WO2011026814A1 - Interféromètre à compensation de champ - Google Patents

Interféromètre à compensation de champ Download PDF

Info

Publication number
WO2011026814A1
WO2011026814A1 PCT/EP2010/062651 EP2010062651W WO2011026814A1 WO 2011026814 A1 WO2011026814 A1 WO 2011026814A1 EP 2010062651 W EP2010062651 W EP 2010062651W WO 2011026814 A1 WO2011026814 A1 WO 2011026814A1
Authority
WO
WIPO (PCT)
Prior art keywords
interferometer
optical
field
difference
beams
Prior art date
Application number
PCT/EP2010/062651
Other languages
English (en)
Inventor
Christian Buil
Laurence Buffet
Bruno Belon
Cyril Degrelle
Christophe Buisset
Denis Simeoni
Original Assignee
Centre National D'etudes Spatiales
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National D'etudes Spatiales, Thales filed Critical Centre National D'etudes Spatiales
Priority to ES10747222T priority Critical patent/ES2430542T3/es
Priority to US13/393,806 priority patent/US20130003072A1/en
Priority to EP10747222.7A priority patent/EP2473824B1/fr
Publication of WO2011026814A1 publication Critical patent/WO2011026814A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0297Constructional arrangements for removing other types of optical noise or for performing calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4532Devices of compact or symmetric construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror

Definitions

  • the invention relates to an interferometer and a method of interferometry in the field of two-mirror Fourier Transform interferometers. More specifically, the invention relates to field compensation in this type of instrument.
  • FTS Fast Fourier Transform Spectrometer
  • the recombination of the distinct beams then makes it possible to obtain an interferogram, measured by a detector, resulting from the difference in optical path between said beams.
  • a variable step difference is generally created by moving one or more mechanically movable optical devices in the arms of the interferometer.
  • a fundamental criterion for examining the performance of an interferometer is its spectral resolution, that is, its ability to unambiguously separate two contiguous spectral elements.
  • the spectral resolution is even higher than the difference in gait created between the arms of the interferometer is high.
  • the spectral fineness is equal to the inverse of the difference in gait created between the arms of the interferometer.
  • the increase in the difference in operation is subject to certain limitations in the instruments of the prior art.
  • the incident light beams have a non-zero field angle par relative to the optical axis of the interferometer, resulting from the angular field of the observed scene (for example, an area of the Earth's surface), said beams will to traverse an optical path of different length with respect to light beams incident at the optical axis, which have a field angle ⁇ zero.
  • the actual step difference ⁇ is then a function of the field angle ⁇ .
  • each incident light beam from one point of the field produces its own interferogram, different from another light beam, which blurs the interferogram measured by the detector and decreases its contrast.
  • the spectral resolution is therefore limited by the angular aperture of the instrument, that is to say its field of view.
  • FIG. 1 (taken from "Chemical infrared fourier-transform spectroscopy", Peter R. Griffiths, John Wiley, London, NY, Sydney and Toronto, 1975, p.127) shows an interferometer according to the prior art for to overcome the aforementioned problems, that is to say to compensate for the presence of field, which causes an unwanted difference in market.
  • the interferometer includes a semi-reflective splitter blade
  • a disadvantage of this solution is that it uses parallel beams which requires for the field compensation very large prisms, the size of the entrance pupil, accentuating the size of the interferometer.
  • the invention proposes to overcome at least one of these disadvantages.
  • the invention proposes a field compensation interferometer, comprising an optical assembly capable of directing incident light beams having a field angle ⁇ with respect to an optical axis of the interferometer towards arms of the interferometer.
  • a separating blade comprising at least one mechanically mobile optical device for creating a variable optical step difference between beams resulting from the separation of each incident beam by means of said separating plate
  • said interferometer being characterized in it comprises at least one optical field compensating element arranged in one or the other of the image focal plane of the optical assembly conjugate with respect to the separating plate, said element comprising at least one curved surface of to create a difference in the path between the incident beams having a non-zero angle of view and the beams inci teeth with an angle of view zero, the difference in market thus created to compensate for the self-apodization resulting from the angle of view.
  • the interferometer comprises two optical elements of field compensation respectively arranged in each of the two image focal planes of the optical assembly conjugated with respect to the separating plate;
  • the surface of the optical element is curved on at least one of its meridians
  • the interferometer comprises two optical elements, one of the elements comprising a curved surface on a first meridian, the other of the elements comprising a curved surface on a second meridian, the first and second meridian being orthogonal;
  • the optical element is a mirror, said mirror comprising a reflecting curved surface on at least one of its meridians;
  • the reflective curved surface of said mirror has a continuously curved mechanical profile
  • the reflective curved surface of said mirror has a mechanical profile composed of a discrete set of reflecting flat surfaces
  • the interferometer comprises means for rotating the reflective flat surfaces
  • the optical element is a thin and deformable mirror by means of a deformation system
  • the deformation system is a piezoelectric system
  • the interferometer comprises a laser metrology tool for controlling the displacement created by the displacement means or the deformation created by the deformation system;
  • the optical compensation element of the field is a thin glass slide;
  • the interferometer comprises two optical elements for compensating the field: a thin glass plate and the separating plate, arranged in the image focal plane of the optical assembly.
  • the invention also provides a method of field-compensated interferometry in an interferometer in which an optical assembly directs incident light beams to the interferometer arms, the mechanically movable optical device is moved to create a difference in path between beams resulting from the separation of each incident beam, the recombination of which makes it possible to implement the interferometer, said method being characterized in that it comprises the step according to which the reflecting plane surfaces of the mirror are rotated simultaneously with the device an angle compensating for the difference in operation created by the displacement of said optical device.
  • the invention proposes a method of interferometry with field compensation in an interferometer, in which an optical assembly directs incident light beams towards the arms of the interferometer, a mechanically mobile optical device is moved to create a difference in the path between the beams resulting from the separation of each incident beam, the recombination of which makes it possible to implement the interferometry, said method being characterized in that it comprises the step in which the surface of the thin mirror is simultaneously deformed with the optical device of a distance compensating for the difference in operation created by the displacement of said optical device.
  • the invention has many advantages.
  • An advantage of the invention is that it makes it possible to reduce and even cancel self-apodization.
  • Another advantage of the invention is that it proposes an achromatic solution.
  • Yet another advantage of the invention is that it increases the overall efficiency of the interferometer, which can be defined as the product of the spectral resolution by brightness.
  • Another advantage of the invention is that it implements small displacements of optical elements for field compensation.
  • FIG. 2 is a schematic view of a field-compensated interferometer according to the invention.
  • FIG. 3 is a sectional view of a mirror for field compensation
  • FIG. 4 is a schematic view of another embodiment of a field-compensated interferometer according to the invention.
  • FIG. 2 shows an interferometer 1 with field compensation according to the invention.
  • the interferometer 1 comprises an optical assembly 2, capable of directing the incident light beams 4, originating from the scene to be observed, towards arms 5, 6 of the interferometer 1 for the creation of a difference of path which will be described later. .
  • This optical assembly 2 is generally a spherical mirror, or an aspherical mirror, or a set of several mirrors of different types, on which the incident light beams 4 are reflected.
  • some incident light beams 4 have a non-zero field angle ⁇ with respect to an optical axis 23 of the interferometer 1, as shown in FIG. 2.
  • the incident light beams 4 which are parallel to the optical axis 23 of the interferometer 1 have, them, a field angle ⁇ equal to zero.
  • This type of separating blade can for example be obtained by depositing a thin layer of a metal compound (such as aluminum) or dielectric on the surface of a glass slide.
  • a metal compound such as aluminum
  • the separating blade 12 thus makes it possible to separate each incident light beam 4 into two light beams towards the arms 5, 6 of the interferometer, one of the arms 6 conventionally comprising a thin glass plate 1 1, known from FIG. skilled in the art under the name of compensating blade.
  • the arms 5, 6 comprise at least one mechanically mobile optical device 15, 16 whose displacement is indicated by arrows in FIG. 2, making it possible to create a variable optical step difference between the beams resulting from the separation of each incident beam 4 by the semi-reflecting separating plate 12.
  • variable step difference Various types of mechanically movable optical devices can be used to create the variable step difference.
  • FIG. 2 shows a possible solution with two mechanically movable optical devices 15, 16.
  • each arm 5,6 comprises a 15,16 retro-reflective cube corner that can be displaced on an axis parallel to the optical axis 23 of the interferometer 1.
  • the light beams are collimated towards cube corners 15,16 by through mirrors 17,21.
  • Each cube corner 15, 16 is movable on the optical axis 23 in two directions of movement, which causes, in the direction of travel, an advance or a delay in terms of a difference in travel.
  • the retro-reflective cube corners 15, 16 may be moved using two independent mechanisms, or using a single mechanism with a pendulum motion.
  • Another solution is to use one or more movable mirrors in the arms of the interferometer 1.
  • the presence of at least one mechanically movable device 15, 16 therefore makes it possible to create an optical step difference ⁇ , which can be varied by moving the device 15, 16.
  • the mechanically movable device 15, 16 is typically moved over a distance of a few millimeters to a few centimeters in order to create an optical step difference ⁇ in the same interval.
  • the recombination of the light beams previously separated by the semi-reflecting separating plate 12 and having a difference in operation makes it possible to create the interferogram, the intensity of which is modulated periodically as a function of the difference in path created.
  • the semi-reflecting separator plate 12 also serves for the recombination of the beams.
  • the field compensated interferometer 1 comprises in particular:
  • At least one optical field compensation element E disposed in one or other of the image focal planes of the optical assembly 2 conjugated with respect to the separating plate 12, on which the optical assembly 2 forms the image of the scene to be observed,
  • said element E comprising at least one surface 9 curved to create a difference in the path between the incident beams having a non-zero field angle et and the incident beams having a zero field angle compens, compensating for the difference in path resulting from the field angle ⁇ .
  • the focal plane images of the optical assembly 2 in which the optical element E is arranged are conjugated with respect to the separating plate, which means that these focal planes are images of one another with respect to the separating plate. as shown in FIG.
  • the interferometer 1 comprises two optical elements E optical field compensation respectively arranged in each of the two image focal plane of the optical assembly 2 conjugated by The optical assembly 2 therefore forms the image of the scene to be observed on each of these two optical elements E compensating the field.
  • the field compensating optical E element is a reflecting mirror 7,8 disposed on one of the focal plane images of the optical assembly 2 conjugated with respect to the separating blade 12.
  • the mirror 7.8 comprises a reflective surface 9 curved on at least one of its meridians 13, in order to create a difference in the path compensating for the difference in operation due to the angle of field ⁇ .
  • is a free parameter, which depends on the curvature given to the reflecting surface 9 of the mirror 7.8.
  • step ⁇ ' different from ⁇
  • the compensation of the field is also realized, since the term “cos (0)" is modulated by the difference " ⁇ '- ⁇ ". In this case, the phenomenon of self-apodization is reduced.
  • the choice of the value ⁇ corresponds to the choice of a privileged difference of market ⁇ , for which the compensation of the field is total.
  • the optical E element with field compensation makes it possible to completely compensate the field, that is to say to cancel the self-apodization, for all the differences in steps ⁇ created by means of the device 15,16 mechanically mobile.
  • the curvature of the reflective surface 9 on at least one of the meridians 13 of the mirror 7, 8 can be achieved by machining the surface 9 of the mirror 7,8 continuously.
  • FIG. 3 Another solution, represented in FIG. 3, consists in using a reflective curved surface 9 comprising a mechanical profile composed of a discrete set of reflecting flat surfaces (S ⁇ , Sei, Se2, ).
  • the incident light beams 4 having a field angle close to the value ⁇ will be directed by the optical assembly 2 on the surface Sei.
  • the incident light beams 4 having a zero or almost zero field angle ⁇ that is to say the light beams 4 close to the optical axis of the interferometer 1, will be directed to the surface Seo.
  • the surface Sei is inclined with respect to the surface Seo to create a compensation difference ⁇ ⁇ ⁇ ), which makes it possible to compensate for the difference in operation due to the non-zero field angle ⁇ .
  • the incident light beams 4 may have a field angle ⁇ with respect to the optical axis of the interferometer 1 in all the directions of space, thus describing a cone of revolution of apex angle equal to
  • the light beams reflected by the optical assembly 2 will be linearly offset on the surface 9 of the mirror 7,8. This shift occurs in particular on the surface 9 along the two horizontal and vertical directions of said surface 9.
  • the mirror 7.8 advantageously has a surface 9 bent on two of its meridians, orthogonal to each other.
  • the curvature can be achieved by using a curved mechanical profile continuously or discretely, as previously explained.
  • Another advantageous solution consists in using two mirrors 7, 8, each placed in one of the arms 5, 6 of the interferometer, as illustrated in FIG. 2.
  • the two mirrors 7, 8 are respectively located in each of the two focal planes. the optical assembly 2 conjugated with respect to the separating blade 12.
  • one of the two mirrors 7 comprising a curved surface 9 on a first meridian
  • the other of the two mirrors 8 comprising a curved surface 9 on a second meridian
  • the first and the second meridian being orthogonal.
  • a field compensating optical element E being a reflecting mirror 7.8 has the advantage of providing an achromatic solution. Indeed, the field compensation is effected by reflection of the incident light beams 4 on the mirror 7.8 and not, like some solutions of the prior art, by transmission over long distances in media of different indices. Furthermore, in the interferometer 1 according to the invention, the optical compensation element E of the field, which is for example the mirror 7.8, is arranged at the level of the image focal plane of the optical assembly 2, c ' This is why the incident light beams 4 reflected by said set 2 are converged towards the optical compensation element E of the field.
  • the arrangement of the optical compensation element E of the field may have a certain margin of positioning error with respect to the image focal plane of the optical assembly 2.
  • This configuration is very advantageous, since the fact that the light beams 4 are directed convergently towards the optical compensation element E of the field makes it possible to reduce the size of said optical element E of field compensation.
  • the field compensation is then performed on convergent beams, more concentrated than parallel collimated beams.
  • the mirror may for example have a size of a few millimeters to a few tens of millimeters.
  • Another advantage of the invention is that it makes it possible to increase the acceptable field angle ⁇ in the interferometer, which makes it possible to obtain an instrument with a large field of view, without reducing the spectral resolution.
  • the angular aperture at the device 15, 16 which is mechanically mobile, such as for example the retro-reflector cube, which makes it possible to reduce the linear size of said device, and more generally to reduce the congestion of the interferometer.
  • a field-compensated optical E element is used which makes it possible to completely compensate the field, that is to say to cancel the self-apodization, for all the differences in the path ⁇ created via the device 15,16 mechanically mobile.
  • means 10 for rotating the reflective flat surfaces (Sei, Se2, ...) of the mirror 7.8 are used for this purpose, in order to create a compensation difference of the compensation also variable as a function of ⁇ '.
  • the rotating means 10 rotate the reflecting flat surfaces (Sei, Se2, ).
  • the pivoting can be done around any point of each of said reflecting flat surfaces, such as the center of said surface, or its end.
  • Each of the reflecting flat surfaces (Sei, Se2, 7) defines as many elementary portions of the image field.
  • a rotation whose amplitude is specific to each of said surfaces, in order to achieve optimal compensation of the variation of the operating difference as a function of ⁇ 'and ⁇ .
  • the surface Seo is located in the center of the image field and therefore does not need to be moved, since it corresponds to a zero or almost zero field angle.
  • the reflecting flat surfaces (Sei, Se2, ...) of the mirror 7.8 are rotated simultaneously with the optical device 15, 16 of an angle to compensate for the difference in operation created by the displacement of the optical device 15,16.
  • rotation is effected by means of rotation means 10, which are very schematically represented in the form of functional blocks in FIG.
  • a thin and deformable mirror 7.8 is used via a deformation system 22, as illustrated in FIG.
  • This type of mirror may for example be deformed by means of a piezoelectric system 22 or a magnetic system 22, whose mechanical and / or electrical and / or magnetic action makes it possible to obtain the desired deformation of the reflective surface 9 of the mirror 7.8. Any other deformation system 22 known to those skilled in the art can be used.
  • the surface 9 of the thin mirror 7.8 is deformed simultaneously with the displacement of the optical device 15, 16, by a distance compensating for the difference in operation created by the displacement of said 15,16 optical device.
  • the displacement or the deformation in real time of the surface (s) of the optical element E with field compensation in the interferometer 1 according to the invention has numerous advantages, besides those already mentioned in the context of the embodiment with a stationary E element.
  • An advantage of the invention is that it makes it possible to completely compensate the field, ie to completely cancel the self-apodization, whatever the differences in the path ⁇ '.
  • the invention makes it possible to eliminate the conventional constraint of interferometers, and more generally optical instruments, which associate with a given spectral resolution an acceptable maximum angle of view angle value, and vice versa.
  • the spectral resolution of the interferometer is no longer limited by the difference in operation ⁇ 'can be created by the displacement of the optical device 15,16, which is very advantageous.
  • the total compensation of the field produced by the invention therefore makes it possible to use interferometers having a very large acceptable field of view, while maintaining a high spectral resolution.
  • the invention thus makes it possible to increase the efficiency of said interferometer.
  • the invention makes it possible to increase the angular aperture at the device 15, 16 that is mechanically mobile, such as, for example, the retro-reflector cube. , which may allow the reduction of the linear size of said device, and the size of the interferometer.
  • the total compensation of the field regardless of the difference in operation ⁇ 'that can be created by the displacement of the optical device 15,16 allows to further reduce the size of said device, and therefore the size of the interferometer.
  • Another advantage of the invention is that it requires a small rotation of the surfaces (Sei, Se2, ...) of the optical element E compensating the field, through the means 10 of rotation.
  • the order of magnitude of rotation to be applied is a few milliradians for typical and typical applications.
  • FIG. 4 shows a variant of the embodiment of the invention using a stationary field compensation optical element E, in which the field-compensated optical element E is a thin glass plate.
  • the thin glass plate 11 is arranged in the image focal plane of the optical assembly 2. At least one outer surface 9 of the thin glass slab 11 is machined in a curved manner, in order to create a difference in travel compensating for the difference in travel due to the field angle ⁇ .
  • the field compensation is done in this embodiment due to the variable thickness of the thin glass plate 1 1 which is traversed by the light beams 4 reflected by the optical assembly 2, which allows to introduce a difference of compensation step 5E.
  • the curvature of the outer surface 9 of the thin glass plate 11 is chosen to introduce a compensation step difference 5E which is written as already explained previously:
  • the radius of curvature to be chosen for the thin glass slide 1 1 is large, which implies that chromaticism problems are negligible.
  • the radius of curvature is typically of the order of several meters.
  • the thin glass plate 1 1 may advantageously have a curved surface 9 on two of its meridians, orthogonal to each other.
  • the positioning of the thin glass plate 1 1 at the image focal plane of the optical assembly 2 reduces the size of said plate 1 1, since the light beams 4 converge there.
  • the size of the blade 1 1 is typically between 60 and 80 mm, which is very compact.
  • optical element E of the field compensation the separation plate 12, semi-reflective type, arranged in the image focal plane of the optical assembly 2.
  • This separating blade 12 differs from the thin glass plate 11 in that a metal or dielectric compound has been deposited on said plate 12.
  • the separating blade 12 is machined to present at least one curved outer surface 9 to compensate the field.
  • the separation blade 12 may advantageously have a curved surface 9 on two of its meridians orthogonal to each other.
  • the interferometer 1 comprises two optical elements E of field compensation, namely the thin glass plate 11 and the separation plate 12, which are grouped and arranged at the image focal plane of the 2 optical set.
  • the focal plane images of the optical assembly 2 conjugated with respect to said separating plate 12 are merged, and the thin glass plate 11 and the separation plate 12 are disposed therein.
  • the advantage of the configuration using one or more blades as optical element E of compensation of the field is that the interferometer 1 obtained is compact. Indeed, the blades are reduced in size. In addition, in this configuration, it reduces the number of optical elements to be used in the interferometer, and therefore its size.
  • the interferometer 1 has many applications in industry, basic or applied research, or any other field requiring an interferometer as described above.
  • the interferometer 1 according to the invention may for example be used in the context of space missions for Earth observation, based in particular on infrared spectrometry techniques.
  • the interferometer 1 is embarked on an Earth observation satellite.
  • the instrument according to the invention is compact, which is advantageous for boarding a satellite. Moreover, it has a large acceptable field of view and a significant spectral resolution, which allows to obtain very good instrumental performances, compatible with the requirements of Earth observation missions.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

L'invention concerne un interféromètre (1) à compensation de champ, comprenant un ensemble (2) optique apte à diriger des faisceaux lumineux incidents (4) présentant un angle de champ θpar rapport à un axe optique de l'interféromètre (1) vers des bras (5,6) de l'interféromètre, une lame séparatrice (12), les bras (5,6) comprenant au moins un dispositif (15,16) optique mécaniquement mobile pour la création d'une différence de marche optique variable entre des faisceaux issus de la séparation de chaque faisceau (4) incident par l'intermédiaire de ladite lame séparatrice (12), ledit interféromètre (1) étant caractérisé en ce qu'il comprend au moins un élément (E) optique de compensation du champ, disposé dans l'un ou l'autre des plans focaux image de l'ensemble (2) optique conjugués par rapport à la lame séparatrice (12), ledit élément (E) comprenant au moins une surface (9) courbée de manière à créer une différence de marche entre les faisceaux incidents présentant un angle de champ non nul et les faisceaux incidents présentant un angle de champ nul,la différence de marche ainsi créée permettant de compenser l'auto-apodisation résultant de l'angle de champ.

Description

Interféromètre à compensation de champ
DOMAINE TECHNIQUE GENERAL
L'invention concerne un interféromètre et un procédé d'interférométrie dans le domaine des interféromètres à Transformée de Fourier à deux miroirs. Plus précisément, l'invention concerne la compensation du champ dans ce type d'instrument.
ETAT DE L'ART
Les interféromètres à Transformée de Fourier à deux miroirs
(également désignés selon l'expression anglo-saxonne « FTS », pour « Fourier Transform Spectrometer ») sont communément utilisés en interférométrie, et connaissent notamment des applications en spectrométrie, comme par exemple la spectrométrie infrarouge.
Dans ce type d'instrument, des faisceaux lumineux distincts, issus de la séparation d'un faisceau lumineux incident, parcourent des chemins optiques différents dans des portions de l'interféromètre, également appelées « bras » de l'interféromètre, le plus souvent au nombre de deux.
La recombinaison des faisceaux distincts permet alors d'obtenir un interférogramme, mesuré par un détecteur, résultant de la différence de marche optique entre lesdits faisceaux.
Une différence de marche variable est généralement créée en déplaçant dans les bras de l'interféromètre un ou plusieurs dispositifs optiques mécaniquement mobiles.
Un critère fondamental pour examiner la performance d'un interféromètre est sa résolution spectrale, c'est-à-dire sa capacité à séparer sans ambiguïté deux éléments spectraux contigus.
La résolution spectrale est d'autant plus élevée que la différence de marche créée entre les bras de l'interféromètre est élevée. En particulier, la finesse spectrale est égale à l'inverse de la différence de marche créée entre les bras de l'interféromètre.
Néanmoins, l'augmentation de la différence de marche est soumise à certaines limitations dans les instruments de l'art antérieur. Lorsque les faisceaux lumineux incidents présentent un angle de champ Θ non nul par rapport à l'axe optique de l'interféromètre, résultant du champ angulaire de la scène observée (par exemple, une zone de la surface de la Terre), lesdits faisceaux vont parcourir un chemin optique de longueur différente par rapport aux faisceaux lumineux incidents au niveau de l'axe optique, qui présentent, eux, un angle de champ Θ nul.
La différence de marche réelle δ est alors une fonction de l'angle de champ Θ. Dans un interféromètre de type Michelson, la différence de marche réelle δ, variable en fonction de l'angle de champ Θ, s'écritô = ô 'cos(0) , où δ' est la différence de marche créée suivant l'axe optique par l'intermédiaire du dispositif optique mobile dans les bras de l'interféromètre, et Θ est l'angle de champ.
En conséquence, chaque faisceau lumineux incident issu d'un point du champ produit son propre interférogramme, différent d'un autre faisceau lumineux, ce qui brouille l'interférogramme mesuré par le détecteur et diminue son contraste.
Plus la différence de marche δ' créée entre les bras de l'interféromètre par l'intermédiaire du dispositif optique mobile est grande, plus le contraste va diminuer avec le champ, jusqu'à s'annuler dans certains cas.
Ce phénomène est connu de l'homme du métier sous le nom d'auto- apodisation.
La résolution spectrale est donc limitée par l'ouverture angulaire de l'instrument, c'est-à-dire son champ de vue.
On a représenté en figure 1 (tirée de « Chemical infrared fourier- transform spectroscopy », Peter R. Griffiths, John Wiley, London, New York, Sydney and Toronto, 1975, p.127) un interféromètre selon l'art antérieur pour tenter de pallier aux problèmes précités, c'est-à-dire pour compenser la présence de champ, qui entraine une différence de marche non désirée.
L'interféromètre comprend une lame séparatrice semi-réfléchissante
12, apte à séparer le faisceau lumineux incident 4, présentant un angle de champ Θ par rapport à un axe optique dudit interféromètre, vers deux bras 5,6 de l'interféronnètre, comprenant chacun un prisme 18,19 dont une des surfaces est réflectrice. La différence de marche entre les deux bras 5,6 de l'interféromètre est obtenue en déplaçant l'un des prismes 18 selon l'axe 20. La compensation de champ est obtenue grâce à la distance sensiblement constante parcourue dans le prisme quelque soit l'angle de champ.
Un inconvénient de cette solution est qu'elle utilise des faisceaux parallèles ce qui nécessite pour la compensation de champ des prismes très grands, de la taille de la pupille d'entrée, accentuant l'encombrement de l'interféromètre.
Un autre inconvénient de cette solution est qu'elle souffre de problèmes de chromatisme dus à la traversée de prismes très épais par le faisceau lumineux.
Un autre inconvénient encore concerne le déplacement du prisme, lourd et encombrant, qui se fait sur de grandes distances (de l'ordre de 5 cm), ce qui pose des problèmes fondamentaux de positionnement et de maintien du prisme le long de l'axe de déplacement.
PRESENTATION DE L'INVENTION
L'invention propose de pallier au moins un de ces inconvénients.
A cet effet, l'invention propose un interféromètre à compensation de champ, comprenant un ensemble optique apte à diriger des faisceaux lumineux incidents présentant un angle de champ Θ par rapport à un axe optique de l'interféromètre vers des bras de l'interféromètre, une lame séparatrice, les bras comprenant au moins un dispositif optique mécaniquement mobile pour la création d'une différence de marche optique variable entre des faisceaux issus de la séparation de chaque faisceau incident par l'intermédiaire de ladite lame séparatrice, ledit interféromètre étant caractérisé en ce qu'il comprend au moins un élément optique de compensation du champ, disposé dans l'un ou l'autre des plans focaux image de l'ensemble optique conjugués par rapport à la lame séparatrice, ledit élément comprenant au moins une surface courbée de manière à créer une différence de marche entre les faisceaux incidents présentant un angle de champ non nul et les faisceaux incidents présentant un angle de champ nul, la différence de marche ainsi créée permettant de compenser l'auto- apodisation résultant de l'angle de champ.
L'invention est avantageusement complétée par les caractéristiques suivantes, prises seules ou en une quelconque de leur combinaison techniquement possible :
- l'interféromètre comprend deux éléments optiques de compensation du champ disposés respectivement dans chacun des deux plans focaux image de l'ensemble optique conjugués par rapport à la lame séparatrice ;
- la surface de l'élément optique est courbe sur au moins une de ses méridiennes ;
- l'interféromètre comprend deux éléments optiques, l'un des éléments comprenant une surface courbe sur une première méridienne, l'autre des éléments comprenant une surface courbe sur une deuxième méridienne, la première et la deuxième méridienne étant orthogonales ;
- l'élément optique est un miroir, ledit miroir comprenant une surface courbe réfléchissante sur au moins une de ses méridiennes ;
- la surface courbe réfléchissante dudit miroir présente un profil mécanique continûment incurvé ;
- la surface courbe réfléchissante dudit miroir présente un profil mécanique composée d'un ensemble discret de surfaces planes réfléchissantes ;
l'interféromètre comprend des moyens de rotation des surfaces planes réfléchissantes ;
- l'élément optique est un miroir mince et déformable par l'intermédiaire d'un système de déformation ;
- le système de déformation est un système piézo-électrique ;
- l'interféromètre comprend un outil de métrologie laser pour le contrôle du déplacement créé par les moyens de déplacement ou de la déformation créée par le système de déformation ;
- l'élément optique de compensation du champ est une lame de verre mince ; - l'interféronnètre comprend deux éléments optiques de compensation du champ : une lame de verre mince et la lame séparatrice, disposés au plan focal image de l'ensemble optique.
L'invention propose également un procédé d'interférométrie à compensation de champ dans un interféromètre dans lequel un ensemble optique dirige des faisceaux lumineux incidents vers les bras de l'interféronnètre, le dispositif optique mécaniquement mobile est déplacé pour créer une différence de marche entre les faisceaux issus de la séparation de chaque faisceau incident, dont la recombinaison permet de mettre en œuvre l'interférométhe, ledit procédé étant caractérisé en ce qu'il comprend l'étape selon laquelle les surfaces planes réfléchissantes du miroir sont déplacées en rotation simultanément au dispositif optique d'un angle compensant la différence de marche créée par le déplacement dudit dispositif optique.
