WO2011025030A1 - Absorbent for removal of volatile organic compounds - Google Patents

Absorbent for removal of volatile organic compounds Download PDF

Info

Publication number
WO2011025030A1
WO2011025030A1 PCT/JP2010/064805 JP2010064805W WO2011025030A1 WO 2011025030 A1 WO2011025030 A1 WO 2011025030A1 JP 2010064805 W JP2010064805 W JP 2010064805W WO 2011025030 A1 WO2011025030 A1 WO 2011025030A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent
volatile organic
voc
organic compound
epoxy
Prior art date
Application number
PCT/JP2010/064805
Other languages
French (fr)
Japanese (ja)
Inventor
茂夫 藤井
賢美 伏谷
通秀 渡嘉敷
Original Assignee
株式会社根岸製作所
株式会社Negishiken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社根岸製作所, 株式会社Negishiken filed Critical 株式会社根岸製作所
Priority to JP2011528905A priority Critical patent/JP5641655B2/en
Publication of WO2011025030A1 publication Critical patent/WO2011025030A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1487Removing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/202Alcohols or their derivatives
    • B01D2252/2023Glycols, diols or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/205Other organic compounds not covered by B01D2252/00 - B01D2252/20494
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0258Other waste gases from painting equipments or paint drying installations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an absorbent for removing volatile organic compounds (hereinafter referred to as “VOC”) in exhaust, a method for purifying exhaust using the VOC absorbent, and a method for recovering VOC and absorbent. More specifically, in particular, aromatic hydrocarbons such as toluene contained in exhaust discharged from printing, painting, textile industry, wood product manufacturing industry, adhesive-related industry, film processing industry, chemical industry factory and laboratory, etc.
  • VOC volatile organic compounds
  • the present invention relates to an absorbent used for absorption recovery of VOC, which includes esters such as acetate, ketones such as methyl ethyl ketone (MEK), and a method for purifying exhaust containing VOC using the absorbent.
  • Volatile VOCs are generally widely used in industry, particularly in the fields of painting and printing, for example, in the field of printing such as gravure printing and offset printing, in the field of coating outer walls of buildings, and in petroleum fields such as gas stations. .
  • VOC evaporates and diffuses in the air and causes odor and photochemical smog.
  • the first combustion method is a method in which exhaust gas is collected by a duct and passed through a catalyst or removed by newly adding fuel to burn VOC.
  • This combustion method has a feature that the exhaust gas removal rate is large, but dioxins may be generated depending on the temperature conditions, and in addition to the fact that a large amount of CO 2 gas is discharged by combustion, there is a running cost. High is considered a drawback. Further, since the apparatus needs to be enlarged and requires a large amount of investment, it is difficult to install the apparatus because of the high cost of processing exhaust gas from a small source. There is also a problem that VOC cannot be collected and reused.
  • a physical adsorption method is particularly widespread, and the exhaust is brought into contact with a solid powder adsorbent, mainly activated carbon and zeolite, and the contained VOC is adsorbed and removed. .
  • VOC can be desorbed and recovered after adsorption, and VOC and the adsorbent can be reused, respectively, and there is an advantage that the recovery rate is high. In addition, there is an advantage in environmental conservation that no CO 2 is emitted.
  • the liquid absorption method is a method in which exhaust is contacted and absorbed with an absorbing solution, and after absorption, is separated and recovered by a method such as distillation. There is a method of contacting the exhaust liquid with the absorbing liquid in a shower-like state or by a method of bubbling exhaust gas into the absorbing liquid.
  • a high boiling point hydrocarbon solvent such as kerosene, a mixture of glycol monoalkyl ether and decene, an aqueous solution or emulsion of other surfactants, and the like are used.
  • Patent Document 1 Japanese Patent Laid-Open No. 52-37585 (Patent Document 1)) has already been proposed. A mixture of esters, silicate esters, phosphate esters and the like and refined mineral oil is described.
  • the esters in VOC react with the moisture in the air and the dissolved moisture when an ester absorbent is used to release acid free and remain in the absorbing solution.
  • the hydrolysis is further promoted by its acid catalysis, but there is no suggestion in Patent Document 1 regarding this problem, and the absorbing solution absorbs the liberated acid.
  • an alkali deoxidation step and a water treatment step including a salt generated during the deoxidation are further required.
  • an object of the present invention is an absorbent for absorbing and removing VOC contained in exhaust gas, and exhibits a high removal rate regardless of the type of VOC component. Further, in the absorption process, the present invention provides a liquid absorbent capable of simultaneously removing acid liberated by contact of esters with air, a method for purifying exhaust containing VOC using the absorbent, and a method for recovering VOC and absorbent. .
  • the inventors of the present invention have identified a specific from the mutual dissolution relationship between each component of the VOC and the absorbent component that the inventors have focused on. It has been found that the acid liberated by the absorption of VOC along with the absorption of VOC can be solved, and that the above problems can be solved, and the present invention has been completed based on these findings.
  • an absorbent for removing a volatile organic compound in exhaust gas wherein the absorbent contains an epoxy compound.
  • the component further blended with the epoxy compound is at least one medium selected from the group consisting of an ester other than the epoxidized ester, a polyether, a mineral oil-based or synthetic oil-based lubricating oil fraction, and a poly ⁇ -olefin.
  • An absorbent for removing a volatile organic compound according to any one of claims 1 to 8 is provided.
  • a method for recovering a volatile organic compound and an absorbent comprising: separating an sorbent containing the volatile organic compound obtained in the absorption step into a distillation and separating the volatile organic compound into an absorbent.
  • the absorbent for removing VOC in exhaust according to claim 1 it is possible to provide an absorbent capable of absorbing low concentration VOC in exhaust exhausted in large quantities such as printing and painting with a high removal rate. it can.
  • the acid liberated by hydrolysis of the ester contained in the absorbed VOC can be removed simultaneously during the absorption process.
  • the absorption rate is further improved, and the acid removal in the absorption process is facilitated, and separation from VOC in the distillation treatment by specifying a high molecular weight material. Becomes easy.
  • the recovery method according to claims 11 and 12 can also absorb the VOC, remove the acid, and recover and reuse the VOC and the absorbent by utilizing the characteristics of the epoxy compound according to the present invention.
  • the VOC to be subjected to the absorption treatment is not particularly limited, and any treatment can be performed.
  • esters that liberate an acid by hydrolysis can be treated without any problem. can do.
  • VOC-containing exhaust gas applicable to the VOC removal absorbent according to the present invention includes aromatic hydrocarbons such as toluene, amides such as dimethylformamide, heterocyclic compounds such as N-methylpyrrolidone, ketones such as methyl ethyl ketone, It contains one or more alcohols such as isopropyl alcohol and esters such as ethyl acetate.
  • Such a VOC-containing exhaust gas is an exhaust gas generated from a manufacturing process in various industries as described above, and specifically includes VOC in a wide range of 10 to 5000 ppm.
  • exhaust that is generated in large quantities in various fields such as printing, painting, and fiber and that contains a relatively low concentration of VOC is suitable for exerting the effect of the absorbent according to the present invention.
  • the absorbent for removing VOC in exhaust gas according to the present invention contains an epoxy compound and may be solid, that is, granular, but is normally liquid.
  • the epoxy compound is an organic compound having an epoxy group in the molecule, and the epoxy compound suitable as an absorbent for removing VOC in exhaust gas according to the present invention has a molecular weight of 250 or more, more preferably 300 or more. And a boiling point of 200 ° C. or higher.
  • the epoxy compound having such properties has the ability to absorb the used gaseous VOC contained in the exhaust gas, and can remove the acid contained in the absorbed VOC in the absorption process.
  • suitable epoxy compounds are those selected from the group consisting of compounds represented by the following general formulas 1 to 11, and may be one or a mixture of two or more. 1.
  • Alicyclic epoxy type is one or a mixture of two or more.
  • R is a saturated or unsaturated linear or branched alkyl group having 11 to 18 carbon atoms, COOR 1 or
  • R 1 is a linear or branched alkyl group having 4 to 13 carbon atoms, and n is an integer of 1 or 2.
  • R is a linear or branched alkylene group having 1 to 4 carbon atoms, —COOCH 2 —, —CH 2 OOC (CH 2 ) n COOCH 2 —, and n is an integer of 4 to 8. is there. 2.
  • Alcohol type
  • R is a linear or branched alkyl group having 12 to 18 carbon atoms or a phenylalkyl group.
  • R is a linear alkylene group having 2 to 8 carbon atoms, neopentyl group, hydrogenated bisphenol A, or cyclohexanedimethyl group.
  • R and R ′ are each a hydrogen atom or a methyl group, and n is an integer of 1-20.
  • R is a linear alkylene group having 2 to 10 carbon atoms
  • R ′ is a hydrogen atom or a methyl group
  • n + m is an integer of 2 to 6.
  • R is a linear or branched alkyl group having 8 to 18 carbon atoms.
  • R ′ is a linear or branched alkylene group. 4). Ester type
  • R is an alkyl group having 11 to 17 carbon atoms, an alkylphenyl group, a phenylalkyl group, or an alkylcyclohexyl group.
  • R is a linear or branched alkylene group having 4 to 8 carbon atoms, a cyclohexyl group, or a phenyl group. 5.
  • R and R 1 are a hydrogen atom, a linear or branched alkyl group, or an alkyl ester group, and R + R 1 has 16 to 36 carbon atoms.
  • the epoxy group is present in the alicyclic structure, and the chain of the alkyl group R so that the molecular weight is 250 or more. The one whose length is controlled is used.
  • epoxy compounds belonging to the general formulas 1 and 2 include dibutyl epoxyhexahydrophthalate, dipentyl epoxyhexahydrophthalate, dihexyl epoxyhexahydrophthalate, diheptylepoxyhexahydrophthalate, epoxyhexahydrophthalic acid-di Examples include -2-ethylhexyl (EPS), epoxyhexahydrophthalic acid-di-n-octyl, epoxyhexahydrophthalic acid-di-epoxidized stearyl, epoxyhexahydrophthalic acid diisodecyl, etc., but removal rate against VOC From the above viewpoint, epoxyhexahydrophthalic acid-di-2-ethylhexyl (EPS) and epoxyhexahydrophthalic acid-di-n-octyl are preferable.
  • EPS -2-ethylhexyl
  • EPS epoxyhexahydrophthalic acid-di-2-eth
  • Such an epoxy compound preferably has a molecular weight of 250 or more and a boiling point of 200 ° C. or more.
  • the epoxy compounds belonging to the alcohol type are represented by general formulas 4 to 6, and specific examples include ethylene glycol diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, and 1.4-cyclohexanedimethanol diglycidyl ether. And propylene glycol diglycidyl ether, butylene glycol diglycidyl ether, hexylene glycol diglycidyl ether, and decamethylene glycol diglycidyl ether.
  • the epoxy compound belonging to the phenol type is a compound represented by the general formulas 7 and 8, and specific examples include bisphenol A diglycidyl ether, methylene diphenol diglycidyl ether, ethylene diphenol diglycidyl ether, and the like. Can do.
  • epoxy compounds represented by the general formulas 9 and 10 belonging to the ester type include glycidyl benzoate, glycidyl toluate, glycidyl ether xylenol, diglycidyl phthalate, and diglycidyl hexahydrophthalate. , Adipic acid diglycidyl ether, sebacic acid diglycidyl ether, decanedicarboxylic acid diglycidyl ether, and the like.
  • epoxy compound represented by the general formula 11 belonging to the alkyl type examples include octyl epoxy stearate, butyl epoxy stearate, epoxy stearyl epoxy stearate, epoxy hexadecyl, epoxy stearyl octylate and the like. .
  • the alicyclic epoxy type compound is excellent in VOC solubility in exhaust VOC absorption treatment, free acid removal is possible, and VOC and absorbent recovery processing are suitable in that they have a molecular weight and boiling point suitable for distillation separation and are stable against hydrolysis, and are preferably epoxyhexahydrophthalic acid diesters such as epoxyisohydrophthalic acid diisodecyl, Preferred are di-2-ethylhexyl hexahydrophthalate and di-n-octyl epoxyhexahydrophthalate.
  • These alcohol-type compounds are also excellent in VOC solubility in exhaust VOC absorption treatment, free acid removal is possible, and suitable for distillation separation in VOC and absorbent recovery treatment. It is suitable in that it has a molecular weight and a boiling point and is stable to hydrolysis, and is a diglycidyl ether (BPO) of a polyether having a liquid bisphenol A skeleton, for example,
  • HBE hydrogenated bisphenol A diglycidyl ether
  • the absorbent according to the present invention may be a mixture of an epoxy compound and a medium.
  • the medium has a solubilizing action with respect to the epoxy compound, and has an action of making solid and liquid epoxy compounds into solution.
  • organic acid esters such as polyethers and liquid hydrocarbons are preferable.
  • the ester include phthalic acid ester and aliphatic dibasic acid ester.
  • phthalic acid esters include, but are not limited to, dibutyl phthalate, dipentyl phthalate, dihexyl phthalate, diheptyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, diisononyl phthalate, and diisodecyl phthalate. Can do.
  • Examples of the aliphatic dibasic acid ester include esters of dibasic acid such as adipic acid, azelaic acid, and sebacic acid, such as di-2-ethylhexyl adipate, diisononyl adipate, diisodecyl adipate, di-azelainate Examples thereof include 2-ethylhexyl, di-2-ethylhexyl sebacate and the like, and those usually used can be appropriately selected.
  • polyalkylene glycol can be used as the polyether.
  • the polyalkylene glycol one having an average molecular weight of 300 to 15,000, preferably 500 to 2,000 can be selected.
  • polypropylene glycol (PPG) or polyethylene having an average molecular weight within the above range can be selected.
  • a glycol (PEG) etc. can be mentioned.
  • liquid hydrocarbons include mineral oil-based lubricating oil fractions, for example, straight-run oils having a kinematic viscosity at 100 ° C. of 3 to 80 mm 2 / s, preferably 2 to 30 mm 2 / s, more preferably 3 to 10 mm 2 / s. systems distillate or cracked oil-based fraction or mixed oil-based fractions thereof, liquid paraffin, the lubricating oil fraction 100 ° C. kinematic viscosity equivalent 20 ⁇ 80mm 2 / s, preferably 3 ⁇ 30mm 2 / s And ⁇ -olefin oligomer (PAO) having an average molecular weight of 300 to 3,000 or the like.
  • mineral oil-based lubricating oil fractions for example, straight-run oils having a kinematic viscosity at 100 ° C. of 3 to 80 mm 2 / s, preferably 2 to 30 mm 2 / s, more preferably 3 to 10 mm 2 / s.
  • Such media can be used singly or in combination of two or more.
  • plastic plasticizers can be used.
  • the absorbent according to the present invention contains an epoxy compound as an essential component, and may contain any effective amount.
  • the epoxy compound is preferably 5% or more, more preferably 10% or more, and particularly preferably 50% or more. Of course, 100% may be used, but it may be absorbed depending on the type of VOC and the concentration in the exhaust gas.
  • the content of the epoxy compound in the agent can be adjusted as appropriate.
  • the mixing ratio may be appropriately determined from the viewpoint of compatibility with the absorbent, etc., but in the case of two types, for example, when PPG and PEG are mixed, It can be used in a ratio of 90:10 to 10:90, preferably 70:30 to 30:70.
  • the above medium has a synergistic effect not only in the dissolution action of the epoxy compound but also in the VOC removal rate.
  • the absorbent comprising the epoxy compound according to the present invention not only has the ability to absorb the used VOC contained in the exhaust gas, but can also remove the acid contained in the absorbed VOC during the absorption process.
  • the ester compound in the VOC component may generate an acid by hydrolysis.
  • a regenerated VOC neutralization step is usually required in addition to the VOC absorption step.
  • the process of the water containing the salt after a neutralization process is also needed.
  • the absorbent comprising the epoxy compound according to the present invention can be used not only as an absorbing solution for exhaust VOC, but also can be removed simultaneously by reacting with an acid, as exemplified by the following reaction with acetic acid. Absorption and acid removal can be processed in a single step.
  • the absorbent When the absorbent is used repeatedly, it deteriorates due to the reaction with the above-mentioned acid, but since the deteriorated absorbent can be discarded by combustion, a special treatment step is unnecessary.
  • the exhaust gas purification method In the exhaust gas purification method according to the present invention, low-concentration VOCs contained in a large amount of exhaust gas are absorbed and removed, and the VOC-containing exhaust gas is passed through an absorption tower filled with a liquid absorbent. An absorption process for dissolving and absorbing VOC in the liquid absorbent is employed. In the absorption process, the VOC-containing exhaust gas and the absorbent may be contacted by any method capable of gas-liquid contact. However, a bubbling method or an absorption tower in which the VOC exhaust gas is finely passed through the absorbent from the bottom of the absorption tower. It is convenient to carry out by a shower method in which the absorbent is sprayed from the top.
  • the processing air volume of the VOC-containing exhaust gas is preferably in the range of 0.5 to 200 m 3 / min, preferably in the range of 100 m 3 / min or less, and if it does not reach 0.5 m 3 / min, a large amount of waste should be processed. However, there is no practical value. On the other hand, if it exceeds 200 m 3 / min, the absorbent is scattered, and the absorption of VOC becomes insufficient, causing the problem that VOC is diffused into the atmosphere. .
  • the temperature of the absorption treatment may be the ambient temperature.
  • an obstacle effective for gas-liquid contact may be present in the absorption tower.
  • An absorption process comprising absorbing the VOC in the absorbent by bringing the exhaust VOC into contact with the absorbent, and 2) subjecting the VOC-containing absorbent obtained in the absorption process to a distillation treatment,
  • a method for recovering exhaust VOC and absorbent comprising a separation step comprising separating VOC and absorbent is provided.
  • the absorption step is based on gas-liquid contact between the exhaust VOC and the absorbent, and a bubbling method and a shower method can be adopted as described above.
  • the absorbent that has absorbed the exhaust VOC can be subjected to a distillation treatment at a predetermined temperature determined by the type of the VOC component, thereby obtaining VOC as a distillate component and an absorbent as a residue component.
  • the VOC obtained by distillation can be reused as it is, and the absorbent can be recycled and used.
  • An absorption tower may be installed in the absorption process, and a distillation tower may be installed in the separation process.
  • the absorption tower is as described above, and the distillation tower may be provided with a number of stages so that the VOC and the absorbent can be separated.
  • the absorption rate is obtained from the difference in VOC concentration between the container (2) inlet and the container (4) outlet.
  • a simple speed measurement VOC sensor (combination of a polymer thin film element and an interference enhanced reflection method) manufactured by Violet Co., Ltd. is used.
  • Acid absorption test by test tube method Take 10 ml of absorbent in a test tube, add a predetermined amount of acetic acid and continue stirring. The acetic acid concentration in the air above the liquid level is measured using a VOC sensor at regular intervals.
  • Types of absorbents In Examples and the like, the following absorbents and media were used.
  • Epoxyhexahydrophthalic acid-di-2-ethylhexyl (2) Hydroxylated bisphenol A diglycidyl ether (HBE) (3) Bisphenol A polyether diglycidyl ether (BPO) (4) Polypropylene glycol (PPG) average molecular weight: 700 (5) Polyethylene glycol (PEG) Average molecular weight: 700 (6) Liquid paraffin (7) Di-2-ethylhexyl phthalate (DOP)
  • EPS Epoxyhexahydrophthalic acid di-2-ethylhexyl (referred to as “EPS”, hereinafter the same) (molecular weight; 410, boiling point;> 250 ° C.) as an absorbent, and methyl ethyl ketone (hereinafter referred to as “MEK”) as VOC.
  • the VOC absorption capacity of the absorbent was measured by the VOC absorption capacity test method. Table 1 shows the absorption rate as an evaluation result.
  • Example 2 Except that ethyl acetate was used in place of MEK as VOC, the same absorbent was used for the VOC absorbency test under the same method and conditions as in Example 1. Table 1 shows the absorption rate as an evaluation result.
  • Example 3 Except for using toluene instead of MEK as VOC, the same absorbent was subjected to the VOC absorbency test by the same method and conditions as in Example 1. Table 1 shows the absorption rate as an evaluation result.
  • Example 4 Except that methanol was used instead of MEK as VOC, the same absorbent was subjected to the VOC absorbency test by the same method and conditions as in Example 1. Table 1 shows the absorption rate as an evaluation result.
  • Example 5 Except that tetrahydrofuran (hereinafter referred to as “THF”) was used as VOC instead of MEK, the same absorbent was subjected to the VOC absorbency test under the same method and conditions as in Example 1. .
  • Table 1 shows the absorption rate as an evaluation result.
  • Example 6 Except that acrylic acid was used as the VOC, the same absorbent was subjected to the VOC absorbency test by the same method and conditions as the absorption method and absorption conditions of Example 1. Table 1 shows the absorption rate as an evaluation result.
  • Example 7 Except for using ethyl acrylate as the VOC, the same absorbent was subjected to the VOC absorbency test by the same method and conditions as the absorption method and absorption conditions of Example 1. Table 1 shows the absorption rate as an evaluation result.
  • Example 8 Except for using butyl acrylate as the VOC, the same absorbent was used for the VOC absorbency test in the same manner and under the same absorption method and absorption conditions as in Example 1. Table 1 shows the absorption rate as an evaluation result.
  • Example 9 Except that 2-ethylhexyl acrylate was used as the VOC, the same absorbent was used in the VOC absorbency test by the same method and conditions as in Example 1. Table 1 shows the absorption rate as an evaluation result.
  • Example 10 Except for using N-methylpyrrolidone as the VOC, the same absorbent was used in the VOC absorbency test by the same method and conditions as in Example 1. Table 1 shows the absorption rate as an evaluation result.
  • Comparative Example 2 The VOC absorbability test was performed in the same method and conditions as in Comparative Example 1 except that ethyl acetate was used instead of MEK as VOC. The evaluation results are shown in Table 1 as absorption rates.
  • Comparative Example 3 The VOC absorbability test was performed by the same method and conditions as in Comparative Example 1 except that toluene was used in place of MEK as VOC. The evaluation results are shown in Table 1 as absorption rates. Comparative Example 4 A VOC absorbency test was performed in the same manner and under the same conditions as in Comparative Example 1 except that ethyl acetate was used as VOC, and an equal volume mixture of polypropylene glycol (PPG) and polyethylene glycol (PEG) was used as the absorbent. The evaluation results are shown in Table 1.
  • PPG polypropylene glycol
  • PEG polyethylene glycol
  • Examples 15-17 EPS was taken as 10 ml of absorbent in a test tube, and a predetermined amount of acetic acid was added thereto and stirring was continued. As shown in Table 2, the concentration of acetic acid in the air on the liquid surface was measured with a sensor at regular intervals. The measurement results are shown in Table 2.
  • Examples 18-21 As the absorbent, (A) bisphenol A diglycidyl ether, (B) epoxypropylphenyl ether, (C) ethylene glycol diglycidyl ether, and (D) hydrogenated bisphenol A diglycidyl ether in the proportions shown in Table 2, respectively.
  • a mixed absorbent mixed with -2-ethylhexyl was prepared and subjected to an acid absorption test of an epoxy compound by the test tube method in the same manner as in Examples 11-13. The measurement results are shown in Table 2.
  • Examples 26-29 Using the absorbent shown in Table 2, the acid absorbability of acetic acid was evaluated.
  • As absorbent a mixture of EPS 20%, PPG 40% and PEG 40% (Example 26), HBE 20%, PPG 40% and PEG 40% mixture (Example 27), BPO 20%, PPG 40% and PEG 4% mixture (Example 28) ), A mixture of 20% HBE and 80% liquid paraffin (Example 29), respectively.
  • PPG and PEG having an average molecular weight of 700 were used.
  • Comparative Example 7 A mixed solution of PPG 50% and PEG 50% was used as the absorbent, and the acid absorption capacity of acetic acid was evaluated under the conditions shown in Table 2.
  • the di-2-ethylhexyl phthalate (DOP) of Comparative Examples 5 and 6 and the polypropylene glycol / polypropylene glycol mixture of Comparative Example 7 show that the concentration of acetic acid on the liquid surface increases with time. Although there was no tendency to decrease, the acid neutralization effect was not exhibited, but the epoxy compounds of Examples 15 to 17 and Examples 22 to 25 and the epoxy compound-containing compositions of Examples 18 to 21 and Examples 26 to 29 were used. According to this, the concentration of acetic acid on the liquid surface decreased with time, and the effect of acid removal of the composition was shown, and a markedly significant acid neutralization effect was obtained.
  • DOP di-2-ethylhexyl phthalate
  • Example 30 The change over time in the absorption capacity of VOC when MEK and ethyl acetate were used as the VOC and EPS was used as the absorbent was measured by the VOC absorption capacity test apparatus using the bubbling method. Table 3 shows the measurement results.
  • Example 31 Using a VOC absorber designed in common with the VOC absorbency test device described above, continuous operation was performed to evaluate the durability of the VOC absorbency of the absorbent.
  • Air is introduced from the air blower at an air volume of 30 m 3 / min into the VOC 300 ml inlet chamber (volume 4 m 3 ), passed through the absorbent 200 L in the absorption tank (volume 5 m 3 ), and VOC via the outlet chamber (volume 100 L). The air was removed. The VOC concentration was measured at measuring points 1 (in the piping between the inlet chamber and the absorption tank) and 2 (in the outlet piping of the outlet chamber). The evaluation results are shown in Table 4.
  • the present invention provides an absorbent that absorbs and removes VOC in exhaust gas, a method for purifying exhaust gas using the absorbent, and a method for recovering VOC and absorbent.
  • the present invention eliminates VOC in a wide range of industrial fields that handle VOC. As a method, the utility value is great, and the applicability is extremely great from the viewpoint of environmental conservation.

Abstract

The aim is to provide a liquid absorbent for volatile organic compound removal that has a high absorption ratio of VOCs in exhaust and is capable of simultaneously removing isolated acids by means of hydrolyzing esters in VOCs, and to provide a purifying method for exhaust VOCs using said absorbent. Disclosed are an absorbent that comprises an epoxy compound and is liquid in a normal state, a purifying method for VOC-containing exhaust using said absorbent, and a recovery method for VOCs and the absorbent. The epoxy compound is an organic compound that has an epoxy group in each molecule, and the epoxy compound that is optimal as an absorbent for removing VOCs in exhaust has a molecular weight of at least 250 and a boiling point of at least 200°C. The absorbent comprising the epoxy compound is capable of simultaneously absorbing VOCs and removing isolated acids.

Description

揮発性有機化合物の除去用吸収剤Absorbent for removal of volatile organic compounds
 本発明は、排気中の揮発性有機化合物(以下、「VOC」という。)の除去用吸収剤および該VOC吸収剤を用いる排気の浄化方法、ならびにVOCと吸収剤の回収方法に関するものであり、さらに詳しくは、特に、印刷、塗装、繊維工業、木製品製造業、接着剤関連業、フィルム加工業、化学工業の工場および実験室等から排出される排気中に含有するトルエン等の芳香族炭化水素、酢酸エステル等のエステル類、メチルエチルケトン(MEK)等のケトン類等からなるVOCの吸収回収に用いられる吸収剤および該吸収剤を用いるVOCを含有する排気の浄化方法に関するものである。 The present invention relates to an absorbent for removing volatile organic compounds (hereinafter referred to as “VOC”) in exhaust, a method for purifying exhaust using the VOC absorbent, and a method for recovering VOC and absorbent. More specifically, in particular, aromatic hydrocarbons such as toluene contained in exhaust discharged from printing, painting, textile industry, wood product manufacturing industry, adhesive-related industry, film processing industry, chemical industry factory and laboratory, etc. The present invention relates to an absorbent used for absorption recovery of VOC, which includes esters such as acetate, ketones such as methyl ethyl ketone (MEK), and a method for purifying exhaust containing VOC using the absorbent.
 産業界、特に塗装、印刷等の分野、例えばグラビア印刷、オフセット印刷等の印刷分野、建造物の外壁の塗工分野、ガソリンスタンドなどの石油分野では、一般に揮発性のVOCが広く使用されている。 Volatile VOCs are generally widely used in industry, particularly in the fields of painting and printing, for example, in the field of printing such as gravure printing and offset printing, in the field of coating outer walls of buildings, and in petroleum fields such as gas stations. .
 かかるVOCは、空気中に蒸発拡散し、臭気および光化学スモッグの発生原因となっていることはすでに指摘されてきたところである。 It has already been pointed out that such VOC evaporates and diffuses in the air and causes odor and photochemical smog.
 従って、環境保全の観点から、前記VOCの排出を抑制することが不可欠な状況となり、行政上においても平成22年3月には、環境省令でVOC排出基準の適用の猶予期間が終了し、各分野において使用済みの排出VOCの回収処理を行なう措置をとる努力が払われてきている。例えば、環境対策協議会では、業界連携によるVOC排出削減「自主的取組」が行なわれ、10回にも及ぶ実践発表会が行なわれている。 Therefore, from the viewpoint of environmental conservation, it is indispensable to suppress the VOC emission. In March 2010, the grace period for the application of the VOC emission standard was terminated by the Ordinance of the Ministry of the Environment. Efforts have been made in the field to take steps to recover used exhaust VOCs. For example, at the Environmental Measures Council, “voluntary efforts” to reduce VOC emissions through industry collaboration have been carried out, and as many as ten practical presentations have been held.
 しかし、現実には未だ大量のVOCが大気中に排出され、臭気および光化学スモッグの原因となっていることは前記の通りである。 However, as described above, in reality, a large amount of VOC is still discharged into the atmosphere, causing odor and photochemical smog.
 従来、排出VOCの除去方法として開発され実施されてきた対策は、第一に燃焼方式によるものであり、また、第二に、吸着方式も提案実施されている。 Conventionally, measures developed and implemented as a method for removing exhaust VOCs are firstly based on the combustion method, and secondly, an adsorption method is also proposed and implemented.
 第一の燃焼方式は、排気をダクトで一つに集め、触媒上に通したり、新たに燃料を加えてVOCを燃焼させることにより除去する方法である。燃焼方式には直接燃焼方法と接触燃焼方法があり、いずれも高温条件下でVOCを酸化分解するものである。 The first combustion method is a method in which exhaust gas is collected by a duct and passed through a catalyst or removed by newly adding fuel to burn VOC. There are a direct combustion method and a contact combustion method as combustion methods, both of which oxidatively decompose VOC under high temperature conditions.
 かかる燃焼方式によれば、排出ガスの除去率が大きいという特長があるが、温度条件によってはダイオキシンが発生する可能性がある点、燃焼によりCOガスを多量に排出する点のほかランニングコストが高いことが欠点とされている。また、装置の大型化が必要であり、多額の投資額を要するので、小規模な発生源からの排気の処理にはコスト高となるため装置の設置が困難である。また、VOCの回収再利用ができないという問題もある。 This combustion method has a feature that the exhaust gas removal rate is large, but dioxins may be generated depending on the temperature conditions, and in addition to the fact that a large amount of CO 2 gas is discharged by combustion, there is a running cost. High is considered a drawback. Further, since the apparatus needs to be enlarged and requires a large amount of investment, it is difficult to install the apparatus because of the high cost of processing exhaust gas from a small source. There is also a problem that VOC cannot be collected and reused.
 第二の吸着方式は、特に物理的な吸着方法が一般的に普及しており、排気を固体粉末状の吸着剤、主に活性炭およびゼオライト等に接触させ、含有VOCを吸着除去する方式である。 In the second adsorption method, a physical adsorption method is particularly widespread, and the exhaust is brought into contact with a solid powder adsorbent, mainly activated carbon and zeolite, and the contained VOC is adsorbed and removed. .
 かかる方式によれば、吸着後にVOCを脱着回収してVOCおよび吸着剤をそれぞれ再利用することができ、回収率も高いという利点がある。また、COを排出しないという環境保全上の有利な点がある。 According to such a method, VOC can be desorbed and recovered after adsorption, and VOC and the adsorbent can be reused, respectively, and there is an advantage that the recovery rate is high. In addition, there is an advantage in environmental conservation that no CO 2 is emitted.
 しかし、かかる吸着方式では、吸着ゾーンに固体粉末を通過させ、吸着VOCを回収するための操作には大きなエネルギーとコストを要するという工学上の困難な問題がある。また、固体粉末が空気中に飛散するという問題もある。 However, such an adsorption method has a difficult engineering problem that a solid powder is passed through the adsorption zone and an operation for recovering the adsorbed VOC requires large energy and cost. There is also a problem that the solid powder is scattered in the air.
 一方、化学的な吸着方式としては、例えば、シクロデキストリン水溶液に排気を通し、シクロデキストリンの環状構造が形成する空洞にVOCを包摂化合物として水素結合により取り込むことにより、排気中のVOCを除去する方法を挙げることができるが、かかる方法は、未だ十分な効果を奏するまでには至っていない。 On the other hand, as a chemical adsorption method, for example, exhaust gas is passed through an aqueous cyclodextrin solution, and VOC is taken into the cavity formed by the cyclic structure of cyclodextrin as an inclusion compound by hydrogen bonding, thereby removing VOC in the exhaust gas. However, such a method has not yet been sufficiently effective.
 さらに、第三の方式として、液体吸収法が提案されている。液体吸収方式は、排気を吸収液と接触吸収させ、吸収後、蒸留等の方法により分離回収する方式である。排気の吸収液との接触は、吸収液をシャワー状の状態で行なうか、または排気を吸収液中にバブリングする方式により行なう方式がある。 Furthermore, a liquid absorption method has been proposed as a third method. The liquid absorption method is a method in which exhaust is contacted and absorbed with an absorbing solution, and after absorption, is separated and recovered by a method such as distillation. There is a method of contacting the exhaust liquid with the absorbing liquid in a shower-like state or by a method of bubbling exhaust gas into the absorbing liquid.
 また、吸収液としては、灯油等の高沸点炭化水素溶剤、グリコールモノアルキルエーテルとデセンとの混合物、その他の界面活性剤の水溶液またはエマルジョン等が使用されている。 Also, as the absorbing solution, a high boiling point hydrocarbon solvent such as kerosene, a mixture of glycol monoalkyl ether and decene, an aqueous solution or emulsion of other surfactants, and the like are used.
 かかる液体吸収法によれば、比較的小型から大型の装置の設計が可能であり、装置費が低コストで済み、COの発生もなく、VOCの回収および吸収後の再利用も可能である。 According to such a liquid absorption method, it is possible to design a relatively small to large apparatus, the apparatus cost is low, no CO 2 is generated, and VOC can be recovered and reused after absorption. .
 かかる状況下において、VOCを含むガスからVOCを除去するために吸収液を接触させる方法(特開昭52-37585号公報(特許文献1))がすでに提案されており、吸収液として、フタル酸エステル、珪酸エステル、燐酸エステル等と精製鉱油との混合物が記載されている。 Under such circumstances, a method of contacting an absorbing solution for removing VOC from a gas containing VOC (Japanese Patent Laid-Open No. 52-37585 (Patent Document 1)) has already been proposed. A mixture of esters, silicate esters, phosphate esters and the like and refined mineral oil is described.
 しかしながら、VOC中のエステル類は空気中の水分と、エステル吸収剤を用いた場合は溶解している水分と反応し酸を遊離放出して吸収液中に残留し、微量であっても臭気の原因となり、さらにその酸触媒作用によって加水分解を促進させる問題があるが、かかる問題点については、前記特許文献1では何らの示唆もなく、また、前記吸収液では、前記の遊離する酸を吸収過程で除去することができないし、さらに回収VOC中に酸が含まれるので、さらに、アルカリ脱酸工程および脱酸時に生成する塩を含む水の処理工程が必要となる。 However, the esters in VOC react with the moisture in the air and the dissolved moisture when an ester absorbent is used to release acid free and remain in the absorbing solution. There is a problem that the hydrolysis is further promoted by its acid catalysis, but there is no suggestion in Patent Document 1 regarding this problem, and the absorbing solution absorbs the liberated acid. Further, since it cannot be removed in the process and the acid is contained in the recovered VOC, an alkali deoxidation step and a water treatment step including a salt generated during the deoxidation are further required.
 従って、排気VOCの除去における液体吸収法の採用の可否については、吸収剤がVOC中のエステルの加水分解により遊離する酸を処理できるものであるかどうかが重要なファクターであり、他のアルカリ脱酸工程等を要することなく、吸収過程で同時に遊離酸の除去が可能な吸収剤の開発が切望されてきた。

特開昭52-37585号公報 特開昭52-155176号公報
Therefore, whether or not the liquid absorption method can be adopted in the removal of exhaust VOC is an important factor whether or not the absorbent can treat the acid liberated by hydrolysis of the ester in the VOC. There has been a strong demand for the development of an absorbent that can simultaneously remove free acid during the absorption process without requiring an acid step.

JP-A-52-37585 JP 52-155176 A
 従って、本発明の課題は、排気に含有されるVOCを吸収除去するための吸収剤であって、VOCの成分の種類に拘らず高除去率を示し、さらに、その吸収過程において、VOC中のエステル類の空気との接触により遊離した酸を同時に除去することが可能な液状吸収剤および該吸収剤を用いるVOCを含有する排気の浄化方法ならびにVOCおよび吸収剤の回収方法を提供する点にある。 Accordingly, an object of the present invention is an absorbent for absorbing and removing VOC contained in exhaust gas, and exhibits a high removal rate regardless of the type of VOC component. Further, in the absorption process, The present invention provides a liquid absorbent capable of simultaneously removing acid liberated by contact of esters with air, a method for purifying exhaust containing VOC using the absorbent, and a method for recovering VOC and absorbent. .
 そこで、本発明者らは、前記の本発明の課題を解決するために、鋭意検討を重ねた結果、本発明者らが着目したVOCの各成分と吸収剤成分との相互溶解関係から特定のエポキシ化合物がVOCの吸収と共に遊離した酸の除去も可能であり、前記課題が解決できることを見い出し、これらの知見に基いて、本発明の完成に到達した。 Therefore, as a result of intensive studies in order to solve the above-described problems of the present invention, the inventors of the present invention have identified a specific from the mutual dissolution relationship between each component of the VOC and the absorbent component that the inventors have focused on. It has been found that the acid liberated by the absorption of VOC along with the absorption of VOC can be solved, and that the above problems can be solved, and the present invention has been completed based on these findings.
 かくして、本発明によれば、
 請求項1において、
 排気中の揮発性有機化合物の除去のために用いられる吸収剤であって、該吸収剤がエポキシ化合物を含有してなることを特徴とする揮発性有機化合物の除去用吸収剤
が提供される。
Thus, according to the present invention,
In claim 1,
There is provided an absorbent for removing a volatile organic compound in exhaust gas, wherein the absorbent contains an epoxy compound.
 また、本願請求項1に係る発明の好ましい実施態様として、次に示す請求項2乃至9に記載のVOCの除去用吸収剤
が提供される。
In addition, as a preferred embodiment of the invention according to claim 1 of the present application, the absorbent for removing VOC according to claims 2 to 9 shown below is provided.
 すなわち、
(1)請求項2によれば、
 前記吸収剤が、-10℃においても液状を保持し、かつ沈殿物を生じない液体である請求項1に記載の揮発性有機化合物の除去用吸収剤
が提供される。
That is,
(1) According to claim 2,
2. The absorbent for removing a volatile organic compound according to claim 1, wherein the absorbent is a liquid that maintains a liquid state even at −10 ° C. and does not generate a precipitate.
 請求項3によれば、
 前記エポキシ化合物の分子量が250以上であり、沸点が200℃以上である請求項1または2に記載の揮発性有機化合物の除去用吸収剤
が提供される。
According to claim 3,
The absorbent for removing a volatile organic compound according to claim 1 or 2, wherein the epoxy compound has a molecular weight of 250 or more and a boiling point of 200 ° C or more.
 請求項4によれば、
 前記エポキシ化合物が、分子中に窒素、硫黄、ハロゲン、リンまたは珪素のいずれも含有しない化合物である請求項1ないし3のいずれかの1項に記載の揮発性有機化合物の除去用吸収剤
が提供される。
According to claim 4,
The absorbent for removing a volatile organic compound according to any one of claims 1 to 3, wherein the epoxy compound is a compound that does not contain any of nitrogen, sulfur, halogen, phosphorus, or silicon in the molecule. Is done.
 請求項8によれば、
 前記エポキシ化合物が、ビスフェノールAを骨格として有するポリエーテルのジグリシジルエーテルである請求項1に記載の揮発性有機化合物の除去用吸収剤
が提供される。
According to claim 8,
The absorbent for removing a volatile organic compound according to claim 1, wherein the epoxy compound is a diglycidyl ether of a polyether having bisphenol A as a skeleton.
 請求項7によれば、
 前記エポキシ化合物が、水素化ビスフェノールAジグリシジルエーテルである請求項1に記載の揮発性有機化合物の除去用吸収剤
が提供される。
According to claim 7,
The absorbent for removing a volatile organic compound according to claim 1, wherein the epoxy compound is hydrogenated bisphenol A diglycidyl ether.
 請求項5によれば、
 前記エポキシ化合物が、エポキシ化エステルである請求項1ないし4のいずれかの1項に記載の揮発性有機化合物の除去用吸収剤
が提供される。
According to claim 5,
The absorbent for removing a volatile organic compound according to any one of claims 1 to 4, wherein the epoxy compound is an epoxidized ester.
 請求項6によれば、
 前記エポキシ化エステルが、エポキシヘキサヒドロフタル酸ジエステルである請求項7に記載の揮発性有機化合物の除去用吸収剤
が提供される。
According to claim 6,
The absorbent for removing a volatile organic compound according to claim 7, wherein the epoxidized ester is an epoxy hexahydrophthalic acid diester.
 また、本発明によれば、
 請求項9において、
 前記エポキシ化合物に、さらに配合される成分が、前記エポキシ化エステル以外のエステル、ポリエーテル、鉱油系または合成油系潤滑油留分およびポリα-オレフィンからなる群から選択される少なくとも一種の媒体である請求項1~8のいずれか1項に記載の揮発性有機化合物の除去用吸収剤
が提供される。
Moreover, according to the present invention,
In claim 9,
The component further blended with the epoxy compound is at least one medium selected from the group consisting of an ester other than the epoxidized ester, a polyether, a mineral oil-based or synthetic oil-based lubricating oil fraction, and a poly α-olefin. An absorbent for removing a volatile organic compound according to any one of claims 1 to 8 is provided.
 さらに本発明によれば、
 請求項10において、
揮発性有機化合物を含有する排気をエポキシ化合物を含有する吸収剤と接触させることにより、前記排気中の揮発性有機化合物を吸収除去することを特徴とする排気の浄化方法
が提供される。
Furthermore, according to the present invention,
In claim 10,
There is provided a method for purifying exhaust gas, wherein the exhaust gas containing a volatile organic compound is brought into contact with an absorbent containing an epoxy compound to absorb and remove the volatile organic compound in the exhaust gas.
 また、本発明によれば、
 請求項11において、
1)揮発性有機化合物を含有する排気を請求項1の揮発性有機化合物の除去用吸収剤と接触させることにより、前記排気中の前記揮発性有機化合物を溶解吸収する吸収工程、および
2)前記吸収工程で得られた揮発性有機化合物を含有する吸収剤を蒸留に供し、揮発性有機化合物と吸収剤に分離する分離工程
とからなることを特徴とする揮発性有機化合物および吸収剤の回収方法
が提供される。
Moreover, according to the present invention,
In claim 11,
1) an absorption step of dissolving and absorbing the volatile organic compound in the exhaust by bringing the exhaust containing the volatile organic compound into contact with the absorbent for removing the volatile organic compound of claim 1; A method for recovering a volatile organic compound and an absorbent comprising: separating an sorbent containing the volatile organic compound obtained in the absorption step into a distillation and separating the volatile organic compound into an absorbent. Is provided.
 さらに本発明によれば、
 請求項12において、
前記分離工程にて分離された吸収剤を前記吸収工程にリサイクルするリサイクル工程を付設した請求項1に記載の揮発性有機化合物および吸収剤の回収方法
が提供される。
Furthermore, according to the present invention,
In claim 12,
The method for recovering a volatile organic compound and an absorbent according to claim 1, further comprising a recycling step of recycling the absorbent separated in the separation step to the absorption step.
 請求項1に係る排気中のVOCの除去用吸収剤によれば、印刷、塗装等の大量に排出される排気中の低濃度のVOCを高い除去率で吸収可能な吸収剤を提供することができる。 According to the absorbent for removing VOC in exhaust according to claim 1, it is possible to provide an absorbent capable of absorbing low concentration VOC in exhaust exhausted in large quantities such as printing and painting with a high removal rate. it can.
 また、吸収されたVOC中に含まれるエステルの加水分解により遊離した酸を吸収過程で同時に除去することができる。 Also, the acid liberated by hydrolysis of the ester contained in the absorbed VOC can be removed simultaneously during the absorption process.
 請求項2~9に係る発明の吸収剤によれば、さらに吸収率が向上し、かつ吸収過程における酸の除去も容易となり、高分子量のものに特定することにより蒸留処理でのVOCとの分離が容易となる。 According to the absorbents of the inventions according to claims 2 to 9, the absorption rate is further improved, and the acid removal in the absorption process is facilitated, and separation from VOC in the distillation treatment by specifying a high molecular weight material. Becomes easy.
 請求項10に係るVOC含有排気の浄化方法によれば、高吸収率および高度の酸除去が容易に達成できる。 According to the method for purifying VOC-containing exhaust gas according to claim 10, high absorption rate and high acid removal can be easily achieved.
 また、請求項11および12に係る回収方法によっても本発明に係るエポキシ化合物の特性を利用することにより、VOCの吸収、酸の除去およびVOCと吸収剤の回収、再利用が可能である。 Further, the recovery method according to claims 11 and 12 can also absorb the VOC, remove the acid, and recover and reuse the VOC and the absorbent by utilizing the characteristics of the epoxy compound according to the present invention.
 以下、本発明についてさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 本発明において吸収処理の対象とするVOCについては、特に限定されるものではなく、いずれのものでも処理は可能であり、前記の如く、加水分解により酸を遊離するエステル類も支障なく処理対象とすることができる。 In the present invention, the VOC to be subjected to the absorption treatment is not particularly limited, and any treatment can be performed. As described above, esters that liberate an acid by hydrolysis can be treated without any problem. can do.
 本発明に係るVOCの除去用吸収剤にとって適用可能なVOC含有排気は、トルエン等の芳香族炭化水素、ジメチルホルムアミド等のアミド類、N-メチルピロリドン等の複素環化合物、メチルエチルケトン等のケトン類、イソプロピルアルコール等のアルコール類、酢酸エチル等のエステル類等の一種または二種以上含有するものである。 VOC-containing exhaust gas applicable to the VOC removal absorbent according to the present invention includes aromatic hydrocarbons such as toluene, amides such as dimethylformamide, heterocyclic compounds such as N-methylpyrrolidone, ketones such as methyl ethyl ketone, It contains one or more alcohols such as isopropyl alcohol and esters such as ethyl acetate.
 かかるVOC含有排気は、前記の如き各種産業における製造工程から発生する排気であり、具体的にはVOCが10~5000ppmの広範囲にわたって含有するものである。特に印刷、塗装、繊維等の各分野において大量に発生する排気であって、比較的低濃度のVOCを含有するものが本発明に係る吸収剤の効果を発揮する上で適したものである。 Such a VOC-containing exhaust gas is an exhaust gas generated from a manufacturing process in various industries as described above, and specifically includes VOC in a wide range of 10 to 5000 ppm. In particular, exhaust that is generated in large quantities in various fields such as printing, painting, and fiber and that contains a relatively low concentration of VOC is suitable for exerting the effect of the absorbent according to the present invention.
 本発明に係る排気中のVOCの除去用吸収剤は、エポキシ化合物を含有するものであり、固体、すなわち粒状体のものであってもよいが、常態で液状のものが好ましい。 The absorbent for removing VOC in exhaust gas according to the present invention contains an epoxy compound and may be solid, that is, granular, but is normally liquid.
 エポキシ化合物は、分子中にエポキシ基を有する有機化合物であり、本発明に係る排気中のVOCの除去用吸収剤として好適なエポキシ化合物は、分子量が250以上、さらに好ましくは300以上のものであり、かつ沸点が200℃以上のものである。 The epoxy compound is an organic compound having an epoxy group in the molecule, and the epoxy compound suitable as an absorbent for removing VOC in exhaust gas according to the present invention has a molecular weight of 250 or more, more preferably 300 or more. And a boiling point of 200 ° C. or higher.
 かかる性状を有するエポキシ化合物は、排気中に含まれる使用済みのガス状VOCを吸収する能力を有し、かつ、吸収されたVOC中に含まれる酸を吸収過程において除去することができる。 The epoxy compound having such properties has the ability to absorb the used gaseous VOC contained in the exhaust gas, and can remove the acid contained in the absorbed VOC in the absorption process.
 さらに好適なエポキシ化合物を具体的に挙げると、次の一般式1~11で表される化合物からなる群より選択されたものであり、一種または二種以上混合したものでもよい。
1.脂環式エポキシ型
More specifically, suitable epoxy compounds are those selected from the group consisting of compounds represented by the following general formulas 1 to 11, and may be one or a mixture of two or more.
1. Alicyclic epoxy type
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式1において、Rは、飽和または不飽和の炭素数11~18の直鎖状または分岐状アルキル基、COORまたは
Figure JPOXMLDOC01-appb-I000002
In the general formula 1, R is a saturated or unsaturated linear or branched alkyl group having 11 to 18 carbon atoms, COOR 1 or
Figure JPOXMLDOC01-appb-I000002
であり、Rは炭素数4~13の直鎖状または分岐状アルキル基であり、nは1または2の整数である。 R 1 is a linear or branched alkyl group having 4 to 13 carbon atoms, and n is an integer of 1 or 2.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式2において、Rは炭素数1~4の直鎖状または分岐状アルキレン基、-COOCH-、-CHOOC(CHCOOCH-であり、nは4~8の整数である。
2.アルコール型
In the general formula 2, R is a linear or branched alkylene group having 1 to 4 carbon atoms, —COOCH 2 —, —CH 2 OOC (CH 2 ) n COOCH 2 —, and n is an integer of 4 to 8. is there.
2. Alcohol type
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式3において、Rは炭素数12~18の直鎖状または分岐状アルキル基またはフェニルアルキル基である。 In general formula 3, R is a linear or branched alkyl group having 12 to 18 carbon atoms or a phenylalkyl group.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式4において、Rは炭素数2~8の直鎖状アルキレン基、ネオペンチル基、水素化ビスフェノールA、またはシクロへキサンジメチル基である。 In the general formula 4, R is a linear alkylene group having 2 to 8 carbon atoms, neopentyl group, hydrogenated bisphenol A, or cyclohexanedimethyl group.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式5において、RおよびR´はそれぞれ水素原子またはメチル基であり、nは1~20の整数である。 In the general formula 5, R and R are each a hydrogen atom or a methyl group, and n is an integer of 1-20.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式6において、Rは炭素数2~10の直鎖状アルキレン基、R´は水素原子またはメチル基であり、n+mは2~6の整数である。
3.フェノール型   
In the general formula 6, R is a linear alkylene group having 2 to 10 carbon atoms, R is a hydrogen atom or a methyl group, and n + m is an integer of 2 to 6.
3. Phenol type
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式7において、Rは炭素数8~18の直鎖状または分岐状アルキル基である。 In the general formula 7, R is a linear or branched alkyl group having 8 to 18 carbon atoms.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式8において、Rは
Figure JPOXMLDOC01-appb-I000010
In general formula 8, R is
Figure JPOXMLDOC01-appb-I000010
であり、R´は直鎖状または分岐状アルキレン基である。
4.エステル型   
And R is a linear or branched alkylene group.
4). Ester type
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式9において、Rは炭素数11~17アルキル基、アルキルフェニル基、フェニルアルキル基、またはアルキルシクロヘキシル基である。 In the general formula 9, R is an alkyl group having 11 to 17 carbon atoms, an alkylphenyl group, a phenylalkyl group, or an alkylcyclohexyl group.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式10において、Rは炭素数4~8の直鎖状または分岐状アルキレン基、シクロヘキシル基、またはフェニル基である。
5.アルキル型 
In the general formula 10, R is a linear or branched alkylene group having 4 to 8 carbon atoms, a cyclohexyl group, or a phenyl group.
5. Alkyl type
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 一般式11において、RおよびRは水素原子または直鎖状または分岐状アルキル基またはアルキルエステル基であり、R+Rの炭素数は16~36である。 In General Formula 11, R and R 1 are a hydrogen atom, a linear or branched alkyl group, or an alkyl ester group, and R + R 1 has 16 to 36 carbon atoms.
 前記の脂環式エポキシ型に属する一般式1および2でそれぞれ表されるエポキシ化合物は、エポキシ基が脂環構造内に存在するものであり、分子量が250以上になるようにアルキル基Rの鎖長を制御したものが用いられる。 In the epoxy compounds represented by the general formulas 1 and 2 belonging to the alicyclic epoxy type, the epoxy group is present in the alicyclic structure, and the chain of the alkyl group R so that the molecular weight is 250 or more. The one whose length is controlled is used.
 前記一般式1、2に属するエポキシ化合物の具体例として、エポキシヘキサヒドロフタル酸ジブチル、エポキシヘキサヒドロフタル酸ジペンチル、エポキシヘキサヒドロフタル酸ジヘキシル、エポキシヘキサヒドロフタル酸ジヘプチル、エポキシヘキサヒドロフタル酸-ジ-2-エチルヘキシル(EPS)、エポキシヘキサヒドロフタル酸-ジ-n-オクチル、エポキシヘキサヒドロフタル酸-ジ-エポキシ化ステアリル、エポキシヘキサヒドロフタル酸ジイソデシル等を挙げることができるが、VOCに対する除去率の観点からエポキシヘキサヒドロフタル酸-ジ-2-エチルヘキシル(EPS)、エポキシヘキサヒドロフタル酸-ジ-n-オクチルが好ましい。 Specific examples of the epoxy compounds belonging to the general formulas 1 and 2 include dibutyl epoxyhexahydrophthalate, dipentyl epoxyhexahydrophthalate, dihexyl epoxyhexahydrophthalate, diheptylepoxyhexahydrophthalate, epoxyhexahydrophthalic acid-di Examples include -2-ethylhexyl (EPS), epoxyhexahydrophthalic acid-di-n-octyl, epoxyhexahydrophthalic acid-di-epoxidized stearyl, epoxyhexahydrophthalic acid diisodecyl, etc., but removal rate against VOC From the above viewpoint, epoxyhexahydrophthalic acid-di-2-ethylhexyl (EPS) and epoxyhexahydrophthalic acid-di-n-octyl are preferable.
 かかるエポキシ化合物は、分子量250以上であり、沸点が200℃以上のものを採用することが好ましい。 Such an epoxy compound preferably has a molecular weight of 250 or more and a boiling point of 200 ° C. or more.
 前記アルコール型に属するエポキシ化合物は、一般式4~6で表され、具体的に例示すると、エチレングリコールジグリシジルエーテル、水素化ビスフェノールAジグリシジルエーテル、1.4-シクロへキサンジメタノールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ブチレングリコールジグリシジルエーテル、ヘキシレングリコールジグリシジルエーテル、およびデカメチレングリコールジグリシジルエーテル等を挙げることができる。 The epoxy compounds belonging to the alcohol type are represented by general formulas 4 to 6, and specific examples include ethylene glycol diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, and 1.4-cyclohexanedimethanol diglycidyl ether. And propylene glycol diglycidyl ether, butylene glycol diglycidyl ether, hexylene glycol diglycidyl ether, and decamethylene glycol diglycidyl ether.
 前記フェノール型に属するエポキシ化合物は、一般式7および8で表される化合物であり、具体例としては、ビスフェノールAジグリシジルエーテル、メチレンジフェノールジクリシジルエーテル、エチレンジフェノールジグリシジルエーテル等を挙げることができる。 The epoxy compound belonging to the phenol type is a compound represented by the general formulas 7 and 8, and specific examples include bisphenol A diglycidyl ether, methylene diphenol diglycidyl ether, ethylene diphenol diglycidyl ether, and the like. Can do.
 前記エステル型に属する一般式9および10で表されるエポキシ化合物の具体例としては、安息香酸グリシジルエーテル、トルイル酸グリシジルエーテル、キシレノール酸グリシジルエーテル、フタル酸ジグリシジルエーテル、ヘキサヒドロフタル酸ジクリジルエーテル、アジピン酸ジグリシジルエーテル、セバシン酸ジグリシジルエーテル、およびデカンジカルボン酸ジクリシジルエーテル等を挙げることができる。 Specific examples of the epoxy compounds represented by the general formulas 9 and 10 belonging to the ester type include glycidyl benzoate, glycidyl toluate, glycidyl ether xylenol, diglycidyl phthalate, and diglycidyl hexahydrophthalate. , Adipic acid diglycidyl ether, sebacic acid diglycidyl ether, decanedicarboxylic acid diglycidyl ether, and the like.
 前記アルキル型に属する一般式11で表されるエポキシ化合物の具体例としては、エポキシステアリン酸オクチル、エポキシステアリン酸ブチル、エポキシステアリン酸エポキシステアリル、エポキシヘキサデシル、オクチル酸エポキシステアリル等を挙げることができる。 Specific examples of the epoxy compound represented by the general formula 11 belonging to the alkyl type include octyl epoxy stearate, butyl epoxy stearate, epoxy stearyl epoxy stearate, epoxy hexadecyl, epoxy stearyl octylate and the like. .
 これらのエポキシ化合物のうち、前記脂環式エポキシ型化合物が、排気VOCの吸収処理において、VOCに対する溶解力に優れている点、遊離酸の除去が可能である点およびVOCおよび吸収剤の回収処理において、蒸留分離に適当な分子量、沸点を有しており加水分解に対して安定である点で好適であり、エポキシヘキサヒドロフタル酸ジエステル、例えば、エポキシヘキサヒドロフタル酸ジイソデシル等が好ましく、さらにエポキシヘキサヒドロフタル酸ジ-2-エチルヘキシル、エポキシヘキサヒドロフタル酸ジ-n-オクチル等が好ましい。 Among these epoxy compounds, the alicyclic epoxy type compound is excellent in VOC solubility in exhaust VOC absorption treatment, free acid removal is possible, and VOC and absorbent recovery processing Are suitable in that they have a molecular weight and boiling point suitable for distillation separation and are stable against hydrolysis, and are preferably epoxyhexahydrophthalic acid diesters such as epoxyisohydrophthalic acid diisodecyl, Preferred are di-2-ethylhexyl hexahydrophthalate and di-n-octyl epoxyhexahydrophthalate.
 また、これらの前記アルコール型化合物も排気VOCの吸収処理において、VOCに対する溶解力に優れている点、遊離酸の除去が可能である点およびVOCと吸収剤の回収処理において、蒸留分離に適当な分子量、沸点を有しており、加水分解に対して安定である点で好適であり、液状のビスフェノールA骨格を有するポリエーテルのジグリシジルエーテル(BPO)、例えば、
Figure JPOXMLDOC01-appb-I000014
These alcohol-type compounds are also excellent in VOC solubility in exhaust VOC absorption treatment, free acid removal is possible, and suitable for distillation separation in VOC and absorbent recovery treatment. It is suitable in that it has a molecular weight and a boiling point and is stable to hydrolysis, and is a diglycidyl ether (BPO) of a polyether having a liquid bisphenol A skeleton, for example,
Figure JPOXMLDOC01-appb-I000014
の構造を有する化合物が好ましく、特に、式において、R=CH、n+m=2、R=H、n+m=6が好ましい。 In particular, in the formula, R = CH 3 , n + m = 2, R = H, and n + m = 6 are preferable.
 さらに、前記のビスフェノールA骨格を有するポリエーテルのジグリシジルエーテルのなかでも、特に、下記の式で示す水素化ビスフェノールAジグリシジルエーテル(HBE)が好ましい。
Figure JPOXMLDOC01-appb-I000015
Further, among the diglycidyl ethers of polyethers having the bisphenol A skeleton, hydrogenated bisphenol A diglycidyl ether (HBE) represented by the following formula is particularly preferable.
Figure JPOXMLDOC01-appb-I000015
 本発明に係る吸収剤は、エポキシ化合物に媒体を混合したものでもよい。媒体はエポキシ化合物に対し可溶化作用を有するものであり、固体状および液体状のエポキシ化合物を溶液化させる作用を有する。かかる媒体としては、有機酸エステル、例えば、ポリエーテル、液状炭化水素類が好ましい。エステルとしてはフタル酸エステル、脂肪族二塩基酸エステル等を挙げることができる。 The absorbent according to the present invention may be a mixture of an epoxy compound and a medium. The medium has a solubilizing action with respect to the epoxy compound, and has an action of making solid and liquid epoxy compounds into solution. As such a medium, organic acid esters such as polyethers and liquid hydrocarbons are preferable. Examples of the ester include phthalic acid ester and aliphatic dibasic acid ester.
 フタル酸エステルとしては、特に限定されないが、フタル酸ジブチル、フタル酸ジペンチル、フタル酸ジヘキシル、フタル酸ジヘプチル、フタル酸ジ-2-エチルヘキシル、フタル酸ジオクチル、フタル酸ジイソノニル、フタル酸ジイソデシル等を挙げることができる。また、脂肪族二塩基酸エステルとしては、アジピン酸、アゼライン酸、セバシン酸等の二塩基酸等のエステル、例えば、アジピン酸ジ-2-エチルヘキシル、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アゼライン酸ジ-2-エチルヘキシル、セバシン酸ジ-2-エチルヘキシル等を挙げることができ、通常使用されているものを適宜選択することができる。 Examples of phthalic acid esters include, but are not limited to, dibutyl phthalate, dipentyl phthalate, dihexyl phthalate, diheptyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, diisononyl phthalate, and diisodecyl phthalate. Can do. Examples of the aliphatic dibasic acid ester include esters of dibasic acid such as adipic acid, azelaic acid, and sebacic acid, such as di-2-ethylhexyl adipate, diisononyl adipate, diisodecyl adipate, di-azelainate Examples thereof include 2-ethylhexyl, di-2-ethylhexyl sebacate and the like, and those usually used can be appropriately selected.
 また、ポリエーテルとしては、ポリアルキレングリコールを用いることができる。ポリアルキレングリコールとしては、平均分子量が300~15,000、好ましくは500~2,000のものを選択することができ、具体的には、前記範囲の平均分子量を有するポリプロピレングリコール(PPG)、ポリエチレングリコール(PEG)等を挙げることができる。 Also, polyalkylene glycol can be used as the polyether. As the polyalkylene glycol, one having an average molecular weight of 300 to 15,000, preferably 500 to 2,000 can be selected. Specifically, polypropylene glycol (PPG) or polyethylene having an average molecular weight within the above range can be selected. A glycol (PEG) etc. can be mentioned.
 液状炭化水素類としては、鉱油系潤滑油留分、例えば、100℃における動粘度3~80mm/s、好ましくは2~30mm/s、さらに好ましくは3~10mm/sの直留油系留分または分解油系留分またはこれらの混合油系留分、流動パラフィン、また、潤滑油留分の100℃動粘度と同等の20~80mm/s、好ましくは3~30mm/sの100℃動粘度または、平均分子量として300~3,000を有するα-オレフィンオリゴマー(PAO)等を挙げることができる。 Examples of liquid hydrocarbons include mineral oil-based lubricating oil fractions, for example, straight-run oils having a kinematic viscosity at 100 ° C. of 3 to 80 mm 2 / s, preferably 2 to 30 mm 2 / s, more preferably 3 to 10 mm 2 / s. systems distillate or cracked oil-based fraction or mixed oil-based fractions thereof, liquid paraffin, the lubricating oil fraction 100 ° C. kinematic viscosity equivalent 20 ~ 80mm 2 / s, preferably 3 ~ 30mm 2 / s And α-olefin oligomer (PAO) having an average molecular weight of 300 to 3,000 or the like.
 かかる媒体は、一種または二種以上を混合して用いることができる。 Such media can be used singly or in combination of two or more.
 かかるフタル酸エステルおよび脂肪族-二塩基酸エステルとしては、プラスチック可塑剤の市販品を利用することができる。 As such phthalic acid esters and aliphatic dibasic acid esters, commercially available plastic plasticizers can be used.
 本発明に係る吸収剤は、エポキシ化合物を必須成分として含有するものであり、有効量含有するものであればよい。具体的には、エポキシ化合物は、好ましくは5%以上、さらに好ましくは10%以上、特に好ましくは50%以上であり、勿論、100%でもよいが、VOCの種類および排気中の濃度等により吸収剤中のエポキシ化合物の含有量を適宜調整することができる。 The absorbent according to the present invention contains an epoxy compound as an essential component, and may contain any effective amount. Specifically, the epoxy compound is preferably 5% or more, more preferably 10% or more, and particularly preferably 50% or more. Of course, 100% may be used, but it may be absorbed depending on the type of VOC and the concentration in the exhaust gas. The content of the epoxy compound in the agent can be adjusted as appropriate.
 また、前記の媒体を二種以上用いる場合においては、吸収剤との相溶性等の観点から適宜混合割合を決定すればよいが、二種の場合、例えば、PPGとPEGを混合する場合、互いに90:10~10:90、好ましくは70:30~30:70の割合で用いることができる。 In the case of using two or more of the above-mentioned media, the mixing ratio may be appropriately determined from the viewpoint of compatibility with the absorbent, etc., but in the case of two types, for example, when PPG and PEG are mixed, It can be used in a ratio of 90:10 to 10:90, preferably 70:30 to 30:70.
 前記の媒体はエポキシ化合物の溶解作用のみならず、VOCの除去率においても相乗的効果を奏する。 The above medium has a synergistic effect not only in the dissolution action of the epoxy compound but also in the VOC removal rate.
 本発明に係るエポキシ化合物からなる吸収剤は、排気中に含まれる使用済みのVOCを吸収する能力を有するばかりでなく、吸収されたVOC中に含まれる酸を吸収過程で除去することができる。 The absorbent comprising the epoxy compound according to the present invention not only has the ability to absorb the used VOC contained in the exhaust gas, but can also remove the acid contained in the absorbed VOC during the absorption process.
 VOC成分中のエステル化合物は、加水分解により酸を生成することがある。VOCを回収し、再利用するためにアルカリで脱酸するには、通常、VOC吸収工程のほかに再生VOCの中和工程が必要となる。さらに、中和処理後の塩を含有する水の処理工程も必要となる。 The ester compound in the VOC component may generate an acid by hydrolysis. In order to recover VOCs and deoxidize them with alkali for reuse, a regenerated VOC neutralization step is usually required in addition to the VOC absorption step. Furthermore, the process of the water containing the salt after a neutralization process is also needed.
 本発明に係るエポキシ化合物からなる吸収剤は、排気VOCの吸収液として使用できるばかりでなく、次の酢酸との反応により例示するように、酸と反応して酸の同時除去ができるので、VOCの吸収と酸の除去を一段の工程で処理することが可能である。
Figure JPOXMLDOC01-appb-I000016
The absorbent comprising the epoxy compound according to the present invention can be used not only as an absorbing solution for exhaust VOC, but also can be removed simultaneously by reacting with an acid, as exemplified by the following reaction with acetic acid. Absorption and acid removal can be processed in a single step.
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000017
 吸収剤は、繰り返し使用することにより、前記の酸との反応により劣化するが、劣化した吸収剤は燃焼により廃棄できるので、特別の処理工程は不要である。 When the absorbent is used repeatedly, it deteriorates due to the reaction with the above-mentioned acid, but since the deteriorated absorbent can be discarded by combustion, a special treatment step is unnecessary.
 次に排気中に含まれるVOCの吸収除去による排気の浄化方法について説明する。本発明に係る排気の浄化方法において、大量に排出される排気に含有されている低濃度のVOCを吸収除去するものであり、液状吸収剤を充填した吸収塔にVOC含有排気を通過させることにより、VOCを液状吸収剤中に溶解吸収させる吸収工程を採用する。吸収工程においてVOC含有排気と吸収剤との接触は、気液接触可能ないずれの方式によるものでもよいが、吸収塔底部より吸収剤中にVOC排気を細粒化して通過させるバブリング方式または吸収塔頂部から吸収剤を散布するシャワー方式により行なうことが簡便である。 Next, a method for purifying exhaust by absorbing and removing VOC contained in the exhaust will be described. In the exhaust gas purification method according to the present invention, low-concentration VOCs contained in a large amount of exhaust gas are absorbed and removed, and the VOC-containing exhaust gas is passed through an absorption tower filled with a liquid absorbent. An absorption process for dissolving and absorbing VOC in the liquid absorbent is employed. In the absorption process, the VOC-containing exhaust gas and the absorbent may be contacted by any method capable of gas-liquid contact. However, a bubbling method or an absorption tower in which the VOC exhaust gas is finely passed through the absorbent from the bottom of the absorption tower. It is convenient to carry out by a shower method in which the absorbent is sprayed from the top.
 VOC含有排気の処理風量は、0.5~200m/分の範囲、好ましくは100m/分以下の範囲が好適であり、0.5m/分に達しないと大量の廃棄を処理することができないので、実用価値がなく、一方、200m/分を超えると吸収剤が飛散し、また、VOCの吸収も不十分となり、VOCが大気中に放散される状態となるなどの問題が生ずる。 The processing air volume of the VOC-containing exhaust gas is preferably in the range of 0.5 to 200 m 3 / min, preferably in the range of 100 m 3 / min or less, and if it does not reach 0.5 m 3 / min, a large amount of waste should be processed. However, there is no practical value. On the other hand, if it exceeds 200 m 3 / min, the absorbent is scattered, and the absorption of VOC becomes insufficient, causing the problem that VOC is diffused into the atmosphere. .
 吸収処理の温度は環境温度でよい。 The temperature of the absorption treatment may be the ambient temperature.
 また、吸収塔内には気液接触に有効な障害物を存在させてもよい。 Also, an obstacle effective for gas-liquid contact may be present in the absorption tower.
 次に、本発明に係る排気VOCと吸収剤の回収方法について説明する。 Next, the exhaust VOC and absorbent recovery method according to the present invention will be described.
 本発明によれば、
1)排気VOCを吸収剤と接触させることにより、前記VOCを前記吸収剤中に吸収させることからなる吸収工程と
2)前記吸収工程で得られたVOC含有吸収剤を蒸留処理に供することにより、VOCと吸収剤に分離することからなる分離工程
とからなる排気VOCと吸収剤の回収方法が提供される。
According to the present invention,
1) An absorption process comprising absorbing the VOC in the absorbent by bringing the exhaust VOC into contact with the absorbent, and 2) subjecting the VOC-containing absorbent obtained in the absorption process to a distillation treatment, A method for recovering exhaust VOC and absorbent comprising a separation step comprising separating VOC and absorbent is provided.
 前記吸収工程は、排気VOCと吸収剤との気液接触によるものであり、前記の通りバブリング方式、シャワー方式を採用することができる。 The absorption step is based on gas-liquid contact between the exhaust VOC and the absorbent, and a bubbling method and a shower method can be adopted as described above.
 また、本発明に係る吸収剤を用いることにより、VOCの成分中エステル類から生ずる可能性のある遊離酸も吸収過程において同時に吸収除去することができる。 Further, by using the absorbent according to the present invention, free acids that may be generated from esters in the VOC components can be absorbed and removed simultaneously in the absorption process.
 前記排気VOCを吸収した吸収剤は、VOC成分の種類により決定される所定の温度で蒸留処理に供することにより、留出成分としてVOCを、残渣成分として吸収剤を得ることができる。 The absorbent that has absorbed the exhaust VOC can be subjected to a distillation treatment at a predetermined temperature determined by the type of the VOC component, thereby obtaining VOC as a distillate component and an absorbent as a residue component.
 蒸留により得られたVOCは、そのまま再利用することができ、吸収剤はリサイクルして使用することが可能である。 The VOC obtained by distillation can be reused as it is, and the absorbent can be recycled and used.
 本発明に係る排気VOCと吸収剤の回収方法によれば:
 吸収工程では吸収塔、分離工程では蒸留塔を少なくとも設置すればよい。吸収塔については前記の通りであり、蒸留塔についてはVOCと吸収剤との分別が可能なように段数を設けたものを採用することができる。
According to the exhaust VOC and absorbent recovery method of the present invention:
An absorption tower may be installed in the absorption process, and a distillation tower may be installed in the separation process. The absorption tower is as described above, and the distillation tower may be provided with a number of stages so that the VOC and the absorbent can be separated.
バブリング法によるVOC吸収試験の試験装置を示す概念図である。It is a conceptual diagram which shows the testing apparatus of the VOC absorption test by a bubbling method.
 符号の説明
A:空気導入口
 1:VOC充填容器
 2:空容器
   入口サンプリング箇所
 3:吸収剤充填容器
 4:空容器
   出口サンプリング箇所
B:出口
   (ポンプ吸引による空気排出口)
DESCRIPTION OF SYMBOLS A: Air inlet 1: VOC filling container 2: Empty container Inlet sampling place 3: Absorbent filling container 4: Empty container Outlet sampling place B: Outlet (Air outlet by pump suction)
 以下、本発明について、実施例及び比較例により、本発明について、さらに具体的に説明する。もっとも、本発明は、実施例等により限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the examples.
 なお、実施例等において、濃度を示す「%」は特別の表示がない限り「容量%」である。
1.吸収剤の評価
 また、吸収剤の評価については、次の1)バブリング法によるVOCに対する吸収力試験および2)試験管法による酸吸収力試験を採用した。
1)バブリング法によるVOC吸収力試験
  図1に示すVOC吸収試験の試験装置の容器(1)に30mlのVOC、容器(3)に200mlの吸収剤を採り、環境温度(常温)において出口からポンプで吸引し、VOCを含有する空気を約3.0リットル/分の風量で10分~6時間吸収剤中をバブリングさせる。
In Examples and the like, “%” indicating concentration is “volume%” unless otherwise indicated.
1. Evaluation of Absorbent Also, for the evaluation of the absorbent, the following 1) Absorbency test for VOC by bubbling method and 2) Acid absorbency test by test tube method were adopted.
1) VOC absorption test by bubbling method Take 30 ml of VOC in container (1) and 200 ml of absorbent in container (3) of the test equipment for VOC absorption test shown in Fig. 1, and pump from outlet at ambient temperature (room temperature) Then, air containing VOC is bubbled through the absorbent at an air volume of about 3.0 liters / minute for 10 minutes to 6 hours.
 容器(2)の入口および(4)の出口の気体をそれぞれサンプリングし、気中のVOC濃度を測定する。 Sampling the gas at the inlet of the container (2) and the outlet of (4), respectively, and measure the VOC concentration in the air.
 容器(2)入口および容器(4)出口のVOC濃度の差から吸収率を求める。
気中VOC濃度の測定には、株式会社バイオレット製の簡単スピード測定VOCセンサー(高分子薄膜素子と干渉増巾反射法の組合せ)を使用する。
2)試験管法による酸吸収試験
 試験管に10mlの吸収剤を採り、所定量の酢酸を加えて攪拌を続ける。一定時間毎にVOCセンサーを用いて液面上の空気中の酢酸濃度を測定する。
2.吸収剤の種類
 実施例等においては、次に掲げる吸収剤および媒体を用いた。
(1)エポキシヘキサヒドロフタル酸-ジ-2-エチルヘキシル(EPS)
(2)水酸化ビスフェノールAジグリシジルエーテル(HBE)
(3)ビスフェノールAポリエーテルジグリシジルエーテル(BPO)
(4)ポリプロピレングリコール(PPG)平均分子量:700
(5)ポリエチレングリコール(PEG) 平均分子量:700
(6)流動パラフィン
(7)フタル酸ジ-2-エチルヘキシル(DOP)
 実施例1
吸収剤として、エポキシヘキサヒドロフタル酸ジ-2-エチルヘキシル(「EPS」という。以下、同じ。)(分子量;410,沸点;>250℃)を用いて、VOCとしてメチルエチルケトン(以下、「MEK」という。)を用い、前記VOC吸収力試験方法により吸収剤のVOC吸収力を測定した。評価結果として吸収率を表1に示す。
The absorption rate is obtained from the difference in VOC concentration between the container (2) inlet and the container (4) outlet.
For measuring the VOC concentration in the air, a simple speed measurement VOC sensor (combination of a polymer thin film element and an interference enhanced reflection method) manufactured by Violet Co., Ltd. is used.
2) Acid absorption test by test tube method Take 10 ml of absorbent in a test tube, add a predetermined amount of acetic acid and continue stirring. The acetic acid concentration in the air above the liquid level is measured using a VOC sensor at regular intervals.
2. Types of absorbents In Examples and the like, the following absorbents and media were used.
(1) Epoxyhexahydrophthalic acid-di-2-ethylhexyl (EPS)
(2) Hydroxylated bisphenol A diglycidyl ether (HBE)
(3) Bisphenol A polyether diglycidyl ether (BPO)
(4) Polypropylene glycol (PPG) average molecular weight: 700
(5) Polyethylene glycol (PEG) Average molecular weight: 700
(6) Liquid paraffin (7) Di-2-ethylhexyl phthalate (DOP)
Example 1
Epoxyhexahydrophthalic acid di-2-ethylhexyl (referred to as “EPS”, hereinafter the same) (molecular weight; 410, boiling point;> 250 ° C.) as an absorbent, and methyl ethyl ketone (hereinafter referred to as “MEK”) as VOC. The VOC absorption capacity of the absorbent was measured by the VOC absorption capacity test method. Table 1 shows the absorption rate as an evaluation result.
 実施例2
VOCとしてMEKの代わりに酢酸エチルを用いたこと以外すべて、実施例1の方法および条件と同一の方法および条件で同一の吸収剤を前記VOC吸収力試験に供した。評価結果として吸収率を表1に示す。
Example 2
Except that ethyl acetate was used in place of MEK as VOC, the same absorbent was used for the VOC absorbency test under the same method and conditions as in Example 1. Table 1 shows the absorption rate as an evaluation result.
 実施例3
VOCとしてMEKの代わりにトルエンを用いたこと以外、実施例1の方法および条件と同一の方法により同一の吸収剤を前記VOC吸収力試験に供した。評価結果として吸収率を表1に示す。
Example 3
Except for using toluene instead of MEK as VOC, the same absorbent was subjected to the VOC absorbency test by the same method and conditions as in Example 1. Table 1 shows the absorption rate as an evaluation result.
 実施例4
VOCとしてMEKの代わりにメタノールを用いたこと以外、実施例1の方法および条件と同一の方法により同一の吸収剤を前記VOC吸収力試験に供した。評価結果として吸収率を表1に示す。
Example 4
Except that methanol was used instead of MEK as VOC, the same absorbent was subjected to the VOC absorbency test by the same method and conditions as in Example 1. Table 1 shows the absorption rate as an evaluation result.
 実施例5
VOCとしてMEKの代わりにテトラヒドロフラン(以下、「THF」という。)を用いたこと以外、すべて実施例1の方法および条件と同一の方法および条件により同一の吸収剤を前記VOC吸収力試験に供した。評価結果として吸収率を表1に示す。
Example 5
Except that tetrahydrofuran (hereinafter referred to as “THF”) was used as VOC instead of MEK, the same absorbent was subjected to the VOC absorbency test under the same method and conditions as in Example 1. . Table 1 shows the absorption rate as an evaluation result.
 実施例6
VOCとしてアクリル酸を用いたこと以外、すべて実施例1の吸収方法および吸収条件と同一の方法および条件により同一の吸収剤を前記VOC吸収力試験に供した。評価結果として吸収率を表1に示す。
Example 6
Except that acrylic acid was used as the VOC, the same absorbent was subjected to the VOC absorbency test by the same method and conditions as the absorption method and absorption conditions of Example 1. Table 1 shows the absorption rate as an evaluation result.
 実施例7
VOCとしてアクリル酸エチルを用いたこと以外、すべて実施例1の吸収方法および吸収条件と同一の方法および条件により同一の吸収剤を前記VOC吸収力試験に供した。評価結果として吸収率を表1に示す。
Example 7
Except for using ethyl acrylate as the VOC, the same absorbent was subjected to the VOC absorbency test by the same method and conditions as the absorption method and absorption conditions of Example 1. Table 1 shows the absorption rate as an evaluation result.
 実施例8
VOCとしてアクリル酸ブチルを用いたこと以外、すべて実施例1の吸収方法および吸収条件と同一の方法および条件により同一の吸収剤を前記VOC吸収力試験に供した。評価結果として吸収率を表1に示す。
Example 8
Except for using butyl acrylate as the VOC, the same absorbent was used for the VOC absorbency test in the same manner and under the same absorption method and absorption conditions as in Example 1. Table 1 shows the absorption rate as an evaluation result.
 実施例9
VOCとして、アクリル酸2-エチルヘキシルを用いたこと以外、すべて実施例1と同一の方法および条件により同一の吸収剤を前記VOC吸収力試験に供した。評価結果として吸収率を表1に示す。
Example 9
Except that 2-ethylhexyl acrylate was used as the VOC, the same absorbent was used in the VOC absorbency test by the same method and conditions as in Example 1. Table 1 shows the absorption rate as an evaluation result.
 実施例10
VOCとして、N-メチルピロリドンを用いたこと以外、すべて実施例1と同一の方法および条件により同一の吸収剤を前記VOC吸収力試験に供した。評価結果として吸収率を表1に示す。
Example 10
Except for using N-methylpyrrolidone as the VOC, the same absorbent was used in the VOC absorbency test by the same method and conditions as in Example 1. Table 1 shows the absorption rate as an evaluation result.
 実施例11~14
表1に示す吸収剤を用い、VOCとしての酢酸エチルについてVOC吸収力試験を行なった。
Examples 11-14
Using the absorbent shown in Table 1, a VOC absorbency test was conducted on ethyl acetate as VOC.
 吸収剤として、HBE20%、PPG40%およびPEG40%の混合物(実施例11)、BPO20%、PPG40%およびPEG40%の混合物(実施例12)、EPS20%、PPG40%およびPEG40%の混合物(実施例13)、HBE20%および流動パラフィン80%の混合物(実施例14)をそれぞれ用いた。PPGおよびPEGとしては、平均分子量が、それぞれ700のものを使用した。各評価結果を同表に示す。 As absorbent, a mixture of 20% HBE, 40% PPG and 40% PEG (Example 11), a mixture of 20% BPO, 40% PPG and 40% PEG (Example 12), a mixture of 20% EPS, 40% PPG and 40% PEG (Example 13). ), A mixture of 20% HBE and 80% liquid paraffin (Example 14), respectively. As PPG and PEG, those having an average molecular weight of 700 were used. Each evaluation result is shown in the same table.
 比較例1
吸収剤としてフタル酸ジ-2-エチルヘキシル(DOP)200mlを用い、VOCとしてMEK30mlを用いて、前記VOC吸収力試験に供した。評価結果を吸収率として表1に示す。
Comparative Example 1
Using 200 ml of di-2-ethylhexyl phthalate (DOP) as an absorbent and 30 ml of MEK as a VOC, the VOC absorption test was performed. The evaluation results are shown in Table 1 as absorption rates.
 比較例2
VOCとしてMEKの代わりに酢酸エチルを用いたこと以外、比較例1と同一の方法および条件で前記VOC吸収力試験に供した。評価結果を吸収率として表1に示す。
Comparative Example 2
The VOC absorbability test was performed in the same method and conditions as in Comparative Example 1 except that ethyl acetate was used instead of MEK as VOC. The evaluation results are shown in Table 1 as absorption rates.
 比較例3
VOCとしてMEKの代わりにトルエンを用いたこと以外、比較例1と同一の方法および条件により前記VOC吸収力試験に供した。評価結果を吸収率として表1に示す。
比較例4
VOCとして酢酸エチル、吸収剤としてポリプロピレングリコール(PPG)とポリエチレングリコール(PEG)の等量混合液を用いたこと以外、比較例1と同一の方法および条件でVOC吸収力試験に供した。評価結果を表1に示す。
Comparative Example 3
The VOC absorbability test was performed by the same method and conditions as in Comparative Example 1 except that toluene was used in place of MEK as VOC. The evaluation results are shown in Table 1 as absorption rates.
Comparative Example 4
A VOC absorbency test was performed in the same manner and under the same conditions as in Comparative Example 1 except that ethyl acetate was used as VOC, and an equal volume mixture of polypropylene glycol (PPG) and polyethylene glycol (PEG) was used as the absorbent. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 実施例15~17
試験管に10mlの吸収剤としてEPSを採り、それに所定量の酢酸を加えて攪拌を続けた。表2に示すように一定時間毎にセンサーで液面上の空気中の酢酸濃度を測定した。測定結果を表2に示す。
Examples 15-17
EPS was taken as 10 ml of absorbent in a test tube, and a predetermined amount of acetic acid was added thereto and stirring was continued. As shown in Table 2, the concentration of acetic acid in the air on the liquid surface was measured with a sensor at regular intervals. The measurement results are shown in Table 2.
 実施例18~21
吸収剤として(A)ビスフェノールAジグリシジルエーテル、(B)エポキシプロピルフェニルエーテル、(C)エチレングリコールジグリジシルエーテル、(D)水素化ビスフェノールAジグリシジルエーテルをそれぞれ表2に示す割合でフタル酸ジ-2-エチルヘキシルと混合した混合吸収剤を調製し、実施例11~13と同様に前記試験管法によるエポキシ化合物の酸吸収力試験に供した。測定結果を表2に示す。
Examples 18-21
As the absorbent, (A) bisphenol A diglycidyl ether, (B) epoxypropylphenyl ether, (C) ethylene glycol diglycidyl ether, and (D) hydrogenated bisphenol A diglycidyl ether in the proportions shown in Table 2, respectively. A mixed absorbent mixed with -2-ethylhexyl was prepared and subjected to an acid absorption test of an epoxy compound by the test tube method in the same manner as in Examples 11-13. The measurement results are shown in Table 2.
 実施例22~25
表2に示すように、吸収剤としての特殊エポキシ樹脂の酸吸収力を評価した。吸収剤に対し、添加した1重量%の酢酸は、同表で表わしたいずれの吸収剤によっても60分以内に消失した。
Examples 22-25
As shown in Table 2, the acid absorption capacity of the special epoxy resin as the absorbent was evaluated. 1% by weight of acetic acid added to the absorbent disappeared within 60 minutes by any of the absorbents shown in the table.
 実施例26~29
表2に示す吸収剤を用いて、酢酸について酸吸収力をそれぞれ評価した。吸収剤として、EPS20%,PPG40%およびPEG40%の混合物(実施例26)、HBE20%、PPG40%およびPEG40%の混合物(実施例27)、BPO20%、PPG40%およびPEG4%の混合物(実施例28)、HBE20%および流動パラフィン80%の混合物(実施例29)をそれぞれ用いた。PPGおよびPEGは、それぞれ平均分子量700のものを使用した。 
Examples 26-29
Using the absorbent shown in Table 2, the acid absorbability of acetic acid was evaluated. As absorbent, a mixture of EPS 20%, PPG 40% and PEG 40% (Example 26), HBE 20%, PPG 40% and PEG 40% mixture (Example 27), BPO 20%, PPG 40% and PEG 4% mixture (Example 28) ), A mixture of 20% HBE and 80% liquid paraffin (Example 29), respectively. PPG and PEG having an average molecular weight of 700 were used.
 比較例5および6
吸収剤としてフタル酸ジ-2-エチルヘキシルを用い表2に示す条件で前記試験管法による酸吸収力試験に供した。測定結果を表2に示す。
Comparative Examples 5 and 6
The test sample was subjected to the acid absorptivity test under the conditions shown in Table 2 using di-2-ethylhexyl phthalate as an absorbent. The measurement results are shown in Table 2.
 比較例7
吸収剤としてPPG50%とPEG50%との混合液を用い、酢酸について酸吸収力を表2に示す条件で評価した。
Comparative Example 7
A mixed solution of PPG 50% and PEG 50% was used as the absorbent, and the acid absorption capacity of acetic acid was evaluated under the conditions shown in Table 2.
 実施例および比較例の結果によれば、比較例5、6のフタル酸ジ-2-エチルヘキシル(DOP)および比較例7のポリプロピレングリコール/ポリプロピレングリコール混合物は、液面上の酢酸濃度が経時的に減少傾向になく、酸の中和効果を奏しなかったが、実施例15~17および実施例22~25のエポキシ化合物、ならびに実施例18~21および実施例26~29のエポキシ化合物含有組成物によれば、液面上の酢酸濃度は経時的に減少し、組成物の酸除去の効果が示され、著しく顕著な酸の中和効果が得られた。 According to the results of Examples and Comparative Examples, the di-2-ethylhexyl phthalate (DOP) of Comparative Examples 5 and 6 and the polypropylene glycol / polypropylene glycol mixture of Comparative Example 7 show that the concentration of acetic acid on the liquid surface increases with time. Although there was no tendency to decrease, the acid neutralization effect was not exhibited, but the epoxy compounds of Examples 15 to 17 and Examples 22 to 25 and the epoxy compound-containing compositions of Examples 18 to 21 and Examples 26 to 29 were used. According to this, the concentration of acetic acid on the liquid surface decreased with time, and the effect of acid removal of the composition was shown, and a markedly significant acid neutralization effect was obtained.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 実施例30
VOCとして、MEKと酢酸エチルを用い、吸収剤としてEPSを用いた場合のVOCの吸収力の経時変化を前記のバブリング法によるVOCの吸収力試験装置により測定した。測定結果を表3に示す。
Example 30
The change over time in the absorption capacity of VOC when MEK and ethyl acetate were used as the VOC and EPS was used as the absorbent was measured by the VOC absorption capacity test apparatus using the bubbling method. Table 3 shows the measurement results.
 表3の結果から、吸収剤としてEPSは経時変化が小さいことが明らかとされた。 From the results of Table 3, it was clarified that EPS as an absorbent has little change with time.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 実施例31
前記のVOC吸収力試験装置との基本概念を共通に設計したVOC吸収装置を用いて、連続運転を行ない、吸収剤のVOC吸収力の耐久性を評価した。
Example 31
Using a VOC absorber designed in common with the VOC absorbency test device described above, continuous operation was performed to evaluate the durability of the VOC absorbency of the absorbent.
 空気ブロアーから風量30m/分で空気をVOC300mlの入口室(容積4m)に導入し、吸収槽(容積5m)の吸収剤200Lに通過させ、出口室(容積100L)を経由してVOCを除去した空気を放出した。測定点1(入口室と吸収槽との配管内)および2(出口室の出口配管内)で、VOC濃度を測定した。評価結果を表4に示す。 Air is introduced from the air blower at an air volume of 30 m 3 / min into the VOC 300 ml inlet chamber (volume 4 m 3 ), passed through the absorbent 200 L in the absorption tank (volume 5 m 3 ), and VOC via the outlet chamber (volume 100 L). The air was removed. The VOC concentration was measured at measuring points 1 (in the piping between the inlet chamber and the absorption tank) and 2 (in the outlet piping of the outlet chamber). The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 評価結果からスケールアップした実装置においても、実験装置と同等のVOC吸収力が得られた。 Even in the actual device scaled up from the evaluation results, the VOC absorption capacity equivalent to that of the experimental device was obtained.
 本発明は、排気中のVOCを吸収除去する吸収剤ならびに該吸収剤を用いる排気の浄化方法およびVOCおよび吸収剤の回収方法を提供するものであり、VOCを取り扱う広範な産業分野においてVOCの除去方法として利用価値が大きく、環境保全面からも利用可能性は極めて大きい。
 
The present invention provides an absorbent that absorbs and removes VOC in exhaust gas, a method for purifying exhaust gas using the absorbent, and a method for recovering VOC and absorbent. The present invention eliminates VOC in a wide range of industrial fields that handle VOC. As a method, the utility value is great, and the applicability is extremely great from the viewpoint of environmental conservation.

Claims (12)

  1.  排気中の揮発性有機化合物の除去のために用いられる吸収剤であって、該吸収剤がエポキシ化合物を含有してなることを特徴とする揮発性有機化合物の除去用吸収剤。 An absorbent for removing a volatile organic compound, which is an absorbent used for removing a volatile organic compound in exhaust gas, wherein the absorbent contains an epoxy compound.
  2.  前記エポキシ化合物を含有する吸収剤が、-10℃においても液状を保持し、かつ沈殿物を生じない液体である請求項1に記載の揮発性有機化合物の除去用吸収剤。  The absorbent for removing a volatile organic compound according to claim 1, wherein the absorbent containing the epoxy compound is a liquid that maintains a liquid state even at -10 ° C and does not produce a precipitate. *
  3.  前記エポキシ化合物の分子量が250以上であり、沸点が200℃以上である請求項1または2に記載の揮発性有機化合物の除去用吸収剤。 The absorbent for removing a volatile organic compound according to claim 1 or 2, wherein the epoxy compound has a molecular weight of 250 or more and a boiling point of 200 ° C or more.
  4.  前記エポキシ化合物が、分子中に窒素、硫黄、ハロゲン、リンまたは珪素のいずれも含有しない化合物である請求項1ないし3のいずれかの1項に記載の揮発性有機化合物の除去用吸収剤。 The absorbent for removing a volatile organic compound according to any one of claims 1 to 3, wherein the epoxy compound is a compound that does not contain any of nitrogen, sulfur, halogen, phosphorus, or silicon in the molecule.
  5.  前記エポキシ化合物が、エポキシ化エステルである請求項1ないし4のいずれかの1項に記載の揮発性有機化合物の除去用吸収剤。 The absorbent for removing a volatile organic compound according to any one of claims 1 to 4, wherein the epoxy compound is an epoxidized ester.
  6.  前記エポキシ化エステルが、エポキシヘキサヒドロフタル酸ジエステルである請求項7に記載の揮発性有機化合物の除去用吸収剤。 The absorbent for removing a volatile organic compound according to claim 7, wherein the epoxidized ester is an epoxy hexahydrophthalic acid diester.
  7.  前記エポキシ化合物が、水素化ビスフェノールAジグリシジルエーテルである請求項1に記載の揮発性有機化合物の除去用吸収剤。 The volatile organic compound removing absorbent according to claim 1, wherein the epoxy compound is hydrogenated bisphenol A diglycidyl ether.
  8.  前記エポキシ化合物が、ビスフェノールAを骨格として有するポリエーテルのジグリシジルエーテルである請求項1に記載の揮発性有機化合物の除去用吸収剤。 The absorbent for removing a volatile organic compound according to claim 1, wherein the epoxy compound is a diglycidyl ether of a polyether having bisphenol A as a skeleton.
  9.  前記エポキシ化エステルに、さらに配合される成分が、前記エポキシ化エステル以外のエステル、ポリエーテル、鉱油系または合成油系潤滑油留分およびポリα-オレフィンからなる群から選択される、少なくとも一種の媒体である請求項1~8のいずれか1項に記載の揮発性有機化合物の除去用吸収剤。 The component further blended with the epoxidized ester is at least one selected from the group consisting of an ester other than the epoxidized ester, a polyether, a mineral oil-based or synthetic oil-based lubricating oil fraction, and a poly α-olefin. The absorbent for removing a volatile organic compound according to any one of claims 1 to 8, which is a medium.
  10.  揮発性有機化合物を含有する排気をエポキシ化合物を含有する吸収剤と接触させることにより、前記排気中の揮発性有機化合物を吸収除去することを特徴とする排気の浄化方法。 A method for purifying exhaust gas, wherein the exhaust gas containing a volatile organic compound is brought into contact with an absorbent containing an epoxy compound to absorb and remove the volatile organic compound in the exhaust gas.
  11. 1)揮発性有機化合物を含有する排気を請求項1の揮発性有機化合物の除去用吸収剤と接触させることにより、前記排気中の前記揮発性有機化合物を溶解吸収する吸収工程、および
    2)前記吸収工程で得られた揮発性有機化合物を含有する吸収剤を蒸留に供し、揮発性有機化合物と吸収剤に分離する分離工程
    とからなることを特徴とする揮発性有機化合物および吸収剤の回収方法。
    1) an absorption step of dissolving and absorbing the volatile organic compound in the exhaust by bringing the exhaust containing the volatile organic compound into contact with the absorbent for removing the volatile organic compound of claim 1; A method for recovering a volatile organic compound and an absorbent comprising: separating an sorbent containing the volatile organic compound obtained in the absorption step into a distillation and separating the volatile organic compound into an absorbent. .
  12.  前記分離工程にて分離された吸収剤を前記吸収工程にリサイクルするリサイクル工程を付設した請求項11に記載の揮発性有機化合物および吸収剤の回収方法。 The method for recovering a volatile organic compound and an absorbent according to claim 11, further comprising a recycling step of recycling the absorbent separated in the separation step to the absorption step.
PCT/JP2010/064805 2009-08-31 2010-08-31 Absorbent for removal of volatile organic compounds WO2011025030A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011528905A JP5641655B2 (en) 2009-08-31 2010-08-31 Absorbent for removal of volatile organic compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-201026 2009-08-31
JP2009201026 2009-08-31

Publications (1)

Publication Number Publication Date
WO2011025030A1 true WO2011025030A1 (en) 2011-03-03

Family

ID=43628120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064805 WO2011025030A1 (en) 2009-08-31 2010-08-31 Absorbent for removal of volatile organic compounds

Country Status (2)

Country Link
JP (1) JP5641655B2 (en)
WO (1) WO2011025030A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3320963A1 (en) * 2016-11-15 2018-05-16 Basf Se Method for removing aromatic hydrocarbon from raw gas stream
JP2018140333A (en) * 2017-02-27 2018-09-13 株式会社根岸製作所 Method for deodorization of exhaust air containing volatile organic compound monomer having unsaturated bond

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303522A (en) * 1989-05-16 1990-12-17 Toho Chem Ind Co Ltd Absorbent composition
JPH06341737A (en) * 1993-05-28 1994-12-13 Nippondenso Co Ltd Refrigerant regenerator
JPH10249196A (en) * 1997-03-17 1998-09-22 Asahi Denka Kogyo Kk Organic gas absorbent
JP2001505478A (en) * 1996-07-22 2001-04-24 ダウ ドイチュランド インコーポレイティド Method for reducing the concentration of polyhalogenated aromatic compounds or polynuclear aromatic hydrocarbons in flue gas
JP2008540939A (en) * 2005-04-07 2008-11-20 マシスン トリ−ガス,インコーポレイティド Method and system for storing and purifying fluids
JP2009195828A (en) * 2008-02-21 2009-09-03 Kenji Nakajima Treatment equipment of gas to be treated containing organic solvent, recovery method of organic solvent and reutilization method of organic solvent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303522A (en) * 1989-05-16 1990-12-17 Toho Chem Ind Co Ltd Absorbent composition
JPH06341737A (en) * 1993-05-28 1994-12-13 Nippondenso Co Ltd Refrigerant regenerator
JP2001505478A (en) * 1996-07-22 2001-04-24 ダウ ドイチュランド インコーポレイティド Method for reducing the concentration of polyhalogenated aromatic compounds or polynuclear aromatic hydrocarbons in flue gas
JPH10249196A (en) * 1997-03-17 1998-09-22 Asahi Denka Kogyo Kk Organic gas absorbent
JP2008540939A (en) * 2005-04-07 2008-11-20 マシスン トリ−ガス,インコーポレイティド Method and system for storing and purifying fluids
JP2009195828A (en) * 2008-02-21 2009-09-03 Kenji Nakajima Treatment equipment of gas to be treated containing organic solvent, recovery method of organic solvent and reutilization method of organic solvent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3320963A1 (en) * 2016-11-15 2018-05-16 Basf Se Method for removing aromatic hydrocarbon from raw gas stream
WO2018091385A1 (en) * 2016-11-15 2018-05-24 Basf Se Method for depleting aromatic hydrocarbon from a crude gas flow
JP2018140333A (en) * 2017-02-27 2018-09-13 株式会社根岸製作所 Method for deodorization of exhaust air containing volatile organic compound monomer having unsaturated bond
JP7042456B2 (en) 2017-02-27 2022-03-28 株式会社根岸製作所 Method of deodorizing exhaust gas containing volatile organic compound monomer having unsaturated bond

Also Published As

Publication number Publication date
JP5641655B2 (en) 2014-12-17
JPWO2011025030A1 (en) 2013-01-31

Similar Documents

Publication Publication Date Title
US8313718B2 (en) Method and composition for removal of mercaptans from gas streams
CN1136031C (en) Method for removing acid gas components from gases
Zhang et al. Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture
US10293299B2 (en) Hybrid solvent formulations for total organic sulfur removal and total acidic gas removal
US10226734B2 (en) Hybrid solvent formulations for selective H2S removal
JP5047481B2 (en) Gas purification method
CA2855855A1 (en) Method and device for the separation of acidic gases from a gas mixture
GB1593420A (en) Process and amine-solvent absorbent for removing acidic gases from gaseous mixtures
JP2011525423A (en) Method for removal of acid gases from absorbent and fluid streams, in particular exhaust gas
CN103007714A (en) Low-foam organic waste gas absorbent, and preparation method and application thereof
JP2016536115A5 (en)
JP2018531146A6 (en) Absorbent and method for selective removal of hydrogen sulfide
JP2018531146A (en) Absorbent and method for selective removal of hydrogen sulfide
JP5641655B2 (en) Absorbent for removal of volatile organic compounds
US8702846B2 (en) Process for removing acid gases from a gas stream
CN106512658A (en) VOC absorbent and processing method of VOC in air
JP6427311B2 (en) Method for suppressing evaporation of volatile organic solvent
JP5815699B2 (en) Improved method for removing hydrogen sulfide
CN116272259B (en) Desulfurization and decarbonization solvent suitable for low-pressure gas and application thereof
JP7042456B2 (en) Method of deodorizing exhaust gas containing volatile organic compound monomer having unsaturated bond
RU2513400C1 (en) Absorbent for removing h2s and co2 from gases
CN111151098A (en) Waste kitchen grease absorption liquid for VOC waste gas treatment, absorption method and separation and recovery method
CN116323873A (en) Washing fluid and method of use thereof
JP2013543789A (en) Use of 2- (3-aminopropoxy) ethane-1-ol as adsorbent for removal of acid gases
JP2013244421A (en) Organic solvent regenerating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10812076

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528905

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10812076

Country of ref document: EP

Kind code of ref document: A1