WO2011030526A1 - Method for detecting microorganism - Google Patents

Method for detecting microorganism Download PDF

Info

Publication number
WO2011030526A1
WO2011030526A1 PCT/JP2010/005407 JP2010005407W WO2011030526A1 WO 2011030526 A1 WO2011030526 A1 WO 2011030526A1 JP 2010005407 W JP2010005407 W JP 2010005407W WO 2011030526 A1 WO2011030526 A1 WO 2011030526A1
Authority
WO
WIPO (PCT)
Prior art keywords
microorganism
detection unit
microorganisms
viable cell
cell count
Prior art date
Application number
PCT/JP2010/005407
Other languages
French (fr)
Japanese (ja)
Inventor
中野圭洋
亀岡遵
安池雅之
Original Assignee
株式会社Espinex
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Espinex filed Critical 株式会社Espinex
Publication of WO2011030526A1 publication Critical patent/WO2011030526A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition

Definitions

  • the present invention relates to a microorganism detection method.
  • a culture method is generally used as a method for detecting microorganisms.
  • this culturing method for example, it is known that it takes a very long time to perform culturing for 24 hours.
  • Patent Document 1 describes a microorganism detection method that improves the point of individually detecting microorganisms. According to this document, the microorganism is propagated in a state where the microorganism is bound on the detection surface. Thereby, it is described that microorganisms can be detected individually.
  • the culture speed when culturing in a state where a part of the microorganism is bound on a certain surface, the culture speed may be slow because there is a part where the culture solution and the microorganism are not in contact with each other. . Furthermore, since the composition concentration in the liquid varies in the vicinity of the surface, for example, it has been difficult to obtain the results of the growth of microorganisms when an antibacterial agent is added with good reproducibility. In addition, since no shaking mechanism is provided, culturing was difficult depending on the bacterial species.
  • a reservoir for storing a liquid for testing containing at least one type of microorganism An opening provided on the lower surface of the liquid reservoir, Prepare a chip including a detection unit having a membrane filter provided so as to cover the opening, Removing the test liquid in the liquid reservoir from below the membrane filter, and concentrating the microorganisms on the membrane filter; Introducing a liquid medium containing a physiologically active substance into the liquid reservoir, and culturing the microorganisms floating in the liquid medium; Removing the liquid medium from below the membrane filter and collecting the microorganisms on the membrane filter; Introducing a reagent for determining the life and death of the microorganism into the liquid reservoir; And observing the microorganism in the chip.
  • the order of this process may be changed depending on the situation.
  • microorganisms can be detected quickly and with high sensitivity.
  • FIG. 1 is a schematic cross-sectional view taken along a line AA of a sensor chip according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view taken along line BB of the sensor chip according to the embodiment of the present invention.
  • FIG. 1 is a flowchart showing a method of detecting a microorganism according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the sensor chip 100 according to the present embodiment.
  • a liquid reservoir for storing a liquid for testing containing at least one kind of microorganism, an opening provided on the lower surface of the liquid reservoir, and covering the opening
  • a chip sensor chip 100 including a detection unit 140 having a membrane filter 130 provided in this manner is prepared.
  • a series of steps shown on the chip is performed.
  • the method for detecting a microorganism of the present embodiment includes the following steps.
  • Step (1) A step of removing the liquid for testing containing at least one kind of microorganisms in the liquid reservoir from the lower side of the membrane filter 130 to concentrate the microorganisms on the membrane filter 130 (S100, S102).
  • Step (2) A step of introducing a liquid medium containing a physiologically active substance into the liquid reservoir and culturing microorganisms floating in the liquid medium (S104).
  • Step (3) A step of removing the liquid medium from below the membrane filter 130 and collecting the cultured microorganisms on the membrane filter 130 (S106).
  • Step (4) A step of introducing a reagent for determining the viability of the microorganism into the liquid reservoir (S108).
  • Step (5) A step of observing microorganisms in the chip (sensor chip 100) (S110).
  • the detection unit 140 that cultures microorganisms in a liquid medium containing a physiologically active substance is used as the detection unit 140 to be detected, while the microorganisms are cultured in a liquid medium that does not contain a physiologically active substance.
  • the detection unit 140 is referred to as a reference target detection unit 140.
  • the action of the physiologically active substance is enhanced in the detection target, while the growth rate of the microorganism is increased in the reference target. Furthermore, such effects can be enhanced by performing shaking culture. For this reason, in the present invention, the difference in the viable cell count ratio between the detection target and the reference target becomes clear, and the sensitivity of microorganisms can be detected with high sensitivity and speed.
  • microorganisms are collected in a very small area, and the microorganisms are fluorescently observed and counted, so a culture method for observing colonies that are a very large group of microorganisms, and the conventional method for detecting turbidity of samples Compared with the method, it is possible to detect a very small change in the number of microorganisms.
  • the sensitivity of microorganisms can be detected with high sensitivity and speed.
  • an antibiotic can be used as the physiologically active substance.
  • a commercially available fluorescent dyeing reagent can be used, for example.
  • antibiotics are used, the drug sensitivity of the detection target bacteria can be examined.
  • the microorganism include bacteria and fungi.
  • a microorganism detection system used in the microorganism detection method of the present embodiment.
  • a microorganism detection system including a liquid feeding mechanism, a suction mechanism, a shaking mechanism, a constant temperature mechanism, a washing mechanism, a moving mechanism, and a detection mechanism is used to perform a series of this process on the sensor chip 100.
  • a microorganism detecting system including the concentrating device 160 and the detecting device 190 shown in FIGS. 7 and 9 is used.
  • the concentration device 160 and the detection device 190 are used with the sensor chip 100 set. Thereby, microorganisms can be detected quickly on the sensor chip 100.
  • FIG. 4 shows a sensor chip 100 according to the present embodiment.
  • FIG. 5 is a cross-sectional view taken along the line AA of the sensor chip 100 in FIG.
  • FIG. 6 is a cross-sectional view taken along line BB of the sensor chip 100 in FIG.
  • the sensor chip 100 includes a liquid reservoir for storing a liquid (sample) to be tested containing at least one type of microorganism, an opening provided on the lower surface of the liquid reservoir, and a membrane filter provided so as to cover the opening 130, and a chip (sensor chip 100) including the detection unit 140 is prepared.
  • a plurality of detection units 140 are arranged in an array.
  • the number of detection units 140 is not particularly limited.
  • the sensor chip 100 can be made of resin, for example.
  • the sensor chip 100 is obtained by, for example, laser molding, injection molding, or the like.
  • the shape of the detection unit 140 in the planar direction of the sensor chip 100 is not particularly limited, but may be a circle, for example.
  • the cross-sectional shape of the detection unit 140 in the direction perpendicular to the planar direction of the sensor chip 100 is not particularly limited, but at least a part thereof can be tapered.
  • the diameter (effective filter diameter) of the detection unit 140 is not particularly limited, but may be, for example, 0.1 mm or more and 5 mm or less (because it is much smaller than the normal filter diameter, and thus microorganisms are collected in a minute region).
  • the height of the detection unit 140 is determined from the viewpoint of the focal length of the objective lens during fluorescence observation.
  • the pore diameter of the membrane filter 130 is not particularly limited, but for example, 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the membrane filter 130 may be coated with a metal such as titanium.
  • an aluminum oxide filter may be used. Thereby, the self-light emission of the membrane filter 130 can be suppressed, and noise at the time of detection can be reduced.
  • the sensor chip 100 includes an upper plate 110 provided with a liquid reservoir cylinder member (liquid reservoir) and a lower plate 120 provided with holes.
  • the upper plate 110 and the lower plate 120 are joined so that the membrane filter 130 is sandwiched therebetween.
  • the joining means for example, clamping means for clamping the upper surface of the upper plate 110 and the lower surface of the lower plate 120, means for screwing the upper plate 110 and the lower plate 120, and the like can be used.
  • the injection-molded plastic can be bonded with a solvent.
  • examples of the bonding means include an adhesive and ultrasonic bonding.
  • the clamping means as shown in FIG. 6, a groove is provided on the inner wall of the chip base 150, and the ends of the upper plate 110 and the lower plate 120 are inserted into the groove. Thereby, an edge part is clamped and the upper board 110 and the lower board 120 are joined. Therefore, the sensor chip 100 is mounted on the chip base 150 in an integrated state. Furthermore, as shown in FIG. 6, when viewed from the direction perpendicular to the planar direction of the sensor chip 100, the opening of the upper plate 110 (inner hole of the cylindrical member), the hole of the membrane filter 130, the lower plate 120, and the chip base It arrange
  • FIG. 7A schematically shows the concentrator 160.
  • FIG. 7B schematically shows a part of the concentrating device 160 shown in FIG.
  • FIG. 8 schematically shows a part of the suction mechanism.
  • the concentration device 160 includes a culture mechanism 164 and a suction mechanism 162.
  • the culture mechanism 164 includes a heater 180, fins 178, a temperature sensor (not shown), and a shaker 182.
  • the suction mechanism 162 includes a vacuum pump 166, a waste liquid tank 168, a liquid feed pump 172, a cleaning liquid tank 170, a liquid feed tube 184, and a waste liquid tube 186.
  • the concentration device 160 may include a culture medium tank 174 and a fluorescent sample tank 176. Such a concentrating device 160 is provided in one housing. Further, as shown in FIG. 7A, a partition plate 208 is provided between the culture mechanism 164 and the suction mechanism 162 in the housing. In the present embodiment, the culture mechanism 164 is provided on the partition plate 208, but the present invention is not limited to this mode.
  • the vacuum pump 166 sucks the liquid such as the sample, the liquid medium, or the fluorescent reagent introduced into the liquid reservoir of the sensor chip 100.
  • these liquids are introduced into the detection unit 140 from the cleaning liquid tank 170, the culture liquid tank 174, the fluorescent sample tank 176, or the like using a pump (not shown).
  • the liquid feeding pump 172 introduces the cleaning liquid in the cleaning liquid tank 170 into the liquid reservoir through the liquid feeding tube 184.
  • the cleaning liquid include physiological saline and phosphate buffer. In this case, the position of the sensor chip 100 on the shaker 182 moves relative to the liquid feeding tube 184.
  • the liquid feeding tube 184 introduces the liquid into the plurality of detection units 140.
  • the liquid may be introduced into the liquid reservoir by a pipette or the like.
  • the sucked liquid passes through the membrane filter 130 from the liquid reservoir, and is removed from the opening 152 of the chip base 150 to the waste liquid tank 168 through the waste liquid tube 186.
  • the liquid in the reservoir can be removed by suction from below the membrane filter 130, leaving the microorganisms cultured on the membrane filter 130.
  • the suction mechanism 162 includes a suction plug 188 that is provided below the detection unit 140 and sucks liquid.
  • the pressure of the suction plug 188 is controlled by a first control unit (not shown) in the suction mechanism 162.
  • the control unit detects the pressure of the suction plug 188 and feedback corrects the pressure value of the suction plug 188 according to the detected value.
  • the suction plug 188 is provided in each of the detection units 140.
  • the suction plug 188 sucks the liquid in the detection unit 140 individually by the vacuum pump 166 by being separated from each other.
  • one suction plug 188 is provided for the plurality of detection units 140.
  • the suction plug 188 simultaneously sucks the liquid in the plurality of detection units 140 by the vacuum pump 166.
  • the chip is moved using a slide mechanism and suction is sequentially performed for each detection unit.
  • the culture temperature is adjusted by the heater 180 and the fins 178. At this time, when the fin 178 is not used, the temperature can be adjusted only by turning the heater 180 on and off.
  • the culture temperature is adjusted according to the type of microorganism, the type of antibiotic, etc. while measuring with a temperature sensor (not shown).
  • the culture temperature can be, for example, from room temperature (about 25 ° C.) to about 45 ° C.
  • the control temperature of the culture mechanism 164 can be, for example, from room temperature (about 25 ° C.) to about 60 ° C.
  • the shaker 182 shakes the chip base 150 on which the sensor chip 100 is placed. For example, the tip base 150 is shaken by an eccentric motor.
  • the microorganisms in the detection unit 140 of the sensor chip 100 can be shake-cultured in a liquid medium under a constant temperature condition.
  • the sensor chip 100 is provided in an internal space (sealed space) constituted by the cover 210 and the partition plate 208 that can be freely opened and closed.
  • the cover 210 is opened, the upper part of the sensor chip 100 is exposed.
  • the operability of the sensor chip 100 is improved. That is, the movement of the sensor chip 100, the shaking of the sensor chip 100, the introduction of the liquid into the sensor chip 100, and the like can be performed simply and efficiently.
  • the concentration device 160 performs concentration, culture, washing, and fluorescent staining of microorganisms on the sensor chip 100. That is, the concentrating device 160 first concentrates the microorganisms on the membrane filter 130 of the detection unit 140, and then cultures the microorganisms in a liquid medium and captures them on the membrane filter 130. Thereafter, the microorganisms are washed. And perform fluorescent staining.
  • FIG. 9 schematically shows the detection device 190.
  • the detection device 190 performs fluorescence observation of microorganisms in the detection unit 140 on the sensor chip 100 that is fluorescently stained by the concentration device 160.
  • the detection device 190 is not particularly limited, and for example, a general-purpose fluorescence microscope can be used.
  • the detection device 190 includes a moving stage 192, an excitation light source 194, an excitation light optical filter 195 (when the light source is a white light source including many wavelengths, an excitation filter needs to be used), an objective lens 196, a dichroic.
  • a mirror 198, a radiation absorbing optical filter 200, an imaging lens 202, a detection mechanism 204, and a PC 206 are provided.
  • the moving stage 192 can freely move the chip table 150 on which the sensor chip 100 is placed in the X-axis direction, the Y-axis direction, and the Z-axis direction (three-dimensional direction).
  • the position and height of the detection unit 140 on the sensor chip 100 are adjusted with respect to the objective lens 196.
  • the excitation light source 194 emits excitation light.
  • the dichroic mirror 198 splits the excitation light emitted from the excitation light source 194.
  • the objective lens 196 collects the split excitation light.
  • a microorganism or the like emits fluorescence.
  • the optical filter 200 transmits the fluorescence via the objective lens 196 and the dichroic mirror 198.
  • the imaging lens 202 forms an image of the transmitted fluorescent light flux.
  • the imaging mechanism is converted into electronic data by the detection mechanism 204.
  • an LED or the like can be used as the excitation light source 194.
  • a CCD camera Charge Coupled Device (CCD)
  • CMOS complementary metal-oxide-semiconductor
  • image analysis using the PC 206 connected to the CCD camera can also be performed.
  • image data indicating the luminescence of the living microorganisms in each detection unit 140 is obtained.
  • an eyepiece may be used instead of the CCD camera. Thereby, visual observation can be performed.
  • FIG. 2 shows a detection unit 140 (first detection unit) for a reference target (negative control), and FIG. 3 shows a detection unit 140 (second detection unit) for a detection target.
  • a liquid medium 310 containing no antibiotics is used, while in FIG. 3, a liquid medium 320 containing antibiotics is used.
  • the sample 300 (liquid to be tested including microorganisms) is separately introduced into the liquid reservoir in the reference target and detection target detection unit 140 (S100, FIG. 2A). FIG. 3 (a)).
  • the same sample 300 is used as the liquid to be detected for the reference object and the detection object. Therefore, the initial concentration of microorganisms in the reference object 300 and the detection object sample 300 is substantially the same.
  • the sample 300 includes a target bacterium 340 (microorganism) that is sterilized by an antibiotic added in a later-described step or that inhibits bacterial growth.
  • the sample 300 is obtained by diffusing microorganisms collected from every place in a solvent.
  • the collection location include living environments such as water, beverages, foods, livestock animals, plants, and beds, blood, skin, saliva, sputum, wounds, stomach contents, urine, feces, and other human bodies.
  • the solvent for example, physiological saline, phosphate buffer, or the like can be used.
  • the sample 300 may be a microorganism that has been cultured in advance by a normal culture method.
  • the initial concentration of the microorganism in the sample 300 may be very low.
  • the initial concentration can be about 1 / ml to 10E5 / ml.
  • the sample 300 in the detection unit 140 is removed, and the target bacteria 340 are left on the membrane filter 130 (S102, FIG. 2 (b), FIG. 3 (b)). Thereby, the density
  • Step (2) Subsequently, the liquid medium 310 is introduced into the detection unit 140 to be referenced, and the liquid medium 320 containing antibiotics is introduced into the detection unit 140 to be detected. Then, using the culture mechanism 164 shown in FIG. 7, each sensor chip 100 is shaken with a shaker 182 and the target bacteria 340 in each detection unit 140 is shake-cultured (S104, FIG. 2 (c), FIG. 3 ( c)). As described above, in the main culturing step, the microorganisms are separated from the membrane filter 130 and float in the liquid medium by an action such as convection of the liquid medium generated when introduced into the detection unit 140. During the main culture process, any microorganisms are suspended in the liquid medium.
  • the microorganisms can be suspended and the density of the microorganisms in the liquid medium can be made uniform. By culturing in such a floating state, the growth rate of microorganisms can be increased, and the growth inhibitory action of antibiotics can be increased. Furthermore, by performing shaking culture, oxygen, medium components and growth inhibitory substances necessary for the growth of microorganisms come into contact with the microorganisms efficiently, so that such an effect can be enhanced. Can be obtained with good reproducibility.
  • the target bacteria 340 grow.
  • the propagated microorganism is designated as a proliferating bacterium 370.
  • the detection unit 140 to be detected the growth of the target bacteria 340 is inhibited by the bactericidal action of the antibiotic.
  • a microorganism whose growth is inhibited is referred to as a growth-inhibiting bacterium 380.
  • Antibiotics include, for example, penicillins, cephams, ⁇ -lactams, aminoglycosides, peptides, tetracyclines, macrolides, new quinolones, chloramphenicol, aminoglycosides, etc. Can be used.
  • As the liquid medium for example, an LB medium or a Muller Hinton medium can be used although it depends on the type of microorganism.
  • the culture time depends on the type of microorganism, it is not particularly limited and can be, for example, about 15 minutes or more and 180 minutes or less.
  • the culture temperature is not particularly limited, although it depends on the type of microorganism and the type of antibiotic, and can be about 30 ° C. or higher and 45 ° C. or lower.
  • Step (3) Subsequently, the liquid medium 310 in the reference target detection unit 140 is removed, and the target bacteria 340 and the proliferating bacteria 370 are left on the membrane filter 130. Further, the liquid medium 320 containing the antibiotic in the detection unit 140 to be detected is removed, and the target bacteria 340 and the growth-inhibiting bacteria 380 are left on the membrane filter 130 (S106, FIG. 2 (d), FIG. 3 (d). )). At this time, using the suction mechanism 162 shown in FIG. 7, the liquid in the liquid medium 310 and the liquid medium 320 containing antibiotics is sucked from below the detection unit 140.
  • the target bacteria 340 and the growth bacteria 370, the target bacteria 340, and the growth-inhibiting bacteria 380 are collected on the membrane filters 130 of the reference object and the detection object.
  • the dead bacteria can be separated by passing through the membrane (membrane filter 130) by controlling the suction force.
  • the microorganism and the liquid medium can be separated from the liquid medium containing the microorganism, and the microorganism (particularly, live bacteria) can be collected in a significantly small area.
  • a reagent (fluorescent reagent 330) for determining whether microorganisms are alive or dead is introduced into the liquid reservoir (S108, FIG. 2 (e), FIG. 3 (e)).
  • the fluorescent reagent 330 for example, a reagent that fluorescently stains only viable bacteria is used.
  • the introduction amount of the fluorescent reagent 330 is not particularly limited as long as the microorganisms (target bacteria 340, proliferating bacteria 370, and growth-suppressing bacteria 380) are in contact with the fluorescent reagent 330.
  • the method for discriminating the viability of microorganisms is not limited to this, and for example, a method of discriminating viable and dead bacteria using a commercially available fluorescent staining reagent can be used.
  • a method for discriminating between live and dead bacteria there are (a) a combined fluorescent staining method, and (b) a combined method of a live bacterial staining method and a whole bacterial staining method.
  • a fluorescent reagent having a different luminescent color is used as a fluorescent staining reagent.
  • a composite fluorescent staining reagent containing a green fluorescent SYTO9 dye and a red fluorescent propidium iodide dye can be used.
  • YOYO-1, 7ADD can be used as a label for dead bacteria
  • a fluorescent staining reagent including, for example, Ethidium homodimer-1, FDA, Calcein AM, LDS751, etc.
  • a total bacterial staining method such as DAPI staining method, EB staining method, SYBR Green1 staining method, and viable bacterial staining methods such as CTC staining method, CFDA staining method can be used in combination. .
  • viable and dead bacteria are discriminated by double staining of the DAPI staining method and the CFDA staining method.
  • Step (5) Subsequently, before the fluorescence observation, the inside of each detection unit 140 is washed. For cleaning, for example, a cleaning liquid is introduced into the detection unit 140, and this cleaning liquid is absorbed and removed. Thereafter, the sensor chip 100 is moved from the concentration device 160 to the detection device 190. Then, using the detection device 190, the microorganisms in the detection unit 140 of the sensor chip 100 are fluorescently observed (S110, FIG. 2 (f), FIG. 3 (f)). In this step, for example, fluorescence observation is performed by multiplying the optical magnification.
  • the fluorescent reagent 330 for example, fluorescently stains only live bacteria 350. Therefore, as shown in FIGS.
  • the target bacteria 340 and the proliferating bacteria 370 are detected as viable bacteria 350.
  • the growth-suppressing bacteria 380 are not detected because they are dead bacteria 360, and only the target bacteria 340 are detected as live bacteria 350. Then, the number of microorganisms (for example, the number of viable bacteria) collected in the minute area is counted, and the ratio of the viable cell count of the detection target 140 to the reference target detection unit 140 is calculated.
  • the viable cell count ratio obtained by the microorganism detection method of the present embodiment will be described.
  • the viable cell count ratio is a parameter indicating the sensitivity of microorganisms.
  • the definition of this viable count ratio is shown below.
  • the detection target microorganism should be a standard that does not show sensitivity to antibiotics (that is, if the microorganism is resistant)
  • the ratio of viable bacteria is about 1 or more).
  • the detection target microorganism is used as a standard indicating sensitivity to antibiotics.
  • is determined by the culture time, culture temperature, antibiotic concentration, and the like. For example, ⁇ can be set to 0.5 or less, and further 0.2 or less.
  • a method for calculating the viable count ratio will be described.
  • the viable cell count may be calculated by counting the viable cell count, or (2) the image data indicating the viable cell count is calculated.
  • the ratio of viable bacteria may be calculated by converting the ratio of the fluorescence areas.
  • the ratio of the viable cell count of the second viable cell count (viable cell count in the detection unit 140 to be detected) to the first viable cell count (viable cell count in the reference target detection unit 140) is calculated.
  • the ratio of the fluorescence area of the second fluorescence area (fluorescence area in the detection unit 140 to be detected) to the first fluorescence area (fluorescence area in the detection unit 140 to be referred to) is calculated, and this fluorescence area ratio is calculated. Convert to the viable count ratio.
  • the sensitivity of the microorganism can be detected with high sensitivity and speed.
  • the sensitivity of microorganisms can be detected quickly.
  • a method for determining sensitivity based on whether or not the difference between the first viable cell count and the second viable cell count after the culturing step is a predetermined value or more, or a fluctuation value of the first viable cell count (before the culturing step) A method for judging sensitivity based on whether or not the fluctuation value (the same as the left) of the second viable cell count relative to the viable cell count and the viable cell count after the culturing step is equal to or less than a predetermined value; Examples include a method of judging sensitivity by comparing the fluctuation tendency of the fluctuation value of the viable cell count and the fluctuation value of the second viable cell count.
  • microorganism detection method of the present embodiment a series of steps such as concentration, culture, and fluorescence observation can be performed on the sensor chip 100. For this reason, microorganisms can be detected quickly. Therefore, the entire detection time can be shortened.
  • concentration process and the process of collecting the microorganisms in the micro area and performing the fluorescence observation are performed, so that the change in the number of micro microorganisms can be detected very accurately due to the concentration effect. .
  • the microorganism in the detection unit 140 to be detected, the microorganism is shake-cultured in a liquid medium containing an antibiotic. Thereby, the growth inhibitory action of the antibiotic is strengthened, and the number of viable bacteria in the reference target detection unit 140 is reduced. Therefore, in the detection unit 140 to be detected, the difference in the viable cell count ratio before and after the culture becomes clear, and microorganisms that are sensitive to antibiotics can be rapidly detected. Further, in the reference target detection unit 140, the microorganism is shake-cultured in a liquid medium not containing antibiotics. Thereby, the growth rate of microorganisms is increased, and the number of viable bacteria in the reference target detection unit 140 is increased. Therefore, after culturing, the difference in the viable cell count ratio between the detection target and the reference target becomes clear, and the sensitivity of the microorganism can be detected with higher sensitivity and speed.
  • the viable cell count ratio between the first viable cell count under the condition not containing antibiotics and the second viable cell count under conditions containing antibiotics By calculating, the sensitivity of the microorganism to the antibiotic can be detected with high sensitivity.
  • the microorganisms are concentrated on the membrane filter 130 in a minute region before culturing. For this reason, even if the concentration of the microorganism in the sample is very low, the sensitivity of the microorganism can be detected. Furthermore, the difference in the viable cell count ratio becomes clear by the culturing process of the present embodiment, and the sensitivity of the microorganism can be detected with high sensitivity. Therefore, the sensitivity of the microorganism can be detected without depending on the concentration of the microorganism in the sample.
  • the microorganisms can be detected by the detection device 190 when the initial concentration of the microorganisms in the sample is about 10 cells / ml or more, more preferably about 1 cell / ml or more.
  • microorganisms that have come into contact with antibiotics are collected, and by directly detecting the death or death due to the bactericidal action of the collected microorganisms, the drug sensitivity of the microorganisms can be quickly examined. can do.
  • the culture method, the PCR method, and the like the number of sample processing steps required for the inspection is small, so it is very simple.
  • the amount of reagents used is small compared to other inspection methods other than the culture method, it is possible to keep running costs low.
  • This method for detecting drug sensitivity can also be applied to detection of nosocomial infection-causing bacteria, diagnosis of infectious diseases, rapid test for antibacterial agents, and the like.
  • the microorganism detection method of the second embodiment is a method of calculating the minimum inhibitory concentration (MIC). That is, the minimum growth inhibitory concentration (MIC) is calculated from the result of the data indicating the viable cell count ratio obtained by the microorganism detection method of the first embodiment.
  • MIC minimum inhibitory concentration
  • the physiologically active substance (first In the step of observing microorganisms with different concentrations of (antibiotics), the ratio of viable cell counts of the second viable cell count to the first viable cell count corresponding to the concentration of the physiologically active substance (first antibiotic)
  • the first detection unit represents the reference target detection unit 140
  • the second detection unit represents the detection target detection unit 140.
  • the first viable cell count represents the viable cell count in the first detection unit
  • the second viable cell count represents the viable cell count in the second detection unit.
  • the microorganism detection method of the present embodiment uses a chip (sensor chip 100) further including a third detection unit, and in the step of concentrating microorganisms, the first detection unit, the second detection unit, and the third In the step of introducing the same liquid for testing separately into the detection unit and culturing the microorganism, the third detection unit is different from the second detection unit in the third detection unit (second antibiotic).
  • the third detection unit represents a detection unit 140 to be detected, which is different from the second detection unit.
  • the 3rd viable cell count represents the viable cell count in the 3rd detection part.
  • a second detection unit group includes the first detection unit, the second detection unit, and the third detection unit.
  • a sensor chip 100 in which the number of vertical and horizontal detection units 140 shown in FIG. 4 is 3 ⁇ 6 can be used as a chip including a plurality of detection units.
  • a liquid medium not containing an antibiotic, a liquid medium containing a first antibiotic, and a liquid medium containing a second antibiotic are sequentially introduced.
  • the concentration of the first antibiotic and the concentration of the second antibiotic are set to six different concentrations. In this way, for the two types of first antibiotic and second antibiotic, the concentration gradually decreases from the first concentration to the sixth concentration (from the first concentration to the sixth concentration). At this time, the interval of each concentration can be selected as appropriate.) A plurality of viable cell count data can be obtained.
  • the first viable cell number under the condition not containing the antibiotic and the second viable cell number under the condition containing the first antibiotic are the first The viable cell count ratio is calculated. Further, a first viable cell count ratio corresponding to the first concentration to the sixth concentration is calculated. These viable count ratios are premised on (samples with the same initial concentration of microorganisms in the sample).
  • the presence or absence of the susceptibility of the microorganism to the first antibiotic is determined from the result of the data indicating the obtained viable cell count ratio.
  • the first concentration to the fourth concentration are reference values indicating sensitivity
  • the fifth concentration and the sixth concentration are reference values indicating no sensitivity. It is assumed that In this case, the first MIC of the microorganism for the first antibiotic can be determined as the fourth concentration.
  • the first viable cell count ratio is calculated by varying the concentration between the fourth concentration and the fifth concentration, and the first MIC is calculated more accurately from the result of the presence or absence of sensitivity. be able to.
  • a second viable cell count of the first viable cell count under the condition containing no antibiotic and the third viable cell count under the condition containing the second antibiotic is calculated. Further, the second viable cell count ratio corresponding to the first concentration to the sixth concentration is calculated. From the result of the second viable cell count ratio, the second MIC of the microorganism with respect to the second antibiotic can be calculated.
  • these viable count ratios are premised on (samples having the same initial concentration of microorganisms in the sample).
  • two types of MICs can be calculated simultaneously. That is, the first MIC of the microorganism for the first antibiotic and the second MIC of the microorganism for the second antibiotic can be calculated.
  • the MIC for antibiotics can be determined quickly and with high sensitivity. Moreover, according to this Embodiment, MIC with respect to multiple types of antibiotics can be detected simultaneously.
  • the method for examining drug sensitivity when used, if the type of microorganism is unknown, the presence or absence of drug-resistant bacteria can be determined for the prepared sample, and the MIC can also be examined. . Even when the type of microorganism is unknown, the bacterial species of the unknown microorganism can be roughly predicted by using a sensitive reaction of a plurality of types of antibiotics or using a selective medium. On the other hand, when the type of microorganism is known, the drug sensitivity and MIC of the antibiotic can be examined as described above.
  • the minimum growth inhibitory concentration (MIC) is calculated from the result of data indicating the viable cell count ratio by the microorganism detection method of the second embodiment.
  • the minimum growth inhibitory concentration of the physiologically active substance (antibiotic) is equal to or higher than a predetermined concentration, it is determined that the microorganism exhibits resistance to the physiologically active substance (antibiotic).
  • data indicating the presence or absence of resistance of the microorganism to the physiologically active substance (antibiotic) is generated.
  • the criteria of the minimum growth inhibitory concentration (MIC) for judging to show tolerance are shown in the following (1) and (2).
  • MIC minimum growth inhibitory concentration
  • the degree of resistance may be evaluated for each stage. For example, when R is 1 or more and less than 10 [ ⁇ g / ml], it is evaluated as having a low degree of resistance (LR (Low Resistant)), and when R is 10 or more and less than 25 [ ⁇ g / ml] Is evaluated as having moderate resistance (MR (Middle Resistant)), and when R is 25 [ ⁇ g / ml], it is evaluated as having high resistance (HR (High Resistant)).
  • LR Low Resistant
  • MR Middle Resistant
  • HR High Resistant
  • a physiologically active substance antibiotic
  • such antibiotics may be used even if the microorganisms are resistant.
  • an antibiotic that exhibits low to moderate resistance can be selected.
  • test results on the sensitivity, MIC, and presence / absence of resistance of microorganisms can be obtained simply and quickly with respect to a plurality of types of antibiotics. For this reason, it is possible to quickly and accurately determine the antibiotic administration at the clinical site. Therefore, the risk of nosocomial infections due to postoperative infections, sepsis, drug resistant bacteria (MRSA, etc.) is reduced.
  • the number of detection units 140 of the sensor chip 100 is large. For example, by providing 92 detection units 140 (12 (11 types of antibiotics + negative control) ⁇ 8 (8 types of concentrations)), the sensitivity of multiple types of antibiotics can be increased simultaneously and quickly. Sensitivity can be detected.
  • the microorganisms are shake-cultured in a liquid medium. Therefore, as a result of the concentration of the antibiotic in the liquid medium being uniform, the effect of the antibiotic on the microorganism in the detection target can be obtained with good reproducibility. For this reason, according to the present embodiment, the variation in the viable cell count and the viable cell count ratio is reduced, and the results of microbial sensitivity, MIC, etc. are obtained with good reproducibility.
  • an appropriate antibiotic is selected by a drug sensitivity test using a culture method, and this antibiotic is treated in the patient.
  • the culture method usually takes more than one day, it is difficult to quickly select antibiotics. For this reason, from the viewpoint of rapidity, if various types of antibiotics are used, it causes the appearance of new resistant bacteria and causes a burden on the patient such as side effects.
  • the present embodiment it is possible to detect the sensitivity of a plurality of types of antibiotics simultaneously and rapidly with high sensitivity. Therefore, when nosocomial infections due to drug-resistant bacteria occur, the same sensitivity test can be performed quickly. In addition, after surgery, patients are exposed to the threat of postoperative infections, leading to fatal sepsis, and clinicians can find and treat the most effective antibiotics as soon as possible. it can.
  • the microorganism detection method of the present embodiment can also be used for applications in which a clinician wants to urgently conduct a sensitivity test for one patient.
  • a screening method for a substance exhibiting antibacterial activity using the microorganism detection method of the present embodiment will be described. This rapid screening can be used for pharmaceuticals or production of antibacterial substances.
  • an unknown substance whose presence or absence of antibacterial activity has not been confirmed is used as the physiologically active substance. Examples of the unknown substance include actinomycete extracts, known compounds, derivatives of compounds exhibiting antibacterial activity, proteins, and the like.
  • the method for examining the antibacterial activity of an unknown substance includes the following steps. First, a sample containing at least one known microorganism is introduced into the plurality of detection units 140. Subsequently, in the step of culturing the microorganism, in the case of only the liquid medium as the negative control, in the case of the liquid medium containing the known antibiotic as the positive control, the three liquid mediums in the case of the liquid medium containing the unknown substance as the detection target The microorganisms are introduced into each of the three detectors 140 and cultured with shaking. Subsequently, a third viable cell ratio of the positive control to the negative control and a fourth viable cell ratio of the detection target to the negative control are calculated.
  • the reference indicating the antibacterial activity is the third viable count ratio.
  • the presence or absence of the antibacterial activity of an unknown substance can be judged with the reference
  • the detection result obtained between the known antibiotic and the unknown substance is compared, and data indicating the bactericidal properties of the unknown substance is generated.
  • the bactericidal action Y 1 of the known antibiotics R 1 for a known microorganism D 1 an unknown substance believed to have bactericidal action Y 1 homogeneous can be screened.
  • the known microorganism D 2 is different, the known antibiotic R 1 may have a bactericidal action Y 2 .
  • the unknown material is screened as having a bactericidal action Y 2 homogeneous.
  • Example 1 shows a specific example of detection of susceptibility of microorganisms and MIC (minimum growth inhibitory concentration) of microorganisms of the present embodiment.
  • Example 1 In Example 1, as shown in FIGS. 10 to 12, the sensitivity of microorganisms was detected and the concentration of detectable microorganisms was measured. Component to be detected: Escherichia coli Detection method: Fluorescence microscope observation Fluorescent staining: Compound fluorescent staining reagent In Example 1, the sensor chip 100 shown in FIG. 4, the concentrator 160 shown in FIG. 7, and the detector 190 shown in FIG. 9 are used. It was.
  • Viable count (average number of viable counts per field) x (filter area) / (area of 1 field) Detection accuracy: The correlation coefficient between the filter method (pieces / ml) and the pour plate method (CFU / ml) of the present invention is 0.95.
  • Reservoir capacity 1 ml
  • Filter diameter 3mm
  • test liquid samples having different concentrations of Escherichia coli are prepared. Then, liquid samples for test having the same initial concentration of Escherichia coli are divided and introduced into the detection units 140 of the sensor chip 100 to be referenced and the detection target. Depending on the initial concentrations of the six types of E. coli, six sets of reference objects and detection objects are prepared. Subsequently, Escherichia coli in the sample was concentrated on the membrane filter 130 using the suction mechanism 162 of the concentrator 160. Subsequently, 800 ⁇ l of a liquid medium and 100 ⁇ l of physiological saline were introduced into the reference target detection unit 140.
  • LIVE / DEAD BacLight (trademark) Bacterial Viability Kits (manufactured by Invitrogen) was used as a composite fluorescent staining reagent.
  • the composite fluorescent staining reagent contains a green fluorescent SYTO9 dye and a red fluorescent propidium iodide dye, which are different in membrane permeability.
  • SYTO9 permeates the membranes of both live and dead bacteria and stains green.
  • propidium iodide permeates only the membrane damaged by dead bacteria and stains red. Also, if both dyes are present in the bacteria, the fluorescence of SYTO9 is attenuated.
  • each detection unit 140 of the sensor chip 100 was observed with a fluorescence microscope. At this time, the viable cell count of Escherichia coli in each detection unit 140 was calculated, and the viable cell count ratio between the reference object and the detection object was calculated from the result.
  • PBS cleaning liquid
  • FIG. 10 shows the time change of the viable cell count of the reference object (without antibiotics).
  • the horizontal axis represents time (min), and the vertical axis represents the viable count (logarithm) of E. coli measured by the filter method.
  • the black circle represents 9.4 ⁇ 10E4 (CFU / ml) and the black triangle represents 2.0 ⁇ 10E4 (CFU) when measured by the pour plate method.
  • FIG. 11 shows the time change of the viable cell count of the detection target (including antibiotics).
  • the symbols in the figure are the same as those in FIG.
  • FIG. 12 shows the time change of the viable cell count ratio between the reference object and the detection object. The symbols in the figure are the same as those in FIG. 10 except that the vertical axis in the figure represents the viable cell count ratio.
  • the culture time is about 30 min and the viable cell count ratio is considerably smaller than 1. Therefore, according to the microorganism detection method of the present invention, it was found that the sensitivity of microorganisms can be detected with high sensitivity when the initial concentration of the sample is at least about 1 / ml to 10E5 / ml. Moreover, according to the microorganism detection method of the present invention, it has been found that the susceptibility of microorganisms can be rapidly detected in a culture time of about 30 to 60 minutes.
  • Example 2 In Example 2, as shown in FIG. 13 to FIG. 15, the MIC of the microorganism was detected.
  • Example 2 was carried out in the same manner as in Example 1 except that the conditions in which the concentration of antibiotics was changed in place of the conditions in which the initial concentration of Escherichia coli in the sample in Example 1 was changed.
  • FIG. 13 shows the change over time of the viable cell count of the reference object (without antibiotics).
  • the horizontal axis represents time (min), and the vertical axis represents the viable count (logarithm) of E. coli measured by the filter method.
  • the concentrations of antibiotics to be detected are black circles representing 10E3 ( ⁇ g / ml), black triangles representing 10E2 ( ⁇ g / ml), black squares representing 10E1 ( ⁇ g / ml), and black diamonds.
  • 10E0 ( ⁇ g / ml) is represented, white circles represent 10E-1 ( ⁇ g / ml), and white triangles represent 10E-2 ( ⁇ g / ml).
  • FIG. 14 shows the change over time of the viable cell count of the detection target (including antibiotics).
  • FIG. 15 shows the time change of the viable cell count ratio between the reference object and the detection object.
  • the symbols in the figure are the same as in FIG. 13 except that the vertical axis in the figure represents the viable cell count ratio.
  • FIG. 16 is a diagram showing the observation results in the reference target and detection target detection unit 140 where the antibiotic concentration is 10E1 ( ⁇ g / ml).
  • the viable cell count ratio is approximately 1.
  • the antibiotic concentration is 10E0 ( ⁇ g / ml) or more
  • the viable count ratio is considerably smaller than 1. Therefore, it was found that the MIC of Escherichia coli for pansporin is about 10E0 ( ⁇ g / ml) or less. In this range, it was also found that accurate MIC was detected by detecting again with the concentration of antibiotics. Further, it was found that the MIC of microorganisms can be rapidly detected because the difference in the viable cell count ratio becomes remarkable when the culture time is about 30 to 60 minutes.
  • the MIC of E. coli against pansporin was measured by a conventional dilution method.
  • a 2 ⁇ dilution series of the test drug is prepared using LB liquid medium, and then inoculated with 10E5 or 10E6 (cfu / ml) bacteria (E. coli) and cultured at 37 ° C. overnight. Thereafter, the minimum concentration of a drug (pansporin) in which bacterial growth inhibition was observed was defined as MIC.
  • the result is shown in FIG.
  • the MIC was 310 (ng / ml) for the first time and 630 (ng / ml) for the second time.
  • the MIC by this dilution method was found to be almost the same as the result according to the present invention. However, in the conventional dilution method, it took 18 hours or more from sample preparation to determination of MIC. On the other hand, in the present invention, the time required for the sample preparation step and the fluorescence observation step is about 1.5 hours before the MIC is determined.
  • Example 1 the liquid medium of Example 1 was not used for culture, but pansporin was introduced into the sample, followed by fluorescence observation.
  • the results such as the viable cell count and the viable cell count ratio.
  • the time for introducing pansporin into the sample required at least 60 minutes.
  • the microorganism detection method according to the present invention includes a culture process using a liquid medium, the difference in the viable cell count ratio between the reference object and the detection object becomes clear, and the microorganism can be rapidly and highly sensitively. It was possible to detect the sensitivity.
  • the suction mechanism 162 may adjust the water level of the liquid in the detection unit 140 so that microorganisms on the membrane filter 130 of the sensor chip 100 are not dried.
  • the suction mechanism 162 may add a liquid (a liquid medium, a sample, a cleaning solution, or the like) at a predetermined interval so that the microorganisms are not dried.
  • the sensor chip 100 may be made of a heat resistant material. Thereby, the sensor chip 100 can be repeatedly used by performing autoclave or the like on the sensor chip 100.
  • the sensor chip 100 may be disposable from the viewpoint of safety.
  • an O-ring or the like may be provided between the membrane filter 130 and the lower plate 120.
  • the membrane filter and the chip material may be directly bonded by an adhesive or ultrasonic bonding.
  • the cross-sectional shape of the detection unit 140 is tapered. For this reason, microorganisms are efficiently collected on the membrane filter 130 in the lower surface opening portion of the detection unit 140.
  • the physiologically active substance according to the present embodiment is not limited to the above-described antibiotics or screening samples, and may be, for example, phages.
  • the species of microorganisms can be quickly identified.
  • the detection method of specific bacteria using phage can be applied to food hygiene inspection, environmental hygiene analysis, infectious disease diagnosis and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Disclosed is a method whereby a microorganism can be quickly detected at a high sensitivity. The method for detecting a microorganism comprises: a step for removing a liquid, which contains at least one kind of a microorganism and has been reserved in a liquid reservoir, from the bottom of a membrane filter (130) and thus concentrating the microorganism on the membrane filter (130); a step for introducing a liquid medium containing a physiologically active substance into the liquid reservoir and culturing the microorganism suspended in the liquid medium; a step for removing the liquid medium from the bottom of the membrane filter (130) and capturing said microorganism on the membrane filter (130); a step for introducing a reagent for determining the viability of the microorganism into the liquid reservoir; and a step for observing the microorganism in the chip (sensor chip (100)).

Description

微生物検出方法Microorganism detection method
 本発明は、微生物検出方法に関する。 The present invention relates to a microorganism detection method.
 微生物を検出する方法として、一般的に培養方法が用いられる。この培養方法では、たとえば24時間培養を行うため、非常に時間がかかることが知られている。 A culture method is generally used as a method for detecting microorganisms. In this culturing method, for example, it is known that it takes a very long time to perform culturing for 24 hours.
 特許文献1には、微生物を個別に検出する点が改善された微生物検出方法が記載されている。同文献によれば、微生物を検出表面上に結合させた状態で、当該微生物の増殖を行っている。これにより、微生物を個別に検出することができると記載されている。 Patent Document 1 describes a microorganism detection method that improves the point of individually detecting microorganisms. According to this document, the microorganism is propagated in a state where the microorganism is bound on the detection surface. Thereby, it is described that microorganisms can be detected individually.
特表2008-523820号公報Special table 2008-523820
 前述のように、一般的な培養方法では、微生物を検出するまでに時間がかかっていた。そのため、迅速に、微生物を検出する方法が望まれている。 As described above, in a general culture method, it took time to detect microorganisms. Therefore, a method for quickly detecting microorganisms is desired.
 また、特許文献1のように、微生物の一部をある表面上に結合させた状態で培養すると、培養液と微生物とが接触してない部分があるので、培養速度が遅くなることがあった。さらに、表面近傍では液体中の組成濃度にバラツキが生じるため、たとえば、抗菌剤を添加した場合の微生物の増殖の結果については、再現性よく得ることが困難であった。加えて、振盪機構を備えていないため、菌種によっては培養が困難であった。 Further, as in Patent Document 1, when culturing in a state where a part of the microorganism is bound on a certain surface, the culture speed may be slow because there is a part where the culture solution and the microorganism are not in contact with each other. . Furthermore, since the composition concentration in the liquid varies in the vicinity of the surface, for example, it has been difficult to obtain the results of the growth of microorganisms when an antibacterial agent is added with good reproducibility. In addition, since no shaking mechanism is provided, culturing was difficult depending on the bacterial species.
 本発明によれば、
 少なくとも一種の微生物を含む被検用の液体を溜める液溜め部と、
 前記液溜め部の下面に設けられた開口部と、
 前記開口部を覆うように設けられたメンブレンフィルタと、を有する検出部を備えるチップを準備し、
 前記液溜め部の中の前記被検用の液体を、前記メンブレンフィルタの下方から除去して、前記メンブレンフィルタ上に前記微生物を濃縮する工程と、
 生理活性物質を含む液体培地を前記液溜め部に導入し、前記液体培地中に浮遊している前記微生物を培養する工程と、
 前記メンブレンフィルタの下方から前記液体培地を除去して、前記メンブレンフィルタ上に前記微生物を捕集する工程と、
 前記微生物の生死を判別する試薬を前記液溜め部に導入する工程と、
 前記チップ内の前記微生物を観察する工程と、を含む、微生物検出方法が提供される。
 ただし、この工程は状況により順番が変更される場合もある。
According to the present invention,
A reservoir for storing a liquid for testing containing at least one type of microorganism;
An opening provided on the lower surface of the liquid reservoir,
Prepare a chip including a detection unit having a membrane filter provided so as to cover the opening,
Removing the test liquid in the liquid reservoir from below the membrane filter, and concentrating the microorganisms on the membrane filter;
Introducing a liquid medium containing a physiologically active substance into the liquid reservoir, and culturing the microorganisms floating in the liquid medium;
Removing the liquid medium from below the membrane filter and collecting the microorganisms on the membrane filter;
Introducing a reagent for determining the life and death of the microorganism into the liquid reservoir;
And observing the microorganism in the chip.
However, the order of this process may be changed depending on the situation.
 本発明によれば、迅速かつ高感度に微生物を検出することができる。 According to the present invention, microorganisms can be detected quickly and with high sensitivity.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本発明の実施の形態の微生物を検出する方法を示すフローチャートである。It is a flowchart which shows the method of detecting the microorganisms of embodiment of this invention. 本発明の実施の形態の薬剤感受性の検出方法を示す工程断面図である。It is process sectional drawing which shows the detection method of the drug sensitivity of embodiment of this invention. 本発明の実施の形態の薬剤感受性の検出方法を示す工程断面図である。It is process sectional drawing which shows the detection method of the drug sensitivity of embodiment of this invention. 本発明の実施の形態のセンサーチップを模式的に示す上面図である。It is a top view which shows typically the sensor chip of embodiment of this invention. 本発明の実施の形態のセンサーチップのA-Aの模式断面図である。1 is a schematic cross-sectional view taken along a line AA of a sensor chip according to an embodiment of the present invention. 本発明の実施の形態のセンサーチップのB-Bの模式断面図である。FIG. 4 is a schematic cross-sectional view taken along line BB of the sensor chip according to the embodiment of the present invention. 本発明の実施の形態の濃縮装置を示す模式断面図である。It is a schematic cross section which shows the concentration apparatus of embodiment of this invention. 本発明の実施の形態の吸引機構を示す模式断面図である。It is a schematic cross section which shows the suction mechanism of embodiment of this invention. 本発明の実施の形態の検出装置を示す模式断面図である。It is a schematic cross section which shows the detection apparatus of embodiment of this invention. 大腸菌の生菌数の時間変化を示す図である。It is a figure which shows the time change of the viable count of colon_bacillus | E._coli. 抗生物質を添加した場合の大腸菌の生菌数の時間変化を示す図である。It is a figure which shows the time change of the viable count of colon_bacillus | E._coli at the time of adding antibiotics. 添加した抗生物質の濃度を比較したときの大腸菌の生菌数比を示す図である。It is a figure which shows the viable count ratio of colon_bacillus | E._coli when the density | concentration of the added antibiotics is compared. 大腸菌の生菌数の時間変化を示す図である。It is a figure which shows the time change of the viable count of colon_bacillus | E._coli. 抗生物質を添加した場合の大腸菌の生菌数の時間変化を示す図である。It is a figure which shows the time change of the viable count of colon_bacillus | E._coli at the time of adding antibiotics. 抗生物質の添加の有無を比較したときの大腸菌の生菌数比を示す図である。It is a figure which shows the viable count ratio of colon_bacillus | E._coli when the presence or absence of addition of an antibiotic is compared. 検出部の蛍光観察の結果を示す図である。It is a figure which shows the result of the fluorescence observation of a detection part. 従来の方法(希釈法)によりMICを測定した結果を示す図である。It is a figure which shows the result of having measured MIC by the conventional method (dilution method).
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(第1の実施の形態)
 図1は、本発明の実施の形態の微生物を検出する方法を示すフローチャートである。図5は、本実施の形態に係るセンサーチップ100を示す模式断面図である。
 本実施の形態の微生物を検出する方法は、まず、少なくとも一種の微生物を含む被検用の液体を溜める液溜め部と、液溜め部の下面に設けられた開口部と、前記開口部を覆うように設けられたメンブレンフィルタ130と、を有する検出部140を備えるチップ(センサーチップ100)を準備する。そして、このチップ上で示す一連の工程を実施する。
 また、本実施の形態の微生物を検出する方法は、以下の工程を含む。
 工程(1)上記液溜め部の中の少なくとも一種の微生物を含む被検用の液体を、メンブレンフィルタ130の下方から除去して、メンブレンフィルタ130上に微生物を濃縮する工程(S100、S102)。
 工程(2)生理活性物質を含む液体培地を液溜め部に導入し、液体培地中に浮遊している微生物を培養する工程(S104)。
 工程(3)メンブレンフィルタ130の下方から液体培地を除去して、メンブレンフィルタ130上に培養後の微生物を捕集する工程(S106)。
 工程(4)微生物の生死を判別する試薬を液溜め部に導入する工程(S108)。
 工程(5)チップ(センサーチップ100)内の微生物を観察する工程(S110)。
(First embodiment)
FIG. 1 is a flowchart showing a method of detecting a microorganism according to an embodiment of the present invention. FIG. 5 is a schematic cross-sectional view showing the sensor chip 100 according to the present embodiment.
In the method for detecting microorganisms according to the present embodiment, first, a liquid reservoir for storing a liquid for testing containing at least one kind of microorganism, an opening provided on the lower surface of the liquid reservoir, and covering the opening A chip (sensor chip 100) including a detection unit 140 having a membrane filter 130 provided in this manner is prepared. Then, a series of steps shown on the chip is performed.
Moreover, the method for detecting a microorganism of the present embodiment includes the following steps.
Step (1) A step of removing the liquid for testing containing at least one kind of microorganisms in the liquid reservoir from the lower side of the membrane filter 130 to concentrate the microorganisms on the membrane filter 130 (S100, S102).
Step (2) A step of introducing a liquid medium containing a physiologically active substance into the liquid reservoir and culturing microorganisms floating in the liquid medium (S104).
Step (3) A step of removing the liquid medium from below the membrane filter 130 and collecting the cultured microorganisms on the membrane filter 130 (S106).
Step (4) A step of introducing a reagent for determining the viability of the microorganism into the liquid reservoir (S108).
Step (5) A step of observing microorganisms in the chip (sensor chip 100) (S110).
 本実施の形態の微生物を検出する方法の概要について説明する。
 本実施の形態の微生物を検出する方法においては、本方法の一連の工程を、センサーチップ100上、特に検出部140で実施することができる(S100からS110)。このため、本発明によれば、迅速に微生物を検出することができる。そして、本発明によれば、全体の検出時間を短縮することができる。
 また、本実施の形態において、生理活性物質を含む液体培地中で微生物を培養する検出部140を、検出対象の検出部140とし、一方、生理活性物質を含まない液体培地中で微生物を培養する検出部140を、参照対象の検出部140とする。このとき、検出対象においては、生理活性物質の作用が強まり、一方、参照対象においては、微生物の増殖速度が早くなる。さらに、振盪培養を行うことで、このような効果を高めることができる。このため、本発明においては、検出対象と参照対象との生菌数比の違いが明瞭となり、高感度かつ迅速に微生物の感受性を検出することができる。また、培養後、微生物を極めて微小な領域に捕集して微生物を蛍光観察し、計数するため、微生物の非常に大きな集団であるコロニーを観察する培養法や、試料の濁度を検出する従来法と比べて、極めて微量な微生物数の変化を検出することができる。このように、本発明においては、高感度かつ迅速に微生物の感受性を検出することができる。
An outline of a method for detecting a microorganism according to the present embodiment will be described.
In the method for detecting a microorganism of the present embodiment, a series of steps of the method can be performed on the sensor chip 100, particularly the detection unit 140 (S100 to S110). For this reason, according to the present invention, microorganisms can be detected quickly. And according to this invention, the whole detection time can be shortened.
In the present embodiment, the detection unit 140 that cultures microorganisms in a liquid medium containing a physiologically active substance is used as the detection unit 140 to be detected, while the microorganisms are cultured in a liquid medium that does not contain a physiologically active substance. The detection unit 140 is referred to as a reference target detection unit 140. At this time, the action of the physiologically active substance is enhanced in the detection target, while the growth rate of the microorganism is increased in the reference target. Furthermore, such effects can be enhanced by performing shaking culture. For this reason, in the present invention, the difference in the viable cell count ratio between the detection target and the reference target becomes clear, and the sensitivity of microorganisms can be detected with high sensitivity and speed. In addition, after culturing, microorganisms are collected in a very small area, and the microorganisms are fluorescently observed and counted, so a culture method for observing colonies that are a very large group of microorganisms, and the conventional method for detecting turbidity of samples Compared with the method, it is possible to detect a very small change in the number of microorganisms. Thus, in the present invention, the sensitivity of microorganisms can be detected with high sensitivity and speed.
 本実施の形態においては、生理活性物質としては、たとえば、抗生物質を用いることができる。また、微生物の生死を判別する試薬としては、たとえば、市販の蛍光染色試薬を用いることができる。抗生物質を用いた場合には、検出対象菌の薬剤感受性を調べることができる。ここで、本実施の形態において、微生物としては、細菌や菌類等が挙げられる。 In the present embodiment, for example, an antibiotic can be used as the physiologically active substance. Moreover, as a reagent which discriminate | determines the life and death of microorganisms, a commercially available fluorescent dyeing reagent can be used, for example. When antibiotics are used, the drug sensitivity of the detection target bacteria can be examined. Here, in this embodiment, examples of the microorganism include bacteria and fungi.
 次に、本実施の形態の微生物検出方法に用いる微生物検出システムについて説明する。
 本実施の形態においては、一連の本工程をセンサーチップ100上で実施するために、送液機構、吸引機構、振盪機構、恒温機構、洗浄機構、移動機構および検出機構を備える微生物検出システムを用いることができる。たとえば、本実施の形態では、図7および図9に示す濃縮装置160および検出装置190を含む微生物検出システムを使用する。
 各工程に応じて、センサーチップ100をセットした状態で、濃縮装置160および検出装置190を使用する。これにより、センサーチップ100上で迅速に微生物を検出することができる。
Next, a microorganism detection system used in the microorganism detection method of the present embodiment will be described.
In the present embodiment, a microorganism detection system including a liquid feeding mechanism, a suction mechanism, a shaking mechanism, a constant temperature mechanism, a washing mechanism, a moving mechanism, and a detection mechanism is used to perform a series of this process on the sensor chip 100. be able to. For example, in this embodiment, a microorganism detecting system including the concentrating device 160 and the detecting device 190 shown in FIGS. 7 and 9 is used.
In accordance with each process, the concentration device 160 and the detection device 190 are used with the sensor chip 100 set. Thereby, microorganisms can be detected quickly on the sensor chip 100.
 まず、微生物検出システムの前提として、本実施の形態に係るセンサーチップ100について説明する。
 図4は、本実施の形態に係るセンサーチップ100を示す。図5は、図4中のセンサーチップ100のA-Aの断面図を示す。図6は、図4中のセンサーチップ100のB-Bの断面図を示す。
First, as a premise of the microorganism detection system, the sensor chip 100 according to the present embodiment will be described.
FIG. 4 shows a sensor chip 100 according to the present embodiment. FIG. 5 is a cross-sectional view taken along the line AA of the sensor chip 100 in FIG. FIG. 6 is a cross-sectional view taken along line BB of the sensor chip 100 in FIG.
 センサーチップ100は、少なくとも一種の微生物を含む被検用の液体(試料)を溜める液溜め部と、液溜め部の下面に設けられた開口部と、開口部を覆うように設けられたメンブレンフィルタ130と、を有する、検出部140を備えるチップ(センサーチップ100)を準備する。1つのセンサーチップ100には、複数の検出部140がアレイ状に配置されている。検出部140の数としては、特に限定されない。複数の検出部140が設けられているセンサーチップアレイを用いることにより、同一工程で、複数種類の抗生物質や複数の菌種について感受性を検出することができる。 The sensor chip 100 includes a liquid reservoir for storing a liquid (sample) to be tested containing at least one type of microorganism, an opening provided on the lower surface of the liquid reservoir, and a membrane filter provided so as to cover the opening 130, and a chip (sensor chip 100) including the detection unit 140 is prepared. In one sensor chip 100, a plurality of detection units 140 are arranged in an array. The number of detection units 140 is not particularly limited. By using a sensor chip array provided with a plurality of detection units 140, it is possible to detect susceptibility for a plurality of types of antibiotics and a plurality of bacterial species in the same step.
 センサーチップ100は、たとえば樹脂製とすることができる。センサーチップ100は、たとえばレーザ成形、射出成形等により得られる。センサーチップ100平面方向の検出部140の形状は、特に限定されないが、たとえば円とすることができる。また、センサーチップ100平面方向に対して垂直方向の検出部140の断面形状は、特に限定されないが、少なくとも一部がテーパ状とすることができる。検出部140の径(有効フィルタ径)は、特に限定されないが、たとえば0.1mm以上、5mm以下(通常のフィルタ径よりはるかに小さいため微小領域に微生物を捕集する)とすることができる。また、検出部140の高さは、蛍光観察時における、対物レンズの焦点距離の観点から決定する。 The sensor chip 100 can be made of resin, for example. The sensor chip 100 is obtained by, for example, laser molding, injection molding, or the like. The shape of the detection unit 140 in the planar direction of the sensor chip 100 is not particularly limited, but may be a circle, for example. In addition, the cross-sectional shape of the detection unit 140 in the direction perpendicular to the planar direction of the sensor chip 100 is not particularly limited, but at least a part thereof can be tapered. The diameter (effective filter diameter) of the detection unit 140 is not particularly limited, but may be, for example, 0.1 mm or more and 5 mm or less (because it is much smaller than the normal filter diameter, and thus microorganisms are collected in a minute region). The height of the detection unit 140 is determined from the viewpoint of the focal length of the objective lens during fluorescence observation.
 また、メンブレンフィルタ130の孔径は、特に限定されないが、たとえば0.1μm以上、1μm以下とする。さらに、メンブレンフィルタ130は、チタンなどの金属がコーティングされていてもよい。または、酸化アルミニウム製のフィルタを用いてもよい。これにより、メンブレンフィルタ130の自己発光を抑えて、検知の際のノイズを低減させることができる。 Further, the pore diameter of the membrane filter 130 is not particularly limited, but for example, 0.1 μm or more and 1 μm or less. Furthermore, the membrane filter 130 may be coated with a metal such as titanium. Alternatively, an aluminum oxide filter may be used. Thereby, the self-light emission of the membrane filter 130 can be suppressed, and noise at the time of detection can be reduced.
 また、図5に示すように、センサーチップ100は、液溜め用の筒部材(液溜め部)が設けられた上板110と、孔が設けられた下板120とを備える。メンブレンフィルタ130が間に挟まれるように、上板110と下板120とが接合されている。接合手段としては、たとえば、上板110の上面と下板120の下面とをクランプするクランプ手段、上板110と下板120とをネジ止めする手段等を用いることができる。または、射出成型したプラスチックを、溶剤で接着することもできる。その他、接合手段として、接着剤や超音波接合なども挙げられる。 Further, as shown in FIG. 5, the sensor chip 100 includes an upper plate 110 provided with a liquid reservoir cylinder member (liquid reservoir) and a lower plate 120 provided with holes. The upper plate 110 and the lower plate 120 are joined so that the membrane filter 130 is sandwiched therebetween. As the joining means, for example, clamping means for clamping the upper surface of the upper plate 110 and the lower surface of the lower plate 120, means for screwing the upper plate 110 and the lower plate 120, and the like can be used. Alternatively, the injection-molded plastic can be bonded with a solvent. In addition, examples of the bonding means include an adhesive and ultrasonic bonding.
 ここで、クランプ手段の一例としては、図6に示すように、チップ台150内壁に溝部を設け、この溝部に、上板110および下板120の端部を挿入する。これにより、端部がクランプされ、上板110と下板120とが接合される。そのため、センサーチップ100は、一体となった状態でチップ台150に載置されることになる。さらに、図6に示すように、センサーチップ100平面方向に対して垂直方向から見たとき、上板110の開口部(筒部材の内孔)、メンブレンフィルタ130、下板120の孔およびチップ台150の開口部152が重なるように、配置されている。 Here, as an example of the clamping means, as shown in FIG. 6, a groove is provided on the inner wall of the chip base 150, and the ends of the upper plate 110 and the lower plate 120 are inserted into the groove. Thereby, an edge part is clamped and the upper board 110 and the lower board 120 are joined. Therefore, the sensor chip 100 is mounted on the chip base 150 in an integrated state. Furthermore, as shown in FIG. 6, when viewed from the direction perpendicular to the planar direction of the sensor chip 100, the opening of the upper plate 110 (inner hole of the cylindrical member), the hole of the membrane filter 130, the lower plate 120, and the chip base It arrange | positions so that the opening part 152 of 150 may overlap.
 次に、本実施の形態に係る濃縮装置160について説明する。図7(a)は、濃縮装置160を模式的に示す。図7(b)は、図7(a)に示す濃縮装置160の一部を模式的に示す。図8は、吸引機構の一部を模式的に示す。
 図7(a)に示すように、濃縮装置160は、培養機構164および吸引機構162を備える。培養機構164は、ヒータ180、フィン178、不図示の温度センサおよび振盪器182を備える。また、吸引機構162は、真空ポンプ166、廃液タンク168、送液ポンプ172、洗浄液タンク170、送液用チューブ184および廃液用チューブ186を備える。さらに、濃縮装置160は、培養液タンク174および蛍光試料タンク176を備えていてもよい。このような濃縮装置160は、1つの筐体中に設けられている。また、図7(a)に示すように、筐体中において、培養機構164と吸引機構162との間に、仕切り板208が設けられている。本実施の形態では、この仕切り板208上に培養機構164が設けられているが、この態様に限定されない。
Next, the concentration apparatus 160 according to the present embodiment will be described. FIG. 7A schematically shows the concentrator 160. FIG. 7B schematically shows a part of the concentrating device 160 shown in FIG. FIG. 8 schematically shows a part of the suction mechanism.
As shown in FIG. 7A, the concentration device 160 includes a culture mechanism 164 and a suction mechanism 162. The culture mechanism 164 includes a heater 180, fins 178, a temperature sensor (not shown), and a shaker 182. The suction mechanism 162 includes a vacuum pump 166, a waste liquid tank 168, a liquid feed pump 172, a cleaning liquid tank 170, a liquid feed tube 184, and a waste liquid tube 186. Further, the concentration device 160 may include a culture medium tank 174 and a fluorescent sample tank 176. Such a concentrating device 160 is provided in one housing. Further, as shown in FIG. 7A, a partition plate 208 is provided between the culture mechanism 164 and the suction mechanism 162 in the housing. In the present embodiment, the culture mechanism 164 is provided on the partition plate 208, but the present invention is not limited to this mode.
 図7(a)に示す吸引機構162においては、センサーチップ100の液溜め部に導入された、試料、液体培地または蛍光試薬等の液体を、真空ポンプ166が吸引する。これらの液体は、不図示のポンプ等を用いて、洗浄液タンク170、培養液タンク174または蛍光試料タンク176等から検出部140に導入される。たとえば、送液ポンプ172は、洗浄液タンク170の中の洗浄液について送液用チューブ184を介して、液溜め部に導入する。洗浄液としては、たとえば生理食塩水やリン酸緩衝液などが挙げられる。この場合、送液用チューブ184に対して、振盪器182上のセンサーチップ100の位置が移動する。これにより、送液用チューブ184は、複数の検出部140中に液体を導入する。また、液体はピペット等により、上記液体を液溜め部に導入されてもよい。
 吸引された液体は、液溜め部中からメンブレンフィルタ130を通過して、チップ台150の開口部152から廃液用チューブ186を介して、廃液タンク168に排除される。
 このようにして、溜め部の中の液体を、メンブレンフィルタ130の下方から吸引除去して、メンブレンフィルタ130上に培養された微生物を残すことができる。
In the suction mechanism 162 shown in FIG. 7A, the vacuum pump 166 sucks the liquid such as the sample, the liquid medium, or the fluorescent reagent introduced into the liquid reservoir of the sensor chip 100. These liquids are introduced into the detection unit 140 from the cleaning liquid tank 170, the culture liquid tank 174, the fluorescent sample tank 176, or the like using a pump (not shown). For example, the liquid feeding pump 172 introduces the cleaning liquid in the cleaning liquid tank 170 into the liquid reservoir through the liquid feeding tube 184. Examples of the cleaning liquid include physiological saline and phosphate buffer. In this case, the position of the sensor chip 100 on the shaker 182 moves relative to the liquid feeding tube 184. Thereby, the liquid feeding tube 184 introduces the liquid into the plurality of detection units 140. Moreover, the liquid may be introduced into the liquid reservoir by a pipette or the like.
The sucked liquid passes through the membrane filter 130 from the liquid reservoir, and is removed from the opening 152 of the chip base 150 to the waste liquid tank 168 through the waste liquid tube 186.
In this way, the liquid in the reservoir can be removed by suction from below the membrane filter 130, leaving the microorganisms cultured on the membrane filter 130.
 また、吸引機構162は、図8に示すように、検出部140の下方に設けられ、液体を吸引する吸引プラグ188を備える。吸引機構162中の不図示の第1の制御部により、吸引プラグ188の圧力が制御されている。制御部は、吸引プラグ188の圧力を検出し、検出値に応じて、吸引プラグ188の圧力値をフィードバック補正する。このとき、図8(a)に示す例では、検出部140のそれぞれに吸引プラグ188が設けられている。吸引プラグ188は、互いに分離により検出部140中の液体を真空ポンプ166により個々に吸引する。また、図8(b)に示す例では、複数の検出部140に対して1つの吸引プラグ188が設けられている。吸引プラグ188は、複数の検出部140中の液体を真空ポンプ166により同時に吸引する。または、スライド機構を用いてチップを移動させ各々の検出部について順次吸引する。 Further, as shown in FIG. 8, the suction mechanism 162 includes a suction plug 188 that is provided below the detection unit 140 and sucks liquid. The pressure of the suction plug 188 is controlled by a first control unit (not shown) in the suction mechanism 162. The control unit detects the pressure of the suction plug 188 and feedback corrects the pressure value of the suction plug 188 according to the detected value. At this time, in the example illustrated in FIG. 8A, the suction plug 188 is provided in each of the detection units 140. The suction plug 188 sucks the liquid in the detection unit 140 individually by the vacuum pump 166 by being separated from each other. In the example shown in FIG. 8B, one suction plug 188 is provided for the plurality of detection units 140. The suction plug 188 simultaneously sucks the liquid in the plurality of detection units 140 by the vacuum pump 166. Alternatively, the chip is moved using a slide mechanism and suction is sequentially performed for each detection unit.
 培養機構164においては、ヒータ180とフィン178とにより、培養温度を調節する。このとき、フィン178を用いない場合には、ヒータ180のオンオフのみで温度調節をすることができる。培養温度は、不図示の温度センサで測定しつつ、微生物の種類、抗生物質の種類等に応じて調節する。培養温度としては、たとえば、室温(25℃程度)から45℃程度とすることができる。ここで、培養機構164の制御温度は、たとえば室温(25℃程度)から60℃程度とすることができる。また、振盪器182は、センサーチップ100が載置されているチップ台150を振盪する。たとえば、偏心モータによりチップ台150を振盪する。これらにより、センサーチップ100の検出部140中の微生物を、恒温の条件下、液体培地中で振盪培養することができる。
 このとき、図7(b)に示す濃縮装置160において、開閉自在のカバー210および仕切り板208から構成される内部空間(密閉空間)中にセンサーチップ100が設けられている。カバー210が開放すると、センサーチップ100の上方が露出する。このため、センサーチップ100の操作性が向上する。つまり、簡便かつ効率良く、センサーチップ100の移動、センサーチップ100の振盪、センサーチップ100への液体の導入等を実施することができる。
In the culture mechanism 164, the culture temperature is adjusted by the heater 180 and the fins 178. At this time, when the fin 178 is not used, the temperature can be adjusted only by turning the heater 180 on and off. The culture temperature is adjusted according to the type of microorganism, the type of antibiotic, etc. while measuring with a temperature sensor (not shown). The culture temperature can be, for example, from room temperature (about 25 ° C.) to about 45 ° C. Here, the control temperature of the culture mechanism 164 can be, for example, from room temperature (about 25 ° C.) to about 60 ° C. The shaker 182 shakes the chip base 150 on which the sensor chip 100 is placed. For example, the tip base 150 is shaken by an eccentric motor. Thus, the microorganisms in the detection unit 140 of the sensor chip 100 can be shake-cultured in a liquid medium under a constant temperature condition.
At this time, in the concentrating device 160 shown in FIG. 7B, the sensor chip 100 is provided in an internal space (sealed space) constituted by the cover 210 and the partition plate 208 that can be freely opened and closed. When the cover 210 is opened, the upper part of the sensor chip 100 is exposed. For this reason, the operability of the sensor chip 100 is improved. That is, the movement of the sensor chip 100, the shaking of the sensor chip 100, the introduction of the liquid into the sensor chip 100, and the like can be performed simply and efficiently.
 このように、濃縮装置160は、センサーチップ100上で微生物の濃縮、培養、洗浄、蛍光染色を実行する。つまり、濃縮装置160は、まず、検出部140のメンブレンフィルタ130上に微生物を濃縮し、続いて、この微生物を液体培地中で培養してメンブレンフィルタ130上に捕捉し、この後、微生物について洗浄および蛍光染色を実行する。 As described above, the concentration device 160 performs concentration, culture, washing, and fluorescent staining of microorganisms on the sensor chip 100. That is, the concentrating device 160 first concentrates the microorganisms on the membrane filter 130 of the detection unit 140, and then cultures the microorganisms in a liquid medium and captures them on the membrane filter 130. Thereafter, the microorganisms are washed. And perform fluorescent staining.
 次に、本発明の実施の形態に係る検出装置190について説明する。図9は、検出装置190を模式的に示す。
 検出装置190は、濃縮装置160により蛍光染色されたセンサーチップ100上の検出部140中の微生物を蛍光観察する。また、検出装置190には、特に限定されず、たとえば汎用の蛍光顕微鏡を用いることができる。
 検出装置190は、移動ステージ192、励起用光源194、励起光用光学フィルタ195(光源が多くの波長を含む白色光源である場合などは、励起フィルタを用いる必要がある)、対物レンズ196、ダイクロイックミラー198、放射光吸収光学フィルタ200、結像レンズ202、検知機構204、PC206を備える。
 移動ステージ192は、センサーチップ100が載置されたチップ台150をX軸方向、Y軸方向およびZ軸方向(三次元方向)に自在に移動させることができる。これにより、対物レンズ196に対して、センサーチップ100上の検出部140の位置および高さを調節する。
Next, the detection device 190 according to the embodiment of the present invention will be described. FIG. 9 schematically shows the detection device 190.
The detection device 190 performs fluorescence observation of microorganisms in the detection unit 140 on the sensor chip 100 that is fluorescently stained by the concentration device 160. The detection device 190 is not particularly limited, and for example, a general-purpose fluorescence microscope can be used.
The detection device 190 includes a moving stage 192, an excitation light source 194, an excitation light optical filter 195 (when the light source is a white light source including many wavelengths, an excitation filter needs to be used), an objective lens 196, a dichroic. A mirror 198, a radiation absorbing optical filter 200, an imaging lens 202, a detection mechanism 204, and a PC 206 are provided.
The moving stage 192 can freely move the chip table 150 on which the sensor chip 100 is placed in the X-axis direction, the Y-axis direction, and the Z-axis direction (three-dimensional direction). Thus, the position and height of the detection unit 140 on the sensor chip 100 are adjusted with respect to the objective lens 196.
 また、図9に示す検出装置190においては、励起用光源194は励起光を照射する。ダイクロイックミラー198は励起用光源194から照射された励起光を分光させる。対物レンズ196はこの分光した励起光を集光させる。続いて、集光した励起光がセンサーチップ100上の検出部140に照射すると、微生物などが蛍光を発光する。そして、光学フィルタ200は当該蛍光を上記対物レンズ196とダイクロイックミラー198とを経由して透過させる。結像レンズ202はこの透過した蛍光の光束を結像させる。検知機構204により、この結像が電子データに変換される。励起用光源194としては、LED等(その他レーザー)を用いることができる。また、検知機構204としては、CCDカメラ(電荷結合素子(Charge Coupled Device:CCD))等(その他CMOS)を用いる。これにより、CCDカメラに接続したPC206を用いた画像解析もすることができる。また、各検出部140中の微生物の生菌の発光を示す画像データが得られる。また、検知機構204として、CCDカメラに代えて、接眼レンズを用いてもよい。これにより、目視による観察を行うことができる。 Further, in the detection device 190 shown in FIG. 9, the excitation light source 194 emits excitation light. The dichroic mirror 198 splits the excitation light emitted from the excitation light source 194. The objective lens 196 collects the split excitation light. Subsequently, when the condensed excitation light irradiates the detection unit 140 on the sensor chip 100, a microorganism or the like emits fluorescence. The optical filter 200 transmits the fluorescence via the objective lens 196 and the dichroic mirror 198. The imaging lens 202 forms an image of the transmitted fluorescent light flux. The imaging mechanism is converted into electronic data by the detection mechanism 204. As the excitation light source 194, an LED or the like (other laser) can be used. As the detection mechanism 204, a CCD camera (Charge Coupled Device (CCD)) or the like (other CMOS) is used. As a result, image analysis using the PC 206 connected to the CCD camera can also be performed. Also, image data indicating the luminescence of the living microorganisms in each detection unit 140 is obtained. As the detection mechanism 204, an eyepiece may be used instead of the CCD camera. Thereby, visual observation can be performed.
 次に、微生物検出システムを用いた本実施の形態の各工程について、以下説明する。
 図2および図3は、本発明の実施形態の薬剤感受性の検出方法の手順を示す。
 図2は、参照対象(ネガティブコントロール)の検出部140(第1の検出部)を表し、図3は、検出対象の検出部140(第2の検出部)を表す。また、図2では、抗生物質を含まない液体培地310を用い、一方、図3では、抗生物質を含む液体培地320を用いている。
Next, each step of the present embodiment using the microorganism detection system will be described below.
2 and 3 show the procedure of the drug sensitivity detection method according to the embodiment of the present invention.
FIG. 2 shows a detection unit 140 (first detection unit) for a reference target (negative control), and FIG. 3 shows a detection unit 140 (second detection unit) for a detection target. In FIG. 2, a liquid medium 310 containing no antibiotics is used, while in FIG. 3, a liquid medium 320 containing antibiotics is used.
[工程(1)]
 まず、センサーチップ100を用い、参照対象および検出対象の検出部140中の液溜め部に、試料300(微生物を含む被検用の液体)を分けて導入する(S100、図2(a)、図3(a))。
 本工程では、参照対象と検出対象には、被検用の液体として、同じ試料300を用いる。そのため、参照対象および検出対象の試料300中の微生物の初期濃度はほぼ同一となる。また、前提として、試料300は、後述の工程で添加する抗生物質により殺菌される、あるいは細菌の増殖が阻害される、対象菌340(微生物)を含むものとする。
[Step (1)]
First, using the sensor chip 100, the sample 300 (liquid to be tested including microorganisms) is separately introduced into the liquid reservoir in the reference target and detection target detection unit 140 (S100, FIG. 2A). FIG. 3 (a)).
In this step, the same sample 300 is used as the liquid to be detected for the reference object and the detection object. Therefore, the initial concentration of microorganisms in the reference object 300 and the detection object sample 300 is substantially the same. Further, as a premise, the sample 300 includes a target bacterium 340 (microorganism) that is sterilized by an antibiotic added in a later-described step or that inhibits bacterial growth.
 試料300は、あらゆる場所から採取してきた微生物を溶媒に拡散して得られる。採取場所は、たとえば、水、飲料、食品、畜産動物、植物、ベット等の生活環境、血液、皮膚、唾液、痰、創傷、胃内容物、尿または糞便等の人体等を挙げることができる。溶媒は、たとえば、生理食塩水やリン酸緩衝液等を用いることができる。また、試料300には、通常の培養方法により、あらかじめ培養しておいた微生物を用いてもよい。 The sample 300 is obtained by diffusing microorganisms collected from every place in a solvent. Examples of the collection location include living environments such as water, beverages, foods, livestock animals, plants, and beds, blood, skin, saliva, sputum, wounds, stomach contents, urine, feces, and other human bodies. As the solvent, for example, physiological saline, phosphate buffer, or the like can be used. The sample 300 may be a microorganism that has been cultured in advance by a normal culture method.
 試料300の微生物の初期濃度は、非常に低濃度でよい。例えば、初期濃度を、1個/ml以上程度から、10E5個/ml以下程度とすることができる。 The initial concentration of the microorganism in the sample 300 may be very low. For example, the initial concentration can be about 1 / ml to 10E5 / ml.
 続いて、検出部140中の試料300を除去して、メンブレンフィルタ130上に対象菌340を残す(S102、図2(b)、図3(b))。これにより、対象菌340の液体中の濃度が濃縮される。このとき、図7に示す吸引機構162を用いて、検出部140の下方から試料300中の液体を吸引する。 Subsequently, the sample 300 in the detection unit 140 is removed, and the target bacteria 340 are left on the membrane filter 130 (S102, FIG. 2 (b), FIG. 3 (b)). Thereby, the density | concentration in the liquid of the object microbe 340 is concentrated. At this time, the liquid in the sample 300 is sucked from below the detection unit 140 using the suction mechanism 162 shown in FIG.
[工程(2)]
 続いて、参照対象の検出部140中に液体培地310を導入し、検出対象の検出部140中に抗生物質を含む液体培地320を導入する。そして、図7に示す培養機構164を用いて、各センサーチップ100を振盪器182で振盪させ、各検出部140中の対象菌340を振盪培養する(S104、図2(c)、図3(c))。
 このように、本培養工程では、検出部140中に導入された際に発生する液体培地の対流等の作用により、メンブレンフィルタ130上から離れ、液体培地中に微生物が浮遊する。本培養工程中、いずれかの微生物が液体培地中に浮遊している。さらに、振盪を行うことで、微生物を浮遊させるとともに、液体培地中の微生物の密度を均一にすることができる。このように浮遊している状態で培養することで、微生物の増殖速度を増加させたり、抗生物質の増殖阻害作用を強めたりできる。さらに、振盪培養を行うことで、微生物の増殖に必要な酸素、培地成分及び増殖阻害物質が効率よく微生物と接触するため、このような効果を高めることができ、また、微生物の増殖の結果については、再現性良く得ることができる。
[Step (2)]
Subsequently, the liquid medium 310 is introduced into the detection unit 140 to be referenced, and the liquid medium 320 containing antibiotics is introduced into the detection unit 140 to be detected. Then, using the culture mechanism 164 shown in FIG. 7, each sensor chip 100 is shaken with a shaker 182 and the target bacteria 340 in each detection unit 140 is shake-cultured (S104, FIG. 2 (c), FIG. 3 ( c)).
As described above, in the main culturing step, the microorganisms are separated from the membrane filter 130 and float in the liquid medium by an action such as convection of the liquid medium generated when introduced into the detection unit 140. During the main culture process, any microorganisms are suspended in the liquid medium. Further, by shaking, the microorganisms can be suspended and the density of the microorganisms in the liquid medium can be made uniform. By culturing in such a floating state, the growth rate of microorganisms can be increased, and the growth inhibitory action of antibiotics can be increased. Furthermore, by performing shaking culture, oxygen, medium components and growth inhibitory substances necessary for the growth of microorganisms come into contact with the microorganisms efficiently, so that such an effect can be enhanced. Can be obtained with good reproducibility.
 ここで、参照対象の検出部140では、対象菌340が増殖する。図2(c)に示すように、増殖した微生物を増殖菌370とする。一方、検出対象の検出部140では、抗生物質の殺菌作用により、対象菌340の増殖が阻害される。図3(c)に示すように、増殖が阻害された微生物を増殖抑制菌380とする。 Here, in the reference target detection unit 140, the target bacteria 340 grow. As shown in FIG. 2 (c), the propagated microorganism is designated as a proliferating bacterium 370. On the other hand, in the detection unit 140 to be detected, the growth of the target bacteria 340 is inhibited by the bactericidal action of the antibiotic. As shown in FIG. 3C, a microorganism whose growth is inhibited is referred to as a growth-inhibiting bacterium 380.
 本実施の形態に係る抗生物質は、たとえば、ペニシリン系、セファム系、βラクタム系、アミノグリコシド系、ペプチド系、テトラサイクリン系、マクロライド系、ニューキノロン系、クロラムフェニコール系、アミノ配糖体系等を用いることができる。
 液体培地としては、微生物の種類にもよるが、たとえばLB培地やミュラーヒントン培地などを用いることができる。
 培養時間は、微生物の種類にもよるが、特に限定されず、たとえば15分以上、180分以下程度とすることができる。また、培養温度としては、微生物の種類および抗生物質の種類にもよるが、特に限定されず、30℃以上、45℃以下程度とすることができる。
Antibiotics according to the present embodiment include, for example, penicillins, cephams, β-lactams, aminoglycosides, peptides, tetracyclines, macrolides, new quinolones, chloramphenicol, aminoglycosides, etc. Can be used.
As the liquid medium, for example, an LB medium or a Muller Hinton medium can be used although it depends on the type of microorganism.
Although the culture time depends on the type of microorganism, it is not particularly limited and can be, for example, about 15 minutes or more and 180 minutes or less. The culture temperature is not particularly limited, although it depends on the type of microorganism and the type of antibiotic, and can be about 30 ° C. or higher and 45 ° C. or lower.
[工程(3)]
 続いて、参照対象の検出部140中の液体培地310を除去して、メンブレンフィルタ130上に対象菌340、増殖菌370を残す。また、検出対象の検出部140中の抗生物質を含む液体培地320を除去して、メンブレンフィルタ130上に対象菌340、増殖抑制菌380を残す(S106、図2(d)、図3(d))。このとき、図7に示す吸引機構162を用いて、検出部140の下方から液体培地310および抗生物質を含む液体培地320中の液体を吸引する。
 このようにして、参照対象および検出対象のそれぞれのメンブレンフィルタ130上に対象菌340および増殖菌370、対象菌340および増殖抑制菌380が捕集される。また、死んだ細胞は、細胞膜が弱体化するため、吸引力を制御することで、死菌をばらばらにして、膜(メンブレンフィルタ130)を通過させることもできる。このような微生物の捕集工程により、微生物を含む液体培地のうち、微生物と液体培地等とを分け、この微生物(とくに生菌)を有意に微小な領域に集めることができる。
[Step (3)]
Subsequently, the liquid medium 310 in the reference target detection unit 140 is removed, and the target bacteria 340 and the proliferating bacteria 370 are left on the membrane filter 130. Further, the liquid medium 320 containing the antibiotic in the detection unit 140 to be detected is removed, and the target bacteria 340 and the growth-inhibiting bacteria 380 are left on the membrane filter 130 (S106, FIG. 2 (d), FIG. 3 (d). )). At this time, using the suction mechanism 162 shown in FIG. 7, the liquid in the liquid medium 310 and the liquid medium 320 containing antibiotics is sucked from below the detection unit 140.
In this way, the target bacteria 340 and the growth bacteria 370, the target bacteria 340, and the growth-inhibiting bacteria 380 are collected on the membrane filters 130 of the reference object and the detection object. In addition, since the cell membrane of the dead cell is weakened, the dead bacteria can be separated by passing through the membrane (membrane filter 130) by controlling the suction force. By such a microorganism collecting step, the microorganism and the liquid medium can be separated from the liquid medium containing the microorganism, and the microorganism (particularly, live bacteria) can be collected in a significantly small area.
[工程(4)]
 続いて、微生物の生死を判別する試薬(蛍光試薬330)を液溜め部に導入する(S108、図2(e)、図3(e))。蛍光試薬330としては、たとえば、生菌のみを蛍光染色する試薬が用いられる。
 蛍光試薬330の導入量は、特に限定されず、微生物(対象菌340、増殖菌370、増殖抑制菌380)が蛍光試薬330と接触する量であればよい。
[Step (4)]
Subsequently, a reagent (fluorescent reagent 330) for determining whether microorganisms are alive or dead is introduced into the liquid reservoir (S108, FIG. 2 (e), FIG. 3 (e)). As the fluorescent reagent 330, for example, a reagent that fluorescently stains only viable bacteria is used.
The introduction amount of the fluorescent reagent 330 is not particularly limited as long as the microorganisms (target bacteria 340, proliferating bacteria 370, and growth-suppressing bacteria 380) are in contact with the fluorescent reagent 330.
 ここで、微生物の生死を判別する方法としては、これに限らず、例えば、市販の蛍光染色試薬を用いて生死菌の判別をする方法を用いることができる。生死菌を判別する方法には、(a)複合蛍光染色法、または(b)生菌染色法と全菌染色法との組み合わせた方法などがある。
 (a)に示す方法の場合、蛍光染色試薬として、生死菌で発光色の違う蛍光試薬が用いられる。具体的には、緑色蛍光のSYTO9色素と赤色蛍光のヨウ化プロビジウム色素を含む複合蛍光染色試薬を用いることができる。この他にも、死菌の標識として、YOYO-1、7ADD、生菌の標識として、Ethidium homodimer-1、FDA、Calcein AM、LDS751などを含む、蛍光染色試薬を用いることができる。
 (b)に示す方法の場合、DAPI染色法、EB染色法、SYBR Green1染色法などの全菌染色法と、CTC染色法、CFDA染色法などの生菌染色法とを組み合わせて用いることができる。例えば、DAPI染色法とCFDA染色法との二重染色により、生死菌の判別をする。
Here, the method for discriminating the viability of microorganisms is not limited to this, and for example, a method of discriminating viable and dead bacteria using a commercially available fluorescent staining reagent can be used. As a method for discriminating between live and dead bacteria, there are (a) a combined fluorescent staining method, and (b) a combined method of a live bacterial staining method and a whole bacterial staining method.
In the case of the method shown in (a), a fluorescent reagent having a different luminescent color is used as a fluorescent staining reagent. Specifically, a composite fluorescent staining reagent containing a green fluorescent SYTO9 dye and a red fluorescent propidium iodide dye can be used. In addition, YOYO-1, 7ADD can be used as a label for dead bacteria, and a fluorescent staining reagent including, for example, Ethidium homodimer-1, FDA, Calcein AM, LDS751, etc. can be used as a label for live bacteria.
In the case of the method shown in (b), a total bacterial staining method such as DAPI staining method, EB staining method, SYBR Green1 staining method, and viable bacterial staining methods such as CTC staining method, CFDA staining method can be used in combination. . For example, viable and dead bacteria are discriminated by double staining of the DAPI staining method and the CFDA staining method.
[工程(5)]
 続いて、蛍光観察する前に、各検出部140内部を洗浄する。洗浄するには、たとえば、検出部140に洗浄液を導入し、この洗浄液を吸収除去する。この後、センサーチップ100を濃縮装置160から検出装置190に移動させる。そして、検出装置190を用い、センサーチップ100の検出部140中の微生物を蛍光観察する(S110、図2(f)、図3(f))。本工程では、たとえば、光学倍率を掛けて、蛍光観察する。
 蛍光試薬330は、たとえば生菌350のみ蛍光染色する。そのため、図2(f)、図3(f)に示すように、参照対象の検出部140においては、対象菌340および増殖菌370が生菌350として検出される。一方、検出対象の検出部140においては、増殖抑制菌380は死菌360であるため検出されず、対象菌340のみが生菌350として検出される。そして、微小領域に捕集した微生物数(たとえば生菌数)を計数して、参照対象の検出部140に対する、検出対象の検出部140の生菌数比を算出する。
[Step (5)]
Subsequently, before the fluorescence observation, the inside of each detection unit 140 is washed. For cleaning, for example, a cleaning liquid is introduced into the detection unit 140, and this cleaning liquid is absorbed and removed. Thereafter, the sensor chip 100 is moved from the concentration device 160 to the detection device 190. Then, using the detection device 190, the microorganisms in the detection unit 140 of the sensor chip 100 are fluorescently observed (S110, FIG. 2 (f), FIG. 3 (f)). In this step, for example, fluorescence observation is performed by multiplying the optical magnification.
The fluorescent reagent 330, for example, fluorescently stains only live bacteria 350. Therefore, as shown in FIGS. 2 (f) and 3 (f), in the reference target detection unit 140, the target bacteria 340 and the proliferating bacteria 370 are detected as viable bacteria 350. On the other hand, in the detection unit 140 to be detected, the growth-suppressing bacteria 380 are not detected because they are dead bacteria 360, and only the target bacteria 340 are detected as live bacteria 350. Then, the number of microorganisms (for example, the number of viable bacteria) collected in the minute area is counted, and the ratio of the viable cell count of the detection target 140 to the reference target detection unit 140 is calculated.
 ここで、本実施の形態の微生物検出方法により得られた、生菌数比について説明する。
 本実施の形態においては、生菌数比は、微生物の感受性を示すパラメータである。
 この生菌数比の定義を以下に示す。
 (i)生菌数比が1.0±α(対数換算)以内の場合は、検出対象の微生物は抗生物質に対して感受性を示さない基準とする(つまり、微生物に耐性が有る場合には、生菌数比は、ほぼ1かそれ以上になる)。
 (ii)生菌数比が1.0-α(対数換算)より小さい範囲では、検出対象の微生物は抗生物質に対して感受性を示す基準とする。
 ここで、αは、培養時間、培養温度および抗生物質の濃度等により決定する。αとしては、たとえば、0.5以下、さらには0.2以下と設定することができる。
Here, the viable cell count ratio obtained by the microorganism detection method of the present embodiment will be described.
In the present embodiment, the viable cell count ratio is a parameter indicating the sensitivity of microorganisms.
The definition of this viable count ratio is shown below.
(I) If the viable cell count ratio is within 1.0 ± α (logarithmic conversion), the detection target microorganism should be a standard that does not show sensitivity to antibiotics (that is, if the microorganism is resistant) The ratio of viable bacteria is about 1 or more).
(Ii) In the range where the viable cell count ratio is smaller than 1.0-α (logarithmic conversion), the detection target microorganism is used as a standard indicating sensitivity to antibiotics.
Here, α is determined by the culture time, culture temperature, antibiotic concentration, and the like. For example, α can be set to 0.5 or less, and further 0.2 or less.
 生菌数比を算出する方法について説明する。本実施の形態において、生菌数比を算出するには、たとえば、(1)生菌数をカウントして生菌数比を算出してもよいし、(2)生菌を示す画像データの蛍光面積の比を換算して生菌数比を算出してもよい。
 (1)生菌数から生菌数比を算出する方法について説明する。まず、1視野当たりの生菌数をカウントし、検出部140の開口面積(ろ過面積)/1視野あたりの面積を掛ける。つまり、次の式により、生菌数が算出される。生菌数=(1視野当たりの生菌数の平均値)×(ろ過面積)/1視野あたりの面積。そして、第1の生菌数(参照対象の検出部140中の生菌数)に対する第2の生菌数(検出対象の検出部140中の生菌数)の生菌数比を算出する。
 (2)蛍光面積の比を換算して生菌数比を算出する方法について説明する。まず、各検出部140の生菌350を示す蛍光画像データを得る。そして、1視野当たりの蛍光面積を算出し、検出部140の開口面積(ろ過面積)/1視野あたりの面積を掛ける。つまり、次の式により、蛍光面積が算出される。蛍光面積=(1視野当たりの蛍光面積の平均値)×(ろ過面積)/1視野あたりの面積。そして、第1の蛍光面積(参照対象の検出部140中の蛍光面積)に対する第2の蛍光面積(検出対象の検出部140中の蛍光面積)の蛍光面積比を算出し、この蛍光面積比を換算して生菌数比とする。
A method for calculating the viable count ratio will be described. In this embodiment, in order to calculate the viable cell count ratio, for example, (1) the viable cell count may be calculated by counting the viable cell count, or (2) the image data indicating the viable cell count is calculated. The ratio of viable bacteria may be calculated by converting the ratio of the fluorescence areas.
(1) A method for calculating the viable cell count ratio from the viable cell count will be described. First, the number of viable bacteria per field of view is counted and multiplied by the opening area (filtration area) of the detection unit 140 / the area per field of view. That is, the viable cell count is calculated by the following formula. Number of viable bacteria = (average number of viable bacteria per visual field) × (filtration area) / area per visual field. Then, the ratio of the viable cell count of the second viable cell count (viable cell count in the detection unit 140 to be detected) to the first viable cell count (viable cell count in the reference target detection unit 140) is calculated.
(2) A method of calculating the viable cell count ratio by converting the ratio of the fluorescence areas will be described. First, fluorescence image data indicating the live bacteria 350 of each detection unit 140 is obtained. Then, the fluorescence area per field of view is calculated and multiplied by the opening area (filtering area) of the detection unit 140 / area per field of view. That is, the fluorescence area is calculated by the following equation. Fluorescence area = (average value of fluorescence area per field) × (filtration area) / area per field. Then, the ratio of the fluorescence area of the second fluorescence area (fluorescence area in the detection unit 140 to be detected) to the first fluorescence area (fluorescence area in the detection unit 140 to be referred to) is calculated, and this fluorescence area ratio is calculated. Convert to the viable count ratio.
 以上のように、参照対象の検出部140に対する、検出対象の検出部140の生菌数比を算出することで、微生物の高感度かつ迅速に微生物の感受性を検出することができる。 As described above, by calculating the ratio of the number of viable bacteria of the detection unit 140 to be detected with respect to the detection unit 140 to be referred to, the sensitivity of the microorganism can be detected with high sensitivity and speed.
 ここでは、培養工程後における第1の生菌数に対する第2の生菌数の比(生菌数比)を用いる場合を説明したが、この他にも各種の手法を用いて、高感度かつ迅速に微生物の感受性を検出することができる。たとえば、培養工程後における第1の生菌数と第2の生菌数の差が所定値以上か否かにより感受性を判断する手法や、第1の生菌数の変動値(培養工程前の生菌数と培養工程後の生菌数との差)に対する第2の生菌数の変動値(左同)が所定値以下か否かにより感受性を判断する手法や、培養時間に対する第1の生菌数の上記変動値と第2の生菌数の上記変動値の変動傾向を比較することにより感受性を判断する手法等が挙げられる。 Here, the case of using the ratio of the second viable cell count to the first viable cell count after the culturing process (viable cell count ratio) has been described. The sensitivity of microorganisms can be detected quickly. For example, a method for determining sensitivity based on whether or not the difference between the first viable cell count and the second viable cell count after the culturing step is a predetermined value or more, or a fluctuation value of the first viable cell count (before the culturing step) A method for judging sensitivity based on whether or not the fluctuation value (the same as the left) of the second viable cell count relative to the viable cell count and the viable cell count after the culturing step is equal to or less than a predetermined value; Examples include a method of judging sensitivity by comparing the fluctuation tendency of the fluctuation value of the viable cell count and the fluctuation value of the second viable cell count.
 本実施の形態の効果を説明する。
 本実施の形態の微生物検出方法においては、濃縮、培養、蛍光観察等の一連の工程を、センサーチップ100上で実施することができる。このため、迅速に微生物を検出することができる。そのため、全体の検出時間を短縮することができる。
 また、本実施の形態によれば、濃縮工程や微生物を微小領域に捕集し蛍光観察する工程を行っているので、その濃縮効果のために、微小な微生物数の変化を極めて正確に検出できる。
The effect of this embodiment will be described.
In the microorganism detection method of the present embodiment, a series of steps such as concentration, culture, and fluorescence observation can be performed on the sensor chip 100. For this reason, microorganisms can be detected quickly. Therefore, the entire detection time can be shortened.
In addition, according to the present embodiment, the concentration process and the process of collecting the microorganisms in the micro area and performing the fluorescence observation are performed, so that the change in the number of micro microorganisms can be detected very accurately due to the concentration effect. .
 本実施の形態において、検出対象の検出部140では、抗生物質を含む液体培地中で微生物を振盪培養している。これにより、抗生物質の増殖阻害作用が強まり、参照対象の検出部140中の生菌数は減少する。そのため、検出対象の検出部140において、培養前と培養後との生菌数比の違いが明瞭となり、抗生物質に感受性を示す微生物を迅速に検出することができる。
 さらに、参照対象の検出部140では、抗生物質を含まない液体培地中で微生物を振盪培養している。これにより、微生物の増殖速度が早くなり、参照対象の検出部140中の生菌数は増加する。そのため、培養後において、検出対象と参照対象との生菌数比の違いが明瞭となり、より高感度かつ迅速に微生物の感受性を検出することができる。
In the present embodiment, in the detection unit 140 to be detected, the microorganism is shake-cultured in a liquid medium containing an antibiotic. Thereby, the growth inhibitory action of the antibiotic is strengthened, and the number of viable bacteria in the reference target detection unit 140 is reduced. Therefore, in the detection unit 140 to be detected, the difference in the viable cell count ratio before and after the culture becomes clear, and microorganisms that are sensitive to antibiotics can be rapidly detected.
Further, in the reference target detection unit 140, the microorganism is shake-cultured in a liquid medium not containing antibiotics. Thereby, the growth rate of microorganisms is increased, and the number of viable bacteria in the reference target detection unit 140 is increased. Therefore, after culturing, the difference in the viable cell count ratio between the detection target and the reference target becomes clear, and the sensitivity of the microorganism can be detected with higher sensitivity and speed.
 このように、同じ試料(微生物を含む液体)を前提として、抗生物質を含まない条件下の第1の生菌数と抗生物質を含む条件下の第2の生菌数との生菌数比を算出することにより、微生物の抗生物質に対する感受性を高感度に検出することができる。 Thus, on the premise of the same sample (liquid containing microorganisms), the viable cell count ratio between the first viable cell count under the condition not containing antibiotics and the second viable cell count under conditions containing antibiotics By calculating, the sensitivity of the microorganism to the antibiotic can be detected with high sensitivity.
 本実施の形態では、培養前に、メンブレンフィルタ130上に微生物を微小領域に濃縮している。このため、試料中の微生物の濃度が、非常に低濃度でも、微生物の感受性を検出することができる。さらには、本実施の形態の培養工程により、生菌数比の差が明瞭となり、高感度に微生物の感受性を検出することができる。そのため、試料中の微生物の濃度に依存せずに、微生物の感受性を検出できる。例えば、試料中の微生物の初期濃度が10個/ml以上程度、さらには1個/ml以上程度から、検出装置190により、微生物を検出できる。 In the present embodiment, the microorganisms are concentrated on the membrane filter 130 in a minute region before culturing. For this reason, even if the concentration of the microorganism in the sample is very low, the sensitivity of the microorganism can be detected. Furthermore, the difference in the viable cell count ratio becomes clear by the culturing process of the present embodiment, and the sensitivity of the microorganism can be detected with high sensitivity. Therefore, the sensitivity of the microorganism can be detected without depending on the concentration of the microorganism in the sample. For example, the microorganisms can be detected by the detection device 190 when the initial concentration of the microorganisms in the sample is about 10 cells / ml or more, more preferably about 1 cell / ml or more.
 本実施の形態では、濃縮装置160および検出装置190を用いて、センサーチップ100上で培養、濃縮、蛍光観察を統合して実施できる。そのため、本実施の形態においては、工程の簡便化、作業の効率化および汚染や感染の危険性の軽減を図ることができる。また、センサーチップ100中で全ての工程について処理をすることができるため、汚染の恐れも少ない上、実験者の安全が図れる。 In this embodiment, it is possible to integrate culture, concentration, and fluorescence observation on the sensor chip 100 using the concentration device 160 and the detection device 190. Therefore, in the present embodiment, it is possible to simplify the process, increase the efficiency of work, and reduce the risk of contamination and infection. In addition, since all processes can be performed in the sensor chip 100, there is little risk of contamination and the safety of the experimenter can be achieved.
 また、本実施の形態の薬剤感受性の検出方法では、抗生物質に接触した微生物を捕集し、この捕集した微生物の殺菌作用による生死を直接検出することで、微生物の薬剤感受性を迅速に検査することができる。培養法やPCR法等と比べると検査に要する試料の処理工程が少ないため、非常に簡単である。さらに、培養法を除くほかの検査方法と比べると使用する試薬が少ないため、ランニングコストを低く抑えることも可能である。また、この薬剤感受性の検出方法は、院内感染原因菌の検出、感染症診断および抗菌剤の迅速感受性試験等に応用することもできる。 Also, in the drug sensitivity detection method of the present embodiment, microorganisms that have come into contact with antibiotics are collected, and by directly detecting the death or death due to the bactericidal action of the collected microorganisms, the drug sensitivity of the microorganisms can be quickly examined. can do. Compared with the culture method, the PCR method, and the like, the number of sample processing steps required for the inspection is small, so it is very simple. Furthermore, since the amount of reagents used is small compared to other inspection methods other than the culture method, it is possible to keep running costs low. This method for detecting drug sensitivity can also be applied to detection of nosocomial infection-causing bacteria, diagnosis of infectious diseases, rapid test for antibacterial agents, and the like.
(第2の実施の形態)
 第2の実施の形態の微生物検出方法について、以下説明する。
 第2の実施の形態の微生物検出方法は、最小発育阻止濃度(MIC)を算出する方法である。つまり、第1の実施の形態の微生物検出方法により得られた生菌数比を示すデータの結果から最小発育阻止濃度(MIC)を算出する。
(Second Embodiment)
The microorganism detection method of the second embodiment will be described below.
The microorganism detection method of the second embodiment is a method of calculating the minimum inhibitory concentration (MIC). That is, the minimum growth inhibitory concentration (MIC) is calculated from the result of the data indicating the viable cell count ratio obtained by the microorganism detection method of the first embodiment.
 本実施の形態の微生物検出方法は、第1の検出部および第2の検出部からなる第1の検出部群を複数備えるチップ(センサーチップ100)を用い、微生物を濃縮する工程において、第1の検出部および第2の検出部に同一の被検用の液体を分けて導入し、微生物を培養する工程において、第1の検出部群の間で液体培地中の生理活性物質(第1の抗生物質)の濃度を異ならせ、微生物を観察する工程において、生理活性物質(第1の抗生物質)の濃度に対応する、第1の生菌数に対する第2の生菌数の生菌数比を算出する工程を含む。
 このとき、第1の検出部は、参照対象の検出部140を表し、第2の検出部は、検出対象の検出部140を表す。また、第1の生菌数は、第1の検出部中の生菌数を表し、第2の生菌数は、第2の検出部の生菌数を表す。
In the microorganism detection method of the present embodiment, in the step of concentrating microorganisms using a chip (sensor chip 100) including a plurality of first detection unit groups including a first detection unit and a second detection unit, In the step of introducing the same liquid to be detected separately into the detection unit and the second detection unit and culturing the microorganism, the physiologically active substance (first In the step of observing microorganisms with different concentrations of (antibiotics), the ratio of viable cell counts of the second viable cell count to the first viable cell count corresponding to the concentration of the physiologically active substance (first antibiotic) The step of calculating is included.
At this time, the first detection unit represents the reference target detection unit 140, and the second detection unit represents the detection target detection unit 140. The first viable cell count represents the viable cell count in the first detection unit, and the second viable cell count represents the viable cell count in the second detection unit.
 さらに、本実施の形態の微生物検出方法は、第3の検出部をさらに備えるチップ(センサーチップ100)を用い、微生物を濃縮する工程において、第1の検出部、第2の検出部および第3の検出部に同一の被検用の液体を分けて導入し、微生物を培養する工程において、第3の検出部では、第2の検出部と異なる種類の生理活性物質(第2の抗生物質)を含む液体培地を液溜め部に導入し、液体培地中に浮遊している微生物を培養し、微生物を観察する工程において、さらに、第1の検出部内の微生物の第1の生菌数と第3の検出部内の微生物の第3の生菌数とを測定し、第1の生菌数に対する前記第3の生菌数の生菌数比を算出する工程を含む。
 このとき、第3の検出部は、第2の検出部と異なる、検出対象の検出部140を表す。また、第3の生菌数は、第3の検出部中の生菌数を表す。また、第1の検出部、第2の検出部および第3の検出部から第2の検出部群が構成されている。
Furthermore, the microorganism detection method of the present embodiment uses a chip (sensor chip 100) further including a third detection unit, and in the step of concentrating microorganisms, the first detection unit, the second detection unit, and the third In the step of introducing the same liquid for testing separately into the detection unit and culturing the microorganism, the third detection unit is different from the second detection unit in the third detection unit (second antibiotic). In the step of culturing microorganisms floating in the liquid medium and observing the microorganisms, and the first viable count of microorganisms in the first detector and the first Measuring a third viable cell count of the microorganism in the three detection units, and calculating a ratio of the viable cell count of the third viable cell count to the first viable cell count.
At this time, the third detection unit represents a detection unit 140 to be detected, which is different from the second detection unit. Moreover, the 3rd viable cell count represents the viable cell count in the 3rd detection part. In addition, a second detection unit group includes the first detection unit, the second detection unit, and the third detection unit.
 本実施の形態では、複数の検出部を備えるチップとして、図4に示す縦横の検出部140の数が3個×6個である、センサーチップ100を用いることができる。
 図4に示すB-B矢視方向の検出部140においては、抗生物質を含まない液体培地、第1の抗生物質を含む液体培地、第2の抗生物質を含む液体培地を順に導入する。また、図4に示すA-A矢視方向の検出部140においては、第1の抗生物質の濃度および第2の抗生物質の濃度が6つの異なる濃度とする。
 このようにして、2種類の第1の抗生物質および第2の抗生物質について、第1の濃度から第6の濃度(第1の濃度から第6の濃度に向かって、徐々に濃度が低下する。このとき、各濃度の間隔は適宜選択できる。)までに対応する、複数個の生菌数のデータを得ることができる。
In the present embodiment, a sensor chip 100 in which the number of vertical and horizontal detection units 140 shown in FIG. 4 is 3 × 6 can be used as a chip including a plurality of detection units.
In the detection unit 140 in the direction of arrows BB shown in FIG. 4, a liquid medium not containing an antibiotic, a liquid medium containing a first antibiotic, and a liquid medium containing a second antibiotic are sequentially introduced. Further, in the detection unit 140 in the direction of arrows AA shown in FIG. 4, the concentration of the first antibiotic and the concentration of the second antibiotic are set to six different concentrations.
In this way, for the two types of first antibiotic and second antibiotic, the concentration gradually decreases from the first concentration to the sixth concentration (from the first concentration to the sixth concentration). At this time, the interval of each concentration can be selected as appropriate.) A plurality of viable cell count data can be obtained.
 続いて、第1の実施の形態と同様にして、抗生物質を含まない条件下の第1の生菌数と第1の抗生物質を含む条件下の第2の生菌数との、第1の生菌数比を算出する。さらに、第1の濃度から第6の濃度に対応する第1の生菌数比を算出する。これらの生菌数比は、(試料中の微生物の初期濃度が同一の試料)を前提とする。 Subsequently, in the same manner as in the first embodiment, the first viable cell number under the condition not containing the antibiotic and the second viable cell number under the condition containing the first antibiotic are the first The viable cell count ratio is calculated. Further, a first viable cell count ratio corresponding to the first concentration to the sixth concentration is calculated. These viable count ratios are premised on (samples with the same initial concentration of microorganisms in the sample).
 続いて、最小発育阻止濃度(MIC)を算出するには、得られた生菌数比を示すデータの結果から、第1の抗生物質に対する微生物の感受性の有無を判断する。
 たとえば、第1の生菌数比のうち、第1の濃度から第4の濃度では、感受性を示す基準の値であり、他方、第5の濃度および第6の濃度では、感受性を示さない基準の値であるとする。この場合、第1の抗生物質に対する微生物の第1のMICは、第4の濃度と決定することができる。さらに、第4の濃度と第5の濃度との濃度間で、濃度をふって、第1の生菌数比を算出し、感受性の有無の結果から、より正確に第1のMICを算出することができる。
Subsequently, in order to calculate the minimum growth inhibitory concentration (MIC), the presence or absence of the susceptibility of the microorganism to the first antibiotic is determined from the result of the data indicating the obtained viable cell count ratio.
For example, in the first viable cell count ratio, the first concentration to the fourth concentration are reference values indicating sensitivity, while the fifth concentration and the sixth concentration are reference values indicating no sensitivity. It is assumed that In this case, the first MIC of the microorganism for the first antibiotic can be determined as the fourth concentration. Further, the first viable cell count ratio is calculated by varying the concentration between the fourth concentration and the fifth concentration, and the first MIC is calculated more accurately from the result of the presence or absence of sensitivity. be able to.
 さらに、前述の第1の生菌数比にくわえ、抗生物質を含まない条件下の第1の生菌数と第2の抗生物質を含む条件下の第3の生菌数との、第2の生菌数比を算出する。さらに、第1の濃度から第6の濃度に対応する第2の生菌数比を算出する。この第2の生菌数比の結果から、第2の抗生物質に対する微生物の第2のMICを算出することができる。ここで、これらの生菌数比は、(試料中の微生物の初期濃度が同一の試料)を前提とする。
 以上により、第2の実施の形態によれば、同時に2種類のMICを算出できる。つまり、第1の抗生物質に対する微生物の第1のMICおよび第2の抗生物質に対する微生物の第2のMICを算出することができる。
Further, in addition to the above-mentioned first viable cell count ratio, a second viable cell count of the first viable cell count under the condition containing no antibiotic and the third viable cell count under the condition containing the second antibiotic. The viable cell count ratio is calculated. Further, the second viable cell count ratio corresponding to the first concentration to the sixth concentration is calculated. From the result of the second viable cell count ratio, the second MIC of the microorganism with respect to the second antibiotic can be calculated. Here, these viable count ratios are premised on (samples having the same initial concentration of microorganisms in the sample).
As described above, according to the second embodiment, two types of MICs can be calculated simultaneously. That is, the first MIC of the microorganism for the first antibiotic and the second MIC of the microorganism for the second antibiotic can be calculated.
 このように、複数の検出部140を備えるセンサーチップ100を用いて、本実施の形態の微生物検出方法を実施することにより、抗生物質に対するMICを迅速かつ高感度に決定することができる。また、本実施の形態によれば、複数種類の抗生物質に対するMICを同時に検出することができる。 As described above, by performing the microorganism detection method of the present embodiment using the sensor chip 100 including the plurality of detection units 140, the MIC for antibiotics can be determined quickly and with high sensitivity. Moreover, according to this Embodiment, MIC with respect to multiple types of antibiotics can be detected simultaneously.
 また、本実施の形態の薬剤感受性を調べる方法を利用すると、微生物の種類が未知の場合には、準備した試料について薬剤耐性菌の有無の判別をすることができるとともに、MICを調べることもできる。微生物の種類が未知の場合であっても、複数種類の抗生物質の感受性反応や選択培地の使用により、未知の微生物の菌種を大まかに予想することもできる。一方、微生物の種類が既知の場合には、上述のとおり、抗生物質の薬剤感受性およびMICを調べることができる。 In addition, when the method for examining drug sensitivity according to the present embodiment is used, if the type of microorganism is unknown, the presence or absence of drug-resistant bacteria can be determined for the prepared sample, and the MIC can also be examined. . Even when the type of microorganism is unknown, the bacterial species of the unknown microorganism can be roughly predicted by using a sensitive reaction of a plurality of types of antibiotics or using a selective medium. On the other hand, when the type of microorganism is known, the drug sensitivity and MIC of the antibiotic can be examined as described above.
 次に、本実施の形態の微生物検出方法により、得られたMICの結果から、生理活性物質(抗生物質)に対する微生物の耐性の有無を評価した、データを生成する。
 まず、第2の実施の形態の微生物検出方法により、生菌数比を示すデータの結果から最小発育阻止濃度(MIC)を算出する。そして、生理活性物質(抗生物質)の最小発育阻止濃度が所定濃度以上である場合には、微生物が前記生理活性物質(抗生物質)に対して耐性を示すと判断する。このとき、生理活性物質(抗生物質)に対する微生物の耐性の有無を示すデータを生成する。
Next, data is generated by evaluating the presence or absence of resistance of the microorganism to the physiologically active substance (antibiotic) from the obtained MIC result by the microorganism detection method of the present embodiment.
First, the minimum growth inhibitory concentration (MIC) is calculated from the result of data indicating the viable cell count ratio by the microorganism detection method of the second embodiment. When the minimum growth inhibitory concentration of the physiologically active substance (antibiotic) is equal to or higher than a predetermined concentration, it is determined that the microorganism exhibits resistance to the physiologically active substance (antibiotic). At this time, data indicating the presence or absence of resistance of the microorganism to the physiologically active substance (antibiotic) is generated.
 ここで、耐性を示すと判断するための、最小発育阻止濃度(MIC)の基準を以下の(1)、(2)に示す。
 (1)MICがR[μg/ml]以上である場合には、抗生物質に対して微生物が耐性ありと判断する。
 (2)MICがR[μg/ml]未満である場合には、抗生物質に対して微生物が耐性無しと判断する。
Here, the criteria of the minimum growth inhibitory concentration (MIC) for judging to show tolerance are shown in the following (1) and (2).
(1) When MIC is R [μg / ml] or more, it is determined that the microorganism is resistant to the antibiotic.
(2) If the MIC is less than R [μg / ml], it is determined that the microorganism is not resistant to the antibiotic.
 また、R[μg/ml]以上である場合に、耐性の度合について段階ごとに評価してもよい。たとえば、Rが1以上、10未満[μg/ml]の場合には、低程度の耐性あり(LR(Low Resistant))と評価し、Rが10以上、25未満[μg/ml]の場合には、中程度の耐性あり(MR(Middle Resistant))と評価し、Rが25以上[μg/ml]の場合には、高程度の耐性あり(HR(Hight Resistant))と評価する。 In addition, when it is R [μg / ml] or more, the degree of resistance may be evaluated for each stage. For example, when R is 1 or more and less than 10 [μg / ml], it is evaluated as having a low degree of resistance (LR (Low Resistant)), and when R is 10 or more and less than 25 [μg / ml] Is evaluated as having moderate resistance (MR (Middle Resistant)), and when R is 25 [μg / ml], it is evaluated as having high resistance (HR (High Resistant)).
 さらに、本実施の形態においては、このような微生物の耐性の有無を示すデータから、微生物が耐性を示さない生理活性物質(抗生物質)を選択することができる。
 なお、実際には、たとえ微生物が耐性を示したとしても、そのような抗生物質も使用する可能性がある。この場合には、本実施の形態においては、低程度の耐性から中程度の耐性を示す抗生物質を選択することができる。
Furthermore, in the present embodiment, it is possible to select a physiologically active substance (antibiotic) to which the microorganism does not exhibit resistance from data indicating the presence or absence of such microorganism resistance.
In practice, such antibiotics may be used even if the microorganisms are resistant. In this case, in the present embodiment, an antibiotic that exhibits low to moderate resistance can be selected.
 以上のように、本実施の形態では、複数種類の抗生物質に対して、簡便かつ迅速に、微生物の感受性、MICおよび耐性の有無についての検査結果が得られる。このため、臨床現場において、抗生物質投与の迅速かつ的確な判断が可能となる。そのため、術後感染症、敗血症、薬剤耐性菌(MRSA等)による院内感染等のリスクが軽減される。 As described above, in the present embodiment, test results on the sensitivity, MIC, and presence / absence of resistance of microorganisms can be obtained simply and quickly with respect to a plurality of types of antibiotics. For this reason, it is possible to quickly and accurately determine the antibiotic administration at the clinical site. Therefore, the risk of nosocomial infections due to postoperative infections, sepsis, drug resistant bacteria (MRSA, etc.) is reduced.
 このような医療環境の観点から、センサーチップ100の検出部140の個数が多い方が好ましい。たとえば、92個(12個(11種類の抗生物質+ネガティブコントロール)×8個(8種類の濃度))の検出部140を設けることにより、複数種類の抗生物質について、同時かつ迅速に感受性を高感度に検出することができる。 From the viewpoint of such a medical environment, it is preferable that the number of detection units 140 of the sensor chip 100 is large. For example, by providing 92 detection units 140 (12 (11 types of antibiotics + negative control) × 8 (8 types of concentrations)), the sensitivity of multiple types of antibiotics can be increased simultaneously and quickly. Sensitivity can be detected.
 また、本実施の形態においては、液体培地中で微生物を振盪培養している。そのため、液体培地中の抗生物質の濃度が均一となる結果、検出対象中の微生物に対する抗生物質の効果が再現性よく得られる。このため、本実施の形態によれば、生菌数、生菌数比のバラツキが小さくなり、再現性よく微生物の感受性、MIC等の結果が得られる。 In the present embodiment, the microorganisms are shake-cultured in a liquid medium. Therefore, as a result of the concentration of the antibiotic in the liquid medium being uniform, the effect of the antibiotic on the microorganism in the detection target can be obtained with good reproducibility. For this reason, according to the present embodiment, the variation in the viable cell count and the viable cell count ratio is reduced, and the results of microbial sensitivity, MIC, etc. are obtained with good reproducibility.
 一般的に、術後感染症や院内感染等に際し、培養法による薬剤感受性試験により適切な抗生物質が選択され、この抗生物質が患者に処置されている。ところが、培養法は通常1日以上かかるため、迅速に、抗生物質の選択を行うことが困難である。このため、迅速性の観点から、多種類の抗生物質を用いると、新たな耐性菌の出現の原因となる上、副作用など患者への負担が大きくなる要因となる。 Generally, in the case of postoperative infection or nosocomial infection, an appropriate antibiotic is selected by a drug sensitivity test using a culture method, and this antibiotic is treated in the patient. However, since the culture method usually takes more than one day, it is difficult to quickly select antibiotics. For this reason, from the viewpoint of rapidity, if various types of antibiotics are used, it causes the appearance of new resistant bacteria and causes a burden on the patient such as side effects.
 これに対して、本実施の形態においては、複数種類の抗生物質について、同時かつ迅速に感受性を高感度に検出することができる。そのため、薬剤耐性菌などによる院内感染が発生した場合も同様で、迅速に感受性試験を実施できる。また、外科手術後、患者は術後感染症の脅威に晒され、致命的な敗血症に至る場合においても、臨床医は最も効果的な抗生物質を可能な限り早く見つけて、処置をすることができる。また、本実施の形態の微生物検出方法は、臨床医が患者一人分の感受性試験を緊急に行いたいといった用途にも利用できる。 In contrast, in the present embodiment, it is possible to detect the sensitivity of a plurality of types of antibiotics simultaneously and rapidly with high sensitivity. Therefore, when nosocomial infections due to drug-resistant bacteria occur, the same sensitivity test can be performed quickly. In addition, after surgery, patients are exposed to the threat of postoperative infections, leading to fatal sepsis, and clinicians can find and treat the most effective antibiotics as soon as possible. it can. The microorganism detection method of the present embodiment can also be used for applications in which a clinician wants to urgently conduct a sensitivity test for one patient.
(第3の実施の形態)
 本実施の形態の微生物検出方法を用いた、抗菌活性を示す物質のスクリーニング方法について説明する。この迅速スクリーニングは、製薬、あるいは、抗菌物質の作製などに利用できる。
 第3の実施の形態では、生理活性物質としては、抗菌活性の有無が未確認の未知物質を用いる。未知物質としては、たとえば、放線菌の抽出液、既知の化合物、抗菌活性を示す化合物の誘導体、タンパク質等を挙げることができる。
(Third embodiment)
A screening method for a substance exhibiting antibacterial activity using the microorganism detection method of the present embodiment will be described. This rapid screening can be used for pharmaceuticals or production of antibacterial substances.
In the third embodiment, an unknown substance whose presence or absence of antibacterial activity has not been confirmed is used as the physiologically active substance. Examples of the unknown substance include actinomycete extracts, known compounds, derivatives of compounds exhibiting antibacterial activity, proteins, and the like.
 第3の実施の形態の未知物質の抗菌活性を調べる方法は、以下の工程を含む。まず、少なくとも一種の既知の微生物を含む試料を複数の検出部140に導入する。続いて、微生物を培養する工程において、ネガティブコントロールとして液体培地のみの場合、ポジティブコントロールとして既知の抗生物質を含む液体培地の場合、検出対象として未知物質を含む液体培地の場合の3つの液体培地を、3つの各検出部140に導入して微生物を振盪培養する。続いて、ネガティブコントロールに対するポジティブコントロールの第3の生菌数比およびネガティブコントロールに対する検出対象の第4の生菌数比を算出する。
 このとき、抗菌活性を示す基準を第3の生菌数比とする。そして、以下に示す基準により、未知物質の抗菌活性の有無を判断することができる。
 (1)第4の生菌数比が、第3の生菌数比と同程度または第3の生菌数比以上の場合、未知物質は、抗菌活性あり。
 (2)第4の生菌数比が、第3の生菌数比より小さい場合には、未知物質は、抗菌活性無し。
The method for examining the antibacterial activity of an unknown substance according to the third embodiment includes the following steps. First, a sample containing at least one known microorganism is introduced into the plurality of detection units 140. Subsequently, in the step of culturing the microorganism, in the case of only the liquid medium as the negative control, in the case of the liquid medium containing the known antibiotic as the positive control, the three liquid mediums in the case of the liquid medium containing the unknown substance as the detection target The microorganisms are introduced into each of the three detectors 140 and cultured with shaking. Subsequently, a third viable cell ratio of the positive control to the negative control and a fourth viable cell ratio of the detection target to the negative control are calculated.
At this time, the reference indicating the antibacterial activity is the third viable count ratio. And the presence or absence of the antibacterial activity of an unknown substance can be judged with the reference | standard shown below.
(1) When the fourth viable cell number ratio is about the same as or greater than the third viable cell number ratio, the unknown substance has antibacterial activity.
(2) When the fourth viable cell count ratio is smaller than the third viable cell count ratio, the unknown substance has no antibacterial activity.
 また、既知抗生物質と未知物質との間で得られた上記検出結果を比較して、未知物質の殺菌性を示すデータを生成する。これにより、既知微生物Dに対する既知抗生物質Rの殺菌作用Yと、同質の殺菌作用Yを有すると考えられる未知物質をスクリーニングすることができる。また、既知微生物Dが異なれば、既知抗生物質Rは殺菌作用Yとなる場合がある。このときには、未知物質は同質の殺菌作用Yを有するものとしてスクリーニングされる。 Moreover, the detection result obtained between the known antibiotic and the unknown substance is compared, and data indicating the bactericidal properties of the unknown substance is generated. Thus, the bactericidal action Y 1 of the known antibiotics R 1 for a known microorganism D 1, an unknown substance believed to have bactericidal action Y 1 homogeneous can be screened. Further, if the known microorganism D 2 is different, the known antibiotic R 1 may have a bactericidal action Y 2 . In this case, the unknown material is screened as having a bactericidal action Y 2 homogeneous.
 本実施例は、本実施の形態の微生物の感受性および微生物のMIC(最小発育阻止濃度)の検出についての具体例を示す。
(実施例1)
 実施例1では、図10から図12に示すように、微生物の感受性を検出するとともに、検出可能な微生物の濃度を測定した。
 検出対象成分:  大腸菌
 検出方法:  蛍光顕微鏡観察
 蛍光染色:  複合蛍光染色試薬
 また、実施例1では、図4に示すセンサーチップ100、図7に示す濃縮装置160および図9に示す検出装置190を用いた。
 生菌数測定:  生菌数=(1視野当たりの生菌数の平均値)×(フィルタ面積)/(1視野の面積)
 検出精度:  本発明のフィルタ法(個/ml)と混釈平板法(CFU/ml)との相関係数は、0.95。
 液溜め容量:  1ml
 フィルタ径:  3mm
 温度:    37℃(±1℃)
 対物レンズ:  ×10
This example shows a specific example of detection of susceptibility of microorganisms and MIC (minimum growth inhibitory concentration) of microorganisms of the present embodiment.
Example 1
In Example 1, as shown in FIGS. 10 to 12, the sensitivity of microorganisms was detected and the concentration of detectable microorganisms was measured.
Component to be detected: Escherichia coli Detection method: Fluorescence microscope observation Fluorescent staining: Compound fluorescent staining reagent In Example 1, the sensor chip 100 shown in FIG. 4, the concentrator 160 shown in FIG. 7, and the detector 190 shown in FIG. 9 are used. It was.
Viable count: Viable count = (average number of viable counts per field) x (filter area) / (area of 1 field)
Detection accuracy: The correlation coefficient between the filter method (pieces / ml) and the pour plate method (CFU / ml) of the present invention is 0.95.
Reservoir capacity: 1 ml
Filter diameter: 3mm
Temperature: 37 ° C (± 1 ° C)
Objective lens: × 10
 まず、大腸菌の濃度が異なる6つの被検用の液体試料を準備する。そして、大腸菌の初期濃度が同じ被検用の液体試料を分けて、参照対象および検出対象のセンサーチップ100の各検出部140に導入する。6種類の大腸菌の初期濃度に応じて、6セットの参照対象および検出対象を作製する。続いて、濃縮装置160の吸引機構162を用いて試料内の大腸菌を、メンブレンフィルタ130上に濃縮した。続いて、参照対象の検出部140には、液体培地800μlと生理食塩水100μlとを導入した。一方、検出対象の検出部140には、液体培地800μlと抗生物質(セファム系抗生物質製剤「パンスポリン」武田薬品工業社製、濃度:10g/L)100μlとを導入した。続いて、濃縮装置160の培養機構164を用い、培養温度37℃で、培養時間の条件を0min、30min、60minと変えて、センサーチップ100中の大腸菌を振盪培養した。
 続いて、吸引機構162を用いて、メンブレンフィルタ130上に大腸菌を捕捉した。続いて、各検出部140に、染色液(複合蛍光染色試薬)を導入した。
 ここで、複合蛍光染色試薬として、LIVE/DEAD BacLight(商標) Bacterial Viability Kits(Invitrogen社製)を用いた。複合蛍光染色試薬は、緑色蛍光のSYTO9色素と赤色蛍光のヨウ化プロビジウム色素を含んでおり、これらは膜透過性に違いがある。SYTO9は生死菌両方の膜を透過し緑色に染色する。一方、ヨウ化プロビジウムは死菌のダメージを受けた膜のみを透過し赤色に染色する。また、両方の色素がバクテリア中に存在すると、SYTO9の蛍光は減衰する。従って、細菌が生存していれば、複合蛍光試薬は緑色に蛍光し、細菌が死亡しているなら、複合蛍光試薬は、赤色に蛍光する。分子化学反応に、10分要した。
 その後、吸引機構162を用い、洗浄液(PBS)を導入して検出部140内部を洗浄した。この後、検出装置190を用い、センサーチップ100の各検出部140について蛍光顕微鏡観察を行った。このとき、各検出部140の大腸菌の生菌数を算出し、その結果から、参照対象と検出対象との生菌数比を算出した。
First, six test liquid samples having different concentrations of Escherichia coli are prepared. Then, liquid samples for test having the same initial concentration of Escherichia coli are divided and introduced into the detection units 140 of the sensor chip 100 to be referenced and the detection target. Depending on the initial concentrations of the six types of E. coli, six sets of reference objects and detection objects are prepared. Subsequently, Escherichia coli in the sample was concentrated on the membrane filter 130 using the suction mechanism 162 of the concentrator 160. Subsequently, 800 μl of a liquid medium and 100 μl of physiological saline were introduced into the reference target detection unit 140. On the other hand, 800 μl of liquid medium and 100 μl of antibiotics (cephalum antibiotic preparation “pansporin” manufactured by Takeda Pharmaceutical Company Limited, concentration: 10 g / L) were introduced into the detection unit 140 to be detected. Subsequently, using the culture mechanism 164 of the concentrator 160, the Escherichia coli in the sensor chip 100 was shaken and cultured at a culture temperature of 37 ° C., changing the culture time conditions to 0 min, 30 min, and 60 min.
Subsequently, Escherichia coli was captured on the membrane filter 130 using the suction mechanism 162. Subsequently, a staining solution (composite fluorescent staining reagent) was introduced into each detection unit 140.
Here, LIVE / DEAD BacLight (trademark) Bacterial Viability Kits (manufactured by Invitrogen) was used as a composite fluorescent staining reagent. The composite fluorescent staining reagent contains a green fluorescent SYTO9 dye and a red fluorescent propidium iodide dye, which are different in membrane permeability. SYTO9 permeates the membranes of both live and dead bacteria and stains green. On the other hand, propidium iodide permeates only the membrane damaged by dead bacteria and stains red. Also, if both dyes are present in the bacteria, the fluorescence of SYTO9 is attenuated. Therefore, if the bacteria are alive, the composite fluorescent reagent fluoresces green, and if the bacteria are dead, the composite fluorescent reagent fluoresces red. The molecular chemical reaction took 10 minutes.
Thereafter, using the suction mechanism 162, a cleaning liquid (PBS) was introduced to clean the inside of the detection unit 140. Thereafter, using the detection device 190, each detection unit 140 of the sensor chip 100 was observed with a fluorescence microscope. At this time, the viable cell count of Escherichia coli in each detection unit 140 was calculated, and the viable cell count ratio between the reference object and the detection object was calculated from the result.
 図10は、参照対象(抗生物質を含まない)の生菌数の時間変化を示す。横軸は、時間(min)を表し、縦軸は、フィルタ法により測定した大腸菌の生菌数(対数)を表す。ここでは、大腸菌の初期濃度(試料中の濃度)は、混釈平板法により測定した場合では、黒丸が9.4×10E4(CFU/ml)を表し、黒三角が2.0×10E4(CFU/ml)を表し、黒菱形が3.5×10E3(CFU/ml)を表し、白丸が1.2×10E3(CFU/ml)を表し、白三角が6.2×10E2(CFU/ml)を表し、白四角が6.0×10E1(CFU/ml)を表す。
 図11は、検出対象(抗生物質を含む)の生菌数の時間変化を示す。図中の記号は、図10と同じである。
 図12は、参照対象と検出対象との生菌数比の時間変化を示す。図中の縦軸が、生菌数比を表す以外は、図中の記号は、図10と同じである。
FIG. 10 shows the time change of the viable cell count of the reference object (without antibiotics). The horizontal axis represents time (min), and the vertical axis represents the viable count (logarithm) of E. coli measured by the filter method. Here, as for the initial concentration of E. coli (concentration in the sample), the black circle represents 9.4 × 10E4 (CFU / ml) and the black triangle represents 2.0 × 10E4 (CFU) when measured by the pour plate method. Black diamond represents 3.5 × 10E3 (CFU / ml), white circle represents 1.2 × 10E3 (CFU / ml), white triangle 6.2 × 10E2 (CFU / ml) The white square represents 6.0 × 10E1 (CFU / ml).
FIG. 11 shows the time change of the viable cell count of the detection target (including antibiotics). The symbols in the figure are the same as those in FIG.
FIG. 12 shows the time change of the viable cell count ratio between the reference object and the detection object. The symbols in the figure are the same as those in FIG. 10 except that the vertical axis in the figure represents the viable cell count ratio.
 このように、全ての初期濃度において、培養時間が30min程度で、生菌数比が1よりかなり小さくなっている。そのため、本発明の微生物検出方法によれば、試料の初期濃度が、少なくとも、1個/mlから10E5個/ml程度範囲で微生物の感受性を高感度に検出することができることが分かった。また、本発明の微生物検出方法によれば、培養時間が30minから60min程度で、微生物の感受性を迅速に検出することができることが分かった。 Thus, at all initial concentrations, the culture time is about 30 min and the viable cell count ratio is considerably smaller than 1. Therefore, according to the microorganism detection method of the present invention, it was found that the sensitivity of microorganisms can be detected with high sensitivity when the initial concentration of the sample is at least about 1 / ml to 10E5 / ml. Moreover, according to the microorganism detection method of the present invention, it has been found that the susceptibility of microorganisms can be rapidly detected in a culture time of about 30 to 60 minutes.
(実施例2)
 実施例2では、図13から図15に示すように、微生物のMICの検出を行った。
 実施例2は、実施例1における試料の大腸菌の初期濃度を変化させた条件に代えて、抗生物質の濃度を変化させた条件にした以外、実施例1と同様に行った。
(Example 2)
In Example 2, as shown in FIG. 13 to FIG. 15, the MIC of the microorganism was detected.
Example 2 was carried out in the same manner as in Example 1 except that the conditions in which the concentration of antibiotics was changed in place of the conditions in which the initial concentration of Escherichia coli in the sample in Example 1 was changed.
 図13は、参照対象(抗生物質を含まない)の生菌数の時間変化を示す。横軸は、時間(min)を表し、縦軸は、フィルタ法により測定した大腸菌の生菌数(対数)を表す。ここでは、検出対象の抗生物質の濃度は、黒丸が10E3(μg/ml)を表し、黒三角が10E2(μg/ml)を表し、黒四角が10E1(μg/ml)を表し、黒菱形が10E0(μg/ml)を表し、白丸が10E-1(μg/ml)を表し、白三角が10E-2(μg/ml)を表す。
 図14は、検出対象(抗生物質を含む)の生菌数の時間変化を示す。図中の記号は、図13と同じである。
 図15は、参照対象と検出対象との生菌数比の時間変化を示す。図中の縦軸が、生菌数比を表す以外は、図中の記号は、図13と同じである。
 また、図16は、抗生物質の濃度が10E1(μg/ml)である、参照対象および検出対象の検出部140中の観察結果を示す図である。
FIG. 13 shows the change over time of the viable cell count of the reference object (without antibiotics). The horizontal axis represents time (min), and the vertical axis represents the viable count (logarithm) of E. coli measured by the filter method. Here, the concentrations of antibiotics to be detected are black circles representing 10E3 (μg / ml), black triangles representing 10E2 (μg / ml), black squares representing 10E1 (μg / ml), and black diamonds. 10E0 (μg / ml) is represented, white circles represent 10E-1 (μg / ml), and white triangles represent 10E-2 (μg / ml).
FIG. 14 shows the change over time of the viable cell count of the detection target (including antibiotics). The symbols in the figure are the same as those in FIG.
FIG. 15 shows the time change of the viable cell count ratio between the reference object and the detection object. The symbols in the figure are the same as in FIG. 13 except that the vertical axis in the figure represents the viable cell count ratio.
FIG. 16 is a diagram showing the observation results in the reference target and detection target detection unit 140 where the antibiotic concentration is 10E1 (μg / ml).
 図15の結果から、抗生物質の濃度が、10E-1および10E-2(μg/ml)の場合には、生菌数比は、ほぼ1である。一方、抗生物質の濃度が、10E0(μg/ml)以上の場合には、生菌数比は、1よりかなり小さくなる。このため、パンスポリンに対する大腸菌のMICは、10E0(μg/ml)以下程度であることがわかった。この範囲でさらに、抗生物質の濃度をふって、再度検出することにより、正確なMICを検出することがわかった。また、培養時間が30minから60min程度で、生菌数比の差が顕著になるため、迅速に、微生物のMICを検出することができることが分かった。 From the results shown in FIG. 15, when the antibiotic concentrations are 10E-1 and 10E-2 (μg / ml), the viable cell count ratio is approximately 1. On the other hand, when the antibiotic concentration is 10E0 (μg / ml) or more, the viable count ratio is considerably smaller than 1. Therefore, it was found that the MIC of Escherichia coli for pansporin is about 10E0 (μg / ml) or less. In this range, it was also found that accurate MIC was detected by detecting again with the concentration of antibiotics. Further, it was found that the MIC of microorganisms can be rapidly detected because the difference in the viable cell count ratio becomes remarkable when the culture time is about 30 to 60 minutes.
(比較例)
 従来の希釈法により、パンスポリンに対する大腸菌のMICを測定した。被検薬剤の2倍希釈系列についてLB液体培地を用いて調整後、これに10E5または10E6(cfu/ml)の菌(大腸菌)を接種し、37℃一夜培養を行う。この後、菌の発育阻止が認められる薬剤(パンスポリン)の最小濃度をMICとした。
 この結果を、図17に示す。MICは、一回目が310(ng/ml)、二回目が630(ng/ml)だった。この希釈法によるMICは、本発明による結果とほぼ同一となることが分かった。しかしながら、従来の希釈法では、試料の準備からMICを決定するまでに、18時間以上かかった。これに対して、本発明では、MICを決定するまでに、試料の準備工程、蛍光観察工程の時間を加えても、1.5時間程度であった。
(Comparative example)
The MIC of E. coli against pansporin was measured by a conventional dilution method. A 2 × dilution series of the test drug is prepared using LB liquid medium, and then inoculated with 10E5 or 10E6 (cfu / ml) bacteria (E. coli) and cultured at 37 ° C. overnight. Thereafter, the minimum concentration of a drug (pansporin) in which bacterial growth inhibition was observed was defined as MIC.
The result is shown in FIG. The MIC was 310 (ng / ml) for the first time and 630 (ng / ml) for the second time. The MIC by this dilution method was found to be almost the same as the result according to the present invention. However, in the conventional dilution method, it took 18 hours or more from sample preparation to determination of MIC. On the other hand, in the present invention, the time required for the sample preparation step and the fluorescence observation step is about 1.5 hours before the MIC is determined.
(参照例)
 参照例では、実施例1の液体培地を用いて培養せず、試料中にパンスポリンを導入したのち、蛍光観察した。その結果、生菌数、生菌数比等の結果にばらつきが出た。また、感受性を示す生菌数比を得るために、試料中にパンスポリンを導入する時間が最低でも60分以上必要となることが分かった。
 これに対して、本発明に係る微生物検出方法は、液体培地を用いた培養工程を含むので、参照対象と検出対象との生菌数比の違いが明瞭になり、迅速かつ高感度に、微生物の感受性を検出することができた。
(Reference example)
In the reference example, the liquid medium of Example 1 was not used for culture, but pansporin was introduced into the sample, followed by fluorescence observation. As a result, there were variations in the results such as the viable cell count and the viable cell count ratio. Moreover, in order to obtain the viable cell count ratio showing sensitivity, it was found that the time for introducing pansporin into the sample required at least 60 minutes.
On the other hand, since the microorganism detection method according to the present invention includes a culture process using a liquid medium, the difference in the viable cell count ratio between the reference object and the detection object becomes clear, and the microorganism can be rapidly and highly sensitively. It was possible to detect the sensitivity.
 以上、図面を参照して本発明の実施の形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 たとえば、吸引機構162は、センサーチップ100のメンブレンフィルタ130上の微生物が乾燥しないように、検出部140中の液体の水位を調節してもよい。また、吸引機構162は、微生物が乾燥しないように、所定間隔で液体(液体培地、試料、洗浄液等)を添加してもよい。
The embodiments of the present invention have been described above with reference to the drawings, but these are exemplifications of the present invention, and various configurations other than those described above can be adopted.
For example, the suction mechanism 162 may adjust the water level of the liquid in the detection unit 140 so that microorganisms on the membrane filter 130 of the sensor chip 100 are not dried. In addition, the suction mechanism 162 may add a liquid (a liquid medium, a sample, a cleaning solution, or the like) at a predetermined interval so that the microorganisms are not dried.
 また、センサーチップ100は、耐熱性を有する材料で構成されてもよい。これにより、センサーチップ100についてオートクレーブ等を実施することにより、センサーチップ100を繰り返し使用可能となる。なお、センサーチップ100は、安全性の観点から、使い捨ててもよい。 Further, the sensor chip 100 may be made of a heat resistant material. Thereby, the sensor chip 100 can be repeatedly used by performing autoclave or the like on the sensor chip 100. The sensor chip 100 may be disposable from the viewpoint of safety.
 また、メンブレンフィルタ130と下板120との間に、Oリング等を設けてもよい。これにより、液漏れ防止機能をさらに向上させることができる。または、メンブレンフィルタとチップ素材を直接、接着剤や超音波接合などで接合をしてもよい。また、図5に示すように、検出部140の断面形状は、テーパ状となっている。このため、検出部140の下面開口部分のメンブレンフィルタ130上に、微生物が効率良く捕集される。 Further, an O-ring or the like may be provided between the membrane filter 130 and the lower plate 120. Thereby, the liquid leakage prevention function can be further improved. Alternatively, the membrane filter and the chip material may be directly bonded by an adhesive or ultrasonic bonding. Moreover, as shown in FIG. 5, the cross-sectional shape of the detection unit 140 is tapered. For this reason, microorganisms are efficiently collected on the membrane filter 130 in the lower surface opening portion of the detection unit 140.
 また、本実施の形態に係る生理活性物質は、上述の抗生物質またはスクリーニング用試料等に限定されず、たとえば、ファージ等であってもよい。ファージに接触した微生物の溶菌による生菌数比を算出することにより、微生物の菌種を迅速に特定することができる。ファージを用いた特定菌の検出方法は、食品衛生検査、環境衛生分析および感染症診断等に応用することができる。
 この出願は、平成21年9月11日に出願された日本特許出願特願2009-210759を基礎とする優先権を主張し、その開示の全てをここに取り込む。
Further, the physiologically active substance according to the present embodiment is not limited to the above-described antibiotics or screening samples, and may be, for example, phages. By calculating the viable cell count ratio due to lysis of microorganisms in contact with the phage, the species of microorganisms can be quickly identified. The detection method of specific bacteria using phage can be applied to food hygiene inspection, environmental hygiene analysis, infectious disease diagnosis and the like.
This application claims priority based on Japanese Patent Application No. 2009-210759 filed on Sep. 11, 2009, the entire disclosure of which is incorporated herein.

Claims (9)

  1.  少なくとも一種の微生物を含む被検用の液体を溜める液溜め部と、
     前記液溜め部の下面に設けられた開口部と、
     前記開口部を覆うように設けられたメンブレンフィルタと、を有する検出部を備えるチップを準備し、
     前記液溜め部の中の前記被検用の液体を、前記メンブレンフィルタの下方から除去して、前記メンブレンフィルタ上に前記微生物を濃縮する工程と、
     生理活性物質を含む液体培地を前記液溜め部に導入し、前記液体培地中に浮遊している前記微生物を培養する工程と、
     前記メンブレンフィルタの下方から前記液体培地を除去して、前記メンブレンフィルタ上に前記微生物を捕集する工程と、
     前記微生物の生死を判別する試薬を前記液溜め部に導入する工程と、
     前記チップ内の前記微生物を観察する工程と、を含む、微生物検出方法。
    A reservoir for storing a liquid for testing containing at least one type of microorganism;
    An opening provided on the lower surface of the liquid reservoir,
    Prepare a chip including a detection unit having a membrane filter provided so as to cover the opening,
    Removing the test liquid in the liquid reservoir from below the membrane filter, and concentrating the microorganisms on the membrane filter;
    Introducing a liquid medium containing a physiologically active substance into the liquid reservoir, and culturing the microorganisms floating in the liquid medium;
    Removing the liquid medium from below the membrane filter and collecting the microorganisms on the membrane filter;
    Introducing a reagent for determining the life and death of the microorganism into the liquid reservoir;
    Observing the microorganism in the chip.
  2.  複数の前記検出部を備える前記チップを用いる、請求項1に記載の微生物検出方法。 The microorganism detection method according to claim 1, wherein the chip including a plurality of the detection units is used.
  3.  前記微生物を濃縮する工程において、第1の前記検出部および第2の前記検出部に同一の前記被検用の液体を分けて導入し、
     前記微生物を培養する工程において、第1の前記検出部では、前記生理活性物質を含まない液体培地を前記液溜め部に導入し、第2の前記検出部では、前記生理活性物質を含む液体培地を前記液溜め部に導入し、前記液体培地中に浮遊している前記微生物を培養し、
     前記微生物を観察する工程において、第1の前記検出部内の前記微生物の第1の生菌数と第2の前記検出部内の前記微生物の第2の生菌数とを算出する工程をさらに含む、請求項2に記載の微生物検出方法。
    In the step of concentrating the microorganism, the same liquid for testing is introduced separately into the first detection unit and the second detection unit,
    In the step of culturing the microorganism, the first detection unit introduces a liquid medium containing no physiologically active substance into the liquid reservoir, and the second detection unit includes a liquid medium containing the physiologically active substance. Is introduced into the liquid reservoir, and the microorganisms suspended in the liquid medium are cultured,
    In the step of observing the microorganism, the method further includes calculating a first viable cell count of the microorganism in the first detection unit and a second viable cell count of the microorganism in the second detection unit. The microorganism detection method according to claim 2.
  4.  前記生理活性物質が、抗生物質である、請求項1から3のいずれかに記載の微生物検出方法。 The method for detecting a microorganism according to any one of claims 1 to 3, wherein the physiologically active substance is an antibiotic.
  5.  第1の前記検出部および第2の前記検出部を含む第1の検出部群を、複数備える前記チップを用い、
     前記微生物を培養する工程において、前記第1の検出部群の間で前記液体培地中の前記生理活性物質の濃度を異ならせ、
     前記微生物を観察する工程において、前記生理活性物質の濃度に応じて、前記第1の生菌数に対する前記第2の生菌数の生菌数比を算出する工程をさらに含む、請求項3または4に記載の微生物検出方法。
    Using the chip including a plurality of first detection unit groups including the first detection unit and the second detection unit,
    In the step of culturing the microorganism, the concentration of the physiologically active substance in the liquid medium is varied between the first detection unit groups,
    The step of observing the microorganism further includes a step of calculating a viable cell count ratio of the second viable cell count to the first viable cell count according to the concentration of the physiologically active substance. 4. The microorganism detection method according to 4.
  6.  第3の前記検出部をさらに備える前記チップを用い、
     前記微生物を濃縮する工程において、第1の前記検出部、第2の前記検出部および第3の前記検出部に同一の前記被検用の液体を分けて導入し、
     前記微生物を培養する工程において、第3の前記検出部では、第2の前記検出部と異なる種類の生理活性物質を含む液体培地を前記液溜め部に導入し、前記液体培地中に浮遊している前記微生物を培養し、
     前記微生物を観察する工程において、第1の前記検出部内の前記微生物の第1の生菌数と前記第3の検出部内の前記微生物の第3の生菌数とを測定し、前記第1の生菌数に対する前記第3の生菌数の生菌数比を算出する工程をさらに含む、請求項3から5のいずれかに記載の微生物検出方法。
    Using the chip further comprising the third detection unit,
    In the step of concentrating the microorganisms, the same liquid for testing is introduced separately into the first detection unit, the second detection unit, and the third detection unit,
    In the step of culturing the microorganism, the third detection unit introduces a liquid medium containing a different type of physiologically active substance from the second detection unit into the liquid reservoir, and floats in the liquid medium. Cultivating said microorganisms,
    In the step of observing the microorganism, the first viable count of the microorganism in the first detection unit and the third viable count of the microorganism in the third detection unit are measured, and the first The microorganism detection method according to any one of claims 3 to 5, further comprising a step of calculating a viable cell count ratio of the third viable cell count to a viable cell count.
  7.  請求項5または6に記載の微生物検出方法は、前記生菌数比を示すデータの結果から最小発育阻止濃度(MIC)を算出する方法であり、
     前記生理活性物質の前記最小発育阻止濃度が所定濃度以上である場合には、前記微生物が前記生理活性物質に対して耐性を示すと判断するとともに、前記生理活性物質に対する前記微生物の耐性の有無を示すデータを生成する、微生物検出方法。
    The method for detecting a microorganism according to claim 5 or 6 is a method for calculating a minimum inhibitory concentration (MIC) from a result of data indicating the viable cell count ratio,
    When the minimum growth inhibitory concentration of the physiologically active substance is not less than a predetermined concentration, it is determined that the microorganism is resistant to the physiologically active substance, and whether or not the microorganism is resistant to the physiologically active substance is determined. A method for detecting microorganisms that produces data to be shown.
  8.  前記生理活性物質に対する前記微生物の耐性の有無を示すデータから、前記微生物が耐性を示さない前記生理活性物質を選択する工程をさらに含む、請求項7に記載の微生物検出方法。 The microorganism detection method according to claim 7, further comprising a step of selecting the physiologically active substance that the microorganism does not exhibit resistance from data indicating whether the microorganism is resistant to the physiologically active substance.
  9.  前記微生物を培養する工程は、前記チップを振盪させた状態で、前記微生物を培養する、請求項1から8のいずれかに記載の微生物検出方法。 The microorganism detection method according to any one of claims 1 to 8, wherein in the step of culturing the microorganism, the microorganism is cultured while the chip is shaken.
PCT/JP2010/005407 2009-09-11 2010-09-02 Method for detecting microorganism WO2011030526A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-210759 2009-09-11
JP2009210759A JP2012231678A (en) 2009-09-11 2009-09-11 Method for detecting microorganism

Publications (1)

Publication Number Publication Date
WO2011030526A1 true WO2011030526A1 (en) 2011-03-17

Family

ID=43732207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005407 WO2011030526A1 (en) 2009-09-11 2010-09-02 Method for detecting microorganism

Country Status (2)

Country Link
JP (1) JP2012231678A (en)
WO (1) WO2011030526A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10136999A (en) * 1996-11-14 1998-05-26 Nitto Denko Corp Examination of microorganism using tacky sheet for examining microorganism
JP2003527569A (en) * 1999-07-30 2003-09-16 ラージ スケール プロテオミクス コーポレーション Microarray and its manufacture
JP2007531863A (en) * 2003-07-12 2007-11-08 アクセラー8 テクノロジー コーポレイション Sensitive and rapid biodetection method
JP2009210392A (en) * 2008-03-04 2009-09-17 Espinex:Kk Chip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10136999A (en) * 1996-11-14 1998-05-26 Nitto Denko Corp Examination of microorganism using tacky sheet for examining microorganism
JP2003527569A (en) * 1999-07-30 2003-09-16 ラージ スケール プロテオミクス コーポレーション Microarray and its manufacture
JP2007531863A (en) * 2003-07-12 2007-11-08 アクセラー8 テクノロジー コーポレイション Sensitive and rapid biodetection method
JP2009210392A (en) * 2008-03-04 2009-09-17 Espinex:Kk Chip

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAYA T ET AL.: "A microbial chip combined with scanning electrochemical microscopy.", BIOTECHNOL BIOENG., vol. 76, no. 4, 2001, pages 391 - 394 *
TAKATOSHI KAYA ET AL.: "6. Daichokin o Mochiita Biseibutsu Chip ni yoru Bioassay", CHEMICAL SENSORS., vol. 16, no. SUPPL,, 2000, pages 16 - 18 *

Also Published As

Publication number Publication date
JP2012231678A (en) 2012-11-29

Similar Documents

Publication Publication Date Title
AU2009205757B2 (en) Method and apparatus for analysis of particles in a liquid sample
Cira et al. A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics
JP6186414B2 (en) Method for characterizing microorganisms on solid or semi-solid media
JP5878874B2 (en) System and method for time-related microscopy of biological organisms
JP5237305B2 (en) Detection and identification of microorganisms on permeable membranes
US20100129852A1 (en) Integrated Bioanalyzer
KR20110132388A (en) Methods and articles for detecting deoxyribonuclease activity
CA2459320A1 (en) Rapid detection of replicating cells
RU2517618C2 (en) Method and system for determining quality of cultivated cells
JP2016517009A (en) Optical system and method for real-time analysis of liquid samples
KR20130038345A (en) Microbial detection system and methods
US20160310940A1 (en) Systems and methods for sample concentration and detection
JP3398960B2 (en) Rapid microbiological assays
ES2894842T3 (en) Procedure for the collection of microbial antigen
JP7254349B2 (en) System and method for optical detection of biomolecular targets
CN105378100B (en) The new application of fluid means
WO2011030526A1 (en) Method for detecting microorganism
JPH10215859A (en) Filter device for trapping microbe, microbial numbermeasuring kit and method for measuring microbial number
WO2010151131A2 (en) Apparatus for detecting viable microorganisms or spores in a sample and use thereof.
JP2016174581A (en) Microorganism detection device, microorganism detection program, and microorganism detection method
US20230341318A1 (en) A method and a system for analysing a fluid sample for a biological activity
JP2604908Y2 (en) Bacteria detection instrument
JP2010130918A (en) Method for detecting microorganism
WO2022030605A1 (en) Nucleic acid extraction container and nucleic acid extraction method
US20230167480A1 (en) Automatic analyzer and automatic analysis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10815127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP