WO2011029976A2 - Superconducting strips formed from metalorganic solutions that contain two transition metals - Google Patents

Superconducting strips formed from metalorganic solutions that contain two transition metals Download PDF

Info

Publication number
WO2011029976A2
WO2011029976A2 PCT/ES2010/070577 ES2010070577W WO2011029976A2 WO 2011029976 A2 WO2011029976 A2 WO 2011029976A2 ES 2010070577 W ES2010070577 W ES 2010070577W WO 2011029976 A2 WO2011029976 A2 WO 2011029976A2
Authority
WO
WIPO (PCT)
Prior art keywords
salt
solution
alkaline earth
combination
process according
Prior art date
Application number
PCT/ES2010/070577
Other languages
Spanish (es)
French (fr)
Other versions
WO2011029976A3 (en
Inventor
Xavier Obradors Berenguer
Teresa Puig Molina
Susana RICART MIRÓ
Alberto Pomar Barbeito
Anna Palau Masoliver
Fernando Javier MARTÍNEZ JULIÁN
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2011029976A2 publication Critical patent/WO2011029976A2/en
Publication of WO2011029976A3 publication Critical patent/WO2011029976A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0324Processes for depositing or forming copper oxide superconductor layers from a solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide

Definitions

  • the present invention relates to obtaining a new solution of metalorganic precursors using as a starting point the solution previously described in patent ES2259919 B1.
  • This modification allows to obtain improvements in the heat treatment of the superconducting layers, such as absence of defects (cracks and folding) and the possibility of working at different final growth temperatures (from 720 to 810 ° C). This also allows controlling the tensions in the final layer and consequently modulating their properties.
  • the use of the modified solution in the present invention also allows obtaining extremely flat superconducting layers with steps of the order of the YBCO unit cell.
  • High temperature superconducting materials have great potential to be used in very diverse technologies but for this it is an indispensable requirement to develop methodologies for obtaining conductors with high performance, in particular that they can transport high electrical currents without losses, even under high magnetic fields .
  • the first high temperature drivers that were developed were based on phases type BiSrCaCuO and these were called conductors 1 generation (1 G).
  • These substrates can have either a textured oxide template deposited by Ion Beam Deposition (IBAD) on a polycrystalline substrate or they can be composed of textured buffer layers that replicate the texture achieved in the substrates via Rolling Assisted Biaxial Texturing (RABiTs) obtained by means of thermomechanical processes
  • IBAD Ion Beam Deposition
  • RABiTs Rolling Assisted Biaxial Texturing
  • Other interesting approaches are also those where the textured buffer layer is achieved by Epitaxial Surface Oxidation (Surface Oxidation Epitaxy, SOE) or by inclined evaporation (Inclined Surface Deposition, ISD).
  • the deposition of epitaxial oxides in the form of multilayer that act as a buffer for atomic diffusion and oxidation of the REBCO superconducting layer which carries the electric current is carried out.
  • Vacuum deposition techniques evaporation, laser ablation, sputtering
  • deposition techniques based on metallurgical chemical solutions (CSD) can be used to prepare such multilayer structures. These second ones are particularly interesting due to their possibilities to develop CSE with a low cost.
  • the present invention provides a process for obtaining superconducting materials through the use of a new solution of metalorganic precursors comprising salts of Ag (1).
  • the new process makes it possible to obtain higher quality superconducting materials easily. For example, improvements in the heat treatment of the superconducting layers are obtained, such as absence of defects (cracks and folding) and the possibility of working at different final growth temperatures (from 720 to 810 ° C). This also allows controlling the tensions in the final layer and consequently modulating their properties.
  • the use of the modified solution in the present invention also allows obtaining extremely flat superconducting layers with steps of the order of the YBCO unit cell.
  • the present invention is also useful for the preparation of superconducting tapes.
  • the present invention relates to a process for obtaining a superconducting material (hereinafter method of the invention), which comprises the deposition of a solution comprising at least one salt of a rare earth or yttrium , at least one salt of an alkaline earth metal, at least one salt of a transition metal and at least one salt of Ag (1).
  • the invention shows that in the formation of layers of certain mixed oxides in the preparation of the superconducting material, such as YBCO compounds (YBa2Cu3O7 -x ), the formation of defects and improved process conditions by adding salts of Ag (l) in the solutions of the precursors of said oxides.
  • Said modified precursor solutions can be used to form the intermediate oxide and oxyfluoride layers with a high quality (absence of cracks and folds) and relatively thick (about 700 nm) under the same conditions previously used, as for example in the international application WO 2006/103303 A1.
  • an intermediate layer is also obtained that allows the final growth to form the superconducting oxide, such as YBCO in a greater range of temperatures (720-810 ° C) resulting in good performance in critical currents throughout the range (Je of 2-4 106 A cm "2 ).
  • the final result on the surface of the surfaces is improved layers significantly increasing the planarity thereof with steps of the order of the unit cell of the mixed oxide formed.This allows, for example, the formation of multilayers of different compositions.
  • the proportion of Ag (1) salt is between 0.5% and 25% by weight of the total solution.
  • the proportion of Ag (1) salt is between 1% and 15% by weight of the total solution. More preferably, the proportion of Ag (1) salt is between 1% and 10% by weight of the total solution, and even more preferably it is between 2.5% and 10%. Weight ratios of 5 to 10% give the best results in final properties of the layers.
  • useful Ag (l) salts may be selected from the list comprising trifluoroacetate, nitrate, acetylacetonate, benzoate, carboxylates, acetylacetonates, nitrates, amines, sulfocyanides, cyanides or salts complexed with polyaminocarboxylic acids (EDTA, EGTA, DTPA, etc.), polyimines or other complexers to use; and any of its combinations.
  • the Ag (1) salt is selected from the list comprising trifluoroacetate, nitrate, acetylacetonate and any combination thereof. Salts with higher solubility products in the desired medium are the most suitable because they can be easily solubilized and in greater concentration.
  • the total metal ion concentration of the solution is between 0.1 and 4.0 M, preferably it is between 0.5 and 3.0 M, more preferably it is between 1.5 and 2.5 M, and even more preferably it is less than 2.0 M.
  • the concentrations used condition the thickness of the final layer so that for layers of thicknesses of the order of 300-400 nm the total concentrations of metal ions must be of the order of 1 .5 to 1 .7M.
  • the concentration of Ag (1) is between 0.01 and 1 M, preferably it is between 0.1 and 0.2 M.
  • the solution comprises at least one solvent selected from acetic acid, acetone, acetonitrile, benzene, 1-butanol, 2-butanol, 2-butanone, pentanone, t-butyl alcohol, tetrachloride carbon, chlorobenzene, chloroform, cyclohexane, 1,2-dichloroethane, diethyl ether, diethylene glycol, diethylene glycol dimethyl ether, 1,2-dimethoxyethane, dimethyl ether, dimethyl formamide, dimethylsulfoxide, dioxane, ethanol, ethyl acetate, ethylene glycol , heptane, triamide, hexane, methanol, methyl t-butyl ether, dichloromethane, N- methyl-2-pyrrolidinone, N-methylpyrrolidine, nitromethane, pentane, petroleum ether, 1-propanol
  • the solution comprises at least one solvent that is selected from methanol, ethanol, isopropanol and any combination thereof, more preferably the solution comprises methanol.
  • Methanol turns out to be the most suitable solvent due to its polarity (polarity index 6.6), which allows the dissolution of the suitable amounts of the metalorganic salts having a boiling point sufficiently low (65 ° C) so that the initial drying of the deposited solution be quick.
  • Another preferred embodiment of said method comprises at least one element that is selected from Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Lu and any combination thereof.
  • the rare earth or yttrium salt is selected from trifluoroacetate, acetate, acetylacetonate, naphthenates, trifluoroacetylacetonate, ethylhexanoate; nitrates, complex salts such as amine, cyanide, sulfocyanide, polyaminocarboxylates, polyimines or other complexing agents; and any of its combinations.
  • Trifluoroacetate is used. Trifluoroacetates are soluble in the solvent usually used (methanol) and are also necessary in the pyrolysis process for the generation of barium fluoride.
  • the alkaline earth metal is selected from Ba, Sr, Ca and any combination thereof.
  • the alkaline earth metal is Ba.
  • the alkaline earth metal salt is selected from trifluoroacetate, acetate, acetylacetonate, naphthenates, trifluoroacetylacetonate, ethylhexanoate, nitrates, amine complexed salts, cyanide, sulfocyanide, polyaminocarboxylates, polyimines or other complexers to use; and any of its combinations, preferably trifluoroacetate.
  • the transition metal is Cu.
  • the Cu salt is selected from trifluoroacetate, acetate, acetylacetonate, naphthenates, trifluoroacetylacetonate, ethylhexanoate; nitrates, complex salts such as amine, cyanide, sulfocyanide, polyaminocarboxylates, polyimines or other complexing agents; and any of its combinations, preferably trifluoroacetate.
  • Another preferred embodiment of the process comprises the decomposition of the deposited product.
  • the decomposition takes place between 100 and 500 ° C, and more preferably between 250 and 400 ° C.
  • the usual decomposition temperatures of metalorganic salts usually range between these two values.
  • the yttrium, barium and copper trifluoroacetates used in the process have a combined decomposition temperature, controlled by thermogravimetric analysis (weight loss measurement by heat treatment) that starts at 250 ° C and ends at 320 ° C.
  • the decomposition is carried out in a controlled atmosphere of oxygen, nitrogen or any combination thereof at a pressure of 1 bar, using a controlled gas flow with a velocity between 0.80 and 24 mm / s, at the same time as a temperature rise from 250 ° C to a temperature between 300 and 350 ° C, with a heating ramp between 30 and 600 ° C / h, remaining at this temperature for a period of time between 10 and 90 min.
  • Another preferred embodiment of the process comprises the crystalline growth of the deposited product.
  • the crystalline growth takes place at a temperature between 400 and 1000 ° C, preferably between 600 and 900 ° C, and more preferably between 700 and 820 ° C.
  • An advantage of the process of the following invention is the improvement in the result of the pyrolysis, which is much less dependent on the environmental conditions, also giving pyrolized layers with few defects, which will facilitate multideposition and consequently, the obtaining of final layers thicker.
  • the crystalline growth is carried out in an oven in a controlled atmosphere and comprises: a first heating which is carried out in an atmosphere comprising nitrogen, with a water vapor pressure between 7 and 100 mbar and an oxygen pressure between 0.1 and 1 mbar, up to a temperature between 700 and 820 ° C; and a second heating at a temperature between 300 and 500 ° C at an oxygen pressure of 1 bar for a period of time less than 8 h, followed by cooling to room temperature.
  • the superconducting material has a composition AA ' 2 Cu307 + x , where A is a rare earth or Y, A' is an alkaline earth metal and x is between -1 and 0.
  • A is selected from Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Lu and any combination thereof. And more preferably, A is Y.
  • a 'is selected from Ba, Sr, Ca and any of its combinations. And more preferably, A 'is Ba.
  • the superconducting material has a formula YBa 2 Cu 3 0 7 .
  • the solution further comprises at least one salt that is selected from various salts of Zr, Ce, Sn, Ru, La, Mn, Sr, Ca and any combination thereof.
  • These salts form a secondary phase distributed randomly within the matrix so that the structure of the superconductor is profoundly modified, improving its characteristics.
  • These phases can be BaZr0 3 , Ce0 2 , BaSn0 3 , BaCe0 3 , SrRu0 3 , Lai- x M x Mn0 3 , Re 2 0 3 , or Re 2 Cu 2 0 5 , where Re is a rare earth or Y.
  • the material that is deposited has a composition (Lai-yZy) 2Cu04 -z , where Z is an alkaline earth, and is a number between 0 and 0.2 and z is a number between 0 and 1.
  • the solution is deposited on a monocrystalline or biaxial textured substrate.
  • the substrates are usually very diverse oxides (LaAI03, SrTi03, NdTi03, AI2O3), being essential that they have a good crystallographic orientation, that is, little deviation in the orientation of the crystals inside and outside the plane of the layer (monocrystals or textured materials biaxial).
  • said substrate is selected from: a salt or oxide of a rare earth; a salt or oxide of an alkaline earth metal; a salt or oxide of a transition metal; and any of its combinations. More preferably, the substrate is selected from the list comprising single crystals of SrTi03, LaAI03, YSZ and biaxially textured metal tapes.
  • the substrates can be single layer or multilayer.
  • the precursor solutions are used for obtaining superconducting layers of YBCO.
  • This solution is deposited on monocrystalline LaAIO 3 or on metal tape protected by some type of buffer layer.
  • the heat treatments to which they undergo consist of a calcination up to 350 ° C in a reduced time, such as 1.5 h, for obtaining intermediate oxides and oxyfluorides.
  • the pyrolized layers thus obtained have the characteristic of being free of cracks and presenting much less folding than those achieved using the unmodified solution due to the lower sensitivity of the present solution to environmental conditions.
  • the SEM image shows that they have a lower porosity in the structure ( Figure 2).
  • the presence of the second transition metal (Ag) in the solution competing with copper could decrease its cross-coordination with oxygen or fluorine molecules and, consequently, decrease the presence of defects that in some cases have been attributed to excessive coordination cross of copper.
  • the present invention relates to the superconducting material that is obtained by the process of the invention (hereinafter material of the invention).
  • the present invention relates to multilayer epitaxial superconducting conductors and ceramic wafers coated with superconducting layers comprising the material of the invention.
  • the present invention relates to the solution (hereinafter solution of the invention) comprising at least one salt of a rare earth or yttrium, at least one salt of an alkaline earth metal, at least one salt of a metal of transition and at least one salt of Ag (l).
  • the present invention relates to the use of the solution of the invention for obtaining a superconducting material.
  • the present invention relates to the superconducting material of the formula YBa 2 Cu 3 0 7. , which has a roughness of between 0.5 and 3.0 nm rms. Said roughness is obtained by obtaining the topography of the layer by microscopy of atomic forces on a square surface not less than 5 microns per side and calculating the average deviation of the heights on said surface from an average value by the method of the Least Squares.
  • said superconducting material has a critical current density greater than 1 MA / cm 2 and, more preferably, between 1 and 4 MA / cm 2 at 77 K and autofield). Said critical current density is obtained from the magnetization curves with respect to the magnetic field at a temperature of 77 K and applying magnetic field penetration models in the superconducting sample known to those skilled in the art, such as the model of Bean
  • the sheets of superconducting material with high performance provided by the present invention are of particular relevance for example in the following sectors: - Chemical sector: soluble complex metalorganic chemical precursors.
  • Ceramic-metallurgical sector deposition and growth of ceramic coatings on metal or ceramic substrates.
  • FIG. 1. Optical microscopy images of the layers after pyrolysis from the modified solution a) on monocrystalline LaAI0 3 ; b) on textured metal tape.
  • FIG. 2. SEM image of a YBCO layer grown from the modified solution in which a considerable decrease in porosity and high surface planarity can be seen.
  • FIG. 3. Comparison of the current densities at different temperatures between the unmodified and the modified solution according to the present invention.
  • FIG. 4. Measurement of AFM that shows the high planarity of a layer of YBCO grown from the modified solution. It is seen in the lower profile that steps corresponding to the YBCO unit cell are achieved.
  • a solution of 50 ml of Y, Ba and Cu trifluoroacetates was prepared with a total metal concentration of 1.5 M (Y: Ba: Cu ratio of 1: 2: 3).
  • 8.334 g (0.0125 mol) of commercial YBa2Cu 3 0 7 were weighed in a 250 ml spherical flask, coupled to a Dimroth refrigerant and provided with magnetic stirring.
  • 25 ml of freshly distilled dry acetone, 22 ml of trifluoroacetic anhydride (0.000156 mol) (slow addition to avoid overheating) and 5 ml of trifluoroacetic acid were added.
  • the mixture was heated at 50 ° C for 72 h under an inert atmosphere (Ar). It was then cooled to room temperature and filtered at
  • REPLACEMENT SHEET (Rule 26) through a 0.45 ⁇ filter.
  • the resulting solution was then evaporated under reduced pressure using a rotary evaporator, first at room temperature (2 h) and then progressively heating to 80 ° C, obtaining the trifluoroacetates of Y, Ba and Cu.
  • a part of the solid obtained was dissolved in acetone and another in methanol, both solutions being kept in closed vials and in an inert atmosphere.
  • This solution was deposited by the spin coating technique on a square monocrystalline substrate of SrTi03 of dimensions 5 mm * 5 mm, thickness 0.5 mm and orientation (100). Then the pyrolysis was performed, consisting of the decomposition of organic matter. For this, an alumina crucible was used, where the substrate that was placed in a 23 mm diameter quartz tube was placed, which was placed inside an oven. The program followed by the oven consists of a ramp of 300 ° C / h up to a maximum temperature of 310 ° C, which was maintained for 30 min. The use of a controlled atmosphere inside the furnace is needed, for this purpose an oxygen pressure of 1 bar, a flow of 0.05 l / min and a water pressure of 24 mbar were worked on.
  • Said humidity is achieved by passing the gas through some washing jars provided with a porous plate in its inner lower part, to divide the gas into small drops, thus increasing the surface of contact with the water.
  • the sample was stored in a desiccator.
  • the heat treatment was carried out from the pyrolized layer to achieve the formation of the YBa 2 Cu 3 0 7 phase. It worked with an oven, which was applied a rapid rise in temperature (25 ° C / min) until reaching temperatures in the range 790-815 ° C. This temperature was maintained for 180 min (the last 30 min dry) and then a ramp was applied at a speed of 2.5 ° C / min to room temperature. In this case 0.2 mbar of 0 2 and 7 mbar of water pressure was used. The gas flow was what allows the mass flow controller used (Bronkhorst High-Tech) to mix with a range of 0.012 to 0.6 l / min for N 2 and between 0.006 and 0.03 l / min for 02.
  • oxygenation of said sample was performed using the same dry atmosphere. It was raised to 450 ° C, the carrier gas was changed to dry O 2 at 1 bar pressure and maintained at this temperature for a time of 90 min. Then a ramp was made at 300 ° C / h to room temperature. The resulting layer is approximately 300 nm thick.
  • Example 2 In a vial with septum cap, 27.6 mg of Ag (TFA) (12.5 ⁇ 10 ⁇ 5 mol) was weighed and 10 ml of the methanolic YBCO solution prepared as in Example 1 was added thereto, the mixture was stirred at room temperature and filtered through a 0.45 ⁇ filter. The mixture thus prepared was preserved under Ar.
  • Ag Ag
  • Example 2 In a vial with septum cap, 27.6 mg of Ag (TFA) (12.5 ⁇ 10 ⁇ 5 mol) was weighed and 10 ml of the methanolic YBCO solution prepared as in Example 1 was added thereto, the mixture was stirred at room temperature and filtered through a 0.45 ⁇ filter. The mixture thus prepared was preserved under Ar.
  • ICP analyzes were performed in order to verify that the initial stoichiometric ratio had changed to contain the expected excess% (5%) of silver salt. From this solution trifluoroacetates of Y, Ba and Cu, which contained 5% of Ag salt, were deposited on a LaAIO3 substrate in the same conditions as indicated in Example 1. The deposited sample was decomposed following a pyrolysis process as described in Example 1. The sample thus pyrolized was characterized by optical microscopy to verify that it is homogeneous and free of cracks and roughness ( Figure 1).
  • Example 2 From the pyrolized sample, the heat treatment described in Example 1 was carried out but within a higher temperature range, between 700 and 810 ° C to achieve the formation of the YBa 2 Cu 3 0 7 phase. The resulting layer is 300 nm thick.
  • the sample was characterized by scanning electron microscopy ( Figure 2) and by X-ray diffraction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The invention relates to a method for producing a superconducting material that comprises the deposition of a solution that comprises at least one rare-earth or yttrium salt, at least one alkaline-earth metal salt, at least one transition-metal salt and at least one Ag(I) salt. Furthermore, the invention relates to the superconducting material that can be produced by means of said method and, more preferably, a superconducting material of formula YBa2Cu3O7.

Description

CINTAS SUPERCONDUCTORAS FORMADAS A PARTIR DE SUPERCONDUCTOR TAPES FORMED FROM
SOLUCIONES METALORGÁNICAS QUE CONTIENEN DOS METALES DE TRANSICIÓN La presente invención se refiere a la obtención de una nueva solución de precursores metalorgánicos utilizando como punto de partida la solución previamente descrita en la patente ES2259919 B1 . Dicha modificación permite obtener mejoras en el tratamiento térmico de las capas superconductoras, tales como ausencia de defectos (grietas y plegamientos) y posibilidad de trabajar a distintas temperaturas finales de crecimiento (desde 720 hasta 810 °C). Ello permite además controlar las tensiones en la capa final y en consecuencia modular sus propiedades. El uso de la solución modificada en la presente invención permite además la obtención de capas superconductoras extremadamente planas con escalones del orden de la celda unidad de YBCO. METALLORGANIC SOLUTIONS CONTAINING TWO TRANSITIONAL METALS The present invention relates to obtaining a new solution of metalorganic precursors using as a starting point the solution previously described in patent ES2259919 B1. This modification allows to obtain improvements in the heat treatment of the superconducting layers, such as absence of defects (cracks and folding) and the possibility of working at different final growth temperatures (from 720 to 810 ° C). This also allows controlling the tensions in the final layer and consequently modulating their properties. The use of the modified solution in the present invention also allows obtaining extremely flat superconducting layers with steps of the order of the YBCO unit cell.
ESTADO DE LA TÉCNICA ANTERIOR STATE OF THE PREVIOUS TECHNIQUE
Los materiales superconductores de alta temperatura tienen un gran potencial para ser usados en tecnologías muy diversas pero para ello es un requisito indispensable desarrollar metodologías de obtención de conductores con elevadas prestaciones, en particular que puedan transportar elevadas corrientes eléctricas sin pérdidas, incluso bajo campos magnéticos elevados. Los primeros conductores de alta temperatura que se desarrollaron se basaban en las fases tipo BiSrCaCuO y a éstos se les denominó conductores de 1a generación (1 G). El desarrollo de estos materiales se vio profundamente revolucionado con el descubrimiento de una nueva metodología de preparación de una segunda generación (2G) de conductores, basados en materiales tipo REBa2Cu307 (REBCO, donde RE = Tierra Rara o itrio), denominados conductores superconductores epitaxiales (CSE o "coated conductors"). Durante los últimos años se han desarrollado diversas metodologías de obtención de los CSE basándose en diversas arquitecturas multicapa con un alto potencial para aplicaciones a alto campo, alta temperatura y alta corriente. Se han seguido varias estrategias para la preparación de estos conductores 2G basadas principalmente en metodologías de deposición en vacío de capas epitaxiales en substratos metálicos. Estos substratos pueden tener o una plantilla con óxido texturado depositada por Ion Beam Deposition (IBAD) en un substrato policristalino o pueden estar compuestos de capas tampón texturadas que replican la textura lograda en los substratos vía Rolling Assisted Biaxial Texturing (RABiTs) obtenida por medio de procesos termomecánicos. Otros enfoques interesantes son también aquellos donde la capa tampón texturada se logra por Oxidación Superficial Epitaxial (Surface Oxidation Epitaxy, SOE) o mediante depósito por evaporación inclinada (Inclined Surface Deposition, ISD). High temperature superconducting materials have great potential to be used in very diverse technologies but for this it is an indispensable requirement to develop methodologies for obtaining conductors with high performance, in particular that they can transport high electrical currents without losses, even under high magnetic fields . The first high temperature drivers that were developed were based on phases type BiSrCaCuO and these were called conductors 1 generation (1 G). The development of these materials was deeply revolutionized with the discovery of a new methodology for the preparation of a second generation (2G) of conductors, based on REBa 2 Cu 3 0 7 type materials (REBCO, where RE = Rare Earth or Yttrium), called epitaxial superconductive conductors (CSE or "coated conductors"). In recent years, various methodologies for obtaining CSEs have been developed based on various multilayer architectures with high potential for high field, high temperature and high current applications. Several strategies have been followed for the preparation of these 2G conductors based primarily on vacuum deposition methodologies of epitaxial layers on metal substrates. These substrates can have either a textured oxide template deposited by Ion Beam Deposition (IBAD) on a polycrystalline substrate or they can be composed of textured buffer layers that replicate the texture achieved in the substrates via Rolling Assisted Biaxial Texturing (RABiTs) obtained by means of thermomechanical processes Other interesting approaches are also those where the textured buffer layer is achieved by Epitaxial Surface Oxidation (Surface Oxidation Epitaxy, SOE) or by inclined evaporation (Inclined Surface Deposition, ISD).
Una vez obtenidos dichos substratos texturados se lleva a cabo la deposición de óxidos epitaxiales en forma de multicapa que actúan como tampón a la difusión atómica y la oxidación de la capa superconductora REBCO que es la que transporta la corriente eléctrica. Para preparar dichas estructuras multicapa pueden utilizarse técnicas de deposición en vacío (evaporación, ablación láser, sputtering) o técnicas de depósito basadas en soluciones químicas metalorgánicas (CSD). Estas segundas son particularmente interesantes debido a sus posibilidades para desarrollar CSE con un bajo coste. Once these textured substrates have been obtained, the deposition of epitaxial oxides in the form of multilayer that act as a buffer for atomic diffusion and oxidation of the REBCO superconducting layer which carries the electric current is carried out. Vacuum deposition techniques (evaporation, laser ablation, sputtering) or deposition techniques based on metallurgical chemical solutions (CSD) can be used to prepare such multilayer structures. These second ones are particularly interesting due to their possibilities to develop CSE with a low cost.
La demostración de la posibilidad de utilizar precursores de trifluoroacetatos (TFA) para crecer el superconductor de YBCO ha sido ampliamente descrito como un paso hacia delante muy relevante (A. Gupta, R. Jagannathan, E. I . Cooper, E. A. Giess, J. I . Landman, B. W. Hussey, "Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors" Appl. Phys. Lett. 52, 1988, 2077; P. C. Mclntyre, M. J. Cima, and M. F. Ng, "Metalorganic deposition of high-J Ba YCu O thin films from trifluoroacetate precursors onto (100) SrTiO" J. Appl. Phys. 68, 1990, 4183). Estos precursores tienen BaF2, Y203 y CuO como productos finales después de la descomposición de los precursores metalorgánicos, proceso llamado también pirólisis por los expertos en la materia, y evitan, por lo tanto, la formación de BaCO3, lo cual permite crecer las películas delgadas de YBCO a temperaturas más bajas. Recientemente ha sido descrita una nueva metodología para la obtención de precursores anhidros de TFA que permiten obtener láminas de elevada calidad, a la vez que se reduce el tiempo requerido para el procesado de las láminas y se aumenta la estabilidad de la solución de los precursores (X. Obradors, T. Puig, S. Ricart, N. Romá, J. M. Moretó, A. Pomar, K. Zalamova, J. Gázquez and F. Sandiumenge, "Preparación de precursores metalorgánicos anhidros y uso para la deposición y crecimiento de capas y cintas superconductoras" 2005, patente ES2259919 B1 ; N . Roma, S. Morlens, S. Ricart, K. Zalamova, J. M. Moreto, A. Pomar, T. Puig and X Obradors, "Acid anhydrides: a simple route to highly puré organometallic solutions for superconducting films" Supercond. Sci. Technol. 2006, 19, 521-527). Dichos precursores han sido usados ampliamente para obtener láminas y multicapas de elevada calidad cristalina y buenas propiedades superconductoras (X. Obradors, T. Puig, A. Pomar, F. Sandiumenge, N . Mestres, M. Coll, A. Cavallaro, Romá, J. Gázquez, J. C. González, O. Castaño, J. Gutiérrez, A. Palau, K. Zalamova, S. Morlens, A. Hassini, M. Gibert, S. Ricart, J. M. Moretó, S. Piñol, D. Isfort, J. Bock. "Progress towards all chemical superconducting YBCO coated conductors" Supercond. Sci. Technol. 2006, 19 S13-S26). The demonstration of the possibility of using trifluoroacetate (TFA) precursors to grow the YBCO superconductor has been widely described as a very important step forward (A. Gupta, R. Jagannathan, E. I. Cooper, EA Giess, J. I. Landman, BW Hussey, "Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors" Appl. Phys. Lett. 52, 1988, 2077; PC Mclntyre, MJ Cima, and MF Ng, "Metalorganic deposition of high-J Ba YCu O thin films from trifluoroacetate precursors onto (100) SrTiO" J. Appl. Phys. 68, 1990, 4183). These precursors have BaF2, Y203 and CuO as final products after the decomposition of the metalorganic precursors, a process also called pyrolysis by those skilled in the art, and thus avoid the formation of BaCO3, which allows thin films to grow of YBCO at lower temperatures. Recently, a new methodology for obtaining anhydrous TFA precursors that allow obtaining high quality sheets has been described, while reducing the time required for processing the sheets and increasing the stability of the precursor solution ( X. Obradors, T. Puig, S. Ricart, N. Romá, JM Moretó, A. Pomar, K. Zalamova, J. Gázquez and F. Sandiumenge, "Preparation of anhydrous metalorganic precursors and use for deposition and growth of layers and superconducting tapes "2005, patent ES2259919 B1; N. Roma, S. Morlens, S. Ricart, K. Zalamova, JM Moreto, A. Pomar, T. Puig and X Obradors," Acid anhydrides: a simple route to highly puree organometallic solutions for superconducting films "Supercond. Sci. Technol. 2006, 19, 521-527). These precursors have been widely used to obtain sheets and multilayers of high crystalline quality and good superconducting properties (X. Obradors, T. Puig, A. Pomar, F. Sandiumenge, N. Mestres, M. Coll, A. Cavallaro, Romá, J. Gázquez, JC González, O. Castaño, J. Gutiérrez, A. Palau, K. Zalamova, S. Morlens, A. Hassini, M. Gibert, S. Ricart, JM Moretó, S. Piñol, D. Isfort, J. Bock. "Progress towards all chemical superconducting YBCO coated conductors" Supercond. Sci. Technol. 2006, 19 S13-S26).
Existen otras soluciones metalorgánicas que dan lugar a cintas superconductoras con buenas propiedades. Normalmente son soluciones de trifluoroacetatos de itrio, bario y cobre en proporción 1 :2:3 en soluciones de concentraciones entre 1 ,5 y 2 M en metanol como disolvente. En concreto, se puede citar las patentes ES2259919 B1 del mismo grupo al que pertenece la presente invención y la US7326434 de American Superconductor Corporation, el contenido de las cuales se incorpora en la presente solicitud por referencia. There are other metal-organic solutions that give rise to superconducting belts with good properties. They are usually solutions of yttrium, barium and copper trifluoroacetates in a 1: 2: 3 ratio in solutions with concentrations between 1, 5 and 2 M in methanol as solvent Specifically, it is possible to cite patents ES2259919 B1 of the same group to which the present invention belongs and US7326434 of the American Superconductor Corporation, the content of which is incorporated in the present application by reference.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención proporciona un procedimiento para la obtención de materiales superconductores a través del uso de una nueva solución de precursores metalorgánicos que comprende sales del Ag(l). El nuevo proceso permite obtener materiales superconductores de mayor calidad fácilmente. Por ejemplo se obtienen mejoras en el tratamiento térmico de las capas superconductoras, tales como ausencia de defectos (grietas y plegamientos) y posibilidad de trabajar a distintas temperaturas finales de crecimiento (desde 720 hasta 810 °C). Ello permite además controlar las tensiones en la capa final y en consecuencia modular sus propiedades. El uso de la solución modificada en la presente invención permite además la obtención de capas superconductoras extremadamente planas con escalones del orden de la celda unidad de YBCO. La presente invención también es útil para la preparación de cintas superconductoras. The present invention provides a process for obtaining superconducting materials through the use of a new solution of metalorganic precursors comprising salts of Ag (1). The new process makes it possible to obtain higher quality superconducting materials easily. For example, improvements in the heat treatment of the superconducting layers are obtained, such as absence of defects (cracks and folding) and the possibility of working at different final growth temperatures (from 720 to 810 ° C). This also allows controlling the tensions in the final layer and consequently modulating their properties. The use of the modified solution in the present invention also allows obtaining extremely flat superconducting layers with steps of the order of the YBCO unit cell. The present invention is also useful for the preparation of superconducting tapes.
Por tanto, en un primer aspecto la presente invención se refiere a un procedimiento para la obtención de un material superconductor (en adelante procedimiento de la invención), que comprende la deposición de una solución que comprende al menos una sal de una tierra rara o itrio, al menos una sal de un metal alcalinotérreo, al menos una sal de un metal de transición y al menos una sal de Ag(l). Therefore, in a first aspect the present invention relates to a process for obtaining a superconducting material (hereinafter method of the invention), which comprises the deposition of a solution comprising at least one salt of a rare earth or yttrium , at least one salt of an alkaline earth metal, at least one salt of a transition metal and at least one salt of Ag (1).
La invención muestra que en la formación de capas de ciertos óxidos mixtos de en la preparación del material superconductor, como los compuestos de YBCO (YBa2Cu3O7-x), pueden reducirse o prevenirse la formación de defectos y mejorarse las condiciones del proceso adicionando sales de Ag(l) en las soluciones de los precursores de dichos óxidos. Dichas soluciones precursoras modificadas se pueden usar para formar las capas de óxidos y oxifluoruros intermedios con una alta calidad (ausencia de grietas y plegamientos) y relativamente gruesas (alrededor de 700 nm) en las mismas condiciones previamente usadas, como por ejemplo en la solicitud internacional de patente WO 2006/103303 A1 . Mediante este procedimiento se obtiene además una capa intermedia que permite el crecimiento final para formar el óxido superconductor, como por ejemplo de YBCO
Figure imgf000006_0001
en un rango mayor de temperaturas (720-810 °C) resultando con buenas prestaciones en corrientes críticas en todo el rango (Je de 2-4 106 A cm"2). Por otra parte se mejora el resultado final en la superficie de las capas aumentando significativamente la planaridad de las mismas con escalones del orden de la celda unidad del óxido mixto formado. Ello permite, por ejemplo, la formación de multicapas de distintas composiciones.
The invention shows that in the formation of layers of certain mixed oxides in the preparation of the superconducting material, such as YBCO compounds (YBa2Cu3O7 -x ), the formation of defects and improved process conditions by adding salts of Ag (l) in the solutions of the precursors of said oxides. Said modified precursor solutions can be used to form the intermediate oxide and oxyfluoride layers with a high quality (absence of cracks and folds) and relatively thick (about 700 nm) under the same conditions previously used, as for example in the international application WO 2006/103303 A1. Through this procedure, an intermediate layer is also obtained that allows the final growth to form the superconducting oxide, such as YBCO
Figure imgf000006_0001
in a greater range of temperatures (720-810 ° C) resulting in good performance in critical currents throughout the range (Je of 2-4 106 A cm "2 ). Moreover, the final result on the surface of the surfaces is improved layers significantly increasing the planarity thereof with steps of the order of the unit cell of the mixed oxide formed.This allows, for example, the formation of multilayers of different compositions.
En una realización preferida del procedimiento de la invención, la proporción de sal de Ag(l) está entre un 0,5% y un 25% en peso del total de la solución. Preferiblemente, la proporción de sal de Ag(l) está entre un 1 % y un 15% en peso del total de la solución. Más preferiblemente, la proporción de sal de Ag(l) está entre un 1 % y un 10% en peso del total de la solución, y aún más preferiblemente está entre un 2.5% y un 10%. Relaciones en peso del 5 al 10% dan los mejores resultados en propiedades finales de las capas. In a preferred embodiment of the process of the invention, the proportion of Ag (1) salt is between 0.5% and 25% by weight of the total solution. Preferably, the proportion of Ag (1) salt is between 1% and 15% by weight of the total solution. More preferably, the proportion of Ag (1) salt is between 1% and 10% by weight of the total solution, and even more preferably it is between 2.5% and 10%. Weight ratios of 5 to 10% give the best results in final properties of the layers.
La idoneidad estriba principalmente en la solubilidad de las sales de plata en el medio. Por ejemplo, las sales de Ag(l) útiles se pueden seleccionar de la lista que comprende trifluoroacetato, nitrato, acetilacetonato, benzoato, carboxilatos, acetilacetonatos, nitratos, aminas, sulfocianuros, cianuros o sales complejadas con ácidos poliaminocarboxílicos (EDTA, EGTA, DTPA, etc.), poliiminas u otros complejantes al uso; y cualquiera de sus combinaciones. Preferiblemente, la sal de Ag(l) se selecciona de la lista que comprende trifluoroacetato, nitrato, acetilacetonato y cualquiera de sus combinaciones. Las sales con mayores productos de solubilidad en el medio deseado son las más adecuadas por cuanto se pueden solubilizar fácilmente y en mayor concentración. The suitability lies mainly in the solubility of the silver salts in the medium. For example, useful Ag (l) salts may be selected from the list comprising trifluoroacetate, nitrate, acetylacetonate, benzoate, carboxylates, acetylacetonates, nitrates, amines, sulfocyanides, cyanides or salts complexed with polyaminocarboxylic acids (EDTA, EGTA, DTPA, etc.), polyimines or other complexers to use; and any of its combinations. Preferably, the Ag (1) salt is selected from the list comprising trifluoroacetate, nitrate, acetylacetonate and any combination thereof. Salts with higher solubility products in the desired medium are the most suitable because they can be easily solubilized and in greater concentration.
Los materiales con mayor eficacia se obtienen cuando la solución es anhidra, entendiendo por anhidra un contenido de agua inferior al 1 ,0%. Contenidos mayores de agua conducen a capas poco homogéneas. The materials with greater efficiency are obtained when the solution is anhydrous, anhydrous being understood as a water content of less than 1.0%. Larger contents of water lead to uneven layers.
Además, en otra realización preferida, la concentración total de iones metálicos de la solución está entre 0.1 y 4.0 M, preferiblemente está entre 0.5 y 3.0 M, más preferiblemente está entre 1 .5 y 2.5 M, y aún más preferiblemente es inferior a 2.0 M. Las concentraciones usadas condicionan el grosor de la capa final de forma que para capas de grosores del orden de 300-400 nm las concentraciones totales de iones metálicos han de ser del orden de 1 .5 a 1 .7M. In addition, in another preferred embodiment, the total metal ion concentration of the solution is between 0.1 and 4.0 M, preferably it is between 0.5 and 3.0 M, more preferably it is between 1.5 and 2.5 M, and even more preferably it is less than 2.0 M. The concentrations used condition the thickness of the final layer so that for layers of thicknesses of the order of 300-400 nm the total concentrations of metal ions must be of the order of 1 .5 to 1 .7M.
En otra realización preferida del procedimiento, la concentración de Ag(l) está entre 0.01 y 1 M, preferiblemente está entre 0.1 y 0.2 M. In another preferred embodiment of the process, the concentration of Ag (1) is between 0.01 and 1 M, preferably it is between 0.1 and 0.2 M.
En otra realización preferida del procedimiento de la invención, la solución comprende al menos un disolvente que se selecciona entre ácido acético, acetona, acetonitrilo, benceno, 1 -butanol, 2-butanol, 2-butanona, pentanona, alcohol t-butílico, tetracloruro de carbono, clorobenceno, cloroformo, ciclohexano, 1 ,2-dicloroetano, dietil éter, dietilenglicol, dietilén glicol dimetil éter, 1 ,2-dimetoxietano, dimetiléter, dimetil-formamida, dimetilsulfóxido, dioxano, etanol, acetato de etilo, etilénglicol, glicerina, heptano, triamida, hexano, metanol, metil t-butiléter, diclorometano, N- metil-2-pirrolidinona, N-metilpirrolidina, nitrometano, pentano, éter del petróleo, 1 -propanol, 2-propanol, piridina, tetrahidrofurano, tolueno, trietilamina, o-xileno, m-xileno, p-xileno y cualquiera de sus combinaciones. Preferiblemente, la solución comprende al menos un disolvente que se selecciona entre metanol, etanol, isopropanol y cualquiera de sus combinaciones, más preferiblemente la solución comprende metanol. El metanol resulta ser el disolvente más adecuado debido a su polaridad (índice de polaridad 6.6), lo que permite la disolución de las cantidades convenientes de las sales metalorgánicas teniendo además un punto de ebullición suficientemente bajo (65°C) para que el secado inicial de la solución depositada sea rápido. In another preferred embodiment of the process of the invention, the solution comprises at least one solvent selected from acetic acid, acetone, acetonitrile, benzene, 1-butanol, 2-butanol, 2-butanone, pentanone, t-butyl alcohol, tetrachloride carbon, chlorobenzene, chloroform, cyclohexane, 1,2-dichloroethane, diethyl ether, diethylene glycol, diethylene glycol dimethyl ether, 1,2-dimethoxyethane, dimethyl ether, dimethyl formamide, dimethylsulfoxide, dioxane, ethanol, ethyl acetate, ethylene glycol , heptane, triamide, hexane, methanol, methyl t-butyl ether, dichloromethane, N- methyl-2-pyrrolidinone, N-methylpyrrolidine, nitromethane, pentane, petroleum ether, 1-propanol, 2-propanol, pyridine, tetrahydrofuran, toluene, triethylamine, o-xylene, m-xylene, p-xylene and any combination thereof . Preferably, the solution comprises at least one solvent that is selected from methanol, ethanol, isopropanol and any combination thereof, more preferably the solution comprises methanol. Methanol turns out to be the most suitable solvent due to its polarity (polarity index 6.6), which allows the dissolution of the suitable amounts of the metalorganic salts having a boiling point sufficiently low (65 ° C) so that the initial drying of the deposited solution be quick.
Otra realización preferida de dicho procedimiento comprende al menos un elemento que se selecciona entre Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Lu y cualquiera de sus combinaciones. Preferiblemente comprende una sal que se selecciona entre sales de Y, Gd, Eu, Dy y cualquiera de sus combinaciones. Another preferred embodiment of said method comprises at least one element that is selected from Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Lu and any combination thereof. Preferably it comprises a salt that is selected from salts of Y, Gd, Eu, Dy and any combination thereof.
En otra realización preferida del procedimiento, la sal de la tierra rara o de itrio se selecciona entre trifluoroacetato, acetato, acetilacetonato, naftenatos, trifluoroacetilacetonato, etilhexanoato; nitratos, sales complejadas tipo amina, cianuro, sulfocianuro, poliaminocarboxilatos, poliiminas u otros complejantes al uso; y cualquier de sus combinaciones.In another preferred embodiment of the process, the rare earth or yttrium salt is selected from trifluoroacetate, acetate, acetylacetonate, naphthenates, trifluoroacetylacetonate, ethylhexanoate; nitrates, complex salts such as amine, cyanide, sulfocyanide, polyaminocarboxylates, polyimines or other complexing agents; and any of its combinations.
Preferiblemente se emplea trifluoroacetato. Los trifluoroacetatos son solubles en el disolvente usualmente utilizado (metanol) y además son necesarios en el proceso de pirólisis para la generación del fluoruro de bario. Preferably trifluoroacetate is used. Trifluoroacetates are soluble in the solvent usually used (methanol) and are also necessary in the pyrolysis process for the generation of barium fluoride.
En otra realización preferida del procedimiento, el metal alcalinotérreo se selecciona entre Ba, Sr, Ca y cualquiera de sus combinaciones. Preferiblemente, el metal alcalinotérreo es Ba. En otra realización preferida de dicho procedimiento, la sal del metal alcalinotérreo se selecciona entre trifluoroacetato, acetato, acetilacetonato, naftenatos, trifluoroacetilacetonato, etilhexanoato, nitratos, sales complejadas tipo amina, cianuro, sulfocianuro, poliaminocarboxilatos, poliiminas u otros complejantes al uso; y cualquier de sus combinaciones, preferiblemente trifluoroacetato. In another preferred embodiment of the process, the alkaline earth metal is selected from Ba, Sr, Ca and any combination thereof. Preferably, the alkaline earth metal is Ba. In another preferred embodiment of said process, the alkaline earth metal salt is selected from trifluoroacetate, acetate, acetylacetonate, naphthenates, trifluoroacetylacetonate, ethylhexanoate, nitrates, amine complexed salts, cyanide, sulfocyanide, polyaminocarboxylates, polyimines or other complexers to use; and any of its combinations, preferably trifluoroacetate.
En otra realización preferida del procedimiento, el metal de transición es Cu. In another preferred embodiment of the process, the transition metal is Cu.
En otra realización preferida del procedimiento, la sal de Cu se selecciona entre trifluoroacetato, acetato, acetilacetonato, naftenatos, trifluoroacetilacetonato, etilhexanoato; nitratos, sales complejadas tipo amina, cianuro, sulfocianuro, poliaminocarboxilatos, poliiminas u otros complejantes al uso; y cualquiera de sus combinaciones, preferiblemente trifluoroacetato. In another preferred embodiment of the process, the Cu salt is selected from trifluoroacetate, acetate, acetylacetonate, naphthenates, trifluoroacetylacetonate, ethylhexanoate; nitrates, complex salts such as amine, cyanide, sulfocyanide, polyaminocarboxylates, polyimines or other complexing agents; and any of its combinations, preferably trifluoroacetate.
Otra realización preferida del procedimiento comprende la descomposición del producto depositado. Preferiblemente, la descomposición tiene lugar entre 100 y 500 °C, y más preferiblemente entre 250 y 400 °C. Las temperaturas de descomposición usuales de las sales metalorgánicas suelen oscilar entre estos dos valores. Particularmente los trifluoroacetatos de itrio, bario y cobre usados en el procedimiento tienen una temperatura de descomposición combinada, controlada mediante análisis termogravimétrico (medida de pérdida de peso por tratamiento térmico) que comienza a 250°C y acaba a 320°C. Another preferred embodiment of the process comprises the decomposition of the deposited product. Preferably, the decomposition takes place between 100 and 500 ° C, and more preferably between 250 and 400 ° C. The usual decomposition temperatures of metalorganic salts usually range between these two values. Particularly the yttrium, barium and copper trifluoroacetates used in the process have a combined decomposition temperature, controlled by thermogravimetric analysis (weight loss measurement by heat treatment) that starts at 250 ° C and ends at 320 ° C.
En otra realización preferida del procedimiento, la descomposición se lleva a cabo en atmósfera controlada de oxígeno, nitrógeno o cualquiera de sus combinaciones a una presión de 1 bar, usando un flujo de gas controlado con a una velocidad entre 0.80 y 24 mm/s, a la vez que se realiza un aumento de temperatura desde 250 °C hasta una temperatura entre 300 y 350 °C, con una rampa de calentamiento entre 30 y 600 °C/h, permaneciendo a esta temperatura durante un periodo de tiempo entre 10 y 90 min. In another preferred embodiment of the process, the decomposition is carried out in a controlled atmosphere of oxygen, nitrogen or any combination thereof at a pressure of 1 bar, using a controlled gas flow with a velocity between 0.80 and 24 mm / s, at the same time as a temperature rise from 250 ° C to a temperature between 300 and 350 ° C, with a heating ramp between 30 and 600 ° C / h, remaining at this temperature for a period of time between 10 and 90 min.
Otra realización preferida del procedimiento comprende el crecimiento cristalino del producto depositado. Another preferred embodiment of the process comprises the crystalline growth of the deposited product.
En otra realización preferida del procedimiento, el crecimiento cristalino tiene lugar a temperatura entre a 400 y 1000 °C, preferiblemente entre 600 y 900 °C, y más preferiblemente entre 700 y 820 °C. In another preferred embodiment of the process, the crystalline growth takes place at a temperature between 400 and 1000 ° C, preferably between 600 and 900 ° C, and more preferably between 700 and 820 ° C.
Una ventaja del proceso de la siguiente invención es la mejora en el resultado de la pirólisis, que es mucho menos dependiente de las condiciones ambientales, dando además capas pirolizadas con pocos defectos, lo que facilitará la multideposición y en consecuencia, la obtención de capas finales más gruesas. An advantage of the process of the following invention is the improvement in the result of the pyrolysis, which is much less dependent on the environmental conditions, also giving pyrolized layers with few defects, which will facilitate multideposition and consequently, the obtaining of final layers thicker.
En otra realización preferida del procedimiento, el crecimiento cristalino se lleva a cabo en un horno en atmósfera controlada y comprende: un primer calentamiento que se lleva a cabo en una atmósfera que comprende nitrógeno, con una presión de vapor de agua entre 7 y 100 mbar y una presión de oxígeno entre 0.1 y 1 mbar, hasta una temperatura entre 700 y 820 °C; y un segundo calentamiento a una temperatura entre 300 y 500 °C a una presión de oxígeno de 1 bar durante un periodo de tiempo inferior a 8 h, seguido de un enfriamiento hasta temperatura ambiente. In another preferred embodiment of the process, the crystalline growth is carried out in an oven in a controlled atmosphere and comprises: a first heating which is carried out in an atmosphere comprising nitrogen, with a water vapor pressure between 7 and 100 mbar and an oxygen pressure between 0.1 and 1 mbar, up to a temperature between 700 and 820 ° C; and a second heating at a temperature between 300 and 500 ° C at an oxygen pressure of 1 bar for a period of time less than 8 h, followed by cooling to room temperature.
Por ejemplo se ha comprobado que para el crecimiento de la lámina delgada de YBCO el uso de las condiciones previamente descritas (atmósfera de N2 con 200 ppm de 02 y rampas de 25 °C/min hasta temperaturas del orden de 810 °C típicamente), se obtienen capas superconductoras con buenas propiedades y con una elevada planaridad (Figura 2 y 4). Se comprueba también que la utilización del proceso de la presente invención permite ampliar el rango de temperaturas máximas de crecimiento, permitiendo obtener capas con buenas prestaciones a temperaturas mucho más bajas (desde 720 °C hasta 810 °C, Figura 3) lo que disminuye el problema de su reactividad con las láminas tampón y el de la degradación de los substratos metálicos. For example, it has been proven that for the growth of the YBCO thin film the use of the conditions previously described (atmosphere of N 2 with 200 ppm of 02 and ramps of 25 ° C / min up to temperatures of the order of 810 ° C typically) , layers are obtained superconductors with good properties and high planarity (Figure 2 and 4). It is also found that the use of the process of the present invention allows to expand the range of maximum growth temperatures, allowing to obtain layers with good performance at much lower temperatures (from 720 ° C to 810 ° C, Figure 3) which decreases the problem of its reactivity with the buffer sheets and the degradation of the metal substrates.
En otra realización preferida del procedimiento, el material superconductor tiene una composición AA'2Cu307+x, donde A es una tierra rara o Y, A' es un metal alcalinotérreo y x está entre -1 y 0. In another preferred embodiment of the process, the superconducting material has a composition AA ' 2 Cu307 + x , where A is a rare earth or Y, A' is an alkaline earth metal and x is between -1 and 0.
Preferiblemente, A se selecciona entre Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Lu y cualquiera de sus combinaciones. Y más preferiblemente, A es Y. Preferably, A is selected from Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Lu and any combination thereof. And more preferably, A is Y.
Preferiblemente, A' se selecciona entre Ba, Sr, Ca y cualquiera de sus combinaciones. Y más preferiblemente, A' es Ba. Preferably, A 'is selected from Ba, Sr, Ca and any of its combinations. And more preferably, A 'is Ba.
En otra realización preferida del procedimiento, el material superconductor tiene una fórmula YBa2Cu307. In another preferred embodiment of the process, the superconducting material has a formula YBa 2 Cu 3 0 7 .
En otra realización preferida del procedimiento, la disolución comprende además al menos una sal que se selecciona entre sales diversas de Zr, Ce, Sn, Ru, La, Mn, Sr, Ca y cualquiera de sus combinaciones. Esta sales forman una fase secundaria distribuida al azar en el seno de la matriz de manera que se modifica profundamente la estructura del superconductor mejorando sus características. Dichas fases pueden ser BaZr03, Ce02, BaSn03, BaCe03, SrRu03, Lai-xMxMn03, Re203, o Re2Cu205, donde Re es una tierra rara o Y. Las sales que son capaces de formar esta fase secundaria están descritas en la WO/2008/071829, la cual se incorpora en su totalidad por referencia. En otra realización preferida del procedimiento, el material que se deposita tiene una composición (Lai-yZy)2Cu04-z, donde Z es un alcalinotérreo, y es un número entre 0 y 0.2 y z es un número entre 0 y 1 . En otra realización preferida del procedimiento, la solución se deposita sobre un substrato monocristalino o con textura biaxial. Los substratos suelen ser óxidos muy diversos (LaAI03, SrTi03, NdTi03, AI2O3), siendo esencial que tengan una buena orientación cristalográfica, es decir poca desviación en la orientación de los cristales dentro y fuera del plano de la capa (monocristales o materiales con textura biaxial). Dichos substratos pueden estar recubiertos previamente por capas barrera tipo óxidos de YSZ (circona estabilizada con itrio), (Ce, M)02-x (M=Tierra Rara), AT1O3 (A=Ca, Sr, Ba), TR203 (TR=Tierra Rara), AB1O3 (A=Ca, Sr, Ba), MgO, Al203, TiN (nitruro de titanio) y combinaciones de ellos. In another preferred embodiment of the process, the solution further comprises at least one salt that is selected from various salts of Zr, Ce, Sn, Ru, La, Mn, Sr, Ca and any combination thereof. These salts form a secondary phase distributed randomly within the matrix so that the structure of the superconductor is profoundly modified, improving its characteristics. These phases can be BaZr0 3 , Ce0 2 , BaSn0 3 , BaCe0 3 , SrRu0 3 , Lai- x M x Mn0 3 , Re 2 0 3 , or Re 2 Cu 2 0 5 , where Re is a rare earth or Y. salts that are capable of forming this secondary phase are described in WO / 2008/071829, which is incorporated in its entirety by reference. In another preferred embodiment of the process, the material that is deposited has a composition (Lai-yZy) 2Cu04 -z , where Z is an alkaline earth, and is a number between 0 and 0.2 and z is a number between 0 and 1. In another preferred embodiment of the process, the solution is deposited on a monocrystalline or biaxial textured substrate. The substrates are usually very diverse oxides (LaAI03, SrTi03, NdTi03, AI2O3), being essential that they have a good crystallographic orientation, that is, little deviation in the orientation of the crystals inside and outside the plane of the layer (monocrystals or textured materials biaxial). Said substrates may be previously coated by YSZ oxide barrier layers (yttrium stabilized zirconia), (Ce, M) 0 2-x (M = Rare Earth), AT1O3 (A = Ca, Sr, Ba), TR 2 0 3 (TR = Rare Earth), AB1O3 (A = Ca, Sr, Ba), MgO, Al 2 03, TiN (titanium nitride) and combinations thereof.
Preferiblemente, dicho substrato se selecciona entre: una sal u óxido de una tierra rara; una sal u óxido de un metal alcalinotérreo; una sal u óxido de un metal de transición; y cualquiera de sus combinaciones. Más preferiblemente, el substrato se selecciona de la lista que comprende monocristales de SrTi03, LaAI03, YSZ y cintas metálicas biaxialmente texturadas. Y aún más preferiblemente, dichos substratos pueden estar recubiertos previamente por capas de YSZ (zirconia estabilizada con itrio), (Ce, M)02-x (M=Tierra Rara), AT¡03 (A=Ca, Sr, Ba), TR203 (TR=Tierra Rara), AB1O3 (A=Ca, Sr, Ba), MgO, AI2O3, TiN (nitruro de titanio) y cualquiera de sus combinaciones. Los sustratos pueden ser de una sola capa o de multicapas. Preferably, said substrate is selected from: a salt or oxide of a rare earth; a salt or oxide of an alkaline earth metal; a salt or oxide of a transition metal; and any of its combinations. More preferably, the substrate is selected from the list comprising single crystals of SrTi03, LaAI03, YSZ and biaxially textured metal tapes. And even more preferably, said substrates may be previously coated by layers of YSZ (yttrium stabilized zirconia), (Ce, M) 0 2-x (M = Rare Earth), AT0 3 (A = Ca, Sr, Ba ), TR 2 0 3 (TR = Rare Earth), AB1O3 (A = Ca, Sr, Ba), MgO, AI 2 O 3 , TiN (titanium nitride) and any combination thereof. The substrates can be single layer or multilayer.
En una realización particular de la presente invención las soluciones precursoras se utilizan para la obtención de capas superconductoras de YBCO. Esta solución se deposita sobre monocristal de LaAIO3 o sobre cinta metálica protegida por algún tipo de capa tampón. Los tratamientos térmicos a los que se someten consisten en una calcinación hasta 350 °C en un tiempo reducido, como por ejemplo de 1 ,5 h, para la obtención de los óxidos y oxifluoruros intermedios. Las capas pirolizadas así obtenidas poseen la característica de estar exentas de grietas y presentar mucha menor cantidad de plegamientos que las conseguidas utilizando la solución no modificada debido a la menor sensibilidad de la presente solución a las condiciones ambientales. Por otra parte, la imagen de SEM permite ver que presentan una menor porosidad en la estructura (Figura 2). La presencia del segundo metal de transición (Ag) en la solución compitiendo con el cobre podría disminuir la coordinación cruzada de éste con moléculas de oxígeno o flúor y en consecuencia, disminuir la presencia de defectos que en algunos casos se han atribuido a una excesiva coordinación cruzada del cobre. In a particular embodiment of the present invention the precursor solutions are used for obtaining superconducting layers of YBCO. This solution is deposited on monocrystalline LaAIO 3 or on metal tape protected by some type of buffer layer. The heat treatments to which they undergo consist of a calcination up to 350 ° C in a reduced time, such as 1.5 h, for obtaining intermediate oxides and oxyfluorides. The pyrolized layers thus obtained have the characteristic of being free of cracks and presenting much less folding than those achieved using the unmodified solution due to the lower sensitivity of the present solution to environmental conditions. On the other hand, the SEM image shows that they have a lower porosity in the structure (Figure 2). The presence of the second transition metal (Ag) in the solution competing with copper could decrease its cross-coordination with oxygen or fluorine molecules and, consequently, decrease the presence of defects that in some cases have been attributed to excessive coordination cross of copper.
En otra realización de la presente invención respecto a la preparación de la solución anhidra de trifluoroacetatos de itrio, bario y cobre preparados según el procedimiento descrito en la invención de solicitud internacional de patente WO 2006/103303 A1 , se introduce la modificación consistente en la adición en cantidades variables como se describen en las realización preferentes ya citadas (desde el 2.5% hasta el 20% en peso) de sales de plata (trifluoroacetatos, nitratos, acetilacetonatos, etc.) preferiblemente solubles en el medio. Con ello se consiguen soluciones homogéneas de sales metalorgánicas consistentes en sales de una tierra rara, un metal alcalinotérreo y al menos dos metales de transición con una concentración global expresada como suma de metales de hasta 2 M. In another embodiment of the present invention with respect to the preparation of the anhydrous solution of yttrium, barium and copper trifluoroacetates prepared according to the procedure described in the invention of international patent application WO 2006/103303 A1, the modification consisting of the addition is introduced in variable amounts as described in the preferred embodiments already mentioned (from 2.5% to 20% by weight) of silver salts (trifluoroacetates, nitrates, acetylacetonates, etc.) preferably soluble in the medium. This results in homogeneous solutions of metalorganic salts consisting of salts from a rare earth, an alkaline earth metal and at least two transition metals with a global concentration expressed as a sum of metals of up to 2 M.
Por tanto, en un segundo aspecto la presente invención se refiere al material superconductor que se obtiene por el procedimiento de la invención (en adelante material de la invención). Además, en un tercer aspecto la presente invención se refiere a conductores superconductores epitaxiales multicapa y a obleas cerámicas recubiertas con capas superconductoras que comprende el material de la invención. Therefore, in a second aspect the present invention relates to the superconducting material that is obtained by the process of the invention (hereinafter material of the invention). In addition, in a third aspect the present invention relates to multilayer epitaxial superconducting conductors and ceramic wafers coated with superconducting layers comprising the material of the invention.
En un cuarto aspecto la presente invención se refiere a la solución (en adelante solución de la invención) que comprende al menos una sal de una tierra rara o de itrio, al menos sal de un metal alcalinotérreo, al menos una sal de un metal de transición y al menos una sal de Ag(l). In a fourth aspect the present invention relates to the solution (hereinafter solution of the invention) comprising at least one salt of a rare earth or yttrium, at least one salt of an alkaline earth metal, at least one salt of a metal of transition and at least one salt of Ag (l).
En un quinto aspecto la presente invención se refiere al uso de la solución de la invención para la obtención de un material superconductor. In a fifth aspect the present invention relates to the use of the solution of the invention for obtaining a superconducting material.
Y en un último aspecto la presente invención se refiere al material superconductor de fórmula YBa2Cu307., que posee una rugosidad de entre 0,5 y 3,0 nm rms. Dicha rugosidad se obtiene por la obtención de la topografía de la capa por microscopía de fuerzas atómicas en una superficie cuadrada no inferior a 5 mieras de lado y calculando la desviación promediada de las alturas en dicha superficie respecto a un valor medio por el método de los mínimos cuadrados. Preferiblemente, dicho material superconductor posee una densidad de corriente crítica superior a 1 MA/cm2 y .más preferiblemente, entre 1 y 4 MA/cm2 a 77 K y autocampo). Dicha densidad de corriente crítica se obtiene a partir de las curvas de magnetización respecto al campo magnético a una temperatura de 77 K y aplicando modelos de penetración del campo magnético en la muestra superconductora conocidos por los expertos en la materia, como por ejemplo el modelo de Bean. And in a final aspect the present invention relates to the superconducting material of the formula YBa 2 Cu 3 0 7. , which has a roughness of between 0.5 and 3.0 nm rms. Said roughness is obtained by obtaining the topography of the layer by microscopy of atomic forces on a square surface not less than 5 microns per side and calculating the average deviation of the heights on said surface from an average value by the method of the Least Squares. Preferably, said superconducting material has a critical current density greater than 1 MA / cm 2 and, more preferably, between 1 and 4 MA / cm 2 at 77 K and autofield). Said critical current density is obtained from the magnetization curves with respect to the magnetic field at a temperature of 77 K and applying magnetic field penetration models in the superconducting sample known to those skilled in the art, such as the model of Bean
Las láminas de material superconductor con altas prestaciones proporcionadas por la presente invención son de especial relevancia por ejemplo en los siguientes sectores: - Sector químico: precursores químicos metalorgánicos complejos solubles. The sheets of superconducting material with high performance provided by the present invention are of particular relevance for example in the following sectors: - Chemical sector: soluble complex metalorganic chemical precursors.
- Sector cerámico-metalúrgico: deposición y crecimiento de recubrimientos cerámicos sobre substratos metálicos o cerámicos.  - Ceramic-metallurgical sector: deposition and growth of ceramic coatings on metal or ceramic substrates.
- Sector energético, electromecánico y de transporte: mejora de la eficiencia del sistema eléctrico existente para la generación, transporte, distribución y uso de la energía eléctrica, desarrollo de nuevos equipos eléctricos de potencia, imanes potentes para aplicaciones diversas (incluida la fusión nuclear), motores eléctricos potentes y ligeros para la aeronáutica o la náutica. - Energy, electromechanical and transport sector: improvement of the efficiency of the existing electrical system for the generation, transport, distribution and use of electrical energy, development of new power electrical equipment, powerful magnets for various applications (including nuclear fusion) , powerful and light electric motors for aeronautics or nautical.
- Sector biomedicina y farmacéutico: nuevos equipos, más potentes y capaces de funcionar a temperaturas mayores, de diagnóstico por resonancia magnética, nuevos espectrómetros de RMN para diseño molecular.  - Biomedicine and pharmaceutical sector: new equipment, more powerful and capable of operating at higher temperatures, magnetic resonance imaging, new NMR spectrometers for molecular design.
