WO2011032711A1 - Stabilisierung der repetitionsrate eines passiv gütegeschalteten lasers über gekoppelte resonatoren - Google Patents

Stabilisierung der repetitionsrate eines passiv gütegeschalteten lasers über gekoppelte resonatoren Download PDF

Info

Publication number
WO2011032711A1
WO2011032711A1 PCT/EP2010/005710 EP2010005710W WO2011032711A1 WO 2011032711 A1 WO2011032711 A1 WO 2011032711A1 EP 2010005710 W EP2010005710 W EP 2010005710W WO 2011032711 A1 WO2011032711 A1 WO 2011032711A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser according
delay line
light
resonator
Prior art date
Application number
PCT/EP2010/005710
Other languages
English (en)
French (fr)
Inventor
Andreas TÜNNERMANN
Dirk Nodop
Alexander Steinmetz
Jens Limpert
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Friedrich-Schiller-Universität Jena
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Friedrich-Schiller-Universität Jena filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to US13/497,412 priority Critical patent/US8625644B2/en
Priority to EP10790828A priority patent/EP2481134A1/de
Publication of WO2011032711A1 publication Critical patent/WO2011032711A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • H01S3/10046Pulse repetition rate control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10084Frequency control by seeding
    • H01S3/10092Coherent seed, e.g. injection locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/113Q-switching using intracavity saturable absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08013Resonator comprising a fibre, e.g. for modifying dispersion or repetition rate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping

Definitions

  • the invention relates to a Q-switched laser with a pump light source, an optical resonator in which a laser medium is located, and a passive Q-switch.
  • Q-switching is a commonly used technique for generating intense short pulses of light with lasers
  • Q-switched lasers are versatile, with some applications focusing on short pulse duration, while other applications tend to focus on high pulse energy and peak power.
  • the pulses generated by Q-switching typically take several tens of picoseconds to several hundred nanoseconds, and the pulse energy varies between a few nanojoules and many millijoules.
  • the principle of Q-switching is based on the fact that in a first phase, a certain amount of energy is stored in the laser medium by means of the pump light source and this energy is then retrieved in the form of a short pulse in a second phase.
  • the laser action is prevented by the Q-switch in the optical resonator of the laser. After switching the Q-switch these losses are suddenly reduced.
  • the fluorescent light emitted by the laser medium is now significantly amplified at each Resonatorumlauf.
  • the gain is orders of magnitude higher than in the case of continuous operation. In this case, the optical power in the resonator and, accordingly, the power coupled out of the resonator increase over a plurality of resonator revolutions until the
  • the pumping light source of a Q-switched laser can be operated pulsed or continuously, which is often the case with diode lasers.
  • the laser medium in Q-switched lasers must have the ability to store a significant amount of energy over a period of time.
  • the Q-switch is a saturable absorber. This initially generates high losses, which however are overcompensated by the laser gain as soon as sufficient energy is stored in the laser medium. As soon as the laser power reaches a certain value, the absorption is strongly saturated, so that suddenly the gain increases and the power rises very fast, until the laser medium, in turn, a large part of the stored energy is withdrawn and the power decreases again.
  • the saturable absorber functions as an automatically operated switch.
  • the pulse repetition rate of a Q-switched laser is determined by the pump power, the saturable absorption, the effective number of laser ions involved, and other parameters. By suitable selection of the laser medium and the setting of various laser parameters, the pulse parameters of Q-switched lasers, in particular pulse duration, pulse energy and pulse repetition rate, can be varied within very large ranges.
  • microchip lasers which are characterized by very short resonators without air gaps. These are characterized by a sandwich-like construction, which consists of a Auskoppelapt and a saturable absorber mirror (SESAM), which define the resonator of the laser, between the laser mirror and the saturable absorber mirror is the laser medium (eg a Nd: YVO crystal) ,
  • SESAM saturable absorber mirror
  • the pump light source is a laser diode whose light is coupled by a simple optics in the above-described resonator.
  • the pulses generated in the resonator are separated from the pumping light by means of a dichroic mirror.
  • the emission of the laser pulse is initiated by spontaneous emission as soon as sufficient energy is stored in the laser medium. Since spontaneous emission is a statistical process, the time between sufficient energy storage in the laser medium and initiation of the laser pulse varies. This fluctuation is called temporal jitter in passively Q-switched lasers.
  • the jitter represents the mean fluctuation of the reciprocal of the pulse repetition rate of the laser.
  • the jitter of passively Q-switched lasers is usually several orders of magnitude longer than the pulse duration. Disadvantageously, this problem excludes passively Q-switched lasers for all applications in which time synchronization with other processes is important.
  • a pulsed laser diode can be used as a pump light source. Due to the high pumping rate, the rate of spontaneous emission increases. This also increases the probability of initiation of the laser pulse. As a result, the jitter can be reduced by an order of magnitude, but it is still much larger than the pulse duration.
  • an external, pulsed laser can be used which at least partially saturates the saturable absorber or injects photons abruptly into the laser just before the passively Q-switched laser reaches the threshold of sufficient energy storage. Since the saturation of the absorber or feeding of photons into the resonator by means of the external laser happens at a defined time, the laser pulse is triggered at a defined time. In this way, the jitter can become smaller than the pulse duration.
  • the external laser itself must deliver short pulses of sufficient power, which places high demands on the external laser. Against this background, it is an object of the invention to provide a simple and compact passively Q-switched laser that emits laser pulses with low temporal jitter.
  • This object is achieved by the invention on the basis of a passive Q-switched laser of the type specified above in that a part of the light coupled out of the optical resonator is fed to an optical delay path by means of a beam splitter and fed back into the optical resonator after passing through the optical delay path.
  • spontaneous emission photons initiate the laser pulse.
  • This statistical process is, according to the invention, replaced by a deterministic process to reduce the fluctuations in the pulse repetition rate, i. minimize the time jitter.
  • a portion of the generated laser pulse after coupling out of the resonator by means of a beam splitter is passed over a delay line and then fed back into the laser.
  • the time delay generated by the delay line should be slightly smaller than the reciprocal of the pulse repetition rate of the laser so that sufficient energy can be stored to generate the next pulse by optical pumping in the laser medium.
  • the laser pulse must not have been triggered by spontaneous emission at the time of the arrival of the returned light.
  • the feedback laser pulse injects photons to initiate the subsequent light pulse and additionally causes (partial) saturation of the absorber, which also contributes to the initiation of the next light pulse. Both occur at a defined time, which is determined by the optical delay path, so that overall the temporal jitter can be reduced to the magnitude of the pulse duration itself.
  • the delay line is formed reflecting. This results in a particularly simple and compact design.
  • the means of the beam splitter the Delay path supplied light pulse passes through this twice, namely in the forward and reverse directions.
