showing a high-frequency filter according to an embodiment. 図40(a)、40(b)は一実施形態の高周波フィルタを示す斜視図。40 (a) and 40 (b) are perspective views showing a high-frequency filter according to an embodiment. 図41(a)、41(b)は一実施形態の高周波フィルタを示す斜視図。41 (a) and 41 (b) are perspective views showing a high-frequency filter according to an embodiment. 図42(a)、42(b)は一実施形態の高周波フィルタを示す斜視図。42 (a) and 42 (b) are perspective views showing a high-frequency filter according to an embodiment. 一実施形態の高周波フィルタが用いられる送受信システムの回路図。1 is a circuit diagram of a transmission / reception system in which a high-frequency filter according to an embodiment is used. 一実施形態の高周波フィルタが用いられるMIMOの回路図。The circuit diagram of MIMO in which the high frequency filter of one Embodiment is used. 図45(a)、45(b)は一実施形態の高周波フィルタを示す斜視図。45 (a) and 45 (b) are perspective views showing a high-frequency filter according to an embodiment. 図46(a)、46(b)は一実施形態の高周波フィルタを示す斜視図。46 (a) and 46 (b) are perspective views showing a high-frequency filter according to an embodiment.
 以下、図面を参照しながら、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(第1実施形態)
 本発明の第1実施形態による高周波フィルタを図1および図2に示す。図1は本実施形態の高周波フィルタ1の断面図であり、図2は斜視図である。
(First embodiment)
A high-frequency filter according to a first embodiment of the present invention is shown in FIGS. FIG. 1 is a cross-sectional view of the high-frequency filter 1 of the present embodiment, and FIG. 2 is a perspective view.
 この実施形態の高周波フィルタ1は、第1の電極10と、第2の電極12と、第1および第 2の電極の間に設けられた複数の磁気抵抗効果素子20~20(n≧2)と、第2の電極12の、磁気抵抗効果素子20~20(n≧2)とは反対側の面に設けられた入力端子32および出力端子34と、を備えている。各磁気抵抗効果素子20(i=1,・・・,n)は、磁化の向きが固着された磁化固着層21と、スピン注入電流の流れの向きと強度に応じて磁化振動が励起される磁化自由層23と、磁化固着層21と磁化自由層23との間に設けられたスペーサー層22とがこの順序で積層された積層構造を有している。磁化固着層21が第1の電極10に電気的に接続され、磁化自由層23が第2の電極12に電気的に接続される。すなわち、磁気抵抗効果素子20~20(n≧2)が第1の電極10と第2の電極12との間に並列に接続された構成となっている。なお、本実施形態と異なり、磁化自由層23が第1の電極10に電気的に接続され、磁化自由層23上にスペーサー層22が設けられ、スペーサー層22上に磁化固着層21が設けられて第2の電極10に電気的に接続されるように、構成してもよい。そして、各磁気抵抗効果素子20(i=1,・・・,n)は、第1および第2の電極10、12間に設けられた絶縁膜28によって互いに電気的に絶縁されている。 The high-frequency filter 1 of this embodiment includes a plurality of magnetoresistive elements 20 1 to 20 n (n ≧≧) provided between the first electrode 10, the second electrode 12, and the first and second electrodes. 2), and an input terminal 32 and an output terminal 34 provided on the surface of the second electrode 12 opposite to the magnetoresistive effect elements 20 1 to 20 n (n ≧ 2). Each magnetoresistive element 20 i (i = 1,..., N) is excited by magnetization vibration depending on the magnetization pinned layer 21 in which the magnetization direction is fixed, and the direction and strength of the flow of the spin injection current. The magnetization free layer 23 and the spacer layer 22 provided between the magnetization fixed layer 21 and the magnetization free layer 23 have a laminated structure in which they are laminated in this order. The magnetization pinned layer 21 is electrically connected to the first electrode 10, and the magnetization free layer 23 is electrically connected to the second electrode 12. That is, the magnetoresistive effect elements 20 1 to 20 n (n ≧ 2) are connected in parallel between the first electrode 10 and the second electrode 12. Unlike the present embodiment, the magnetization free layer 23 is electrically connected to the first electrode 10, the spacer layer 22 is provided on the magnetization free layer 23, and the magnetization pinned layer 21 is provided on the spacer layer 22. It may be configured to be electrically connected to the second electrode 10. The magnetoresistive elements 20 i (i = 1,..., N) are electrically insulated from each other by an insulating film 28 provided between the first and second electrodes 10 and 12.
 本実施形態においては、磁気抵抗効果素子20~20(n≧2)は、磁化自由層23の断面積が異なるものを有している。ここで、磁化自由層23の断面積とは、スペーサー層22に接する磁化自由層23の面の面積を意味する。したがって、磁気抵抗効果素子20~20(n≧2)は、異なる共鳴周波数を有している。なお、磁気抵抗効果素子20~20(n≧2)には、同じ共鳴周波数を有する磁気抵抗効果素子を有していてもよいが、異なる共鳴周波数を有する磁気抵抗効果素子が含まれている。 In the present embodiment, the magnetoresistive effect elements 20 1 to 20 n (n ≧ 2) have different cross-sectional areas of the magnetization free layer 23. Here, the cross-sectional area of the magnetization free layer 23 means the area of the surface of the magnetization free layer 23 in contact with the spacer layer 22. Therefore, the magnetoresistive effect elements 20 1 to 20 n (n ≧ 2) have different resonance frequencies. The magnetoresistive effect elements 20 1 to 20 n (n ≧ 2) may include magnetoresistive effect elements having the same resonance frequency, but include magnetoresistive effect elements having different resonance frequencies. Yes.
 このように構成された本実施形態において、入力端子32から高周波信号が入力されると、入力された高周波信号のうち、各磁気抵抗効果素子20(i=1,・・・,n)は各自の共鳴周波数と同じ周波数の信号成分を吸収する。このため、入力された高周波信号から、複数の共鳴周波数と同じ周波数の高周波信号成分が吸収され、残りの高周波信号成分が出力端子34から出力される。すなわち、不要帯域の周波数成分を減衰させることができる。例えば、図3に示すように、磁気抵抗効果素子20~20(n≧2)が、第1の磁気抵抗効果素子群と、第2の磁気抵抗効果素子群に分けられ、第1の磁気抵抗効果素子群が周波数fを含む周波数領域に共鳴周波数を有し、第2の磁気抵抗効果素子群が周波数f(>f)を含む周波数領域に共鳴周波数を有するように構成すると仮定する。すると、本実施形態の高周波フィルタは、図4に示すように、周波数fおよび周波数fを含む周波数領域が減衰され、その間の周波数領域を通過させる。また、本実施形態においては、複数の磁気抵抗効果素子20~20(n≧2)が第1の電極10と第2の電極12との間に並列に接続された構成となっているので、小型の高周波フィルタとなる。なお、第1の電極10は接地しても良い。 In the present embodiment configured as described above, when a high frequency signal is input from the input terminal 32, each magnetoresistive effect element 20 i (i = 1,..., N) is included in the input high frequency signal. Absorbs signal components with the same frequency as their resonance frequency. Therefore, high frequency signal components having the same frequency as the plurality of resonance frequencies are absorbed from the input high frequency signal, and the remaining high frequency signal components are output from the output terminal 34. That is, the frequency component of the unnecessary band can be attenuated. For example, as shown in FIG. 3, the magnetoresistive effect elements 20 1 to 20 n (n ≧ 2) are divided into a first magnetoresistive effect element group and a second magnetoresistive effect element group. When the magnetoresistive element group has a resonance frequency in a frequency region including the frequency f 1 and the second magnetoresistive element group has a resonance frequency in a frequency region including the frequency f 2 (> f 1 ). Assume. Then, as shown in FIG. 4, the high frequency filter of the present embodiment attenuates the frequency region including the frequency f 1 and the frequency f 2 and passes the frequency region therebetween. In the present embodiment, a plurality of magnetoresistance effect elements 20 1 to 20 n (n ≧ 2) are connected in parallel between the first electrode 10 and the second electrode 12. Therefore, it becomes a small high frequency filter. Note that the first electrode 10 may be grounded.
 本実施形態において、第1の電極10上に配置される磁気抵抗効果素子20~20(n≧2)は、図5(a)に示すように同一の断面積を有する磁気抵抗効果素子20を近接させて配置してもよい。また、図5(b)に示すように、異なる断面積を有する磁気抵抗効果素子20a、20bを近接させて配置してもよい。また、図5(c)に示すように異なる断面積を有する磁気抵抗効果素子20a、20b、20c、20dをランダムに配置してもよい。 In the present embodiment, the magnetoresistive effect elements 20 1 to 20 n (n ≧ 2) arranged on the first electrode 10 are magnetoresistive effect elements having the same cross-sectional area as shown in FIG. 20 may be arranged close to each other. Further, as shown in FIG. 5B, the magnetoresistive effect elements 20a and 20b having different cross-sectional areas may be arranged close to each other. In addition, as shown in FIG. 5C, magnetoresistive elements 20a, 20b, 20c, and 20d having different cross-sectional areas may be randomly arranged.
 なお、本実施形態において、磁化固着層21および磁化自由層23は、図6(a)に示すように面内磁化膜であってよい。ここで、面内磁化膜とは、磁化が膜面(上面)に略平行であることを意味する。また、磁化固着層21および磁化自由層23は、図6(b)に示すように垂直磁化膜であってよい。ここで垂直磁化膜とは、磁化が膜面(上面)に略垂直であることを意味する。また、図6(c)に示すように磁化固着層21が垂直磁化膜で磁化自由層23が面内磁化膜であってもよい。 In the present embodiment, the magnetization fixed layer 21 and the magnetization free layer 23 may be in-plane magnetization films as shown in FIG. Here, the in-plane magnetization film means that the magnetization is substantially parallel to the film surface (upper surface). Further, the magnetization pinned layer 21 and the magnetization free layer 23 may be perpendicular magnetization films as shown in FIG. Here, the perpendicular magnetization film means that the magnetization is substantially perpendicular to the film surface (upper surface). Further, as shown in FIG. 6C, the magnetization fixed layer 21 may be a perpendicular magnetization film and the magnetization free layer 23 may be an in-plane magnetization film.
 なお、磁化固着層21は、図7(a)に示すようにスペーサー層22側から電極側に行く間に断面積が途中で大きくなる構成であってもよい。また、図7(b)に示すように縦断面(膜面に垂直な面で切断した断面図)がテーパー形状を有していてもよいし、図7(c)に示すように逆テーパー形状を有していてもよい。なお、磁気抵抗効果素子の膜面形状、すなわち磁化自由層23の膜面形状は、図7(c)に示すように楕円形であってよい。また、磁化自由層23は円形、長方形、多角形のいずれかであってもよい。また、長径と短径が異なる膜面形状としてもよい。この場合、長軸方向の長さ(長径)は、500nm以下、10nm以上とすることが良好なフィルタ特性を得るために望ましい。 The magnetization pinned layer 21 may have a configuration in which the cross-sectional area increases in the middle from the spacer layer 22 side to the electrode side as shown in FIG. Further, as shown in FIG. 7B, the longitudinal section (cross-sectional view cut along a plane perpendicular to the film surface) may have a taper shape, or as shown in FIG. You may have. The film surface shape of the magnetoresistive effect element, that is, the film surface shape of the magnetization free layer 23 may be elliptical as shown in FIG. The magnetization free layer 23 may be any one of a circle, a rectangle, and a polygon. Moreover, it is good also as a film surface shape from which a major axis and a minor axis differ. In this case, the length (major axis) in the major axis direction is desirably 500 nm or less and 10 nm or more in order to obtain good filter characteristics.
 また、磁化固着層が面内磁化膜である場合には、磁化固着層は反強磁性層によって磁化の向きが固着される。この反強磁性層は、磁化固着層に対してスペーサー層と反対側に設けられる。そして、反強磁性層の材料としては、Fe-Mn、Pt-Mn、Pt-Cr-Mn、Ni-Mn、Pd-Mn、Pd-Pt-Mn、Ir-Mn、Pt-Ir-Mn、NiO、Fe、磁性半導体などを用いることができる。 When the magnetization pinned layer is an in-plane magnetization film, the magnetization direction of the magnetization pinned layer is pinned by the antiferromagnetic layer. This antiferromagnetic layer is provided on the opposite side to the spacer layer with respect to the magnetization pinned layer. The material of the antiferromagnetic layer includes Fe—Mn, Pt—Mn, Pt—Cr—Mn, Ni—Mn, Pd—Mn, Pd—Pt—Mn, Ir—Mn, Pt—Ir—Mn, NiO. Fe 2 O 3 , a magnetic semiconductor, or the like can be used.
 なお、本実施形態において、磁気抵抗効果素子20の磁化固着層21は、図8に示すように、Ru層21bを介して反強磁性結合した強磁性層21a、21cを有する積層構造であってもよい。 In the present embodiment, the magnetization pinned layer 21 of the magnetoresistive effect element 20 has a laminated structure having ferromagnetic layers 21a and 21c antiferromagnetically coupled via the Ru layer 21b as shown in FIG. Also good.
 磁化自由層および磁化固着層は、例えば、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Mn(マンガン)、Cr(クロム)のグループから選択される1つ以上の元素を含む磁性金属により構成する。なお、磁化自由層については、Fe、Co、Ni、Mn、Crのグループから選択される1つ以上の元素と、Pt(白金)、Pd(パラジウム)、Ir(イリジウム)、Ru(ルテニウム)、Rh(ロジウム)のグループから選択される1つ以上の元素との組み合わせによる合金としても良い。磁化自由層および磁化固着層は、例えば、TbFeCo、GdFeCoなどの希土類-遷移金属のアモルファス合金や、Co/Ptの積層構造などにより構成してもよい。 The magnetization free layer and the magnetization pinned layer include, for example, a magnetic metal containing one or more elements selected from the group of Fe (iron), Co (cobalt), Ni (nickel), Mn (manganese), and Cr (chromium) It consists of. For the magnetization free layer, one or more elements selected from the group of Fe, Co, Ni, Mn, and Cr, Pt (platinum), Pd (palladium), Ir (iridium), Ru (ruthenium), An alloy formed by a combination with one or more elements selected from the group of Rh (rhodium) may be used. The magnetization free layer and the magnetization pinned layer may be formed of, for example, an amorphous alloy of a rare earth-transition metal such as TbFeCo or GdFeCo, or a Co / Pt laminated structure.
 スペーサー層は、非磁性バリア層または非磁性金属層のうち、いずれであっても良い。スペーサー層としての非磁性バリア層には、トンネルバリア層としての絶縁材料を用いることができる。具体的には、Al(アルミニウム)、Ti(チタン)、Zn(亜鉛)、Zr(ジルコニウム)、Ta(タンタル)、Co(コバルト)、Ni(ニッケル)、Si(シリコン)、Mg(マグネシウム)、Fe(鉄)のグループから選択される少なくとも1つの元素を含む酸化物、窒化物又は弗化物により非磁性バリア層を構成することができる。特に、非磁性バリア層は、Al、SiO、MgO、AlN、Ta-0、Al-Zr-O、Bi、MgF、CaF、SrTiO、AlLaO、Al-N-O、Si-N-O、非磁性半導体(ZnOx、InMn、GaN、GaAs、TiOx、Zn、Te、またはそれらに遷移金属がドープされたもの)などを用いることができる。 The spacer layer may be either a nonmagnetic barrier layer or a nonmagnetic metal layer. For the nonmagnetic barrier layer as the spacer layer, an insulating material as a tunnel barrier layer can be used. Specifically, Al (aluminum), Ti (titanium), Zn (zinc), Zr (zirconium), Ta (tantalum), Co (cobalt), Ni (nickel), Si (silicon), Mg (magnesium), The nonmagnetic barrier layer can be composed of an oxide, nitride or fluoride containing at least one element selected from the group of Fe (iron). In particular, the nonmagnetic barrier layer includes Al 2 O 3 , SiO 2 , MgO, AlN, Ta-0, Al—Zr—O, Bi 2 O 3 , MgF 2 , CaF 2 , SrTiO 3 , AlLaO 3 , Al—N. —O, Si—N—O, nonmagnetic semiconductors (ZnOx, InMn, GaN, GaAs, TiOx, Zn, Te, or those doped with a transition metal) can be used.
 スペーサー層としても非磁性金属層には、Cu、Ag、Au、Cr、Zn、Ga、Nb、Mo、Ru、Pd、Hf、Ta、W、Pt、Biなどの非磁性金属元素のいずれかあるいは、これらのいずれか一種以上を含む合金を用いることができる。 As the spacer layer, the nonmagnetic metal layer may be any of nonmagnetic metal elements such as Cu, Ag, Au, Cr, Zn, Ga, Nb, Mo, Ru, Pd, Hf, Ta, W, Pt, Bi, or An alloy containing any one or more of these can be used.
 また、第1および第2の電極には、非磁性金属を用いることができる。この場合、非磁性金属としては、Au、Cu、Cr、Zn、Ga、Nb、Mo、Ru、Pd、Ag、Hf、Ta、W、Pt、Bi、Alのうちのいずれか、あるいは、これらのいずれか一種以上を含む合金を用いることができる。エレクトロマグレーション耐性や低抵抗であることを考慮するとCuやAl、あるいはそれらを含む合金を利用することが望ましい。 Further, a nonmagnetic metal can be used for the first and second electrodes. In this case, as the nonmagnetic metal, any one of Au, Cu, Cr, Zn, Ga, Nb, Mo, Ru, Pd, Ag, Hf, Ta, W, Pt, Bi, Al, or these An alloy containing any one or more of them can be used. In consideration of electromagration resistance and low resistance, it is desirable to use Cu, Al, or an alloy containing them.
(第2実施形態)
 次に、本発明の第2実施形態による高周波フィルタを図9に示す。図9は、本実施形態の高周波フィルタを示す斜視図である。本実施形態の高周波フィルタは、第1実施形態の高周波フィルタにおいて、入力端子32に入力される高周波信号の最短波長をaとしたときに、入力端子32と出力端子34の対向間距離がa/10以下となるように構成されている。
(Second Embodiment)
Next, the high frequency filter by 2nd Embodiment of this invention is shown in FIG. FIG. 9 is a perspective view showing the high frequency filter of the present embodiment. The high frequency filter of the present embodiment is the same as the high frequency filter of the first embodiment, where the distance between the facing of the input terminal 32 and the output terminal 34 is a / It is comprised so that it may become 10 or less.
 このような構成とすることにより、本実施形態の高周波フィルタは、前段および後段の回路との整合が容易となる。 By adopting such a configuration, the high-frequency filter of the present embodiment can be easily matched with the front-stage and rear-stage circuits.
 また、本実施形態も第1実施形態と同様の効果を奏することは云うまでもない。 Needless to say, this embodiment also has the same effect as the first embodiment.
 以下、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described.
 (第1実施例)
 第1実施例の高周波フィルタ装置を図10に示す。この実施例の高周波フィルタ装置は2GHz帯域を透過させる。
(First embodiment)
FIG. 10 shows the high frequency filter device of the first embodiment. The high frequency filter device of this embodiment transmits the 2 GHz band.
 この実施例の高周波フィルタ装置は、図2に示す第1実施形態の高周波フィルタ1と、この高周波フィルタ1の両側、すなわち第2の電極12の両側にグラウンド線42、44を設けた構成となっている。グラウンド線42、44と、高周波フィルタ1とのギャップ(間隔)g、gはともに2μmである。高周波フィルタ1はコプラナー線路となる。 The high frequency filter device of this example has a configuration in which the high frequency filter 1 of the first embodiment shown in FIG. 2 and ground lines 42 and 44 are provided on both sides of the high frequency filter 1, that is, on both sides of the second electrode 12. ing. The gaps (intervals) g 1 and g 2 between the ground lines 42 and 44 and the high frequency filter 1 are both 2 μm. The high frequency filter 1 is a coplanar line.
 入力端子32および出力端子34は、膜面に平行な面における断面積が100μm×2.5μmであり、第1および第2の電極10、12は、膜面に平行な面における断面積が623μm×2.5μmである。第1の電極10と第2の電極12との間に、断面積が8通りの異なる磁化自由層を有する磁気抵抗効果素子20が100nmの間隔で配置されている。各磁気抵抗効果素子20のMR比は150%である。グラウンド線42、44は、膜面に平行な面における断面積がともに623μm×7μmである。 The input terminal 32 and the output terminal 34 have a cross-sectional area of 100 μm × 2.5 μm in a plane parallel to the film surface, and the first and second electrodes 10 and 12 have a cross-sectional area of 623 μm in a plane parallel to the film surface. × 2.5 μm. Between the first electrode 10 and the second electrode 12, magnetoresistive elements 20 having different magnetization free layers having eight different cross-sectional areas are arranged at an interval of 100 nm. The MR ratio of each magnetoresistive element 20 is 150%. The ground lines 42 and 44 both have a cross-sectional area of 623 μm × 7 μm in a plane parallel to the film surface.
 このように構成された本実施例の高周波フィルタ装置に用いられる、断面積が8通りの異なる磁化自由層を有する磁気抵抗効果素子20の共鳴周波数特性を図11に示す。図11からわかるように、これらの磁気抵抗効果素子20は、携帯電話で利用される1.8GHz帯域やUWBで利用される3GHz以上の帯域に共鳴周波数を有している。したがって、本実施例の高周波フィルタ装置は、図12に示すフィルタ特性を有する。図12からわかるように、2GHz帯域の電波が透過し、不要周波数帯域の成分は吸収されて減衰する。 FIG. 11 shows the resonance frequency characteristics of the magnetoresistive effect element 20 having the different magnetization free layers having eight different cross-sectional areas used in the high-frequency filter device of the present embodiment configured as described above. As can be seen from FIG. 11, these magnetoresistive elements 20 have resonance frequencies in the 1.8 GHz band used for mobile phones and the 3 GHz or higher band used for UWB. Therefore, the high frequency filter device of this embodiment has the filter characteristics shown in FIG. As can be seen from FIG. 12, radio waves in the 2 GHz band are transmitted, and components in the unnecessary frequency band are absorbed and attenuated.
 なお、本実施例においては、グラウンド線42、44は第2の電極12の両側に設けられていたが、グラウンド線42は第2の電極12の上方にギャップgを介して、またグラウンド線44は第1の電極10の下方にギャップgを介して設けてもよい。 In the present embodiment, the ground lines 42 and 44 are provided on both sides of the second electrode 12. However, the ground line 42 is disposed above the second electrode 12 via the gap g 1 and is also connected to the ground line. 44 may be provided with a gap g 2 below the first electrode 10.
 また、本実施例において、図13に示すように、グラウンド線44を設けない構造としても良い。 In the present embodiment, as shown in FIG. 13, a structure without the ground line 44 may be provided.
 (第2実施例)
 本発明の第2実施例による高周波フィルタ装置を図14に示す。この実施例の高周波フィルタ装置は、2GHz帯域を透過させるものであり、図2に示す第1実施形態の高周波フィルタ1において、第1の電極10の断面積を第2の電極12の断面積よりも大きくした構成となっている。
(Second embodiment)
FIG. 14 shows a high frequency filter device according to a second embodiment of the present invention. The high-frequency filter device of this example transmits 2 GHz band. In the high-frequency filter 1 of the first embodiment shown in FIG. 2, the cross-sectional area of the first electrode 10 is larger than the cross-sectional area of the second electrode 12. It has a larger configuration.
 入力端子32と出力端子34の断面積は100μm×2.5μm、第2の電極12の断面積は623μm×2.5μmである。第1の電極10はマイクロストリップラインの構造をしている。第1の電極10と第2の電極12との間に、断面積が8通りの異なる磁化自由層を有する磁気抵抗効果素子20が100nmの間隔で配置した。なお、各磁気抵抗効果素子20はMR150%の特性を有し、図11に示した共鳴周波数特性を有するものを用いている。すると、本実施例の高周波フィルタ装置のフィルタ特性は図12に示す同様のフィルタ特性を有する。 The cross-sectional area of the input terminal 32 and the output terminal 34 is 100 μm × 2.5 μm, and the cross-sectional area of the second electrode 12 is 623 μm × 2.5 μm. The first electrode 10 has a microstrip line structure. Between the first electrode 10 and the second electrode 12, magnetoresistive effect elements 20 having different magnetization free layers having eight different cross-sectional areas were arranged at an interval of 100 nm. Each magnetoresistive effect element 20 has a characteristic of MR 150% and has the resonance frequency characteristic shown in FIG. Then, the filter characteristics of the high-frequency filter device of the present embodiment have the same filter characteristics as shown in FIG.
(第3実施例)
 本発明の第2実施例による高周波フィルタ装置を図15に示す。この実施例の高周波フィルタ装置は、2GHz帯域と8GHz~10GHz帯域を透過させるものであり、図2に示す第1実施形態の高周波フィルタ1と、この高周波フィルタ1の両側にグラウンド線42、44を設けた構成となっている。グラウンド線42、44と、高周波フィルタ1とのギャップg、gはともに2μmである。高周波フィルタ1はコプラナー線路となる。
(Third embodiment)
FIG. 15 shows a high frequency filter device according to a second embodiment of the present invention. The high-frequency filter device of this example transmits the 2 GHz band and the 8 GHz to 10 GHz band. The high-frequency filter 1 of the first embodiment shown in FIG. 2 and ground lines 42 and 44 on both sides of the high-frequency filter 1 are provided. It is the provided structure. The gaps g 1 and g 2 between the ground lines 42 and 44 and the high frequency filter 1 are both 2 μm. The high frequency filter 1 is a coplanar line.
 入力端子32と出力端子34の断面積は100μm×6.1μm、第1および第2の電極10、12の断面積は623μm×6.1μmである。第1の電極10と第2の電極12との間に、断面積が20通りの異なる磁化自由層を有する磁気抵抗効果素子20が100nmの間隔で配置されている。グラウンド線42、44は、ともに623μm×10μmである。 The cross-sectional area of the input terminal 32 and the output terminal 34 is 100 μm × 6.1 μm, and the cross-sectional areas of the first and second electrodes 10 and 12 are 623 μm × 6.1 μm. Between the first electrode 10 and the second electrode 12, magnetoresistive effect elements 20 having 20 different magnetization free layers with cross-sectional areas are arranged at an interval of 100 nm. The ground lines 42 and 44 are both 623 μm × 10 μm.
 断面積が20通りの異なる磁化自由層を有する磁気抵抗効果素子20の共鳴周波数特性を図16に示す。磁気抵抗効果素子のMRは150%である。本実施例の高周波フィルタ装置のフィルタ特性は図17に示すようになる。2GHz帯域と8GHz~10GHz帯域の電波が透過し、不要周波数帯域の成分が吸収されて減衰する。 FIG. 16 shows the resonance frequency characteristics of the magnetoresistive effect element 20 having 20 different magnetization free layers with different cross-sectional areas. The MR of the magnetoresistive element is 150%. The filter characteristics of the high-frequency filter device of this example are as shown in FIG. Radio waves in the 2 GHz band and the 8 GHz to 10 GHz band are transmitted, and the unnecessary frequency band components are absorbed and attenuated.
 なお、本実施例において、図18に示すように、グラウンド線44を設けない構造としても良い。 In this embodiment, as shown in FIG. 18, a structure without the ground line 44 may be used.