L'invention propose enfin un procédé d'interférométrie à compensation de champ dans un interféromètre, dans lequel un ensemble optique dirige des faisceaux lumineux incidents vers les bras de l'interféronnètre, un dispositif optique mécaniquement mobile est déplacé pour créer une différence de marche entre les faisceaux issus de la séparation de chaque faisceau incident, dont la recombinaison permet de mettre en œuvre l'interférométrie, ledit procédé étant caractérisé en ce qu'il comprend l'étape selon laquelle la surface du miroir mince est déformée simultanément au dispositif optique d'une distance compensant la différence de marche créée par le déplacement dudit dispositif optique.
L'invention présente de nombreux avantages.
Un avantage de l'invention est qu'elle permet de réduire et même d'annuler l'auto-apodisation.
Un autre avantage l'invention est qu'elle propose une solution achromatique.
Un autre avantage encore de l'invention est qu'elle permet de réduire la dimension de certains éléments optiques critiques de l'instrument à résolution spectrale donnée. Un autre avantage encore de l'invention est qu'elle permet d'accroître le champ de vue de l'instrument à résolution spectrale donnée.
Un autre avantage encore de l'invention est qu'elle permet d'accroître l'efficacité générale de l'interféromètre, qui peut être définie comme le produit de la résolution spectrale par la luminosité.
Enfin, un autre avantage de l'invention est qu'elle met en œuvre de faibles déplacements d'éléments optiques pour la compensation du champ.
PRESENTATION DES FIGURES
D'autres caractéristiques, buts et avantages de l'invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :
- la figure 1 , déjà commentée, est un interféromètre selon l'art antérieur ;
- la figure 2 est une vue schématique d'un interféromètre à compensation de champ selon l'invention ;
- la figure 3 est une vue en coupe d'un miroir pour la compensation de champ ;
- la figure 4 est une vue schématique d'une autre mode de réalisation d'un interféromètre à compensation de champ selon l'invention.
DESCRIPTION DETAILLEE
On a représenté en figure 2 un interféromètre 1 à compensation de champ selon l'invention.
L'interféromètre 1 comprend un ensemble 2 optique, apte à diriger les faisceaux lumineux incidents 4, issus de la scène à observer, vers des bras 5,6 de l'interféromètre 1 pour la création d'une différence de marche qui sera décrite ultérieurement.
Cet ensemble 2 optique est généralement un miroir sphérique, ou un miroir asphérique, ou un jeu de plusieurs miroirs de différents types, sur lesquels les faisceaux lumineux incidents 4 se réfléchissent.
Etant donné que la scène à observer par l'interféromètre 1 n'est en général pas un point ponctuel, mais une zone plus ou moins étendue, certains faisceaux lumineux incidents 4 présentent un angle de champ Θ non nul par rapport à un axe optique 23 de l'interféromètre 1 , comme cela est représenté en figure 2.
Les faisceaux lumineux incidents 4 qui sont parallèles à l'axe optique 23 de l'interféromètre 1 présentent, eux, un angle de champ Θ égal à zéro.
Les faisceaux lumineux incidents 4, réfléchis par l'ensemble 2 optique, rencontrent alors une lame séparatrice semi-réfléchissante 12, qui sépare chaque faisceau lumineux incident 4 en deux faisceaux lumineux d'intensité quasi-identique.
Ce type de lame séparatrice peut par exemple être obtenu en déposant une couche fine d'un composé métallique (comme de l'aluminium) ou diélectrique à la surface d'une lame de verre.
La lame séparatrice 12 permet donc de séparer chaque faisceau lumineux incident 4 en deux faisceaux lumineux vers les bras 5,6 de l'interféromètre, l'un des bras 6 comprenant de manière classique une lame de verre mince 1 1 , connue de l'homme du métier sous le nom de lame compensatrice.
Pour pouvoir créer un interférogramme, il est nécessaire que les faisceaux lumineux, issus de la séparation de chaque faisceau lumineux incident 4, parcourent un chemin optique différent dans chaque bras 5,6 de l'interféromètre.
A cet effet, les bras 5,6 comprennent au moins un dispositif 15,16 optique mécaniquement mobile, dont le déplacement est indiqué par des flèches en figure 2, permettant de créer une différence de marche optique variable entre les faisceaux issus de la séparation de chaque faisceau 4 incident par la lame séparatrice semi-réfléchissante 12.
Divers types de dispositifs optiques mécaniquement mobiles peuvent être utilisés pour la création de la différence de marche variable.
En figure 2, on a représenté une solution possible avec deux dispositifs 15,16 optiques mécaniquement mobiles. Dans cette solution, chaque bras 5,6 comprend un coin de cube 15,16 rétro-réflecteur pouvant être déplacé sur un axe parallèle à l'axe optique 23 de l'interféromètre 1 . Les faisceaux lumineux sont collimatés vers les coins de cube 15,16 par l'intermédiaire de miroirs 17,21 . Chaque coin de cube 15,16 est mobile sur l'axe optique 23 selon deux sens de déplacement, ce qui entraine selon le sens de déplacement une avance ou un retard en terme de différence de marche.
Les coins de cube rétro-réflecteur 15,16 peuvent être déplacés en utilisant deux mécanismes indépendants, ou en utilisant un seul mécanisme avec un mouvement pendulaire.
Il est bien sûr possible de mettre en œuvre une solution où un seul dispositif optique mécaniquement mobile est commun aux deux bras 5, 6 de l'interféromètre 1 . On peut par exemple solidariser les deux coins de cube 15,16 en les plaçant côte à côte de manière « tête-bêche », ce qui permet de ne déplacer qu'un seul dispositif optique mécaniquement mobile.
Une autre solution consiste à utiliser un ou plusieurs miroirs mobiles dans les bras de l'interféromètre 1 .
La présence d'au moins un dispositif 15,16 mécaniquement mobile permet donc de créer une différence de marche optique δ , que l'on peut faire varier en déplaçant le dispositif 15,16. Le dispositif mécaniquement mobile 15,16 est typiquement déplacé sur une distance de quelques millimètres à quelques centimètres, afin de créer une différence de marche optique δ dans le même intervalle.
La recombinaison des faisceaux lumineux précédemment séparés par la lame séparatrice semi-réfléchissante 12 et présentant une différence de marche permet de créer l'interférogramme, dont l'intensité est modulée périodiquement en fonction de la différence de marche créée. Le plus souvent, et comme cela est représente en figure 2, la lame séparatrice semi-réfléchissante 12 sert aussi pour la recombinaison des faisceaux.
Comme explicité précédemment, en l'absence d'un élément optique permettant de compenser la différence de marche due à l'angle de champ Θ par rapport à l'axe optique 23 de l'interféromètre 1 , c'est-à-dire en présence d'auto-apodisation, les faisceaux incidents présentant un angle de champ Θ non nul et les faisceaux incidents présentant un angle de champ Θ nul vont présenter une différence de marche différente, variable en fonction de Θ. Ainsi, en l'absence de compensation de champ, la différence de marche réelle δ créée dans l'interféromètre 1 s'écrit :
δ = ô 'cos(e)
La présence de l'angle de champ Θ introduit donc une différence de marche exprimée par le terme « cos Θ ».
Pour compenser la différence de marche résultant de l'angle de champ Θ, l'interféromètre 1 à compensation de champ selon l'invention comprend notamment :
- au moins un élément E optique de compensation du champ, disposé dans l'un ou l'autre des plans focaux image de l'ensemble 2 optique conjugués par rapport à la lame séparatrice 12, sur lequel l'ensemble 2 optique forme l'image de la scène à observer,
- ledit élément E comprenant au moins une surface 9 courbée pour créer une différence de marche entre les faisceaux incidents présentant un angle de champ Θ non nul et les faisceaux incidents présentant un angle de champ Θ nul, compensant la différence de marche résultant de l'angle de champ Θ. Les plans focaux images de l'ensemble 2 optique dans lesquels sont disposés l'élément optique E sont conjugués par rapport à la lame séparatrice, ce qui signifie que ces plans focaux sont images l'un de l'autre par rapport à la lame séparatrice, comme cela est représenté en figure 2.
Dans un mode de réalisation avantageux de l'invention, et comme cela sera décrit ci-après, l'interféromètre 1 comprend deux éléments E optiques de compensation du champ disposés respectivement dans chacun des deux plans focaux image de l'ensemble 2 optique conjugués par rapport à la lame séparatrice 12. L'ensemble 2 optique forme donc l'image de la scène à observer sur chacun de ces deux éléments E optiques de compensation du champ.
Dans un mode de réalisation de l'invention, l'élément E optique de compensation du champ est un miroir 7,8 réfléchissant disposé sur l'un des plans focaux images de l'ensemble 2 optique conjugués par rapport à la lame séparatrice 12.
Le miroir 7,8 comprend une surface 9 réfléchissante courbée sur au moins une de ses méridiennes 13, afin de créer une différence de marche compensant la différence de marche due à l'angle de champ Θ.
Ainsi, la courbure de la surface 9 réfléchissante est choisie pour introduire une différence de marche de compensation 5E qui s'écrit :
δ£ = δ0 (1 - οοδ(θ))
Dans cette équation, δο est un paramètre libre, qui dépend de la courbure que l'on donne à la surface 9 réfléchissante du miroir 7,8.
En conséquence, grâce au miroir 7,8 assurant la compensation du champ, la différence de marche réelle δ créée dans l'interféromètre 1 s'écrit à présent :
δ = ô 'cos(e) + ô0(l - cos(e)) ô = δ0 + (δ '-δ0)οοδ(θ) La compensation du champ est totale lorsque le dispositif 15,16 optique mécaniquement mobile est déplacé pour créer une différence de marche δ' égale à δο, puisque, dans ce cas, la différence de marche réelle ne dépend plus de l'angle de champ Θ. Le phénomène auto-apodisation est alors annulé.
Pour des différences de marche δ' différentes de δο, la compensation du champ est également réalisée, puisque le terme « cos(0) » est modulé par la différence « δ'-δο ». Dans ce cas, l'on réduit le phénomène d'auto- apodisation.
Le choix de la valeur δο correspond au choix d'une différence de marche privilégiée δο, pour laquelle la compensation du champ est totale.
Comme la résolution spectrale croît avec la différence de marche créée par le dispositif optique 15,16 mécaniquement mobile, il est avantageux de choisir une valeur élevée pour δο, ce qui permet d'accroître la résolution spectrale.
Selon un autre aspect de l'invention, il est possible d'utiliser un élément E optique de compensation du champ dont la surface 9 est modifiée « en temps réel » pour introduire la différence de marche δ£ (θ , δ ') = ô '(l - cos(0 )) , cette solution étant décrite ultérieurement. Dans ce cas, l'élément E optique à compensation du champ permet de compenser totalement le champ, c'est-à-dire d'annuler l'auto- apodisation, pour toutes les différences de marche δ créées par l'intermédiaire du dispositif 15,16 mécaniquement mobile.
La courbure de la surface 9 réfléchissante sur au moins une des méridiennes 13 du miroir 7,8 peut être réalisée en usinant la surface 9 du miroir 7,8 de manière continue. Dans ce cas, la surface 9 du miroir 5,6 possède un profil mécanique continûment incurvé sur au moins une de ses méridiennes 13, dont la courbure décrit la fonction δ£ = ôo (l - cos(0)) .
Une autre solution, représentée en figure 3, consiste à utiliser une surface 9 courbe réfléchissante comportant un profil mécanique composée d'un ensemble discret de surfaces planes réfléchissantes (S∞,Sei ,Se2,...)-
Ainsi, les faisceaux lumineux incidents 4 présentant un angle de champ proche de la valeur θι vont être dirigés par l'ensemble 2 optique sur la surface Sei . Les faisceaux lumineux incidents 4 présentant un angle de champ θο nul ou quasi nul, c'est-à-dire les faisceaux lumineux 4 proches de l'axe optique de l'interféromètre 1 , vont être dirigés sur la surface Seo-
La surface Sei est inclinée par rapport à la surface Seo pour créer une différence de marche de compensation δΕ ι) , ce qui permet de compenser la différence de marche due à l'angle de champ θι non nul.
Il en est de même pour les faisceaux lumineux incidents 4 présentant un angle de champ proche de la valeur Θ2, qui vont être dirigés sur la surface Se2 par l'ensemble 2 optique, qui est inclinée par rapport à la surface Seo.
A titre d'exemple, l'utilisation d'un profil mécanique composé d'un ensemble discret de surfaces planes réfléchissantes (Seo,Sei ,Se2,...) ne permet pas de décrire exactement la fonctionô£ = ôo (l - cos(0)) , mais permet déjà d'obtenir une compensation du champ satisfaisante, dans de nombreuses situations. En pratique, l'utilisation de trois surfaces planes réfléchissantes (Seo,Sei ,Se2) est suffisante pour compenser le champ de manière satisfaisante, c'est-à-dire réduire l'auto-apodisation.
Par ailleurs, comme les faisceaux lumineux incidents 4 peuvent présenter un angle de champ Θ par rapport à l'axe optique de l'interféromètre 1 dans toutes les directions de l'espace, décrivant ainsi un cône de révolution d'angle au sommet égal à Θ autour de l'axe optique 23 de l'interféromètre 1 , les faisceaux lumineux réfléchis par l'ensemble optique 2 vont être décalés linéairement sur la surface 9 du miroir 7,8. Ce décalage s'opère notamment sur la surface 9 selon les deux directions horizontales et verticales de ladite surface 9.
Pour pouvoir compenser le champ dans toutes les directions de l'espace, le miroir 7,8 présente avantageusement une surface 9 courbée sur deux de ses méridiennes, orthogonales entre elles. La courbure peut être réalisée en utilisant un profil mécanique incurvé de manière continue ou discrète, comme explicitée auparavant.
Une autre solution avantageuse consiste à utiliser deux miroirs 7,8, disposés chacun dans un des bras 5,6 de l'interféromètre, comme illustré en figure 2. Les deux miroirs 7,8 sont disposés respectivement dans chacun des deux plans focaux images de l'ensemble 2 optique conjugués par rapport à la lame séparatrice 12.
Dans ce cas, il est avantageux d'utiliser l'un des deux miroirs 7 comprenant une surface 9 courbe sur une première méridienne, l'autre des deux miroirs 8 comprenant une surface 9 courbe sur une deuxième méridienne, la première et la deuxième méridienne étant orthogonales.
Il est bien évidemment possible d'utiliser deux miroirs 7,8 présentant chacun une surface 9 incurvée sur chacune des deux méridiennes.
L'utilisation d'un élément optique E à compensation de champ étant un miroir 7,8 réfléchissant présente l'avantage de proposer une solution achromatique. En effet, la compensation de champ s'opère par réflexion des faisceaux lumineux incidents 4 sur le miroir 7,8 et non pas, comme certaines solutions de l'art antérieur, par transmission sur de longues distances dans des milieux d'indices différents. Par ailleurs, dans l'interféromètre 1 selon l'invention, l'élément E optique de compensation du champ, qui est par exemple le miroir 7,8, est disposé au niveau du plan focal image de l'ensemble 2 optique, c'est pourquoi on fait converger les faisceaux lumineux incidents 4 réfléchis par ledit ensemble 2 vers l'élément E optique de compensation du champ.
La disposition de l'élément E optique de compensation du champ peut présenter une certaine marge d'erreur de positionnement par rapport au plan focal image de l'ensemble 2 optique.
Cette configuration est très avantageuse, puisque le fait que les faisceaux lumineux 4 soient dirigés de manière convergente vers l'élément E optique de compensation du champ permet de réduire la taille dudit élément E optique de compensation du champ.
En effet, la compensation de champ s'effectue alors sur des faisceaux convergents, plus concentrés que des faisceaux collimatés parallèles.
Il est ainsi possible d'utiliser comme élément E optique de compensation de champ un miroir 7,8 de dimension compacte. Dans un interféromètre 1 selon l'invention, le miroir peut par exemple présenter une taille de quelques millimètres à quelques dizaines de millimètres.
Un autre avantage de l'invention est qu'elle permet d'augmenter l'angle de champ Θ acceptable dans l'interféromètre, ce qui permet d'obtenir un instrument à grand champ de vue, sans réduire la résolution spectrale.
De même, il est possible d'augmenter l'ouverture angulaire au niveau du dispositif 15,16 mécaniquement mobile, comme par exemple le cube rétro-réflecteur, ce qui permet de réduire la taille linéaire dudit dispositif, et plus généralement de diminuer l'encombrement de l'interféromètre.
Dans un mode de réalisation de l'invention, on utilise un élément E optique à compensation du champ permettant de compenser totalement le champ, c'est-à-dire d'annuler l'auto-apodisation, pour toutes les différences de marche δ créées par l'intermédiaire du dispositif 15,16 mécaniquement mobile.
L'annulation totale de l'auto-apodisation pour toutes les différences de marche nécessite l'utilisation d'un élément E optique à compensation du champ permettant d'obtenir une différence de marche de compensation variable non seulement en fonction de l'angle de champ Θ, via l'utilisation d'une surface 9 courbée et telle que décrite auparavant, mais également variable en fonction de la différence de marche δ'. Cet élément E optique doit donc introduire la différence de marche 5E variable avec δ':
ô£ (0 ,ô ') = ô '(l - cos(0 ))
Avec un tel élément E optique, la différence de marche réelle δ créée dans l'interféromètre 1 ne dépend plus de l'angle de champ Θ, et s'écrit :
δ = ô 'cos(0 ) + ô '(l - cos(0 )) ^ ô = δ '
Pour ce faire, il est nécessaire de déplacer ou de déformer la surface de l'élément E optique en temps réel, c'est à dire simultanément au déplacement du dispositif 15,16 optique mécaniquement mobile.
Dans un mode de réalisation de l'invention, et comme illustré en figure 3, on utilise à cet effet des moyens 10 de rotation des surfaces planes réfléchissantes (Sei ,Se2,...) du miroir 7,8, afin de créer une différence de marche de compensation également variable en fonction de δ'.
Les moyens 10 de rotation font pivoter les surfaces planes réfléchissantes (Sei ,Se2,...)- Le pivotement peut se faire autour de n'importe quel point de chacune desdites surfaces planes réfléchissantes, comme par exemple le centre de ladite surface, ou son extrémité.
Chacune des surfaces planes réfléchissantes (Sei ,Se2,...) définit autant de portions élémentaires du champ image. On applique à chacune desdites surfaces (Sei ,Se2,...) une rotation dont l'amplitude est propre à chacune desdites surfaces, afin de réaliser une compensation optimale de la variation de la différence de marche en fonction de δ' et Θ.
Dans la configuration particulière illustrée sur la figure 3, la surface Seo est située au centre du champ image et n'a donc pas besoin d'être déplacée, étant donné qu'elle correspond à un angle de champ nul ou quasi nul.
Dans un procédé d'interférométrie à compensation de champ selon l'invention, les surfaces planes réfléchissantes (Sei ,Se2,...) du miroir 7,8 sont déplacées en rotation simultanément au dispositif 15,16 optique d'un angle permettant de compenser la différence de marche créée par le déplacement du dispositif 15,16 optique. Ainsi, le miroir 7,8 introduit pour chaque différence de marche δ' créée par le dispositif 15,16 optique une différence de marche de compensation approximant au mieux la fonctionô£ = ô '(l - cos(0 )) .
La rotation s'opère par l'intermédiaire des moyens 10 de rotation, qui sont représentés de manière très schématique sous la forme de blocs fonctionnels sur la figure 3.
Plus généralement, il est possible d'utiliser d'autres moyens de déplacement, comme des moyens de translation des surfaces planes réfléchissantes.
Dans un autre mode de réalisation de l'invention, on utilise un miroir 7,8 mince et déformable par l'intermédiaire d'un système 22 de déformation, comme illustré en figure 2.
Ce type de miroir peut par exemple être déformé par l'intermédiaire d'un système 22 piézo-électrique ou d'un système 22 magnétique, dont l'action mécanique et/ou électrique et/ou magnétique permet d'obtenir la déformation désirée de la surface 9 réfléchissante du miroir 7,8. Tout autre système 22 de déformation connu de l'homme du métier peut être utilisé.
Dans un procédé d'interférométrie à compensation de champ selon l'invention, la surface 9 du miroir mince 7,8 est déformée simultanément au déplacement du dispositif 15,16 optique, d'une distance compensant la différence de marche créée par le déplacement dudit dispositif 15,16 optique. Ainsi, le miroir 7,8 introduit pour chaque différence de marche δ' créée par le dispositif 15,16 optique une différence de marche de compensation δ£ = ô '(l - cos(0 )) . Etant donné que l'on peut contrôler la déformation de chaque point du miroir déformable, il est possible d'obtenir une différence de marche de compensation 5E très précise.
D'autres solutions sont bien sûr envisageables afin de déplacer la ou les surfaces du miroir 7,8 en fonction de la différence de marche δ' créée par le déplacement du dispositif 15,16 optique. Avantageusement, on contrôle le déplacement des surfaces (Sei,Se2,...) du miroir 7,8, ou la déformation de la surface 9 du miroir 7,8 déformable, par l'intermédiaire d'un outil de métrologie laser. Ceci permet de vérifier que l'on introduit bien la différence de marche de compensation δΕ désirée.
Il est clair que dans le cas où les moyens 10 de rotation ou le système 22 de déformation ne sont pas utilisés, on retrouve le mode de réalisation décrit précédemment, dans lequel l'élément E optique à compensation du champ, comme par exemple le miroir 7,8, est immobile et introduit une différence de marche de compensation δ£ = ôo (l - cos(0)) , où δ0 a une valeur fixée. En utilisant les moyens 10 de rotation ou le système 22 de déformation, il est alors possible d'assigner la valeur que l'on souhaite au paramètreô0 .
Le déplacement ou la déformation en temps réel de la ou les surfaces de l'élément optique E à compensation du champ dans l'interféromètre 1 selon l'invention présente de nombreux avantages, outre ceux déjà cités dans le cadre du mode de réalisation avec un élément E immobile.
Un avantage de l'invention est qu'elle permet de compenser totalement le champ, c'est à dire d'annuler totalement l'auto-apodisation, quelques soient les différences de marche δ'. L'invention permet de faire disparaître la contrainte classique des interféromètres, et plus généralement des instruments optiques, qui associent à une résolution spectrale donnée une valeur d'angle de champ maximum acceptable, et inversement.
Grâce à l'invention, la résolution spectrale de l'interféromètre n'est plus limitée que par la différence de marche δ' pouvant être créée par le déplacement du dispositif 15,16 optique, ce qui est très avantageux.
La compensation totale du champ réalisée par l'invention permet donc d'utiliser des interféromètres ayant un champ de vue acceptable très grand, tout en conservant une forte résolution spectrale.
De plus, étant donné que l'on peut augmenter le champ de vue sans diminuer la résolution spectrale, ceci permet d'augmenter la luminosité, qui dépend du flux lumineux incident et donc du champ de vue, ce qui accroît le produit entre la résolution spectrale et la luminosité. Comme le produit de la résolution spectrale par la luminosité définit l'efficacité générale de l'interféromètre, l'invention permet donc d'accroître l'efficacité dudit interféromètre.
Il a été mentionné dans le mode de réalisation utilisant un élément E optique à compensation du champ immobile, que l'invention permettait d'augmenter l'ouverture angulaire au niveau du dispositif 15,16 mécaniquement mobile, comme par exemple le cube rétro-réflecteur, ce qui peut permettre la réduction de la taille linéaire dudit dispositif, et l'encombrement de l'interféromètre. La compensation totale du champ quelque soit la différence de marche δ' pouvant être créée par le déplacement du dispositif 15,16 optique permet de réduire davantage la taille dudit dispositif, et donc l'encombrement de l'interféromètre.
Un autre avantage de l'invention est qu'elle nécessite une rotation faible des surfaces (Sei,Se2,...) de l'élément E optique à compensation du champ, par l'intermédiaire des moyens 10 de rotation. L'ordre de grandeur de la rotation à appliquer est de quelques milliradians pour les applications courantes et typiques.
On a représenté en figure 4 une variante du mode de réalisation de l'invention utilisant un élément E optique à compensation du champ immobile, dans laquelle l'élément E optique à compensation du champ est une lame de verre mince.
La lame de verre mince 1 1 est disposée au plan focal image de l'ensemble 2 optique. Au moins une surface 9 externe de la lame de verre mince 1 1 est usinée de manière courbe, afin de créer une différence de marche compensant la différence de marche due à l'angle de champ Θ.
La compensation de champ se fait dans ce mode de réalisation grâce à l'épaisseur variable de la lame de verre mince 1 1 qui est traversée par les faisceaux lumineux 4 réfléchis par l'ensemble 2 optique, ce qui permet d'introduire une différence de marche de compensation 5E. Ainsi, la courbure de la surface 9 externe de la lame de verre mince 1 1 est choisie pour introduire une différence de marche de compensation 5E qui s'écrit, comme déjà explicité auparavant :
δ£ = δ0 (1 - οοδ(θ))
Le rayon de courbure à choisir pour la lame de verre mince 1 1 est grand, ce qui implique que les problèmes de chromatisme sont négligeables. Le rayon de courbure est typiquement de l'ordre de plusieurs mètres.
La lame de verre mince 1 1 peut présenter avantageusement une surface 9 courbée sur deux de ses méridiennes, orthogonales entre elles.
Comme explicité dans le premier mode de réalisation, le positionnement de la lame de verre mince 1 1 au niveau du plan focal image de l'ensemble 2 optique permet de réduire la taille de ladite lame 1 1 , puisque les faisceaux lumineux 4 y convergent. Ainsi, la taille de la lame 1 1 est typiquement comprise entre 60 et 80 mm, ce qui est très compact.
En variante, il est possible d'utiliser comme élément optique E de compensation du champ la lame de séparation 12, de type semi- réfléchissante, disposée au plan focal image de l'ensemble 2 optique. Cette lame de séparation 12 diffère de la lame de verre mince 1 1 par le fait qu'on a déposé sur ladite lame 12 un composé métallique ou diélectrique.
La lame de séparation 12 est usinée pour présenter au moins une surface 9 externe courbée pour compenser le champ.
La lame de séparation 12 peut présenter avantageusement une surface 9 courbée sur deux de ses méridiennes, orthogonales entre elles.
Dans une autre variante encore, l'interféromètre 1 comprend deux éléments optiques E de compensation du champ, à savoir la lame de verre mince 1 1 et la lame de séparation 12, qui sont regroupées et disposées au niveau du plan focal image de l'ensemble 2 optique. Dans ce cas les plans focaux images de l'ensemble 2 optique conjugués par rapport à ladite lame séparatrice 12 sont confondus, et on vient y disposer la lame de verre mince 1 1 et la lame de séparation 12. Dans ce cas, il est avantageux d'utiliser l'une des deux lames 1 1 comprenant une surface 9 courbe sur une première méridienne, l'autre des deux lames 12 comprenant une surface 9 courbe sur une deuxième méridienne, la première et la deuxième méridienne étant orthogonales.
L'avantage de la configuration utilisant une ou plusieurs lames comme élément E optique de compensation du champ est que l'interféromètre 1 obtenu est compact. En effet, les lames sont de tailles réduites. De plus, dans cette configuration, on diminue le nombre d'éléments optiques à utiliser dans l'interféromètre, et donc son encombrement.
L'interféromètre 1 selon l'invention trouve de nombreuses applications dans l'industrie, la recherche fondamentale ou appliquée, ou tout autre domaine nécessitant un interféromètre tel que décrit précédemment.
L'interféromètre 1 selon l'invention peut par exemple être utilisé dans le cadre de missions spatiales d'observation de la Terre, basées notamment sur des techniques de spectrométrie infrarouge. Dans ce cas, l'interféromètre 1 est embarqué sur un satellite d'observation de la Terre. L'instrument selon l'invention est compact, ce qui est avantageux pour l'embarquement sur un satellite. Par ailleurs, il présente un grand angle de champ acceptable et une résolution spectrale importante, ce qui permet d'obtenir de très bonnes performances instrumentales, compatibles avec les exigences des missions d'observations de la Terre.

Claims

REVENDICATIONS
1 . Interféromètre (1 ) à compensation de champ, comprenant
un ensemble (2) optique apte à diriger des faisceaux lumineux incidents (4) présentant un angle de champ Θ par rapport à un axe optique de l'interféromètre (1 ) vers des bras (5,6) de l'interféromètre,
une lame séparatrice (12),
les bras (5,6) comprenant au moins un dispositif (15,16) optique mécaniquement mobile pour la création d'une différence de marche optique variable entre des faisceaux issus de la séparation de chaque faisceau (4) incident par l'intermédiaire de ladite lame séparatrice (12),
ledit interféromètre (1 ) étant caractérisé en ce qu'il comprend :
au moins un élément (E) optique de compensation du champ, disposé dans l'un ou l'autre des plans focaux image de l'ensemble (2) optique conjugués par rapport à la lame séparatrice (12),
ledit élément (E) comprenant au moins une surface (9) courbée de manière à créer une différence de marche entre les faisceaux incidents présentant un angle de champ non nul et les faisceaux incidents présentant un angle de champ nul, la différence de marche ainsi créée permettant de compenser l'auto-apodisation résultant de l'angle de champ.
2. Interféromètre selon la revendication 1 , comprenant deux éléments (E) optiques de compensation du champ disposés respectivement dans chacun des deux plans focaux image de l'ensemble (2) optique conjugués par rapport à la lame séparatrice (12).
3. Interféromètre selon l'une des revendications 1 ou 2, dans lequel la surface (9) de l'élément (E) optique est courbe sur au moins une de ses méridiennes (13).
4. Interféromètre selon l'une des revendications 1 à 3, comprenant deux éléments (E) optiques, l'un des éléments comprenant une surface (9) courbe sur une première méridienne,
l'autre des éléments comprenant une surface (9) courbe sur une deuxième méridienne,
la première et la deuxième méridienne étant orthogonales.
5. Interféromètre selon l'une des revendications 1 à 4, dans lequel l'élément (E) est un miroir (7,8), ledit miroir (7,8) comprenant une surface (9) courbe réfléchissante sur au moins une de ses méridiennes (13).
6. Interféromètre selon la revendication 5, dans lequel la surface (9) courbe réfléchissante présente un profil mécanique continûment incurvé.
7. Interféromètre selon la revendication 5, dans lequel la surface (9) courbe réfléchissante présente un profil mécanique composée d'un ensemble discret de surfaces planes réfléchissantes (Seo,Sei ,Se2,...)-
8. Interféromètre selon la revendication 7, comportant des moyens (10) de rotation des surfaces planes réfléchissantes (S∞,Sei ,Se2,...)-
9. Interféromètre selon l'une des revendications 1 à 6, dans lequel l'élément (E) est un miroir (7,8) mince et déformable par l'intermédiaire d'un système (22) de déformation.
10. Interféromètre selon la revendication 9, dans lequel le système (22) de déformation est un système piézo-électrique.
1 1 . Interféromètre selon l'une des revendications 7 à 10, comprenant un outil de métrologie laser pour le contrôle du déplacement créé par les moyens (10) de déplacement ou de la déformation créée par le système (22) de déformation.
12. Interféromètre selon l'une des revendications 1 à 3, dans lequel l'élément (E) optique de compensation du champ est une lame de verre mince (1 1 ).
13. Interféromètre selon l'une des revendications 1 à 4, dans lequel l'interféromètre (1 ) comprend deux éléments (E) optiques de compensation du champ : une lame de verre mince (1 1 ) et la lame séparatrice (12), disposés au plan focal image de l'ensemble 2 optique.
14. Procédé d'interférométrie à compensation de champ dans un interféromètre (1 ) selon l'une des revendications 7, 8 ou 1 1 , dans lequel : l'ensemble (2) optique dirige les faisceaux lumineux incidents (4) vers les bras (5,6) de l'interféromètre,
le dispositif (15,16) optique mécaniquement mobile est déplacé pour créer une différence de marche entre les faisceaux issus de la séparation de chaque faisceau (4) incident, dont la recombinaison permet de mettre en œuvre l'interférométrie,
ledit procédé étant caractérisé en ce qu'il comprend l'étape selon laquelle :
les surfaces planes réfléchissantes (Sei ,Se2,...) du miroir (7,8) sont déplacées en rotation simultanément au dispositif (15,16) optique d'un angle compensant la différence de marche créée par le déplacement dudit dispositif (15,16) optique.
15. Procédé d'interférométrie à compensation de champ dans un interféromètre (1 ) selon l'une des revendications 8 à 10, dans lequel :
l'ensemble (2) optique dirige les faisceaux lumineux incidents (4) vers les bras (5,6) de l'interféromètre,
le dispositif (15,16) optique mécaniquement mobile est déplacé pour créer une différence de marche entre les faisceaux issus de la séparation de chaque faisceau (4) incident, dont la recombinaison permet de mettre en œuvre l'interférométrie, ledit procédé étant caractérisé en ce qu'il comprend l'étape selon laquelle :
la surface (9) du miroir (7,8) mince est déformée simultanément au dispositif (15,16) optique d'une distance compensant la différence de marche créée par le déplacement dudit dispositif (15,16) optique.
PCT/EP2010/062651 2009-09-04 2010-08-30 Interféromètre à compensation de champ WO2011026814A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES10747222T ES2430542T3 (es) 2009-09-04 2010-08-30 Interferómetro de compensación de campo
US13/393,806 US20130003072A1 (en) 2009-09-04 2010-08-30 Field-compensated interferometer
EP10747222.7A EP2473824B1 (fr) 2009-09-04 2010-08-30 Interféromètre à compensation de champ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0956051A FR2949856B1 (fr) 2009-09-04 2009-09-04 Interferometre a compensation de champ
FR0956051 2009-09-04

Publications (1)

Publication Number Publication Date
WO2011026814A1 true WO2011026814A1 (fr) 2011-03-10

Family

ID=42097335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/062651 WO2011026814A1 (fr) 2009-09-04 2010-08-30 Interféromètre à compensation de champ

Country Status (5)

Country Link
US (1) US20130003072A1 (fr)
EP (1) EP2473824B1 (fr)
ES (1) ES2430542T3 (fr)
FR (1) FR2949856B1 (fr)
WO (1) WO2011026814A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3007132B1 (fr) 2013-06-13 2015-06-05 Astrium Sas Interferometre a transformation de fourier et compensation d'auto-apodisation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131747A (en) * 1988-12-28 1992-07-21 Aerospatiale Societe Nationale Industrielle Interferometry device for fourier transform multiplex spectro-imaging apparatus and spectro-imaging apparatus containing the same
EP0957346A2 (fr) * 1993-07-22 1999-11-17 Applied Spectral Imaging Ltd. Méthodes et dispositifs d'imagerie spectrale utilisant un interféromètre dans lequel un nombre fini de faisceaux cohérents interfèrent mutuellement
US20030103209A1 (en) * 2001-12-05 2003-06-05 Bruker Optik Gmbh Imaging FTIR spectrometer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4192289A (en) * 1978-06-08 1980-03-11 Clark David J Solar heat collection system
US6104945A (en) * 1995-08-01 2000-08-15 Medispectra, Inc. Spectral volume microprobe arrays

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131747A (en) * 1988-12-28 1992-07-21 Aerospatiale Societe Nationale Industrielle Interferometry device for fourier transform multiplex spectro-imaging apparatus and spectro-imaging apparatus containing the same
EP0957346A2 (fr) * 1993-07-22 1999-11-17 Applied Spectral Imaging Ltd. Méthodes et dispositifs d'imagerie spectrale utilisant un interféromètre dans lequel un nombre fini de faisceaux cohérents interfèrent mutuellement
US20030103209A1 (en) * 2001-12-05 2003-06-05 Bruker Optik Gmbh Imaging FTIR spectrometer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MONTILLA I ET AL: "Michelson wide-field stellar interferometry: principles and experimental verification", APPLIED OPTICS, OPTICAL SOCIETY OF AMERICA, US, vol. 44, no. 3, 20 January 2005 (2005-01-20), pages 328 - 336, XP007912694, ISSN: 0003-6935 *
PETER R. GRIFFITHS: "Chemical infrared fourier- transform spectroscopy", 1975, JOHN WILEY, pages: 127

Also Published As

Publication number Publication date
US20130003072A1 (en) 2013-01-03
FR2949856B1 (fr) 2011-09-16
EP2473824A1 (fr) 2012-07-11
ES2430542T3 (es) 2013-11-21
FR2949856A1 (fr) 2011-03-11
EP2473824B1 (fr) 2013-07-10

Similar Documents

Publication Publication Date Title
EP2906997B1 (fr) Cellule à vapeur alcaline notamment pour horloge atomique et procédé de fabrication
EP1482288B1 (fr) Spectromètre statique par transformée de Fourier
EP3030867B1 (fr) Spectrometre a plusieurs reseaux de diffraction.
EP0702246B1 (fr) Dispositif embarquable de mesure de rétrodiffusion de lumière
EP2473824B1 (fr) Interféromètre à compensation de champ
EP2284510B1 (fr) Interféromètre statique à champ compensé pour la spectroscopie a transformée de fourier
EP0104114B1 (fr) Dispositif viseur à miroir holographique, et procédé de fabrication du miroir
EP2309236B1 (fr) Téléscope concentrateur de champ destiné à des missions de sondage atmosphérique
WO2024002600A1 (fr) Dispositif optique de balayage d'un faisceau lumineux sur une pièce à usiner
FR2857746A1 (fr) Spectrometre optique miniaturise a haute resolution
EP1749187A1 (fr) Dispositif de mesure par interferometrie de l'epaisseur de couches transparentes minces sur un substrat en defilement
FR3076347A1 (fr) Instrument d'observation comportant un dispositif interferometrique statique a sauts de differences de marche
FR2662515A1 (fr) Dispositif optique permettant d'imprimer a un faisceau lumineux collimate un mouvement de translation.
BE1027700B1 (fr) Dispositif pour un système optique d’usinage laser
EP0104115A2 (fr) Dispositif viseur à champ instantané agrandi comportant un miroir, et procédé de fabrication de ce miroir
EP4327140A1 (fr) Dispositif pour produire un faisceau lumineux polychromatique par combinaison de plusieurs faisceaux lumineux individuels
WO2022219272A1 (fr) Dispositif réflecteur destiné à émettre une pluralité de faisceaux réfléchis à partir d'un unique faisceau lumineux principal
EP2423720B1 (fr) Filtre optique accordable en longueur d'onde et élément réflecteur
EP4075182A1 (fr) Scanner optique
WO2021165608A1 (fr) Composant optique à métasurface encapsulée et procédé de fabrication d'un tel composant
FR2961901A1 (fr) Dispositif de determination d'une pente d'un front d'onde
FR2973522A1 (fr) Module optique pour dispositif de vision panoramique, procede de fabrication et dispositif de vision panoramique
FR3059156A1 (fr) Module de detection optique
FR3064058A1 (fr) Systeme optique et spectrometre miniature equipe d'un tel systeme ainsi que procede d'analyse d'objets a l'aide d'un tel systeme optique
FR2902187A1 (fr) Systeme d'imagerie spectrometrique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10747222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010747222

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13393806

Country of ref document: US