WO2011030051A1 - Pilotage des jeux en sommet d'aubes dans une turbomachine - Google Patents

Pilotage des jeux en sommet d'aubes dans une turbomachine Download PDF

Info

Publication number
WO2011030051A1
WO2011030051A1 PCT/FR2010/051855 FR2010051855W WO2011030051A1 WO 2011030051 A1 WO2011030051 A1 WO 2011030051A1 FR 2010051855 W FR2010051855 W FR 2010051855W WO 2011030051 A1 WO2011030051 A1 WO 2011030051A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbomachine
outer casing
electric heating
heating means
air
Prior art date
Application number
PCT/FR2010/051855
Other languages
English (en)
Inventor
Vincent Philippot
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to CN201080039622.5A priority Critical patent/CN102482947B/zh
Priority to EP10763823.1A priority patent/EP2475847B1/fr
Priority to BR112012005161-0A priority patent/BR112012005161B1/pt
Priority to CA2773047A priority patent/CA2773047C/fr
Priority to JP2012528421A priority patent/JP5718337B2/ja
Priority to US13/394,636 priority patent/US9353641B2/en
Priority to RU2012113551/06A priority patent/RU2537100C2/ru
Publication of WO2011030051A1 publication Critical patent/WO2011030051A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • F01D19/02Starting of machines or engines; Regulating, controlling, or safety means in connection therewith dependent on temperature of component parts, e.g. of turbine-casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/10Heating, e.g. warming-up before starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a turbomachine, such as a turbojet engine or an airplane turboprop engine, equipped with means for controlling the games at the top of blades and a method for controlling these games.
  • the air passing through a turbomachine flows from upstream to downstream through a low and high pressure compressor, then enters a combustion chamber whose output feeds a high pressure turbine whose rotor drives the rotor of the high pressure compressor and a low pressure turbine whose rotor drives the rotor of the low pressure compressor.
  • the high-pressure turbine generally comprises a moving impeller located between two rows of upstream and downstream fixed vanes carried by an outer casing, a low radial clearance being provided between the tops of the blades and the outer casing.
  • the moving wheel comprises a disc carrying the blades and connected to the shaft of the high pressure turbine.
  • Each air sampling circuit comprises a valve whose opening and closing of the valves is controlled by a control system. The air thus drawn is brought to the outer casing to cool or reheat and thus adjust the games to the vertices of the blades of the turbine high pressure (see the document FR2828908-A1 of the applicant).
  • the control system receives information relating to the speed of the turbomachine, the temperature of the external casing, the temperature at the outlet of the high-pressure compressor, as well as information relating to the operation of the turbomachine (idling on the ground, hot start or cold, temporary acceleration or deceleration, ).
  • This known device is complex since it requires the installation of valves and separate air sampling circuits in upstream and downstream parts of the high pressure compressor. It is necessary to control the degree of opening of the valves to perfectly control the temperature of the air intended to impact the outer casing, which is also complicated. In addition, this type this device is particularly heavy and bulky. Finally, the withdrawal of air on the downstream part of the high pressure compressor is disadvantageous because it consumes air at very high pressure and penalizes the efficiency of the turbomachine.
  • the invention aims in particular to provide a simple solution effective and economical to these problems of the prior art.
  • a turbomachine comprising means for controlling the clearances between the tops of the moving blades of a high-pressure turbine and an outer casing surrounding these blades, comprising means for cooling the outer casing by air impact taken from a stage of the high pressure compressor of the turbomachine, characterized in that it comprises first electric heating means of the upper part of the outer casing and second electric heating means of the lower part of the outer casing, as well as means for all-or-none control of the air-impact cooling means and independent means for controlling the first means and the second electric heating means.
  • the invention by combining cooling means of the casing by air impact and electric heating means of the housing, allows to enjoy the advantages of these two systems, while avoiding their respective disadvantages.
  • the integration of the electrical heating means of the outer casing makes it possible to eliminate the hot air sampling circuit in the downstream part of the high-pressure compressor and thus improves the performance of the the turbomachine.
  • air-cooled cooling means in all or nothing simplifies the design of the game control means because it is no longer necessary to control the degree of opening of a valve as in the prior art.
  • the independent operation of the electric heating means of the upper part and the lower part of the casing makes it possible to provide a solution to the problem of hot start-up of the turbomachine by specifically controlling only the heating of the lower part. external housing to avoid contact with the tips of the blades of the high pressure turbine rotor.
  • the air impact cooling means comprise a ring carried by the outer casing and having axially spaced bosses between which are installed multi-perforated air outlet ramps taken from the high pressure compressor.
  • the means for withdrawing air from the high-pressure compressor may comprise means for opening and closing the air inlet on the outer casing.
  • the cooling air is taken from the fourth stage of the high-pressure compressor and its flow rate is of the order of 0.7% of the total air flow rate in the compressor.
  • the electric heating means comprise resistive circuits carried by the outer casing on the upper and lower parts thereof.
  • the resistive circuits are mounted in the vicinity of the bosses of the ring carried by the outer casing.
  • the invention also relates to a method for controlling the games at the top of high-pressure turbine blades in a turbomachine as described above, this process consisting in a restart at the turbomachine, to activate at maximum power the electric heating means of the lower part of the high pressure turbine casing and to deactivate the heating means of the upper part of this casing.
  • This method also consists in a cold start of the turbomachine, to activate the heating means of the lower part of the outer casing to a power equal to 50% of their maximum electrical power.
  • the power of the electric heating means of the lower part is temporarily reduced to about 50% of the aforementioned maximum electrical power, the electric power increasing. then to reach about 75% of the maximum electrical power.
  • the electric heating means of the lower part are temporarily deactivated and then reactivated to reach a power equal to 75% of their power. maximum electric power.
  • the electric heating means of the lower part of the outer casing are activated at full power prior to a drop in the operating speed.
  • the turbomachine in the cruising phase to avoid too rapid contraction of the outer casing due to the decrease in temperature in the primary vein and thus prevent contact blade tops.
  • FIG. 1 is a partial schematic view in axial section of a high pressure turbine and a device for controlling the blade tip games according to the prior art
  • FIGS. 2A and 2B are schematic representations of a turbomachine during a cold and hot restart
  • FIG. 3 is a partial diagrammatic view in axial section of a high-pressure turbine and a device for controlling the games at the top of the blades according to the invention
  • FIG. 4 is a graph showing the variations of the power of electric heating means of the lower part of the turbomachine according to the invention.
  • Figure 1 shows an upper part of a high pressure turbine arranged at the outlet of a combustion chamber and upstream of a low pressure turbine and which comprises an outer casing 12 and a wall 14 delimiting externally the flow vein of the primary air flow in which a moving impeller 16 rotates, mounted between two rows of upstream and downstream fixed blades 18.
  • the wall 14 is formed by annular segments 22, 24 which carry the vanes 18, 20 and annular segments 26 disposed between the annular segments 22, 24 and facing the radially outer ends of the blades 16 carried by a rotor disk of the turbine high pressure (not shown).
  • a ring 28 is interposed between the outer casing 12 and the wall 14 and comprises at its upstream end a radial flange 30 fixing by bolting on a shoulder 32 of the outer casing 12, the downstream end having a radial flange 34 clamped between a flange radial 36 of the downstream end of the outer casing 12 and a radial flange 38 of the downstream end of a casing 40 of the downstream low pressure turbine.
  • This ring 28 supports via a spacer 42 the annular segments 26 surrounding the blades 16 and comprises a plurality of bosses 44 spaced axially from each other and between which are installed multi-perforated ramps 46.
  • Means for controlling the clearances between the tips of the blades 16 and the annular segments 26 comprise a cold air sampling circuit 48 on an upstream part of the compressor, for example on the fourth compression stage and an air sampling circuit. 50 on a downstream part of the compressor, for example on the ninth compression stage.
  • Each cold air intake circuit 48 and hot air circuit 50 is connected to a valve 52, 54 controlling the flow rate taken from cold air and hot air.
  • a duct 56 connected to the outlet of the valves makes it possible to inject the mixture of air taken from the high-pressure compressor into the multi-perforated ramps 46 through which the air is ejected and impacts the ring 28 to cool it or to cool it. heat.
  • a third air sampling circuit 57 on the fourth stage of the high pressure compressor is provided for cooling the low pressure turbine.
  • the cold air taken is directly injected into the flow passage of the primary air flow through the outer casing 12 and passes through the orifices 58 of the ring 28 which open at the level of the row of vanes 20.
  • the flow rate of this cooling air is of the order of 2% of the total air flow of the high-pressure compressor.
  • the control of the mixture of cold air and hot air impacting the ring 28 is achieved by means of a full authority control system (or FADEC in English) of the turbomachine which takes into account a plurality of information such as that for example the mode of operation of the turbomachine, the temperature of the outer casing 12 and the stopping time of the turbomachine between two uses, to determine the proper opening of the valves 54, 52 and thus minimize the play at the top of the blades 16.
  • a full authority control system or FADEC in English
  • the outer casing 12 and the rotor disc of the high pressure turbine are at thermal equilibrium ( Figure 2A).
  • the rotor of the high pressure turbine 59 is thus centered inside the outer casing 12. Due to the thermal inertia of the disk of the high-pressure turbine rotor and the faster expansion of the outer casing 12, it is necessary in this configuration to cool the outer casing 12 to prevent an increase of the games at the tips of blades.
  • the control system controls the opening of the cold air sampling valve 52 on the fourth compression stage and controls the closure of the hot air sampling valve 54 on the ninth compression stage. The air taken is then conveyed to the multi-perforated ramps 46 and leaves them to impact the bosses 44 of the ring 28 and cool the ring 28 and the outer casing.
  • air impingement control means as described above would lead to uniformly expand the entire circumference of the outer casing 12 and thus to excessively increase the blade-top clearances in the upper part of the turbomachine.
  • the invention provides a solution to this problem as well as those mentioned above by removing the hot air sampling means 50 on the high pressure compressor and replacing them with first electric heating means of the upper part of the outer casing 12 independently controlled by second electric heating means of the lower part of the outer casing 12.
  • the electric heating of the outer casing 12 is faster and therefore more responsive than the heating by hot air impact and does not reduce the performance of the high pressure compressor of the turbomachine.
  • the first and second electric heating means 60 of the upper and lower portions of the outer casing 12 are mounted adjacent the bosses 44 of the ring 28 as shown in FIG. 3 and may be resistive type circuits. Independent control means of the first and second electric heating means 60 are provided and are connected to the control system so as to independently control the heating of the lower and upper portions of the outer casing 12, which makes it possible to respond to the problem of the warm start of the turbomachine as explained in more detail below.
  • the outer casing 12 is cooled by air impingement cooling means as described above, that is to say by means of an air sampling circuit 48 on the fourth stage of the compressor. high pressure, this air supplying the multi-perforated ramps 46 and being ejected towards the bosses 44 of the ring 28.
  • the cooling means may comprise a valve 61 controlled in all or nothing by the intermediate control means 63 connected to the control system.
  • FIG. 4 is a graph showing the variations of the power of the electric heating means of the lower part of the turbomachine during a cold restart in dashed lines and during a hot restart in solid lines.
  • the electric heating means of the lower part of the ring 28 are activated at full power at 62, which makes it possible to dilate the ring and thus increase the games at the top of the blades in this part.
  • the electric heating means of the upper part of the ring 28 are deactivated since the games at the tips of blades 16 at this point are sufficient as explained above, which avoids an increase of the games at the top. of blades in the upper part which would degrade the performance of the turbomachine.
  • the heating means Following a warm start and at the beginning of a phase of increasing the speed of the turbomachine, the heating means the lower part of the power supply is temporarily supplied with power at approximately 50% of their maximum power at 64, which avoids an increase in play due to rapid expansion of the outer casing 12 due to the combined effect of the electric heater and the increase of the temperature of the gases in the primary vein as a consequence of the increase of the regime.
  • the electrical power is then progressively re-increased at 66 to reach about 75% of the maximum power 68 to readjust the sets of blades because of the progressive expansion of the disk of the high-pressure turbine rotor.
  • the invention can also be used during a cold start of the turbomachine (FIG. 4).
  • the electric heating means of the lower part are activated at full power for a short period 70 (typically 3 seconds) until the establishment of the idling speed on the ground after which their power is decreased in 72 to 50 % of maximum power.
  • a short period 70 typically 3 seconds
  • the rotor of the high pressure turbine is not eccentric inside the outer casing 12.
  • the electric heating means of the lower part are temporarily deactivated at 74 to avoid rapid expansion of the outer casing as explained above with reference to an increase in the diet following a hot restart.
  • the electric power is then gradually re-increased at 76 to reach about 75% of the maximum power at 68 to readjust the games at the top of the blades due to the progressive expansion of the disc of the high pressure turbine rotor.
  • the electric heating means of the lower part of the outer casing 12 are activated at full power in 78 prior to a fall in the cruising speed that the turbomachine has been re-started cold or hot. This avoids too rapid contraction of the outer casing and allows to maintain it at a sufficient temperature for the time necessary to decrease the radial dimensions of the blades due to the drop in temperature as a result of the decline in the regime.
  • the electric heating means are deactivated and only the air impact cooling means are activated and the valve is placed in the open position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