(第4実施例)
 本発明の第4実施例による高周波フィルタ装置を図19に示す。この実施例の高周波フィルタ装置は、2GHz帯域と8 GHz~10GHz帯域を透過させるものであり、図2に示す第1実施形態の高周波フィルタ1において、第1の電極10の第2の電極12に対向する面の面積を、第2の電極12の第1の電極に対向する面の面積よりも大きくした構成となっている。
(Fourth embodiment)
A high frequency filter device according to a fourth embodiment of the present invention is shown in FIG. The high frequency filter device of this example transmits the 2 GHz band and the 8 GHz to 10 GHz band. In the high frequency filter 1 of the first embodiment shown in FIG. 2, the second electrode 12 of the first electrode 10 is connected to the second electrode 12. The area of the facing surface is configured to be larger than the area of the surface of the second electrode 12 facing the first electrode.
 入力端子32と出力端子34の断面積は100μm×6.1μm、第2の電極12の断面積は312μm×6.1μmであり、第1の電極10はマイクロストリップラインの構造となっている。第1の電極10と第2の電極12との間に、断面積が20通りの異なる磁化自由層を有する磁気抵抗効果素子20が100nmの間隔で配置されている。第1の電極10は接地電位となっている。なお、磁気抵抗効果素子20は、図16に示すと同じ共鳴周波数特性を有する。したがって、本実施例の高周波フィルタ装置も図17に示すフィルタ特性を有する。 The cross-sectional area of the input terminal 32 and the output terminal 34 is 100 μm × 6.1 μm, the cross-sectional area of the second electrode 12 is 312 μm × 6.1 μm, and the first electrode 10 has a microstrip line structure. Between the first electrode 10 and the second electrode 12, magnetoresistive effect elements 20 having 20 different magnetization free layers with cross-sectional areas are arranged at an interval of 100 nm. The first electrode 10 is at ground potential. The magnetoresistive effect element 20 has the same resonance frequency characteristic as shown in FIG. Therefore, the high-frequency filter device of this embodiment also has the filter characteristics shown in FIG.
(第5実施例)
 本発明の第5実施例による高周波フィルタ装置を図20に示す。この実施例の高周波フィルタ装置は、2GHz帯域と8GHz~10GHz帯域を透過させるものである。この実施例は、第1乃至第3の電極10、12、14を有し、第1の電極10と第2の電極12との間、および第2の電極12と第3の電極14との間にそれぞれ複数の磁気抵抗効果素子20が設けられた高周波フィルタ1Aを備えている。なお、本実施形態においては、第1乃至第3の電極は、第1の電極10、第2の電極12、第3の電極14の順序で積層されている。第1の電極10と第2の電極12との間の複数の磁気抵抗効果素子20は絶縁膜28によって互いに電気的に絶縁され、および第2の電極12と第3の電極14との間の複数の磁気抵抗効果素子20は絶縁膜29によって互いに電気的に絶縁される。そして、この高周波フィルタ1Aの両側には、グラウンド線42、44が設けられている。グラウンド線42、44と、高周波フィルタ1Aとのギャップg、gはともに2μmである。
(5th Example)
A high frequency filter device according to a fifth embodiment of the present invention is shown in FIG. The high frequency filter device of this embodiment transmits 2 GHz band and 8 GHz to 10 GHz band. This embodiment has first to third electrodes 10, 12, 14, and is between the first electrode 10 and the second electrode 12, and between the second electrode 12 and the third electrode 14. A high frequency filter 1 </ b> A provided with a plurality of magnetoresistive effect elements 20 therebetween is provided. In the present embodiment, the first to third electrodes are laminated in the order of the first electrode 10, the second electrode 12, and the third electrode 14. The plurality of magnetoresistive effect elements 20 between the first electrode 10 and the second electrode 12 are electrically insulated from each other by the insulating film 28, and between the second electrode 12 and the third electrode 14. The plurality of magnetoresistive elements 20 are electrically insulated from each other by the insulating film 29. Then, ground lines 42 and 44 are provided on both sides of the high-frequency filter 1A. The gaps g 1 and g 2 between the ground lines 42 and 44 and the high frequency filter 1A are both 2 μm.
 第1乃至第3の電極10、12、14の断面積はそれぞれ312μm×6.1μmである。第1の電極10と第2の電極12との間、および第2の電極12と第3の電極14との間にそれぞれ設けられる磁気抵抗効果素子20は、断面積が20通りの異なる磁化自由層を有する磁気抵抗効果素子20であって、100nmの間隔で配置されている。なお、第1および第3の電極は接地電位となっている。 The cross-sectional areas of the first to third electrodes 10, 12, and 14 are 312 μm × 6.1 μm, respectively. The magnetoresistive effect element 20 provided between the first electrode 10 and the second electrode 12 and between the second electrode 12 and the third electrode 14 has 20 different free cross-sectional areas. The magnetoresistive effect element 20 having a layer is disposed at an interval of 100 nm. The first and third electrodes are at ground potential.
 本実施例においては、磁気抵抗効果素子20として、図16に示す共鳴周波数特性を有する磁気抵抗効果素子を用いた。したがって、本実施例の高周波フィルタ装置も図15に示すと同様のフィルタ特性を有する。本実施例により、0.3mm×0.03mm程度の大きさの微小な高周波フィルタ装置を実現することができる。 In this embodiment, the magnetoresistive effect element 20 having a resonance frequency characteristic shown in FIG. Therefore, the high-frequency filter device of this embodiment also has the same filter characteristics as shown in FIG. According to this embodiment, it is possible to realize a minute high frequency filter device having a size of about 0.3 mm × 0.03 mm.
(第6実施例)
 本発明の第6実施例による高周波フィルタ装置を図21に示す。本実施例の高周波フィルタ装置は、2GHz帯域を透過させるフィルタであって、図1に示す第1実施形態の高周波フィルタおいて、磁気抵抗効果素子20~20(n≧2)は、磁化固着層21と、スペーサー層22と、を共有した構成となっている。
(Sixth embodiment)
FIG. 21 shows a high frequency filter device according to a sixth embodiment of the present invention. The high-frequency filter device of the present example is a filter that transmits a 2 GHz band. In the high-frequency filter of the first embodiment shown in FIG. 1, the magnetoresistive elements 20 1 to 20 n (n ≧ 2) are magnetized. The fixing layer 21 and the spacer layer 22 are shared.
 各磁気抵抗効果素子20(i=1,・・・,n)の発振特性は磁化自由層23(i=1,・・・,n)の歳差運動で規定されるため、本実施例の構造においても、良好なフィルタ特性が得られる。また、磁化固着層21と、スペーサー層22とを共用しているため、磁化固着層21磁化の固着能力が増強され、より安定発振となる効果を有する。本実施例の変形例として、磁化固着層の一部のみ共用する構造も、同様に安定発振に寄与する。なお、磁化固着層のスペーサー層22と反対側の面には図示しない反強磁性層を設けてよい。 Since the oscillation characteristic of each magnetoresistive element 20 i (i = 1,..., N) is defined by the precession of the magnetization free layer 23 i (i = 1,..., N), this embodiment Even in the example structure, good filter characteristics can be obtained. In addition, since the magnetization pinned layer 21 and the spacer layer 22 are shared, the pinning ability of the magnetization pinned layer 21 is enhanced, and there is an effect of more stable oscillation. As a modification of the present embodiment, a structure in which only a part of the magnetization fixed layer is shared also contributes to stable oscillation. An antiferromagnetic layer (not shown) may be provided on the surface of the magnetization pinned layer opposite to the spacer layer 22.
 (使用条件)
 次に、本発明の各実施形態および実施例の高周波フィルタの使用条件について説明する。
(terms of use)
Next, usage conditions of the high frequency filter of each embodiment and example of the present invention will be described.
本発明の各実施形態および実施例の高周波フィルタ(以下、単に素子ともいう)において、所望の周波数を効率的に減衰させるためには、素子に流す電流値を一定とすることが望ましい。ここで言う電流値とは、上電極(第2の電極)の入力端子32に流れる電流量を指す。また後述する交流電流とは、アンテナで受信した電力を、伝送線路(電気回路、導波路でも良い)を介して高周波フィルタへ電流として流す場合の交流電流量を指す。本発明各実施形態および実施例の高周波フィルタを効果的に利用するために電流値を調整する方法として、直流電流を通電させた状態において、減衰させたい交流電流を重畳して流す方法と、交流電流を一定値に増幅させて用いる方法と、が挙げられる。また、交流電流を増幅させ、それに直流電流を重畳させても良い。 In the high-frequency filters (hereinafter also simply referred to as elements) of the embodiments and examples of the present invention, it is desirable that the current value flowing through the elements be constant in order to efficiently attenuate a desired frequency. The current value here refers to the amount of current flowing through the input terminal 32 of the upper electrode (second electrode). Moreover, the alternating current mentioned later refers to the amount of alternating current when the electric power received by the antenna is passed as a current to the high frequency filter via a transmission line (which may be an electric circuit or a waveguide). As a method of adjusting the current value in order to effectively use the high-frequency filter of each embodiment and example of the present invention, a method of superimposing and flowing an alternating current to be attenuated in a state where a direct current is applied, and an alternating current And a method in which the current is amplified to a constant value. Alternatively, an alternating current may be amplified and a direct current may be superimposed on it.
(磁化自由層および磁化固着層が面内磁化膜である場合)
(直流電流を重畳する場合)
 磁気抵抗効果素子の磁化自由層が歳差運動を持続できる直流電流を流すことが望ましい。磁化自由層の磁性材料にも依るが、直径が50nm~200nmの磁気抵抗効果素子を用いる場合、直流電流として0.2mA~3mA程度流す目安となる。例えば、磁化自由層と磁化固着層にCoFeを利用して、それぞれ膜厚を3nm、10nmとし、スぺーサー層として8nmの膜厚のCuを用いる場合、直流電流として0.55mAを流すとフリー層の磁化は歳差運動を持続する。
(When the magnetization free layer and the magnetization pinned layer are in-plane magnetization films)
(When DC current is superimposed)
It is desirable to pass a direct current that allows the magnetization free layer of the magnetoresistive effect element to maintain precession. Although it depends on the magnetic material of the magnetization free layer, when a magnetoresistive effect element having a diameter of 50 nm to 200 nm is used, it is a guideline for a direct current of about 0.2 mA to 3 mA. For example, when CoFe is used for the magnetization free layer and the magnetization pinned layer and the film thickness is 3 nm and 10 nm, respectively, and Cu with a film thickness of 8 nm is used as the spacer layer, it is free when 0.55 mA is applied as a direct current. The magnetization of the layer continues precession.
 さらに磁気抵抗効果素子を通過する時の電流密度が1MA/cm~1000MA/cmとなるように交流電流を増幅して本発明の各実施形態および実施例の高周波フィルタに入力することで、不要な周波数の信号をより効果的に減衰させることができる。一例として、アンテナでの受信が-70dBmであった時、40dB増幅させて、直流電流と重畳して高周波フィルタへ入力させることが挙げられる。 Furthermore, by current density when passing through the magneto-resistive element is inputted to the high frequency filter of the embodiments and examples of the present invention by amplifying the alternating current so that the 1MA / cm 2 ~ 1000MA / cm 2, Unnecessary frequency signals can be attenuated more effectively. As an example, when the reception at the antenna is −70 dBm, it is amplified by 40 dB and superimposed on the direct current and input to the high frequency filter.
(直流電流を重畳しない場合)
 磁気抵抗効果素子を通過する時の電流密度が1MA/cm~1000MA/cmとなるように交流電流を増幅して高周波フィルタに入力することで、不要な周波数の信号を効果的に減衰させることができる。一例として、アンテナで受信した信号を30dB増幅させることが考えられる。
(When DC current is not superimposed)
By current density when passing through the magneto-resistive element is inputted to the high frequency filter to amplify the alternating current so that the 1MA / cm 2 ~ 1000MA / cm 2, to attenuate the signal of the unwanted frequency effectively be able to. As an example, it is conceivable to amplify a signal received by an antenna by 30 dB.
 上電極(第2の電極)と下電極(第1の電極)との間に長径と短径の長さの組がそれぞれ(30nm、30nm)、(30nm、100nm)、(100nm、200nm)、(70nm、200nm)、(40nm、100nm)、(300nm、300nm)である6通りの磁気抵抗効果素子であって、断面形状が楕円形をした磁気抵抗効果素子を用意し、磁化自由層の磁化の歳差運動周波数を調べた。なお、磁化容易軸方向(磁化自由層の長径方向)に100Oeの磁界を印加した。その結果、図22に示す特性を持つことがわかった。 Between the upper electrode (second electrode) and the lower electrode (first electrode), pairs of lengths of major axis and minor axis are (30 nm, 30 nm), (30 nm, 100 nm), (100 nm, 200 nm), Six magnetoresistive effect elements (70 nm, 200 nm), (40 nm, 100 nm), and (300 nm, 300 nm) having an elliptical cross-sectional shape are prepared, and the magnetization of the magnetization free layer is prepared. The precession frequency was examined. A magnetic field of 100 Oe was applied in the direction of the easy axis (the major axis direction of the magnetization free layer). As a result, it was found that the characteristic shown in FIG.
