WO2011027406A1 - Method for reproduction by information recording reproduction device - Google Patents

Method for reproduction by information recording reproduction device Download PDF

Info

Publication number
WO2011027406A1
WO2011027406A1 PCT/JP2009/004393 JP2009004393W WO2011027406A1 WO 2011027406 A1 WO2011027406 A1 WO 2011027406A1 JP 2009004393 W JP2009004393 W JP 2009004393W WO 2011027406 A1 WO2011027406 A1 WO 2011027406A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
probe
recorded
bits
bit
Prior art date
Application number
PCT/JP2009/004393
Other languages
French (fr)
Japanese (ja)
Inventor
冨澤泰
中村博昭
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2009/004393 priority Critical patent/WO2011027406A1/en
Publication of WO2011027406A1 publication Critical patent/WO2011027406A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1418Disposition or mounting of heads or record carriers
    • G11B9/1427Disposition or mounting of heads or record carriers with provision for moving the heads or record carriers relatively to each other or for access to indexed parts without effectively imparting a relative movement
    • G11B9/1436Disposition or mounting of heads or record carriers with provision for moving the heads or record carriers relatively to each other or for access to indexed parts without effectively imparting a relative movement with provision for moving the heads or record carriers relatively to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q80/00Applications, other than SPM, of scanning-probe techniques

Definitions

  • the present invention relates to a reproducing method of an information recording / reproducing apparatus using a multi-probe.
  • the present invention provides a reproducing method for an information recording / reproducing apparatus using a multi-probe capable of reproducing accurately in a short time.
  • An information recording / reproducing apparatus reproducing method using a multi-probe includes an information recording apparatus comprising: a probe array having a plurality of probes for reproducing information; and a recording medium on which a plurality of recording bits are recorded by the probes.
  • a reproducing method of a reproducing apparatus wherein the probe array is scanned relative to the recording medium in one direction, moved relative to another direction perpendicular to the one direction, and the recording bit is recorded. And a step of reading a wider area.
  • the figure for demonstrating the information recording / reproducing apparatus which concerns on 1st Embodiment The figure for demonstrating the 1st Example form. The figure for demonstrating the 1st Example form. The figure for demonstrating the 1st Example form. The figure for demonstrating the 1st Example form. The figure for demonstrating the 1st Example form. The figure for demonstrating the 1st Example form. The figure for demonstrating the 1st Example form. The figure for demonstrating the 1st Example form. The figure for demonstrating an Example. The figure for demonstrating a prior art.
  • FIG. 1 illustrates an information recording / reproducing apparatus using a multi-probe according to the first embodiment of the present invention.
  • the recording medium 20 is provided on the stage 10.
  • the stage 10 includes an X-axis actuator 30 that moves the recording medium 20 in the X-axis direction and a Y-axis actuator 40 that moves the recording medium 20 in the Y-axis direction.
  • the displacement of the entire stage 10 can be read out by an encoder that detects the position.
  • an encoder a MEMS electrostatic capacitance sensor using a comb-tooth structure, an interferometer using a laser beam, a Doppler type speedometer, an LVDT (Linear Variable Differential Transformer), or the like can be used.
  • the recording medium 20 uses a recording layer 60 laminated on an electrode layer 50 as shown in FIG.
  • a protective layer 70 may be further stacked on the recording layer 60.
  • the principle that recording / reproduction can be performed by energizing or applying voltage to the probe 80, that is, ferroelectric recording (FeRAM principle), phase change recording (PRAM principle), resistance change.
  • FeRAM principle ferroelectric recording
  • PRAM principle phase change recording
  • the material of the recording layer 60 may be a ferroelectric material such as PZT (PbZrTiO) or LiTaO for ferroelectric recording, a material exhibiting phase change characteristics such as GST (GeSbTe) for phase change recording, or a resistance.
  • a material showing a giant resistance change characteristic such as NiO or TiO can be used.
  • the probe 80 and the stage 10 are controlled by the control unit.
  • the electrode layer 50 can be made of a conductive material such as Ti or Pt
  • the protective layer 70 can be made of an abrasion resistant material such as DLC (Diamond Like Carbon).
  • a plurality of probes 80 are arranged in an array to constitute a probe array 90.
  • An electrode or the like is disposed at the tip of each probe 80 so that information can be read and written through the tip of the probe 80.
  • the probe 80 may have a needle-like tip with a protrusion.
  • the probe 80 made of Si and coated with Rh (rhodium) can be used.
  • the X-axis actuator 30 and the Y-axis actuator 40 provided on the stage 10 operate in the X-axis direction and the Y-axis direction, respectively, so that the probe array 90 is moved.
  • the constituting probe 80 performs recording / reproduction on the recording medium 20. That is, the plurality of probes 80 provided in the probe array 90 perform recording and reproduction by operating the stage 10 while being fixed to the probe array 90.
  • the case of recording / reproducing using one probe 80 constituting the probe array 90 will be described.
  • the other probes 80 perform the same operation.
  • the probe 80 When recording on the recording medium 20, the probe 80 is scanned in the X direction (scan direction) while flowing current (in the direction of the arrow 90), and after recording to some extent, the probe 80 is bitted in the Y direction (feed direction). Recording is performed by feeding at a pitch (in the direction of arrow 100) and scanning again in the X direction. Note that the X direction and the Y direction are orthogonal to each other.
  • the recording medium 20 can selectively switch between the high resistance state and the low resistance state according to the voltage applied between the electrode layer 50 and the probe 80, as in the principle of ReRAM (Resistive Random Access Memory). It is recorded as bit-like recording bits.
  • ReRAM Resistive Random Access Memory
  • the probe 80 can freely form fine recording bits by performing positioning control with an accuracy of the order of 0.1 nm to 1 nm.
  • the size of the recording bit is 1 nm to 50 nm.
  • the interval between the recording bits is 1 nm to 100 nm in the X direction and 1 nm to 100 nm in the Y direction.
  • FIG. 3 is a schematic view showing a state in which recording is performed on the surface of the recording medium 20 using the probe 80.
  • the upper direction on the paper is the Y direction (feeding direction), and the direction perpendicular to the Y direction is the X direction (scanning direction).
  • the X direction and the Y direction are orthogonal to each other.
  • Black or white is a recording bit, and spots recorded in a bit shape are arranged in a grid in the area recorded as described above. For example, black is 1 in the low resistance state (with recording), and white is 0 in the high resistance state (no recording).
  • the recording bit includes a recording bit in which user information is recorded and a recording bit for detecting a recording position. That is, as shown in FIG. 3, two edge pattern areas 95 are provided with a recording bit area in which information is recorded interposed therebetween. Using these two areas 95 as a reference, an area where information recording bits are recorded can be specified. At this time, in the area 95, for example, one row of black data is recorded in one row. By doing so, it is possible to read the area where the information is recorded accurately.
  • FIG. 4 is a flowchart for explaining the process of reading (reproducing) the bits recorded on the recording medium 20.
  • FIG. 5 is a schematic diagram showing the reading operation of the probe 80.
  • step S10 first, the probe 80 is moved to the reading position 110 as shown in FIG. Next, the probe 80 is scanned from the reading position 110 in the X direction to the end of the scanning area 120, and then sent from the reading position 110 at a bit pitch in the Y direction (arrow 100), and again in the X direction in the scanning area 120 on the reading position 110 side. Scan to the edge. Such an operation is repeated until the entire scan area 120 is read.
  • the scan area 120 is an area scanned when the probe 80 performs recording / reproduction.
  • FIG. 10 shows a conceptual diagram during recording using a conventional probe array.
  • FIG. 10 (a) shows a diagram during recording
  • FIG. 10 (b) shows a diagram during reproduction.
  • FIG. 10 shows two probes 81 and 82 among a plurality of probes 80 constituting the probe array 90.
  • the two probes 81 and 82 simultaneously record on the recording medium 20.
  • FIG. 10B shows a state in which the probe 82 is deviated from the recording state.
  • the probe 80 is moved so that the scan area 120 can be read over a wider range than the recording bit. For example, with respect to the bit pitch interval in the Y direction during recording, scanning is performed at a distance of 1 to 1.2 times in the X direction and the Y direction from the position of the recording bit recorded first.
  • the wider the scan area 120 from which reading is performed the greater the allowable amount for deviation due to thermal expansion and rotation of the stage 10.
  • the larger the scan area 120 the lower the ratio of the area where user information can be recorded to the area where recording bits of the recording medium 20 can be recorded.
  • the ratio (format efficiency) in which user information is recorded with respect to the entire area of the disk in a hard disk drive, which is a typical information recording apparatus at present is about 80%, this embodiment also shows this. It is desirable that the proportions be equal. Therefore, it is desirable to keep the ratio of the scan area at the time of reading to the area recorded first at about 1.2 times at the maximum.
  • step S20 the recorded bit is read while scanning the probe 80 in the X direction.
  • step S30 it is determined whether or not the entire reading range has been scanned. Whether or not the probe 80 has moved in the X and Y directions by the amount of the set scan area 120 from the reading position 110 is determined based on the reading value from the encoder that detects the position of the stage 10.
  • step S40 the probe 80 is moved in the Y direction by the feed pitch.
  • the operation of the probe 80 at the time of reading is the same as that at the time of recording, but the feature is that the bit pitch interval in the Y direction is narrower than the bit pitch interval at the time of recording. Specifically, the bit pitch in the Y direction during reproduction is not more than one-third of the bit pitch in the Y direction during recording.
  • the feature point of the recording bit can be captured and read out, so that it can be read without missing.
  • step S50 a two-dimensional image is constructed based on the read recording bits.
  • This two-dimensional image shows a difference in resistance value read by the probe 80. For example, with a certain resistance value as a boundary, a low resistance portion is represented in black, and a high resistance portion is represented in white. The low resistance may be expressed in white and the high resistance may be expressed in black.
  • the obtained two-dimensional image appears as a two-dimensional image scanned in the X direction as shown in FIG.
  • a line in the X direction indicates a scan locus on the scan area 120 in which a plurality of recording bits are recorded. Since the interval of the bit pitch in the Y direction during reproduction is narrower than the interval of the bit pitch in the Y direction during recording, one recorded bit is formed by a plurality of scanned lines.
  • step S60 a recording bit area in which information is recorded is detected from the area 95 in which the edge pattern of the two-dimensional image obtained by reading in step S50 is formed. That is, an area sandwiched between the areas 95 is a recording bit area in which information is recorded. Thereby, even if the step S50 has a deviation from the actual scanning direction, the recorded bit can be read accurately.
  • step S70 squares are applied to the recording bits detected in step S60. Specifically, as shown in FIG. 7, a grid is applied to the recording bits 130 so that the recording bits 130 are divided into 3 ⁇ 3 9 divisions for one recording bit 130, and this is converted into an image. Applies to the whole.
  • step S80 the number of black paint in the squares obtained by dividing the recording bit 130 into nine is counted.
  • the white portion may be counted.
  • step S90 as shown in FIG. 8, if the number of black squares in a 3 ⁇ 3 square obtained by dividing the recording bit 130 into nine is 4.5 squares or more, it is determined that the recording bit 130 exists.
  • the recording bit 130 is determined to be 1 (recorded) (step S110). If less than 4.5 squares, it is determined that the recording bit 130 does not exist, and this recording bit 130 is determined to be 0 (no recording) (step S100).
  • step S120 based on steps S100 and S110, the patterns of 0 and 1 of the originally recorded recording bits are reconstructed.
  • the size of 3 ⁇ 3 squares is taken as an example for simplicity, but the number of squares can be freely set according to the actual recording bit size, the margin size between recording bits, the relationship between the feed pitch and the recording bit pitch, and the like. Can be changed. Similarly, the threshold value of 4.5 can be changed accordingly. Further, in this embodiment, all squares in the 3 ⁇ 3 square are counted equally as 1. However, for example, the central square in the 3 ⁇ 3 square is counted as 2, and a weighted determination is made. You can also.
  • Example 1 The recording bit was corrected using the invention according to the first embodiment.
  • FIG. 9 shows how many errors occur with respect to the correction of the recording bit pattern generated at random by using the method of steps S60 to S110 described in the first embodiment to correct the recording bit.
  • FIG. The horizontal axis indicates the X direction, and the vertical axis indicates the Y direction.
  • FIG. 9A is a diagram showing randomly generated recording bit patterns.
  • FIG. 9B is a diagram after correcting the recording bit.
  • FIG. 9C shows how many read errors have occurred with respect to the original recording bit pattern.
  • a position error caused in probe positioning when reading the recording bits was 0.5 nm.
  • the number of read errors was 3 (outlined portion). From this, it can be seen that the recorded bits can be accurately restored.

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

Provided is a method for reproduction by an information recording/reproduction device including a probe array (90) having a plurality of probes (80) for reproducing information and a recording medium (20) for recording a plurality of recording bits by the probes (80). The method uses the multi-probe and includes: a step of relatively scanning the probe array (90) in one (first) direction with respect to the recording medium (20); a step of relatively moving the probe array (90) in the other (second) direction which orthogonally intersects the first direction; and a step of reading out a region greater than the region where the recording bits are recorded

Description

情報記録再生装置の再生方法Reproduction method of information recording / reproducing apparatus
 本発明は、マルチプローブを用いた情報記録再生装置の再生方法に関する。 The present invention relates to a reproducing method of an information recording / reproducing apparatus using a multi-probe.
 近年、コンピュータ及びインターネット技術の発展に伴い、ユーザが取り扱うデジタルデータ・デジタルコンテンツの情報量が飛躍的に拡大している。それに伴って、各ユーザがデータをローカルに保存するためのファイルメモリデバイスの大容量化が急速に進んでおり、今後も益々大容量化のニーズが高まってくるであろうと予測されている。しかし、こうした背景にも関わらず、現在主流なファイルメモリデバイスである磁気ディスク装置(HDD(Hard Disc Drive))とフラッシュメモリは、ともに近い将来、記録密度の理論的な限界を迎えるといわれている。 In recent years, with the development of computer and Internet technologies, the amount of information of digital data and digital content handled by users has increased dramatically. Along with this, the increase in the capacity of file memory devices for each user to store data locally is progressing rapidly, and it is predicted that the need for an increase in capacity will continue to increase. However, despite these backgrounds, magnetic disk devices (HDD (Hard Disc Drive)) and flash memory, which are currently mainstream file memory devices, are said to reach the theoretical limit of recording density in the near future. .
 以上のような状況から、現行の記録デバイスの大容量化が限界を迎えた後もコンスタントに記憶容量を伸ばしていけるような全く新しいファイルメモリ向けストレージデバイスの開発が強く望まれている。この要求に対する非常に有望な解の可能性のうちひとつと言われているのが、主としてMEMS(Micro Electro Mechanical Systems)技術を用いて構築されるマルチプローブを用いた情報記録再生装置である。 From the above situation, there is a strong demand for the development of a completely new file memory storage device that can constantly increase the storage capacity even after the capacity of current recording devices reaches its limit. One of the very promising solutions to this requirement is an information recording / reproducing apparatus using a multi-probe constructed mainly using MEMS (Micro Electro Mechanical Systems) technology.
 米国特許出願公開第2006/0291271号明細書には、マルチプローブを用いた情報記録再生装置の例として、複数の読み書きするためのプローブがアレイ状に羅列されたプローブアレイを用いて、それぞれのプローブが走査する領域に位置決めの信号を埋め込んだものが開示されている。 In US Patent Application Publication No. 2006/0291271, as an example of an information recording / reproducing apparatus using a multi-probe, a probe array in which a plurality of probes for reading and writing are arranged in an array is used. Have disclosed that a positioning signal is embedded in an area to be scanned.
 しかしながら、プローブ間の相対位置関係がずれた場合、もともと複数プローブで同時に書き込んだ記録ビットを同時に読み出すことができなくなってしまうため、プローブごとに1本1本位置決めをしながら情報を読み出すという作業が必要になり、アクセススピードが極端に低下する。 However, if the relative positional relationship between the probes deviates, the recorded bits that were originally written by multiple probes cannot be read at the same time, so the work of reading out information while positioning one by one for each probe. It becomes necessary and the access speed is extremely reduced.
米国特許出願公開第2006/0291271号明細書US Patent Application Publication No. 2006/0291271
 そこで、本発明は短時間で精度よく再生が可能なマルチプローブを用いた情報記録再生装置の再生方法を提供する。 Therefore, the present invention provides a reproducing method for an information recording / reproducing apparatus using a multi-probe capable of reproducing accurately in a short time.
 本発明のマルチプローブを用いた情報記録再生装置の再生方法は、情報を再生する複数のプローブを備えたプローブアレイと、前記プローブによって複数の記録ビットが記録される記録媒体とを備えた情報記録再生装置の再生方法であって、前記プローブアレイを前記記録媒体に対して一方向に相対的にスキャンし、前記一方向に直交する他方向に相対的に移動させ、前記記録ビットを記録した領域よりも広い領域を読み出す工程と、を有することを特徴とする。 An information recording / reproducing apparatus reproducing method using a multi-probe according to the present invention includes an information recording apparatus comprising: a probe array having a plurality of probes for reproducing information; and a recording medium on which a plurality of recording bits are recorded by the probes. A reproducing method of a reproducing apparatus, wherein the probe array is scanned relative to the recording medium in one direction, moved relative to another direction perpendicular to the one direction, and the recording bit is recorded. And a step of reading a wider area.
 本発明によれば、短時間で再生が可能なマルチプローブを用いた情報再生方法を提供することができる。 According to the present invention, it is possible to provide an information reproduction method using a multi-probe that can be reproduced in a short time.
第1の実施形態に係る情報記録再生装置を説明するための図。The figure for demonstrating the information recording / reproducing apparatus which concerns on 1st Embodiment. 第1の実施例形態を説明するための図。The figure for demonstrating the 1st Example form. 第1の実施例形態を説明するための図。The figure for demonstrating the 1st Example form. 第1の実施例形態を説明するための図。The figure for demonstrating the 1st Example form. 第1の実施例形態を説明するための図。The figure for demonstrating the 1st Example form. 第1の実施例形態を説明するための図。The figure for demonstrating the 1st Example form. 第1の実施例形態を説明するための図。The figure for demonstrating the 1st Example form. 第1の実施例形態を説明するための図。The figure for demonstrating the 1st Example form. 実施例を説明するための図。The figure for demonstrating an Example. 従来技術を説明するための図。The figure for demonstrating a prior art.
 以下、図面を参照しつつ本発明の実施形態について説明する。また、以下説明する図面において、符号が一致するものは、同じものを示しており、重複した説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings described below, the same reference numerals denote the same parts, and duplicate descriptions are omitted.
(第1の実施形態)
 図1は、本発明の第1の実施形態に関わるマルチプローブを用いた情報記録再生装置について説明する。
(First embodiment)
FIG. 1 illustrates an information recording / reproducing apparatus using a multi-probe according to the first embodiment of the present invention.
 本実施形態に係るマルチプローブを用いた情報記録再生装置は、ステージ10上に記録媒体20が設けられている。 In the information recording / reproducing apparatus using the multi-probe according to the present embodiment, the recording medium 20 is provided on the stage 10.
 ステージ10には、X軸方向に記録媒体20を移動させる、X軸アクチュエータ30と、Y軸方向に記録媒体20を移動させるY軸アクチュエータ40とを備えている。このとき、位置を検出するエンコーダでステージ10全体の変位を読み出すことができる。エンコーダとしては、櫛歯構造を用いたMEMS静電容量センサ、レーザ光を用いた干渉計やドップラ式速度計、LVDT(Linear Variable Differential Transformer、リニア差動変換器)等を用いることができる。 The stage 10 includes an X-axis actuator 30 that moves the recording medium 20 in the X-axis direction and a Y-axis actuator 40 that moves the recording medium 20 in the Y-axis direction. At this time, the displacement of the entire stage 10 can be read out by an encoder that detects the position. As the encoder, a MEMS electrostatic capacitance sensor using a comb-tooth structure, an interferometer using a laser beam, a Doppler type speedometer, an LVDT (Linear Variable Differential Transformer), or the like can be used.
 記録媒体20は、図2に示すように電極層50上に記録層60が積層したものを用いる。なお、記録層60の上にさらに保護層70を積層してもよい。 The recording medium 20 uses a recording layer 60 laminated on an electrode layer 50 as shown in FIG. A protective layer 70 may be further stacked on the recording layer 60.
 本実施形態における記録原理としては、プローブ80への通電もしくは電圧印加によって記録・再生を行うことができる原理、即ち強誘電体記録(FeRAMの原理)、相変化記録(PRAMの原理)、抵抗変化記録(ReRAMの原理)など多種多様な手段が適用可能である。例えば、記録層60の材料としては、強誘電体記録であればPZT(PbZrTiO)やLiTaOなどの強誘電体材料、相変化記録であればGST(GeSbTe)などの相変化特性を示す材料、抵抗変化記録であればNiOやTiOなどの巨大抵抗変化特性を示す材料を用いることができる。プローブ80とステージ10は制御部により制御される。 As a recording principle in this embodiment, the principle that recording / reproduction can be performed by energizing or applying voltage to the probe 80, that is, ferroelectric recording (FeRAM principle), phase change recording (PRAM principle), resistance change. Various means such as recording (the principle of ReRAM) can be applied. For example, the material of the recording layer 60 may be a ferroelectric material such as PZT (PbZrTiO) or LiTaO for ferroelectric recording, a material exhibiting phase change characteristics such as GST (GeSbTe) for phase change recording, or a resistance. In the case of change recording, a material showing a giant resistance change characteristic such as NiO or TiO can be used. The probe 80 and the stage 10 are controlled by the control unit.
 更に、電極層50には、Ti、Ptなど導電性を示す材料を、保護層70にはDLC(Diamond Like Carbon)などの耐摩耗材料などをそれぞれ用いることができる。 Furthermore, the electrode layer 50 can be made of a conductive material such as Ti or Pt, and the protective layer 70 can be made of an abrasion resistant material such as DLC (Diamond Like Carbon).
 また、本実施形態に係るマルチプローブを用いた情報記録再生装置は、複数のプローブ80がアレイ状に羅列され、プローブアレイ90を構成している。各プローブ80の先端には電極などが配置され、プローブ80の先端を通して情報が読み書きできる構成になっている。 Further, in the information recording / reproducing apparatus using the multi-probe according to the present embodiment, a plurality of probes 80 are arranged in an array to constitute a probe array 90. An electrode or the like is disposed at the tip of each probe 80 so that information can be read and written through the tip of the probe 80.
 プローブ80は、針状の先端に突起がついた形状のものを用いることができる。例えば、プローブ80はSiで形成され、Rh(ロジウム)でコーティングされたものを用いることができる。 The probe 80 may have a needle-like tip with a protrusion. For example, the probe 80 made of Si and coated with Rh (rhodium) can be used.
 次に、本実施形態に係るマルチプローブを用いた記録再生装置の動作原理について説明する。 Next, the operation principle of the recording / reproducing apparatus using the multi-probe according to this embodiment will be described.
 本実施形態に係るマルチプローブを用いた記録再生装置は、ステージ10に設けられたX軸アクチュエータ30と、Y軸アクチュエータ40がそれぞれX軸方向及びY軸方向に動作することによって、プローブアレイ90を構成するプローブ80が記録媒体20に記録再生を行う。つまり、プローブアレイ90に設けられた複数のプローブ80はプローブアレイ90に固定された状態で、ステージ10が動作することによって記録再生を行う。以下、プローブアレイ90を構成する一つのプローブ80を用いて記録再生する場合について説明する。なお、その他のプローブ80も同様の動作をする。 In the recording / reproducing apparatus using the multi-probe according to the present embodiment, the X-axis actuator 30 and the Y-axis actuator 40 provided on the stage 10 operate in the X-axis direction and the Y-axis direction, respectively, so that the probe array 90 is moved. The constituting probe 80 performs recording / reproduction on the recording medium 20. That is, the plurality of probes 80 provided in the probe array 90 perform recording and reproduction by operating the stage 10 while being fixed to the probe array 90. Hereinafter, the case of recording / reproducing using one probe 80 constituting the probe array 90 will be described. The other probes 80 perform the same operation.
 記録媒体20に記録する際には、プローブ80に電流を流しながら、X方向(スキャン方向)にスキャンして(矢印90の方向)、ある程度記録したら、プローブ80をY方向(送り方向)にビットピッチ(矢印100の方向)で送り、再びX方向にスキャンして記録を行う。なお、X方向とY方向は直交の関係にある。 When recording on the recording medium 20, the probe 80 is scanned in the X direction (scan direction) while flowing current (in the direction of the arrow 90), and after recording to some extent, the probe 80 is bitted in the Y direction (feed direction). Recording is performed by feeding at a pitch (in the direction of arrow 100) and scanning again in the X direction. Note that the X direction and the Y direction are orthogonal to each other.
 一方で記録媒体20は、ReRAM(Resistive Random Access Memory)の原理と同様、電極層50とプローブ80との間に印加される電圧に応じて高抵抗状態および低抵抗状態を選択的に切り替えることを利用してビット状の記録ビットとして記録される。なお、ここでは、ReRAM方式を例として説明する。 On the other hand, the recording medium 20 can selectively switch between the high resistance state and the low resistance state according to the voltage applied between the electrode layer 50 and the probe 80, as in the principle of ReRAM (Resistive Random Access Memory). It is recorded as bit-like recording bits. Here, the ReRAM method will be described as an example.
 プローブ80は、0.1nm~1nm程度のオーダーの精度で位置決め制御を行うことで、自由に微細な記録ビットを形成することが可能となる。 The probe 80 can freely form fine recording bits by performing positioning control with an accuracy of the order of 0.1 nm to 1 nm.
 また、この精度で位置決め制御を行った場合の記録ビットの大きさは1nm~50nmである。それぞれの記録ビットの間隔はX方向で1nm~100nm、Y方向で1nm~100nmである。 Also, when the positioning control is performed with this accuracy, the size of the recording bit is 1 nm to 50 nm. The interval between the recording bits is 1 nm to 100 nm in the X direction and 1 nm to 100 nm in the Y direction.
 図3は、記録媒体20の表面にプローブ80を用いて記録した状態の概略図を示す。図3に示すように、紙面上方向がY方向(送り方向)、Y方向と垂直方向をX方向とする(スキャン方向)。X方向とY方向は直交している。 FIG. 3 is a schematic view showing a state in which recording is performed on the surface of the recording medium 20 using the probe 80. As shown in FIG. 3, the upper direction on the paper is the Y direction (feeding direction), and the direction perpendicular to the Y direction is the X direction (scanning direction). The X direction and the Y direction are orthogonal to each other.
 黒塗り又は、白塗りが記録ビットであり、上記したように記録された領域にはビット状に記録されたスポットが格子状に羅列されることになる。例えば、黒塗りが低抵抗状態の1(記録あり)、白抜きが高抵抗状態の0(記録無し)とする。 Black or white is a recording bit, and spots recorded in a bit shape are arranged in a grid in the area recorded as described above. For example, black is 1 in the low resistance state (with recording), and white is 0 in the high resistance state (no recording).
 また、本実施形態では、記録ビットに対して、ユーザ情報が記録された記録ビットと、記録位置検出のための記録ビットを有する。つまり、図3に示すように、情報が記録された記録ビットの領域を挟んで2つエッジパターンの領域95を設けている。この2つの領域95を基準として、情報の記録ビットが記録されたエリアを特定することができる。このとき、領域95は、例えば全て黒塗りの1のデータが1列記録されている。こうすることによって、正確に情報が記録された領域を読み出すことができる。 In the present embodiment, the recording bit includes a recording bit in which user information is recorded and a recording bit for detecting a recording position. That is, as shown in FIG. 3, two edge pattern areas 95 are provided with a recording bit area in which information is recorded interposed therebetween. Using these two areas 95 as a reference, an area where information recording bits are recorded can be specified. At this time, in the area 95, for example, one row of black data is recorded in one row. By doing so, it is possible to read the area where the information is recorded accurately.
 図4は、記録媒体20に記録されたビットの読み取り(再生)の処理を説明するためのフローチャート図を示す。 FIG. 4 is a flowchart for explaining the process of reading (reproducing) the bits recorded on the recording medium 20.
 図5は、プローブ80の読み取り動作を示す概略図である。 FIG. 5 is a schematic diagram showing the reading operation of the probe 80.
 ステップS10では、初めに、図5に示すように、プローブ80を読み取り位置110に移動させる。次に、プローブ80を読み取り位置110からX方向にスキャンエリア120の端までスキャンし、そこからY方向にビットピッチで送り(矢印100)、再びX方向に読み取り位置110の側のスキャンエリア120の端までスキャンする。このような動作をスキャンエリア120の全体が読み取れるまで繰り返す。なお、スキャンエリア120とは、プローブ80が記録再生する際に走査する領域をいう。 In step S10, first, the probe 80 is moved to the reading position 110 as shown in FIG. Next, the probe 80 is scanned from the reading position 110 in the X direction to the end of the scanning area 120, and then sent from the reading position 110 at a bit pitch in the Y direction (arrow 100), and again in the X direction in the scanning area 120 on the reading position 110 side. Scan to the edge. Such an operation is repeated until the entire scan area 120 is read. The scan area 120 is an area scanned when the probe 80 performs recording / reproduction.
 図10は、従来のプローブアレイを用いた記録時の概念図を示す。 FIG. 10 shows a conceptual diagram during recording using a conventional probe array.
 図10(a)は記録時の図を示し、図10(b)は再生時の図を示す。 FIG. 10 (a) shows a diagram during recording, and FIG. 10 (b) shows a diagram during reproduction.
 図10は、プローブアレイ90を構成する複数のプローブ80のうち2本のプローブ81、82を示す。 FIG. 10 shows two probes 81 and 82 among a plurality of probes 80 constituting the probe array 90.
 図10(a)に示すように、ステージ10が動作することによって、この2本のプローブ81、82が記録媒体20に同時に記録する。 As shown in FIG. 10A, when the stage 10 is operated, the two probes 81 and 82 simultaneously record on the recording medium 20.
 しかしながら、環境温度の変化によって、記録媒体20等の熱膨張が発生した場合や、経年疲労や外部衝撃等で記録媒体20等が回転すると、プローブアレイ90と記録媒体20との相対的な位置関係がズレてしまう。 However, the relative positional relationship between the probe array 90 and the recording medium 20 when thermal expansion of the recording medium 20 or the like occurs due to a change in environmental temperature or when the recording medium 20 or the like rotates due to aging fatigue, external impact, or the like. Will shift.
 このため、図10(b)に示すように、記録媒体20に記録されたビットを全てのプローブアレイ90に設けられた全てのプローブ80で正確に再生することが困難となる。図10(b)は、プローブ82が記録時の状態からズレている様子を示す。 For this reason, as shown in FIG. 10B, it is difficult to accurately reproduce the bits recorded on the recording medium 20 by all the probes 80 provided in all the probe arrays 90. FIG. 10B shows a state in which the probe 82 is deviated from the recording state.
 そこで、本実施形態では、スキャンエリア120を、記録ビットよりも、広範にわたって読み出せるようにプローブ80移動させる。例えば、記録時のY方向のビットピッチの間隔に対して、初めに記録した記録ビットの位置からX方向及びY方向に対して1倍から1.2倍の距離でスキャンする。 Therefore, in this embodiment, the probe 80 is moved so that the scan area 120 can be read over a wider range than the recording bit. For example, with respect to the bit pitch interval in the Y direction during recording, scanning is performed at a distance of 1 to 1.2 times in the X direction and the Y direction from the position of the recording bit recorded first.
 このようにすることによって、熱膨張、又はステージ10の回転の影響等により記録したときの記録ビットの位置が再生時とズレている場合であっても読み出すことができる。 By doing so, it is possible to read out even when the position of the recording bit is different from that at the time of reproduction due to the thermal expansion or the influence of the rotation of the stage 10.
 なお、読み出しを行うスキャンエリア120が広ければ広いほど、熱膨張やステージ10の回転に起因するズレに対する許容量も大きくなる。但し、スキャンエリア120を広くするほど、記録媒体20の記録ビットを記録できる面積に対してユーザ情報を記録できる面積の割合が小さくなるという問題が生じる。現在の代表的な情報記録装置であるハードディスクドライブにおいて、ディスクの全面積に対してユーザ情報が記録されている割合(フォーマット効率)は80%前後であることを考えると、本実施例においてもこの割合は同等であることが望ましい。従って、初めに記録したエリアに対する読み出し時スキャンエリアの割合は、最大でも1.2倍程度に抑えておくことが望ましい。 It should be noted that the wider the scan area 120 from which reading is performed, the greater the allowable amount for deviation due to thermal expansion and rotation of the stage 10. However, the larger the scan area 120, the lower the ratio of the area where user information can be recorded to the area where recording bits of the recording medium 20 can be recorded. Considering that the ratio (format efficiency) in which user information is recorded with respect to the entire area of the disk in a hard disk drive, which is a typical information recording apparatus at present, is about 80%, this embodiment also shows this. It is desirable that the proportions be equal. Therefore, it is desirable to keep the ratio of the scan area at the time of reading to the area recorded first at about 1.2 times at the maximum.
 ステップS20では、プローブ80をX方向にスキャンしながら記録したビットを読み出す。 In step S20, the recorded bit is read while scanning the probe 80 in the X direction.
 ステップS30では、読み取り範囲を全てスキャンできたかどうかを判断する。プローブ80が、読み取り位置110から、設定されたスキャンエリア120の広さの分だけX、Y方向に移動を完了したかどうかを、ステージ10位置を検出するエンコーダからの読み取り値によって判断する。 In step S30, it is determined whether or not the entire reading range has been scanned. Whether or not the probe 80 has moved in the X and Y directions by the amount of the set scan area 120 from the reading position 110 is determined based on the reading value from the encoder that detects the position of the stage 10.
 ステップS40では、送りピッチ分だけプローブ80をY方向に移動させる。読み取り時におけるプローブ80の動作は記録時と同じであるが、Y方向のビットピッチの間隔が記録時のビットピッチの間隔よりも狭いことが特徴である。具体的には、再生時のY方向のビットピッチは記録時のY方向のビットピッチの3分の1以下である。 In step S40, the probe 80 is moved in the Y direction by the feed pitch. The operation of the probe 80 at the time of reading is the same as that at the time of recording, but the feature is that the bit pitch interval in the Y direction is narrower than the bit pitch interval at the time of recording. Specifically, the bit pitch in the Y direction during reproduction is not more than one-third of the bit pitch in the Y direction during recording.
 このようにすることによって、記録ビットの特徴点を捉えて読み出すことができるので、取りこぼしがなく読み出すことができる。 By doing in this way, the feature point of the recording bit can be captured and read out, so that it can be read without missing.
 ステップS50では、読み取った記録ビットをもとに2次元像を構成する。この2次元像は、プローブ80で読み取った抵抗値の差が表れている。例えば、ある抵抗値を境界として低抵抗の箇所が黒く表され、高抵抗の箇所が白く表される。低抵抗を白く、高抵抗を黒く表してもよい。 In step S50, a two-dimensional image is constructed based on the read recording bits. This two-dimensional image shows a difference in resistance value read by the probe 80. For example, with a certain resistance value as a boundary, a low resistance portion is represented in black, and a high resistance portion is represented in white. The low resistance may be expressed in white and the high resistance may be expressed in black.
 このようにして読み取りを行った結果、得られる2次元像は、図6に示すような、X方向にスキャンされた2次元像として表れる。X方向のラインは複数の記録ビットが記録されたスキャンエリア120上におけるスキャンの軌跡を示している。再生時のY方向のビットピッチの間隔が記録時のY方向のビットピッチの間隔よりも狭いので、一つの記録したビットは複数のスキャンされた線で形成される。 As a result of reading in this manner, the obtained two-dimensional image appears as a two-dimensional image scanned in the X direction as shown in FIG. A line in the X direction indicates a scan locus on the scan area 120 in which a plurality of recording bits are recorded. Since the interval of the bit pitch in the Y direction during reproduction is narrower than the interval of the bit pitch in the Y direction during recording, one recorded bit is formed by a plurality of scanned lines.
 ステップS60では、ステップS50で読み取って得られた2次元像のエッジパターンが形成された領域95から、情報が記録された記録ビットの領域を検出する。つまり、領域95に挟まれた領域が情報の記録された記録ビットの領域となる。これにより、ステップS50が実際のスキャン方向とのズレを生じていても正確に記録されたビットを読み取ることができる。 In step S60, a recording bit area in which information is recorded is detected from the area 95 in which the edge pattern of the two-dimensional image obtained by reading in step S50 is formed. That is, an area sandwiched between the areas 95 is a recording bit area in which information is recorded. Thereby, even if the step S50 has a deviation from the actual scanning direction, the recorded bit can be read accurately.
 ステップS70では、ステップS60で検出した記録ビットに対してマス目を施す。具体的には、図7に示すように、一つの記録ビット130に対してその記録ビット130を3×3の9分割となるように、記録ビット130に対してマス目を施し、これを画像全体に適用する。 In step S70, squares are applied to the recording bits detected in step S60. Specifically, as shown in FIG. 7, a grid is applied to the recording bits 130 so that the recording bits 130 are divided into 3 × 3 9 divisions for one recording bit 130, and this is converted into an image. Applies to the whole.
 ステップS80では、記録ビット130を9分割したマス目のうちの黒塗りの個数をカウントする。なお、白抜き部分を記録領域とした場合、白抜き部分をカウントしてもよい。 In step S80, the number of black paint in the squares obtained by dividing the recording bit 130 into nine is counted. In addition, when a white portion is a recording area, the white portion may be counted.
 ステップS90では、図8に示すように、記録ビット130を9分割した3×3のマス内のうち黒塗りのマス目の数が4.5マス以上あれば、記録ビット130が存在すると判定し、この記録ビット130を1(記録あり)と判断する(ステップS110)。また、4.5マスに満たない場合は、記録ビット130が存在しないと判定し、この記録ビット130を0(記録無し)と判断する(ステップS100)。 In step S90, as shown in FIG. 8, if the number of black squares in a 3 × 3 square obtained by dividing the recording bit 130 into nine is 4.5 squares or more, it is determined that the recording bit 130 exists. The recording bit 130 is determined to be 1 (recorded) (step S110). If less than 4.5 squares, it is determined that the recording bit 130 does not exist, and this recording bit 130 is determined to be 0 (no recording) (step S100).
 ステップS120では、ステップS100とステップS110に基づいて、本来記録されていた記録ビットの0と1のパターンを再構築する。 In step S120, based on steps S100 and S110, the patterns of 0 and 1 of the originally recorded recording bits are reconstructed.
 このようにして、読み取り時にプローブ80をステージ10に対して位置きめする際に、外部から印加される振動擾乱や、エンコーダのノイズなどに起因する電気的擾乱によって位置誤差が生じた2次元像を修正し、記録ビットを精度よく復元するこができる。 In this way, when positioning the probe 80 with respect to the stage 10 at the time of reading, a two-dimensional image in which a position error has occurred due to externally applied vibration disturbance or electrical disturbance due to encoder noise or the like is obtained. It is possible to correct and restore the recorded bits with high accuracy.
 なお、ここでは簡単のため3×3マスのサイズを例として挙げたが、実際の記録ビットのサイズや記録ビット間の余白サイズ、送りピッチと記録ビットピッチの関係などによって自由にマスの数を変化させることができる。同様に、閾値である4.5の値もそれに応じて変化させることができる。また、この実施例では3×3マス内の全てのマスを1として等しくカウントしているが、例えば3×3マス内の中央のマスについては2とカウントするなど、重みを付けた判定をすることもできる。 In this example, the size of 3 × 3 squares is taken as an example for simplicity, but the number of squares can be freely set according to the actual recording bit size, the margin size between recording bits, the relationship between the feed pitch and the recording bit pitch, and the like. Can be changed. Similarly, the threshold value of 4.5 can be changed accordingly. Further, in this embodiment, all squares in the 3 × 3 square are counted equally as 1. However, for example, the central square in the 3 × 3 square is counted as 2, and a weighted determination is made. You can also.
(実施例1)
 第1の実施形態に係る発明を用いて、記録ビットの修正を行った。
Example 1
The recording bit was corrected using the invention according to the first embodiment.
 図9はランダムに発生させた記録ビットパターンに対して、第1の実施形態で説明したステップS60~ステップS110の方法を用いて、記録ビットを修正し、その修正に対してどのくらいエラーが発生したかを示す図である。横軸がX方向、縦軸がY方向を示す。 FIG. 9 shows how many errors occur with respect to the correction of the recording bit pattern generated at random by using the method of steps S60 to S110 described in the first embodiment to correct the recording bit. FIG. The horizontal axis indicates the X direction, and the vertical axis indicates the Y direction.
 図9(a)は、ランダムに発生させた記録ビットパターンを示す図である。図9(b)は、記録ビットを修正したあとの図である。図9(c)は、元の記録ビットパターンに対してどの程度の読み出しエラーが発生したかを示す図である。 FIG. 9A is a diagram showing randomly generated recording bit patterns. FIG. 9B is a diagram after correcting the recording bit. FIG. 9C shows how many read errors have occurred with respect to the original recording bit pattern.
 本実施例では、X方向200nm、Y方向200nmの領域に、X方向の間隔5nm、Y方向の間隔20nmで記録した記録ビット400個に対し、その記録ビットの読み出し時にプローブ位置決めに生じた位置誤差を0.5nmとした。 In the present embodiment, for 400 recording bits recorded in an area of 200 nm in the X direction and 200 nm in the Y direction with an interval of 5 nm in the X direction and an interval of 20 nm in the Y direction, a position error caused in probe positioning when reading the recording bits. Was 0.5 nm.
 図9(c)に示すように、400個のビットのなかで読み出しエラーの数は3個(白抜きの部分)であった。このことから、記録されていたビットを精度よく復元できていることがわかる。 As shown in FIG. 9C, among 400 bits, the number of read errors was 3 (outlined portion). From this, it can be seen that the recorded bits can be accurately restored.
10 … ステージ、20 … 記録媒体、30 … X軸アクチュエータ、40 … Y軸アクチュエータ、50 … 電極層、60 … 酸化物層、80 … プローブ、90 … プローブアレイ、95 … 領域、100 … 矢印、110 … 読み取り位置、120 … スキャンエリア、130 … 記録ビット 10 ... Stage, 20 ... Recording medium, 30 ... X axis actuator, 40 ... Y axis actuator, 50 ... Electrode layer, 60 ... Oxide layer, 80 ... Probe, 90 ... Probe array, 95 ... Area, 100 ... Arrow, 110 … Reading position, 120… scan area, 130… recording bit

Claims (4)

  1.  情報を再生する複数のプローブを備えたプローブアレイと、前記プローブによって複数の記録ビットが記録される記録媒体とを備えた情報記録再生装置の再生方法であって、
     前記プローブアレイを前記記録媒体に対して一方向に相対的にスキャンし、前記一方向に直交する他方向に相対的に移動させ、前記記録ビットを記録した領域よりも広い領域を読み出す工程と、
     を有することを特徴とする情報記録再生装置の再生方法。
    A reproduction method for an information recording / reproducing apparatus comprising a probe array comprising a plurality of probes for reproducing information and a recording medium on which a plurality of recording bits are recorded by the probes,
    Scanning the probe array relative to the recording medium in one direction, moving the probe array relative to another direction orthogonal to the one direction, and reading a region wider than the region where the recording bits are recorded;
    A reproducing method for an information recording / reproducing apparatus comprising:
  2.  前記プローブアレイを前記記録媒体に対して前記一方向に相対的にスキャンし、前記他方向に移動させ、前記記録ビットを記録した領域よりも広い領域を読み出し、2次元像を形成する工程と、
     前記2次元像にマス目を施す工程と、
     前記マス目の記録されている個数をカウントして、前記記録ビットを検出して再生する工程と、
     を更に有することを特徴とする請求項1に記載の情報記録再生装置の再生方法。
    Scanning the probe array relative to the recording medium in the one direction, moving the probe array in the other direction, reading a region wider than a region where the recording bits are recorded, and forming a two-dimensional image;
    Applying a grid to the two-dimensional image;
    Counting the number of recorded squares to detect and reproduce the recording bits;
    The reproducing method of the information recording / reproducing apparatus according to claim 1, further comprising:
  3.  前記記録領域の両端の全ての前記記録ビットが高抵抗状態又は低抵抗状態の何れかであるように記録されていることを特徴とする請求項1に記載の情報記録再生装置の再生方法。 2. The reproducing method of the information recording / reproducing apparatus according to claim 1, wherein all the recording bits at both ends of the recording area are recorded so as to be in either a high resistance state or a low resistance state.
  4.  前記再生時の前記プローブの前記他方向に移動する距離が前記記録時の前記プローブの前記他方向に移動する距離の3分の1以下であることを特徴とする請求項1に記載の情報記録再生装置の再生方法。 The information recording according to claim 1, wherein a distance that the probe moves in the other direction during the reproduction is equal to or less than one third of a distance that the probe moves in the other direction during the recording. A playback method of a playback device.
PCT/JP2009/004393 2009-09-04 2009-09-04 Method for reproduction by information recording reproduction device WO2011027406A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004393 WO2011027406A1 (en) 2009-09-04 2009-09-04 Method for reproduction by information recording reproduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004393 WO2011027406A1 (en) 2009-09-04 2009-09-04 Method for reproduction by information recording reproduction device

Publications (1)

Publication Number Publication Date
WO2011027406A1 true WO2011027406A1 (en) 2011-03-10

Family

ID=43648968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004393 WO2011027406A1 (en) 2009-09-04 2009-09-04 Method for reproduction by information recording reproduction device

Country Status (1)

Country Link
WO (1) WO2011027406A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250333A (en) * 1988-08-12 1990-02-20 Canon Inc Recording and reproducing device
JPH0562261A (en) * 1991-08-30 1993-03-12 Canon Inc Recording and reproducing device and its method
JPH09320133A (en) * 1995-10-16 1997-12-12 Canon Inc Device and method for recording and reproducing and bit detection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250333A (en) * 1988-08-12 1990-02-20 Canon Inc Recording and reproducing device
JPH0562261A (en) * 1991-08-30 1993-03-12 Canon Inc Recording and reproducing device and its method
JPH09320133A (en) * 1995-10-16 1997-12-12 Canon Inc Device and method for recording and reproducing and bit detection method

Similar Documents

Publication Publication Date Title
US6404647B1 (en) Solid-state mass memory storage device
US7502304B2 (en) Data recording and reproducing device, data recording and reproducing method, and recording medium
US7173314B2 (en) Storage device having a probe and a storage cell with moveable parts
CN100423088C (en) Dual-stage actuator disk drive and method for secondary-actuator failure detection and recovery
US7852739B2 (en) Positioning system mounted on probe memory device and positioning method thereof
JP4099100B2 (en) Storage device and method for scanning a storage medium
US7961586B2 (en) Information recording/reproducing device
CN101674030A (en) Actuator using piezoelectric element and method of driving the same
JP4309438B2 (en) Information recording / reproducing device
JP4538499B2 (en) Data storage device and method for operating a data storage device
WO2011027406A1 (en) Method for reproduction by information recording reproduction device
US20210382827A1 (en) Multiplying data storage device read throughput
US7342348B2 (en) Micro displacement mechanism and magnetic disk apparatus
JP4071786B2 (en) Recording / playback device
US7792009B2 (en) Ferroelectric polarization pattern with differing feedback signals
JP4903827B2 (en) Nonvolatile memory device
JP4792095B2 (en) Nonvolatile memory device
US7838066B2 (en) Ferroelectric media with robust servo marks and storage areas with low leakage current
JP4228286B2 (en) Information recording medium and information recording apparatus
JPH09134552A (en) Tracking method and memory apparatus
KR100331450B1 (en) Small scale and high density data storage apparatus using probe
Lee et al. Implementation of a position error signal for scanning probe microscopy-based data storage systems
US20090092805A1 (en) Ferroelectric Material With Polarization Pattern
JP2010097637A (en) Magnetic read/write head and magnetic read/write apparatus having the same
KR20090052640A (en) Recording medium for storing data and data storage apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP