WO2011029791A1 - Lithium-akkumulatorsystem insbesondere für den einsatz in einem standard 14v-bordnetz - Google Patents

Lithium-akkumulatorsystem insbesondere für den einsatz in einem standard 14v-bordnetz Download PDF

Info

Publication number
WO2011029791A1
WO2011029791A1 PCT/EP2010/063020 EP2010063020W WO2011029791A1 WO 2011029791 A1 WO2011029791 A1 WO 2011029791A1 EP 2010063020 W EP2010063020 W EP 2010063020W WO 2011029791 A1 WO2011029791 A1 WO 2011029791A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
lithium
electrode
accumulator
secondary battery
Prior art date
Application number
PCT/EP2010/063020
Other languages
English (en)
French (fr)
Inventor
Holger Fink
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2011029791A1 publication Critical patent/WO2011029791A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Lithium Akkumulatorsvstem especially for use in a standard 14V electrical system
  • the invention relates to an electrode for a lithium secondary battery for storing an electrical energy in a lithium secondary battery, a lithium secondary battery cell having a first and second electrode for receiving and delivering a voltage, a battery system for delivering an electrical voltage to a consumer via a Positive pole and a negative pole and a power supply network for supplying a consumer with electrical energy from a generator having an accumulator system.
  • Source voltage by displacement of lithium ions by displacement of lithium ions.
  • lithium batteries in the standard version have a large difference between their maximum rest voltage, ie their rest voltage in the fully charged state and their minimum rest voltage, so their
  • Object of the present invention is to provide an improved accumulator system for the use of today's lead-acid battery available.
  • the new accumulator system is to be able to replace today's lead-acid batteries without requiring additional development effort for the adaptation of the consumer or the generator.
  • the invention therefore provides an electrode for a lithium secondary cell for storing electrical energy in a lithium secondary battery having a predetermined number of series connected lithium secondary cells and for delivering or receiving a voltage within a lower and upper voltage limit in one Power supply network is provided.
  • the lithium accumulator cell can be connected via the electrode to an output electrode of the lithium accumulator or to an electrode of a further accumulator cell.
  • the electrode comprises a material having a voltage range between that of a minimum rest voltage and a maximum
  • Open circuit voltage of the lithium battery is less than 30%, preferably 20%, more preferably 10%, of the upper voltage limit of
  • the state of charge-rest voltage characteristic of a lithium battery cell can be changed by the material of the electrode, the state of charge-rest voltage characteristic of a lithium battery cell, can
  • Capacity losses could be met only with a lead-acid accumulator, now even with a lithium accumulator maintained or even below, so that a lead-acid accumulator by a lithium Accumulator can also be replaced if a comparatively constant rest voltage on the state of charge of the accumulator is necessary.
  • a lead-acid accumulator by a lithium Accumulator can also be replaced if a comparatively constant rest voltage on the state of charge of the accumulator is necessary.
  • the basic idea of the invention is therefore to flatten the charge state quiescent voltage characteristic of a lithium secondary battery cell through the material of an electrode in a lithium secondary battery cell.
  • a lithium secondary battery with such a lithium battery cell can thereby meet the requirements of a modern lead-acid battery and replace it, without requiring additional development effort for adaptation to a consumer or to a generator would be required.
  • the essence of the invention is therefore in the adaptation of the minimum and maximum
  • the material for an electrode for a lithium secondary battery for storing an electrical energy in a lithium secondary battery is selected such that the lithium secondary battery is provided for dispensing or receiving a supply voltage within a lower and upper voltage limit in a power supply network having a maximum rest voltage and a minimum rest voltage of the lithium accumulator between the upper and lower voltage limit sets.
  • the lithium battery cell is via the electrode with a
  • the active material for the cathode of the lithium-ion battery cell may be lithium iron phosphate, as this the voltage limits are met.
  • the minimum rest voltage of the lithium secondary battery may be equal to or greater than the minimum rest voltage of a lead-acid battery for storing electrical energy in a 14V vehicle electrical system, and the maximum rest voltage of the lithium secondary battery may be less than or equal to the maximum rest voltage of the lead acid Be accumulator.
  • the electrode according to the invention is designed so that for at least one lithium accumulator cell in the lithium accumulator, the voltage range between the minimum and maximum rest voltage of a lead-acid accumulator for storing electrical energy in a 14V electrical system of a vehicle falls. With such a dimensioned electrode, the properties of a
  • Lithium accumulator can be adapted to the properties of the lead-acid accumulator via a lithium accumulator cell having the electrode according to the invention with respect to the rest voltage change of the lithium accumulator on its state of charge.
  • the distance between the voltage range to the minimum open circuit voltage of the lead-acid battery is greater than the distance of the voltage range to the maximum open circuit voltage of the lead acid battery. This allows not only the properties of the lithium secondary battery with the electrode according to the invention in comparison to the lead
  • Acid accumulator continue to improve, but also to operate the lithium accumulator with a higher voltage than the lead-acid battery.
  • the number of lithium secondary battery cells connected in series may be three or four.
  • the maximum rest voltage of the lithium secondary cell may preferably be set at 3.2V and the minimum rest voltage at 3.0V.
  • a nominal voltage of approx. 3,1V can be achieved, so that from a simple
  • the invention also provides a lithium secondary battery cell having first and second electrodes for receiving and delivering a voltage, wherein the first electrode and / or the second electrode is an electrode according to the invention.
  • the invention also provides a lithium accumulator for delivering an electrical voltage to a consumer via a positive pole and a negative pole with at least two lithium accumulator cells having the electrode according to the invention and connected in series.
  • the invention also provides an energy supply network
  • the power supply network has an accumulator according to the invention, which is provided for receiving the electrical energy from the generator and for delivering the electrical energy to the consumer.
  • the power supply network is preferably a 14V vehicle electrical system, in particular for a vehicle.
  • Figure 1 is a block diagram of a power supply network with a
  • Figure 2 shows the rest voltage characteristic over the state of charge of a
  • FIG. 3 shows the quiescent voltage characteristics over the state of charge of a
  • FIG. 4 shows the quiescent voltage characteristics over the state of charge of a
  • FIG. 5 shows the quiescent voltage characteristics over the state of charge of a
  • FIG. 1 shows the block diagram of a power supply network with a
  • Power supply network a current 14V on-board network 2 in a motor vehicle and to supply a consumer 8 with electrical energy from a generator 6 via an accumulator 4 is provided.
  • the generator 6 charges the accumulator 4 with electrical energy which is then applied to the battery
  • a starter 10 may be provided for the vehicle, which is supplied with electrical energy from the generator 6 and / or the accumulator 4.
  • the vehicle electrical system voltage is in a conventional 14V vehicle electrical system 2 while driving - depending on the temperature and state of charge of a conventional accumulator 4 - in a range between a lower voltage limit 24 of about 10.8V and an upper
  • On-board voltages 22, 24 lead-acid batteries are used. Their maximum rest voltage, ie their rest voltage in the fully charged state, which corresponds to a state of charge of 100%, is typically 12.8V. Their minimum open circuit voltage, ie their open circuit voltage in a fully discharged state, in which the lead-acid batteries are unloaded, is typically 10.8V. Thus, conventionally, the upper and lower voltage limit 1 1, 13 were observed for the 14V vehicle electrical system 2. The challenge that arises when replacing a lead-acid battery by a lithium accumulator in the 14V on-board network 2, these are Voltage limits 22, 24 for the 14V electrical system 2 over the entire
  • Figure 2 is a state of charge-rest voltage characteristic 12 of a
  • the cathode of a conventional lithium secondary battery is made of lithium-nickel-cobalt-aluminum oxide.
  • the minimum rest voltage 14 of the conventional lithium secondary battery is about 2.7V, while its maximum rest voltage 16 is about 4.2V.
  • the upper characteristic curve 18 in FIG. 3 shows the quiescent voltage curve of a lithium accumulator from a series connection of four conventional lithium accumulator cells via its state of charge.
  • Voltage limit 22 of the 14V electrical system of 15V so that the capacity of each lithium battery cells can be used in this case, only about 50%.
  • the lower curve 20 in FIG. 3 represents the quiescent voltage of a lithium
  • lithium batteries are for the use as accumulator 4 in the 14V electrical system 2 not suitable.
  • the lithium accumulator cells ideally have a different voltage level and at the same time a smaller difference between maximum and minimum
  • Accumulator be selected depending on their required voltage level.
  • the necessary voltage level of the individual lithium battery cells is determined by what is to be achieved by a series connection of, for example, three or four lithium battery cells 14V vehicle electrical system 2 as a voltage.
  • Voltage limit 22, 24 of the 14V electrical system 2 to exceed or fall below.
  • FIG. 4 shows a state of charge rest voltage characteristic curve 26 of a lithium secondary cell in which lithium iron phosphate is used as the material for its cathode.
  • This lithium accumulator cell is excellently suited for use in the 14V vehicle electrical system 2. Your minimum
  • Open circuit voltage 30 is approximately 3.0V while its maximum open circuit voltage 28 is approximately 3.2V.
  • a charge state quiescent voltage characteristic 32 is shown for a
  • the invention also applies to energy supply networks other than the described 14V vehicle electrical system, e.g. for wind turbines, photovoltaic systems, etc ..
  • According to the invention can be influenced by the material of the electrode of a lithium battery cell their state of charge-rest voltage characteristic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Die vorliegende Erfindung bezieht sich auf eine Elektrode für eine Lithium-Akkumulatorzelle zum Speichern elektrischer Energie in einem Lithium-Akkumulator (4), der eine bestimmte Anzahl von in Reihe geschalteten Lithium-Akkumulatorzellen aufweist und zur Abgabe oder Aufnahme einer Spannung innerhalb einer unteren und oberen Spannungsgrenze (22, 24) in einem Energieversorgungsnetz (2) vorgesehen ist. Die Lithium-Akkumulatorzelle ist über die Elektrode mit einer Ausgangselektrode des Lithium-Akkumulators (4) oder einer Elektrode einer weiteren Akkumulatorzelle verbindbar. Die Elektrode weist ein Material auf, das den Spannungsbereich zwischen einer minimalen Ruhespannung (36) und einer maximalen Ruhespannung (34) des Lithium-Akkumulators zwischen die untere und obere Spannungsgrenze (22, 24) schiebt.

Description

Beschreibung
Titel
Lithium-Akkumulatorsvstem insbesondere für den Einsatz in einem Standard 14V-Bordnetz
Stand der Technik
Die Erfindung betrifft eine Elektrode für eine Lithium-Akkumulatorzelle zum Speichern einer elektrischen Energie in einem Lithium-Akkumulator, eine Lithium-Akkumulatorzelle mit einer ersten und zweiten Elektrode zur Aufnahme und Abgabe einer Spannung, ein Akkumulatorsystem zur Abgabe einer elektrischen Spannung an einen Verbraucher über einen Pluspol und einen Minuspol und ein Energieversorgungsnetz zur Versorgung eines Verbrauchers mit elektrischer Energie von einem Generator, das ein Akkumulatorsystem aufweist.
Es zeichnet sich ab, dass in Zukunft bei stationären Anwendungen, wie
Windkraftanlagen, als auch in Fahrzeugen, wie Hybrid- und Elektrofahrzeugen, vermehrt neue Akkumulatorsysteme zum Einsatz kommen werden. Lithium- Akkumulatoren könnten dafür in Frage kommen. Sie erzeugen eine
Quellenspannung durch Verschiebung von Lithium-Ionen.
Lithium-Akkumulatoren weisen jedoch in Standardausführung eine große Differenz zwischen ihrer maximalen Ruhespannung, also ihrer Ruhespannung im voll geladenen Zustand und ihrer minimalen Ruhespannung, also ihrer
Ruhespannung im voll entladenen Zustand auf. Dies macht derartige Lithium- Akkumulatoren eher ungeeignet zur Anwendung mit Generatoren und
Verbrauchern, die eine vergleichsweise konstante Ruhespannung über den Ladezustand des Akkumulators voraussetzen, so dass hier zusätzliche Mittel zur Spannungsanpassung zwischen Lithium-Akkumulator und Generator oder Verbraucher notwendig sind. Herkömmlich kommen daher in derartigen Anwendungen Blei-Säure- Akkumulatoren zum Einsatz, deren Spannungsdifferenz zwischen maximaler und minimaler Ruhespannung geringer ist. Der Blei-Säure-Akkumulator weist in vollgeladenem Zustand (State of Charge SOC=100%) üblicherweise eine Spannung von 12,8V auf. Bei entladenem Akkumulator (State of Charge
SOC=0%) weist der Akkumulator unbelastet eine Klemmenspannung von typischerweise 10,8V auf.
Offenbarung der Erfindung
Aufgabe der vorliegenden Erfindung ist es, ein verbessertes Akkumulatorsystem für den Einsatz des heutigen Blei-Säure-Akkumulators zur Verfügung zu stellen. Das neue Akkumulatorsystem soll die heutigen Blei-Säure-Akkumulatoren ersetzen können, ohne dass dabei zusätzlicher Entwicklungsaufwand für die Anpassung der Verbraucher oder des Generators erforderlich wird.
Die Erfindung gibt daher eine Elektrode für eine Lithium-Akkumulatorzelle zum Speichern einer elektrischen Energie in einem Lithium-Akkumulator an, der eine bestimmte Anzahl von in Reihe geschalteten Lithium-Akkumulatorzellen aufweist und zur Abgabe oder Aufnahme einer Spannung innerhalb einer unteren und oberen Spannungsgrenze in einem Energieversorgungsnetz vorgesehen ist. Die Lithium-Akkumulatorzelle ist über die Elektrode mit einer Ausgangselektrode des Lithium-Akkumulators oder einer Elektrode einer weiteren Akkumulatorzelle verbindbar. Die Elektrode weist ein Material auf, das einen Spannungsbereich zwischen der einer minimalen Ruhespannung und einer maximalen
Ruhespannung des Lithium-Akkumulators kleiner als 30%, vorzugsweise 20%, weiter vorzugsweise 10%, der oberen Spannungsgrenze des
Energieversorgungsnetzes festlegt.
Da durch das Material der Elektrode die Ladezustand-Ruhespannungskennlinie einer Lithium-Akkumulatorzelle verändert werden kann, können
Spannungsgrenzen, die ursprünglich ohne technischen Aufwand und
Kapazitätseinbußen nur mit einem Blei-Säure-Akkumulator eingehalten werden konnten, nun auch mit einem Lithium-Akkumulator eingehalten oder sogar noch unterschritten werden, so dass ein Blei-Säure-Akkumulator durch einen Lithium- Akkumulator auch dann ersetzt werden kann, wenn eine vergleichsweise konstante Ruhespannung über den Ladezustand des Akkumulators notwendig ist. So kann in diesen Anwendungsfällen zur Abgabe und Speicherung der gleichen elektrischen Energie nicht nur ein Akkumulator mit weniger Volumen und weniger Gewicht, sondern auch mit einer längeren Lebensdauer hinsichtlich seiner kalendarischen Lebensdauer und seines Ladungsdurchsatzes eingesetzt werden.
Grundgedanke der Erfindung ist es demzufolge, durch das Material einer Elektrode in einer Lithium-Akkumulatorzelle die Ladezustand- Ruhespannungskennlinie einer Lithium-Akkumulatorzelle abzuflachen. Ein Lithium-Akkumulator mit einer derartigen Lithium-Akkumulatorzelle kann dadurch die Anforderungen an einen heutigen Blei-Säure-Akkumulator erfüllen und diesen ersetzen, ohne dass dabei zusätzlicher Entwicklungsaufwand für die Anpassung an einen Verbraucher oder an einen Generator erforderlich wäre. Der Kern der Erfindung liegt daher in der Anpassung der minimalen und maximalen
Ruhespannung eines Lithium-Akkumulators durch eine geeignete Materialwahl für wenigstens eine Elektrode einer seiner Lithium-Akkumulatorzellen.
Erfindungsgemäß wird das Material für eine Elektrode für eine Lithium- Akkumulatorzelle zum Speichern einer elektrischen Energie in einem Lithium- Akkumulator derart ausgewählt, dass der Lithium-Akkumulator zur Abgabe oder Aufnahme einer Versorgungsspannung innerhalb einer unteren und oberen Spannungsgrenze in einem Energieversorgungsnetz vorgesehen ist, die eine maximale Ruhespannung und eine minimale Ruhespannung des Lithium- Akkumulators zwischen die obere und untere Spannungsgrenze festlegt. Dabei ist die Lithium-Akkumulatorzelle ist über die Elektrode mit einer
Ausgangselektrode des Lithium-Akkumulators oder einer Elektrode einer weiteren Akkumulatorzelle verbindbar.
Die Unteransprüche zeigen bevorzugte Weiterbildungen der Erfindung.
Das Aktivmaterial für die Kathode der Lithium-Ionen-Akkumulatorzelle kann Lithium-Eisenphosphat sein, da hiermit die Spannungsgrenzen eingehalten werden. Die minimale Ruhespannung des Lithium-Akkumulators kann größer gleich der minimalen Ruhespannung eines Blei-Säure-Akkumulators zur Speicherung von elektrischer Energie in einem 14V-Bordnetz eines Fahrzeugs, und die maximale Ruhespannung des Lithium-Akkumulators kann kleiner gleich der maximalen Ruhespannung des Blei-Säure-Akkumulators sein. Das Material der
erfindungsgemäßen Elektrode ist so ausgelegt, dass für wenigstens eine Lithium- Akkumulatorzelle im Lithium-Akkumulator der Spannungsbereich zwischen die minimale und maximale Ruhespannung eines Blei-Säure-Akkumulators zur Speicherung von elektrischer Energie in einem 14V-Bordnetz eines Fahrzeuges fällt. Mit einer derartig dimensionierten Elektrode können die Eigenschaften eines
Lithium-Akkumulators über eine die erfindungsgemäße Elektrode aufweisende Lithium-Akkumulatorzelle hinsichtlich der Ruhespannungsänderung des Lithium- Akkumulators über seinen Ladezustand an die Eigenschaften des Blei-Säure- Akkumulators angepasst werden.
Dabei kann auch festgelegt werden, dass der Abstand des Spannungsbereichs zur minimalen Ruhespannung des Blei-Säure-Akkumulators größer ist, als der Abstand des Spannungsbereiches zur maximalen Ruhespannung des Blei- Säure-Akkumulators. Dies erlaubt es, nicht nur die Eigenschaften des Lithium- Akkumulators mit der erfindungsgemäßen Elektrode im Vergleich zum Blei-
Säure-Akkumulator weiter zu verbessern, sondern auch, den Lithium- Akkumulator mit einer höheren Spannungslage als den Blei-Säure-Akkumulator zu betreiben. In einer besonderen Ausführungsform des Lithium-Akkumulators kann die Anzahl der in Reihe geschalteten Lithium-Akkumulatorzellen drei oder vier sein.
Die maximale Ruhespannung der Lithium-Akkumulatorzelle kann vorzugsweise auf 3,2V und die minimale Ruhespannung auf 3,0V eingestellt werden. So kann eine Nennspannung von ca. 3,1V erreicht werden, so dass aus einer einfachen
Serienschaltung mehrerer erfindungsgemäßer Lithium-Akkumulatorzellen ein Akkumulator für gängige 12V-Anwendungen bereitgestellt werden kann.
Die Erfindung gibt auch eine Lithium-Akkumulatorzelle mit einer ersten und zweiten Elektrode zur Aufnahme und Abgabe einer Spannung an, wobei die erste Elektrode und/oder die zweite Elektrode eine erfindungsgemäße Elektrode ist.
Die Erfindung gibt auch einen Lithium-Akkumulator zur Abgabe einer elektrischen Spannung an einen Verbraucher über einen Pluspol und einen Minuspol mit wenigstens zwei die erfindungsgemäße Elektrode aufweisenden und in Reihe geschalteten Lithium-Akkumulatorzellen an.
Die Erfindung gibt darüber hinaus auch ein Energieversorgungsnetz zur
Versorgung eines Verbrauchers mit elektrischer Energie von einem Generator an. Das Energieversorgungsnetz besitzt einen erfindungsgemäßen Akkumulator, der zur Aufnahme der elektrischen Energie von dem Generator und zur Abgabe der elektrischen Energie an den Verbraucher vorgesehen ist.
Das Energieversorgungsnetz ist vorzugsweise ein 14V-Bordnetz insbesondere für ein Fahrzeug.
Zeichnungen
Nachfolgend werden nicht einschränkende Ausführungsbeispiele der Erfindung unter Bezugnahme auf die begleitenden Zeichnungen im Detail beschrieben. In den Zeichnungen zeigen:
Figur 1 ein Blockschaltbild eines Energieversorgungsnetzes mit einem
Akkumulatorsystem;
Figur 2 die Ruhespannungskennlinie über den Ladezustand einer
herkömmlichen Lithium-Akkumulatorzelle;
Figur 3 die Ruhespannungskennlinien über den Ladezustand eines
Akkumulators mit drei und vier herkömmlichen Lithium- Akkumulatorzellen;
Figur 4 die Ruhespannungskennlinien über den Ladezustand einer
erfindungsgemäßen Lithium-Akkumulatorzelle; Figur 5 die Ruhespannungskennlinien über den Ladezustand eines
Akkumulators mit vier erfindungsgemäßen Lithium- Akkumulatorzellen; Bevorzugte Ausführungsformen der Erfindung
Nachfolgend werden unter Bezugnahme auf die Figuren bevorzugte
Ausführungsformen der Erfindung im Detail beschrieben. In Figur 1 ist das Blockschaltbild eines Energieversorgungsnetzes mit einem
Akkumulatorsystem gezeigt. In der vorliegenden Ausführung ist das
Energieversorgungsnetz ein heutiges 14V-Bordnetzes 2 in einem Kraftfahrzeug und zur Versorgung eines Verbrauchers 8 mit elektrischer Energie von einem Generator 6 über einen Akkumulator 4 vorgesehen. Dazu lädt der Generator 6 den Akkumulator 4 mit elektrischer Energie auf, der diese dann an den
Verbraucher 8 wieder abgibt. Ferner kann in dem 14V-Bordnetz 2 auch ein Starter 10 für das Fahrzeug vorgesehen sein, der mit elektrischer Energie von dem Generator 6 und/oder dem Akkumulator 4 versorgt wird. Bei den meisten Fahrzeugherstellern liegt die Bordnetzspannung in einem herkömmlichen 14V-Bordnetzes 2 im Fahrbetrieb - je nach Temperatur und Ladezustand eines herkömmlichen Akkumulator 4 - in einem Bereich zwischen einer unteren Spannungsgrenze 24 von etwa 10,8V und einer oberen
Spannungsgrenze 22 von etwa 15V.
Herkömmlich kamen für den Akkumulator 4 zur Bereitstellung dieser
Bordnetzspannungen 22, 24 Blei-Säure-Akkumulatoren zum Einsatz. Ihre maximale Ruhespannung, also ihre Ruhespannung im voll geladenen Zustand, was einem Ladezustand von 100% entspricht, ist typischerweise 12,8V. Ihre minimale Ruhespannung, also ihre Ruhespannung in einem vollständig entladenen Zustand, in dem die Blei-Säure-Akkumulatoren unbelastet sind, ist typischerweise 10,8V. Damit konnten herkömmlich die obere und untere Spannungsgrenze 1 1 , 13 für das 14V-Bordnetz 2 eingehalten werden. Die Herausforderung, die sich beim Ersatz eines Blei-Säure Akkumulators durch einen Lithium-Akkumulator im 14V-Bordnetz 2 stellen, sind diese Spannungsgrenzen 22, 24 für das 14V-Bordnetz 2 über den gesamten
Ladezustandsbereich des Lithium-Akkumulators einzuhalten. Herkömmliche Lithium-Akkumulatoren für den Einsatz in Systemen aus dem Consumer-Bereich erfüllen diese Anforderungen nicht.
In Figur 2 ist eine Ladezustands-Ruhespannungskennlinie 12 einer
herkömmlichen Lithium-Akkumulatorzelle für einen herkömmlichen Lithium- Akkumulator gezeigt. Die Kathode eines herkömmlichen Lithium- Akkumulatorzelle besteht aus Lithium-Nickel-Kobald-Aluminiumoxid. Die minimale Ruhespannung 14 der herkömmlichen Lithium-Akkumulatorzelle beträgt circa 2,7V, während ihre maximale Ruhespannung 16 circa 4,2V beträgt.
Um einen Lithium-Akkumulator als Akkumulator 4 für den Einsatz im 14V- Bordnetz 2 zu realisieren, könnten entweder drei oder vier dieser herkömmlichen Lithium-Akkumulatorzellen in Serie geschaltet werden, um eine
Bordnetzspannung zwischen den Spannungsgrenzen 22, 24 des MV- Bordnetzes 2, also zwischen 10,8V und 15V zu erhalten.
In Figur 3 sind die entsprechenden Ladezustands- Ruhespannungskennlinien 18, 20 der Lithium-Akkumulatoren gezeigt.
Die obere Kennlinie 18 in Figur 3 zeigt den Ruhespannungsverlauf eines Lithium- Akkumulators aus einer Serienschaltung von vier herkömmlichen Lithium- Akkumulatorzellen über seinen Ladezustand. Die Spannung dieses Lithium- Akkumulators oberhalb seines Ladezustandes von 50% übersteigt die obere
Spannungsgrenze 22 des 14V-Bordnetzes von 15V, so dass die Kapazität der einzelnen Lithium-Akkumulatorzellen in diesem Fall nur zu circa 50% genutzt werden kann. Die untere Kurve 20 in Figur 3 stellt die Ruhespannung eines Lithium-
Akkumulators aus einer Serienschaltung von drei herkömmlichen Lithium- Akkumulatorzellen über seinen Ladezustand dar. Die Ruhespannung dieses Lithium-Akkumulators unterhalb seines Ladezustands von 45% fällt unter die untere Spannungsgrenze 24 des 14V-Bordnetzes von 10,8V, so dass die Kapazität der einzelnen Lithium-Akkumulatorzellen in diesem Fall nur zu circa
55% genutzt werden kann. Da ein Lithium-Akkumulator aus einer Serienschaltung von herkömmlichen Lithium-Akkumulatorzellen sowohl bei der Serienschaltung von drei Zellen als auch bei der Serienschaltung von vier Zellen nur zu maximal 55% hinsichtlich der von den Zellen verfügbaren Speicherkapazität ausgenutzt werden kann, sind derartige Lithium-Akkumulatoren für den Einsatz als Akkumulator 4 im 14V- Bordnetz 2 nicht geeignet. Für den Einsatz im 14V-Bordnetz 2 müssen die Lithium-Akkumulatorzellen idealerweise eine andere Spannungslage und gleichzeitig eine geringere Differenz zwischen maximaler und minimaler
Ruhespannung aufweisen.
Erfindungsgemäß wird für den Einsatz der Lithium-Zelltechnologien im
Akkumulator 4 des 14V-Bordnetzes 2 das Material der Anode und/oder der Kathode einer herkömmlichen Lithium-Akkumulatorzelle verändert. Damit kann der Verlauf der Ruhespannung über den Ladungszustand der Lithium-
Akkumulatorzelle und damit ihre Ladezustands-Ruhespannungskennlinie beeinflusst werden, so dass die Spannungsgrenzen 22, 24 für das 14V-Bordnetz eingehalten werden können, ohne dass die Lithium-Akkumulatorzelle nur teilweise hinsichtlich ihrer verfügbaren Speicherkapazität ausgenutzt werden muss. Das Material der Anode und/oder der Kathode muss für die Lithium-
Akkumulatorzellen abhängig von ihrer benötigten Spannungslage ausgewählt werden. Die notwendige Spannungslage der einzelnen Lithium- Akkumulatorzellen bestimmt sich danach, was durch eine Serienschaltung von beispielsweise drei oder vier Lithium-Akkumulatorzellen 14V-Bordnetz 2 als Spannungslage erreicht werden soll. Die Differenz der maximalen und minimalen
Ruhespannung der Lithium-Akkumulatorzelle muss dabei so gering sein, dass der Akkumulator 4 den gesamten Ladezustandsbereich der Lithium- Akkumulatorzellen nutzen kann, ohne die obere und untere
Spannungsgrenze 22, 24 des 14V-Bordnetzes 2 zu über- bzw. unterschreiten.
In Figur 4 ist eine Ladezustands-Ruhespannungskennlinie 26 einer Lithium- Akkumulatorzelle gezeigt, in der als Material für ihre Kathode Lithium- Eisenphosphat zum Einsatz kommt. Diese Lithium-Akkumulatorzelle ist für die Verwendung im 14V-Bordnetz 2 ausgezeichnet geeignet. Ihre minimale
Ruhespannung 30 beträgt circa 3,0V während ihre maximale Ruhespannung 28 circa 3,2V beträgt. ln Figur 5 ist eine Ladezustands-Ruhespannungskennlinie 32 für eine
Serienschaltung aus vier Lithium-Akkumulatorzellen gezeigt. Bei voll geladenen Akkumulatorzellen weist diese Serienschaltung - wie heutige Blei-Säure- Akkumulatorsysteme, eine maximale Ruhespannung 34 von 12,8V auf. Bei vollständig entladenen Akkumulatorzellen weist die Serienschaltung eine minimale Ruhespannung 36 von 12,0V auf. Die Spannungslage liegt - aufgrund des sehr flachen Verlaufs der Ruhespannungskennlinie der Serienschaltung - höher als bei einem Blei-Säure-Akkumulator. Dies stellt einen erheblichen Vorteil gegenüber den Blei-Säure-Akkumulatoren dar.
Durch Auswahl einer geeigneten Technologie können weitere Eigenschaften der Batterie optimiert werden. Dies können beispielsweise die Kaltstartfähigkeit oder die Eignung für hohe Betriebstemperaturen im Motorraum sein. Weiter findet die Erfindung auch in anderen Energieversorgungsnetzen als dem beschriebenen 14V-Bordnetz Anwendung, z.B. für Windkraftanlagen, Photovoltaikanlagen, etc..
Erfindungsgemäß kann über das Material der Elektrode einer Lithium- Akkumulatorzelle ihre Ladezustands-Ruhespannungskennlinie beeinflusst werden.
Neben der obigen Offenbarung wird hier ausdrücklich auf die Offenbarung der Figuren verwiesen.

Claims

Ansprüche
1 . Elektrode für eine Lithium-Akkumulatorzelle zum Speichern einer
elektrischen Energie in einem Lithium-Akkumulator, der eine bestimmte Anzahl von in Reihe geschalteten Lithium-Akkumulatorzellen aufweist und zur Abgabe oder Aufnahme einer Versorgungsspannung innerhalb einer unteren und oberen Spannungsgrenze in einem Energieversorgungsnetz vorgesehen ist, wobei die Lithium-Akkumulatorzelle über die Elektrode mit einer Ausgangselektrode des Lithium-Akkumulators oder einer Elektrode einer weiteren Akkumulatorzelle verbindbar ist, dadurch gekennzeichnet, dass die Elektrode ein Material aufweist, das einen Spannungsbereich zwischen der einer minimalen Ruhespannung (34) und einer maximalen Ruhespannung (36) des Lithium-Akkumulators kleiner als 30%,
vorzugsweise 20%, weiter vorzugsweise 10%, der oberen Spannungsgrenze des Energieversorgungsnetzes festlegt.
2. Elektrode nach Anspruch 1 , wobei das Material Lithium-Eisenphosphat ist.
3. Elektrode nach Anspruch 1 oder 2, wobei die minimale Ruhespannung (34) des Lithium-Akkumulators größer gleich der minimalen Ruhespannung eines Blei-Säure-Akkumulators zur Speicherung von elektrischer Energie in einem 14V-Bordnetz eines Fahrzeugs und die maximale Ruhespannung (36) des Lithium-Akkumulators kleiner gleich der maximalen Ruhespannung des Blei- Säure-Akkumulators ist.
4. Elektrode nach einem der vorstehenden Ansprüche, wobei der Abstand des Spannungsbereiches zur minimalen Ruhespannung des Blei-Säure- Akkumulators größer ist, als der Abstand des Spannungsbereiches zur maximalen Ruhespannung des Blei-Säure-Akkumulators.
5. Elektrode nach einem der vorstehenden Ansprüche, wobei die Lithium- Akkumulatorzelle zur Abgabe oder Aufnahme einer elektrischen Spannung innerhalb einer minimalen Ruhespannung (30) von 3,0V und einer maximalen Ruhespannung (28) von 3,2V vorgesehen ist.
6. Lithium-Akkumulatorzelle mit einer ersten und zweiten Elektrode zur
Aufnahme und Abgabe einer Spannung, wobei die erste Elektrode und/oder die zweite Elektrode eine Elektrode nach einem der vorstehenden
Ansprüche ist.
7. Lithium-Akkumulator zur Abgabe einer elektrischen Spannung an ein
Energieversorgungsnetz (2) über einen Pluspol und einen Minuspol, mit wenigstens zwei Lithium-Akkumulatorzellen nach Anspruch 6, die zwischen dem Pluspol und dem Minuspol in Reihe geschaltet sind.
8. Lithium-Akkumulator nach Anspruch 7, wobei die Anzahl der in Reihe
geschalteten Lithium-Akkumulatorzellen drei oder vier ist.
9. Energieversorgungsnetz zur Versorgung eines Verbrauchers (8) mit
elektrischer Energie von einem Generator (6), mit einem Lithium- Akkumulator (4) nach Anspruch 7 oder 8 zur Aufnahme der elektrischen Energie von dem Generator (6) und zur Abgabe der elektrischen Energie an den Verbraucher (8).
10. Energieversorgungsnetz nach Anspruch 9, wobei das
Energieversorgungsnetz (2) ein 14V-Bordnetz, insbesondere für ein Fahrzeug, ist.
PCT/EP2010/063020 2009-09-08 2010-09-06 Lithium-akkumulatorsystem insbesondere für den einsatz in einem standard 14v-bordnetz WO2011029791A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009029268.3 2009-09-08
DE102009029268A DE102009029268A1 (de) 2009-09-08 2009-09-08 Lithium-Akkumulatorsystem insbesondere für den Einsatz in einem Standard 14V-Bordnetz

Publications (1)

Publication Number Publication Date
WO2011029791A1 true WO2011029791A1 (de) 2011-03-17

Family

ID=42979796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/063020 WO2011029791A1 (de) 2009-09-08 2010-09-06 Lithium-akkumulatorsystem insbesondere für den einsatz in einem standard 14v-bordnetz

Country Status (2)

Country Link
DE (1) DE102009029268A1 (de)
WO (1) WO2011029791A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012204962A1 (de) 2012-03-28 2013-10-02 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit Lithium-Ionen-Batterie
DE102015210264A1 (de) 2015-06-03 2016-12-08 Bayerische Motoren Werke Aktiengesellschaft Verbessertes Antriebs- und Bordnetzsystem für ein elektrisch angetriebenes Fahrzeug

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006048872A1 (de) * 2006-10-17 2008-05-08 Dr.Ing.H.C. F. Porsche Ag Bordnetz eines Kraftfahrzeugs
DE102008004236A1 (de) * 2008-01-14 2009-07-16 Temic Automotive Electric Motors Gmbh Energiespeicher und Bordnetz mit einem solchen Energiespeicher

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006048872A1 (de) * 2006-10-17 2008-05-08 Dr.Ing.H.C. F. Porsche Ag Bordnetz eines Kraftfahrzeugs
DE102008004236A1 (de) * 2008-01-14 2009-07-16 Temic Automotive Electric Motors Gmbh Energiespeicher und Bordnetz mit einem solchen Energiespeicher

Also Published As

Publication number Publication date
DE102009029268A1 (de) 2011-03-10

Similar Documents

Publication Publication Date Title
DE102009014499B4 (de) Brennstoffzellensystem zum vollständigen Aufladen einer elektrischen Energiespeichereinrichtung
DE112005003104T5 (de) Hybridbrennstoffzellensystem mit Batterie-Kondensator-Energiespeichersystem
DE102010024235A1 (de) Akkumulatorzelle und Batterie
DE102012212654A1 (de) Energiespeicher für Photovoltaikanalage, Energiespeicherkraftwerk, Steuereinrichtung und Verfahren zum Betreiben eines Energiespeichers
DE102007026003A1 (de) Brennstoffzellensystem mit verbesserten Kaltstarteigenschaften sowie Verfahren
EP2685539B1 (de) Energiespeichervorrichtung für eine Photovoltaikanlage und Verfahren zum Betreiben einer Energiespeichervorrichtung einer Photovoltaikanlage
DE102017210618A1 (de) Elektrische Energieliefervorrichtung mit einer Vielzahl von Nutzeinheiten, die zu Strängen verschaltet sind, sowie Verfahren zum Betreiben der Energieliefervorrichtung
DE102009034596A1 (de) Parallelschaltung von Energiespeichern mit schaltbarer Ausgleichszelle
DE102009029335A1 (de) Lithium-Ionen Batteriesystem für µ-Hybrid-Fahrzeuge
DE102017210611A1 (de) Elektrische Energieliefervorrichtung mit einer Stromschienenmatrix sowie Verfahren zum Betreiben der Energieliefervorrichtung
DE102017210617A1 (de) Elektrische Energieliefervorrichtung mit Stromschienenmatrix sowie Verfahren zum Betreiben der Energieliefervorrichtung
EP3173280B1 (de) Batterie, fahrzeug mit einer solchen batterie und verwendung einer solchen batterie
DE102015006280A1 (de) Fahrzeug und elektrische Antriebsvorrichtung für ein Fahrzeug
EP1588448B1 (de) Brennstoffzellensystem und verfahren zum betreiben eines brennstoffzellensystems
EP1332539A1 (de) Batterieladevorrichtung und verfahren zum laden von batterien mit mehreren batterieblöcken
WO2003107464A2 (de) Hybridenergiequelle
WO2011029791A1 (de) Lithium-akkumulatorsystem insbesondere für den einsatz in einem standard 14v-bordnetz
DE102017201604A1 (de) Ladeschaltung mit Gleichspannungswandler und Ladeverfahren für ein elektrisches Energiespeichersystem
DE102012204962A1 (de) Fahrzeug mit Lithium-Ionen-Batterie
DE102011077664A1 (de) Energiespeichersystem mit einer Vergleichmäßigungseinrichtung zum Vergleichmäßigen von Ladezuständen von Energiespeichereinheiten
DE102009035475A1 (de) Fahrzeug mit einer Batterieanordnung und Verfahren zur Steuerung des Fahrzeugs
DE102013009991A1 (de) Fremdstartfähige Integration einer Batterie in ein Kraftfahrzeug-Bordnetz
DE102015003122A1 (de) Kraftfahrzeug mit einer Batterieanordnung und Verfahren zum Betrieb einer Batterieanordnung
DE102014019500A1 (de) Verfahren zur Ansteuerung einer elektrischen Batterie, Batterie und Batteriesteuergerät
DE102018217389A1 (de) Elektrischer Energiespeicher mit einem Gehäuse und mindestens zwei aus dem Gehäuse geführten Polanschlüssen und dessen Verwendung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10751924

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10751924

Country of ref document: EP

Kind code of ref document: A1