 また、磁気抵抗効果素子に対して直流磁界を印加することで所望のフィルタ特性を得ることができる。直流磁界を印加する磁界印加部として、永久磁石またはコイルが用いられる。磁界の向きと強度によって磁気抵抗効果素子の磁化自由層における磁化の歳差運動の様子が変わる。本発明の各実施形態および実施例のいずれかの高周波フィルタに用いられる磁気抵抗効果素子おいて、磁界は磁化自由層の面内方向と面直方向のいずれに印加しても良いが、磁化自由層の磁化容易軸方向に対して平行、あるいは反平行な方向付近に印加することが望ましい。この場合、断面積が異なる複数の磁気抵抗効果素子を用いると広帯域をカバーすることができる。 Also, desired filter characteristics can be obtained by applying a DC magnetic field to the magnetoresistive effect element. A permanent magnet or a coil is used as a magnetic field applying unit that applies a DC magnetic field. The state of the precession of magnetization in the magnetization free layer of the magnetoresistive effect element changes depending on the direction and strength of the magnetic field. In the magnetoresistive effect element used in the high-frequency filter of any of the embodiments and examples of the present invention, the magnetic field may be applied in either the in-plane direction or the perpendicular direction of the magnetization free layer, but the magnetization free It is desirable to apply in the vicinity of the direction parallel to or antiparallel to the easy axis direction of the layer. In this case, a wide band can be covered by using a plurality of magnetoresistance effect elements having different cross-sectional areas.
 次に、本発明の各実施形態および実施例のいずれかの高周波フィルタにおいて、磁気抵抗効果素子の断面積を変えるとともに、直流電流を通電する場合としない場合の各々について、受信電力の増幅の有無を考慮して動作を調べる実験を行った。この実験には、磁気抵抗効果素子の磁化自由層と磁化固着層として飽和磁化Msが1000emu/cmであるFeNiを用いた。磁化自由層の膜厚は3nm、磁化固着層の膜厚は40nmとした。スペーサー層に膜厚8nmのCuを用いた。磁気抵抗効果は100%であった。磁化自由層と磁化固着層の磁化の向きが平行な時の抵抗値は140Ωであった。実験結果を以下に説明する。 Next, in the high-frequency filter according to any one of the embodiments and examples of the present invention, whether or not the received power is amplified for each of the cases where the cross-sectional area of the magnetoresistive effect element is changed and the direct current is applied. An experiment was conducted to investigate the operation. In this experiment, FeNi having a saturation magnetization Ms of 1000 emu / cm 3 was used as the magnetization free layer and the magnetization pinned layer of the magnetoresistive effect element. The thickness of the magnetization free layer was 3 nm, and the thickness of the magnetization pinned layer was 40 nm. Cu with a film thickness of 8 nm was used for the spacer layer. The magnetoresistance effect was 100%. The resistance value was 140Ω when the magnetization directions of the magnetization free layer and the magnetization pinned layer were parallel. The experimental results are described below.
(直流通電しない場合)
 第1の電極と第2の電極との間に、長径と短径の長さの組がそれぞれ(30nm、30nm)、(30nm、100nm)、(100nm、200nm)、(70nm、200nm)、(40nm、100nm)、(300nm、300nm)である6通りの磁気抵抗効果素子であって、断面形状が楕円形をした磁気抵抗効果素子を配置した。アンテナで1μW(-30dBm)の電力を受信した時、高周波フィルタに、受信による交流電流を通電した。ここで、磁化自由層の磁化方向に対して反平行な向きに150Oeの磁界を印加した。その結果、図23において破線で示す、2GHz周囲のノイズをカットするフィルタ特性を得た。なお、図23において、破線は直流電流を流さない場合のフィル等特性を示し、実線は直流電流を流す場合のフィルタ特性を示している。
(When direct current is not applied)
Between the first electrode and the second electrode, pairs of lengths of major axis and minor axis are (30 nm, 30 nm), (30 nm, 100 nm), (100 nm, 200 nm), (70 nm, 200 nm), ( Six magnetoresistive effect elements having a cross-sectional shape of an ellipse, which are 40 nm, 100 nm) and (300 nm, 300 nm), were arranged. When power of 1 μW (−30 dBm) was received by the antenna, AC current due to reception was passed through the high frequency filter. Here, a magnetic field of 150 Oe was applied in a direction antiparallel to the magnetization direction of the magnetization free layer. As a result, a filter characteristic for cutting noise around 2 GHz indicated by a broken line in FIG. 23 was obtained. In FIG. 23, a broken line indicates a characteristic such as a fill when no DC current is passed, and a solid line indicates a filter characteristic when a DC current is passed.
 また、第1の電極と第2の電極との間に長径と短径の長さの組がそれぞれ(30nm、30nm)、(50nm、200nm)、(30nm、100nm)、(100nm、200nm)、(70nm、100nm)、(40nm、50nm)である6通りの磁気抵抗効果素子であって、断面形状が楕円形をした磁気抵抗効果素子を配置した。この場合において、アンテナで1μW(-30dBm)の電力を受信し、受信による交流電流を通電した。ここでは磁化自由層の磁化方向に対して平行な向きに100Oeの磁界を印加した。その結果、図24において破線で示す、5GHz周囲のノイズをカットするフィルタ特性を得た。なお、図24において、破線は直流電流を流さない場合のフィルタ特性を示し、実線は直流電流を流す場合のフィルタ特性を示している。 In addition, pairs of lengths of major axis and minor axis are (30 nm, 30 nm), (50 nm, 200 nm), (30 nm, 100 nm), (100 nm, 200 nm), respectively, between the first electrode and the second electrode. Six types of magnetoresistive effect elements (70 nm, 100 nm) and (40 nm, 50 nm) having an elliptical cross section were arranged. In this case, power of 1 μW (−30 dBm) was received by the antenna, and alternating current due to reception was applied. Here, a magnetic field of 100 Oe was applied in a direction parallel to the magnetization direction of the magnetization free layer. As a result, a filter characteristic for cutting noise around 5 GHz indicated by a broken line in FIG. 24 was obtained. In FIG. 24, the broken line indicates the filter characteristics when no DC current is passed, and the solid line indicates the filter characteristics when DC current is passed.
 また、第1の電極と第2の電極との間に長径と短径の長さの組がそれぞれ(30nm、30nm)、(30nm、100nm)、(100nm、200nm)、(70nm、200nm)、(40nm、100nm)、(300nm、300nm)である6通りの磁気抵抗効果素子であって、断面形状が楕円形をした磁気抵抗効果素子を配置した。アンテナでの受信電力が-70dBmであった時、アンプを用いて信号強度を40dBに増幅させた。磁化自由層の磁化方向に対して反平行な向きに150Oeの磁界を印加したところ、2GHz周囲のノイズをカットするフィルタ特性を得た。受信電力を増幅しない場合と比較して、SN比が向上することが確認された。 In addition, pairs of lengths of major axis and minor axis are (30 nm, 30 nm), (30 nm, 100 nm), (100 nm, 200 nm), (70 nm, 200 nm), respectively, between the first electrode and the second electrode. Six magnetoresistive effect elements (40 nm, 100 nm) and (300 nm, 300 nm) having an elliptical cross-sectional shape were arranged. When the received power at the antenna was -70 dBm, the signal intensity was amplified to 40 dB using an amplifier. When a magnetic field of 150 Oe was applied in a direction antiparallel to the magnetization direction of the magnetization free layer, a filter characteristic that cuts noise around 2 GHz was obtained. It was confirmed that the SN ratio was improved as compared with the case where the received power was not amplified.
(直流電流を通電する場合)
 第1の電極と第2の電極との間に長径と短径の長さの組がそれぞれ(30nm、30nm)、(30nm、100nm)、(100nm、200nm)、(70nm、200nm)、(40nm、100nm)、(300nm、300nm)である6通りの磁気抵抗効果素子であって、断面形状が楕円形をした磁気抵抗効果素子を配置した。アンテナで1μW(-30dBm)の電力を受信した時、高周波フィルタに0.55mAの直流電流を流しつつ受信による交流電流を通電した。ここで、磁化自由層の磁化方向に対して反平行な向きに150Oeの磁界を印加した。その結果、図23の実線に示す2GHz周囲のノイズをカットするフィルタ特性を得た。直流電流を重畳しない場合と比較して、ノイズレベルの低減が確認された。
(When direct current is applied)
The major axis and minor axis length pairs between the first electrode and the second electrode are (30 nm, 30 nm), (30 nm, 100 nm), (100 nm, 200 nm), (70 nm, 200 nm), (40 nm, respectively. , 100 nm), (300 nm, 300 nm), and six magnetoresistive elements having an elliptical cross section. When power of 1 μW (−30 dBm) was received by the antenna, an AC current was received while a DC current of 0.55 mA was passed through the high frequency filter. Here, a magnetic field of 150 Oe was applied in a direction antiparallel to the magnetization direction of the magnetization free layer. As a result, a filter characteristic for cutting noise around 2 GHz indicated by the solid line in FIG. 23 was obtained. A reduction in noise level was confirmed compared to the case where no direct current was superimposed.
 また、上電極と下電極の間に長径と短径の長さの組がそれぞれ(30nm、30nm)、(50nm、200nm)、(30nm、100nm)、(100nm、200nm)、(70nm、100nm)、(40nm、50nm)である6通りの磁気抵抗効果素子であって、断面形状が楕円形をした磁気抵抗効果素子を配置した。この場合において、アンテナで1μW(-30dBm)の電力を受信し、高周波フィルタに0.55mAの直流電流を流しつつ受信による交流電流を通電した。ここでは磁化自由層の磁化方向に対して平行な向きに100Oeの磁界を印加した。その結果、図24において実線で示す、5GHz周囲のノイズをカットするフィルタ特性を得た。直流電流を重畳しない場合と比較して、ノイズレベルの低減が確認された。 In addition, a pair of lengths of major axis and minor axis between the upper electrode and the lower electrode is (30 nm, 30 nm), (50 nm, 200 nm), (30 nm, 100 nm), (100 nm, 200 nm), (70 nm, 100 nm), respectively. , (40 nm, 50 nm), which are magnetoresistive elements having an elliptical cross section. In this case, 1 μW (−30 dBm) of power was received by the antenna, and an AC current was received while a DC current of 0.55 mA was passed through the high frequency filter. Here, a magnetic field of 100 Oe was applied in a direction parallel to the magnetization direction of the magnetization free layer. As a result, a filter characteristic for cutting noise around 5 GHz indicated by a solid line in FIG. 24 was obtained. A reduction in noise level was confirmed compared to the case where no direct current was superimposed.
 また、第1の電極と第2の電極との間に長径と短径の長さの組がそれぞれ(30nm、30nm)、(30nm、100nm)、(100nm、200nm)、(70nm、200nm)、(40nm、100nm)、(300nm、300nm)である6通りの磁気抵抗効果素子であって、断面形状が楕円形をした磁気抵抗効果素子を配置した。アンテナでの受信電力が-70dBmであった時、アンプを用いて信号強度を40dBに増幅させた。0.55mAの直流電流を重畳させてフリー層の磁化方向に対して反平行な向きに150Oeの磁界を印加したところ、2GHz周囲のノイズをカットするフィルタ特性を得た。受信電力を増幅しない場合と比較して、SN比が向上することが確認された。 In addition, pairs of lengths of major axis and minor axis are (30 nm, 30 nm), (30 nm, 100 nm), (100 nm, 200 nm), (70 nm, 200 nm), respectively, between the first electrode and the second electrode. Six magnetoresistive effect elements (40 nm, 100 nm) and (300 nm, 300 nm) having an elliptical cross-sectional shape were arranged. When the received power at the antenna was -70 dBm, the signal intensity was amplified to 40 dB using an amplifier. When a magnetic field of 150 Oe was applied in a direction antiparallel to the magnetization direction of the free layer by superimposing a direct current of 0.55 mA, a filter characteristic that cuts noise around 2 GHz was obtained. It was confirmed that the SN ratio was improved as compared with the case where the received power was not amplified.
(磁化自由層および磁化固着層が垂直磁化膜である場合)
 次に、磁化自由層および磁化固着層が垂直磁化膜である場合について説明する。磁化自由層と磁化固着層とが垂直磁化膜の場合は、磁化自由層と磁化固着層の磁化方向は膜面に略垂直な向きとなる。磁化自由層の形状は面内磁化膜を利用する場合と同様に、楕円であっても四角形であっても良い。また、多角形としても良い。垂直磁化膜を用いるメリットの一つとして、形状異方性だけでなく磁気異方性定数(Kerg/cm)によって共鳴周波数を変えることができる点である。磁化自由層の形状を等方的な形とすることで、より最密に磁気抵抗効果素子を配置できるため、小面積化を図ることができる。さらに、磁気異方性定数を大きくすることで、磁気抵抗効果素子の共鳴周波数をより高周波帯域に設定することができる。例えば、磁化自由層に膜厚3nmのFePdを利用する場合、K=8Merg/cmとすることで、20GHzに共鳴周波数を持つことができるようになる。
(When the magnetization free layer and the magnetization pinned layer are perpendicular magnetization films)
Next, a case where the magnetization free layer and the magnetization fixed layer are perpendicular magnetization films will be described. When the magnetization free layer and the magnetization pinned layer are perpendicular magnetization films, the magnetization directions of the magnetization free layer and the magnetization pinned layer are substantially perpendicular to the film surface. The shape of the magnetization free layer may be an ellipse or a rectangle as in the case of using the in-plane magnetization film. Moreover, it is good also as a polygon. One of the merits of using the perpendicular magnetization film is that the resonance frequency can be changed not only by the shape anisotropy but also by the magnetic anisotropy constant (Kerg / cm 3 ). By making the shape of the magnetization free layer isotropic, the magnetoresistive effect elements can be arranged more closely, and thus the area can be reduced. Furthermore, by increasing the magnetic anisotropy constant, the resonance frequency of the magnetoresistive effect element can be set to a higher frequency band. For example, when FePd having a film thickness of 3 nm is used for the magnetization free layer, the resonance frequency can be set to 20 GHz by setting K = 8Merg / cm 3 .
 このような、磁化自由層および磁化固着層が垂直磁化膜である場合において、断面形状が円形でかつ直径30nm、35nm、40nm、45nm、50nm、60nm、70nm、80nm、90nm、100nmである10通りの磁気抵抗効果素子の磁化自由層の歳差運動周波数を調べた。なお、磁化自由層の磁化容易軸方向に300Oe磁界を印加した。その結果、図25に示す特性が得られた。 When the magnetization free layer and the magnetization pinned layer are perpendicular magnetization films, the cross-sectional shape is circular and the diameter is 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, and 100 nm. The precession frequency of the magnetization free layer of the magnetoresistive effect element was investigated. A 300 Oe magnetic field was applied in the direction of the easy axis of the magnetization free layer. As a result, the characteristics shown in FIG. 25 were obtained.
 (磁界を印加しない場合)
 また、第1の電極と第2の電極との間に、断面形状が円形でかつ直径32nm、34nm、38nm、40nm、42nm、46nm、52nm、58nm、73nm、76nm、82nm、94nm、100nm、132nm、150nm、200nmである16通りの磁気抵抗効果素子を配置した、本発明の第1乃至第2実施形態および実施例のいずれかの高周波フィルタを作成した。磁化自由層として、膜厚3nmのFePdを用い、その飽和磁化Msが1000emu/cm、異方性定数Kが6Merg/cmであった。スペーサー層は膜厚が1nmのMgOを用い、磁化固着層は膜厚8nmのFePdを用いた。この高周波フィルタに直流電流を通電した場合と、通電しない場合のフィルタ特性を調べた。
(When no magnetic field is applied)
In addition, the cross-sectional shape is circular between the first electrode and the second electrode, and the diameter is 32 nm, 34 nm, 38 nm, 40 nm, 42 nm, 46 nm, 52 nm, 58 nm, 73 nm, 76 nm, 82 nm, 94 nm, 100 nm, 132 nm. A high-frequency filter according to any one of the first to second embodiments and examples of the present invention in which 16 magnetoresistive effect elements of 150 nm and 200 nm are arranged was produced. As the magnetization free layer, FePd having a film thickness of 3 nm was used, the saturation magnetization Ms was 1000 emu / cm 3 , and the anisotropy constant K was 6 Merg / cm 3 . The spacer layer was made of MgO having a thickness of 1 nm, and the magnetic pinned layer was made of FePd having a thickness of 8 nm. The filter characteristics when direct current was applied to this high frequency filter and when it was not supplied were examined.
  (直流電流を通電しない場合)
 アンテナで1μWの電力を受信した信号を、上記高周波フィルタへ入力した。その結果、図26に破線で示す、1.5GHz~9GHzの間で5GHzのみ透過するフィルタ特性を得た。なお、図26に実線で示すフィルタ特性は直流電流を通電する場合を示している。また、アンテナでの受信電力が-60dBmであった時、アンプを利用して30dB増幅させて高周波フィルタへ入力した。その結果、1.5GHz~9GHzの間で5 GHzのみ透過した。受信電力を増幅しない場合と比較して、SN比が向上することが確認された。
(When direct current is not applied)
A signal that received 1 μW of power with the antenna was input to the high-frequency filter. As a result, a filter characteristic that transmits only 5 GHz between 1.5 GHz and 9 GHz as indicated by a broken line in FIG. 26 was obtained. Note that the filter characteristic indicated by the solid line in FIG. 26 indicates a case where a direct current is applied. When the received power at the antenna was −60 dBm, it was amplified by 30 dB using an amplifier and input to the high frequency filter. As a result, only 5 GHz was transmitted between 1.5 GHz and 9 GHz. It was confirmed that the SN ratio was improved as compared with the case where the received power was not amplified.
   (直流電流を通電する場合)
 アンテナで1μWの電力を受信した信号に対して、0.55mAの直流電流を重畳させて上記高周波フィルタへ入力した。その結果、図26に実線で示す、1.5GHz~9GHzの間で5GHzのみ透過するフィルタ特性を得た。直流電流を重畳しない場合と比較して、ノイズレベルの低減が確認された。
(When direct current is applied)
A direct current of 0.55 mA was superimposed on the signal that received 1 μW of power from the antenna and input to the high-frequency filter. As a result, a filter characteristic that transmits only 5 GHz between 1.5 GHz and 9 GHz, which is indicated by a solid line in FIG. 26, was obtained. A reduction in noise level was confirmed compared to the case where no direct current was superimposed.
 また、アンテナでの受信電力が-60dBmであった時、アンプを利用して30dB増幅させて上記高周波フィルタへ入力した。その結果、1.5GHz~9GHzの間で5GHzのみ透過した。受信電力を増幅しない場合と比較して、SN比が向上することが確認された。 Also, when the received power at the antenna was −60 dBm, it was amplified by 30 dB using an amplifier and input to the high frequency filter. As a result, only 5 GHz was transmitted between 1.5 GHz and 9 GHz. It was confirmed that the SN ratio was improved as compared with the case where the received power was not amplified.
 (磁界を印加する場合)
 次に、磁気抵抗効果素子に対して更に直流磁界を印加する場合について説明する。直流磁界の印加方法として、永久磁石を用いる方法とコイルを用いる方法がある。磁界の向きと強度によって磁気抵抗効果素子の磁化自由層の歳差運動の特性が変わる。本発明の各実施形態および実施例のいずれかの高周波フィルタに用いられる磁気抵抗効果素子において、磁界は磁化自由層の膜面に平行方向と、膜面に垂直な方向のいずれに印加しても良いが、磁化自由層の磁化容易軸方向に対して平行、あるいは反平行な方向付近に印加することが望ましい。以下に、直流電流を通電する場合と、しない場合の各々について説明する。
(When applying a magnetic field)
Next, a case where a DC magnetic field is further applied to the magnetoresistive effect element will be described. As a method for applying a DC magnetic field, there are a method using a permanent magnet and a method using a coil. The characteristics of precession of the magnetization free layer of the magnetoresistive effect element change depending on the direction and strength of the magnetic field. In the magnetoresistive effect element used in the high frequency filter of any of the embodiments and examples of the present invention, the magnetic field can be applied in either the direction parallel to the film surface of the magnetization free layer or the direction perpendicular to the film surface. Although it is good, it is desirable to apply in the vicinity of a direction parallel to or antiparallel to the easy axis of magnetization of the magnetization free layer. Below, each of the case where a direct current is supplied and the case where it does not supply are demonstrated.
   (直流電流を通電しない場合)
 磁化自由層および磁化固着層として、飽和磁化Msが100emu/cmであるFePdを用いた。スペーサー層としてMgOを用いた。磁化自由層、スペーサー層、磁化固着層の膜厚は、それぞれ3nm、1nm、8nmとした。 
 第1の電極と第2の電極との間に、断面形状が円形でかつ直径が30nm、35nm、40nm、45nm、50nm、60nm、70nm、80nm、90nm、100nmの10通りの磁気抵抗効果素子を配置した高周波フィルタを作成した。磁化自由層の磁化に対して平行な向きに300Oeの磁界を印加した。アンテナで1μWの電力を受信した信号を、上記高周波フィルタへ入力した。その結果、図27に破線で示す、17GHz-24GHzの帯域において20GHzのみ透過するフィルタ特性が得られることが確認された。なお、図27において、実線で示すフィルタ特性は、直流電流を通電する場合のものである。
(When direct current is not applied)
FePd having a saturation magnetization Ms of 100 emu / cm 3 was used as the magnetization free layer and the magnetization pinned layer. MgO was used as the spacer layer. The film thicknesses of the magnetization free layer, the spacer layer, and the magnetization pinned layer were 3 nm, 1 nm, and 8 nm, respectively.
Between the first electrode and the second electrode, there are 10 types of magnetoresistive effect elements having a circular cross section and a diameter of 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm. An arranged high frequency filter was created. A magnetic field of 300 Oe was applied in a direction parallel to the magnetization of the magnetization free layer. A signal that received 1 μW of power with the antenna was input to the high-frequency filter. As a result, it was confirmed that a filter characteristic that transmits only 20 GHz in a band of 17 GHz to 24 GHz indicated by a broken line in FIG. 27 can be obtained. In FIG. 27, the filter characteristics indicated by the solid line are those when a direct current is applied.
 続いて、アンテナでの受信電力が-60dBmであった場合に、信号を30dB増幅させて、上記高周波フィルタに入力した。信号を増幅させない場合と比較してSN比が向上し、17GHz-24GHzの帯域において20GHzのみ透過することが確認された。 Subsequently, when the received power at the antenna was −60 dBm, the signal was amplified by 30 dB and input to the high frequency filter. It was confirmed that the S / N ratio was improved compared to the case where the signal was not amplified, and only 20 GHz was transmitted in the 17 GHz-24 GHz band.
  (直流電流を通電する場合)
 直流電流を通電しなかった場合の高周波フィルタを用いる。アンテナで1μWの電力を受信した時、0.8mAの直流電流を重畳させて高周波フィルタに入力した。その結果、図27に実線で示す、17GHz-24GHzの帯域において20GHzの信号のみが効果的に透過するフィルタ特性を確認した。直流電流を重畳しない場合と比較して、ノイズレベルの低減が確認された。
(When direct current is applied)
A high-frequency filter is used when no direct current is applied. When 1 μW of power was received by the antenna, a 0.8 mA direct current was superimposed and input to the high frequency filter. As a result, a filter characteristic that effectively transmits only a 20 GHz signal in a band of 17 GHz to 24 GHz indicated by a solid line in FIG. 27 was confirmed. A reduction in noise level was confirmed compared to the case where no direct current was superimposed.
 次に、アンテナでの受信電力が-60dBmであった場合に、信号を30dB増幅して0.8mAの直流電流を重畳させて、上記高周波フィルタに入力した。信号を増幅させない場合と比較してSN比が向上し、17GHz-24GHzの帯域において20GHzのみ透過することが確認された。 Next, when the received power at the antenna was −60 dBm, the signal was amplified by 30 dB and a direct current of 0.8 mA was superimposed and input to the high frequency filter. It was confirmed that the S / N ratio was improved compared to the case where the signal was not amplified, and only 20 GHz was transmitted in the 17 GHz-24 GHz band.
(磁化自由層が面内磁化膜、磁化固着層が垂直磁化膜である場合)
 磁化自由層の磁化方向は膜面に略平行な向きとし、磁化固着層の磁化方向は膜面に略垂直な向きとする。なお、磁化自由層の磁化方向を膜面に略垂直な方向とし、磁化固着層の磁化方向を膜面に略平行な向きとしても良い。その場合、磁化固着層の磁化が電流通電時に揺らがないように十分な膜厚とすることが望ましい。例えば、磁化自由層の膜厚を3nmとする場合、磁化固着層の膜厚を40nmとすることで、磁化固着層の磁化方向は電流で揺らがなくなる。
(When the magnetization free layer is an in-plane magnetization film and the magnetization pinned layer is a perpendicular magnetization film)
The magnetization direction of the magnetization free layer is set substantially parallel to the film surface, and the magnetization direction of the magnetization fixed layer is set substantially perpendicular to the film surface. The magnetization direction of the magnetization free layer may be a direction substantially perpendicular to the film surface, and the magnetization direction of the magnetization pinned layer may be a direction substantially parallel to the film surface. In that case, it is desirable to make the film thickness sufficient so that the magnetization of the magnetization pinned layer does not fluctuate when a current is applied. For example, when the thickness of the magnetization free layer is 3 nm, the magnetization direction of the magnetization fixed layer is not fluctuated by the current by setting the thickness of the magnetization fixed layer to 40 nm.
 磁化自由層が面内磁化膜、磁化固着層が垂直磁化膜であって、断面形状が円形でかつ直径が113nm、117nm、122nm、127nm、141nm、149nm、160nm、172nm、189nm、211nm、244nmである11通りの磁気抵抗効果素子に対して、磁化自由層の歳差運動周波数を調べた。その結果、図28に示す特性が確認された。 The magnetization free layer is an in-plane magnetization film, the magnetization pinned layer is a perpendicular magnetization film, and the cross-sectional shape is circular and the diameters are 113 nm, 117 nm, 122 nm, 127 nm, 141 nm, 149 nm, 160 nm, 172 nm, 189 nm, 211 nm, and 244 nm. The precession frequency of the magnetization free layer was examined for a certain 11 types of magnetoresistive effect elements. As a result, the characteristics shown in FIG. 28 were confirmed.
 (磁界を印加する場合)
 磁気抵抗効果素子に対して直流磁界を印加する。直流磁界の印加方法として、永久磁石を用いる方法とコイルを用いる方法がある。磁界の向きと強度によって磁気抵抗効果素子の磁化自由層の歳差運動の特性が変わる。本発明の各実施形態または実施例において、磁界方向は磁化自由層の膜面に平行な方向と、膜面に垂直な方向のいずれに印加しても良いが、膜面に垂直な方向(磁化固着層の磁化に平行、あるいは反平行な向き)に磁界を印加することが望ましい。以下に、直流電流を通電する場合と、しない場合の各々について説明する。
(When applying a magnetic field)
A DC magnetic field is applied to the magnetoresistive element. As a method for applying a DC magnetic field, there are a method using a permanent magnet and a method using a coil. The characteristics of precession of the magnetization free layer of the magnetoresistive effect element change depending on the direction and strength of the magnetic field. In each embodiment or example of the present invention, the magnetic field direction may be applied to either the direction parallel to the film surface of the magnetization free layer or the direction perpendicular to the film surface. It is desirable to apply a magnetic field in a direction parallel or antiparallel to the magnetization of the pinned layer. Below, each of the case where a direct current is supplied and the case where it does not supply are demonstrated.
 (直流電流を通電しない場合)
 第1の電極と第2の電極との間に、断面形状が円形でかつ直径が57nm、58nm、62nm、67nm、74nm、80nm、90nm、97nmの8通りの磁気抵抗効果素子が配置された高周波フィルタを作成した。磁化自由層の膜面に垂直な方向(磁化固着層の磁化に平行)に100Oeの磁界を印加しつつ、アンテナで1μWの電力を受信した時、受信による交流電流を高周波フィルタに流した。その結果、図29に破線で示す1GHz~3GHzの帯域において2GHzのみ透過するフィルタ特性が確認された。なお、図29に実線で示すフィルタ特性は直流電流を通電する場合の特性である。
(When direct current is not applied)
A high frequency in which eight types of magnetoresistive effect elements having a circular cross-sectional shape and a diameter of 57 nm, 58 nm, 62 nm, 67 nm, 74 nm, 80 nm, 90 nm, and 97 nm are disposed between the first electrode and the second electrode Created a filter. When a magnetic field of 100 Oe was applied in a direction perpendicular to the film surface of the magnetization free layer (parallel to the magnetization of the magnetization pinned layer) and 1 μW of power was received by the antenna, an AC current from the reception was passed through the high frequency filter. As a result, a filter characteristic that transmits only 2 GHz in the band of 1 GHz to 3 GHz indicated by a broken line in FIG. 29 was confirmed. Note that the filter characteristic indicated by the solid line in FIG. 29 is a characteristic when a direct current is applied.
 次に、アンテナでの受信電力が-60dBmであった場合に、信号を30dB増幅させて上記高周波フィルタに入力する。なお、磁化自由層の膜面に垂直な方向(磁化固着層の磁化に平行)に100Oeの磁界を印加した。信号を増幅させない場合と比較してSN比が向上し、1GHz~3GHzの帯域において2GHzのみ透過することが確認された。 Next, when the received power at the antenna is −60 dBm, the signal is amplified by 30 dB and input to the high frequency filter. A magnetic field of 100 Oe was applied in a direction perpendicular to the film surface of the magnetization free layer (parallel to the magnetization of the magnetization pinned layer). It was confirmed that the S / N ratio was improved as compared with the case where the signal was not amplified, and only 2 GHz was transmitted in the band of 1 GHz to 3 GHz.
 (直流電流を通電する場合)
 直流電流を通電しなかった上記高周波フィルタの磁化自由層の膜面に垂直な方向(磁化固着層の磁化に平行)に100Oeの磁界を印加しつつ、アンテナで1μWの電力を受信した信号を0.55mAの直流電流を上記高周波フィルタに流した。図29に実線で示すように、直流電流を流した場合は、流さない場合に比べて、より効果的なフィルタ特性が得られた。すなわち、直流電流を重畳しない場合と比較して、ノイズレベルの低減が確認された。
(When direct current is applied)
A signal that receives 1 μW of power from the antenna while applying a 100 Oe magnetic field in a direction perpendicular to the film surface of the magnetization free layer of the high-frequency filter in which no direct current is passed (parallel to the magnetization of the magnetization pinned layer) is 0 A direct current of .55 mA was passed through the high frequency filter. As shown by the solid line in FIG. 29, more effective filter characteristics were obtained when a direct current was passed compared to when no direct current was passed. That is, a reduction in the noise level was confirmed as compared with the case where no direct current was superimposed.
 次に、アンテナでの受信電力が-60dBmであった場合に、信号を30dB増幅して0.55mAの直流電流を重畳させて上記高周波フィルタに入力した。なお、磁化自由層の膜面に垂直な方向(磁化固着層の磁化に平行)に100Oeの磁界を印加した。信号を増幅させない場合と比較してSN比が向上し、1GHz~3GHzの帯域において2GHzのみ透過することが確認された。 Next, when the received power at the antenna was −60 dBm, the signal was amplified by 30 dB and a DC current of 0.55 mA was superimposed and input to the high frequency filter. A magnetic field of 100 Oe was applied in a direction perpendicular to the film surface of the magnetization free layer (parallel to the magnetization of the magnetization pinned layer). It was confirmed that the S / N ratio was improved as compared with the case where the signal was not amplified, and only 2 GHz was transmitted in the band of 1 GHz to 3 GHz.
(磁界を印加しない場合)
 (直流電流を通電しない場合)
 第1の電極と第2の電極との間に、断面形状が円形でかつ直径が113nm、117nm、122nm、127nm、141nm、149nm、160nm、172nm、189nm、211nm、244nmである11通りの磁気抵抗効果素子が配置された高周波フィルタを作成した。磁化自由層は膜厚2.5nmでかつ飽和磁化Msが1000emu/cmのFeNiを用いた。スペーサー層として膜厚が8nmのCuを用い、磁化固着層は膜厚が8nmで、Kuが8Merg/cm、Msが1000emu/cmのFePdを用いた。アンテナで1μWの電力を受信した信号を上記高周波フィルタへ入力した。その結果、図30に破線で示す、1.5GHz~7GHzの帯域において5GHzのみ透過するフィルタ特性が確認された。
(When no magnetic field is applied)
(When direct current is not applied)
Eleven magnetoresistances having a circular cross-section and a diameter of 113 nm, 117 nm, 122 nm, 127 nm, 141 nm, 149 nm, 160 nm, 172 nm, 189 nm, 211 nm, and 244 nm between the first electrode and the second electrode A high frequency filter in which an effect element is arranged was created. As the magnetization free layer, FeNi having a film thickness of 2.5 nm and a saturation magnetization Ms of 1000 emu / cm 3 was used. Cu having a thickness of 8 nm was used as the spacer layer, and FePd having a thickness of 8 nm, Ku of 8 Merg / cm 3 , and Ms of 1000 emu / cm 3 was used as the spacer layer. A signal that received 1 μW of power with the antenna was input to the high-frequency filter. As a result, a filter characteristic that transmits only 5 GHz in the band of 1.5 GHz to 7 GHz indicated by a broken line in FIG. 30 was confirmed.
 次に、アンテナでの受信電力が-60dBmであった場合に、信号を30dB増幅させて上記高周波フィルタに入力した。信号を増幅させない場合と比較してSN比が向上し、1.5GHz~7GHzの帯域において5GHzのみ透過することが確認された。 Next, when the received power at the antenna was −60 dBm, the signal was amplified by 30 dB and input to the high frequency filter. It was confirmed that the S / N ratio was improved as compared with the case where the signal was not amplified, and only 5 GHz was transmitted in the band of 1.5 GHz to 7 GHz.
 (直流電流を通電する場合)
 直流電流を通電しない場合に用いた高周波フィルタを用いる。この場合、アンテナで1μWの電力を受信した時に、0.55mAの直流電流を流しつつ受信によって流れる交流電流を上記高周波フィルタに入力した。その結果、図30に実線で示す1.5GHz~7GHzの帯域において5GHzのみ透過するフィルタ特性が確認された。
(When direct current is applied)
The high frequency filter used when no direct current is applied is used. In this case, when 1 μW of electric power was received by the antenna, an alternating current flowing by reception was input to the high-frequency filter while a direct current of 0.55 mA was passed. As a result, a filter characteristic that transmits only 5 GHz in a band of 1.5 GHz to 7 GHz indicated by a solid line in FIG. 30 was confirmed.
 次に、アンテナでの受信電力が-60dBmであった場合に、信号を30dB増幅して0.55mAの直流電流を重畳させて上記高周波フィルタに入力した。信号を増幅させない場合と比較してSN比が向上し、1.5GHz~7GHzの帯域において5GHzのみ透過することが確認された。 Next, when the received power at the antenna was −60 dBm, the signal was amplified by 30 dB and a DC current of 0.55 mA was superimposed and input to the high frequency filter. It was confirmed that the S / N ratio was improved as compared with the case where the signal was not amplified, and only 5 GHz was transmitted in the band of 1.5 GHz to 7 GHz.
 次に、波長と電極サイズの関係について説明する。 Next, the relationship between wavelength and electrode size will be described.
 高周波信号の伝搬では、伝送させようとする信号の波長が伝送線路(伝搬の経路、電極長)に近づくにつれ損失が増大する問題がある。これを改善するためには電極長を短く設計する方法と信号線近傍にグランド線として機能する電極を配置する方法がある。 In the propagation of high-frequency signals, there is a problem that the loss increases as the wavelength of the signal to be transmitted approaches the transmission line (propagation path, electrode length). In order to improve this, there are a method of designing the electrode length short and a method of arranging an electrode functioning as a ground line in the vicinity of the signal line.
 (電極長を短く設計する場合の指針)
 40GHzまでの帯域での利用を想定すると、真空中における40GHzの電波の波長aは7.5mmである。簡単のため、波長短縮の影響は省いて議論する。電極長(入力端子と出力端子の対向する面と反対側の面間の距離)がa/10(0.75mm)となるように設計した場合の高周波特性を計算した。この計算のモデルは、図31(a)に示すように、SiO膜50上にCuからなる電極52が形成され、この電極52上に入力端子54および出力端子56が設けられている。そして、このモデルの横幅は5μmとした。計算結果を図31(b)に示す。図31(a)、(b)において、符号S11は入力端子54の反射特性を示し、符号S21は、入力端子54から電極52を介して出力端子56への透過特性を示す。
(Guidelines for designing a short electrode length)
Assuming use in a band up to 40 GHz, the wavelength a of radio waves of 40 GHz in vacuum is 7.5 mm. For simplicity, the effects of wavelength shortening will be omitted and discussed. The high frequency characteristics were calculated when the electrode length (distance between the opposite surface of the input terminal and the output terminal and the surface on the opposite side) was a / 10 (0.75 mm). In this calculation model, as shown in FIG. 31A, an electrode 52 made of Cu is formed on an SiO 2 film 50, and an input terminal 54 and an output terminal 56 are provided on the electrode 52. The width of this model was 5 μm. The calculation result is shown in FIG. 31A and 31B, reference numeral S11 indicates a reflection characteristic of the input terminal 54, and reference numeral S21 indicates a transmission characteristic from the input terminal 54 to the output terminal 56 through the electrode 52.
 図31(b)からわかるように、40GHzまでの帯域において、透過特性S21は-3dB以上となっている。なお、-3dBは入力電力の半分が透過することを意味する。このことから、「電極長をa/10以下」という大きさの設計にすることで、40GHz以下の帯域において透過量を-3dB以上とすることができ、且つ省スペースな構造とできることがわかった。 As can be seen from FIG. 31B, in the band up to 40 GHz, the transmission characteristic S21 is −3 dB or more. Note that −3 dB means that half of the input power is transmitted. From this, it was found that by designing the size of “electrode length a / 10 or less”, the transmission amount can be −3 dB or more in a band of 40 GHz or less, and a space-saving structure can be achieved. .
 本発明の一実施形態による高周波フィルタにおいては、横幅方向を広く設計し、長さ方向を短く設計することで、省スペースな構造且つ、より大きな透過特性とすることができる。電極長が750μm、横幅が5μmである場合と占有面積が一致するように、図32(a)に示すように、電極長が250μm、横幅が15μmとなるようにモデルのサイズを変更した。この場合の計算結果を図32(b)に示す。図32(b)からわかるように、40GHzにおける透過率が-0.11dB以上(98%以上)と改善した。本発明の一実施形態のフィルタ機能を得るための重要なポイントは磁気抵抗効果素子を配置することにあるため、占有面積が変わらなければ磁気抵抗効果素子の配置に影響を与えない。その上で、高周波の伝搬特性(入力信号の損失に相当)を改善できるメリットがある。 In the high-frequency filter according to the embodiment of the present invention, by designing the width direction wide and designing the length direction short, a space-saving structure and greater transmission characteristics can be obtained. As shown in FIG. 32A, the model size was changed so that the electrode length was 250 μm and the horizontal width was 15 μm so that the occupied area would be the same as the case where the electrode length was 750 μm and the horizontal width was 5 μm. The calculation result in this case is shown in FIG. As can be seen from FIG. 32 (b), the transmittance at 40 GHz was improved to -0.11 dB or more (98% or more). Since an important point for obtaining the filter function of one embodiment of the present invention is to dispose the magnetoresistive effect element, the layout of the magnetoresistive effect element is not affected unless the occupied area changes. In addition, there is an advantage that high-frequency propagation characteristics (corresponding to loss of input signal) can be improved.
 以上説明したように、電極長をa/10以下とすることで損失を3dB以下とすることができる。 As described above, the loss can be reduced to 3 dB or less by setting the electrode length to a / 10 or less.
 次に、信号線の近傍にグラウンド線、あるいはグラウンド面として機能する電極を配置する方法について説明する。 Next, a method for arranging a ground line or an electrode functioning as a ground plane in the vicinity of the signal line will be described.
 信号透過量を改善する方法として、信号線から発生する電界を収束させるグラウンド線、あるいはグラウンド面を近接配置することで入力信号の反射を減らし透過成分が増加することが知られている。本発明の一実施形態の高周波フィルタにおいては、信号線の近傍にグラウンド線、あるいはグラウンド面として機能する電極を配置しても良い。 As a method for improving the amount of signal transmission, it is known that a ground line for converging an electric field generated from a signal line or a ground plane close to each other reduces reflection of an input signal and increases a transmission component. In the high frequency filter of one embodiment of the present invention, a ground line or an electrode functioning as a ground plane may be disposed in the vicinity of the signal line.
 グラウンド線を信号線に並走配置させる構造として、例えば図10に示すようなコプラナー構造がある。図10に示すコプラナー構造において、信号線とグラウンド線のギャップ間隔によって信号透過量が変わる様子を調べた。その結果を図33に示す。なおこの場合の電極長は750μmである。 As a structure in which the ground line is arranged in parallel with the signal line, for example, there is a coplanar structure as shown in FIG. In the coplanar structure shown in FIG. 10, it was examined how the signal transmission amount changes depending on the gap interval between the signal line and the ground line. The result is shown in FIG. In this case, the electrode length is 750 μm.
 図33からわかるように、信号線とグラウンド線とのギャップを3μm以下とすることによって、透過量を8割以上とすることができる。信号線から生じる電気力線をグラウンド線に効率良く収束させるためには、信号線の線幅をw、グラウンド線の線幅をb、信号線とグラウンド線のギャップをgとすると、
 g≦b-2w
となる条件を満たすように設計することが望ましい。この場合、透過量を約8割以上とすることができる。
As can be seen from FIG. 33, the transmission amount can be 80% or more by setting the gap between the signal line and the ground line to 3 μm or less. In order to efficiently converge the lines of electric force generated from the signal line to the ground line, assuming that the line width of the signal line is w, the line width of the ground line is b, and the gap between the signal line and the ground line is g,
g ≦ b-2w
It is desirable to design to satisfy the following conditions. In this case, the transmission amount can be about 80% or more.
 信号線の近傍にグラウンド線、あるいはグラウンド面を配置する他の方法として、グラウンド面の上に誘電体を介して信号線を配置するマイクロストリップライン構造や、グラウンド面で囲んだ誘電体の中に信号線を配置するストリップライン構造がある。 Other methods of placing a ground line or ground plane near the signal line include a microstrip line structure in which a signal line is placed on the ground plane via a dielectric, or a dielectric surrounded by a ground plane. There is a stripline structure in which signal lines are arranged.
 次に、本発明の一実施形態による高周波フィルタのアプリケーションについて説明する。 Next, an application of a high frequency filter according to an embodiment of the present invention will be described.
 磁気抵抗効果素子に磁界を印加する方法は、図34(a)、34(b)、および図35(a)、35(b)に示すように、永久磁石70を用いる方法であっても、図36に示すように、ハードディスクで用いられているコイル80を用いる方法であっても良い。いずれの場合においても、磁気抵抗効果素子20の磁化自由層の磁化方向に対して、「平行な向き」、「膜面に直交する向き」、あるいは「膜面に直交する方向に直交する向き」に磁界がかかるようにして良い。図34(a)、34(b)に示す第1の例においては、絶縁性の基板(例えばサファイア基板)60上に本発明の一実施形態による高周波フィルタ1が設けられ、この高周波フィルタ1の上方に永久磁石70が設けられた構成となっている。そして、この第1の例においては、高周波フィルタ1は上蓋62に覆われてパッケージにされる。なお、この第1の例においては、永久磁石70は、高周波フィルタ1の上方に設けられたが、下方に設けてもよい。 Even if the method of applying a magnetic field to the magnetoresistive element is a method using a permanent magnet 70 as shown in FIGS. 34 (a) and 34 (b) and FIGS. 35 (a) and 35 (b), As shown in FIG. 36, a method using a coil 80 used in a hard disk may be used. In any case, “parallel direction”, “direction orthogonal to the film surface”, or “direction orthogonal to the direction orthogonal to the film surface” with respect to the magnetization direction of the magnetization free layer of the magnetoresistive effect element 20 A magnetic field may be applied to the. 34 (a) and 34 (b), a high frequency filter 1 according to an embodiment of the present invention is provided on an insulating substrate (for example, a sapphire substrate) 60. The permanent magnet 70 is provided above. In the first example, the high frequency filter 1 is covered with the upper lid 62 and packaged. In the first example, the permanent magnet 70 is provided above the high-frequency filter 1, but may be provided below.
 また、図35(a)、35(b)に示す第2の例においては、絶縁性の基板(例えばサファイア基板)60上に本発明の一実施形態による高周波フィルタ1が設けられ、この高周波フィルタ1の対向する一対の側面に永久磁石70a、70bが設けられた構成となっている。そして、この第2の例においても、高周波フィルタ1は上蓋62に覆われてパッケージにされる。図36に示す第3の例においては、本発明の一実施形態に高周波フィルタの側面に一対のコイル80a、80bが設けられた構成となっている。 In the second example shown in FIGS. 35A and 35B, the high-frequency filter 1 according to the embodiment of the present invention is provided on an insulating substrate (for example, a sapphire substrate) 60, and this high-frequency filter is provided. 1 has a configuration in which permanent magnets 70a and 70b are provided on a pair of opposing side surfaces. And also in this 2nd example, the high frequency filter 1 is covered with the upper cover 62, and is packaged. The third example shown in FIG. 36 has a configuration in which a pair of coils 80a and 80b are provided on the side surface of the high-frequency filter in one embodiment of the present invention.
 以下においては、永久磁石を用いた例で説明するが、この永久磁石の代わりにコイルを用いても良い。 Hereinafter, an example using a permanent magnet will be described, but a coil may be used instead of the permanent magnet.
 本発明の一実施形態による高周波フィルタに用いられる磁気抵抗効果素子は、磁化自由層が膜面に略平行な磁化を有し、磁化固着層が膜面に略垂直な磁化を有する。この実施形態において、磁界を印加せずかつ直流電流を重畳しない例を図37(a)に示す。また、磁界を印加しないが直流電流を通電する例を図37(b)に示す。直流電流を重畳することによってノイズレベルが改善した。 In the magnetoresistive element used in the high frequency filter according to the embodiment of the present invention, the magnetization free layer has magnetization substantially parallel to the film surface, and the magnetization fixed layer has magnetization substantially perpendicular to the film surface. In this embodiment, an example in which no magnetic field is applied and no direct current is superimposed is shown in FIG. An example in which a direct current is applied without applying a magnetic field is shown in FIG. Noise level was improved by superimposing DC current.
 次に、図37(a)、37(b)において、入力端子に入力する信号を増幅するためのアンプを用いた例を図38(a)、38(b)にそれぞれ示す。この例においても、直流電流を重畳することによってノイズレベルが改善した。 Next, in FIGS. 37 (a) and 37 (b), examples using amplifiers for amplifying signals input to the input terminals are shown in FIGS. 38 (a) and 38 (b), respectively. Also in this example, the noise level was improved by superimposing the direct current.
 次に、永久磁石を用いて磁界を印加する場合の例を説明する。なお、永久磁石の代わりにコイルを用いても良い。この例に用いられる磁気抵抗効果素子は、磁化自由層および磁化固着層が膜面に略平行な磁化を有している場合、磁化自由層および磁化固着層が膜面に略垂直な磁化を有している場合、または磁化自由層および磁化固着層の一方が膜面に略平行な磁化を有し他方が膜面に略垂直な磁化を有する場合であってもよい。 Next, an example of applying a magnetic field using a permanent magnet will be described. A coil may be used instead of the permanent magnet. In the magnetoresistive effect element used in this example, when the magnetization free layer and the magnetization fixed layer have magnetization substantially parallel to the film surface, the magnetization free layer and the magnetization fixed layer have magnetization substantially perpendicular to the film surface. Or one of the magnetization free layer and the magnetization pinned layer may have magnetization substantially parallel to the film surface and the other may have magnetization substantially perpendicular to the film surface.
 直流電流を重畳しない例を図39(a)に示す。また、直流通電する例を図39(b)に示す。直流電流を重畳することによってノイズレベルが改善した。 An example in which no direct current is superimposed is shown in FIG. An example in which direct current is applied is shown in FIG. Noise level was improved by superimposing DC current.
 次に、入力信号を増幅するためのアンプを用いた例を説明する。直流電流を重畳しない例を図40(a)に示す。交流電流を増幅することによってSN比が向上することが確認された。直流電流を通電する例を図40(b)に示す。直流電流を重畳することによってノイズレベルが改善した。なお、図40(a)、40(b)に示す例においては、アンプは、高周波フィルタの前段に設けられていたが、後段に設けてもよい。 Next, an example using an amplifier for amplifying an input signal will be described. An example in which no direct current is superimposed is shown in FIG. It was confirmed that the SN ratio was improved by amplifying the alternating current. An example in which a direct current is applied is shown in FIG. Noise level was improved by superimposing DC current. In the example shown in FIGS. 40A and 40B, the amplifier is provided in the previous stage of the high-frequency filter, but may be provided in the subsequent stage.
 また、永久磁石は、上記例においては、高周波フィルタの対向する一対の側面に平行に設けられていたが、図41(a)、41(b)、図42(a)、42(b)に示すように、高周波フィルタの上方、あるいは下方に配置しても良い。図41(a)は、直流電流を重畳しない場合の例を示し、図41(b)は直流電流を重畳する場合の例を示す。図42(a)、42(b)は、図41(a)、41(b)において、アンプを用いて信号を増幅した例をそれぞれ示す。なお、永久磁石は、高周波フィルタの上方と下方の両方に配置しても良い。 Further, in the above example, the permanent magnet is provided in parallel to the pair of opposing side surfaces of the high-frequency filter, but in FIGS. 41 (a), 41 (b), FIGS. As shown, it may be arranged above or below the high frequency filter. FIG. 41A shows an example in the case where the direct current is not superimposed, and FIG. 41B shows an example in the case where the direct current is superimposed. 42 (a) and 42 (b) show examples in which signals are amplified using amplifiers in FIGS. 41 (a) and 41 (b), respectively. In addition, you may arrange | position a permanent magnet in both the upper direction and the downward direction of a high frequency filter.
 次に、本発明の一実施形態の高周波フィルタを用いたマイクロ波帯域における送受信システムの回路を図43に示す。この送受信システムは、受信部と、送信部とを備え、これらの送信部および受信部にそれぞれ本発明の一実施形態の高周波フィルタ100A、100Bが用いられている。 Next, FIG. 43 shows a circuit of a transmission / reception system in the microwave band using the high-frequency filter of one embodiment of the present invention. The transmission / reception system includes a reception unit and a transmission unit, and the high-frequency filters 100A and 100B according to the embodiment of the present invention are used for the transmission unit and the reception unit, respectively.
 アンテナで受信された信号はスイッチを介して受信部の高周波フィルタ1に入力される。そして、この高周波フィルタ100Aの出力は、受信部のミキサーにおいて局部発振器の信号と混合され、受信部の中間周波バンドパスフィルタ(IFBPF)に送られる。このIFBPFの出力はベースバンドに送られる。ベースバンドからの発信される信号は、送信部のIFBPFに送られる。IFBPFの出力は、送信部のミキサーにおいて局部発振器の信号と混合され、送信部の高周波フィルタ100Bに送られる。この高周波フィルタ100Bの出力は送信用アンプで増幅された後、スイッチを介してアンテナに送られ、送信される。 The signal received by the antenna is input to the high frequency filter 1 of the receiving unit via the switch. The output of the high frequency filter 100A is mixed with the signal of the local oscillator in the mixer of the receiving unit, and sent to the intermediate frequency bandpass filter (IFBPF) of the receiving unit. The output of this IFBPF is sent to the baseband. A signal transmitted from the baseband is sent to the IFBPF of the transmission unit. The output of IFBPF is mixed with the signal of the local oscillator in the mixer of the transmission unit and sent to the high frequency filter 100B of the transmission unit. The output of the high frequency filter 100B is amplified by a transmission amplifier and then sent to an antenna via a switch for transmission.
 ここで、高周波フィルタ100A、100Bは、増幅用アンプや直流電流通電用電源を含んでいても良い。このような送受信システムとすることで、受信信号に含まれる不要な周波数成分を除去することができる。また、送信する際においても送信信号に含まれる不要周波数成分を除去できるようになる。なお、この送受信システムにおいて、高周波フィルタ100A、100Bの後に増幅用アンプを設けても良い。 Here, the high frequency filters 100A and 100B may include an amplifier for amplification and a power supply for direct current application. By setting it as such a transmission / reception system, the unnecessary frequency component contained in a received signal can be removed. Also, unnecessary frequency components included in the transmission signal can be removed when transmitting. In this transmission / reception system, an amplification amplifier may be provided after the high frequency filters 100A and 100B.
 次に、送受信に複数のアンテナを用いるMIMO(Multiple Input Multiple Output)について説明する。このMIMOには、送信する際に近接するアンテナへ電波が受信されてしまう問題があり、不要信号を減衰させる手段が望まれていた。そこで、本発明の一実施形態の高周波フィルタを用いたMIMOの送受信システムの回路図を図44に示す。図44に示すような構成とすることにより、送信の際に受信側へ漏れてくる不要信号を減衰させることが可能となる。 Next, MIMO (Multiple Input Multiple Multiple Output) using a plurality of antennas for transmission and reception will be described. In this MIMO, there is a problem that radio waves are received by an adjacent antenna during transmission, and a means for attenuating unnecessary signals has been desired. FIG. 44 shows a circuit diagram of a MIMO transmission / reception system using the high frequency filter according to the embodiment of the present invention. With the configuration as shown in FIG. 44, it is possible to attenuate unnecessary signals that leak to the receiving side during transmission.
 次に、図45(a)、45(b)および図46(a)、46(b)に示すように、コイルとコンデンサを使うことで、本発明の一実施形態の高周波フィルタ1の後段へ不要な直流電流が流れないようにすることが可能となる。この場合、直流電流はコンデンサを通過することができないため、コイル側に流れる。なお、図45(a)は高周波フィルタ1に磁界を印加しないで、直流電流を重畳する場合の例を示し、図45(b)は、図45(a)に示す例において信号をアンプで増幅する場合の例を示す。図46(a)は、高周波フィルタ1に磁界を印加しかつ直流電流を重畳する場合の例を示し、図46(b)は、図46(a)に示す例において信号をアンプで増幅する場合の例を示す。 Next, as shown in FIGS. 45 (a) and 45 (b) and FIGS. 46 (a) and 46 (b), by using a coil and a capacitor, the subsequent stage of the high-frequency filter 1 according to the embodiment of the present invention. It is possible to prevent unnecessary DC current from flowing. In this case, since direct current cannot pass through the capacitor, it flows to the coil side. 45A shows an example in which a direct current is superimposed without applying a magnetic field to the high-frequency filter 1, and FIG. 45B amplifies the signal with an amplifier in the example shown in FIG. 45A. An example of the case is shown. 46A shows an example in which a magnetic field is applied to the high-frequency filter 1 and a direct current is superimposed, and FIG. 46B shows a case in which the signal is amplified by an amplifier in the example shown in FIG. 46A. An example of
1 高周波フィルタ
10 第1の電極
12 第2の電極
20 磁気抵抗効果素子
20~20 磁気抵抗効果素子
21 磁化固着層
22 スペーサー層
23 磁化自由層
28 絶縁膜
32 入力端子
34 出力端子
1 high frequency filter 10 first electrode 12 second electrode 20 magneto-resistive element 20 1 ~ 20 n magnetoresistive element 21 pinned layer 22 a spacer layer 23 magnetization free layer 28 insulating film 32 input terminal 34 output terminal

Claims (9)

  1.  第1の電極と、
     前記第1の電極上に設けられた第2の電極と、
     前記第1の電極と前記第2の電極との間に設けられ、磁化の向きが固着された磁化固着層と、スピン注入電流の流れる向きと強さに応じて磁化振動励起される磁化自由層と、前記磁化固着層と前記磁化自由層との間に設けられたスペーサー層とを有し、それぞれ前記磁化自由層の断面積が異なる複数の磁気抵抗効果素子と、
     前記第2の電極上に離間して設けられ、信号が入力する入力端子および信号を出力する出力端子と、
     を備えていることを特徴とする高周波用素子。
    A first electrode;
    A second electrode provided on the first electrode;
    A magnetization pinned layer provided between the first electrode and the second electrode, the magnetization direction of which is fixed, and a magnetization free layer which is excited by magnetization vibration in accordance with a direction and intensity of flow of a spin injection current And a plurality of magnetoresistive elements each having a different cross-sectional area of the magnetization free layer, and a spacer layer provided between the magnetization pinned layer and the magnetization free layer,
    An input terminal for inputting a signal and an output terminal for outputting a signal, which are provided apart from each other on the second electrode;
    An element for high frequency, comprising:
  2.  前記磁気抵抗効果素子に磁界を印加する磁界印加部を備えていることを特徴とする請求項1記載の高周波用素子。 The high-frequency element according to claim 1, further comprising a magnetic field applying unit that applies a magnetic field to the magnetoresistive effect element.
  3.  前記入力端子は直流電流源に接続されていることを特徴とする請求項1記載の高周波用素子。 The high frequency device according to claim 1, wherein the input terminal is connected to a direct current source.
  4.  前記入力端子および出力端子のうちの一方は増幅器が接続されていることを特徴とする請求項1記載の高周波用素子。 The high frequency device according to claim 1, wherein an amplifier is connected to one of the input terminal and the output terminal.
  5.  入力される前記信号の最短波長をaとしたときに、前記入力端子と前記出力端子の対向する面と反対側の面間の距離がa/10以下であることを特徴とする請求項1記載の高周波用素子。 2. The distance between the opposite surfaces of the input terminal and the output terminal is a / 10 or less, where a is the shortest wavelength of the input signal. High frequency element.
  6.  前記入力端子から前記出力端子に向かう方向に平行な前記第2の電極の対向する一対の側面の少なくとも一方の側面に対して間隔を設けて配置された接地される接地電極を備えていることを特徴とする請求項1記載の高周波用素子。 A grounding electrode that is grounded and disposed at an interval with respect to at least one of the pair of opposing side surfaces of the second electrode parallel to the direction from the input terminal to the output terminal. The high-frequency device according to claim 1, wherein
  7.  前記第2の電極の幅をw、前記接地電極の幅をb、前記間隔の距離をgとすると、
     g≦b-2w
     の関係を満たすことを特徴とする請求項6記載の高周波用素子。 
    When the width of the second electrode is w, the width of the ground electrode is b, and the distance of the gap is g,
    g ≦ b-2w
    The high frequency device according to claim 6, wherein the relationship is satisfied.
  8.  前記第1の電極は前記第2の電極よりも対向する面の面積が広いことを特徴とする請求項1記載の高周波用素子。 The high-frequency element according to claim 1, wherein the first electrode has a larger area of the facing surface than the second electrode.
  9.  第1の電極と、
     前記第1の電極上に設けられた第2の電極と、
     前記第2の電極上に設けられた第3の電極と、
     前記第1の電極と前記第2の電極との間に設けられ、磁化の向きが固着された磁化固着層と、スピン注入電流の流れる向きと強さに応じて磁化振動励起される磁化自由層と、前記磁化固着層と前記磁化自由層との間に設けられたスペーサー層とを有し、それぞれ前記磁化自由層の断面積が異なるものを有している第1の磁気抵抗効果素子群と、
     前記第2の電極と前記第3の電極との間に設けられ、磁化の向きが固着された磁化固着層と、スピン注入電流の流れる向きと強さに応じて磁化振動励起される磁化自由層と、前記磁化固着層と前記磁化自由層との間に設けられたスペーサー層とを有し、それぞれ前記磁化自由層の断面積が異なるものを有している第2の磁気抵抗効果素子群と、
     を備えていることを特徴とする高周波用素子。
    A first electrode;
    A second electrode provided on the first electrode;
    A third electrode provided on the second electrode;
    A magnetization pinned layer provided between the first electrode and the second electrode, the magnetization direction of which is fixed, and a magnetization free layer which is excited by magnetization vibration in accordance with a direction and intensity of flow of a spin injection current And a first magnetoresistive element group having a spacer layer provided between the magnetization pinned layer and the magnetization free layer, each having a different cross-sectional area of the magnetization free layer; ,
    A magnetization pinned layer provided between the second electrode and the third electrode, the magnetization direction of which is fixed, and a magnetization free layer which is excited by magnetization vibration in accordance with the direction and strength of flow of the spin injection current And a second magnetoresistive element group having a spacer layer provided between the magnetization pinned layer and the magnetization free layer, each having a different cross-sectional area of the magnetization free layer; ,
    An element for high frequency, comprising:
PCT/JP2009/066428 2009-09-18 2009-09-18 High-frequency element WO2011033664A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066428 WO2011033664A1 (en) 2009-09-18 2009-09-18 High-frequency element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066428 WO2011033664A1 (en) 2009-09-18 2009-09-18 High-frequency element

Publications (1)

Publication Number Publication Date
WO2011033664A1 true WO2011033664A1 (en) 2011-03-24

Family

ID=43758290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066428 WO2011033664A1 (en) 2009-09-18 2009-09-18 High-frequency element

Country Status (1)

Country Link
WO (1) WO2011033664A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065987A (en) * 2011-09-16 2013-04-11 Tdk Corp Frequency conversion device
JP2017063397A (en) * 2015-03-16 2017-03-30 Tdk株式会社 Magnetic resistance effective device
CN106559039A (en) * 2015-09-30 2017-04-05 Tdk株式会社 Magneto-resistance effect device
CN107104181A (en) * 2016-02-23 2017-08-29 Tdk株式会社 Magneto-resistance effect device
CN107452872A (en) * 2016-05-25 2017-12-08 Tdk株式会社 Magneto-resistance effect device
CN107689363A (en) * 2016-08-04 2018-02-13 Tdk株式会社 Magneto-resistance effect device
CN108011036A (en) * 2016-10-27 2018-05-08 Tdk株式会社 Current field auxiliary type spin current magnetization inversion element and magneto-resistance effect element
US20180159492A1 (en) * 2015-03-16 2018-06-07 Tdk Corporation Magnetoresistive effect device
CN108140725A (en) * 2015-09-30 2018-06-08 Tdk株式会社 Magneto-resistance effect device
CN108140726A (en) * 2015-09-30 2018-06-08 Tdk株式会社 Magneto-resistance effect device
WO2018116656A1 (en) * 2016-12-20 2018-06-28 Tdk株式会社 Magnetoresistance effect device
CN109075210A (en) * 2016-09-14 2018-12-21 Tdk株式会社 Magnetoresistance device and magnetoresistance module
US10439592B2 (en) 2017-08-07 2019-10-08 Tdk Corporation Magnetoresistance effect device and high frequency device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032149A1 (en) * 2005-09-16 2007-03-22 Kyushu University, National University Corporation High-frequency device using magnetic multi-layer film dot
JP2007189686A (en) * 2006-01-12 2007-07-26 Samsung Electronics Co Ltd Resonance element, band pass filter and duplexer
JP2007235119A (en) * 2006-02-03 2007-09-13 Kyoto Univ Ferromagnetic wire
JP2008064499A (en) * 2006-09-05 2008-03-21 Toshiba Corp Magnetic sensor
JP2009042105A (en) * 2007-08-09 2009-02-26 Tdk Corp Magnetic device and frequency detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032149A1 (en) * 2005-09-16 2007-03-22 Kyushu University, National University Corporation High-frequency device using magnetic multi-layer film dot
JP2007189686A (en) * 2006-01-12 2007-07-26 Samsung Electronics Co Ltd Resonance element, band pass filter and duplexer
JP2007235119A (en) * 2006-02-03 2007-09-13 Kyoto Univ Ferromagnetic wire
JP2008064499A (en) * 2006-09-05 2008-03-21 Toshiba Corp Magnetic sensor
JP2009042105A (en) * 2007-08-09 2009-02-26 Tdk Corp Magnetic device and frequency detector

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065987A (en) * 2011-09-16 2013-04-11 Tdk Corp Frequency conversion device
US20180159492A1 (en) * 2015-03-16 2018-06-07 Tdk Corporation Magnetoresistive effect device
JP2017063397A (en) * 2015-03-16 2017-03-30 Tdk株式会社 Magnetic resistance effective device
US10381997B2 (en) 2015-03-16 2019-08-13 Tdk Corporation Magnetoresistive effect device
US20180309046A1 (en) * 2015-09-30 2018-10-25 Tdk Corporation Magnetoresistive effect device
US20180277749A1 (en) * 2015-09-30 2018-09-27 Tdk Corporation Magnetoresistive effect device
CN106559039B (en) * 2015-09-30 2020-02-07 Tdk株式会社 Magnetoresistance effect device
US10483458B2 (en) 2015-09-30 2019-11-19 Tdk Corporation Magnetoresistive effect device
CN108140725A (en) * 2015-09-30 2018-06-08 Tdk株式会社 Magneto-resistance effect device
CN108140726A (en) * 2015-09-30 2018-06-08 Tdk株式会社 Magneto-resistance effect device
CN108140726B (en) * 2015-09-30 2021-08-06 Tdk株式会社 Magnetoresistance effect device
CN106559039A (en) * 2015-09-30 2017-04-05 Tdk株式会社 Magneto-resistance effect device
CN107104181A (en) * 2016-02-23 2017-08-29 Tdk株式会社 Magneto-resistance effect device
CN107104181B (en) * 2016-02-23 2020-01-03 Tdk株式会社 Magnetoresistance effect device
CN107452872A (en) * 2016-05-25 2017-12-08 Tdk株式会社 Magneto-resistance effect device
CN107689363B (en) * 2016-08-04 2020-06-05 Tdk株式会社 Magnetoresistance effect device
CN107689363A (en) * 2016-08-04 2018-02-13 Tdk株式会社 Magneto-resistance effect device
CN109075210A (en) * 2016-09-14 2018-12-21 Tdk株式会社 Magnetoresistance device and magnetoresistance module
CN108011036A (en) * 2016-10-27 2018-05-08 Tdk株式会社 Current field auxiliary type spin current magnetization inversion element and magneto-resistance effect element
WO2018116656A1 (en) * 2016-12-20 2018-06-28 Tdk株式会社 Magnetoresistance effect device
US10439592B2 (en) 2017-08-07 2019-10-08 Tdk Corporation Magnetoresistance effect device and high frequency device

Similar Documents

Publication Publication Date Title
WO2011033664A1 (en) High-frequency element
US10381997B2 (en) Magnetoresistive effect device
CN107104181B (en) Magnetoresistance effect device
US9966922B2 (en) Magnetoresistive effect device
US10074688B2 (en) Magnetoresistive effect device with first and second magnetoresistive effect elements having opposite current flows relative to the ordering of the layers of the elements
Yamaguchi et al. Thin-film RF noise suppressor integrated in a transmission line
WO2016072078A1 (en) Common mode noise filter
US10727804B2 (en) Chip-scale resonant gyrator for passive non-reciprocal devices
US10957962B2 (en) Magnetoresistive effect device
JP2017063397A (en) Magnetic resistance effective device
WO2013038993A1 (en) Mixer having frequency selectivity
Du et al. Frequency tunable magnetostatic wave filters with zero static power magnetic biasing circuitry
JP5790359B2 (en) Mixer
CN106559039B (en) Magnetoresistance effect device
JP3990386B2 (en) Microwave transmission line and microwave filter
JP4823764B2 (en) Integrated microelectronic component for filtering electromagnetic noise and radio frequency transmission circuit comprising the same
JP3990394B2 (en) High frequency filter
Amiri et al. Nonreciprocal spin waves in Co-Ta-Zr films and multilayers
US11165128B1 (en) High-frequency device
JP2017216670A (en) Magnetic resistance effect device
US10680165B2 (en) Magnetoresistance effect device having magnetic member with concave portion
US10332666B2 (en) Magnetoresistance effect device and high frequency device
JP2011049863A (en) Electrode for high-frequency wave
KR100332231B1 (en) Material of Magnetic Thin Film For Super-high Frequency and Magnetic Thin Film sing The Same and Fabrication Method Thereof
JP2021010091A (en) Transmission circuit integrated microwave generation element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP