WO2011031006A2 - CryIAc 유전자로 형질전환된 배추좀나방 저항성 양배추 및 이의 제조 방법 - Google Patents

CryIAc 유전자로 형질전환된 배추좀나방 저항성 양배추 및 이의 제조 방법 Download PDF

Info

Publication number
WO2011031006A2
WO2011031006A2 PCT/KR2010/004818 KR2010004818W WO2011031006A2 WO 2011031006 A2 WO2011031006 A2 WO 2011031006A2 KR 2010004818 W KR2010004818 W KR 2010004818W WO 2011031006 A2 WO2011031006 A2 WO 2011031006A2
Authority
WO
WIPO (PCT)
Prior art keywords
cabbage
plant
transformed
gene
cryiac
Prior art date
Application number
PCT/KR2010/004818
Other languages
English (en)
French (fr)
Other versions
WO2011031006A3 (ko
Inventor
한지학
김보민
박정미
신종섭
박범석
Original Assignee
주식회사 농우바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 농우바이오 filed Critical 주식회사 농우바이오
Publication of WO2011031006A2 publication Critical patent/WO2011031006A2/ko
Publication of WO2011031006A3 publication Critical patent/WO2011031006A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • C07K14/325Bacillus thuringiensis crystal peptides, i.e. delta-endotoxins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/8223Vegetative tissue-specific promoters
    • C12N15/8225Leaf-specific, e.g. including petioles, stomata
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to cabbage moth-resistant cabbage transformed with the CryIAc gene and a method for preparing the same, more specifically, a cabbage plant transformed with a recombinant plant expression vector comprising the CryIAc gene and resistant to cabbage moth;
  • the present invention relates to a method for producing a cabbage plant having a resistance to cabbage moths comprising the step of transforming cabbage plant cells with a recombinant plant expression vector comprising the CryIAc gene to overexpress the CryIAc gene.
  • Bacillus thuringiensis Bacillus thuringiensis Bacteria produce specific toxins that kill certain insects and have long been used as biopesticides, which are much safer than conventional pesticides.
  • This toxin is B. thuringiensis of Bt Are expressed from genes CryI CryI type protein production as a type gene), especially in the midgut of Lepidoptera insects. The toxin binds to receptors in the midgut's epithelial tissue, penetrates into the tissue, dissolves the tissue, and eventually kills the insect. Most lepidoptera insects have receptors that bind CryIAa, CryIAb, and CryIAc toxins.
  • Plutella xylostella is a representative lepidopteran insect that is severely damaging cruciferous crops. By eating the leaves of the larvae, they not only reduce the commercial value of the crop, but also interfere with the growth of the crop.
  • Korean Patent Registration No. 0475674 discloses a method for reproducing using the cabbage of the cabbage and a method for producing a cabbage transformed with a useful foreign gene.
  • the present invention has been made in accordance with the above requirements, the present invention is transformed by inserting the toxin expressed from the Bt gene into the cabbage of the world's largest market value of cruciferous crops transformed to grow while being protected from the cabbage moth We want to build a system that can
  • the present invention is transformed with a recombinant plant expression vector containing the CryIAc gene to provide a cabbage plant having resistance to cabbage moth.
  • the present invention is by transforming the cabbage plant cell with a recombinant plant expression vector containing the CryIAc gene provides a method of manufacturing a cabbage plant having resistance to the cabbage moth, comprising over-expressing the CryIAc gene.
  • the present invention by introducing the CryIAc gene into a cabbage with a high marketing value, the development of cabbage resistant to cabbage moth, which is a major pest of cabbage and crops, by using pesticides and labor reduction effect in the control of Chinese cabbage moth Can be obtained.
  • 1 is a schematic diagram of a pNW2300 / CryIAc vector.
  • A selection medium
  • B shoot induction
  • C shoot extension
  • D root induction
  • E Jiffy purified
  • F soil purified
  • Figure 3 is a diagram showing the results of PCR analysis of the transformed cabbage plant.
  • M Molecular marker
  • 1-26 Transformed (T 0 ); N: Non-transformed;
  • P Bacterial cells harboring CryIAc
  • A T o cabbage after spring treatment
  • B T 1 cabbage seed
  • the present invention is transformed with a recombinant plant expression vector comprising a Cry1Ac gene consisting of the nucleotide sequence represented by SEQ ID NO: 1 to provide a cabbage plant having a resistance to cabbage moth.
  • Bt's native endotoxin protein gene CryIAc encodes 1,178 amino acids at 3,537 bp, and about 1,653 bp of the C-terminal region is involved in the crystallization of endotoxin protein and is not related to toxicity. N-terminal 1,854bp of the site was modified and synthesized. On the other hand, when the gene was modified, the codon was changed to change the codon of the insecticidal-related site of the CryIAc gene similarly to the cabbage crop, but not to change the amino acid sequence (SEQ ID NO: 1).