  • a glass fiber is preferably used in the laser according to the invention, in which a part of the pulse energy is coupled and reflected back via a fiber Bragg grating at the end of the fiber in the laser resonator.
  • the required fiber length I is thus I ⁇ c / 2nf rep .
  • n is the refractive index of the fiber material
  • f rep is the pulse repetition rate of the laser.
  • the fiber length must therefore be 500 meters, which is technically easy to implement.
  • the laser will also switch to jitter-reduced operation at integer multiples of the pulse repetition rate f rep , since photons are then always made available at the right time for initiating the next laser pulse. That way, the laser can be up to 500 meters long
  • Delay line pulse repetition rates of 200, 400 1000kHz generate at a reduced jitter.
  • the delay line can in principle also be realized by a conventional multipass cell made of mirrors.
  • An advantageous development is to provide two or more fiber Bragg gratings along the longitudinal extent of the light-conducting fiber. As a result, delay lines of different lengths are formed in each case.
  • the pulse repetition rate of the laser can then be adjusted so that the above-mentioned operation I ⁇ c / 2nf rep is satisfied, ie the reciprocal of the pulse repetition rate of the free-running laser is somewhat greater than predetermined by the delay path.
  • the laser When coupling a portion of the decoupled from the optical resonator light in the optical delay line by means of the beam splitter, the laser then adjusts to the pulse repetition rate of the delay line, for which the above condition is best met.
  • a useful development of the laser according to the invention is that the part of the light supplied by means of the beam splitter of the delay path passes through a frequency converter before being fed back into the optical resonator.
  • a part of the light fed back for the initiation of the next laser pulse has a different wavelength than the light of the generated light pulse and can be used for other applications.
  • the optical resonator is followed by an optical amplifier.
  • This may be e.g. to act a fiber amplifier in a conventional manner.
  • the power of the laser can be adjusted according to the application.
  • the laser according to the invention is suitable for use in distance measurement (LIDAR). Likewise, the laser is well suited for high-precision material processing. Further fields of application arise in the area of nonlinear frequency conversion and time-resolved spectroscopy.
  • Figure 1 schematic representation of the structure of the laser according to the invention
  • FIG. 2 shows the time course of power, stored energy and losses in the laser according to the invention
  • Pulse repetition rate of a passive Q-switched laser without feedback according to the invention
  • FIG. 4 shows a reduction of the temporal jitter according to the invention with feedback
  • FIG. 5 depiction of the invention
  • FIG. 1 shows schematically the structure of the laser according to the invention.
  • the light of a pump light source 1, which is e.g. is a laser diode is supplied via an existing two collector lenses 2, 3 simple optics an optical resonator, which consists of a Auskoppelapt 4 and a saturable absorber mirror 5.
  • a laser medium 6 which is optically pumped by the pump light source 1.
  • the laser medium 6 is pumped by the pumping light source 1 until the inversion, i. the stored energy in the laser medium 6 provides sufficient optical gain to compensate for the losses of the saturable absorber mirror 5 and the losses resulting from the out-coupled light from the resonator.
  • the laser then reaches its threshold.
  • the laser pulse is coupled out of the resonator and separated by a dichroic 7 from the pump light. After that, the process starts again.
  • a portion of the decoupled laser pulse is fed back by means of a beam splitter 8 via a reflective delay line 9 in the laser.
  • the delay time is slightly smaller than the reciprocal of the pulse repetition rate of the passively Q-switched laser.
  • the delay line 9 consists of a light-conducting fiber, the end having a reflective fiber Bragg grating.
  • FIG. 2 shows the time course of power 10, energy stored in the laser medium, ie inversion 11 and losses 12 in the laser illustrated in FIG.
  • the drawn on the time axis arrow 13 marks the time of arrival of the means of the delay line 9 in time delayed feedback laser pulse.
  • sufficient inversion 11 has already been stored to generate the next pulse by optically pumping the laser medium 6.
  • the laser pulse has not yet been triggered by spontaneous emission.
  • the feedback laser pulse injects photons to initiate the subsequent laser pulse 10 by stimulated emission.
  • the feedback laser pulse causes (partially) sudden saturation of the saturable absorber 5 at the time 13, which also contributes to the initiation of the subsequent laser pulse 10.
  • the inversion 11 decreases to a minimum during the generation of the laser pulse 10.
  • the losses 12 rise again in the laser resonator. After that, the process starts again.
  • the feedback according to the invention reduces the temporal jitter of the pulse repetition to the order of magnitude of the pulse duration itself.
  • FIG. 3 illustrates the temporal jitter of the pulse repetition rate of the passively Q-switched laser shown in FIG. 1 without feedback according to the invention on the basis of an oscillogram.
  • the laser pulse 14 shown in the middle of the diagram serves as a reference pulse.
  • the arrows 15 illustrate the temporal variation, i. the jitter, in the generation of the subsequent laser pulse 16th
  • the oscillogram in FIG. 4 correspondingly shows the reduction of the temporal jitter in the case of the passive Q-switched laser with feedback according to the invention.
  • the temporal jitter is no longer visible.
  • the jitter is reduced to the order of magnitude of the pulse duration itself.
  • the laser according to the invention comprises an optical pump (with associated optics) 17.
  • This pumps a passively Q-switched laser 18 of a type known per se.
  • a part of the light coupled out of the resonator of the laser 18 is fed to an optical delay line 19 and fed back after passing through the delay line 19.
  • the time delay produced by the delay section 19 is At ⁇ n / f rep. Where n is a natural number.
  • n is a natural number.
  • sufficient energy to generate the next pulse by optical pumping by the pump 17 must be stored in the laser medium of the laser 18.
  • no new laser pulse has been triggered by spontaneous emission, and the system shown emits a jitter-reduced pulse train 20 as a result.

Abstract

Die Erfindung betrifft einen gütegeschalteten Laser mit einer Pumplichtquelle (1), einem optischen Resonator, in dem sich ein Lasermedium (6) befindet, und einem passiven Güteschalter (5). Aufgabe der Erfindung ist es, einen verbesserten gütegeschalteten Laser bereitzustellen, der einfach und kompakt aufgebaut ist und gleichzeitig einen möglichst geringen zeitlichen Jitter der Repetitionsrate aufweist. Hierzu schlägt die Erfindung vor, dass mittels eines Strahlteilers (8) ein Teil des aus dem optischen Resonator ausgekoppelten Lichtes einer optischen Verzögerungsstrecke (9) zugeführt wird und nach Durchlaufen der optischen Verzögerungsstrecke (9) in den optischen Resonator zurückgekoppelt wird. Der optische Resonator besitz einen Auskoppelspiegel (4) und der gekoppelte Resonator kann einen dichroitischen Strahlteiler (7) und einen Polarisationstrahlteiler (8) beinhalten.

Description

STABILISIERUNG DER REPETITIONSRATE EINES PASSIV GÜTEGESCHALTETEN LASERS ÜBER
GEKOPPELTE RESONATOREN
Die Erfindung betrifft einen gütegeschalteten Laser mit einer Pumplichtquelle, einem optischen Resonator, in dem sich ein Lasermedium befindet, und einem passiven Güteschalter.
Das Güteschalten (englisch„Q-switching") ist eine häufig verwendete Technik zum Erzeugen intensiver kurzer Lichtpulse mit Lasern. Gütegeschaltete Laser sind vielseitig anwendbar. Bei einigen Anwendungen steht die kurze Pulsdauer im Vordergrund, bei anderen Anwendungen eher die hohe Pulsenergie und die Spitzenleistung, bei wieder anderen Anwendungen eine hohe Pulswiederholrate. Die durch Güteschalten erzeugten Pulse dauern typischerweise einige Zehn Pikosekunden bis einige Hundert Nanosekunden. Die Pulsenergie variiert zwischen einigen Nanojoule und vielen Millijoule.
Das Prinzip des Güteschaltens beruht darauf, dass in einer ersten Phase eine gewisse Energiemenge mittels der Pumplichtquelle in dem Lasermedium gespeichert wird und diese Energie in einer zweiten Phase dann in Form eines kurzen Pulses abgerufen wird. In der ersten Phase ist die Lasertätigkeit durch den Güteschalter im optischen Resonator des Lasers unterbunden. Nach dem Umschalten des Güteschalters sind diese Verluste schlagartig reduziert. Das von dem Lasermedium emittierte Fluoreszenzlicht wird nun bei jedem Resonatorumlauf deutlich verstärkt. Die Verstärkung ist dabei um Größenordnungen höher als im Falle des kontinuierlichen Betriebes. Hierbei steigt die optische Leistung im Resonator und dementsprechend die aus dem Resonator ausgekoppelte Leistung über mehrere Resonatorumläufe an, bis der
BßgTÄTieU QS OPIE Lichtpuls dem Lasermedium einen erheblichen Teil der dort gespeicherten Energie entnommen hat. Danach fällt die Laserleistung wieder steil ab, und ein neuer Zyklus kann beginnen.
Die Pumplichtquelle eines gütegeschalteten Lasers kann gepulst betrieben werden oder auch kontinuierlich, was bei Diodenlasern häufig der Fall ist. Das Lasermedium muss bei gütegeschalteten Lasern die Fähigkeit besitzen, eine nennenswerte Energiemenge über eine gewisse Zeit zu speichern.
Beim passiven Güteschalten ist der Güteschalter ein sättigbarer Absorber. Dieser erzeugt zunächst hohe Verluste, die allerdings durch die Laserverstärkung überkompensiert werden, sobald ausreichend Energie im Lasermedium gespeichert ist. Sobald die Laserleistung einen gewissen Wert erreicht, wird die Absorption stark gesättigt, so dass nun plötzlich die Verstärkung zunimmt und die Leistung sehr schnell ansteigt, bis dem Lasermedium wiederum ein Großteil der gespeicherten Energie entzogen ist und die Leistung wieder abnimmt. Der sättigbare Absorber funktioniert gleichsam als automatisch betätigter Schalter. Die Pulswiederholrate eines gütegeschalteten Lasers wird bestimmt durch die Pumpleistung, die sättigbare Absorption, die effektive Anzahl der beteiligten Laserionen und andere Parameter. Durch geeignete Auswahl des Lasermediums und die Einstellung diverser Laserparameter können die Pulsparameter von gütegeschalteten Lasern, insbesondere Pulsdauer, Pulsenergie und Pulswiederholrate, in sehr großen Bereichen variiert werden.
Besonders kurze Pulsdauern lassen sich mit Mikrochip-Lasern erzielen, die sich durch sehr kurze Resonatoren ohne Luftstrecken auszeichnen. Diese zeichnen sich durch einen sandwichartigen Aufbau aus, der aus einem Auskoppelspiegel und einem sättigbaren Absorberspiegel (SESAM) besteht, die den Resonator des Lasers definieren, wobei sich zwischen dem Laserspiegel und dem sättigbaren Absorberspiegel das Lasermedium (z.B. ein Nd:YVO-Kristall) befindet. Ein derartiger Aufbau ist kostengünstig herstellbar und außerdem sehr kompakt. Als Pumplichtquelle dient eine Laserdiode, deren Licht durch eine einfache Optik in den zuvor beschriebenen Resonatoraufbau eingekoppelt wird. Die in dem Resonator erzeugten Pulse werden mittels eines dichroitischen Spiegels vom Pumplicht separiert.
Wie oben erläutert, wird bei einem passiv gütegeschalteten Laser die Emission des Laserpulses durch spontane Emission initiiert, sobald ausreichend Energie im Lasermedium gespeichert ist. Da die spontane Emission ein statistischer Vorgang ist, schwankt die Zeit zwischen ausreichender Energiespeicherung im Lasermedium und Initiierung des Laserpulses. Diese Schwankung wird als zeitlicher Jitter bei passiv gütegeschalteten Lasern bezeichnet. Der Jitter stellt die mittlere Schwankung des Kehrwertes der Pulswiederholrate des Lasers dar. Der Jitter liegt bei passiv gütegeschalteten Lasern üblicherweise um mehrere Größenordnungen über der Pulsdauer. Diese Problematik schließt nachteiligerweise passiv gütegeschaltete Laser für alle Anwendungen aus, bei denen es auf eine zeitliche Synchronisation mit anderen Prozessen ankommt.
Aus dem Stand der Technik sind Ansätze bekannt, die den Jitter eines passiv gütegeschalteten Lasers reduzieren.
Zum einen kann eine gepulste Laserdiode als Pumplichtquelle verwendet werden. Durch die hohe Pumprate steigt die Rate der spontanen Emission an. Dadurch steigt auch die Wahrscheinlichkeit für die Initiierung des Laserpulses. Dadurch kann der Jitter etwa um eine Größenordnung reduziert werden, ist aber immer noch deutlich größer als die Pulsdauer.
Zum anderen kann ein externer, gepulster Laser verwendet werden, der den sättigbaren Absorber zumindest teilweise sättigt oder schlagartig Photonen in den Laser injiziert, kurz bevor der passiv gütegeschaltete Laser die Schwelle ausreichender Energiespeicherung erreicht. Da die Sättigung des Absorbers bzw. Einspeisen von Photonen in den Resonator mittels des externen Lasers zu einem definierten Zeitpunkt geschieht, wird auch der Laserpuls zu einem definierten Zeitpunkt ausgelöst. Auf diese Weise kann der Jitter kleiner werden als die Pulsdauer. Allerdings muss der externe Laser selbst kurze Pulse mit ausreichender Leistung liefern, was hohe Anforderungen an den externen Laser stellt. Vor diesem Hintergrund ist es Aufgabe der Erfindung, einen einfachen und kompakten passiv gütegeschalteten Laser bereitzustellen, der Laserpulse mit geringem zeitlichen Jitter emittiert.
Diese Aufgabe löst die Erfindung ausgehend von einem passiven gütegeschalteten Laser der eingangs angegebenen Art dadurch, dass mittels eines Strahlteilers ein Teil des aus dem optischen Resonator ausgekoppelten Lichtes einer optischen Verzögerungsstrecke zugeführt wird und nach Durchlaufen der optischen Verzögerungsstrecke in den optischen Resonator zurückgekoppelt wird.
Wie oben erläutert, initiieren bei herkömmlichen passiv gütegeschalteten Lasern durch spontane Emission erzeugte Photonen den Laserpuls. Dieser statistische Prozess wird gemäß der Erfindung durch einen determinierten Prozess ersetzt, um die Schwankungen in der Pulswiederholrate, d.h. den zeitlichen Jitter, zu minimieren. Zu diesem Zweck wird gemäß der Erfindung ein Teil des erzeugten Laserpulses nach Auskopplung aus dem Resonator mittels eines Strahlteilers über eine Verzögerungsstrecke geführt und dann in den Laser zurückgekoppelt. Dabei sollte die durch die Verzögerungsstrecke erzeugte zeitliche Verzögerung etwas kleiner sein als der Kehrwert der Pulswiederholrate des Lasers, damit ausreichend Energie zur Erzeugung des nächsten Pulses durch optisches Pumpen in dem Lasermedium gespeichert werden kann. Gleichzeitig darf der Laserpuls zum Zeitpunkt des Eintreffens des zurückgekoppelten Lichtes noch nicht durch spontane Emission ausgelöst worden sein. Der zurückgekoppelte Laserpuls injiziert Photonen zur Initiierung des darauf folgenden Lichtpulses und bewirkt zusätzlich eine (teilweise) Sättigung des Absorbers, was ebenfalls zur Initiierung des nächsten Lichtpulses beiträgt. Beides geschieht zu einem definierten Zeitpunkt, der durch die optische Verzögerungsstrecke bestimmt ist, so dass insgesamt der zeitliche Jitter auf die Größenordnung der Pulsdauer selbst reduziert werden kann.
Gemäß einer bevorzugten Ausgestaltung des erfindungsgemäßen Lasers ist die Verzögerungsstrecke reflektierend ausgebildet. Dadurch ergibt sich ein besonders einfacher und kompakter Aufbau. Der mittels des Strahlteilers der Verzögerungsstrecke zugeführte Lichtpuls durchläuft diese zweimal, nämlich in Hin- und Rückrichtung.
Als Verzögerungsstrecke wird bei dem erfindungsgemäßen Laser bevorzugt eine Glasfaser verwendet, in die ein Teil der Pulsenergie eingekoppelt und über ein Faser-Bragg-Gitter am Ende der Faser in dem Laserresonator zurückreflektiert wird. Die benötigte Faserlänge I beträgt damit I < c/2nfrep. Dabei ist n der Brechungsindex des Fasermaterials und frep die Pulswiederholrate des Lasers. Bei einer Pulswiederholrate von z.B. 200 kHz muss die Faserlänge demnach 500 Meter betragen, was technisch einfach zu realisieren ist. Wird durch Erhöhen der Pumpleistung die Pulswiederholrate erhöht, so wird der Laser bei ganzzahligen Vielfachen der Pulswiederholrate frep ebenfalls in einen Jitter-reduzierten Betrieb übergehen, da dann ebenfalls immer zum richtigen Zeitpunkt Photonen zur Initiierung des nächsten Laserpulses zur Verfügung gestellt werden. Auf diese Weise kann der Laser mit einer 500 Meter langen
Verzögerungsstrecke Pulswiederholraten von 200, 400 1000kHz erzeugen bei einem reduzierten Jitter. Die Verzögerungsstrecke lässt sich prinzipiell auch durch eine konventionelle Multipass-Zelle aus Spiegeln realisieren.
Eine vorteilhafte Weiterbildung besteht darin, zwei oder mehr Faser-Bragg-Gitter entlang der Längserstreckung der lichtleitenden Faser vorzusehen. Dadurch werden jeweils unterschiedlich lange Verzögerungsstrecken gebildet. Durch geeignetes Einstellen der Pumpleistung der Pumplichtquelle kann dann die Pulswiederholrate des Lasers so eingestellt werden, dass die oben erwähnte Bedienung I < c/2nfrep erfüllt wird, der Kehrwert der Pulswiederholrate des freilaufenden Lasers also etwas größer ist als durch die Verzögerungsstrecke vorgegeben. Bei Einkopplung eines Teils des aus dem optischen Resonator ausgekoppelten Lichtes in die optische Verzögerungsstrecke mittels des Strahlteilers stellt sich der Laser dann auf die Pulswiederholrate der Verzögerungsstrecke ein, für die die oben genannte Bedingung am besten erfüllt ist. Auf diese Weise lassen sich mit einer vorgefertigten Verzögerungsstrecke mehrere verschiedene Pulswiederholraten realisieren, bei denen der zeitliche Jitter, wie oben erläutert, reduziert ist. Vorteilhaft ist weiterhin eine Ausgestaltung des erfindungsgemäßen Lasers, bei der die Verzögerungsstrecke verstellbar ist. Dies ermöglicht es, die Pulswiederholrate des Lasers kontinuierlich durchzustimmen.
Eine sinnvolle Weiterbildung des erfindungsgemäßen Lasers besteht darin, dass der mittels des Strahlteilers der Verzögerungsstrecke zugeführte Teil des Lichtes vor der Rückkopplung in den optischen Resonator einen Frequenzkonverter durchläuft. Bei dieser Ausgestaltung hat ein Teil des zur Initiierung des jeweils nächsten Laserpulses zurückgekoppelten Lichtes eine andere Wellenlänge als das Licht des erzeugten Lichtpulses und kann für andere Anwendungen herangezogen werden.
