WO2011030482A1 - Image signal transmitter and receiver - Google Patents

Image signal transmitter and receiver Download PDF

Info

Publication number
WO2011030482A1
WO2011030482A1 PCT/JP2010/003634 JP2010003634W WO2011030482A1 WO 2011030482 A1 WO2011030482 A1 WO 2011030482A1 JP 2010003634 W JP2010003634 W JP 2010003634W WO 2011030482 A1 WO2011030482 A1 WO 2011030482A1
Authority
WO
WIPO (PCT)
Prior art keywords
video signal
filter
control information
filter control
filtering
Prior art date
Application number
PCT/JP2010/003634
Other languages
French (fr)
Japanese (ja)
Inventor
有賀俊壽
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011030482A1 publication Critical patent/WO2011030482A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/12Systems in which the television signal is transmitted via one channel or a plurality of parallel channels, the bandwidth of each channel being less than the bandwidth of the television signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/435Processing of additional data, e.g. decrypting of additional data, reconstructing software from modules extracted from the transport stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/08Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division
    • H04N7/083Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division with signal insertion during the vertical and the horizontal blanking interval, e.g. MAC data signals

Definitions

  • the present invention relates to a video signal transmitter and receiver, and more particularly to a technique for transmitting a digital video signal without compression.
  • HDMI High-Definition Multimedia Interface
  • transmission of an uncompressed video signal is basically performed, and video transmission that is further encrypted by a copyright protection technique using HDCP (High-bandwidth Digital Content Protection System) is performed.
  • HDMI has been installed in various digital video devices and recently mobile phones.
  • the transmitter transmits the upper bits of the video signal during the effective pixel period and transmits the lower bits during the horizontal blanking period of the video signal.
  • Some receivers restore the original high-resolution video signal by adding lower bits transmitted during the horizontal blanking period to the received video signal (see, for example, Patent Document 1).
  • an object of the present invention is to enable transmission of a high-quality video signal that is equal to or higher than the transmission rate for uncompressed transmission of a video signal.
  • the present invention has taken the following measures. That is, as a video signal transmitter that transmits an uncompressed video signal, a filter control information generation unit that generates filter control information related to control of filtering processing of the video signal at a transmission destination of the video signal, and a filter related to filtering processing
  • a filter information packetizing unit configured to packetize coefficients and filter control information
  • a transmission unit configured to transmit a video signal during an effective period of video and transmit a packet generated by the filter information packetizing unit during a blanking period. It shall be.
  • a filter information extraction unit for extracting a filter coefficient related to the filtering process of the video signal and filter control information related to the control from the separated packet, and filtering the separated video signal according to the filter coefficient and the filter control information It is assumed that a filtering processing unit that performs processing is provided.
  • filtering processing is performed on the received video signal as instructed by the transmitter based on information related to filtering processing transmitted during the blanking period. Therefore, a high-quality video signal close to the original video signal can be obtained on the receiver side. That is, it is possible to transmit a high-quality video signal substantially higher than the transmission rate.
  • the video signal transmitter may include a thinning processing unit that performs a thinning process on an input video signal.
  • the filter control information generation unit includes a plurality of filters that perform different filtering processes on the video signal after the thinning process, a video signal output from the plurality of filters, and a video signal before the thinning process.
  • the transmission unit transmits the video signal after the thinning process.
  • the thinning-out processing unit discards the lower bits of the input video signal, and each of the plurality of filters performs a convolution operation on the video signal after the thinning-out processing.
  • the filtering processing unit performs filtering processing on the separated video signal by selectively applying the filter coefficient designated by the filter control information.
  • the video signal transmitter described above may include first and second frame memories.
  • the thinning processing unit alternately stores the input video signal in the first and second frame memories for each frame.
  • Each of the plurality of filters generates a video signal from the video signal input to the thinning-out processing unit and the video signal of two frames before stored in the first frame memory.
  • the error calculation unit calculates an error between each of the video signals output from the plurality of filters and the video signal of the previous frame stored in the second frame memory.
  • the transmission unit transmits the video signal stored in the first frame memory at a frame rate that is 1 ⁇ 2 of the video signal input to the thinning processing unit.
  • the video signal receiver includes a first frame memory in which the separated video signal is stored, a second frame memory in which the filtered video signal is stored, and first and second frames.
  • a frame rate conversion unit that alternately reads out the video signal for each frame from the memory and outputs the video signal at a frame rate twice that of the separated video signal may be provided.
  • the filtering processing unit generates a video signal from the input video signal and the video signal of the previous frame stored in the first frame memory.
  • the transmission unit may transmit the filter coefficient packet during the vertical blanking period and transmit the filter control information packet during the horizontal blanking period.
  • the filter information extraction unit extracts the filter coefficient from the packet transmitted in the vertical blanking period, and extracts the filter control information from the packet transmitted in the horizontal blanking period. According to this, since the filter control information is updated for each horizontal line, more adaptive filtering processing can be performed on the receiver side.
  • the filter control information generation unit may generate the identification information of what should be applied among the plurality of filtering processes and the application order as the filter control information when there are a plurality of filtering processes to be applied.
  • the filtering processing unit selectively applies a plurality of filtering processes specified by the filter control information, and applies a plurality of filtering processes to be applied in the order specified by the filter control information. . According to this, more complicated filtering processing can be performed on the receiver side.
  • the filter control information generation unit may generate a pixel position to be subjected to a specific filtering process as filter control information.
  • the filtering processing unit performs a specific filtering process on the pixel specified by the filter control information. According to this, more adaptive filtering processing can be performed on the receiver side.
  • the present invention it is possible to transmit a high-quality video signal that is equal to or higher than the transmission rate with respect to uncompressed transmission of the video signal. Therefore, the uncompressed video signal can be transmitted between the video signal transmitter and the receiver in accordance with the transmission rate of the lower digital video interface, and the interoperability can be kept good. In addition, a high-quality uncompressed video signal can be transmitted with less power consumption by suppressing the transmission rate.
  • FIG. 1 is a configuration diagram of a video signal transmitter according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the filter control information generation unit.
  • FIG. 3 is a diagram illustrating a relationship between a transmitted video signal and scanning lines.
  • FIG. 4 is a timing chart of the transmitted video signal and various synchronization signals.
  • FIG. 5 is a configuration diagram of the video signal receiver according to the first embodiment.
  • FIG. 6 is a diagram illustrating a configuration example of the filtering processing unit.
  • FIG. 7 is a configuration diagram of a video signal transmitter according to the second embodiment.
  • FIG. 8 is a diagram illustrating a format example of the filter information packet.
  • FIG. 9 is a correspondence table between instruction codes and filtering processing.
  • FIG. 9 is a correspondence table between instruction codes and filtering processing.
  • FIG. 10 is a diagram illustrating filter coefficient matrices related to various filtering processes.
  • FIG. 11 is a flowchart relating to filter information packet transmission in the vertical blanking period.
  • FIG. 12 is a schematic diagram illustrating a format example of a filter control information packet.
  • FIG. 13 is a flowchart relating to pixel position information extraction for which specific filtering processing is to be performed.
  • FIG. 14 is a configuration diagram of a video signal receiver according to the second embodiment.
  • FIG. 15 is a flowchart in the case of applying a complementary filter.
  • FIG. 16 is a configuration diagram of a video signal transmitter according to the third embodiment.
  • FIG. 17 is a diagram illustrating a configuration example of the filter control information generation unit.
  • FIG. 18 is a configuration diagram of a video signal receiver according to the third embodiment.
  • FIG. 19 is a diagram illustrating a configuration example of the filtering processing unit.
  • FIG. 1 shows a configuration of a video signal transmitter according to the first embodiment.
  • the video signal transmitter constitutes a video signal transmission system together with a video signal receiver described later.
  • the thinning processing unit 10 performs thinning processing of an input uncompressed video signal.
  • the thinning-out processing unit 10 can be realized by a right shift circuit. For example, the lower 2 bits of a 10-bit input video signal are discarded and an 8-bit video signal is output.
  • the filter control information generation unit 20 generates filter control information indicating what filtering processing should be performed on the video signal at the transmission destination of the video signal based on the video signal before and after the thinning process.
  • FIG. 2 shows a configuration example of the filter control information generation unit 20.
  • Each of the filters 201 and 202 performs a convolution operation on the video signal before the thinning process to generate, for example, a 10-bit video signal from an 8-bit video signal.
  • the filter coefficients to be applied are different between the filter 201 and the filter 202. That is, the filters 201 and 202 perform different filtering processes.
  • the error calculation units 211 and 212 calculate the error between the video signal output from the filters 201 and 202 and the video signal before the thinning process, respectively, and further accumulate the absolute value of the error, for example, in units of horizontal lines.
  • the filter specifying unit 220 receives the outputs of the error calculation units 211 and 212, and outputs the identification information with the smaller cumulative error value of the filters 201 and 202 as filter control information. In the configuration example of FIG. 2, one bit is sufficient for the filter control information. As described above, the filter control information generation unit 20 determines which of the filters 201 and 202 should process the video signal in a predetermined unit (for example, for each horizontal line), and generates filter control information.
  • the filter information packetizing unit 30 packetizes the filter control information and the filter coefficient related to the filtering process of the video signal at the transmission destination.
  • the filter control information generation unit 20 has the configuration shown in FIG. 2, the filter coefficients 00, 01, 02, 03 of the filter 201 and the filter coefficients 10, 11, 12, 13 of the filter 202 are packetized. These filter coefficients may be updated every frame, for example.
  • the transmission unit 40 transmits the video signal after the thinning process during the video valid period, and transmits the filter information packet generated by the filter information packetization unit 30 during the blanking period.
  • FIG. 3 shows the relationship between the transmitted video signal and the scanning line.
  • the transmission unit 40 transmits the video signal 1 after the thinning process during the video effective period specified by the effective line period and the horizontal effective pixel period. For example, the transmission unit 40 transmits the packet 2 of the filter coefficient during the vertical blanking period, and transmits the packet 3 of the filter control information during the horizontal blanking period.
  • the filter coefficient packet 2 may be transmitted during the horizontal blanking period, and the filter control information packet 3 may be transmitted during the vertical blanking period.
  • the filter control information is generated for each horizontal line as described above. Preferably transmits the packet 3 of the filter control information during the horizontal blanking period.
  • FIG. 4 is a timing chart of the transmitted video signal and various synchronization signals.
  • the filter coefficient packet 2 is transmitted.
  • the horizontal synchronization signal HSYNC is “L” and the data enable signal DE is “H” during the period when the vertical synchronization signal VSYNC is “H”
  • the filter control information packet 3 is set, and the horizontal synchronization signal HSYNC is “H” and the data enable is set.
  • the signal DE is “H”
  • the video signal 1 after the thinning process is transmitted.
  • FIG. 5 shows the configuration of the video signal receiver according to the first embodiment.
  • the video / packet separating unit 50 separates an uncompressed video signal transmitted during a video valid period and a packet transmitted during a blanking period.
  • the filter information extraction unit 60 extracts filter coefficients related to the filtering process of the video signal and filter control information related to the control thereof from the separated packets. For example, the filter information extraction unit 60 extracts the filter coefficients 00, 01, 02, 03, 10, 11, 12, and 13 from the packets transmitted during the vertical blanking period, and from the packets transmitted during the horizontal blanking period. Extract filter control information.
  • the filtering processing unit 70 performs filtering processing on the separated uncompressed video signal according to the extracted filter coefficient and filter control information.
  • FIG. 6 shows a configuration example of the filtering processing unit 70.
  • the filtering processing unit 70 can perform the same filtering process as the filters 201 and 202 shown in FIG.
  • Filtering coefficients extracted by the filter information extraction unit 60 (for example, filter coefficients 00, 01, 02, 03, 10, 11, 12, 13) are set in the filtering processing unit 70.
  • the filtering processing unit 70 selects a filter coefficient designated by the filter control information, and performs a convolution operation of, for example, an 8-bit video signal with the selected filter coefficient to generate a 10-bit video signal.
  • the filtering processor 70 can perform an adaptive filtering process on the video signal for each horizontal line.
  • the present embodiment by transmitting information related to the filtering process of the video signal in addition to the video signal, it is possible to perform the filtering process as instructed by the transmitter on the received video signal. As a result, even if the resolution of the video signal is reduced to reduce the transmission rate, the video signal received on the receiving side can be brought close to the original high-resolution video signal. That is, it is possible to transmit a high-resolution video signal substantially higher than the transmission rate without increasing the transmission rate.
  • filters can be performed on the received video signal by providing more filters in the filter control information generation unit 20.
  • the filtering unit is made finer than one horizontal line. For example, by generating filter control information in the first half and the second half of the horizontal line, a more adaptive filtering process can be performed on the received video signal. It can be carried out.
  • an operation mode in which no filter information packet is transmitted in the transmitter may be selected. Thereby, connection compatibility with the conventional receiver which cannot process a filter information packet is securable.
  • FIG. 7 shows a configuration of a video signal transmitter according to the second embodiment.
  • the video signal transmitter constitutes a video signal transmission system together with a video signal receiver described later. Only differences from the first embodiment will be described below.
  • the filter control information generation unit 20 ⁇ / b> A generates the identification information of what should be applied among the plurality of filtering processes and the application order as the filter control information when there are a plurality of filtering processes to be applied. Further, the filter control information generation unit 20A generates a pixel position to be subjected to a specific filtering process as filter control information as necessary.
  • FIG. 8 shows a format example of the filter information packet.
  • Each packet is 8 bits.
  • Packets whose upper 3 bits are “000” and “001” are paired, the lower 5 bits of the filter coefficient in the remaining 5 bits of the former, and the upper 5 bits of the filter coefficient in the remaining 5 bits of the latter
  • a packet whose upper 3 bits are “010” defines a filter pattern composed of a plurality of filtering processes.
  • the filter pattern is expressed by 2 bits, and an instruction code for specifying the filtering process is stored in the remaining 3 bits.
  • the application order of the individual filtering processes is determined by, for example, the transmission order of the filter pattern procedure packet.
  • the packet whose upper 3 bits are “011” is a filter pattern end packet indicating the end of transmission of the filter pattern represented by the following 2 bits.
  • FIG. 9 shows the correspondence between instruction codes and filtering processing.
  • Filtering processing includes a complementary filter, a smoothing filter, a vertical edge enhancement filter, and a horizontal edge enhancement filter.
  • FIG. 10 shows filter coefficient matrices related to various filtering processes.
  • Various filtering processes can be performed by applying filter coefficients to a total of nine pixels, that is, a pixel to be processed and eight surrounding pixels centering on the pixel to be processed.
  • Various filtering processes may include a plurality of different filter coefficient matrices. For example, there are three types of filter coefficient matrices as complementary filters.
  • the filter coefficient that is preferably changed for each frame may be transmitted in the vertical blanking period, for example.
  • FIG. 11 shows a flow relating to filter information packet transmission in the vertical blanking period.
  • the three complementary filters 0, 1, 2 and the three filter patterns 00, 01, 10 are transmitted in order for each horizontal line. Note that filter coefficients that do not need to be changed for each frame, such as a smoothing filter, need only be transmitted once at the time of system startup, not in the vertical blanking period.
  • FIG. 12 shows a format example of the filter control information packet.
  • Each packet is 8 bits. Packets whose upper 2 bits are “00” and “01” are paired. The former 6 bits are the lower 6 bits of the horizontal coordinate of the pixel, and the latter 6 bits are the horizontal direction of the pixel. The upper 6 bits of the coordinates are stored respectively. For example, the complementary filter 0 is applied to the pixels specified by these packets.
  • packets whose upper 2 bits are “10” and “11” are paired, the former 6 remaining bits are the lower 6 bits of the horizontal coordinate of the pixel, and the latter 6 bits are the pixel.
  • the upper 6 bits of the horizontal coordinate are stored.
  • the complementary filter 1 is applied to the pixels specified by these packets.
  • the complementary filter 2 is applied to a pixel for which a coordinate position is not specified.
  • FIG. 13 shows a flow relating to pixel position information extraction to which a specific filtering process is to be applied. Specifically, up to 10 candidate pixels to which the complementary filters 0 and 1 are applied are extracted for each horizontal line, and their positional information is packetized. The horizontal coordinate x of the pixel is counted up from the initial value, and a value obtained by subtracting the larger one of the pixel values of the upper and left pixels from the pixel value of the pixel is larger than the first threshold, and the pixel If the value obtained by subtracting the smaller one of the upper and left pixel values from the pixel value is smaller than the second threshold value, those calculated values are retained.
  • FIG. 14 shows a configuration of a video signal receiver according to the second embodiment. Only differences from the first embodiment will be described below.
  • 60 A of filter information extraction parts extract the filter coefficient which concerns on the filtering process of a video signal, and the filter control information which concerns on the control from the packet isolate
  • the filter information extraction unit 60A extracts the filter coefficients of three complementary filters from a packet transmitted during the vertical blanking period. Further, the filter information extraction unit 60A extracts filter control information indicating the application order of the filtering process and the position information of the pixel to be subjected to the specific filtering process from the packet transmitted in the horizontal blanking period.
  • the filtering processing unit 70A performs a filtering process on the separated uncompressed video signal according to the extracted filter coefficient and filter control information.
  • FIG. 15 shows a processing flow when applying the complementary filter. If it is a horizontal blanking period, the positional information of the pixel which should perform specific filtering process (complementary filter 0, 1) is extracted from a filter control information packet, and it hold
  • a coordinate register is provided for each of the complementary filters 0 and 1, and each coordinate register can store position information of up to 10 pixels. If it is not the horizontal blanking period, the horizontal coordinate x of the pixel is counted up from the initial value, and if x matches the value stored in the coordinate registers of the complementary filters 0 and 1, the complementary filters 0 and 1 are respectively set.
  • the filtering process is performed according to the procedure of the filter patterns 00 and 01. If x is not stored in any of the coordinate registers of the complementary filters 0 and 1, the complementary filter 2 is selected and a filtering process is performed according to the procedure of the filter pattern 10.
  • the present embodiment it is possible to include the application order of a plurality of filtering processes and the position information of the pixel on which a specific filtering process is to be performed in the filter control information. Thereby, the video signal received on the receiving side can be brought closer to the original high-resolution video signal.
  • FIG. 16 shows a configuration of a video signal transmitter according to the third embodiment.
  • the video signal transmitter constitutes a video signal transmission system together with a video signal receiver described later. Only differences from the first embodiment will be described below.
  • the thinning processing unit 10B stores the input video signal in the frame memory 101 when the frame counter is odd, and in the frame memory 102 when the frame counter is even.
  • the transmission unit 40B transmits the video signal stored in the frame memory 101 at a frame rate half that of the original video signal during the video valid period. That is, the video signal transmitter according to the present embodiment transmits the video signal by thinning out the frame unit.
  • FIG. 17 shows a configuration example of the filter control information generation unit 20B.
  • the filter 201B has a value obtained by multiplying the currently input pixel value P 2n + 1 (x, y) when the frame counter is 2n + 1 by the coefficient 01, and the frame counter stored in the frame memory 101 is 2n ⁇ 1.
  • a new pixel value is calculated by adding a value obtained by multiplying the pixel value P 2n ⁇ 1 (x, y) at the time by the coefficient 00.
  • x is a horizontal coordinate in the frame
  • y is a vertical coordinate in the frame.
  • the filter 201B estimates the thinned video signal, that is, the pixel value P 2n (x, y) when the frame counter is 2n, from the pixel values of the preceding and succeeding frames.
  • the filter 202B is the same as the filter 201B except that the filter coefficients 10 and 11 are used instead of the filter coefficients 00 and 01.
  • the error calculation units 211B and 212B calculate errors between the pixel values output from the filters 201B and 202B and the pixel values stored in the frame memory 102 when the frame counter is 2n. Are accumulated in units of horizontal lines, for example.
  • the filter specifying unit 220 receives the output of the error calculation units 211B and 212B, and outputs the identification information having the smaller error accumulated value of the filters 201B and 202B as the filter control information.
  • FIG. 18 shows a configuration of a video signal receiver according to the third embodiment. Only differences from the first embodiment will be described below.
  • the frame memory 111 stores an uncompressed video signal separated from the received video signal.
  • the filtering processing unit 70B performs a filtering process on the separated uncompressed video signal according to the filter coefficient and the filter control information extracted by the filter information extracting unit 60.
  • the frame memory 112 stores the video signal after the filtering process.
  • the frame rate conversion unit 80 alternately reads out video signals from the frame memories 111 and 112 for each frame and outputs them at a frame rate twice that of the separated uncompressed video signal. That is, the video signal receiver according to the present embodiment receives a video signal whose frame is thinned out, creates a thinned frame, and restores the video signal at the original frame rate.
  • FIG. 19 shows a configuration example of the filtering processing unit 70B.
  • the filtering processor 70B can perform the same filtering process as the filters 201B and 202B shown in FIG.
  • Filter coefficients (for example, filter coefficients 00, 01, 10, and 11) extracted by the filter information extraction unit 60 are set in the filtering processing unit 70B.
  • the filtering processing unit 70B selects the filter coefficient specified by the filter control information, and weights and adds the currently input pixel value and the pixel value of the previous frame read from the frame memory 111 with the selected filter coefficient. To calculate a new pixel value.
  • a video signal close to the video signal of the original frame rate can be obtained on the receiver side even if the frame rate of the video signal is lowered to reduce the transmission rate.
  • the video signal may be thinned out by, for example, progressive-interlace conversion instead of frame thinning. Even in this case, the same effect as described above can be obtained.
  • the filtering process is not limited to being performed by a filter as hardware as shown in FIGS. 2, 6, 17, and 19.
  • a filtering process may be performed in software using a DSP (Digital Signal Processor).
  • DSP Digital Signal Processor
  • the video signal transmission system can transmit a high-quality uncompressed video signal at a transmission rate or higher, so that a video signal transmitter and receiver that require backward compatibility or battery-driven video signal transmission. Useful as a receiver and receiver.

Abstract

Disclosed is an image signal transmitter for transmitting decompressed image signals, that is equipped with a filter control information generation unit (20) that generates filter control information pertaining to the control of image signal filtering at the transmission destination of the image signal, a filter information packetization unit (30) that packetizes both the filter coefficient and filter control information that pertain to filtering, and a transmission unit (40) that transmits the image signal during the effective period of the image and transmits the packets generated by the filter information packetization unit (30) during blanking periods.

Description

映像信号送信機および受信機Video signal transmitter and receiver
 本発明は、映像信号送信機および受信機に関し、特に、デジタル映像信号を非圧縮で伝送する技術に関する。 The present invention relates to a video signal transmitter and receiver, and more particularly to a technique for transmitting a digital video signal without compression.
 地上波デジタル放送などのHD(High Definition)放送の普及に伴い、HDTV受信機、HD映像を再生/録画できるBlu-rayプレイヤ/レコーダ、HD映像を撮影できるビデオカメラなどが普及しつつある。このため、高画質なHD映像をデジタルテレビジョン受信機などへ伝送するためのデジタル映像インタフェースのニーズが高まっている。このようなHD映像の伝送規格の一つとしてHDMI(High-Definition Multimedia Interface)がある。HDMI規格では、非圧縮の映像信号の伝送を基本にして、さらにHDCP(High-bandwidth Digital Content Protection System)を用いた著作権保護技術による暗号化を施した映像伝送が行われる。HDMIは、各種デジタル映像機器をはじめ最近では携帯電話機などにも搭載されている。 With the spread of HD (High Definition) broadcasting such as terrestrial digital broadcasting, HDTV receivers, Blu-ray players / recorders that can play / record HD video, and video cameras that can shoot HD video are becoming widespread. For this reason, there is an increasing need for a digital video interface for transmitting high-quality HD video to a digital television receiver or the like. One such HD video transmission standard is HDMI (High-Definition Multimedia Interface). In the HDMI standard, transmission of an uncompressed video signal is basically performed, and video transmission that is further encrypted by a copyright protection technique using HDCP (High-bandwidth Digital Content Protection System) is performed. HDMI has been installed in various digital video devices and recently mobile phones.
 高画質(例えば、高解像度、高色階調、高フレームレートなど)の映像信号を非圧縮で伝送しようとすると必然的に伝送レートを上げることとなる。そこで、伝送レートを上げずに高画質の映像信号を伝送するために、送信機側では映像信号の上位ビットを有効画素期間に伝送するとともに下位ビットを映像信号の水平ブランキング期間に伝送し、受信機側では受信した映像信号に水平ブランキング期間に伝送された下位ビットを付加して元の高解像度の映像信号を復元するものがある(例えば、特許文献1参照)。 If a video signal of high image quality (for example, high resolution, high color gradation, high frame rate, etc.) is transmitted without being compressed, the transmission rate is inevitably increased. Therefore, in order to transmit a high-quality video signal without increasing the transmission rate, the transmitter transmits the upper bits of the video signal during the effective pixel period and transmits the lower bits during the horizontal blanking period of the video signal. Some receivers restore the original high-resolution video signal by adding lower bits transmitted during the horizontal blanking period to the received video signal (see, for example, Patent Document 1).
特開2003-333553号公報(第6頁、第2図)Japanese Unexamined Patent Publication No. 2003-333553 (page 6, FIG. 2)
 現在、非圧縮で伝送される映像信号のフォーマットは2K1Kであるが、今後は4K2Kや8K4Kなどの超高解像度の映像信号の非圧縮伝送が要求される。HDMI規格では4K2K映像フォーマットへの対応に向けた準備がなされている。 Currently, the format of a video signal transmitted uncompressed is 2K1K, but in the future, uncompressed transmission of ultrahigh resolution video signals such as 4K2K and 8K4K will be required. In the HDMI standard, preparations are made for compatibility with the 4K2K video format.
 より高画質な映像信号を非圧縮で伝送するには単に伝送レートを上げればよい。しかし、受信機によっては高伝送レートの映像信号を受信することができない。このため、機器のばらつきや接続環境の違いなどにより相互接続性が低下するおそれがある。また、伝送レートを上げると消費電力が増加するため、特にバッテリ駆動の送信機および受信機では高伝送レートは好ましくない。 To transmit higher quality video signals without compression, simply increase the transmission rate. However, some receivers cannot receive a high transmission rate video signal. For this reason, there is a possibility that the interconnectivity may be deteriorated due to variations in devices and connection environments. Further, since the power consumption increases when the transmission rate is increased, a high transmission rate is not preferable particularly in a battery-driven transmitter and receiver.
 上記問題に鑑み、本発明は、映像信号の非圧縮伝送について伝送レート以上の高画質の映像信号を伝送可能にすることを課題とする。 In view of the above problems, an object of the present invention is to enable transmission of a high-quality video signal that is equal to or higher than the transmission rate for uncompressed transmission of a video signal.
 上記課題を解決するために本発明では次のような手段を講じた。すなわち、非圧縮の映像信号を伝送する映像信号送信機として、映像信号の伝送先での映像信号のフィルタリング処理の制御に係るフィルタ制御情報を生成するフィルタ制御情報生成部と、フィルタリング処理に係るフィルタ係数およびフィルタ制御情報をそれぞれパケット化するフィルタ情報パケット化部と、映像の有効期間に映像信号を伝送し、ブランキング期間にフィルタ情報パケット化部が生成したパケットを伝送する伝送部とを備えているものとする。一方、非圧縮の映像信号を受信する映像信号受信機として、入力される映像信号から、映像の有効期間に伝送される映像信号とブランキング期間に伝送されるパケットとを分離する映像・パケット分離部と、分離されたパケットから映像信号のフィルタリング処理に係るフィルタ係数およびその制御に係るフィルタ制御情報を抽出するフィルタ情報抽出部と、分離された映像信号に対してフィルタ係数およびフィルタ制御情報に従ってフィルタリング処理を行うフィルタリング処理部とを備えているものとする。 In order to solve the above problems, the present invention has taken the following measures. That is, as a video signal transmitter that transmits an uncompressed video signal, a filter control information generation unit that generates filter control information related to control of filtering processing of the video signal at a transmission destination of the video signal, and a filter related to filtering processing A filter information packetizing unit configured to packetize coefficients and filter control information; and a transmission unit configured to transmit a video signal during an effective period of video and transmit a packet generated by the filter information packetizing unit during a blanking period. It shall be. On the other hand, as a video signal receiver that receives uncompressed video signals, video / packet separation that separates video signals transmitted during the video valid period and packets transmitted during the blanking period from the input video signal A filter information extraction unit for extracting a filter coefficient related to the filtering process of the video signal and filter control information related to the control from the separated packet, and filtering the separated video signal according to the filter coefficient and the filter control information It is assumed that a filtering processing unit that performs processing is provided.
 これによると、受信機側において、受信した映像信号に対してブランキング期間に伝送されるフィルタリング処理に関する情報に基づいて送信機の指示通りのフィルタリング処理が行われる。したがって、受信機側で元の映像信号に近い高画質の映像信号を得ることができる。すなわち、実質的に伝送レート以上の高画質の映像信号の伝送が可能となる。 According to this, on the receiver side, filtering processing is performed on the received video signal as instructed by the transmitter based on information related to filtering processing transmitted during the blanking period. Therefore, a high-quality video signal close to the original video signal can be obtained on the receiver side. That is, it is possible to transmit a high-quality video signal substantially higher than the transmission rate.
 上記の映像信号送信機は、入力される映像信号の間引き処理を行う間引き処理部を備えていてもよい。この場合、フィルタ制御情報生成部は、間引き処理後の映像信号に対して互いに異なるフィルタリング処理を行う複数のフィルタと、複数のフィルタから出力される映像信号のそれぞれと間引き処理前の映像信号との誤差を算出する複数の誤差算出部と、複数の誤差算出部の出力に基づいて、複数のフィルタのうち誤差がより小さいフィルタの識別情報をフィルタ制御情報として出力するフィルタ特定部とを有するものとし、また、伝送部は、間引き処理後の映像信号を伝送するものとする。より具体的には、間引き処理部は、入力される映像信号の下位ビットを破棄するものであり、複数のフィルタは、それぞれ、間引き処理後の映像信号に対して畳み込み演算を行うものである。一方、上記の映像信号受信機において、フィルタリング処理部は、フィルタ係数のうちフィルタ制御情報によって指定されたものを選択的に適用して分離された映像信号のフィルタリング処理を行うものとする。 The video signal transmitter may include a thinning processing unit that performs a thinning process on an input video signal. In this case, the filter control information generation unit includes a plurality of filters that perform different filtering processes on the video signal after the thinning process, a video signal output from the plurality of filters, and a video signal before the thinning process. A plurality of error calculation units for calculating an error, and a filter specifying unit for outputting, as filter control information, identification information of a filter having a smaller error among the plurality of filters based on outputs of the plurality of error calculation units. The transmission unit transmits the video signal after the thinning process. More specifically, the thinning-out processing unit discards the lower bits of the input video signal, and each of the plurality of filters performs a convolution operation on the video signal after the thinning-out processing. On the other hand, in the above video signal receiver, the filtering processing unit performs filtering processing on the separated video signal by selectively applying the filter coefficient designated by the filter control information.
 これによると、映像信号の間引き処理を行って伝送レートを下げて映像信号を伝送しても受信機側で適切なフィルタリング処理が行われる。したがって、受信機側で間引き処理前の映像信号に近い高画質の映像信号を得ることができる。 According to this, even if the video signal is thinned out and the transmission rate is lowered to transmit the video signal, an appropriate filtering process is performed on the receiver side. Therefore, a high-quality video signal close to the video signal before the thinning process can be obtained on the receiver side.
 上記の映像信号送信機は、第1および第2のフレームメモリを備えていてもよい。この場合、間引き処理部は、入力される映像信号を第1および第2のフレームメモリに1フレームごとに交互に格納する。複数のフィルタは、それぞれ、間引き処理部に入力される映像信号および第1のフレームメモリに格納された2フレーム前の映像信号から映像信号を生成する。誤差算出部は、複数のフィルタから出力される映像信号のそれぞれと第2のフレームメモリに格納された1フレーム前の映像信号との誤差を算出する。伝送部は、第1のフレームメモリに格納された映像信号を、間引き処理部に入力される映像信号の1/2のフレームレートで伝送する。一方、上記の映像信号受信機は、分離された映像信号が格納される第1のフレームメモリと、フィルタリング処理後の映像信号が格納される第2のフレームメモリと、第1および第2のフレームメモリから1フレームごとに交互に映像信号を読み出して分離された映像信号の2倍のフレームレートで出力するフレームレート変換部とを備えていてもよい。この場合、フィルタリング処理部は、入力される映像信号および第1のフレームメモリに格納された1フレーム前の映像信号から映像信号を生成する。 The video signal transmitter described above may include first and second frame memories. In this case, the thinning processing unit alternately stores the input video signal in the first and second frame memories for each frame. Each of the plurality of filters generates a video signal from the video signal input to the thinning-out processing unit and the video signal of two frames before stored in the first frame memory. The error calculation unit calculates an error between each of the video signals output from the plurality of filters and the video signal of the previous frame stored in the second frame memory. The transmission unit transmits the video signal stored in the first frame memory at a frame rate that is ½ of the video signal input to the thinning processing unit. On the other hand, the video signal receiver includes a first frame memory in which the separated video signal is stored, a second frame memory in which the filtered video signal is stored, and first and second frames. A frame rate conversion unit that alternately reads out the video signal for each frame from the memory and outputs the video signal at a frame rate twice that of the separated video signal may be provided. In this case, the filtering processing unit generates a video signal from the input video signal and the video signal of the previous frame stored in the first frame memory.
 これによると、映像信号のフレーム間引き処理を行って伝送レートを下げて映像信号を伝送しても受信機側で適切なフィルタリング処理が行われる。したがって、受信機側でフレーム間引き処理前の映像信号に近い高画質の映像信号を得ることができる。 According to this, even if the video signal frame is thinned out and the transmission rate is lowered to transmit the video signal, an appropriate filtering process is performed on the receiver side. Therefore, a high-quality video signal close to the video signal before the frame thinning process can be obtained on the receiver side.
 伝送部は、垂直ブランキング期間にフィルタ係数のパケットを伝送し、水平ブランキング期間にフィルタ制御情報のパケットを伝送してもよい。この場合、フィルタ情報抽出部は、垂直ブランキング期間に伝送されるパケットからフィルタ係数を抽出し、水平ブランキング期間に伝送されるパケットからフィルタ制御情報を抽出する。これによると、水平ラインごとにフィルタ制御情報が更新されるため、受信機側においてより適応的なフィルタリング処理を行うことができる。 The transmission unit may transmit the filter coefficient packet during the vertical blanking period and transmit the filter control information packet during the horizontal blanking period. In this case, the filter information extraction unit extracts the filter coefficient from the packet transmitted in the vertical blanking period, and extracts the filter control information from the packet transmitted in the horizontal blanking period. According to this, since the filter control information is updated for each horizontal line, more adaptive filtering processing can be performed on the receiver side.
 フィルタ制御情報生成部は、複数のフィルタリング処理のうち適用すべきものの識別情報、および適用すべきフィルタリング処理が複数ある場合には適用順序をフィルタ制御情報として生成してもよい。この場合、フィルタリング処理部は、複数のフィルタリング処理のうちフィルタ制御情報によって指定されたものを選択的に適用し、適用すべきフィルタリング処理が複数ある場合にはフィルタ制御情報によって指定された順に適用する。これによると、受信機側でより複雑なフィルタリング処理を行うことができる。 The filter control information generation unit may generate the identification information of what should be applied among the plurality of filtering processes and the application order as the filter control information when there are a plurality of filtering processes to be applied. In this case, the filtering processing unit selectively applies a plurality of filtering processes specified by the filter control information, and applies a plurality of filtering processes to be applied in the order specified by the filter control information. . According to this, more complicated filtering processing can be performed on the receiver side.
 フィルタ制御情報生成部は、特定のフィルタリング処理すべき画素位置をフィルタ制御情報として生成してもよい。この場合、フィルタリング処理部は、フィルタ制御情報によって指定された画素に対して特定のフィルタリング処理を行う。これによると、受信機側においてより適応的なフィルタリング処理を行うことができる。 The filter control information generation unit may generate a pixel position to be subjected to a specific filtering process as filter control information. In this case, the filtering processing unit performs a specific filtering process on the pixel specified by the filter control information. According to this, more adaptive filtering processing can be performed on the receiver side.
 本発明によると、映像信号の非圧縮伝送について伝送レート以上の高画質の映像信号を伝送することができる。したがって、映像信号送信機および受信機間で下位のデジタル映像インタフェースの伝送レートに合わせて非圧縮映像信号を伝送することができ、相互接続性を良好に保つことができる。また、伝送レートを抑えてより少ない消費電力で高画質の非圧縮映像信号を伝送することができる。 According to the present invention, it is possible to transmit a high-quality video signal that is equal to or higher than the transmission rate with respect to uncompressed transmission of the video signal. Therefore, the uncompressed video signal can be transmitted between the video signal transmitter and the receiver in accordance with the transmission rate of the lower digital video interface, and the interoperability can be kept good. In addition, a high-quality uncompressed video signal can be transmitted with less power consumption by suppressing the transmission rate.
図1は、第1の実施形態に係る映像信号送信機の構成図である。FIG. 1 is a configuration diagram of a video signal transmitter according to the first embodiment. 図2は、フィルタ制御情報生成部の一構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of the filter control information generation unit. 図3は、伝送される映像信号と走査線との関係を示す図である。FIG. 3 is a diagram illustrating a relationship between a transmitted video signal and scanning lines. 図4は、伝送される映像信号および各種同期信号のタイミングチャートである。FIG. 4 is a timing chart of the transmitted video signal and various synchronization signals. 図5は、第1の実施形態に係る映像信号受信機の構成図である。FIG. 5 is a configuration diagram of the video signal receiver according to the first embodiment. 図6は、フィルタリング処理部の一構成例を示す図である。FIG. 6 is a diagram illustrating a configuration example of the filtering processing unit. 図7は、第2の実施形態に係る映像信号送信機の構成図である。FIG. 7 is a configuration diagram of a video signal transmitter according to the second embodiment. 図8は、フィルタ情報パケットのフォーマット例を示す図である。FIG. 8 is a diagram illustrating a format example of the filter information packet. 図9は、命令コードとフィルタリング処理との対応関係表である。FIG. 9 is a correspondence table between instruction codes and filtering processing. 図10は、各種フィルタリング処理に係るフィルタ係数行列を示す図である。FIG. 10 is a diagram illustrating filter coefficient matrices related to various filtering processes. 図11は、垂直ブランキング期間におけるフィルタ情報パケット伝送に係るフローチャートである。FIG. 11 is a flowchart relating to filter information packet transmission in the vertical blanking period. 図12は、フィルタ制御情報パケットのフォーマット例を示す模式図である。FIG. 12 is a schematic diagram illustrating a format example of a filter control information packet. 図13は、特定のフィルタリング処理をすべき画素の位置情報抽出に係るフローチャートである。FIG. 13 is a flowchart relating to pixel position information extraction for which specific filtering processing is to be performed. 図14は、第2の実施形態に係る映像信号受信機の構成図である。FIG. 14 is a configuration diagram of a video signal receiver according to the second embodiment. 図15は、補完フィルタを適用する場合のフローチャートである。FIG. 15 is a flowchart in the case of applying a complementary filter. 図16は、第3の実施形態に係る映像信号送信機の構成図である。FIG. 16 is a configuration diagram of a video signal transmitter according to the third embodiment. 図17は、フィルタ制御情報生成部の一構成例を示す図である。FIG. 17 is a diagram illustrating a configuration example of the filter control information generation unit. 図18は、第3の実施形態に係る映像信号受信機の構成図である。FIG. 18 is a configuration diagram of a video signal receiver according to the third embodiment. 図19は、フィルタリング処理部の一構成例を示す図である。FIG. 19 is a diagram illustrating a configuration example of the filtering processing unit.
 (第1の実施形態)
 <送信機>
 図1は、第1の実施形態に係る映像信号送信機の構成を示す。映像信号送信機は後述する映像信号受信機と合わせて映像信号伝送システムを構成する。間引き処理部10は、入力される非圧縮の映像信号の間引き処理を行う。具体的には、間引き処理部10は右シフト回路で実現することができ、例えば、10ビットの入力映像信号の下位2ビットを破棄して8ビットの映像信号を出力する。フィルタ制御情報生成部20は、間引き処理前後の映像信号に基づいて、映像信号の伝送先において映像信号にどのようなフィルタリング処理をすべきかを示すフィルタ制御情報を生成する。
(First embodiment)
<Transmitter>
FIG. 1 shows a configuration of a video signal transmitter according to the first embodiment. The video signal transmitter constitutes a video signal transmission system together with a video signal receiver described later. The thinning processing unit 10 performs thinning processing of an input uncompressed video signal. Specifically, the thinning-out processing unit 10 can be realized by a right shift circuit. For example, the lower 2 bits of a 10-bit input video signal are discarded and an 8-bit video signal is output. The filter control information generation unit 20 generates filter control information indicating what filtering processing should be performed on the video signal at the transmission destination of the video signal based on the video signal before and after the thinning process.
 図2は、フィルタ制御情報生成部20の一構成例を示す。フィルタ201,202は、それぞれ、間引き処理前の映像信号に対して畳み込み演算を行って、例えば、8ビットの映像信号から10ビットの映像信号を生成する。フィルタ201とフィルタ202とでは適用されるフィルタ係数が異なっている。すなわち、フィルタ201,202は、互いに異なるフィルタリング処理を行う。誤差算出部211,212は、それぞれ、フィルタ201,202から出力される映像信号と間引き処理前の映像信号との誤差を算出し、さらに、誤差の絶対値を例えば水平ライン単位で累計する。フィルタ特定部220は、誤差算出部211,212の出力を受け、フィルタ201,202のうち誤差の累計値が小さい方の識別情報をフィルタ制御情報として出力する。図2の構成例ではフィルタ制御情報は1ビットで足りる。このように、フィルタ制御情報生成部20は、映像信号をフィルタ201,202のいずれで処理すべきかを所定の単位で(例えば、水平ラインごとに)判断してフィルタ制御情報を生成する。 FIG. 2 shows a configuration example of the filter control information generation unit 20. Each of the filters 201 and 202 performs a convolution operation on the video signal before the thinning process to generate, for example, a 10-bit video signal from an 8-bit video signal. The filter coefficients to be applied are different between the filter 201 and the filter 202. That is, the filters 201 and 202 perform different filtering processes. The error calculation units 211 and 212 calculate the error between the video signal output from the filters 201 and 202 and the video signal before the thinning process, respectively, and further accumulate the absolute value of the error, for example, in units of horizontal lines. The filter specifying unit 220 receives the outputs of the error calculation units 211 and 212, and outputs the identification information with the smaller cumulative error value of the filters 201 and 202 as filter control information. In the configuration example of FIG. 2, one bit is sufficient for the filter control information. As described above, the filter control information generation unit 20 determines which of the filters 201 and 202 should process the video signal in a predetermined unit (for example, for each horizontal line), and generates filter control information.
 図1に戻り、フィルタ情報パケット化部30は、フィルタ制御情報および伝送先における映像信号のフィルタリング処理に係るフィルタ係数をパケット化する。フィルタ制御情報生成部20が図2に示した構成の場合、フィルタ201のフィルタ係数00,01,02,03およびフィルタ202のフィルタ係数10,11,12,13がパケット化される。これらフィルタ係数は、例えば1フレームごとに更新してもよい。伝送部40は、間引き処理後の映像信号を映像の有効期間に伝送し、フィルタ情報パケット化部30が生成したフィルタ情報パケットをブランキング期間に伝送する。 Returning to FIG. 1, the filter information packetizing unit 30 packetizes the filter control information and the filter coefficient related to the filtering process of the video signal at the transmission destination. When the filter control information generation unit 20 has the configuration shown in FIG. 2, the filter coefficients 00, 01, 02, 03 of the filter 201 and the filter coefficients 10, 11, 12, 13 of the filter 202 are packetized. These filter coefficients may be updated every frame, for example. The transmission unit 40 transmits the video signal after the thinning process during the video valid period, and transmits the filter information packet generated by the filter information packetization unit 30 during the blanking period.
 図3は、伝送される映像信号と走査線との関係を示す。伝送部40は、有効ライン期間および水平有効画素期間で特定される映像の有効期間に間引き処理後の映像信号1を伝送する。また、伝送部40は、例えば、垂直ブランキング期間にフィルタ係数のパケット2を伝送し、水平ブランキング期間にフィルタ制御情報のパケット3を伝送する。水平ブランキング期間にフィルタ係数のパケット2を伝送し、垂直ブランキング期間にフィルタ制御情報のパケット3を伝送してもよいが、上述したようにフィルタ制御情報が水平ラインごとに生成される場合には水平ブランキング期間にフィルタ制御情報のパケット3を伝送することが好ましい。 FIG. 3 shows the relationship between the transmitted video signal and the scanning line. The transmission unit 40 transmits the video signal 1 after the thinning process during the video effective period specified by the effective line period and the horizontal effective pixel period. For example, the transmission unit 40 transmits the packet 2 of the filter coefficient during the vertical blanking period, and transmits the packet 3 of the filter control information during the horizontal blanking period. The filter coefficient packet 2 may be transmitted during the horizontal blanking period, and the filter control information packet 3 may be transmitted during the vertical blanking period. However, when the filter control information is generated for each horizontal line as described above. Preferably transmits the packet 3 of the filter control information during the horizontal blanking period.
 図4は、伝送される映像信号および各種同期信号のタイミングチャートである。垂直同期信号VSYNCが“L”の期間において水平同期信号HSYNCおよびデータイネーブル信号DEが“H”のときにフィルタ係数のパケット2が伝送される。垂直同期信号VSYNCが“H”の期間において水平同期信号HSYNCが“L”かつデータイネーブル信号DEが“H”のときにフィルタ制御情報のパケット3が、水平同期信号HSYNCが“H”かつデータイネーブル信号DEが“H”のときに間引き処理後の映像信号1が伝送される。 FIG. 4 is a timing chart of the transmitted video signal and various synchronization signals. When the vertical synchronization signal VSYNC is “L” and the horizontal synchronization signal HSYNC and the data enable signal DE are “H”, the filter coefficient packet 2 is transmitted. When the horizontal synchronization signal HSYNC is “L” and the data enable signal DE is “H” during the period when the vertical synchronization signal VSYNC is “H”, the filter control information packet 3 is set, and the horizontal synchronization signal HSYNC is “H” and the data enable is set. When the signal DE is “H”, the video signal 1 after the thinning process is transmitted.
 <受信機>
 図5は、第1の実施形態に係る映像信号受信機の構成を示す。映像・パケット分離部50は、映像の有効期間に伝送される非圧縮の映像信号とブランキング期間に伝送されるパケットとを分離する。フィルタ情報抽出部60は、分離されたパケットから映像信号のフィルタリング処理に係るフィルタ係数およびその制御に係るフィルタ制御情報を抽出する。例えば、フィルタ情報抽出部60は、垂直ブランキング期間に伝送されるパケットからフィルタ係数00,01,02,03,10,11,12,13を抽出し、水平ブランキング期間に伝送されるパケットからフィルタ制御情報を抽出する。フィルタリング処理部70は、抽出されたフィルタ係数およびフィルタ制御情報に従って、分離された非圧縮の映像信号に対してフィルタリング処理を行う。
<Receiver>
FIG. 5 shows the configuration of the video signal receiver according to the first embodiment. The video / packet separating unit 50 separates an uncompressed video signal transmitted during a video valid period and a packet transmitted during a blanking period. The filter information extraction unit 60 extracts filter coefficients related to the filtering process of the video signal and filter control information related to the control thereof from the separated packets. For example, the filter information extraction unit 60 extracts the filter coefficients 00, 01, 02, 03, 10, 11, 12, and 13 from the packets transmitted during the vertical blanking period, and from the packets transmitted during the horizontal blanking period. Extract filter control information. The filtering processing unit 70 performs filtering processing on the separated uncompressed video signal according to the extracted filter coefficient and filter control information.
 図6は、フィルタリング処理部70の一構成例を示す。フィルタリング処理部70は、図2に示したフィルタ201,202と同じフィルタリング処理を行うことができるようになっている。フィルタリング処理部70にはフィルタ情報抽出部60によって抽出されたフィルタ係数(例えば、フィルタ係数00,01,02,03,10,11,12,13)が設定される。フィルタリング処理部70は、フィルタ制御情報によって指定されたフィルタ係数を選択し、その選択したフィルタ係数で例えば8ビットの映像信号の畳み込み演算を行って10ビットの映像信号を生成する。フィルタ制御情報が水平ラインごとに更新されることで、フィルタリング処理部70は、水平ラインごとに映像信号に対して適応的なフィルタリング処理を行うことができる。 FIG. 6 shows a configuration example of the filtering processing unit 70. The filtering processing unit 70 can perform the same filtering process as the filters 201 and 202 shown in FIG. Filtering coefficients extracted by the filter information extraction unit 60 (for example, filter coefficients 00, 01, 02, 03, 10, 11, 12, 13) are set in the filtering processing unit 70. The filtering processing unit 70 selects a filter coefficient designated by the filter control information, and performs a convolution operation of, for example, an 8-bit video signal with the selected filter coefficient to generate a 10-bit video signal. By updating the filter control information for each horizontal line, the filtering processor 70 can perform an adaptive filtering process on the video signal for each horizontal line.
 以上、本実施形態によると、映像信号以外に映像信号のフィルタリング処理に係る情報を伝送することで、受信した映像信号に対して送信機側の指示通りのフィルタリング処理を行うことができる。これにより、伝送レートを抑えるために映像信号の解像度を落として伝送しても、受信側において受信した映像信号を本来の高解像度の映像信号に近づけることができる。すなわち、伝送レートを上げなくとも実質的に伝送レート以上の高解像度の映像信号を伝送することができる。 As described above, according to the present embodiment, by transmitting information related to the filtering process of the video signal in addition to the video signal, it is possible to perform the filtering process as instructed by the transmitter on the received video signal. As a result, even if the resolution of the video signal is reduced to reduce the transmission rate, the video signal received on the receiving side can be brought close to the original high-resolution video signal. That is, it is possible to transmit a high-resolution video signal substantially higher than the transmission rate without increasing the transmission rate.
 なお、フィルタ制御情報生成部20により多くのフィルタを設けることで、受信した映像信号に対してより好適なフィルタリング処理を行うことができる。また、フィルタリング処理の単位を1水平ラインよりもさらに細かくする、例えば、水平ラインの前半と後半とでそれぞれフィルタ制御情報を生成することで、受信した映像信号に対してより適応的なフィルタリング処理を行うことができる。 It should be noted that more filters can be performed on the received video signal by providing more filters in the filter control information generation unit 20. Further, the filtering unit is made finer than one horizontal line. For example, by generating filter control information in the first half and the second half of the horizontal line, a more adaptive filtering process can be performed on the received video signal. It can be carried out.
 また、上記送信機においてフィルタ情報パケットを伝送しない動作モードを選択できるようにしてもよい。これにより、フィルタ情報パケットを処理することができない従来の受信機との接続互換性を確保することができる。 Also, an operation mode in which no filter information packet is transmitted in the transmitter may be selected. Thereby, connection compatibility with the conventional receiver which cannot process a filter information packet is securable.
 (第2の実施形態)
 <送信機>
 図7は、第2の実施形態に係る映像信号送信機の構成を示す。映像信号送信機は後述する映像信号受信機と合わせて映像信号伝送システムを構成する。以下、第1の実施形態と異なる点についてのみ説明する。フィルタ制御情報生成部20Aは、複数のフィルタリング処理のうち適用すべきものの識別情報、および適用すべきフィルタリング処理が複数ある場合には適用順序をフィルタ制御情報として生成する。また、フィルタ制御情報生成部20Aは、必要に応じて、特定のフィルタリング処理すべき画素位置をフィルタ制御情報として生成する。
(Second Embodiment)
<Transmitter>
FIG. 7 shows a configuration of a video signal transmitter according to the second embodiment. The video signal transmitter constitutes a video signal transmission system together with a video signal receiver described later. Only differences from the first embodiment will be described below. The filter control information generation unit 20 </ b> A generates the identification information of what should be applied among the plurality of filtering processes and the application order as the filter control information when there are a plurality of filtering processes to be applied. Further, the filter control information generation unit 20A generates a pixel position to be subjected to a specific filtering process as filter control information as necessary.
 図8は、フィルタ情報パケットのフォーマット例を示す。各パケットは8ビットである。上位3ビットが“000”および“001”であるパケットは対になっており、前者の残り5ビットにはフィルタ係数の下位5ビットが、後者の残り5ビットにはフィルタ係数の上位5ビットがそれぞれ格納される。上位3ビットが“010”であるパケットは複数のフィルタリング処理からなるフィルタパターンを定義するものである。フィルタパターンは2ビットで表され、残り3ビットにフィルタリング処理を特定するための命令コードが格納される。個々のフィルタリング処理の適用順序は例えばフィルタパターン手順パケットの伝送順で決まる。上位3ビットが“011”であるパケットは続く2ビットで表されるフィルタパターンの伝送終了を示すフィルタパターン終了パケットである。 FIG. 8 shows a format example of the filter information packet. Each packet is 8 bits. Packets whose upper 3 bits are “000” and “001” are paired, the lower 5 bits of the filter coefficient in the remaining 5 bits of the former, and the upper 5 bits of the filter coefficient in the remaining 5 bits of the latter Each is stored. A packet whose upper 3 bits are “010” defines a filter pattern composed of a plurality of filtering processes. The filter pattern is expressed by 2 bits, and an instruction code for specifying the filtering process is stored in the remaining 3 bits. The application order of the individual filtering processes is determined by, for example, the transmission order of the filter pattern procedure packet. The packet whose upper 3 bits are “011” is a filter pattern end packet indicating the end of transmission of the filter pattern represented by the following 2 bits.
 図9は、命令コードとフィルタリング処理との対応関係を示す。フィルタリング処理として、補完フィルタ、平滑化フィルタ、縦方向エッジ強調フィルタ、横方向エッジ強調フィルタがある。図10は、各種フィルタリング処理に係るフィルタ係数行列を示す。処理対象の画素およびそれを中心とする周囲8画素の計9画素にそれぞれフィルタ係数を適用することで各種フィルタリング処理を行うことができる。各種フィルタリング処理は異なる複数のフィルタ係数行列を含んでいてもよい。例えば、補完フィルタには3種類のフィルタ係数行列がある。 FIG. 9 shows the correspondence between instruction codes and filtering processing. Filtering processing includes a complementary filter, a smoothing filter, a vertical edge enhancement filter, and a horizontal edge enhancement filter. FIG. 10 shows filter coefficient matrices related to various filtering processes. Various filtering processes can be performed by applying filter coefficients to a total of nine pixels, that is, a pixel to be processed and eight surrounding pixels centering on the pixel to be processed. Various filtering processes may include a plurality of different filter coefficient matrices. For example, there are three types of filter coefficient matrices as complementary filters.
 フレームごとに変更することが好ましいフィルタ係数は例えば垂直ブランキング期間などに伝送するとよい。図11は、垂直ブランキング期間におけるフィルタ情報パケット伝送に係るフローを示す。このフローでは、3つの補完フィルタ0,1,2と3つのフィルタパターン00,01,10を水平ラインごとに分けて順に伝送している。なお、フレームごとに変更する必要のないフィルタ係数、例えば、平滑化フィルタなどは垂直ブランキング期間ではなくシステム起動時などに一度だけ伝送すればよい。 The filter coefficient that is preferably changed for each frame may be transmitted in the vertical blanking period, for example. FIG. 11 shows a flow relating to filter information packet transmission in the vertical blanking period. In this flow, the three complementary filters 0, 1, 2 and the three filter patterns 00, 01, 10 are transmitted in order for each horizontal line. Note that filter coefficients that do not need to be changed for each frame, such as a smoothing filter, need only be transmitted once at the time of system startup, not in the vertical blanking period.
 一つのフィルタリング処理に複数のフィルタ係数行列がある場合、どの画素にどのフィルタ係数行列を適用するのかを指定する必要がある。そのような指定はフィルタ制御情報で明示することができる。図12は、フィルタ制御情報パケットのフォーマット例を示す。各パケットは8ビットである。上位2ビットが“00”および“01”であるパケットは対になっており、前者の残り6ビットには画素の水平方向座標の下位6ビットが、後者の残り6ビットには画素の水平方向座標の上位6ビットがそれぞれ格納される。これらパケットで指定される画素については例えば補完フィルタ0を適用する。同様に、上位2ビットが“10”および“11”であるパケットは対になっており、前者の残り6ビットには画素の水平方向座標の下位6ビットが、後者の残り6ビットには画素の水平方向座標の上位6ビットがそれぞれ格納される。これらパケットで指定される画素については例えば補完フィルタ1を適用する。特に座標位置が指定されない画素については例えば補完フィルタ2を適用する。 When there are multiple filter coefficient matrices in one filtering process, it is necessary to specify which filter coefficient matrix is applied to which pixel. Such designation can be specified in the filter control information. FIG. 12 shows a format example of the filter control information packet. Each packet is 8 bits. Packets whose upper 2 bits are “00” and “01” are paired. The former 6 bits are the lower 6 bits of the horizontal coordinate of the pixel, and the latter 6 bits are the horizontal direction of the pixel. The upper 6 bits of the coordinates are stored respectively. For example, the complementary filter 0 is applied to the pixels specified by these packets. Similarly, packets whose upper 2 bits are “10” and “11” are paired, the former 6 remaining bits are the lower 6 bits of the horizontal coordinate of the pixel, and the latter 6 bits are the pixel. The upper 6 bits of the horizontal coordinate are stored. For example, the complementary filter 1 is applied to the pixels specified by these packets. For example, the complementary filter 2 is applied to a pixel for which a coordinate position is not specified.
 図13は、特定のフィルタリング処理を適用すべき画素の位置情報抽出に係るフローを示す。具体的には、水平ラインごとに補完フィルタ0,1を適用する候補画素を10点まで抽出し、それらの位置情報をパケット化する。画素の水平方向座標xを初期値からカウントアップしていき、当該画素の画素値から上および左の画素の画素値のうち大きい方を引いた値が第1閾値よりも大きい場合、および当該画素の画素値から上および左の画素値のうち小さい方を引いた値が第2閾値よりも小さい場合、それらの計算値を保持しておく。水平ラインの各画素について解析が終了すると、保持している計算値を絶対値の大きい順に10個選択し、それらに対応する画素の位置情報をパケット化する。すなわち、周辺画素に比べて非常に明るいあるいは暗い画素については位置情報を伝送して受信側で特定のフィルタリング処理を行えるようにする。 FIG. 13 shows a flow relating to pixel position information extraction to which a specific filtering process is to be applied. Specifically, up to 10 candidate pixels to which the complementary filters 0 and 1 are applied are extracted for each horizontal line, and their positional information is packetized. The horizontal coordinate x of the pixel is counted up from the initial value, and a value obtained by subtracting the larger one of the pixel values of the upper and left pixels from the pixel value of the pixel is larger than the first threshold, and the pixel If the value obtained by subtracting the smaller one of the upper and left pixel values from the pixel value is smaller than the second threshold value, those calculated values are retained. When the analysis is completed for each pixel on the horizontal line, ten stored calculation values are selected in descending order of absolute values, and the position information of the corresponding pixels is packetized. That is, position information is transmitted for pixels that are very bright or dark compared to the surrounding pixels so that a specific filtering process can be performed on the receiving side.
 <受信機>
 図14は、第2の実施形態に係る映像信号受信機の構成を示す。以下、第1の実施形態と異なる点についてのみ説明する。フィルタ情報抽出部60Aは、受信した映像信号から分離されたパケットから映像信号のフィルタリング処理に係るフィルタ係数およびその制御に係るフィルタ制御情報を抽出する。例えば、フィルタ情報抽出部60Aは、垂直ブランキング期間に伝送されるパケットから3つの補完フィルタのフィルタ係数を抽出する。また、フィルタ情報抽出部60Aは、水平ブランキング期間に伝送されるパケットからフィルタリング処理の適用順序や特定のフィルタリング処理を行うべき画素の位置情報を示すフィルタ制御情報を抽出する。フィルタリング処理部70Aは、抽出されたフィルタ係数およびフィルタ制御情報に従って、分離された非圧縮の映像信号に対してフィルタリング処理を行う。
<Receiver>
FIG. 14 shows a configuration of a video signal receiver according to the second embodiment. Only differences from the first embodiment will be described below. 60 A of filter information extraction parts extract the filter coefficient which concerns on the filtering process of a video signal, and the filter control information which concerns on the control from the packet isolate | separated from the received video signal. For example, the filter information extraction unit 60A extracts the filter coefficients of three complementary filters from a packet transmitted during the vertical blanking period. Further, the filter information extraction unit 60A extracts filter control information indicating the application order of the filtering process and the position information of the pixel to be subjected to the specific filtering process from the packet transmitted in the horizontal blanking period. The filtering processing unit 70A performs a filtering process on the separated uncompressed video signal according to the extracted filter coefficient and filter control information.
 図15は、補完フィルタを適用する場合の処理フローを示す。水平ブランキング期間であれば、フィルタ制御情報パケットから特定のフィルタリング処理(補完フィルタ0,1)を行うべき画素の位置情報を抽出して図示しない座標レジスタに順に保持する。座標レジスタは補完フィルタ0,1ごとにあり、各座標レジスタには10点までの画素の位置情報が格納できる。水平ブランキング期間でなければ、画素の水平方向座標xを初期値からカウントアップしていき、xが補完フィルタ0,1の座標レジスタに格納された値と一致すれば補完フィルタ0,1をそれぞれ選択してフィルタパターン00,01の手順に従ってそれぞれフィルタリング処理を行う。xが補完フィルタ0,1のいずれの座標レジスタにも格納されていなければ補完フィルタ2を選択してフィルタパターン10の手順に従ってフィルタリング処理を行う。 FIG. 15 shows a processing flow when applying the complementary filter. If it is a horizontal blanking period, the positional information of the pixel which should perform specific filtering process (complementary filter 0, 1) is extracted from a filter control information packet, and it hold | maintains in order in the coordinate register which is not shown in figure. A coordinate register is provided for each of the complementary filters 0 and 1, and each coordinate register can store position information of up to 10 pixels. If it is not the horizontal blanking period, the horizontal coordinate x of the pixel is counted up from the initial value, and if x matches the value stored in the coordinate registers of the complementary filters 0 and 1, the complementary filters 0 and 1 are respectively set. The filtering process is performed according to the procedure of the filter patterns 00 and 01. If x is not stored in any of the coordinate registers of the complementary filters 0 and 1, the complementary filter 2 is selected and a filtering process is performed according to the procedure of the filter pattern 10.
 以上、本実施形態によると、フィルタ制御情報に複数のフィルタリング処理の適用順序および特定のフィルタリング処理を行うべき画素の位置情報を含めることができる。これにより、受信側において受信した映像信号を本来の高解像度の映像信号により近づけることができる。 As described above, according to the present embodiment, it is possible to include the application order of a plurality of filtering processes and the position information of the pixel on which a specific filtering process is to be performed in the filter control information. Thereby, the video signal received on the receiving side can be brought closer to the original high-resolution video signal.
 (第3の実施形態)
 <送信機>
 図16は、第3の実施形態に係る映像信号送信機の構成を示す。映像信号送信機は後述する映像信号受信機と合わせて映像信号伝送システムを構成する。以下、第1の実施形態と異なる点についてのみ説明する。間引き処理部10Bは、入力された映像信号を、フレームカウンタが奇数のときにはフレームメモリ101に、偶数のときにはフレームメモリ102に、それぞれ格納する。伝送部40Bは、映像の有効期間に、フレームメモリ101に格納された映像信号を元の映像信号の1/2のフレームレートで伝送する。すなわち、本実施形態に係る映像信号送信機は映像信号をフレーム単位で間引いて伝送する。
(Third embodiment)
<Transmitter>
FIG. 16 shows a configuration of a video signal transmitter according to the third embodiment. The video signal transmitter constitutes a video signal transmission system together with a video signal receiver described later. Only differences from the first embodiment will be described below. The thinning processing unit 10B stores the input video signal in the frame memory 101 when the frame counter is odd, and in the frame memory 102 when the frame counter is even. The transmission unit 40B transmits the video signal stored in the frame memory 101 at a frame rate half that of the original video signal during the video valid period. That is, the video signal transmitter according to the present embodiment transmits the video signal by thinning out the frame unit.
 図17は、フィルタ制御情報生成部20Bの一構成例を示す。フィルタ201Bは、現在入力されている、フレームカウンタが2n+1のときの画素値P2n+1(x,y)に係数01を乗じた値と、フレームメモリ101に格納されている、フレームカウンタが2n-1のときの画素値P2n-1(x,y)に係数00を乗じた値とを加算して新たな画素値を算出する。ただし、xはフレームにおける水平方向座標、yはフレームにおける垂直方向座標である。すなわち、フィルタ201Bは、間引かれた映像信号、すなわち、フレームカウンタが2nのときの画素値P2n(x,y)を、その前後のフレームの画素値から推定する。フィルタ202Bは、フィルタ係数00,01に代えてフィルタ係数10,11を用いること以外はフィルタ201Bと同様である。誤差算出部211B,212Bは、それぞれ、フィルタ201B,202Bから出力される画素値と、フレームメモリ102に格納されている、フレームカウンタが2nのときの画素値との誤差を算出し、さらに、誤差の絶対値を例えば水平ライン単位で累計する。フィルタ特定部220は、誤差算出部211B,212Bの出力を受け、フィルタ201B,202Bのうち誤差の累計値が小さい方の識別情報をフィルタ制御情報として出力する。 FIG. 17 shows a configuration example of the filter control information generation unit 20B. The filter 201B has a value obtained by multiplying the currently input pixel value P 2n + 1 (x, y) when the frame counter is 2n + 1 by the coefficient 01, and the frame counter stored in the frame memory 101 is 2n−1. A new pixel value is calculated by adding a value obtained by multiplying the pixel value P 2n−1 (x, y) at the time by the coefficient 00. Here, x is a horizontal coordinate in the frame, and y is a vertical coordinate in the frame. That is, the filter 201B estimates the thinned video signal, that is, the pixel value P 2n (x, y) when the frame counter is 2n, from the pixel values of the preceding and succeeding frames. The filter 202B is the same as the filter 201B except that the filter coefficients 10 and 11 are used instead of the filter coefficients 00 and 01. The error calculation units 211B and 212B calculate errors between the pixel values output from the filters 201B and 202B and the pixel values stored in the frame memory 102 when the frame counter is 2n. Are accumulated in units of horizontal lines, for example. The filter specifying unit 220 receives the output of the error calculation units 211B and 212B, and outputs the identification information having the smaller error accumulated value of the filters 201B and 202B as the filter control information.
 <受信機>
 図18は、第3の実施形態に係る映像信号受信機の構成を示す。以下、第1の実施形態と異なる点についてのみ説明する。フレームメモリ111には受信した映像信号から分離された非圧縮の映像信号が格納される。フィルタリング処理部70Bは、フィルタ情報抽出部60によって抽出されたフィルタ係数およびフィルタ制御情報に従って、分離された非圧縮の映像信号に対してフィルタリング処理を行う。フレームメモリ112にはフィルタリング処理後の映像信号が格納される。フレームレート変換部80は、フレームメモリ111,112から1フレームごとに交互に映像信号を読み出して、分離された非圧縮の映像信号の2倍のフレームレートで出力する。すなわち、本実施形態に係る映像信号受信機は、フレーム間引きされた映像信号を受信し、その間引かれたフレームを作り出して元のフレームレートの映像信号を復元する。
<Receiver>
FIG. 18 shows a configuration of a video signal receiver according to the third embodiment. Only differences from the first embodiment will be described below. The frame memory 111 stores an uncompressed video signal separated from the received video signal. The filtering processing unit 70B performs a filtering process on the separated uncompressed video signal according to the filter coefficient and the filter control information extracted by the filter information extracting unit 60. The frame memory 112 stores the video signal after the filtering process. The frame rate conversion unit 80 alternately reads out video signals from the frame memories 111 and 112 for each frame and outputs them at a frame rate twice that of the separated uncompressed video signal. That is, the video signal receiver according to the present embodiment receives a video signal whose frame is thinned out, creates a thinned frame, and restores the video signal at the original frame rate.
 図19は、フィルタリング処理部70Bの一構成例を示す。フィルタリング処理部70Bは、図17に示したフィルタ201B,202Bと同じフィルタリング処理ができるようになっている。フィルタリング処理部70Bにはフィルタ情報抽出部60によって抽出されたフィルタ係数(例えば、フィルタ係数00,01,10,11)が設定される。フィルタリング処理部70Bは、フィルタ制御情報によって指定されたフィルタ係数を選択し、その選択したフィルタ係数で、現在入力されている画素値およびフレームメモリ111から読み出した1フレーム前の画素値を重み付け加算して新たな画素値を算出する。 FIG. 19 shows a configuration example of the filtering processing unit 70B. The filtering processor 70B can perform the same filtering process as the filters 201B and 202B shown in FIG. Filter coefficients (for example, filter coefficients 00, 01, 10, and 11) extracted by the filter information extraction unit 60 are set in the filtering processing unit 70B. The filtering processing unit 70B selects the filter coefficient specified by the filter control information, and weights and adds the currently input pixel value and the pixel value of the previous frame read from the frame memory 111 with the selected filter coefficient. To calculate a new pixel value.
 以上、本実施形態によると、伝送レートを抑えるために映像信号のフレームレートを下げて伝送しても、受信機側において元のフレームレートの映像信号に近い映像信号を得ることができる。なお、フレーム間引きに代えて例えばプログレッシブ-インターレース変換により映像信号を間引くようにしてもよい。この場合においても上記と同様の効果を得ることができる。 As described above, according to the present embodiment, a video signal close to the video signal of the original frame rate can be obtained on the receiver side even if the frame rate of the video signal is lowered to reduce the transmission rate. Note that the video signal may be thinned out by, for example, progressive-interlace conversion instead of frame thinning. Even in this case, the same effect as described above can be obtained.
 なお、フィルタリング処理は図2、図6、図17、図19に示したようなハードウェアとしてのフィルタで行うことに限定されない。例えば、DSP(Digital Signal Processor)を使用してソフトウェア的にフィルタリング処理を行ってもよい。 Note that the filtering process is not limited to being performed by a filter as hardware as shown in FIGS. 2, 6, 17, and 19. For example, a filtering process may be performed in software using a DSP (Digital Signal Processor).
 本発明に係る映像信号伝送システムは、伝送レート以上の高画質の非圧縮映像信号を伝送することができるため、下位互換性が求められる映像信号送信機および受信機、あるいはバッテリ駆動の映像信号送信機および受信機として有用である。 The video signal transmission system according to the present invention can transmit a high-quality uncompressed video signal at a transmission rate or higher, so that a video signal transmitter and receiver that require backward compatibility or battery-driven video signal transmission. Useful as a receiver and receiver.
 10   間引き処理部
 10B  間引き処理部
 20   フィルタ制御情報生成部
 201  フィルタ
 202  フィルタ
 211  誤差算出部
 212  誤差算出部
 220  フィルタ特定部
 20A  フィルタ制御情報生成部
 20B  フィルタ制御情報生成部
 201B フィルタ
 202B フィルタ
 211B 誤差算出部
 212B 誤差算出部
 30   フィルタ情報パケット化部
 40   伝送部
 40B  伝送部
 50   映像・パケット分離部
 60   フィルタ情報抽出部
 60A  フィルタ情報抽出部
 70   フィルタリング処理部
 70A  フィルタリング処理部
 70B  フィルタリング処理部
 80   フレームレート変換部
 101  フレームメモリ(第1のフレームメモリ)
 102  フレームメモリ(第2のフレームメモリ)
 111  フレームメモリ(第1のフレームメモリ)
 112  フレームメモリ(第2のフレームメモリ)
DESCRIPTION OF SYMBOLS 10 Thinning process part 10B Thinning process part 20 Filter control information generation part 201 Filter 202 Filter 211 Error calculation part 212 Error calculation part 220 Filter specific part 20A Filter control information generation part 20B Filter control information generation part 201B Filter 202B Filter 211B Error calculation part 212B Error calculation unit 30 Filter information packetization unit 40 Transmission unit 40B Transmission unit 50 Video / packet separation unit 60 Filter information extraction unit 60A Filter information extraction unit 70 Filtering processing unit 70A Filtering processing unit 70B Filtering processing unit 80 Frame rate conversion unit 101 Frame memory (first frame memory)
102 frame memory (second frame memory)
111 frame memory (first frame memory)
112 frame memory (second frame memory)

Claims (16)

  1. 非圧縮の映像信号を伝送する映像信号送信機であって、
     映像信号の伝送先での映像信号のフィルタリング処理の制御に係るフィルタ制御情報を生成するフィルタ制御情報生成部と、
     前記フィルタリング処理に係るフィルタ係数および前記フィルタ制御情報をそれぞれパケット化するフィルタ情報パケット化部と、
     映像の有効期間に映像信号を伝送し、ブランキング期間に前記フィルタ情報パケット化部が生成したパケットを伝送する伝送部とを備えている
    ことを特徴とする映像信号送信機。
    A video signal transmitter for transmitting an uncompressed video signal,
    A filter control information generating unit that generates filter control information related to control of filtering processing of a video signal at a transmission destination of the video signal;
    A filter information packetizing unit that packetizes the filter coefficient and the filter control information related to the filtering process;
    A video signal transmitter comprising: a transmission unit configured to transmit a video signal during a video valid period and to transmit a packet generated by the filter information packetization unit during a blanking period.
  2. 請求項1の映像信号送信機において、
     入力される映像信号の間引き処理を行う間引き処理部を備え、
     前記フィルタ制御情報生成部は、
      前記間引き処理後の映像信号に対して互いに異なるフィルタリング処理を行う複数のフィルタと、
      前記複数のフィルタから出力される映像信号のそれぞれと前記間引き処理前の映像信号との誤差を算出する複数の誤差算出部と、
      前記複数の誤差算出部の出力に基づいて、前記複数のフィルタのうち前記誤差がより小さいフィルタの識別情報を前記フィルタ制御情報として出力するフィルタ特定部とを有するものであり、
     前記伝送部は、前記間引き処理後の映像信号を伝送するものである
    ことを特徴とする映像信号送信機。
    The video signal transmitter according to claim 1, wherein
    It has a thinning processing unit that performs thinning processing of the input video signal,
    The filter control information generation unit
    A plurality of filters that perform different filtering processes on the video signal after the thinning process;
    A plurality of error calculation units for calculating an error between each of the video signals output from the plurality of filters and the video signal before the thinning process;
    A filter specifying unit that outputs, as the filter control information, identification information of a filter having a smaller error among the plurality of filters based on outputs of the plurality of error calculation units;
    The video signal transmitter, wherein the transmission unit transmits the video signal after the thinning process.
  3. 請求項2の映像信号送信機において、
     前記間引き処理部は、入力される映像信号の下位ビットを破棄するものであり、
     前記複数のフィルタは、それぞれ、前記間引き処理後の映像信号に対して畳み込み演算を行うものである
    ことを特徴とする映像信号送信機。
    The video signal transmitter according to claim 2, wherein
    The thinning processing unit discards the lower bits of the input video signal,
    Each of the plurality of filters performs a convolution operation on the video signal after the thinning process.
  4. 請求項2の映像信号送信機において、
     第1および第2のフレームメモリを備え、
     前記間引き処理部は、入力される映像信号を前記第1および第2のフレームメモリに1フレームごとに交互に格納するものであり、
     前記複数のフィルタは、それぞれ、前記間引き処理部に入力される映像信号および前記第1のフレームメモリに格納された2フレーム前の映像信号から映像信号を生成するものであり、
     前記誤差算出部は、前記複数のフィルタから出力される映像信号のそれぞれと前記第2のフレームメモリに格納された1フレーム前の映像信号との誤差を算出するものであり、
     前記伝送部は、前記第1のフレームメモリに格納された映像信号を、前記間引き処理部に入力される映像信号の1/2のフレームレートで伝送するものである
    ことを特徴とする映像信号送信機。
    The video signal transmitter according to claim 2, wherein
    Comprising first and second frame memories;
    The thinning-out processing unit alternately stores an input video signal for each frame in the first and second frame memories.
    Each of the plurality of filters generates a video signal from a video signal input to the thinning processing unit and a video signal two frames before stored in the first frame memory,
    The error calculation unit calculates an error between each of the video signals output from the plurality of filters and the video signal of the previous frame stored in the second frame memory,
    The video signal transmission characterized in that the transmission unit transmits the video signal stored in the first frame memory at a frame rate half that of the video signal input to the thinning processing unit. Machine.
  5. 請求項1の映像信号送信機において、
     前記伝送部は、垂直ブランキング期間に前記フィルタ係数のパケットを伝送し、水平ブランキング期間に前記フィルタ制御情報のパケットを伝送する
    ことを特徴とする映像信号送信機。
    The video signal transmitter according to claim 1, wherein
    The video signal transmitter, wherein the transmission unit transmits a packet of the filter coefficient during a vertical blanking period and transmits a packet of the filter control information during a horizontal blanking period.
  6. 請求項1の映像信号送信機において、
     前記フィルタ制御情報生成部は、複数のフィルタリング処理のうち適用すべきものの識別情報、および適用すべきフィルタリング処理が複数ある場合には適用順序を前記フィルタ制御情報として生成する
    ことを特徴とする映像信号送信機。
    The video signal transmitter according to claim 1, wherein
    The filter control information generation unit generates identification information as to which to be applied among a plurality of filtering processes, and an application order as the filter control information when there are a plurality of filtering processes to be applied. Transmitter.
  7. 請求項1の映像信号送信機において、
     前記フィルタ制御情報生成部は、特定のフィルタリング処理すべき画素位置を前記フィルタ制御情報として生成する
    ことを特徴とする映像信号送信機。
    The video signal transmitter according to claim 1, wherein
    The filter control information generation unit generates a pixel position to be subjected to a specific filtering process as the filter control information.
  8. 請求項1の映像信号送信機において、
     前記フィルタ情報パケット化部が生成したパケットを伝送しない動作モードを選択可能に構成されている
    ことを特徴とする映像信号送信機。
    The video signal transmitter according to claim 1, wherein
    An image signal transmitter configured to be able to select an operation mode in which a packet generated by the filter information packetization unit is not transmitted.
  9. 非圧縮の映像信号を受信する映像信号受信機であって、
     入力される映像信号から、映像の有効期間に伝送される映像信号とブランキング期間に伝送されるパケットとを分離する映像・パケット分離部と、
     前記分離されたパケットから映像信号のフィルタリング処理に係るフィルタ係数およびその制御に係るフィルタ制御情報を抽出するフィルタ情報抽出部と、
     前記分離された映像信号に対して前記フィルタ係数およびフィルタ制御情報に従ってフィルタリング処理を行うフィルタリング処理部とを備えている
    ことを特徴とする映像信号受信機。
    A video signal receiver for receiving an uncompressed video signal,
    A video / packet separating unit that separates a video signal transmitted during a video valid period and a packet transmitted during a blanking period from an input video signal;
    A filter information extraction unit that extracts filter coefficients related to the filtering process of the video signal and filter control information related to the control from the separated packets;
    A video signal receiver comprising: a filtering processing unit that performs a filtering process on the separated video signal in accordance with the filter coefficient and filter control information.
  10. 請求項9の映像信号受信機において、
     前記フィルタリング処理部は、前記フィルタ係数のうち前記フィルタ制御情報によって指定されたものを選択的に適用して前記分離された映像信号のフィルタリング処理を行う
    ことを特徴とする映像信号受信機。
    The video signal receiver according to claim 9, wherein
    The video signal receiver, wherein the filtering processing unit selectively applies one of the filter coefficients specified by the filter control information to perform the filtering process on the separated video signal.
  11. 請求項10の映像信号受信機において、
     前記分離された映像信号が格納される第1のフレームメモリと、
     前記フィルタリング処理後の映像信号が格納される第2のフレームメモリと、
     前記第1および第2のフレームメモリから1フレームごとに交互に映像信号を読み出して前記分離された映像信号の2倍のフレームレートで出力するフレームレート変換部とを備え、
     前記フィルタリング処理部は、入力される映像信号および前記第1のフレームメモリに格納された1フレーム前の映像信号から映像信号を生成する
    ことを特徴とする映像信号受信機。
    The video signal receiver according to claim 10.
    A first frame memory in which the separated video signal is stored;
    A second frame memory for storing the video signal after the filtering process;
    A frame rate conversion unit that alternately reads out a video signal from the first and second frame memories every frame and outputs the video signal at a frame rate twice that of the separated video signal;
    The video signal receiver, wherein the filtering processing unit generates a video signal from an input video signal and a video signal of one frame before stored in the first frame memory.
  12. 請求項9の映像信号受信機において、
     前記フィルタ情報抽出部は、垂直ブランキング期間に伝送されるパケットから前記フィルタ係数を抽出し、水平ブランキング期間に伝送されるパケットから前記フィルタ制御情報を抽出する
    ことを特徴とする映像信号受信機。
    The video signal receiver according to claim 9, wherein
    The video signal receiver, wherein the filter information extraction unit extracts the filter coefficient from a packet transmitted during a vertical blanking period, and extracts the filter control information from a packet transmitted during a horizontal blanking period. .
  13. 請求項9の映像信号受信機において、
     前記フィルタリング処理部は、複数のフィルタリング処理のうち前記フィルタ制御情報によって指定されたものを選択的に適用し、適用すべきフィルタリング処理が複数ある場合には前記フィルタ制御情報によって指定された順に適用する
    ことを特徴とする映像信号受信機。
    The video signal receiver according to claim 9, wherein
    The filtering processing unit selectively applies a plurality of filtering processes specified by the filter control information, and applies a plurality of filtering processes to be applied in the order specified by the filter control information. A video signal receiver.
  14. 請求項9の映像信号受信機において、
     前記フィルタリング処理部は、前記フィルタ制御情報によって指定された画素に対して特定のフィルタリング処理を行う
    ことを特徴とする映像信号受信機。
    The video signal receiver according to claim 9, wherein
    The video signal receiver, wherein the filtering processing unit performs a specific filtering process on a pixel specified by the filter control information.
  15.  請求項1の映像信号送信機と、
     非圧縮の映像信号を受信する映像信号受信機であって、入力される映像信号から、映像の有効期間に伝送される映像信号とブランキング期間に伝送されるパケットとを分離する映像・パケット分離部と、前記分離されたパケットから映像信号のフィルタリング処理に係るフィルタ係数およびその制御に係るフィルタ制御情報を抽出するフィルタ情報抽出部と、前記分離された映像信号に対して前記フィルタ係数およびフィルタ制御情報に従ってフィルタリング処理を行うフィルタリング処理部とを有する映像信号受信機とを備えている
    ことを特徴とする映像信号伝送システム。
    A video signal transmitter according to claim 1;
    A video signal receiver that receives an uncompressed video signal, and separates the video signal transmitted during the video valid period and the packet transmitted during the blanking period from the input video signal. A filter information extraction unit that extracts a filter coefficient related to a filtering process of a video signal and filter control information related to the control from the separated packet, and the filter coefficient and the filter control for the separated video signal A video signal transmission system comprising: a video signal receiver having a filtering processing unit that performs filtering processing according to information.
  16. 非圧縮の映像信号を伝送する映像信号伝送方法であって、
     映像信号の伝送先での映像信号のフィルタリング処理の制御に係るフィルタ制御情報を生成するステップと、
     前記フィルタリング処理に係るフィルタ係数および前記フィルタ制御情報をそれぞれパケット化するステップと、
     映像の有効期間に映像信号を伝送し、ブランキング期間に前記生成したパケットを伝送するステップと、
     受信した映像信号から、映像の有効期間に伝送される映像信号とブランキング期間に伝送されるパケットとを分離するステップと、
     前記分離したパケットから前記分離した映像信号のフィルタリング処理に係るフィルタ係数およびその制御に係るフィルタ制御情報を抽出するステップと、
     前記抽出したフィルタ係数およびフィルタ制御情報に従って、前記分離した映像信号に対してフィルタリング処理を行うステップとを備えている
    ことを特徴とする映像信号伝送方法。
    A video signal transmission method for transmitting an uncompressed video signal,
    Generating filter control information related to control of filtering processing of a video signal at a transmission destination of the video signal;
    Packetizing the filter coefficient and the filter control information related to the filtering process;
    Transmitting a video signal during a video valid period and transmitting the generated packet during a blanking period;
    Separating a video signal transmitted during a video valid period and a packet transmitted during a blanking period from the received video signal;
    Extracting filter coefficients related to filtering processing of the separated video signal and filter control information related to control thereof from the separated packets;
    And a step of performing filtering processing on the separated video signal in accordance with the extracted filter coefficient and filter control information.
PCT/JP2010/003634 2009-09-10 2010-05-31 Image signal transmitter and receiver WO2011030482A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-209059 2009-09-10
JP2009209059A JP2011061503A (en) 2009-09-10 2009-09-10 Image signal transmitter and receiver

Publications (1)

Publication Number Publication Date
WO2011030482A1 true WO2011030482A1 (en) 2011-03-17

Family

ID=43732166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003634 WO2011030482A1 (en) 2009-09-10 2010-05-31 Image signal transmitter and receiver

Country Status (2)

Country Link
JP (1) JP2011061503A (en)
WO (1) WO2011030482A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101863944B1 (en) * 2011-12-29 2018-06-04 삼성전자주식회사 Data transmitting apparatus, data receiving apparatus, methods for transmitting and receiving data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937243A (en) * 1995-07-20 1997-02-07 Sanyo Electric Co Ltd Moving image coder and decoder
JP2003348620A (en) * 2002-05-29 2003-12-05 Nippon Hoso Kyokai <Nhk> Compression device for video signal and its method, and restoring device for video signal and its method
JP2006295913A (en) * 2005-04-11 2006-10-26 Sharp Corp Method and device for adaptive upsampling for spatial scalable coding
JP2008054267A (en) * 2006-07-28 2008-03-06 Hitachi Ltd Image processing apparatus, image encoding device and image decoding device
WO2009047917A1 (en) * 2007-10-11 2009-04-16 Panasonic Corporation Video coding method and video decoding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937243A (en) * 1995-07-20 1997-02-07 Sanyo Electric Co Ltd Moving image coder and decoder
JP2003348620A (en) * 2002-05-29 2003-12-05 Nippon Hoso Kyokai <Nhk> Compression device for video signal and its method, and restoring device for video signal and its method
JP2006295913A (en) * 2005-04-11 2006-10-26 Sharp Corp Method and device for adaptive upsampling for spatial scalable coding
JP2008054267A (en) * 2006-07-28 2008-03-06 Hitachi Ltd Image processing apparatus, image encoding device and image decoding device
WO2009047917A1 (en) * 2007-10-11 2009-04-16 Panasonic Corporation Video coding method and video decoding method

Also Published As

Publication number Publication date
JP2011061503A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
CN100419850C (en) System and method for overlaying images from multiple video sources on a display device
JP3895115B2 (en) Data transmission method, data transmission device, and data reception device
CN100495524C (en) Information processing device for relaying streaming data
US8384765B2 (en) Transmitter, receiver, signal transmission system, and signal transmission method
US7339959B2 (en) Signal transmitter and signal receiver
WO2011030482A1 (en) Image signal transmitter and receiver
JP5784810B2 (en) Transmission device, reception device, transmission method, and reception method
US20100079666A1 (en) Video processing apparatus and video processing method
WO2015118664A1 (en) Image transmission device, image reception device, and surveillance camera system, teleconference system, and vehicle-mounted camera system using same
JP4231236B2 (en) Video transmission apparatus and method, program, and recording medium
WO2015132957A1 (en) Video device and video processing method
US6542197B1 (en) Three-dimensional signal processor using motion information upon decoding image signal
KR101810530B1 (en) Additional data transmission method, and video transmission system by using the method
US20100027913A1 (en) Image processing apparatus and image processing method
JP4399480B2 (en) Block noise detecting device and method, and block noise removing device and method
JP5328549B2 (en) Image processing apparatus and control method thereof
KR100896498B1 (en) Image Processing System and Method thereof
JP5613351B2 (en) Image signal processing method and apparatus
US20130308053A1 (en) Video Signal Processing Apparatus and Video Signal Processing Method
US20100045857A1 (en) Image Processor and Image Processing Method
JP2003264717A (en) Noise reduction device in digital image communication
WO2012114373A1 (en) Image signal processing method and device
JP4839394B2 (en) Data receiving apparatus and data receiving method
JP4448414B2 (en) Video display device and video display method
JP2003264831A (en) Moving picture encoding/decoding system and method, encoder, decoder, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10815085

Country of ref document: EP

Kind code of ref document: A1