- Sector electrónica: nuevos dispositivos, pasivos o activos, que trabajan en el rango de las microondas y que son de interés en el campo de las telecomunicaciones. - Electronic sector: new devices, passive or active, that work in the microwave range and are of interest in the field of telecommunications.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
FIG. 1.- Imágenes de microscopía óptica de las capas después de pirólisis a partir de la solución modificada a) sobre monocristal de LaAI03; b) sobre cinta metálica texturada. FIG. 2.- Imagen de SEM de una capa de YBCO crecida a partir de la solución modificada en la que se puede apreciar una disminución considerable de la porosidad y una elevada planaridad en la superficie. FIG. 3. Comparación de las densidades de corriente a distintas temperaturas entre la solución sin modificar y la modificada según la presente invención. FIG. 1.- Optical microscopy images of the layers after pyrolysis from the modified solution a) on monocrystalline LaAI0 3 ; b) on textured metal tape. FIG. 2.- SEM image of a YBCO layer grown from the modified solution in which a considerable decrease in porosity and high surface planarity can be seen. FIG. 3. Comparison of the current densities at different temperatures between the unmodified and the modified solution according to the present invention.
FIG. 4.- Medida de AFM que muestra la elevada planaridad de una capa de YBCO crecida a partir de la solución modificada. Se aprecia en el perfil inferior que se consiguen escalones correspondientes a la celda unidad de YBCO. FIG. 4.- Measurement of AFM that shows the high planarity of a layer of YBCO grown from the modified solution. It is seen in the lower profile that steps corresponding to the YBCO unit cell are achieved.
EJEMPLOS EXAMPLES
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la especificidad y efectividad de las cintas superconductoras formadas a partir de soluciones metalorgánicas que contienen dos metales de transición. The invention will now be illustrated by tests carried out by the inventors, which demonstrates the specificity and effectiveness of superconducting belts formed from metal-organic solutions containing two transition metals.
Ejemplo 1 Example 1
Se preparó una solución de 50 mi de trifluoroacetatos de Y, Ba y Cu con una concentración total de metales de 1 .5 M (relación Y:Ba:Cu de 1 :2:3). Para ello se pesaron 8.334 g (0.0125 mol) de YBa2Cu307 comercial en un matraz esférico de 250 mi, acoplado a un refrigerante Dimroth y provisto de agitación magnética. Se añadieron además 25 mi de acetona seca recién destilada, 22 mi de anhídrido trifluoroacético (0.000156 mol) (adición lenta para evitar sobrecalentamientos) y 5 mi de ácido trifluoroacético. La mezcla se calentó a 50 °C durante 72 h en atmósfera inerte (Ar). Seguidamente se enfrió a temperatura ambiente y se filtró a A solution of 50 ml of Y, Ba and Cu trifluoroacetates was prepared with a total metal concentration of 1.5 M (Y: Ba: Cu ratio of 1: 2: 3). For this, 8.334 g (0.0125 mol) of commercial YBa2Cu 3 0 7 were weighed in a 250 ml spherical flask, coupled to a Dimroth refrigerant and provided with magnetic stirring. In addition, 25 ml of freshly distilled dry acetone, 22 ml of trifluoroacetic anhydride (0.000156 mol) (slow addition to avoid overheating) and 5 ml of trifluoroacetic acid were added. The mixture was heated at 50 ° C for 72 h under an inert atmosphere (Ar). It was then cooled to room temperature and filtered at
HOJA DE REEMPLAZO (Regla 26) través de un filtro de 0.45 μηι. Se procedió entonces a evaporar la solución resultante a presión reducida utilizando un evaporador rotatorio, primero a temperatura ambiente (2 h) y calentando luego progresivamente a 80 °C, obteniéndose los trifluoroacetatos de Y, Ba y Cu. Una parte del sólido obtenido se disolvió en acetona y otra en metanol manteniéndose ambas soluciones en viales cerrados y en atmósfera inerte. REPLACEMENT SHEET (Rule 26) through a 0.45 μηι filter. The resulting solution was then evaporated under reduced pressure using a rotary evaporator, first at room temperature (2 h) and then progressively heating to 80 ° C, obtaining the trifluoroacetates of Y, Ba and Cu. A part of the solid obtained was dissolved in acetone and another in methanol, both solutions being kept in closed vials and in an inert atmosphere.
Esta solución se depositó por la técnica de spin coating en un substrato monocristalino cuadrado de SrTi03 de dimensiones 5 mm * 5 mm, grosor 0.5 mm y orientación (100). A continuación se realizó la pirólisis, consistente en la descomposición de la materia orgánica. Para ello se utilizó un crisol de alúmina, donde se coloca el substrato que se introdujo en un tubo de cuarzo de 23 mm de diámetro, el cual se puso en el interior de un horno. El programa seguido por el horno consiste en una rampa de 300 °C/h hasta una temperatura máxima de 310 °C, la cual se mantuvo durante 30 min. Se necesita el uso de una atmósfera controlada en el interior del horno, para ello se trabajó con una presión de oxígeno de 1 bar, un flujo de 0.05 l/min y una presión de agua de 24 mbar. Dicha humedad se consigue haciendo pasar el gas por unos frascos lavadores dotados de una placa porosa en su parte inferior interna, para dividir el gas en pequeñas gotas, aumentando así la superficie de contacto con el agua. Al finalizar el proceso, la muestra se guardó en un desecador. This solution was deposited by the spin coating technique on a square monocrystalline substrate of SrTi03 of dimensions 5 mm * 5 mm, thickness 0.5 mm and orientation (100). Then the pyrolysis was performed, consisting of the decomposition of organic matter. For this, an alumina crucible was used, where the substrate that was placed in a 23 mm diameter quartz tube was placed, which was placed inside an oven. The program followed by the oven consists of a ramp of 300 ° C / h up to a maximum temperature of 310 ° C, which was maintained for 30 min. The use of a controlled atmosphere inside the furnace is needed, for this purpose an oxygen pressure of 1 bar, a flow of 0.05 l / min and a water pressure of 24 mbar were worked on. Said humidity is achieved by passing the gas through some washing jars provided with a porous plate in its inner lower part, to divide the gas into small drops, thus increasing the surface of contact with the water. At the end of the process, the sample was stored in a desiccator.
A partir de la capa pirolizada se realizó el tratamiento térmico para conseguir la formación de la fase YBa2Cu307. Se trabajó con un horno, al que se le aplicó una subida rápida de temperatura (25 °C/min) hasta llegar a temperaturas en el rango 790-815 °C. Dicha temperatura se mantuvo durante 180 min (los últimos 30 min en seco) y luego se aplicó una rampa a una velocidad de 2.5 °C/min hasta la temperatura ambiente. En este caso se utilizó 0.2 mbar de 02 y 7 mbar de presión de agua. El flujo del gas fue el que permite el controlador másico de flujo utilizado (Bronkhorst High-Tech) para realizar la mezcla con un rango de 0.012 a 0.6 l/min para el N2 y de entre 0.006 y 0.03 l/min para el 02. The heat treatment was carried out from the pyrolized layer to achieve the formation of the YBa 2 Cu 3 0 7 phase. It worked with an oven, which was applied a rapid rise in temperature (25 ° C / min) until reaching temperatures in the range 790-815 ° C. This temperature was maintained for 180 min (the last 30 min dry) and then a ramp was applied at a speed of 2.5 ° C / min to room temperature. In this case 0.2 mbar of 0 2 and 7 mbar of water pressure was used. The gas flow was what allows the mass flow controller used (Bronkhorst High-Tech) to mix with a range of 0.012 to 0.6 l / min for N 2 and between 0.006 and 0.03 l / min for 02.
Sin sacar la muestra del horno, se realizó la oxigenación de dicha muestra utilizando la misma atmósfera seca. Se subió a 450 °C, se cambió el gas portador por O2 seco a 1 bar de presión y se mantuvo a esta temperatura por un tiempo de 90 min. A continuación se realizó una rampa a 300 °C/h hasta temperatura ambiente. La capa resultante es de aproximadamente 300 nm de espesor. Without removing the sample from the oven, oxygenation of said sample was performed using the same dry atmosphere. It was raised to 450 ° C, the carrier gas was changed to dry O 2 at 1 bar pressure and maintained at this temperature for a time of 90 min. Then a ramp was made at 300 ° C / h to room temperature. The resulting layer is approximately 300 nm thick.
La caracterización de la muestra se realizó mediante difracción de rayos X, imágenes de SEM, y mediciones de la corriente crítica a 77 K (Je = 3.5 106 A cm2). Como valores de referencia, se caracterizó la dependencia de la corriente crítica en función del campo magnético aplicado perpendicular al substrato a 65 K. Se encontró que Je = 0.45 - 106 A/cm2 a 65 K y H = 1 T. The sample was characterized by X-ray diffraction, SEM images, and measurements of the critical current at 77 K (Je = 3.5 10 6 A cm2). As reference values, the dependence of the critical current was characterized as a function of the magnetic field applied perpendicular to the substrate at 65 K. It was found that Je = 0.45-10 6 A / cm2 at 65 K and H = 1 T.
Ejemplo 2 En un vial con tapón tipo septum se pesaron 27.6 mg de Ag (TFA) (12.5 10~5 mol) y sobre ellos se adicionaron 10 mi de la solución metanólica de YBCO preparada como en el Ejemplo 1 , se agitó la mezcla a temperatura ambiente y se filtró a través de un filtro de 0.45 μηπ. La mezcla así preparada se conservó en atmósfera de Ar. Example 2 In a vial with septum cap, 27.6 mg of Ag (TFA) (12.5 10 ~ 5 mol) was weighed and 10 ml of the methanolic YBCO solution prepared as in Example 1 was added thereto, the mixture was stirred at room temperature and filtered through a 0.45 μηπ filter. The mixture thus prepared was preserved under Ar.
Se realizaron análisis de ICP con el objeto de verificar que había cambiado la relación estequiométrica inicial pasando a contener el % en exceso esperado (5%) de sal de plata. A partir de esta solución trifluoroacetatos de Y, Ba y Cu, que contenían un 5% de sal de Ag, se realizó su depósito en un substrato de LaAIO3 en las mismas condiciones que las indicadas en el Ejemplo 1 . La muestra depositada se descompuso siguiendo un proceso de pirólisis como el descrito en el Ejemplo 1. La muestra así pirolizada se caracterizó por microscopía óptica para comprobar que es homogénea y libre de grietas y rugosidades (Figura 1 ). ICP analyzes were performed in order to verify that the initial stoichiometric ratio had changed to contain the expected excess% (5%) of silver salt. From this solution trifluoroacetates of Y, Ba and Cu, which contained 5% of Ag salt, were deposited on a LaAIO3 substrate in the same conditions as indicated in Example 1. The deposited sample was decomposed following a pyrolysis process as described in Example 1. The sample thus pyrolized was characterized by optical microscopy to verify that it is homogeneous and free of cracks and roughness (Figure 1).
A partir de la muestra pirolizada se realizó el tratamiento térmico descrito en el Ejemplo 1 pero dentro de un rango de temperaturas mayor, entre 700 y 810 °C para conseguir la formación de la fase de YBa2Cu307. La capa resultante es de 300 nm de espesor. La muestra se caracterizó por microscopía electrónica de barrido (Figura 2) y por difracción de rayos X. From the pyrolized sample, the heat treatment described in Example 1 was carried out but within a higher temperature range, between 700 and 810 ° C to achieve the formation of the YBa 2 Cu 3 0 7 phase. The resulting layer is 300 nm thick. The sample was characterized by scanning electron microscopy (Figure 2) and by X-ray diffraction.

Claims

REIVINDICACIONES
1 . Un procedimiento para la obtención de un material superconductor, que comprende la deposición de una solución que comprende al menos una sal de una tierra rara o itrio, al menos una sal de un metal alcalinotérreo, al menos una sal de un metal de transición y al menos una sal de Ag(l). one . A method for obtaining a superconducting material, comprising the deposition of a solution comprising at least one salt of a rare earth or yttrium, at least one salt of an alkaline earth metal, at least one salt of a transition metal and at minus one salt of Ag (l).
2. El procedimiento según la reivindicación anterior, caracterizado porque la proporción de sal de Ag(l) está entre un 0.5% y un 25% en peso del total de la solución. 2. The process according to the preceding claim, characterized in that the proportion of Ag (1) salt is between 0.5% and 25% by weight of the total solution.
3. El procedimiento según la reivindicación anterior, caracterizado porque la proporción de sal de Ag(l) está entre un 1 % y un 15% en peso del total de la solución. 3. The process according to the preceding claim, characterized in that the proportion of Ag (1) salt is between 1% and 15% by weight of the total solution.
4. El procedimiento según la reivindicación anterior, caracterizado porque la proporción de sal de Ag(l) está entre un 1 % y un 10% en peso del total de la solución. 4. The process according to the preceding claim, characterized in that the proportion of Ag (1) salt is between 1% and 10% by weight of the total solution.
5. El procedimiento según cualquiera de las reivindicaciones anteriores, donde la sal de Ag(l) se selecciona de la lista que comprende trifluoroacetato, nitrato, acetilacetonato, benzoato, carboxilatos, acetilacetonatos, nitratos, aminas, sulfocianuros, cianuros o sales complejadas con ácidos poliaminocarboxílicos, poliiminas u otros complejantes al uso; y cualquiera de sus combinaciones. 5. The method according to any of the preceding claims, wherein the salt of Ag (1) is selected from the list comprising trifluoroacetate, nitrate, acetylacetonate, benzoate, carboxylates, acetylacetonates, nitrates, amines, sulfocyanides, cyanides or salts complexed with acids polyaminocarboxylic, polyimines or other complexers to use; and any of its combinations.
6. El procedimiento según la reivindicación anterior, donde la sal de Ag(l) se selecciona de la lista que comprende trifluoroacetato, nitrato, acetilacetonato y cualquiera de sus combinaciones. 6. The method according to the preceding claim, wherein the Ag (1) salt is selected from the list comprising trifluoroacetate, nitrate, acetylacetonate and any combination thereof.
7. El procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque el contenido de agua de la solución es inferior al 1 .0%. 8. El procedimiento según la reivindicación anterior, caracterizado porque la concentración total de iones metálicos de la solución está entre 0.1 y 4.0 M. 7. The method according to any of the preceding claims, characterized in that the water content of the solution is less than 1.0%. 8. The method according to the preceding claim, characterized in that the total metal ion concentration of the solution is between 0.1 and 4.0 M.
9. El procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque la concentración de Ag(l) está entre 0.01 y 1 M. 9. The method according to any of the preceding claims, characterized in that the concentration of Ag (1) is between 0.01 and 1 M.
10. El procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque la solución comprende al menos un disolvente que se selecciona entre ácido acético, acetona, acetonitrilo, benceno, 1 -butanol, 2-butanol, 2-butanona, pentanona, alcohol t-butílico, tetracloruro de carbono, clorobenceno, cloroformo, ciclohexano, 1 ,2- dicloroetano, dietil éter, dietilenglicol, dietilén glicol dimetil éter, 1 ,2- dimetoxietano, dimetiléter, dimetil-formamida, dimetilsulfóxido, dioxano, etanol, acetato de etilo, etilénglicol, glicerina, heptano, triamida, hexano, metanol, metil t-butiléter, diclorometano, N-metil-2- pirrolidinona, N-metilpirrolidina, nitrometano, pentano, éter del petróleo, 1 -propanol, 2-propanol, piridina, tetrahidrofurano, tolueno, trietilamina, o-xileno, m-xileno, p-xileno y cualquiera de sus combinaciones. 1 1 . El procedimiento según de la reivindicación anterior, caracterizado porque la solución comprende al menos un disolvente que se selecciona entre metanol, etanol, isopropanol y cualquiera de sus combinaciones. 10. The process according to any of the preceding claims, characterized in that the solution comprises at least one solvent selected from acetic acid, acetone, acetonitrile, benzene, 1-butanol, 2-butanol, 2-butanone, pentanone, t-alcohol butyl, carbon tetrachloride, chlorobenzene, chloroform, cyclohexane, 1, 2- dichloroethane, diethyl ether, diethylene glycol, diethylene glycol dimethyl ether, 1, 2- dimethoxyethane, dimethyl ether, dimethylformamide, dimethylsulfoxide, dioxane, ethanol, ethyl acetate, ethylene glycol, glycerin, heptane, triamide, hexane, methanol, methyl t-butyl ether, dichloromethane, N-methyl-2-pyrrolidinone, N-methylpyrrolidine, nitromethane, pentane, petroleum ether, 1-propanol, 2-propanol, pyridine, tetrahydrofuran , toluene, triethylamine, o-xylene, m-xylene, p-xylene and any combination thereof. eleven . The process according to the preceding claim, characterized in that the solution comprises at least one solvent selected from methanol, ethanol, isopropanol and any combination thereof.
El procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende al menos un elemento que se selecciona entre Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Lu y cualquiera de sus combinaciones. The method according to any of the preceding claims, characterized in that it comprises at least one element that is select between Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Lu and any of their combinations.
13. El procedimiento según la reivindicación anterior, caracterizado porque comprende una sal que se selecciona entre sales de Y, Gd, Eu, Dy y cualquiera de sus combinaciones. 13. The method according to the preceding claim, characterized in that it comprises a salt that is selected from salts of Y, Gd, Eu, Dy and any combination thereof.
14. El procedimiento según cualquiera de las dos reivindicaciones anteriores, donde la sal de la tierra rara o de itrio se selecciona entre trifluoroacetato, acetato, acetilacetonato, naftenatos, trifluoroacetilacetonato, etilhexanoato; nitratos, sales complejadas tipo amina, cianuro, sulfocianuro, poliaminocarboxilatos, poliiminas u otros complejantes al uso; y cualquier de sus combinaciones. 15. El procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque el metal alcalinotérreo se selecciona entre Ba, Sr, Ca y cualquiera de sus combinaciones. 14. The method according to any of the two preceding claims, wherein the rare earth or yttrium salt is selected from trifluoroacetate, acetate, acetylacetonate, naphthenates, trifluoroacetylacetonate, ethylhexanoate; nitrates, complex salts such as amine, cyanide, sulfocyanide, polyaminocarboxylates, polyimines or other complexing agents; and any of its combinations. 15. The method according to any of the preceding claims, characterized in that the alkaline earth metal is selected from Ba, Sr, Ca and any combination thereof.
16. El procedimiento según la reivindicación anterior, donde el metal alcalinotérreo es Ba. 16. The method according to the preceding claim, wherein the alkaline earth metal is Ba.
17. El procedimiento según cualquiera de las dos reivindicaciones anteriores, donde la sal del el metal alcalinotérreo se selecciona entre trifluoroacetato, acetato, acetilacetonato, naftenatos, trifluoroacetilacetonato, etilhexanoato; nitratos, sales complejadas tipo amina, cianuro, sulfocianuro, poliaminocarboxilatos, poliiminas u otros complejantes al uso; y cualquier de sus combinaciones. 17. The process according to any of the two preceding claims, wherein the salt of the alkaline earth metal is selected from trifluoroacetate, acetate, acetylacetonate, naphthenates, trifluoroacetylacetonate, ethylhexanoate; nitrates, complex salts such as amine, cyanide, sulfocyanide, polyaminocarboxylates, polyimines or other complexing agents; and any of its combinations.
18. El procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque el metal de transición es Cu. 18. The method according to any of the preceding claims, characterized in that the transition metal is Cu.
19. El procedimiento según la reivindicación anterior, donde la sal de Cu se selecciona entre trifluoroacetato, acetato, acetilacetonato, naftenatos, trifluoroacetilacetonato, etilhexanoato; nitratos, sales complejadas tipo amina, cianuro, sulfocianuro, poliaminocarboxilatos, poliiminas u otros complejantes al uso; y cualquiera de sus combinaciones. 19. The process according to the preceding claim, wherein the Cu salt is selected from trifluoroacetate, acetate, acetylacetonate, naphthenates, trifluoroacetylacetonate, ethylhexanoate; nitrates, complex salts such as amine, cyanide, sulfocyanide, polyaminocarboxylates, polyimines or other complexing agents; and any of its combinations.
20. El procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende la descomposición del producto depositado. 20. The method according to any of the preceding claims, characterized in that it comprises the decomposition of the deposited product.
21 . El procedimiento según la reivindicación anterior, donde la descomposición tiene lugar entre 100 y 500 °C. 22. El procedimiento según cualquiera de las dos reivindicaciones anteriores, caracterizado porque la descomposición se lleva a cabo en atmósfera controlada de oxígeno, nitrógeno o cualquiera de sus combinaciones a una presión de 1 bar, usando un flujo de gas controlado con a una velocidad entre 0.80 y 24 mm/s, a la vez que se realiza un aumento de temperatura desde 250 °C hasta una temperatura entre 300 y 350 °C, con una rampa de calentamiento entre 30 y 600 °C/h, permaneciendo a esta temperatura durante un periodo de tiempo entre 10 y 90 min. 23. El procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende el crecimiento cristalino del producto depositado. twenty-one . The process according to the preceding claim, wherein the decomposition takes place between 100 and 500 ° C. 22. The process according to any of the two preceding claims, characterized in that the decomposition is carried out in a controlled atmosphere of oxygen, nitrogen or any combination thereof at a pressure of 1 bar, using a controlled gas flow with a velocity between 0.80 and 24 mm / s, while a temperature increase is made from 250 ° C to a temperature between 300 and 350 ° C, with a heating ramp between 30 and 600 ° C / h, remaining at this temperature for a period of time between 10 and 90 min. 23. The method according to any of the preceding claims, characterized in that it comprises the crystalline growth of the deposited product.
24. El procedimiento según la reivindicación anterior, donde el crecimiento cristalino tiene lugar a temperatura entre a 400 y 1000 °C. 24. The process according to the preceding claim, wherein the crystalline growth takes place at a temperature between 400 and 1000 ° C.
25. El procedimiento según cualquiera de las dos reivindicaciones anteriores, caracterizado porque el crecimiento cristalino se lleva a cabo en un horno en atmósfera controlada y comprende: un primer calentamiento que se lleva a cabo en una atmósfera que comprende nitrógeno, con una presión de vapor de agua entre 7 y 100 mbar y una presión de oxígeno entre 0.1 y 1 mbar, hasta una temperatura entre 700 y 820 °C; y un segundo calentamiento a una temperatura entre 300 y 500 °C a una presión de oxígeno de 1 bar durante un periodo de tiempo inferior a 8 h, seguido de un enfriamiento hasta temperatura ambiente. 25. The method according to any of the two preceding claims, characterized in that the crystalline growth is carried out in an oven in a controlled atmosphere and comprises: a first heating which is carried out in an atmosphere comprising nitrogen, with a vapor pressure of water between 7 and 100 mbar and an oxygen pressure between 0.1 and 1 mbar, up to a temperature between 700 and 820 ° C; and a second heating at a temperature between 300 and 500 ° C at an oxygen pressure of 1 bar for a period of time less than 8 h, followed by cooling to room temperature.
26. El procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque el material superconductor tiene una composición AA'2Cu307+x, donde A es una tierra rara o Y, A' es un alcalinotérreo y x está entre -1 y 0. 26. The method according to any of the preceding claims, characterized in that the superconducting material has a composition AA ' 2 Cu30 7 + x , where A is a rare earth or Y, A' is an alkaline earth and x is between -1 and 0.
27. El procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque A se selecciona entre Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Lu y cualquiera de sus combinaciones. 27. The method according to any of the preceding claims, characterized in that A is selected from Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Lu and any combination thereof.
28. El procedimiento según la reivindicación anterior, donde A es Y. 28. The method according to the preceding claim, wherein A is Y.
29. El procedimiento según cualquiera de las tres reivindicaciones anteriores, caracterizado porque A' se selecciona entre Ba, Sr, Ca y cualquiera de sus combinaciones. 29. The method according to any of the three preceding claims, characterized in that A 'is selected from Ba, Sr, Ca and any of its combinations.
30. El procedimiento según la reivindicación anterior, donde A' es Ba. 30. The method according to the preceding claim, wherein A 'is Ba.
31 . El procedimiento según cualquiera de las cinco reivindicaciones anteriores, caracterizado porque el material superconductor tiene una fórmula YBa2Cu3Ü7. 31. The method according to any of the five preceding claims, characterized in that the superconducting material has a formula YBa 2 Cu3Ü 7 .
32. El procedimiento según cualquiera de las seis reivindicaciones anteriores, caracterizado porque la disolución comprende una sal que se selecciona entre sales diversas de Zr, Ce, Sn, Ru, La, Mn, Sr, Ca y cualquiera de sus combinaciones. 32. The method according to any of the six preceding claims, characterized in that the solution comprises a salt that is selected from various salts of Zr, Ce, Sn, Ru, La, Mn, Sr, Ca and any combination thereof.
33. El procedimiento según cualquiera de las reivindicaciones 1 a 17, caracterizado porque el material que se deposita tiene una composición (Lai-yZy)2Cu04-z, donde Z es un alcalinotérreo, y es un número entre 0 y 0.2 y z es un número entre 0 y 1 . 33. The method according to any one of claims 1 to 17, characterized in that the material that is deposited has a composition (Lai-yZy) 2Cu04 -z , where Z is an alkaline earth, and is a number between 0 and 0.2 and z is a number between 0 and 1.
34. El procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque la solución se deposita sobre un substrato monocristalino o con textura biaxial. 35. El procedimiento según la reivindicación anterior, caracterizado porque el substrato se selecciona entre: una sal u óxido de una tierra rara; una sal u óxido de un alcalinotérreo; una sal u óxido de un metal de transición; y cualquiera de sus combinaciones. 36. El procedimiento según la reivindicación anterior, caracterizado porque el substrato se selecciona de la lista que comprende monocristales de SrTi03, LaAI03, YSZ y cintas metálicas biaxialmente texturadas.  34. The method according to any of the preceding claims, characterized in that the solution is deposited on a monocrystalline or biaxial textured substrate. 35. The method according to the preceding claim, characterized in that the substrate is selected from: a salt or oxide of a rare earth; a salt or oxide of an alkaline earth; a salt or oxide of a transition metal; and any of its combinations. 36. The method according to the preceding claim, characterized in that the substrate is selected from the list comprising single crystals of SrTi03, LaAI03, YSZ and biaxially textured metal tapes.
37. Un material superconductor obtenible como se describe en cualquiera de las reivindicaciones anteriores. 37. A superconducting material obtainable as described in any of the preceding claims.
38. Un producto en multicapa que comprende el material de la reivindicación anterior. 38. A multilayer product comprising the material of the preceding claim.
39. Una solución que comprende al menos una sal de una tierra rara o de itrio, al menos sal de un metal alcalinotérreo, al menos una sal de un metal de transición y al menos una sal de Ag(l). 40. Uso de la solución según cualquiera de las reivindicaciones anteriores para la obtención de un material superconductor. 39. A solution comprising at least one salt of a rare earth or yttrium, at least one salt of an alkaline earth metal, at least one salt of a transition metal and at least one salt of Ag (1). 40. Use of the solution according to any of the preceding claims for obtaining a superconducting material.
41 . Un material superconductor de fórmula YBa2Cu307., caracterizado por poseer una rugosidad de entre 0.5 y 3.0 nm rms. 41. A superconducting material of formula YBa 2 Cu307., Characterized by having a roughness of between 0.5 and 3.0 nm rms.
42. El material superconductor según la reivindicación anterior caracterizado por poseer una densidad de corriente crítica superior a 1 MA/cm2. 42. The superconducting material according to the preceding claim characterized by having a critical current density greater than 1 MA / cm 2 .
PCT/ES2010/070577 2009-09-11 2010-09-02 Superconducting strips formed from metalorganic solutions that contain two transition metals WO2011029976A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200930679A ES2355222B1 (en) 2009-09-11 2009-09-11 SUPERCONDUCTOR TAPES FORMED FROM METALLORGANIC SOLUTIONS CONTAINING TWO TRANSITIONAL METALS.
ESP200930679 2009-09-11

Publications (2)

Publication Number Publication Date
WO2011029976A2 true WO2011029976A2 (en) 2011-03-17
WO2011029976A3 WO2011029976A3 (en) 2011-07-07

Family

ID=43708031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070577 WO2011029976A2 (en) 2009-09-11 2010-09-02 Superconducting strips formed from metalorganic solutions that contain two transition metals

Country Status (2)

Country Link
ES (1) ES2355222B1 (en)
WO (1) WO2011029976A2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081710A2 (en) * 2004-01-16 2005-09-09 American Superconductor Corporation Oxide films with nanodot flux pinning centers
US20060094603A1 (en) * 2004-10-01 2006-05-04 American Superconductor Corp. Thick superconductor films with improved performance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081710A2 (en) * 2004-01-16 2005-09-09 American Superconductor Corporation Oxide films with nanodot flux pinning centers
US20060094603A1 (en) * 2004-10-01 2006-05-04 American Superconductor Corp. Thick superconductor films with improved performance

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CARIM, A.H. ET AL.: 'Nanocrystalline YBa2Cu307-delta/Ag composite particles produced by aerosol decomposition' MATERIALS LETTERS vol. 8, 1989, pages 335 - 339 *
TIERNAN, W.M. ET AL.: 'Transport properties of Ag-YBa2Cu307-x, Physica C' vol. 168, 1990, pages 189 - 194 *

Also Published As

Publication number Publication date
WO2011029976A3 (en) 2011-07-07
ES2355222B1 (en) 2012-01-31
ES2355222A1 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
US7939126B2 (en) Precursor solutions and methods of using same
KR100683186B1 (en) Multi-layer articles and methods of making same
AU771872B2 (en) Joint high temperature superconducting coated tapes
US7615515B2 (en) Oxide superconductor and method of preparing the same
AU2002216631A1 (en) Precursor solutions and methods of using same
ES2302637B1 (en) REBA2CU3O7 TYPE NANOESTRUCTURED SUPERCONDUCTOR MATERIAL (RE = RARE EARTH OR YTRIO) WITH A HIGH DENSITY OF VORTIC ANCHORAGE CENTERS AND THEIR PREPARATION METHOD.
US7919434B2 (en) Oxide superconducting film and method of preparing the same
US20110172103A1 (en) Oxide superconductor and method for producing the same
ES2259919B1 (en) PREPARATION OF ANHYDING METALORGANIC PRECURSORS AND THEIR USE FOR THE DEPOSITION AND GROWTH OF LAYERS AND SUPERCONDUCTOR RIBBONS.
ES2361707A1 (en) Method for obtaining superconducting tapes from metal-organic solutions having low fluorine content
JP5172456B2 (en) Manufacturing method of oxide superconductor
WO2011029976A2 (en) Superconducting strips formed from metalorganic solutions that contain two transition metals
JP2011201712A (en) Method for producing oriented oxide film, oriented oxide film, and oxide superconductor
Chen et al. Facile and efficient preparation of high-performance REBa2Cu3O7− x superconducting films through a novel fluorinated solution route

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10815026

Country of ref document: EP

Kind code of ref document: A2