  • the CryIAc gene has a base sequence having at least 70%, more preferably at least 80%, even more preferably at least 90%, and most preferably at least 95% homology with the nucleotide sequence of SEQ ID NO: 1, respectively. It may include.
  • the "% sequence homology" for a polynucleotide is identified by comparing two optimally arranged sequences with a comparison region, wherein part of the polynucleotide sequence in the comparison region is the reference sequence (addition or deletion) for the optimal alignment of the two sequences. It may include the addition or deletion (ie, gap) compared to).
  • the recombinant plant expression vector may be the pNW2300 / CryIAc vector described in FIG. 1, but is not limited thereto.
  • Recombinant refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a protein encoded by a peptide, a heterologous peptide, or a heterologous nucleic acid.
  • Recombinant cells can express genes or gene fragments that are not found in their natural form in either the sense or antisense form.
  • Recombinant cells can also express genes found in natural cells, but the genes are modified and reintroduced into cells by artificial means.
  • vector is used to refer to a DNA fragment (s), a nucleic acid molecule, that is delivered into a cell. Vectors can replicate DNA and be reproduced independently in host cells.
  • carrier is often used interchangeably with “vector”.
  • expression vector refers to a recombinant DNA molecule comprising a coding sequence of interest and an appropriate nucleic acid sequence necessary for expressing a coding sequence operably linked in a particular host organism. Promoters, enhancers, termination signals and polyadenylation signals available in eukaryotic cells are known.
  • Ti-plasmid vectors which, when present in a suitable host such as Agrobacterium tumerfaciens, can transfer part of themselves, the so-called T-region, into plant cells.
  • a suitable host such as Agrobacterium tumerfaciens
  • Another type of Ti-plasmid vector (see EP 0 116 718 B1) is used to transfer hybrid DNA sequences to protoplasts from which current plant cells or new plants can be produced which properly insert hybrid DNA into the plant genome. have.
  • a particularly preferred form of the Ti-plasmid vector is the so-called binary vector as claimed in EP 0 120 516 B1 and US Pat. No. 4,940,838.
  • viral vectors such as those derived from double stranded plant viruses (eg CaMV) and single stranded viruses, gemini viruses, etc., For example, it may be selected from incomplete plant viral vectors. The use of such vectors can be advantageous, especially when it is difficult to properly transform a plant host.
  • the expression vector will preferably comprise one or more selectable markers.
  • the marker is typically a nucleic acid sequence having properties that can be selected by a chemical method, which corresponds to all genes capable of distinguishing transformed cells from non-transformed cells. Examples include herbicide resistance genes such as glyphosate or phosphinothricin, kanamycin, G418, bleomycin, hygromycin, and chloramphenicol. Resistance genes include, but are not limited to.
  • the promoter may be CaMV 35S, actin, ubiquitin, pEMU, MAS or histone promoter, but is not limited thereto.
  • the term “promoter” refers to a region of DNA upstream from a structural gene and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription.
  • a "plant promoter” is a promoter capable of initiating transcription in plant cells.
  • a “constitutive promoter” is a promoter that is active under most environmental conditions and developmental conditions or cell differentiation. Constitutive promoters may be preferred in the present invention because selection of the transformants may be made by various tissues at various stages. Thus, the constitutive promoter does not limit the selection possibilities.
  • the terminator may use a conventional terminator, such as nopalin synthase (NOS), rice ⁇ -amylase RAmy1 A terminator, phaseoline (phaseoline) terminator, agro Terminators of the octopine gene of bacterium tumefaciens, but are not limited thereto.
  • NOS nopalin synthase
  • rice ⁇ -amylase RAmy1 A terminator phaseoline (phaseoline) terminator
  • phaseoline terminator agro Terminators of the octopine gene of bacterium tumefaciens
  • the present invention also provides seeds of the transformed cabbage plant.
  • the present invention also relates to a cabbage plant having a resistance to cabbage moths comprising the step of transforming cabbage plant cells with a recombinant plant expression vector comprising a Cry1Ac gene consisting of the nucleotide sequence represented by SEQ ID NO: 1, overexpressing the Cry1Ac gene. It provides a method for producing.
  • Plant transformation refers to any method of transferring DNA to a plant. Such transformation methods do not necessarily have a period of regeneration and / or tissue culture. In principle, any transformation method can be used to introduce hybrid DNA according to the invention into suitable progenitor cells. Method is calcium / polyethylene glycol method for protoplasts (Krens, FA et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373), protoplasts Electroporation (Shillito RD et al., 1985 Bio / Technol. 3, 1099-1102), microscopic injection into plant elements (Crossway A. et al., 1986, Mol. Gen. Genet.
  • Plant cells used for plant transformation may be any plant cells.
  • Plant cells may be cultured cells, cultured tissues, cultured organs or whole plants, preferably cultured cells, cultured tissues or cultured organs and more preferably any form of cultured cells.
  • the plant is cabbage.
  • Plant tissue refers to the tissues of differentiated or undifferentiated plants, such as, but not limited to, roots, stems, leaves, pollen, seeds, cancer tissues and various types of cells used in culture, ie single cells, protoplasts. (protoplast), shoots and callus tissue.
  • the plant tissue may be in planta or in an organ culture, tissue culture or cell culture.
  • a plant expression vector pNW2300 / Cry1Ac (FIG. 1) was prepared for transformation into cabbage.
  • the CryIAc gene sequence described in SEQ ID NO: 1 was prepared by forward binding to the CaMV 35S promoter. At this time, the CryIAc gene was inserted into the blunt end at the Kpn I and Nco I restriction enzyme sites. The restriction enzyme sites were combined with the blunt ends of Sma I and Kpn I and Nco I to introduce these into pNW2300 for selection using kanamycin. PCR was performed with the prepared primers to amplify the CryIAc gene to ensure normal cloning. At this time, PCR was denatured at 94 ° C.
  • Plasmid pNW2300 / Cry1Ac of each vector prepared as described above was introduced into Agrobacterium tumefaciens EHA105 and used for plant transformation.
  • Cabbage was used as the axis of cabbage inbred line (ad-bentam) ( Brassica oleracea var. Capitata). Cleaved excreta were precultured for 2 days in MS medium containing 2 mg / L BA and 1 mg / L NAA.
  • the precultured embryos are placed in a conical tube containing 20 ml of MS liquid medium, 2 ml of Agrobacterium solution is added, and shaken at 200 rpm for 20 minutes to allow for overall microbial growth. Application was made. The MS liquid medium was then discarded and excess MS solution was removed with sterile filter paper.
  • Acobacterium-infected cabbage embryos were approximately 50-100 in MS cocultivation medium (MS basal medium, 2 mg / L BA, 1 mg / L NAA, 100 ⁇ M acetoshiring source) coated with sterile 9 cm filter paper. The dogs were placed and incubated under dark conditions for 2 days.
  • Cultured cocultured embryos were cultured in a selection medium (2 mg / L AgNO 3 , 200 mg / L Lilacillin, 15 mg / L Kanamycin-containing preculture medium) at 25 ° C. under light conditions in order to select cells with gene conversion. Subsequently, every four weeks, subcultures form callus.
  • a selection medium (2 mg / L AgNO 3 , 200 mg / L Lilacillin, 15 mg / L Kanamycin-containing preculture medium
  • a well-grown leaf (regrowth of more than 1 cm) is selected from one callus, which is then renal medium (MS + 3% sucrose + 2 mg / L BA + 0.1 mg / L NAA + Elongate in 2 mg / L AgNO 3 and 200 mg / L Lilacillin + 15 mg / L Kanamycin) and organically root in root organic medium (1/2 MS basal medium, 200 mg / L Lilacillin and 15 mg / L Kanamycin) I was. Green plants with roots were planted in a mixture of vermiculite, perlite, and peat moss (2: 1: 1), purified for one week, and then transferred to soil pots and grown in greenhouses.
  • Transgenic cabbages transformed with the synthetic CryIAc gene were cold treated for 30-40 days in a low temperature room at 4 ° C., and then transferred to a greenhouse to induce pollen, self-pollinated, and seed seed was obtained.
  • FIG. 2 is a step-by-step diagram of the development of the transformed cabbage plant. As can be seen in FIG. 2, the transformed cabbage plants were shown to grow into normal plants.
  • PCR polymerase chain reaction
  • FIG. 3 is a diagram showing the results of PCR analysis of the transformed cabbage plant. As can be seen in Figure 3, the transgenic cabbage plant was able to observe a 0.8kb PCR product.
  • Southern blot analysis was performed to confirm whether the CryIAc gene was introduced into the plant after transformation. Specifically, chromosomal DNA was isolated from the leaf sections of the selected newsletter, then cleaved with DraI and HindIII, the cleavage product was subjected to agarose gel electrophoresis, and the CryIAc gene was used as a probe to perform a routine Southern blot analysis procedure. Southern blot analysis was performed.
  • cabbage moth assay For cabbage moth assay, a total of 210 cabbage T 1 was cultivated in a greenhouse. One month after the meal, cabbage root moth larvae 1-2 and 3-4 years old were injected into the cabbage. The larvae had been active for about two months, eating up cabbage leaves and inhibiting the growth of cabbage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Pest Control & Pesticides (AREA)
  • Insects & Arthropods (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 CryIAc 유전자를 포함하는 재조합 식물 발현 벡터로 형질전환되어 배추좀나방에 대해 저항성을 갖는 양배추 식물체 및 CryIAc 유전자를 포함하는 재조합 식물 발현 벡터로 양배추 식물 세포를 형질전환하여 CryIAc 유전자를 과발현하는 단계를 포함하는 배추좀나방에 대한 저항성을 갖는 양배추 식물체의 제조 방법에 관한 것이다.

Description

CryIAc 유전자로 형질전환된 배추좀나방 저항성 양배추 및 이의 제조 방법
본 발명은 CryIAc 유전자로 형질전환된 배추좀나방 저항성 양배추 및 이의 제조 방법에 관한 것으로서, 보다 상세하게는 CryIAc 유전자를 포함하는 재조합 식물 발현 벡터로 형질전환되어 배추좀나방에 대해 저항성을 갖는 양배추 식물체 및 CryIAc 유전자를 포함하는 재조합 식물 발현 벡터로 양배추 식물 세포를 형질전환하여 CryIAc 유전자를 과발현하는 단계를 포함하는 배추좀나방에 대한 저항성을 갖는 양배추 식물체의 제조 방법에 관한 것이다.
작물의 생산성 향상에 크게 기여해온 화학합성 농약의 장기간 사용 및 남용으로 인하여 환경오염, 생태계 파괴 등의 문제가 야기될 뿐만 아니라 농약에 대한 저항성을 갖는 병원균이나 곤충이 출현하게 되기 때문에, 이러한 문제점을 극복하기 위하여 무공해 내지 저공해 농약의 개발이 절실히 요구되고 있는 것이 현실이다.
바실러스 츄린기엔시스 (Bacillus thuringiensis) 박테리아는 특이 독소를 생산하는데, 이 독소는 특정 곤충을 죽게 만드는 역할을 함으로서 일반 살충제보다는 매우 안전한 생물농약으로 오래전부터 사용하였다. 이 독소는 B. thuringiensis Bt 유전자로부터 발현되는데(CryI type 유전자로서 CryI type 단백질 생성) 특히 나비목 곤충의 중장(midgut)에서 활성화된다. 이 독소는 중장의 상피조직에 있는 수용체(receptor)와 결합, 조직 내로 침투하여 조직을 용해시키면서 결국은 곤충을 죽게 한다. 대부분의 나비목 곤충들은 CryIAa, CryIAb, CryIAc 독소와 결합하는 수용체가 있다.
배추좀나방 (Plutella xylostella)은 십자화과 작물에 심하게 피해를 입히고 있는 대표적 나비목 곤충으로서 유충 때 작물 잎을 갉아먹음으로서 작물의 상품성 가치를 떨어뜨릴 뿐만 아니라 작물의 생육을 방해한다.
한국특허등록 제0375674호에는 배추의 배축을 이용한 재생방법 및 유용한 외래유전자로 형질전환된 배추의 생산방법이 개시되어 있다.
본 발명은 상기와 같은 요구에 의해 안출된 것으로서, 본 발명은 Bt 유전자로부터 발현되는 독소를 십자화과 작물 중 세계적으로 시장 가치가 가장 큰 양배추에 삽입하여 형질전환함으로써 양배추가 배추좀나방으로부터 보호를 받으면서 성장할 수 있는 시스템을 구축하고자 한다.
상기 과제를 해결하기 위해, 본 발명은 CryIAc 유전자를 포함하는 재조합 식물 발현 벡터로 형질전환되어 배추좀나방에 대해 저항성을 갖는 양배추 식물체를 제공한다.
또한, 본 발명은 CryIAc 유전자를 포함하는 재조합 식물 발현 벡터로 양배추 식물 세포를 형질전환하여 CryIAc 유전자를 과발현하는 단계를 포함하는 배추좀나방에 대한 저항성을 갖는 양배추 식물체의 제조 방법을 제공한다.
본 발명에 따르면, 시장 가치(marketing value)가 큰 양배추에 CryIAc 유전자를 도입함으로써 배추과 작물의 주요 해충인 배추좀나방에 대해 저항성을 갖는 양배추를 개발함으로써 배추좀나방의 방제에 농약 사용 및 노동력 점감 효과를 얻을 수 있다.
도 1은 pNW2300/CryIAc 벡터의 모식도이다.
도 2는 형질전환된 양배추 식물체의 발생 단계별 그림이다. A: 선발 배지, B: 신초 유도, C: 신초 신장, D: 뿌리유도, E: Jiffy 순화, F: 토양순화
도 3은 형질전환 양배추 식물체의 PCR 분석 결과를 나타내는 그림이다.
M: Molecular marker; 1-26: Transformed (T0); N: Non-transformed; P: Bacterial cells harboring CryIAc
도 4는 형질전환된 양배추 식물체의 서던 블럿 분석 결과이다.
Cont: non-transformed; C2~C39: transformed
도 5는 형질전환 양배추의 To 양배추 및 T1 종자를 보여준다.
A: 춘화 처리 후 To 양배추, B: T1 양배추 종자
도 6은 형질전환 양배추 및 비형질전환 양배추 간에 배추좀나방에 대한 저항성 결과를 보여준다.
본 발명의 목적을 달성하기 위하여, 본 발명은 서열번호 1로 표시된 염기서열로 이루어지는 Cry1Ac 유전자를 포함하는 재조합 식물 발현 벡터로 형질전환되어 배추좀나방에 대해 저항성을 갖는 양배추 식물체를 제공한다.
Bt 본래의 내독소 단백질 유전자 CryIAc는 3,537bp로 아미노산 1,178개를 코딩하고 있는데, C-말단 부위의 약 1,653bp는 내독소 단백질의 결정화(crystallization)에만 관여하고, 독성에는 무관하기 때문에, 살충성 관련 부위인 N-말단의 1,854bp를 수정, 합성하였다. 한편, 유전자의 변형시, CryIAc 유전자의 살충성 관련 부위의 코돈을 배추과 작물과 유사하게 바꾸되 아미노산 배열은 변화시키지 않도록 코돈을 변화시켰다 (서열번호 1).
또한, 상기 염기 서열의 변이체가 본 발명의 범위 내에 포함된다. 구체적으로, 상기 CryIAc 유전자는 서열번호 1의 염기 서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.
상기 재조합 식물 발현 벡터는 도 1에 기재된 pNW2300/CryIAc 벡터일 수 있으나, 이에 제한되지 않는다.
용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로써 인위적인 수단에 의해 세포 내 재도입된 것이다.
용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다. 용어 "발현 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 진핵세포에서 이용가능한 프로모터, 인핸서, 종결신호 및 폴리아데닐레이션 신호는 공지되어 있다.
식물 발현 벡터의 바람직한 예는 아그로박테리움 투머파시엔스와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터(EP 0 116 718 B1호 참조)는 현재 식물 세포, 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로운 식물이 생산될 수 있는 원형질체로 잡종 DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0 120 516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 바이너리(binary) 벡터이다. 본 발명에 따른 페투인 DNA를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중 가닥 식물 바이러스(예를 들면, CaMV) 및 단일 가닥 바이러스, 제미니 바이러스 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스 벡터로부터 선택될 수 있다. 그러한 벡터의 사용은 특히 식물 숙주를 적당하게 형질전환 하는 것이 어려울 때 유리할 수 있다.
발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 것이다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트(glyphosate) 또는 포스피노트리신(phosphinothricin)과 같은 제초제 저항성 유전자, 카나마이신(Kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구현 예에 따른 식물 발현 벡터에서, 프로모터는 CaMV 35S, 액틴, 유비퀴틴, pEMU, MAS 또는 히스톤 프로모터일 수 있으나, 이에 제한되지 않는다. "프로모터"란 용어는 구조 유전자로부터의 DNA 업스트림의 영역을 의미하며 전사를 개시하기 위하여 RNA 폴리머라아제가 결합하는 DNA 분자를 말한다. "식물 프로모터"는 식물 세포에서 전사를 개시할 수 있는 프로모터이다. "구성적(constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이다. 형질전환체의 선택이 각종 단계에서 각종 조직에 의해서 이루어질 수 있기 때문에 구성적 프로모터가 본 발명에서 바람직할 수 있다. 따라서, 구성적 프로모터는 선택 가능성을 제한하지 않는다.
본 발명의 일 구현 예에 따른 식물 발현 벡터에서, 터미네이터는 통상의 터미네이터를 사용할 수 있으며, 그 예로는 노팔린 신타아제(NOS), 벼 α-아밀라아제 RAmy1 A 터미네이터, 파세올린(phaseoline) 터미네이터, 아그로박테리움 투메파시엔스(agrobacterium tumefaciens)의 옥토파인(Octopine) 유전자의 터미네이터 등이 있으나, 이에 한정되는 것은 아니다. 터미네이터의 필요성에 관하여, 그러한 영역이 식물 세포에서의 전사의 확실성 및 효율을 증가시키는 것으로 일반적으로 알고 있다. 그러므로, 터미네이터의 사용은 본 발명의 내용에서 매우 바람직하다.
본 발명은 또한, 상기 형질전환된 양배추 식물체의 종자를 제공한다.
본 발명은 또한, 서열번호 1로 표시된 염기서열로 이루어지는 Cry1Ac 유전자를 포함하는 재조합 식물 발현 벡터로 양배추 식물 세포를 형질전환하여 Cry1Ac 유전자를 과발현하는 단계를 포함하는 배추좀나방에 대한 저항성을 갖는 양배추 식물체의 제조 방법을 제공한다.
식물의 형질전환은 DNA를 식물에 전이시키는 임의의 방법을 의미한다. 그러한 형질전환 방법은 반드시 재생 및(또는) 조직 배양 기간을 가질 필요는 없다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 잡종 DNA를 적당한 선조 세포로 도입시키는데 이용될 수 있다. 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens, F.A. et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373), 원형질체의 전기천공법(Shillito R.D. et al., 1985 Bio/Technol. 3, 1099-1102), 식물 요소로의 현미주사법(Crossway A. et al., 1986, Mol. Gen. Genet. 202, 179-185), 각종 식물 요소의 (DNA 또는 RNA-코팅된) 입자 충격법(Klein T.M. et al., 1987, Nature 327, 70), 식물의 침윤 또는 성숙 화분 또는 소포자의 형질전환에 의한 아그로박테리움 투머파시엔스 매개된 유전자 전이에서 (비완전성) 바이러스에 의한 감염(EP 0 301 316호) 등으로부터 적당하게 선택될 수 있다. 본 발명에 따른 바람직한 방법은 아그로박테리움 매개된 DNA 전달을 포함한다. 특히 바람직한 것은 EP A 120 516호 및 미국 특허 제4,940,838호에 기재된 바와 같은 소위 이원 벡터 기술을 이용하는 것이다.
식물의 형질전환에 이용되는 "식물 세포"는 어떤 식물 세포도 된다. 식물 세포는 배양 세포, 배양 조직, 배양 기관 또는 전체 식물, 바람직하게는 배양 세포, 배양 조직 또는 배양 기관 및 더욱 바람직하게는 배양 세포의 어떤 형태도 된다. 바람직하게는, 상기 식물체는 양배추이다.
"식물 조직"은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 뿌리, 줄기, 잎, 꽃가루, 종자, 암 조직 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. 식물 조직은 인 플란타(in planta)이거나 기관 배양, 조직 배양 또는 세포 배양 상태일 수 있다.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
실시예 1: CryIAc 유전자를 발현하는 식물 발현 벡터의 제조
양배추에 형질전환시키기 위한 식물 발현 벡터 pNW2300/Cry1Ac (도 1)를 제조하였다.
선별 마커로 하이그로마이신(hygromycin)을 사용하는 pCAMBIA1390 벡터에서 하이그로마이신 저항성 유전자를 제거한 후, 서열번호 1로 기재되는 CryIAc 유전자 서열을 CaMV 35S 프로모터에 정방향으로 결합시켜 제조하였다. 이때, CryIAc 유전자는 Kpn I 및 Nco I 제한효소부위에 blunt end로 삽입되어 있었다. 이를 카나마이신을 이용한 선발을 위하여 pNW2300에 도입하고자 제한효소부위가 blunt end인 Sma I과 Kpn I 및 Nco I의 blunt end와 결합하였다. 제조된 프라이머로 PCR을 수행하여 클로닝이 정상적으로 되었는지 CryIAc 유전자를 증폭시켰다. 이때, PCR은 전반응(precycling reaction)으로 94℃에서 5분간 변성시킨 다음, 94℃에서 30초, 58℃에서 30초 및 72℃에서 30초의 순서로 35회 반응을 반복한 후, 마지막 반응에서 72℃에서 5분간 반응시킴으로서 PCR 반응을 종료시켰다.
상기와 같이 제조된 각 벡터의 플라스미드 pNW2300/Cry1Ac를 아그로박테리움 투메파시엔스 EHA105 (Agrobacterium tumefaciens EHA105)로 도입하고 식물의 형질전환에 사용하였다.
실시예 2: 아그로박테리아를 이용한 CryIAc 유전자의 양배추 형질전환
양배추는 양배추 inbred line (ad-bentam)(Brassica oleracea var. capitata)의 배축을 이용하였다. 절단된 배축은 2 mg/L BA 및 1 mg/L NAA 함유 MS 배지에서 2일 동안 전배양하였다.
전배양된 배축을 20㎖의 MS 액체 배지가 들어 있는 코니칼튜브(cornical tube)에 넣고, 2㎖의 아그로박테리움 용액을 첨가한 다음, 이를 200rpm으로 20분 동안 흔들어 주면서 배축에 전반적으로 균이 도포되게 하였다. 그리고, MS 액체 배지는 버리고 과도한 MS 용액은 멸균된 여과지로 제거하였다. 아그로박테리움을 감염시킨 양배추의 배축을 멸균된 9cm 여과지를 깐 MS 공배양(cocultivation)배지(MS 기본 배지, 2 mg/L BA, 1 mg/L NAA, 100μM 아세토시링원)에 약 50~100개씩 놓고 2 일동안 암조건하에서 배양하였다.
공배양이 끝난 배축을 유전자가 전환된 세포를 선발하기 위하여 선발 배지(2mg/L AgNO3, 200 mg/L Lilacillin, 15 mg/L Kanamycin 함유 전배양 배지)에서 25℃, 광조건하에서 배양하며, 배양 후 매 4주 간격으로 계대배양을 하여 캘루스를 형성시킨다. 캘루스로부터 잎이 형성되면, 한 캘루스에서 잘 자란 잎(재분화된 잎의 길이가 1cm이상)을 선발, 이를 신장 배지 (MS + 3% sucrose + 2 mg/L BA + 0.1 mg/L NAA + 2 mg/L AgNO3 및 200 mg/L Lilacillin + 15 mg/L Kanamycin)에서 신장시키고, 뿌리 유기 배지(1/2 MS 기본 배지, 200 mg/L Lilacillin 및 15 mg/L Kanamycin)에서 뿌리를 유기시켰다. 뿌리가 유기된 녹색 식물체들은 버미큐라이트, 퍼라이트, 피트모스(2:1:1)를 혼합한 상토에 옮겨심고, 1주일간 순화시킨 후, 토양 포트에 옮겨 온실에서 재배하였다.
합성 CryIAc 유전자가 전환된 형질전환 양배추들은 4℃ 저온실에서 30~40일 정도 저온 처리한 다음 온실로 옮겨 화분화를 유기시키고, 자가 수분시켜서 후대종자를 획득하였다.
도 2는 형질전환된 양배추 식물체의 발생 단계별 그림이다. 도 2에서 알 수 있는 바와 같이, 형질전환된 양배추 식물체는 정상적인 식물체로 성장하는 것으로 나타났다.
이렇게 형질전환시킨 양배추 식물체의 형질전환율을 분석한 결과, PCR 양성 반응을 보인 신초는 1.5%를 나타내었다 (표 1).
표 1 양배추 형질전환 효율
Number of explants Number of shoots (%) PCR positive shoots (%)
3,500 1,130(32.3) 52(1.5)
실시예 3: 형질전환 양배추의 PCR 분석
형질전환 후 CryIAc 유전자가 식물 내로 도입되었는지 여부를 확인하기 위하여, 중합효소연쇄반응(PCR, polymerase chain reaction)을 수행하였다. 구체적으로, 선발된 소식물의 잎 절편으로부터 염색체 DNA를 분리한 후, 정방향 프라이머 5'-ATG ACG CAC AAT CCC ACT AT-3'(서열번호 2: 35S 프로모터 부위)와 역방향 프라이머 5'-TGT GGC TCT CTT CCC GAA CT-3'(서열번호 3: CryIAc 부위)를 PCR 반응에 이용하였다. 이때, PCR은 전반응(precycling reaction)으로 94℃에서 5분간 변성시킨 다음, 94℃에서 30초, 58℃에서 30초 및 72℃에서 30초의 순서로 35회 반응을 반복한 후, 마지막 반응에서 72℃에서 5분간 반응시킴으로서 PCR 반응을 종료시켰다. 도 3은 형질전환 양배추 식물체의 PCR 분석 결과를 나타내는 그림이다. 도 3에서 알 수 있는 바와 같이, 형질전환 양배추 식물체에서는 0.8kb의 PCR 산물을 관찰할 수 있었다.
실시예 4: 형질전환된 양배추 식물체의 서던 블럿 분석
형질전환 후 CryIAc 유전자가 식물 내로 도입되었는지 여부를 확인하기 위하여, 서던 블럿 분석을 수행하였다. 구체적으로, 선발된 소식물의 잎 절편으로부터 염색체 DNA를 분리한 후, DraI 및 HindIII로 절단하고, 절단 산물을 아가로스 겔 전기영동을 수행하고, CryIAc 유전자를 프로브로 이용하여 통상적인 서던 블럿 분석 절차에 따라 서던 블럿 분석을 수행하였다.
도 4는 형질전환된 양배추 식물체의 서던 블럿 분석 결과이다. 도 4에서 알 수 있는 바와 같이, 형질전환 양배추 식물체에서 DraI 절단의 경우 C2, C3, C10, C20, C24, C30은 single copy로 나타났으며, HindIII 절단의 경우 C3, C20, C24, C30가 single copy임을 확인할 수 있었다.
실시예 5: 형질전환된 양배추 식물체의 감염 시험
배추좀나방 검정을 위해서 양배추 T1 총 210점을 온실에 정식하여 재배하였다. 정식 후 한달 후부터 양배추에 배추좀나방 유충 1-2, 3-4령 각 100마리 정도를 투입하였다. 유충들이 약 두 달간 왕성하게 활동하면서 양배추 잎을 갉아먹었으며 양배추 생육을 저지하였다.
도 6은 형질전환 양배추 및 비형질전환 양배추 간에 배추좀나방에 대한 저항성 결과를 보여준다. 도 6에서 알 수 있는 바와 같이, 합성 CryIAc 유전자 형질전환 양배추의 경우 배추좀나방에 의해 양배추 잎이 전혀 손상되지 않은 반면, 비형질전환 양배추의 잎은 많이 손상되었다는 것을 알 수 있다.
따라서, CryIAc 유전자가 형질전환된 양배추는 배추좀나방에 대해 매우 강한 저항성을 보인다는 것을 알 수 있다.

Claims (4)

  1. 서열번호 1로 표시된 염기서열로 이루어지는 CryIAc 유전자를 포함하는 재조합 식물 발현 벡터로 형질전환되어 배추좀나방에 대해 저항성을 갖는 양배추 식물체.
  2. 제1항에 있어서, 상기 재조합 식물 발현 벡터는 도 1에 기재된 pNW2300/CryIAc 벡터인 것을 특징으로 하는 양배추 식물체.
  3. 제1항에 따른 양배추 식물체의 종자.
  4. 서열번호 1로 표시된 염기서열로 이루어지는 CryIAc 유전자를 포함하는 재조합 식물 발현 벡터로 양배추 식물 세포를 형질전환하여 CryIAc 유전자를 과발현하는 단계를 포함하는 배추좀나방에 대한 저항성을 갖는 양배추 식물체의 제조 방법.
PCT/KR2010/004818 2009-09-08 2010-07-22 CryIAc 유전자로 형질전환된 배추좀나방 저항성 양배추 및 이의 제조 방법 WO2011031006A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0084250 2009-09-08
KR1020090084250A KR20110026545A (ko) 2009-09-08 2009-09-08 CryIAc 유전자로 형질전환된 배추좀나방 저항성 양배추 및 이의 제조 방법

Publications (2)

Publication Number Publication Date
WO2011031006A2 true WO2011031006A2 (ko) 2011-03-17
WO2011031006A3 WO2011031006A3 (ko) 2011-07-21

Family

ID=43732900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004818 WO2011031006A2 (ko) 2009-09-08 2010-07-22 CryIAc 유전자로 형질전환된 배추좀나방 저항성 양배추 및 이의 제조 방법

Country Status (2)

Country Link
KR (1) KR20110026545A (ko)
WO (1) WO2011031006A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160002301A1 (en) * 2013-03-26 2016-01-07 Snu R&Db Foundation Mutant bacillus thuringiensis proteins and genes encoding the same with improved insecticidal activity and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102012019434B1 (pt) * 2011-07-26 2021-11-09 Dow Agrosciences Llc Métodos de controle de pestes, de insetos, molécula e sequência de dna diagnóstica para o evento de soja 9582.814.19.1

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129391B1 (en) * 1988-09-26 2006-10-31 Auburn University Universal chloroplast integration and expression vectors, transformed plants and products thereof
GB9909796D0 (en) * 1999-04-28 1999-06-23 Plant Bioscience Ltd Pesticidal fumes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160002301A1 (en) * 2013-03-26 2016-01-07 Snu R&Db Foundation Mutant bacillus thuringiensis proteins and genes encoding the same with improved insecticidal activity and use thereof
US9512187B2 (en) * 2013-03-26 2016-12-06 Snu R&Db Foundation Mutant Bacillus thuringiensis proteins and genes encoding the same with improved insecticidal activity and use thereof

Also Published As

Publication number Publication date
WO2011031006A3 (ko) 2011-07-21
KR20110026545A (ko) 2011-03-16

Similar Documents

Publication Publication Date Title
US5608142A (en) Insecticidal cotton plants
WO2016127866A1 (zh) 除草剂抗性蛋白质、其编码基因及用途
CN110903361B (zh) 一种植物抗虫基因mVip3Aa及其载体和应用
WO2018084522A1 (ko) 수발아 저항성을 증진시키는 벼 유래 유전자 및 이의 용도
WO2016127867A1 (zh) 除草剂抗性蛋白质、其编码基因及用途
CN110592137B (zh) 拟南芥at5g10290基因及其突变体在提高植物耐旱性的应用
US20120266325A1 (en) Plant Stress Tolerance Related Protein GmSIK1 and Encoding Gene and Use Thereof
WO2016127868A1 (zh) 除草剂抗性蛋白质、其编码基因及用途
CN112080507B (zh) 一种调控银杏类黄酮合成的关键基因GbMYB4及其表达的蛋白、载体和应用
CN110564740B (zh) 一种提高植物抗病性的基因AtPIP2;7及其应用
WO2011031006A2 (ko) CryIAc 유전자로 형질전환된 배추좀나방 저항성 양배추 및 이의 제조 방법
KR20110051539A (ko) PepMoV에 대한 내성이 증진된 고추의 형질전환체 및 그 제조방법
WO2014061932A1 (ko) 애기장대 유래의 reca1 유전자를 이용한 병원균에 대한 면역능력이 증진된 형질전환 식물체의 제조방법 및 그에 따른 식물체
CN111560055B (zh) 水稻基因OsLAT3在调节敌草快的吸收累积中的应用
CA1337280C (en) Production of proteins in plants
KR102265780B1 (ko) 식물체의 개화기 조절 efg1 유전자 및 이의 용도
EP1442127A2 (en) Stress tolerant plants
AU2002334130A1 (en) Stress tolerant plants
US20110047651A1 (en) Transformation and engineered trait modification in miscanthus species
CN102559703B (zh) 一种来自葡萄冠瘿病拮抗菌水生拉恩氏菌的抗草甘磷除草剂基因AroA-Ra及其应用
WO2012057465A2 (ko) 남세균 유래 내염성 SyGT 유전자 및 이의 용도
CN101824080B (zh) 青杄转录因子PwHAP5及其编码基因与应用
CN114231556B (zh) GmECT2在调控植物高度方面的应用
CN116121269B (zh) 调控植物花青素合成的基因TrMYB118及其应用
KR20100041560A (ko) 두 가지 제초제에 대하여 저항성을 가지는 항생제 마커프리형질전환 페스투카 속 식물체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10815551

Country of ref document: EP

Kind code of ref document: A2