Gemäß einer bevorzugten Ausgestaltung der Erfindung, ist dem optischen Resonator ein optischer Verstärker nachgeschaltet. Dabei kann es sich z.B. um einen Faserverstärker an sich bekannter Art handeln. Durch den nachgeschalteten optischen Verstärker kann die Leistung des Lasers entsprechend der Anwendung angepasst werden.
Der erfindungsgemäße Laser eignet sich zur Verwendung in der Entfernungsmessung (LIDAR). Ebenso ist der Laser für die hochpräzise Materialbearbeitung gut geeignet. Weitere Anwendungsfelder ergeben sich im Bereich der nichtlinearen Frequenzkonversion und der zeitaufgelösten Spektroskopie.
Ein Ausführungsbeispiel der Erfindung wird im Folgenden Anhand der Figuren näher erläutert. Es zeigen:
Figur 1 : schematische Darstellung des Aufbaus des erfindungsgemäßen Lasers;
Figur 2: zeitlicher Verlauf von Leistung, gespeicherter Energie und Verlusten in dem erfindungsgemäßen Laser;
Figur 3: Darstellung des zeitlichen Jitters der
Pulswiederholrate eines passiv gütegeschalteten Lasers ohne erfindungsgemäße Rückkopplung;
Figur 4 erfindungsgemäße Reduktion des zeitlichen Jitters mit Rückkopplung;
Figur 5 Darstellung des erfindungsgemäßen
Lasers als Blockdiagramm.
Die Figur 1 zeigt schematisch den Aufbau des erfindungsgemäßen Lasers. Das Licht einer Pumplichtquelle 1 , bei der es sich z.B. um eine Laserdiode handelt, wird über eine aus zwei Sammellinsen 2, 3 bestehende einfache Optik einem optischen Resonator zugeführt, der aus einem Auskoppelspiegel 4 und einem sättigbaren Absorberspiegel 5 besteht. Zwischen dem Auskoppelspiegel 4 und dem sättigbaren Absorberspiegel 5 befindet sich ein Lasermedium 6, das mittels der Pumplichtquelle 1 optisch gepumpt wird. Das Lasermedium 6 wird solange mittels der Pumplichtquelle 1 gepumpt, bis die Inversion, d.h. die gespeicherte Energie im Lasermedium 6 ausreichend optische Verstärkung liefert, um die Verluste des sättigbaren Absorberspiegels 5 und die durch das aus dem Resonator ausgekoppelte Licht entstehenden Verluste zu kompensieren. Der Laser erreicht dann seine Schwelle. Das im Resonator 4, 5, 6 entstehende Laserlicht bleicht den sättigbaren Absorber 5, die Güte des Resonators steigt an und ein Laserpuls wird erzeugt. Der Laserpuls wird aus dem Resonator ausgekoppelt und über einen Dichroiten 7 vom Pumplicht separiert. Danach beginnt der Prozess von neuem. Ein Teil des ausgekoppelten Laserpulses wird mit Hilfe eines Strahlteilers 8 über eine reflektierende Verzögerungsstrecke 9 in den Laser zurückgekoppelt. Dabei ist die Verzögerungszeit etwas kleiner als der Kehrwert der Pulswiederholrate des passiv gütegeschalteten Lasers. Bei dem dargestellten Ausführungsbeispiel besteht die Verzögerungsstrecke 9 aus einer lichtleitenden Faser, die endseitig ein reflektierendes Faser-Bragg-Gitter aufweist.
Die Figur 2 zeigt den zeitlichen Verlauf von Leistung 10, im Lasermedium gespeicherter Energie, d.h. Inversion 11 und Verlusten 12 in dem in Figur 1 dargestellten Laser. Der auf der Zeitachse eingezeichnete Pfeil 13 markiert den Zeitpunkt des Eintreffens des mittels der Verzögerungsstrecke 9 zeitlich verzögert zurückgekoppelten Laserpulses. Zu dem Zeitpunkt 13 ist bereits ausreichend Inversion 11 zur Erzeugung des nächsten Pulses durch optisches Pumpen des Lasermediums 6 gespeichert worden. Der Laserpuls ist aber noch nicht durch Spontanemission ausgelöst worden. Der zurückgekoppelte Laserpuls injiziert Photonen zur initiierung des darauf folgenden Laserpulses 10 durch stimulierte Emission. Zusätzlich bewirkt der zurückgekoppelte Laserpuls zu dem Zeitpunkt 13 eine (teilweise) plötzliche Sättigung des sättigbaren Absorbers 5, was ebenfalls zur Initiierung des darauf folgenden Laserpulses 10 beiträgt. Wie in dem Diagramm in der Figur 2 zu erkennen ist, nimmt die Inversion 11 während der Erzeugung des Laserpulses 10 bis auf ein Minimum ab. Nach Erzeugung des Laserpulses 10 steigen die Verluste 12 in dem Laserresonator wieder an. Danach beginnt der Prozess von neuem. Durch die erfindungsgemäße Rückkopplung wird der zeitliche Jitter der Pulswiederholung auf die Größenordnung der Pulsdauer selbst reduziert.
Die Figur 3 illustriert den zeitlichen Jitter der Pulswiederholrate des in der Figur 1 dargestellten passiv gütegeschalteten Lasers ohne erfindungsgemäße Rückkopplung anhand eines Oszillogramms. Der in dem Diagramm in der Mitte angezeigte Laserpuls 14 dient als Bezugspuls. Die Pfeile 15 verdeutlichen die zeitliche Schwankung, d.h. den Jitter, bei der Erzeugung des darauf folgenden Laserpulses 16.
Das Oszillogramm in Figur 4 zeigt in entsprechender Weise die Reduktion des zeitlichen Jitters bei dem erfindungsgemäßen passiv gütegeschalteten Lasers mit Rückkopplung. In dem in der Figur 4 dargestellten Oszillogramm ist der zeitliche Jitter nicht mehr sichtbar. Der Jitter ist auf die Größenordnung der Pulsdauer selbst reduziert.
Gemäß dem Blockdiagramm in Figur 5, umfasst der erfindungsgemäße Laser eine optische Pumpe (mit zugehöriger Optik) 17. Diese pumpt einen passiv gütegeschalteten Laser 18 an sich bekannter Art. Dieser weist eine Repetitionsrate frep auf. Eine ein Teil des aus dem Resonator des Lasers 18 ausgekoppelten Lichtes wird einer optischen Verzögerungsstrecke 19 zugeführt und nach Durchlaufen der Verzögerungsstrecke 19 zurückgekoppelt. Die durch die Verzögerungsstrecke 19 erzeugt zeitliche Verzögerung beträgt At < n/frep. Dabei ist n eine natürliche Zahl. Dabei steht ,<" für etwas kleiner in dem oben erläuterten Sinne. Zum Zeitpunkt des Eintreffens des zurückgekoppelten Laserpulses muss ausreichend Energie zur Erzeugung des nächsten Pulses durch optisches Pumpen mittels der Pumpe 17 in dem Lasermedium des Lasers 18 gespeichert sein. Gleichzeitig darf zum Zeitpunkt des Eintreffens des zurückgekoppelten Lichtes noch kein neuer Laserpuls durch spontane Emission ausgelöst worden sein. Das dargestellte System emittiert im Ergebnis einen Jitter-reduzierten Pulszug 20.
- Patentansprüche -

Claims

Patentansprüche
1. Gütegeschalteter Laser mit einer Pumplichtquelle (1 ), einem optischen Resonator, in dem sich ein Lasermedium (6) befindet, und einem passiven Güteschalter (5),
d a d u r c h g e k e n n z e i c h n e t , dass mittels eines Strahlteilers (8) ein Teil des aus dem optischen Resonator ausgekoppelten Lichtes einer optischen Verzögerungsstrecke (9) zugeführt wird und nach Durchlaufen der optischen Verzögerungsstrecke (9) in den optischen Resonator zurückgekoppelt wird.
2. Laser nach Anspruch 1 , dadurch gekennzeichnet, dass die Verzögerungsstrecke (9) derart ausgelegt ist, dass die zeitliche Verzögerung, mit der das Licht in den Resonator zurückgekoppelt wird, etwas kleiner als der Kehrwert der Pulswiederholrate oder etwas kleiner als ganzzahlige Vielfache des Kehrwertes der Pulswiederholrate des Lasers ist.
3. Laser nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Verzögerungsstrecke (9) reflektierend ist.
4. Laser nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Strahlteiler (8) ein Polarisationsstrahlteiler, ein dielektrischer Spiegel oder ein faseroptischer Strahlteiler ist.
5. Laser nach Anspruch 4, dadurch gekennzeichnet, dass die Verzögerungsstrecke (9) eine lichtleitende Faser umfasst, wobei die lichtleitende Faser endseitig ein reflektierendes Faser-Bragg-Gitter aufweist.
6. Laser nach Anspruch 5, dadurch gekennzeichnet, dass die lichtleitende Faser entlang ihrer Längserstreckung zwei oder mehr Faser-Bragg- Gitter aufweist.
7. Laser nach Anspruch 3, 4, 5 oder 6, dadurch gekennzeichnet, dass die Verzögerungsstrecke (9) eine Multipass-Zelle mit zwei oder mehr Spiegeln umfasst.
8. Laser nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Pumpleistung der Pumplichtquelle (1 ) einstellbar ist.
9. Laser nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Verzögerungsstrecke (9) verstellbar ist.
10. Laser nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der mittels des Strahlteilers (8) der Verzögerungsstrecke (9) zugeführte Teil des Lichtes vor der Rückkopplung in den optischen Resonator einen Frequenzkonverter durchläuft.
11. Laser nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Güteschalter (5) ein sättigbarer Absorber ist.
12. Laser nach einem der Ansprüche 1 bis 11 , gekennzeichnet durch einen dem Resonator nachgeschalteten optischen Verstärker.
13. Verwendung eines Lasers nach einem der Ansprüche 1 bis 11 für die Entfernungsmessung, die Material bearbeitung, die nichtlineare Frequenzkonversion oder die zeitaufgelöste Spektroskopie.
- Zusammenfassung -
PCT/EP2010/005710 2009-09-21 2010-09-17 Stabilisierung der repetitionsrate eines passiv gütegeschalteten lasers über gekoppelte resonatoren WO2011032711A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/497,412 US8625644B2 (en) 2009-09-21 2010-09-17 Stabilisation of the repetition rate of a passively Q-switched laser by means of coupled resonators
EP10790828A EP2481134A1 (de) 2009-09-21 2010-09-17 Stabilisierung der repetitionsrate eines passiv gütegeschalteten lasers über gekoppelte resonatoren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009042003A DE102009042003B4 (de) 2009-09-21 2009-09-21 Gütegeschalteter Laser
DE102009042003.7 2009-09-21

Publications (1)

Publication Number Publication Date
WO2011032711A1 true WO2011032711A1 (de) 2011-03-24

Family

ID=43502544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/005710 WO2011032711A1 (de) 2009-09-21 2010-09-17 Stabilisierung der repetitionsrate eines passiv gütegeschalteten lasers über gekoppelte resonatoren

Country Status (4)

Country Link
US (1) US8625644B2 (de)
EP (1) EP2481134A1 (de)
DE (1) DE102009042003B4 (de)
WO (1) WO2011032711A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512025A (zh) * 2018-04-10 2018-09-07 西南大学 一种被动调QYb:CaYAlO4全固态脉冲激光器
CN108512025B (zh) * 2018-04-10 2024-05-14 西南大学 一种被动调Q Yb:CaYAlO4全固态脉冲激光器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5557956B2 (ja) * 2011-05-20 2014-07-23 大学共同利用機関法人自然科学研究機構 受動qスイッチ型固体レーザ装置
DE102011114975B3 (de) * 2011-10-06 2013-02-21 Batop Gmbh Passiv gütegeschalteter Mikrochip-Laser mit optischem Verstärker
US9478931B2 (en) 2013-02-04 2016-10-25 Nlight Photonics Corporation Method for actively controlling the optical output of a seed laser
US9263855B2 (en) 2013-03-15 2016-02-16 Nlight Photonics Corporation Injection locking of gain switched diodes for spectral narrowing and jitter stabilization
US10096965B2 (en) 2014-03-13 2018-10-09 Nlight, Inc. Algorithms for rapid gating of seed suspendable pulsed fiber laser amplifiers
CN104409950A (zh) * 2014-11-14 2015-03-11 中国科学院苏州纳米技术与纳米仿生研究所 高功率亚百皮秒脉冲激光系统
US9806488B2 (en) 2015-06-30 2017-10-31 Nlight, Inc. Adaptive boost control for gating picosecond pulsed fiber lasers
US9905992B1 (en) * 2017-03-16 2018-02-27 Luminar Technologies, Inc. Self-Raman laser for lidar system
US11152757B2 (en) 2019-06-06 2021-10-19 Coherent, Inc. High repetition rate seed laser
DE102019120010A1 (de) 2019-07-24 2021-01-28 Arges Gmbh Vorrichtung und Verfahren zur Materialbearbeitung mittels Laserstrahlung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT408589B (de) * 1999-07-07 2002-01-25 Femtolasers Produktions Gmbh Laservorrichtung
JP2004505472A (ja) * 2000-07-28 2004-02-19 ダニエル コプフ 非線形光学系において使用するためのレーザー
US20030063855A1 (en) * 2001-09-28 2003-04-03 Stefan Spaelter Tunable optical delay line
DE10240599A1 (de) * 2002-08-30 2004-03-18 Jenoptik Laser, Optik, Systeme Gmbh Anordnung und Verfahren zur Erzeugung ultrakurzer Laserimpulse
US7505491B1 (en) * 2007-08-29 2009-03-17 Coherent, Inc. Frequency-converted high-power laser with recirculating polarization control

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BOCZAR B P ET AL: "NEW SCHEME FOR ULTRASHORT-PULSED ND3+:YAG LASER OPERATION: A BRANCHED CAVITY, INTERNALLY SEEDED REGENERATIVE AMPLIFIER", APPLIED OPTICS, OPTICAL SOCIETY OF AMERICA, US, vol. 22, no. 11, 1 June 1983 (1983-06-01), pages 1611 - 1613, XP000709227, ISSN: 0003-6935, DOI: DOI:10.1364/AO.22.001611 *
HE G S ET AL: "Multiple mode-locking of the Q-switched Nd: YAG laser with a coupled resonant cavity", OPTICS COMMUNICATIONS, NORTH-HOLLAND PUBLISHING CO. AMSTERDAM, NL, vol. 96, no. 4-6, 15 February 1993 (1993-02-15), pages 321 - 329, XP024455549, ISSN: 0030-4018, [retrieved on 19930215], DOI: DOI:10.1016/0030-4018(93)90281-9 *
KONG F ET AL: "Phase locking of short-pulse Q-switched lasers", OPTICS COMMUNICATIONS, NORTH-HOLLAND PUBLISHING CO. AMSTERDAM, NL, vol. 282, no. 8, 15 April 2009 (2009-04-15), pages 1622 - 1625, XP025993622, ISSN: 0030-4018, [retrieved on 20090120], DOI: DOI:10.1016/J.OPTCOM.2008.12.074 *
MOZDY E J ET AL: "Self-starting of additive-pulse modelocked laser using novel bonded saturable Bragg reflector", ELECTRONICS LETTERS, IEE STEVENAGE, GB, vol. 34, no. 15, 23 July 1998 (1998-07-23), pages 1497 - 1498, XP006010076, ISSN: 0013-5194, DOI: DOI:10.1049/EL:19981032 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512025A (zh) * 2018-04-10 2018-09-07 西南大学 一种被动调QYb:CaYAlO4全固态脉冲激光器
CN108512025B (zh) * 2018-04-10 2024-05-14 西南大学 一种被动调Q Yb:CaYAlO4全固态脉冲激光器

Also Published As

Publication number Publication date
US20120242973A1 (en) 2012-09-27
DE102009042003A1 (de) 2011-04-07
DE102009042003B4 (de) 2011-12-08
US8625644B2 (en) 2014-01-07
EP2481134A1 (de) 2012-08-01

Similar Documents

Publication Publication Date Title
DE102009042003B4 (de) Gütegeschalteter Laser
EP1181753B1 (de) Passiv modengekoppelter femtosekundenlaser
DE19812203A1 (de) Quasi-phasenangepaßtes parametrisches Chirpimpulsverstärkungssystem
DE112005000710T5 (de) Modulares faserbasiertes Chirped-Puls-Verstärkersystem
DE112013005821T5 (de) Kompakte Ultrakurzpulsquellenverstärker
AT408589B (de) Laservorrichtung
DE102004009068A1 (de) Faseroptische Verstärkung von Lichtimpulsen
AT522108A1 (de) Passiv gütegeschalteter Festkörperlaser
DE102012005492A1 (de) Passiv gütegeschalteter Mikrochip-Laser mit einer Pulssteuerung
WO2011128087A2 (de) Lasersystem mit nichtlinearer kompression
DE102008025824A1 (de) Miniaturisierter Laseroszillator-Verstärker
EP1243054A1 (de) Modengekoppelter laser
DE102008006661B3 (de) Laseranordnung mit phasenkonjugierendem Spiegel
DE102007003759B4 (de) Verfahren zur Frequenzstabilisierung gütegeschalteter Laser
DE102006056334B4 (de) Faser-Laser-Anordnung mit regenerativer Impulsverstärkung und Verfahren
DE10240599A1 (de) Anordnung und Verfahren zur Erzeugung ultrakurzer Laserimpulse
DE102008025823B4 (de) Miniaturisierte Laserverstärkeranordnung mit Pumpquelle
WO2020207676A1 (de) Verfahren und vorrichtung zum erzeugen von laserpulsen
EP1775806B1 (de) Verfahren zur Erzeugung zeitlich rechteckiger Ultrakurzpulse
EP2514048B1 (de) Miniaturisierte laserverstärkeranordnung mit pumpquelle
DE2418981B2 (de) Verfahren und einrichtung zur optischen doppelanregung eines stimulierbaren mediums zum verringern der zeitlichen schwankungen der laserpulse im pulsbetrieb mit passiv phasengekoppelter gueteschaltung
WO2004068657A1 (de) Regenerativer verstärker mit resonatorinterner dispersionskompensation ind seed-impuls ohne positiver dispersion
DE102008028037A1 (de) Verfahren zur Erzeugung gepulster Laserstrahlung mit einem Faserlaser
DE102011114975B3 (de) Passiv gütegeschalteter Mikrochip-Laser mit optischem Verstärker
EP1796230A1 (de) Vorrichtung und Verfahren zur Erzeugung einer Pulsfolge von Laserlicht-Mehrfachpulsen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10790828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010790828

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13497412

Country of ref document: US