Turbomachine comprenant des moyens de pilotage des jeux entre les sommets des aubes mobiles (16) d'une turbine haute pression et un carter externe (12) entourant ces aubes (16), par refroidissement du carter externe par impact d'air (48, 46) prélevé sur un étage du compresseur haute pression de la turbomachine, et par chauffage électrique (60) des parties supérieure et inférieure du carter externe (12).

Description

PILOTAGE DES JEUX EN SOMMET D'AUBES DANS UNE
TURBOMACHINE
La présente invention concerne une turbomachine, telle qu'un turboréacteur ou un turbopropulseur d'avion, équipée de moyens de pilotage des jeux en sommet d'aubes ainsi qu'un procédé de pilotage de ces jeux.
De manière classique, l'air traversant une turbomachine s'écoule d'amont en aval à travers un compresseur basse et haute pression, puis pénètre à l'intérieur d'une chambre de combustion dont la sortie alimente une turbine haute pression dont le rotor entraîne le rotor du compresseur haute pression puis une turbine basse pression dont le rotor entraîne le rotor du compresseur basse pression.
La turbine haute pression comprend en général une roue à aubes mobiles située entre deux rangées d'aubes fixes amont et aval portées par un carter externe, un jeu radial faible étant prévu entre les sommets des aubes mobiles et le carter externe. La roue mobile comprend un disque portant les aubes et relié à l'arbre de la turbine haute pression.
Lors du fonctionnement de la turbomachine, il est important de minimiser le jeu radial en sommet d'aubes pour éviter les fuites d'air et garantir une performance maximale de la turbomachine.
Cependant, l'ajustement de ce jeu radial s'avère délicat à réaliser puisque les variations dimensionnelles des pièces fixes en fonctionnement sont différentes des variations dimensionnelles des pièces tournantes. En effet, toutes ces pièces sont soumises aux variations de température des gaz de combustion qui induisent des dilations et contractions successives en fonction du régime moteur, mais les variations de température et les variations dimensionnelles correspondantes des parties tournantes sont plus lentes que celles des parties fixes en raison de l'inertie thermique et de la masse du disque de rotor de la turbine haute pression. En outre, il faut également prendre en compte les variations dimensionnelles des aubes de turbine dues aux forces centrifuges en fonctionnement.
Des dispositifs ont été proposés pour le pilotage des jeux en sommet d'aubes, qui comprennent des moyens de prélèvement d'air sur une partie amont du compresseur haute pression, par exemple sur le quatrième étage, et sur une partie aval de ce compresseur, par exemple sur le neuvième étage. Chaque circuit de prélèvement d'air comprend une vanne dont l'ouverture et la fermeture des vannes est commandée par un système de régulation. L'air ainsi prélevé est amené jusqu'au carter externe pour le refroidir ou le réchauffer et ainsi régler les jeux aux sommets des aubes mobiles de la turbine haute pression (voir le document FR2828908-A1 de la demanderesse).
Le système de régulation reçoit des informations relatives au régime de la turbomachine, à la température du carter externe, à la température en sortie du compresseur haute pression, ainsi que des informations relatives au fonctionnement de la turbomachine (ralenti au sol, démarrage à chaud ou à froid, accélération ou décélération temporaire,...).
Ce dispositif connu est complexe puisqu'il nécessite l'installation de vannes et de circuits séparés de prélèvement d'air dans des parties amont et aval du compresseur haute pression. Il est nécessaire de contrôler le degré d'ouverture des vannes pour parfaitement maîtriser la température de l'air destiné à impacter le carter externe, ce qui s'avère également compliqué. De plus, ce type ce dispositif s'avère particulièrement lourd et encombrant. Enfin, le prélèvement d'air sur la partie aval du compresseur haute pression est désavantageux car il consomme de l'air à très haute pression et pénalise le rendement de la turbomachine.
Un autre problème se pose en cas de redémarrage à chaud de la turbomachine, c'est-à-dire lors d'un démarrage de la turbomachine après un temps d'arrêt de celle-ci insuffisant pour que la température de la turbomachine et en particulier celle du disque de rotor de la turbine haute pression soient redescendues à la température ambiante. Après arrêt de la turbomachine, on observe que le refroidissement de celle-ci s'effectue plus rapidement en partie inférieure (à six heures par rapport au cadran d'une montre) qu'en partie supérieure (à douze heures par rapport au cadran d'une montre), ce qui conduit à une excentricité du rotor de turbine haute pression dans le carter externe. Ainsi, les jeux en sommets d'aubes en position inférieure sont réduits et la centrifugation des aubes du rotor de la turbine haute pression peut conduire à des frottements sur le carter externe en position inférieure.
On a également proposé un dispositif de pilotage des jeux par chauffage électrique du carter externe, ce qui permet d'absorber les accélérations et d'éviter les effets néfastes des redémarrages à chaud mais ne permet pas de refroidir le carter pour réduire les jeux en vol de croisière.
L'invention a notamment pour but d'apporter une solution simple efficace et économique à ces problèmes de la technique antérieure.
A cette fin, elle propose une turbomachine comprenant des moyens de pilotage des jeux entre les sommets des aubes mobiles d'une turbine haute pression et un carter externe entourant ces aubes, comprenant des moyens de refroidissement du carter externe par impact d'air prélevé sur un étage du compresseur haute pression de la turbomachine, caractérisé en ce qu'il comprend des premiers moyens de chauffage électrique de la partie supérieure du carter externe et des seconds moyens de chauffage électrique de la partie inférieure du carter externe, ainsi que des moyens de commande en tout ou rien des moyens de refroidissement par impact d'air et des moyens indépendants de commande des premiers moyens et des seconds moyens de chauffage électrique.
L'invention, en combinant des moyens de refroidissement du carter par impact d'air et des moyens de chauffage électrique du carter, permet de bénéficier des avantages de ces deux systèmes, tout en évitant leurs inconvénients respectifs.
L'intégration des moyens de chauffage électrique du carter externe permet de supprimer le circuit de prélèvement d'air chaud dans la partie aval du compresseur haute pression et améliore donc les performances de la turbomachine.
Le fonctionnement des moyens de refroidissement par impact d'air en tout ou rien permet de simplifier la conception des moyens de pilotage des jeux car il n'est plus nécessaire de contrôler le degré d'ouverture d'une vanne comme dans la technique antérieure.
En outre, le fonctionnement indépendant des moyens de chauffage électrique de la partie supérieure et de la partie inférieure du carter permet d'apporter une solution au problème du re-démarrage à chaud de la turbomachine en ne commandant spécifiquement que le chauffage de la partie inférieure du carter externe pour éviter les contacts avec les sommets des aubes du rotor de turbine haute pression.
Selon une autre caractéristique de l'invention, les moyens de refroidissement par impact d'air comprennent un anneau porté par le carter externe et comportant des bossages espacés axialement entre lesquels sont installées des rampes multi-perforées de sortie de l'air prélevé sur le compresseur haute pression.
Les moyens de prélèvement d'air sur le compresseur haute pression peuvent comprendre un moyen d'ouverture et de fermeture de l'arrivée d'air sur le carter externe.
Dans une réalisation particulière de l'invention, l'air de refroidissement est prélevé sur le quatrième étage du compresseur haute pression et son débit est de l'ordre de 0,7 % du débit d'air total dans le compresseur.
Dans un mode de réalisation de l'invention, les moyens de chauffage électrique comprennent des circuits résistifs portés par le carter externe sur les parties supérieure et inférieure de celui-ci.
Avantageusement, les circuits résistifs sont montés au voisinage des bossages de l'anneau porté par le carter externe.
L'invention concerne également un procédé de pilotage des jeux en sommet d'aubes de turbine haute-pression dans une turbomachine telle que décrite précédemment, ce procédé consistant lors d'un re-démarrage à chaud de la turbomachine, à activer à puissance maximale les moyens de chauffage électrique de la partie inférieure du carter de turbine haute pression et à désactiver les moyens de chauffage de la partie supérieure de ce carter.
Ainsi, seuls les moyens de chauffage électrique de la partie inférieure sont activés en cas de re-démarrage à chaud, pour éviter une augmentation des jeux en sommets d'aubes et une baisse du rendement de la turbine.
Ce procédé consiste également lors d'un démarrage à froid de la turbomachine, à activer les moyens de chauffage de la partie inférieure du carter externe à une puissance égale à 50 % de leur puissance électrique maximale.
Au début d'une phase d'augmentation du régime de la turbomachine suite à un démarrage à chaud, la puissance des moyens de chauffage électrique de la partie inférieure est temporairement diminuée à environ 50 % de la puissance électrique maximale précité, la puissance électrique augmentant ensuite jusqu'à atteindre environ 75 % de la puissance électrique maximale.
De manière similaire, au début d'une phase d'augmentation du régime de la turbomachine suite à un démarrage à froid, les moyens de chauffage électrique de la partie inférieure sont temporairement désactivés puis réactivés pour atteindre une puissance égale à 75 % de leur puissance électrique maximale.
Cette diminution du chauffage lors d'un démarrage à chaud ou à froid au début de l'augmentation du régime évite une dilatation trop rapide du carter externe par rapport à celle du rotor de turbine haute pression et évite donc un accroissement des jeux en début d'augmentation du régime de la turbomachine qui aggraverait les fuites d'air en sommet d'aubes.
Selon une autre caractéristique du procédé selon l'invention, les moyens de chauffage électriques de la partie inférieure du carter externe sont activés à pleine puissance préalablement à une baisse du régime de la turbomachine en phase de croisière pour éviter une contraction trop rapide du carter externe du fait de la diminution de la température dans la veine primaire et ainsi empêcher les contacts en sommets d'aubes.
Avantageusement, durant la phase de croisière, tous les moyens de chauffage électrique du carter externe sont désactivés et les moyens de refroidissement par impact d'air sont activés.
L'invention sera mieux comprise et d'autres détails, avantages et caractéristiques de l'invention apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif, en référence aux dessins annexés dans lesquels :
- la figure 1 est une vue schématique partielle en coupe axiale d'une turbine haute pression et d'un dispositif de pilotage des jeux en sommet d'aubes selon la technique antérieure ;
- les figures 2A et 2B sont des représentations schématiques d'une turbomachine lors d'un re-démarrage à froid et à chaud ;
- la figure 3 est une vue schématique partielle en coupe axiale d'une turbine haute pression et d'un dispositif de pilotage des jeux en sommet d'aubes selon l'invention ;
- la figure 4 est un graphe représentant les variations de la puissance de moyens de chauffage électrique de la partie inférieure de la turbomachine selon l'invention.
On se réfère tout d'abord à la figure 1 qui représente une partie supérieure d'une turbine haute pression agencée en sortie d'une chambre de combustion et en amont d'une turbine basse pression et qui comporte un carter externe 12 et une paroi 14 délimitant extérieurement la veine d'écoulement du flux d'air primaire dans laquelle tourne une roue à aubes mobiles 16 montée entre deux rangées d'aubes fixes amont 18 et aval 20. La paroi 14 est formée par des segments annulaires 22, 24 qui portent les aubes fixes 18, 20 et par des segments annulaires 26 disposés entre les segments annulaires 22, 24 et en regard des extrémités radialement externes des aubes mobiles 16 portées par un disque de rotor de la turbine haute pression (non représenté).
Un anneau 28 est intercalé entre le carter externe 12 et la paroi 14 et comprend à son extrémité amont une bride radiale 30 de fixation par boulonnage sur un épaulement 32 du carter externe 12, l'extrémité aval comportant une bride radiale 34 serrée entre une bride radiale 36 de l'extrémité aval du carter externe 12 et une bride radiale 38 de l'extrémité aval d'un carter 40 de la turbine basse pression aval. Cet anneau 28 supporte par l'intermédiaire d'une entretoise 42 les segments annulaires 26 entourant les aubes mobiles 16 et comprend une pluralité de bossages 44 espacés axialement les uns des autres et entre lesquels sont installées des rampes multi-perforées 46.
Des moyens de pilotage des jeux entre les sommets des aubes 16 et les segments annulaires 26 comprennent un circuit de prélèvement d'air froid 48 sur une partie amont du compresseur, par exemple sur le quatrième étage de compression et un circuit de prélèvement d'air chaud 50 sur une partie aval du compresseur, par exemple sur le neuvième étage de compression. Chaque circuit de prélèvement d'air froid 48 et d'air chaud 50 est relié en sortie à une vanne 52, 54 contrôlant le débit prélevé en air froid et en air chaud. Un conduit 56 relié à la sortie des vannes permet d'injecter le mélange d'air prélevé dans le compresseur haute pression dans les rampes multi-perforées 46 au travers desquelles l'air est éjecté et impacte l'anneau 28 pour le refroidir ou le chauffer.
Un troisième circuit de prélèvement d'air 57 sur le quatrième étage du compresseur haute pression est prévu pour refroidir la turbine basse pression. Pour cela, l'air froid prélevé est directement injecté à l'intérieur de la veine d'écoulement du flux d'air primaire à travers le carter externe 12 et passe par des orifices 58 de l'anneau 28 qui débouchent au niveau de la rangée d'aubes fixes 20. Le débit de cet air de refroidissement est de l'ordre de 2% du débit d'air total du compresseur haute pression.
D'une manière générale, on comprend bien que le refroidissement ou le chauffage de l'anneau par impact d'air prélevé dans le compresseur haute pression induit un refroidissement ou un chauffage, respectivement, du carter externe 12 et de l'anneau 28. Ce chauffage ou refroidissement permet de contrôler la position radiale des segments annulaires 26 en regard des aubes mobiles 16 et donc les jeux aux sommets des aubes mobiles 16.
Le contrôle du mélange d'air froid et d'air chaud impactant l'anneau 28 est réalisé au moyen d'un système de régulation à pleine autorité (ou FADEC en anglais) de la turbomachine qui prend en compte une pluralité d'informations telles que par exemple le mode de fonctionnement de la turbomachine, la température du carter externe 12 et le temps d'arrêt de la turbomachine entre deux utilisations, pour déterminer l'ouverture adéquate des vannes 54, 52 et ainsi minimiser le jeu en sommet d'aubes 16.
Par exemple, lorsque la turbomachine est démarrée à froid et est au ralenti au sol, le carter externe 12 et le disque du rotor de la turbine haute pression sont à l'équilibre thermique (figure 2A). Le rotor de la turbine haute pression 59 est ainsi centré à l'intérieur du carter externe 12. Du fait de l'inertie thermique du disque du rotor de turbine haute pression et de la dilatation plus rapide du carter externe 12, il est nécessaire dans cette configuration de refroidir le carter externe 12 pour éviter une augmentation des jeux en sommets d'aubes. Ainsi, le système de régulation commande l'ouverture de la vanne 52 de prélèvement d'air froid sur le quatrième étage de compression et commande la fermeture de la vanne 54 de prélèvement d'air chaud sur le neuvième étage de compression. L'air prélevé est ensuite acheminé jusqu'aux rampes multi-perforées 46 et sort de celles-ci pour impacter les bossages 44 de l'anneau 28 et refroidir l'anneau 28 et le carter externe.
Cependant, ces moyens de refroidissement et de réchauffement par impact d'air sur le carter externe 12 fonctionnent de manière uniforme sur toute la circonférence de la turbine haute pression, c'est dire que toute la circonférence de l'anneau 28 est impactée par un seul et même mélange d'air issu du compresseur haute pression, ce qui n'est pas satisfaisant en cas de re-redémarrage à chaud de la turbomachine.
En effet, le carter externe 12 refroidissant plus vite que le disque de rotor de la turbine haute pression (il faut environ 5 heures pour que le disque soit refroidi), et le refroidissement de la turbomachine étant plus rapide en partie inférieure qu'en partie supérieure, on observe une excentration du rotor de turbine haute pression 59 à l'intérieur du carter externe 12 (figure 2B). En cas de re-démarrage à chaud, les jeux en sommet d'aubes en position inférieure sont très faibles et l'effet de la force centrifuge sur le rotor de la turbine haute pression conduit, par augmentation de la dimension radiale des aubes mobiles 16, à des contacts en position inférieure entre les extrémités radialement externes des aubes mobiles 16 et les segments annulaires 26 situés en regard de celles-ci.
L'utilisation de moyens de pilotage des jeux par impact d'air tels que décrits précédemment conduirait à dilater uniformément toute la circonférence du carter externe 12 et donc à augmenter de manière excessive les jeux en sommet d'aubes en partie supérieure de la turbomachine.
L'invention apporte une solution à ce problème ainsi qu'à ceux mentionnés précédemment en supprimant les moyens de prélèvement d'air chaud 50 sur le compresseur haute pression et en les remplaçant par des premiers moyens de chauffage électrique de la partie supérieure du carter externe 12 commandés indépendamment de seconds moyens de chauffage électrique de la partie inférieure du carter externe 12. Le chauffage électrique du carter externe 12 s'avère plus rapide et donc plus réactif que le chauffage par impact d'air chaud et ne diminue pas les performances du compresseur haute pression de la turbomachine.
Les premiers et seconds moyens de chauffage électrique 60 de la partie supérieure et inférieure du carter externe 12 sont montés au voisinage des bossages 44 de l'anneau 28 comme représenté sur la figure 3 et peuvent être des circuits de type résistifs. Des moyens de commande indépendants des premiers et seconds moyens de chauffage électrique 60 sont prévus et sont reliés au système de régulation de manière à commander indépendamment le chauffage des parties inférieure et supérieure du carter externe 12, ce qui permet de répondre au problème du re-démarrage à chaud de la turbomachine comme cela est expliqué plus en détail ci-dessous.
Le refroidissement du carter externe 12 est réalisé par des moyens de refroidissement par impact d'air tels que décrit précédemment, c'est-à- dire par l'intermédiaire d'un circuit 48 de prélèvement d'air sur le quatrième étage du compresseur haute pression, cet air alimentant les rampes multi-perforées 46 et étant éjecté en direction des bossages 44 de l'anneau 28. A la différence de la technique antérieure, les moyens de refroidissement peuvent comprendre une vanne 61 pilotée en tout ou rien par l'intermédiaire de moyens de commande 63 reliés au système de régulation.
La figure 4 est un graphe représentant les variations de la puissance des moyens de chauffage électrique de la partie inférieure de la turbomachine lors d'un re-démarrage à froid en pointillés et lors d'un re-démarrage à chaud en trait plein.
Pour éviter les contacts en sommets d'aubes dans la partie inférieure de la turbomachine lors d'un redémarrage à chaud, les moyens de chauffage électrique de la partie inférieure de l'anneau 28 sont activés à pleine puissance en 62, ce qui permet de dilater l'anneau et ainsi d'augmenter les jeux en sommet d'aubes dans cette partie. Dans le même temps, les moyens de chauffage électrique de la partie supérieure de l'anneau 28 sont désactivés puisque les jeux en sommets d'aubes 16 en cet endroit sont suffisants comme cela été expliqué précédemment, ce qui évite une augmentation des jeux en sommet d'aubes dans la partie supérieure qui dégraderait les performances de la turbomachine.
Suite à un démarrage à chaud et au début d'une phase d'augmentation du régime de la turbomachine, les moyens de chauffage électrique de la partie inférieure sont temporairement alimentés à environ 50% de leur puissance maximale en 64, ce qui évite une augmentation des jeux du fait d'une dilatation rapide du carter externe 12 due à l'effet conjugué du chauffage électrique et de l'augmentation de la température des gaz dans la veine primaire en conséquence de l'augmentation du régime.
La puissance électrique est ensuite progressivement ré-augmentée en 66 jusqu'à atteindre environ 75% de la puissance maximale 68 pour réajuster les jeux en sommets d'aubes du fait de la dilatation progressive du disque du rotor de turbine haute pression.
L'invention est également utilisable lors d'un démarrage à froid de la turbomachine (figure 4). Dans ce cas, les moyens de chauffage électrique de la partie inférieure sont activés à pleine puissance pendant une courte période 70 (typiquement 3 secondes) jusqu'à l'établissement du régime de ralenti au sol après lequel leur puissance est diminuée en 72 à 50% de la puissance maximale. En effet, durant la période de ralenti au sol, il n'est pas nécessaire de dilater fortement la partie inférieure du carter externe puisque le rotor de la turbine haute pression n'est pas excentré à l'intérieur du carter externe 12.
En début d'augmentation du régime de la turbomachine suite à un démarrage à froid, les moyens de chauffage électrique de la partie inférieure sont temporairement désactivés en 74 pour éviter une dilatation rapide du carter externe comme cela a été expliqué ci-dessus en référence à une augmentation du régime suite à un re-démarrage à chaud.
La puissance électrique est ensuite progressivement ré-augmentée en 76 jusqu'à atteindre environ 75% de la puissance maximale en 68 pour réajuster les jeux en sommet d'aubes du fait de la dilatation progressive du disque du rotor de turbine haute pression.
Les moyens de chauffage électriques de la partie inférieure du carter externe 12 sont activés à pleine puissance en 78 préalablement à une baisse du régime en phase de croisière que la turbomachine ait été re-démarrée à froid ou à chaud. Cela évite une contraction trop rapide du carter externe et permet de le maintenir à une température suffisante pendant le temps nécessaire à la diminution des dimensions radiales des aubes mobiles du à la baisse de la température en conséquence de la baisse du régime.
Lors d'une phase de croisière en 80, les moyens de chauffage électriques sont désactivés et seuls les moyens de refroidissement par impact d'air sont activés et la vanne est mise en position ouverte.
Il ainsi possible avec l'invention d'avoir des moyens de refroidissement par impact d'air qui ne fonctionnent qu'en phase de croisière et sur un mode de fonctionnement en tout ou rien qui est très simple à mettre en œuvre.

Claims

REVENDICATIONS
1 . Turbomachine comprenant des moyens de pilotage des jeux entre les sommets des aubes mobiles (16) d'une turbine haute pression et un carter externe (12) entourant ces aubes (16), comprenant des moyens de refroidissement du carter externe par impact d'air (48, 46) prélevé sur un étage du compresseur haute pression de la turbomachine, caractérisé en ce qu'il comprend des premiers moyens de chauffage électrique (60) de la partie supérieure du carter externe (12) et des seconds moyens de chauffage électrique de la partie inférieure du carter externe (12), ainsi que des moyens de commande en tout ou rien (63) des moyens de refroidissement par impact d'air (48, 61 , 46) et des moyens indépendants de commande des premiers moyens et des seconds moyens de chauffage électrique (60).
2. Turbomachine selon la revendication 1 , caractérisé en ce que les moyens de refroidissement par impact d'air (48, 46) comprennent un anneau (28) porté par le carter externe (12) et comportant des bossages (44) espacés axialement entre lesquels sont installées des rampes multi-perforées (46) de sortie de l'air prélevé sur le compresseur haute pression.
3. Turbomachine selon la revendication 1 ou 2, caractérisé en ce que les moyens de prélèvement d'air (48) sur le compresseur haute pression comportent une vanne (61 ) d'ouverture et de fermeture de l'arrivée d'air sur le carter externe (12).
4. Turbomachine selon l'une des revendications 1 à 3, caractérisé en ce que l'air de refroidissement est prélevé sur le quatrième étage du compresseur haute pression et son débit est de l'ordre de 0,7 % du débit d'air total dans le compresseur.
5. Turbomachine selon l'une des revendications 1 à 4, caractérisé en ce que les moyens de chauffage électrique (60) comprennent des circuits résistifs portés par le carter externe (12) sur les parties supérieure et inférieure de celui-ci.
6. Turbomachine selon l'ensemble des revendications 2 et 5, caractérisé en ce que les circuits résistifs sont montés au voisinage des bossages (44) de l'anneau (28) porté par le carter (12).
7. Procédé de pilotage des jeux en sommet d'aubes de turbine haute-pression dans une turbomachine selon l'une des revendications précédentes, caractérisé en ce qu'il consiste lors d'un re-démarrage à chaud de la turbomachine, à activer à puissance maximale les moyens de chauffage électrique (60) de la partie inférieure du carter (12) de turbine haute pression et à désactiver les moyens de chauffage (60) de la partie supérieure de ce carter.
8. Procédé selon la revendication 7, caractérisé en ce qu'au début d'une phase d'augmentation du régime de la turbomachine suite à un démarrage à chaud, la puissance des moyens de chauffage électrique (60) de la partie inférieure est temporairement diminuée à environ 50 % de la puissance électrique maximale, la puissance électrique augmentant ensuite jusqu'à atteindre environ 75 % de la puissance électrique maximale.
9. Procédé selon la revendication 7 ou 8, caractérisé en ce qu'il consiste lors d'un démarrage à froid de la turbomachine, à activer les moyens de chauffage électrique (60) de la partie inférieure du carter externe (12) à une puissance égale à 50 % de leur puissance électrique maximale.
10. Procédé selon la revendication 9, caractérisé en ce qu'au début d'une phase d'augmentation du régime de la turbomachine suite à un démarrage à froid, les moyens de chauffage électrique (60) de la partie inférieure sont temporairement désactivés puis réactivés avec une puissance égale à 75 % de leur puissance électrique maximale.
1 1 . Procédé selon l'une des revendications 7 à 10, caractérisé en ce que les moyens de chauffage électrique (60) de la partie inférieure du carter externe sont activés à pleine puissance préalablement à une baisse du régime de la turbomachine en phase de croisière.
12. Procédé selon l'une des revendications 7 à 1 1 , caractérisé en ce qu'il consiste durant la phase de croisière, à désactiver tous les moyens de chauffage électrique du carter externe et à activer les moyens de refroidissement par impact d'air.
PCT/FR2010/051855 2009-09-08 2010-09-07 Pilotage des jeux en sommet d'aubes dans une turbomachine WO2011030051A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201080039622.5A CN102482947B (zh) 2009-09-08 2010-09-07 在涡轮发动机中控制叶片顶端间隙
EP10763823.1A EP2475847B1 (fr) 2009-09-08 2010-09-07 Pilotage des jeux en sommet d'aubes dans une turbomachine
BR112012005161-0A BR112012005161B1 (pt) 2009-09-08 2010-09-07 Turbomáquina e processo de controle das folgas no topo de pás de turbina de alta pressão em tal turbomáquina
CA2773047A CA2773047C (fr) 2009-09-08 2010-09-07 Pilotage des jeux en sommet d'aubes dans une turbomachine
JP2012528421A JP5718337B2 (ja) 2009-09-08 2010-09-07 タービンエンジンのブレード先端間隙の制御
US13/394,636 US9353641B2 (en) 2009-09-08 2010-09-07 Controlling blade tip clearances in a turbine engine
RU2012113551/06A RU2537100C2 (ru) 2009-09-08 2010-09-07 Регулирование зазоров на вершине лопаток турбомашины

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR09/04275 2009-09-08
FR0904275A FR2949808B1 (fr) 2009-09-08 2009-09-08 Pilotage des jeux en sommet d'aubes dans une turbomachine

Publications (1)

Publication Number Publication Date
WO2011030051A1 true WO2011030051A1 (fr) 2011-03-17

Family

ID=41727819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051855 WO2011030051A1 (fr) 2009-09-08 2010-09-07 Pilotage des jeux en sommet d'aubes dans une turbomachine

Country Status (9)

Country Link
US (1) US9353641B2 (fr)
EP (1) EP2475847B1 (fr)
JP (1) JP5718337B2 (fr)
CN (1) CN102482947B (fr)
BR (1) BR112012005161B1 (fr)
CA (1) CA2773047C (fr)
FR (1) FR2949808B1 (fr)
RU (1) RU2537100C2 (fr)
WO (1) WO2011030051A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103422914A (zh) * 2012-05-16 2013-12-04 通用电气公司 用于调节涡轮中的间隙的系统和方法
RU2532737C1 (ru) * 2013-12-09 2014-11-10 Николай Борисович Болотин Газотурбинный двигатель
RU2535453C1 (ru) * 2013-04-24 2014-12-10 Николай Борисович Болотин Турбина газотурбинного двигателя и способ регулирования радиального зазора в турбине
US9151176B2 (en) 2011-11-22 2015-10-06 General Electric Company Systems and methods for adjusting clearances in turbines
RU2684073C1 (ru) * 2018-02-08 2019-04-03 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" Автоматическое устройство термомеханического управления радиальным зазором между концами рабочих лопаток ротора и статора компрессора или турбины двухконтурного газотурбинного двигателя
RU2691000C1 (ru) * 2018-03-13 2019-06-07 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" Автоматическое устройство термомеханического управления радиальным зазором между концами рабочих лопаток ротора и статора компрессора или турбины газотурбинного двигателя
RU2702063C2 (ru) * 2017-10-23 2019-10-03 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" Устройство механического управления радиальным зазором между концами рабочих лопаток ротора и статора компрессора и турбины газотурбинного двигателя. Способ управления радиальным зазором между концами рабочих лопаток ротора и статора компрессора и турбины газотурбинного двигателя

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2971543B1 (fr) * 2011-02-11 2013-03-08 Snecma Procede de pilotage de jeu en sommet d'aubes de rotor de turbine
US9157331B2 (en) * 2011-12-08 2015-10-13 Siemens Aktiengesellschaft Radial active clearance control for a gas turbine engine
US9541008B2 (en) * 2012-02-06 2017-01-10 General Electric Company Method and apparatus to control part-load performance of a turbine
EP2754859A1 (fr) * 2013-01-10 2014-07-16 Alstom Technology Ltd Turbomachine avec pilotage électrique actif de jeu et procédé associé
CA2899895A1 (fr) * 2013-02-08 2014-08-14 General Electric Company Systeme de regulation d'espacement actif base sur une aspiration
EP2964903B1 (fr) * 2013-03-07 2019-07-03 United Technologies Corporation Assemblage d'un joint d'air extérieur d'aube
US8920109B2 (en) 2013-03-12 2014-12-30 Siemens Aktiengesellschaft Vane carrier thermal management arrangement and method for clearance control
US9279339B2 (en) * 2013-03-13 2016-03-08 Siemens Aktiengesellschaft Turbine engine temperature control system with heating element for a gas turbine engine
US20140301834A1 (en) * 2013-04-03 2014-10-09 Barton M. Pepperman Turbine cylinder cavity heated recirculation system
RU2567885C1 (ru) * 2014-08-08 2015-11-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Статор компрессора
EP3012415B1 (fr) * 2014-10-20 2020-09-16 Ansaldo Energia IP UK Limited Turbomachine avec contrôle de dilatation thermique et procédé pour faire fonctionner ladite machine
CN104963729A (zh) * 2015-07-09 2015-10-07 中国航空工业集团公司沈阳发动机设计研究所 重型燃气轮机高涡叶尖间隙控制结构
US10738791B2 (en) 2015-12-16 2020-08-11 General Electric Company Active high pressure compressor clearance control
US10975721B2 (en) 2016-01-12 2021-04-13 Pratt & Whitney Canada Corp. Cooled containment case using internal plenum
US9988928B2 (en) * 2016-05-17 2018-06-05 Siemens Energy, Inc. Systems and methods for determining turbomachine engine safe start clearances following a shutdown of the turbomachine engine
US10458429B2 (en) 2016-05-26 2019-10-29 Rolls-Royce Corporation Impeller shroud with slidable coupling for clearance control in a centrifugal compressor
RU2704056C2 (ru) * 2017-06-07 2019-10-23 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" Турбина двухконтурного газотурбинного двигателя с активным тепловым регулированием радиального зазора в турбине, способ активного теплового регулирования радиального зазора в турбине двухконтурного газотурбинного двигателя
US10760444B2 (en) 2018-05-14 2020-09-01 Raytheon Technologies Corporation Electric heating for turbomachinery clearance control powered by hybrid energy storage system
US11111809B2 (en) * 2018-05-14 2021-09-07 Raytheon Technologies Corporation Electric heating for turbomachinery clearance control
FR3114345B1 (fr) 2020-09-23 2022-11-04 Safran Aircraft Engines Dispositif de pilotage de jeux pour une turbine de turbomachine
US11982189B2 (en) 2021-06-04 2024-05-14 Rtx Corporation Warm start control of an active clearance control for a gas turbine engine
US11788425B2 (en) * 2021-11-05 2023-10-17 General Electric Company Gas turbine engine with clearance control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2103718A (en) * 1981-08-03 1983-02-23 Nuovo Pignone Spa Gas turbine plant
GB2117450A (en) * 1981-03-20 1983-10-12 Rolls Royce Casing support for a gas turbine engine
EP0492865A1 (fr) * 1990-12-21 1992-07-01 General Electric Company Système de régulation pour le jeu des extrémités des aubes de turbine
EP0541325A1 (fr) * 1991-11-04 1993-05-12 General Electric Company Contrôle thermique du jeu d'extrémités d'aubes de turbines à gaz
FR2828908A1 (fr) 2001-08-23 2003-02-28 Snecma Moteurs Controle des jeux de turbine haute pression
FR2890685A1 (fr) * 2005-09-14 2007-03-16 Snecma Pilotage de jeu au sommet d'aubes de rotor de turbine haute pression dans une turbomachine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213296A (en) * 1977-12-21 1980-07-22 United Technologies Corporation Seal clearance control system for a gas turbine
CN85102135A (zh) * 1985-04-01 1987-01-10 联合工艺公司 有效间隙的控制装置
SU1471661A1 (ru) * 1987-04-22 1996-11-20 Московский авиационный институт им.Серго Орджоникидзе Уплотнение радиального зазора турбомашины
US4893983A (en) * 1988-04-07 1990-01-16 General Electric Company Clearance control system
NO306271B1 (no) * 1997-06-05 1999-10-11 Dynatrend As FremgangsmÕte i forbindelse med start av kraftturbin og fremgangsmÕte til pÕvisning av risiko for startskade pÕ kraftturbin
JP4301692B2 (ja) * 2000-03-31 2009-07-22 三菱重工業株式会社 ガスタービン
GB0308147D0 (en) * 2003-04-09 2003-05-14 Rolls Royce Plc A seal
JP2008038807A (ja) * 2006-08-08 2008-02-21 Hitachi Ltd ガスタービン及びトランジションピース
US8126628B2 (en) * 2007-08-03 2012-02-28 General Electric Company Aircraft gas turbine engine blade tip clearance control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2117450A (en) * 1981-03-20 1983-10-12 Rolls Royce Casing support for a gas turbine engine
GB2103718A (en) * 1981-08-03 1983-02-23 Nuovo Pignone Spa Gas turbine plant
EP0492865A1 (fr) * 1990-12-21 1992-07-01 General Electric Company Système de régulation pour le jeu des extrémités des aubes de turbine
EP0541325A1 (fr) * 1991-11-04 1993-05-12 General Electric Company Contrôle thermique du jeu d'extrémités d'aubes de turbines à gaz
FR2828908A1 (fr) 2001-08-23 2003-02-28 Snecma Moteurs Controle des jeux de turbine haute pression
FR2890685A1 (fr) * 2005-09-14 2007-03-16 Snecma Pilotage de jeu au sommet d'aubes de rotor de turbine haute pression dans une turbomachine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9151176B2 (en) 2011-11-22 2015-10-06 General Electric Company Systems and methods for adjusting clearances in turbines
CN103422914A (zh) * 2012-05-16 2013-12-04 通用电气公司 用于调节涡轮中的间隙的系统和方法
RU2648196C2 (ru) * 2012-05-16 2018-03-22 Дженерал Электрик Компани Турбинная система и способ регулирования зазоров в турбине
RU2535453C1 (ru) * 2013-04-24 2014-12-10 Николай Борисович Болотин Турбина газотурбинного двигателя и способ регулирования радиального зазора в турбине
RU2532737C1 (ru) * 2013-12-09 2014-11-10 Николай Борисович Болотин Газотурбинный двигатель
RU2702063C2 (ru) * 2017-10-23 2019-10-03 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" Устройство механического управления радиальным зазором между концами рабочих лопаток ротора и статора компрессора и турбины газотурбинного двигателя. Способ управления радиальным зазором между концами рабочих лопаток ротора и статора компрессора и турбины газотурбинного двигателя
RU2684073C1 (ru) * 2018-02-08 2019-04-03 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" Автоматическое устройство термомеханического управления радиальным зазором между концами рабочих лопаток ротора и статора компрессора или турбины двухконтурного газотурбинного двигателя
RU2691000C1 (ru) * 2018-03-13 2019-06-07 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" Автоматическое устройство термомеханического управления радиальным зазором между концами рабочих лопаток ротора и статора компрессора или турбины газотурбинного двигателя

Also Published As

Publication number Publication date
FR2949808A1 (fr) 2011-03-11
RU2012113551A (ru) 2013-10-20
EP2475847B1 (fr) 2015-11-11
EP2475847A1 (fr) 2012-07-18
JP5718337B2 (ja) 2015-05-13
CN102482947A (zh) 2012-05-30
US9353641B2 (en) 2016-05-31
CN102482947B (zh) 2015-03-25
FR2949808B1 (fr) 2011-09-09
CA2773047C (fr) 2017-11-14
JP2013504011A (ja) 2013-02-04
RU2537100C2 (ru) 2014-12-27
CA2773047A1 (fr) 2011-03-17
BR112012005161B1 (pt) 2020-09-01
US20120167584A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
EP2475847B1 (fr) Pilotage des jeux en sommet d'aubes dans une turbomachine
EP2337929B1 (fr) Ventilation d'une turbine haute-pression dans une turbomachine
EP1503061B1 (fr) Procédé de refroidissement, par air refroidi en partie dans un échangeur externe, des parties chaudes d'un turboréacteur, et turboréacteur ainsi refroidi.
EP1367221B1 (fr) Système à double injecteurs fond de chambre pour le refroidissement du flasque amont d'une turbine à haute pression
FR2890685A1 (fr) Pilotage de jeu au sommet d'aubes de rotor de turbine haute pression dans une turbomachine
WO2010142682A1 (fr) Turbomachine comprenant des moyens ameliores de reglage du debit d'un flux d'air de refroidissement preleve en sortie de compresseur haute pression
WO2010119115A1 (fr) Moteur a turbine a gaz a double corps pourvu d ' un palier inter-arbres
FR3090049A1 (fr) Turbomachine comportant un alternateur entre deux elements contrarotatifs
FR2960905A1 (fr) Procede et systeme de pilotage de jeu en sommet d'aubes de rotor de turbine
FR3108655A1 (fr) Turbomachine à double flux comprenant un dispositif de régulation du débit de fluide de refroidissement
EP2058488A1 (fr) Turbomoteur comportant des moyens pour chauffer l'air entrant dans la turbine libre
FR3096071A1 (fr) Contrôle de jeu entre des aubes de rotor d’aéronef et un carter
EP4127405A1 (fr) Turbomachine avec dispositif de refroidissement et de pressurisation d'une turbine
EP0473494B1 (fr) Circuit d'alimentation en carburant d'un turbo-moteur
EP4088009A1 (fr) Procede et unite de commande pour le pilotage du jeu d'une turbine haute pression pour la reduction de l'effet de depassement egt
FR2999226A1 (fr) Pilotage des jeux dans une turbomachine
FR3120898A1 (fr) Dispositif de refroidissement d’un fluide pour une turbomachine
FR3111393A1 (fr) Turbomachine comprenant un organe de séparation d’un flux d’air amovible
FR3108659A1 (fr) Rotor de turbine comprenant un dispositif de régulation du débit de fluide de refroidissement et turbomachine comprenant un tel rotor
FR3097907A1 (fr) Contrôle actif du débit de refroidissement du compresseur haute pression
FR3108658A1 (fr) Rotor de turbine comprenant un dispositif de régulation du débit de fluide de refroidissement et turbomachine comprenant un tel rotor
WO2019166734A1 (fr) Procede et unite de commande pour le pilotage du jeu d'une turbine haute pression
FR3122693A1 (fr) Procede et unite de commande pour le pilotage du jeu d’une turbine haute pression pour la reduction de l’impact du givrage
FR3108657A1 (fr) Rotor de turbine comprenant un dispositif de régulation du débit de fluide de refroidissement et turbomachine comprenant un tel rotor
FR3142221A1 (fr) Turbomoteur comprenant un echangeur de chaleur muni d’un passage de bypass

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039622.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10763823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010763823

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2773047

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13394636

Country of ref document: US

Ref document number: 2012528421

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012113551

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012005161

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012005161

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120307