WO2011025010A1 - Electric power steering device - Google Patents

Electric power steering device Download PDF

Info

Publication number
WO2011025010A1
WO2011025010A1 PCT/JP2010/064743 JP2010064743W WO2011025010A1 WO 2011025010 A1 WO2011025010 A1 WO 2011025010A1 JP 2010064743 W JP2010064743 W JP 2010064743W WO 2011025010 A1 WO2011025010 A1 WO 2011025010A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
instruction value
steering force
assist
value setting
Prior art date
Application number
PCT/JP2010/064743
Other languages
French (fr)
Japanese (ja)
Inventor
輝彦 鈴木
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2011025010A1 publication Critical patent/WO2011025010A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input

Definitions

  • the present invention relates to an electric power steering device for a vehicle.
  • Japanese Patent Application Laid-Open No. 2002-370662 discloses an electric power steering device that drives an electric motor in accordance with a steering torque applied to a steering shaft by operating a steering wheel to give a steering assist force to the steering shaft.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide an electric power steering device that improves steering feeling.
  • an electric power steering apparatus comprises a steering force detection means, an assist instruction value setting means, a calculation means, a correction instruction value setting means, an output instruction value setting means, a motor, and a power supply means.
  • the steering force detection means detects the steering force input to the steering wheel.
  • the assist instruction value setting means sets the assist current instruction value based on the steering force detected by the steering force detection means.
  • the calculating means calculates a second-order time derivative of the steering force detected by the steering force detecting means.
  • the correction instruction value setting means sets the correction current instruction value using the second-order time derivative of the steering force calculated by the calculation means.
  • the output instruction value setting means adds the assist current instruction value set by the assist instruction value setting means and the correction current instruction value set by the correction instruction value setting means, and sets the added value as an output instruction value.
  • the motor is coupled to the steering wheel.
  • the power supply means supplies power to the motor based on the output instruction value set by the output instruction value setting means.
  • the auxiliary current instruction value increases as the second-order time derivative of the steering force increases.
  • the output instruction value increases due to an increase in the assist current instruction value or the auxiliary current instruction value, the auxiliary torque for assisting the driver to steer the steering wheel increases.
  • the steering force generated by the steering is detected.
  • an assist current instruction value is set based on the detected steering force.
  • a second-order time derivative of the detected steering force is calculated, and a corrected current instruction value using the second-order time derivative of the steering force is set.
  • the assist current instruction value and the correction current instruction value are added, and this addition value is set as the output instruction value.
  • electric power is supplied to the motor based on the output instruction value. Steering of the steering wheel is assisted by driving of a motor supplied with electric power.
  • the motor connected to the steering wheel is in a stopped state, such as when the driver starts steering the steering wheel while the rudder angle is maintained, and the motor in the stopped state is rotated.
  • the motor is driven by the increased electric power according to the increase of the second-order time derivative of the steering force, and the auxiliary torque is increased. Therefore, it is possible to reduce the steering force necessary to rotate the motor in the stopped state, and to improve the steering feeling.
  • the assist torque can be increased appropriately at the start of steering when the driver performs minute steering for the course correction on the steering wheel at the neutral position while the vehicle is traveling straight ahead, so that a good steering fee can be obtained. You can get a ring.
  • the electric power steering apparatus includes a handle state detection unit that detects whether or not the steering wheel returns to the neutral position from the rotational position at which the steering wheel is steered, and the output instruction value setting unit includes the handle state detection unit.
  • the assist current instruction value set by the assist instruction value setting means may be set as the output instruction value.
  • the steering wheel return state may be detected based on, for example, the rotation direction of the steering wheel and the direction of the steering torque.
  • the output instruction value setting means sets only the assist current instruction value as the output instruction value, for example, without adding the assist current instruction value and the correction current instruction value when it is detected that the steering wheel is returned.
  • an addition value obtained by adding the correction current instruction value set to zero and the assist current instruction value may be set as the output instruction value.
  • the steering angle is reduced by the self-aligning torque, the steering wheel returns from the rotational position to the neutral position, and the motor is being driven.
  • An appropriate steering feeling can be obtained by the auxiliary torque based on the above. Therefore, if the addition value obtained by adding the correction current instruction value to the assist current instruction value is set as the output instruction value, the steering may be lightened and the steering feeling may be deteriorated. Therefore, the correction current instruction value is changed to the assist current instruction value.
  • the assist current instruction value is set as the output instruction value without adding.
  • the calculating means may calculate a first-order time derivative of the steering force detected by the steering force detecting means, and the correction instruction value setting means further uses the first-order time derivative of the steering force calculated by the calculating means.
  • a corrected current instruction value may be set.
  • the assist current instruction value based on the steering force is set, and the correction current instruction value using the first-order time derivative of the steering force is set.
  • the added value of the correction current instruction value and the assist current instruction value The auxiliary torque is increased by supplying electric power to the motor based on the output instruction value. Accordingly, for example, in a series of processes for setting the assist current instruction value based on the steering force and supplying electric power to the motor based on the output instruction value including the assist current instruction value, the response of the assist torque to the steering force is In the electric power steering apparatus having the characteristic of being delayed, it is possible to reduce the shortage of the auxiliary torque with respect to the steering force.
  • the electric power steering apparatus may further include an operation speed detection unit that detects a steering speed and a steering speed processing value setting unit that sets a steering speed processing value according to the steering speed detected by the steering speed detection unit.
  • the correction instruction value setting unit may set the correction current instruction value by further using the steering speed processing value set by the steering speed processing value setting means.
  • the auxiliary torque increases. Therefore, for example, when there is a mechanical resistance of the motor connected to the steering wheel, such as when the steering wheel is increased, the auxiliary torque increases with an increase in the steering speed. The steering force required to steer the steering wheel against such resistance can be reduced, and the steering feeling can be improved.
  • the steering feeling can be improved.
  • FIG. 1 is a block diagram of the electric power steering apparatus according to the present embodiment
  • FIG. 2 is a flowchart showing an output instruction value setting process of the electric power steering apparatus of FIG. 1
  • FIG. 3 is an output instruction value
  • FIG. 4 is a flowchart showing an assist current instruction value setting process of the setting process
  • FIG. 4 is a flowchart showing a correction current instruction value setting process of the output instruction value setting process of FIG. 2
  • FIG. 5 is an electric power steering in which no assist torque is generated.
  • FIG. 6 is a graph of experimental results showing the steering torque when the steering wheel is steered from the neutral position in the apparatus.
  • FIG. 6 is a graph showing the steering torque from the neutral position in the electric power steering apparatus that generates the assist torque based on the assist current instruction value.
  • FIG. 7 is a graph of experimental results showing the steering torque when steered. Is a graph of experimental results showing the steering torque when the steering the steering wheel of the electric power steering device from the neutral position.
  • the electric power steering apparatus 1 of this embodiment includes a motor 2 and is provided in a vehicle.
  • the motor 2 is connected to the speed reduction mechanism and drives the speed reduction mechanism.
  • the speed reduction mechanism is configured by a combination of a plurality of gears and is coupled to the pinion shaft.
  • the pinion shaft is fixed to the output shaft.
  • the output shaft is fixed to one end of the torsion bar.
  • the other end of the torsion bar is fixed to the other end of the steering shaft.
  • One end of the steering shaft is fixed to the steering wheel.
  • the steering wheel is provided in the cab of the vehicle, and the driver inputs steering. Further, the rack shaft moves left and right along the vehicle width direction in accordance with the operation of the pinion shaft.
  • the tie rods connected to both ends of the rack shaft in the vehicle width direction are connected to the wheels.
  • the rack shaft moves in the vehicle width direction in conjunction with the rotation of the steering shaft, and the rack shaft moves along the vehicle width direction by the rotation of the steering shaft by the driver's steering and the rotation of the motor 2. Is displaced in the longitudinal direction. That is, the motor 2 generates an auxiliary torque that displaces the rack shaft along the vehicle width direction by its rotational drive, and assists the driver's steering when turning the wheels.
  • the power steering apparatus 1 of the present embodiment includes a steering force sensor 3.
  • the steering force sensor 3 detects a twist angle between one end side and the other end side of the torsion bar.
  • the vehicle also includes a steering angle sensor 4 and a motor drive current sensor 5.
  • the steering angle sensor 4 detects the rotation angle of the steering shaft.
  • the motor drive current sensor 5 is disposed between the motor 2 and an inverter 6 described later, and detects a current flowing from the inverter 6 to the motor 2.
  • the power steering apparatus 1 of the present embodiment includes a controller 10 that includes a steering force calculation unit 11, an assist instruction value setting unit 20, a correction instruction value setting unit 30, and an output instruction value setting unit 50.
  • the controller 10 includes a steering speed calculation unit 12 and a steering wheel state detection unit 13.
  • the controller 10 receives signals from the steering force sensor 3, the steering angle sensor 4, and the motor drive current sensor 5, and executes processing based on the program stored therein based on the input signals.
  • the steering force sensor 3 and the steering force calculation unit 11 constitute a steering force detection unit
  • the assist instruction value setting unit 20 constitutes an assist instruction value setting unit
  • the correction instruction value setting unit 30 includes a correction instruction value setting unit and a calculation unit.
  • steering speed processing value setting means, the output instruction value setting unit 50 constitutes output instruction value setting means, and the inverter 6 and the battery 7 constitute power supply means.
  • the handle state detection unit 13 constitutes a handle state detection unit.
  • Steering force calculation unit 11 calculates a steering force. Specifically, the steering force calculation unit 11 calculates the steering force input to the steering wheel based on the twist angle between the one end side and the other end side of the torsion bar detected by the steering force sensor 3.
  • the steering speed calculation unit 12 calculates a steering speed. Specifically, the steering speed calculation unit 12 calculates the steering speed of the steering wheel by differentiating the rotation angle of the steering shaft detected by the steering angle sensor 3 once with respect to time.
  • the assist instruction value setting unit 20 sets an assist current instruction value based on the steering force detected by the steering force sensor 3. As shown in FIG. 1, in this embodiment, the assist instruction value setting unit 20 includes an assist map storage unit 21, a target current setting unit 22, a current deviation calculation unit 23, a proportional gain calculation unit 24, and an integral gain calculation unit 25. An assist instruction value adding unit 26.
  • the assist map storage unit 21 stores in advance the relationship between the steering force and the target current for outputting the assist torque corresponding to the steering force.
  • the target current setting unit 22 reads a target current corresponding to the steering force calculated by the steering force calculation unit 11 based on the relationship between the steering force and the target current stored in the assist map storage unit 21.
  • the relationship between the steering force and the target current is stored in advance as a map.
  • a calculation formula for calculating the target current with respect to the steering force may be stored. May calculate the target current based on the calculation formula and the steering force calculated by the steering force calculation unit 11.
  • the current deviation calculation unit 23 calculates a deviation between the target current set by the target current setting unit 22 and the current detected by the motor drive current sensor 5.
  • the proportional gain calculation unit 24 calculates a value proportional to the deviation calculated by the current deviation calculation unit 23 as a deviation proportional value.
  • the integral gain calculating unit 25 calculates a value proportional to the integral of the deviation calculated by the current deviation calculating unit 23 as a deviation integral proportional value.
  • the assist instruction value adding unit 26 sets an addition value obtained by adding the deviation proportional value calculated by the proportional gain calculating unit 24 and the deviation integral proportional value calculated by the integral gain calculating unit 25 as an assist current instruction value.
  • the assist instruction value setting unit 20 calculates a deviation proportional value, a deviation integral proportional value, and an assist current instruction value based on absolute values in both cases of steering to the right and steering to the left. Then, it is determined whether the steering is to turn rightward or to the left.
  • the correction instruction value setting unit 30 sets a correction current instruction value for correcting the assist current instruction value.
  • the correction instruction value setting unit 30 includes a first-order time differentiation process value setting unit 31, a second-order time differentiation process value setting unit 34, a steering speed process value setting unit 37, and a correction instruction.
  • a value adding unit 40, and a value proportional to the first-order time derivative of the steering force, a value proportional to the second-order time derivative of the steering force, and a value proportional to the steering speed are limited within a predetermined upper limit value.
  • a corrected current instruction value obtained by adding the steering speed processing value is set.
  • the first-order time differentiation processing value setting unit 31 constitutes a calculation means, and includes a first-order time differentiation calculation unit 32 and a gain multiplication unit 33.
  • the first-order time derivative calculating unit 32 calculates the first-order time derivative of the steering force based on the steering force calculated by the steering force calculating unit 22.
  • the gain multiplication unit 33 multiplies the first-order time derivative of the steering force calculated by the first-order time derivative calculation unit 32 by a gain, and sets a value proportional to the first-order time derivative of the steering force as a steering force first-order time derivative proportional value. Calculate.
  • the second-order time differentiation processing value setting unit 34 constitutes a calculation means, and includes a second-order time differentiation calculation unit 35, a gain multiplication unit, and 36.
  • the second-order time differentiation calculation unit 35 calculates the steering force calculation unit 22 by further differentiating the first-order time differentiation of the steering force calculated by the first-order time differentiation calculation unit 32.
  • the second-order time derivative of the steering force is calculated.
  • the gain multiplication unit 36 multiplies the second-order time derivative of the steering force calculated by the second-order time derivative calculation unit 35 by a gain, and sets a value proportional to the second-order time derivative of the steering force as a steering force second-order time derivative proportional value. Calculate.
  • the second-order time differentiation calculation unit 35 directly uses the steering force based on the steering force calculated by the steering force calculation unit 22 without using the first-order time differentiation of the steering force calculated by the first-order time differentiation calculation unit 32.
  • the second-order time derivative may be calculated.
  • the steering speed process value setting unit 37 constitutes a steering speed process value setting unit, and in this embodiment, includes a gain unit 38 and a limiter unit 39.
  • the gain unit 38 calculates a value proportional to the steering speed based on the steering speed calculated by the steering speed calculation unit 12.
  • the limiter unit 39 calculates a steering speed processing value in which a value proportional to the steering speed is limited to a predetermined upper limit value based on the steering speed calculated by the gain unit 38.
  • the correction instruction value adding unit 40 is a steering force first-order time differential proportional value calculated by the first-order time differential process value setting unit 31 and a steering force second-order time differential proportional value calculated by the second-order time differential process value setting unit 34. And the steering speed processing value calculated by the steering speed processing value setting unit 37 is added to set the corrected current instruction value.
  • the steering force first-order time differential proportional value and the steering force second-order time differential proportional value are determined by absolute values in both cases of steering to the right and steering to the left. A steering speed processing value and a corrected current instruction value are calculated.
  • the correction instruction value setting unit 40 sets the correction current instruction value using the steering force first-order time differential proportional value, the steering force second-order time differential proportional value, and the steering speed processing value.
  • the correction current instruction value may be set using only the steering force first-order time differential proportional value, and the steering force first-order time differential proportional value and the steering force second-order time differential proportional value are used.
  • the corrected current instruction value may be set, or the corrected current instruction value may be set using the steering force first-order time differential proportional value and the steering speed processing value.
  • the corrected current instruction value may be set using other values together with the second-order time differential proportional value and the steering speed processing value.
  • the steering wheel state detection unit 13 detects whether or not the steering wheel is in a steering wheel return state in which the steering wheel returns to the neutral position from the steering position. In the present embodiment, the steering wheel state detection unit 13 determines whether or not the steering wheel is in the steering wheel return state based on the rotation direction of the steering wheel and the direction of the steering torque. Here, the steering wheel is in a state where the steering wheel moves to a rotational position where the steering wheel is increased, a steering wheel return state where the steering wheel moves in a direction returning from the rotational position to the neutral position, It is divided into the handle stop state that is not moving.
  • the steering wheel state determination unit 13 determines the rotation direction of the steering wheel based on the rotation angle of the steering shaft detected by the steering angle sensor 4. Specifically, the difference between the rotation angle input during the current process and the rotation angle input during the previous process is calculated to determine whether the steering wheel angle has changed and the rotation direction of the steering wheel changes. If it is, it is determined whether the rotation direction of the steering wheel is the right direction or the left direction. At the start of processing, the neutral position value is used as an initial setting value instead of the rotation angle input during the previous processing.
  • the handle state determination unit 13 determines the direction of the steering torque based on the twist angle between the one end side and the other end side of the torsion bar detected by the steering force sensor 3. Specifically, the difference between the twist angle input during the current process with respect to the twist angle input during the previous process is calculated to determine whether or not the steering torque direction has changed, and the steering torque direction changes. If it is, it is determined whether the direction of the steering torque is the right direction or the left direction.
  • the value of steering non-input neutral position is used as an initial setting value instead of the twist angle input at the previous processing.
  • the steering wheel state determination unit 13 is configured such that when the steering wheel rotation direction is the right direction and the steering torque direction is the left direction, and the steering wheel rotation direction is the left direction and the steering torque direction is the right direction.
  • the direction is the direction
  • the direction of rotation of the steering wheel coincides with the direction of the steering torque, the steering wheel is in the forward direction, and when there is no change in the direction of rotation of the steering wheel or the direction of the steering torque, the steering wheel is in the stopped state.
  • the steering wheel state determination unit 13 determines the steering wheel return state based on the rotation direction of the steering wheel and the direction of the steering torque. However, even if the steering wheel return state is determined based on other information, Good. For example, the steering wheel state determination unit 13 is configured to determine that the steering wheel return state is established when the steering torque direction and the motor rotation direction do not match based on the steering torque direction and the motor rotation direction. May be.
  • the output instruction value setting unit 50 determines the assist current instruction value set by the assist instruction value setting unit 20 and the correction current instruction value set by the correction instruction value setting unit 30 when it is determined that the handle state determination unit 13 is not in the steering wheel return state. Is set as an output instruction value, and when the steering wheel state determination unit 13 determines that it is in the steering wheel return state, the assist current instruction value set by the assist instruction value setting unit 20 is set as the output instruction value. .
  • the output instruction value setting unit 50 performs steering to the right or the left to determine the absolute assist current instruction value, the absolute auxiliary current instruction value, and the assist instruction value setting unit 20.
  • an absolute output instruction value including information indicating the rotation direction of the motor 2 based on the information indicating whether or not the steering operation is performed, and outputting the calculated value to the inverter 6.
  • the output instruction value increases.
  • the output instruction value setting unit 50 sets the assist current instruction value to the output current instruction value by not adding the correction current instruction value when in the handle return state.
  • the correction current instruction value is always added during the execution of the process.
  • the assist current instruction value is substantially increased by adding the correction current instruction value multiplied by zero and the assist current instruction value. May be set as the output instruction value.
  • the output instruction value setting unit 50 does not calculate the correction current instruction value when in the handle return state, but is not limited thereto, and always calculates the correction current instruction value during the execution of the process. It may be a configuration.
  • the inverter 6 supplies power from the battery 7 to the motor 2 based on the output instruction value set by the output instruction value setting unit 50. Specifically, the inverter 6 sets the DC current of the battery 7 to a three-phase AC current based on the output instruction value based on the output instruction value set by the output instruction value setting unit 50 and outputs it to the motor 2. To do. The inverter 6 rotates the motor 2 in the same direction as the left and right directions steered by the driver based on the information indicating the rotation direction of the motor 2 included in the output instruction value.
  • step S1 the controller 10 determines that the torsion angle between one end and the other end of the torsion bar detected by the steering force sensor 3, the rotation angle of the steering shaft detected by the steering angle sensor 4, and the motor drive current sensor 5 The detected value of the current flowing from the inverter 6 to the motor 2 is acquired.
  • step S2 the steering force calculation unit 11 calculates the steering force input to the steering wheel based on the twist angles between the one end side and the other end side of the torsion bar acquired from the steering force sensor 3 in step S1. Calculate.
  • step S3 the assist instruction value setting unit 20 executes an assist current instruction value setting process.
  • step S21 the target current setting unit 22 sets a target current corresponding to the steering force calculated in step S2, based on the relationship between the steering force and the target current stored in the assist map storage unit 21.
  • step S22 the current deviation calculation unit 23 calculates a deviation between the value of the current input to the motor 2 acquired from the motor drive current sensor 5 in step S1 and the value of the target current set in step S21.
  • step S23 the proportional gain calculation unit 24 calculates a value proportional to the deviation as a deviation proportional value based on the deviation calculated in step S22.
  • step S24 the integral gain calculator 25 calculates a value proportional to the integral of the deviation as a deviation integral proportional value based on the deviation calculated in step S22.
  • step S25 the assist instruction value adding unit 26 sets an addition value obtained by adding the deviation proportional value calculated in step S23 and the deviation integral proportional value calculated in step S24 as an assist current instruction value.
  • step S4 the steering wheel state detection unit 13 performs the current time with respect to the rotation angle (or the neutral position value of the initial setting value) input during the previous processing based on the rotation angle of the steering shaft detected in step S1.
  • the difference of the rotation angle input at the time of the process is calculated, and it is determined whether or not the steering wheel angle has changed. If it is determined in step S4 that the angle of the steering wheel has changed, the process proceeds to step S5, and the handle state detection unit 13 twists the one end side and the other end side of the torsion bar detected by the steering force sensor 3.
  • step S5 the difference between the twist angle input during the current process with respect to the twist angle input during the previous process (or the value of the initial setting value without steering input) is calculated, and whether the steering torque direction has changed Determine whether. If it is determined in step S5 that the direction of the steering torque is changing, the process proceeds to step S6, and the handle state detection unit 13 determines whether the direction in which the steering torque is changing is the right direction. . If it is determined in step S6 that the steering torque direction is the right direction, the process proceeds to step S7, and the steering wheel state detector 13 determines that the steering wheel rotation direction determined to have changed in step S4 is the left direction. It is determined whether or not there is.
  • step S6 If it is determined in step S6 that the direction in which the steering torque is changing is not the right direction (the left direction), the process proceeds to step S8, and the handle state detection unit 13 is changed in step S4. It is determined whether the rotation direction of the steering wheel determined to be rightward.
  • step S7 If it is determined in step S7 that the rotation direction of the steering wheel is the left direction, and if it is determined in step S8 that the rotation direction of the steering wheel is the right direction, the steering wheel state detection unit 13 returns the steering wheel. It determines with it not being in a state, it transfers to step S9, and correction
  • step S31 the first-order time derivative calculating unit 32 calculates the first-order time derivative of the steering force based on the steering force calculated by the steering force calculating unit 11 in step S2.
  • step S32 the gain multiplication unit 33 multiplies the first-order time derivative of the steering force calculated by the first-order time derivative calculation unit 32 in step S31 by a gain, and is a value proportional to the first-order time derivative of the steering force. Is calculated as a steering force first-order time differential proportional value.
  • step S33 the second-order time differentiation calculation unit 35 further differentiates the first-order time derivative of the steering force calculated by the first-order time differentiation calculation unit 32 in step S31, thereby obtaining 2 of the steering force. Calculate the floor time derivative.
  • step S34 the gain multiplication unit 36 multiplies the second-order time derivative of the steering force calculated by the second-order time derivative calculation unit 35 in step S33 by a gain, and is a value proportional to the second-order time derivative of the steering force. Is calculated as a steering force second-order time differential proportional value.
  • step S35 the steering speed calculation unit 12 calculates the steering speed by differentiating the first rotation time of the rotation angle based on the rotation angle of the steering shaft acquired from the steering angle sensor 4 in step S1.
  • step S36 the gain unit 38 of the steering speed processing value setting unit 37 calculates a value proportional to the steering speed based on the steering speed calculated by the steering speed calculation unit 12 in step S35.
  • step S37 the limiter unit 39 of the steering speed processing value setting unit 37 sets a value proportional to the steering speed to a predetermined upper limit value based on the value proportional to the steering speed calculated by the gain unit 38 in step S36. The steering speed processing value restricted within is calculated.
  • step S38 the correction instruction value adding unit 40 calculates the steering force first-order time differential proportional value calculated in step S32, the steering force second-order time differential proportional value calculated in step S34, and in step S37.
  • An addition value obtained by adding the calculated steering speed processing value is set as a correction current instruction value, and the processing returns to the processing shown in FIG.
  • step S10 the output instruction value setting unit 50 sets an addition value obtained by adding the assist current instruction value set in step S25 and the correction current instruction value set in step S38 as an output instruction value.
  • step S4 when it is determined in step S4 that the angle of the steering wheel has not changed, when it is determined in step S5 that the direction of the steering torque has not changed, and in step S7, the rotation direction of the steering wheel is not leftward. If it is determined that the steering wheel rotation direction is not rightward in step S8, the steering wheel state detection unit 13 determines that the steering wheel is not returned, and the process proceeds to step S11. In step S11, the output instruction value setting unit 50 sets the assist current instruction value set in step S25 as the output instruction value.
  • step S12 the output instruction value setting unit 50 outputs the output instruction value to the inverter 6 and ends this process.
  • FIG. 5 to Fig. 7 show the results of an operation experiment of the electric power steering device in a no-load state.
  • the vertical axis represents the steering torque (Nm) input to the pinion shaft, and the horizontal axis represents time.
  • FIG. 7 shows the experimental results of the electric power steering apparatus 1 of the present embodiment
  • FIGS. 5 and 6 show the experimental results of the power steering apparatus for comparison with the present embodiment.
  • FIG. 5 shows the steering torque when the steering wheel is steered from the neutral position with no output instruction value set and no auxiliary torque generated.
  • the steering torque protrudes in a mountain shape at the start of steering (left end portion), resulting in a large resistance to steering.
  • This mountain shape is stopped when the motor or the speed reduction mechanism connected to the steering wheel is in a stopped state, such as when the driver starts steering the steering wheel while the steering angle is maintained. It is generated by the steering torque necessary to move the motor and the speed reduction mechanism in the state.
  • a relatively large steering torque is required at the start of steering for a neutral steering wheel.
  • the steering torque frequently changes along the time axis.
  • the shape in which the steering torque frequently changes is generated by a steering torque necessary for steering with respect to a mechanical resistance of a motor or a speed reduction mechanism connected to the steering wheel.
  • FIG. 6 shows the steering torque when the assist wheel instruction value is set as the output instruction value and the steering wheel is steered from the neutral position in the state where the assist torque is generated based on the assist current instruction value.
  • the steering torque required as a whole is smaller than the steering torque of FIG. 5, but there is a steering torque protruding in a mountain shape at the start of steering as in FIG. 5. For this reason, even if the auxiliary torque is generated, the driver is given a sense of resistance that is stuck at the start of steering. Further, after the start of steering, there is a shape in which the steering torque frequently changes along the time axis, as in FIG. For this reason, in the electric power steering apparatus 1 that sets the assist current instruction value as the output instruction value, the steering feeling is not good.
  • FIG. 7 shows the electric power steering apparatus 1 of the present embodiment, where an addition value obtained by adding the correction current instruction value to the assist current instruction value is set as an output instruction value, and is based on the assist current instruction value and the correction current instruction value.
  • the steering torque when the steering wheel is steered from the neutral position in a state where the auxiliary torque is generated is shown.
  • an addition value obtained by adding the steering force first-order time differential proportional value, the steering force second-order time differential proportional value, and the steering speed processing value is set as the correction current instruction value.
  • FIG. 7 it can be seen that the vehicle is steered with a substantially constant steering torque from the time of steering disclosure. That is, as shown in FIG. 5 and FIG.
  • the mountain-shaped steering torque that existed at the start of steering in the operation experiment shown in FIG. 6 is set to the corrected current instruction value using the steering force second-order time differential proportional value in the operation experiment in FIG. As a result, the steering torque became substantially constant.
  • the change width of the steering torque that frequently changes along the time axis existing after the start of steering in the operation experiment shown in FIG. 6 is the correction current using the steering speed processing value in the operation experiment of FIG. Decrease by setting the indicated value.
  • an assist current instruction value is set based on the detected steering force. Further, based on the rotation direction of the steering wheel and the direction of the steering torque, it is determined whether or not the steering wheel is in the steering wheel return state in which the steering wheel returns to the neutral position from the steering rotational position.
  • the corrected current instruction value is calculated.
  • the corrected current instruction value includes a steering force first-order time derivative proportional value that is proportional to the first-order time derivative of the steering force and a steering force second-order time derivative that is proportional to the second-order time derivative of the steering force.
  • the added value is set.
  • the assist current instruction value and the correction current instruction value are added, and this addition value is set as the output instruction value.
  • electric power is supplied to the motor 2 based on the output instruction value. Steering of the steering wheel is assisted by driving of the motor 2 supplied with electric power.
  • the auxiliary current instruction value increases as the second-order time derivative of the steering force increases.
  • the output instruction value increases due to an increase in the assist current instruction value or the auxiliary current instruction value, the auxiliary torque for assisting the driver to steer the steering wheel increases.
  • the steering force is increased when the steering force increases in a short time.
  • the second-order time derivative increases, the current supplied to the motor 2 increases and the auxiliary torque increases. Therefore, for example, the motor 2 and the speed reduction mechanism connected to the steering wheel are in a stopped state, such as when the driver starts steering the steering wheel while the steering angle is maintained.
  • the motor 2 is driven by the increased electric power as the second-order time derivative of the steering force increases, and the auxiliary torque increases. .
  • the steering force required to rotate the motor 2 in a stopped state can be reduced, and the steering feeling can be improved.
  • the assist torque can be increased appropriately at the start of steering when the driver performs minute steering for the course correction on the steering wheel at the neutral position while the vehicle is traveling straight ahead, so that a good steering fee can be obtained. You can get a ring.
  • the self-aligning torque generates a force in the direction of decreasing the steering angle and the motor 2 is being driven, so that a high steering force is not required and the assist torque based on the assist current instruction value is used.
  • An appropriate steering feeling can be obtained. Therefore, if the addition value obtained by adding the correction current instruction value to the assist current instruction value is set as the output instruction value, the steering may be lightened and the steering feeling may be deteriorated. Therefore, the correction current instruction value is changed to the assist current instruction value.
  • the assist current instruction value is set as the output instruction value without adding.
  • an assist current instruction value based on the steering force is set, and a correction current instruction value using a first-order time derivative of the steering force is set, which is an addition value of the correction current instruction value and the assist current instruction value.
  • the auxiliary torque is increased by supplying electric power to the motor 2 based on the output instruction value. Therefore, for example, in the series of processes for setting the assist current instruction value based on the steering force and supplying power to the motor 2 based on the output instruction value including the assist current instruction value, the response of the auxiliary torque to the steering force In the electric power steering apparatus 1 having the characteristic that the delay is delayed, the shortage of the auxiliary torque with respect to the steering force can be reduced.
  • the auxiliary torque increases. Therefore, for example, when there is a mechanical resistance such as the motor 2 or the speed reduction mechanism connected to the steering wheel, such as when the steering wheel is increased, the auxiliary torque increases as the steering speed increases.
  • the steering force required to steer the steering wheel against mechanical resistance such as the motor 2 and the speed reduction mechanism can be reduced, and the steering feeling can be improved.
  • the present invention can be used as an electric power steering device for various vehicles.

Abstract

Disclosed is an electric power steering device (1) provided with a steering force sensor (3), a steering force computation unit (11), an assist instruction value setting unit (20), a correction instruction value setting unit (30), an output instruction value setting unit (50), a motor (2), an inverter (6), and a battery (7). The assist instruction value setting unit (20) sets an assist current instruction value on the basis of the steering force computed by the steering force computation unit (11). The correction instruction value setting unit (30) takes the second time derivative of the steering force computed by the steering force computation unit (11), and sets a correction current instruction value using the computed second time derivative of the steering force. The output instruction value setting unit (50) sets an output instruction value to the sum of the assist current instruction value and the correction current instruction value. The motor (2) is coupled to a steering wheel. The inverter (6) supplies power from the battery (7) to the motor (2) on the basis of the output instruction value set by the output instruction value setting unit (50).

Description

電動パワーステアリング装置Electric power steering device
 本発明は、車両の電動パワーステアリング装置に関する。 The present invention relates to an electric power steering device for a vehicle.
 特開2002-370662号公報には、ステアリングホイールへの操作によってステアリングシャフトに加えられる操舵トルクに応じて電動モータを駆動してステアリングシャフトに操舵補助力を与える電動パワーステアリング装置が記載されている。 Japanese Patent Application Laid-Open No. 2002-370662 discloses an electric power steering device that drives an electric motor in accordance with a steering torque applied to a steering shaft by operating a steering wheel to give a steering assist force to the steering shaft.
特開2002-370662号公報JP 2002-370662 A
 しかし、上記特開2002-370662号公報の電動パワーステアリング装置では、例えば、車両の直進走行中において中立位置のステアリングホイールに運転者が進路補正のための微小操舵を行う場合、ステアリングホイールに連結された電動モータを電気駆動されていない停止状態から回転させるために、操舵開始時に高い操舵トルクが必要とされ、操舵フィーリングの悪化を招くおそれがある。 However, in the electric power steering device disclosed in Japanese Patent Application Laid-Open No. 2002-370662, for example, when the driver performs minute steering for the course correction on the steering wheel at the neutral position while the vehicle is traveling straight ahead, the steering wheel is coupled. In order to rotate the electric motor from a stopped state where it is not electrically driven, a high steering torque is required at the start of steering, which may cause a deterioration in steering feeling.
 本発明は、上記課題に鑑みてなされたものであり、操舵フィーリングを向上させる電動パワーステアリング装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide an electric power steering device that improves steering feeling.
 上記目的を達成すべく、本発明の電動パワーステアリング装置は、操舵力検知手段とアシスト指示値設定手段と演算手段と補正指示値設定手段と出力指示値設定手段とモータと電力供給手段とを備える。 In order to achieve the above object, an electric power steering apparatus according to the present invention comprises a steering force detection means, an assist instruction value setting means, a calculation means, a correction instruction value setting means, an output instruction value setting means, a motor, and a power supply means. .
 操舵力検知手段は、ステアリングホイールに入力された操舵力を検知する。アシスト指示値設定手段は、操舵力検知手段が検知した操舵力に基づいて、アシスト電流指示値を設定する。演算手段は、操舵力検知手段が検知した操舵力の2階時間微分を演算する。補正指示値設定手段は、演算手段が算出した操舵力の2階時間微分を用いて補正電流指示値を設定する。出力指示値設定手段は、アシスト指示値設定手段が設定したアシスト電流指示値と補正指示値設定手段が設定した補正電流指示値とを加算し、加算値を出力指示値として設定する。モータは、ステアリングホイールに連結される。電力供給手段は、出力指示値設定手段が設定した出力指示値に基づいて、モータに電力を供給する。 The steering force detection means detects the steering force input to the steering wheel. The assist instruction value setting means sets the assist current instruction value based on the steering force detected by the steering force detection means. The calculating means calculates a second-order time derivative of the steering force detected by the steering force detecting means. The correction instruction value setting means sets the correction current instruction value using the second-order time derivative of the steering force calculated by the calculation means. The output instruction value setting means adds the assist current instruction value set by the assist instruction value setting means and the correction current instruction value set by the correction instruction value setting means, and sets the added value as an output instruction value. The motor is coupled to the steering wheel. The power supply means supplies power to the motor based on the output instruction value set by the output instruction value setting means.
 補助電流指示値は、操舵力の2階時間微分の増加に応じて増加する。アシスト電流指示値や補助電流指示値の増加により出力指示値が増加すると、運転者によるステアリングホイールへの操舵を補助する補助トルクが増加する。 The auxiliary current instruction value increases as the second-order time derivative of the steering force increases. When the output instruction value increases due to an increase in the assist current instruction value or the auxiliary current instruction value, the auxiliary torque for assisting the driver to steer the steering wheel increases.
 上記構成では、運転者がステアリングホイールを操舵すると、操舵によって発生した操舵力が検知される。次に、検知された操舵力に基づいてアシスト電流指示値が設定される。また、検知された操舵力の2階時間微分が算出され、この操舵力の2階時間微分を用いた補正電流指示値が設定される。次に、アシスト電流指示値と補正電流指示値とが加算され、この加算値が出力指示値として設定される。次に、出力指示値に基づいてモータに電力が供給される。電力が供給されたモータの駆動によって、ステアリングホイールの操舵が補助される。 In the above configuration, when the driver steers the steering wheel, the steering force generated by the steering is detected. Next, an assist current instruction value is set based on the detected steering force. Further, a second-order time derivative of the detected steering force is calculated, and a corrected current instruction value using the second-order time derivative of the steering force is set. Next, the assist current instruction value and the correction current instruction value are added, and this addition value is set as the output instruction value. Next, electric power is supplied to the motor based on the output instruction value. Steering of the steering wheel is assisted by driving of a motor supplied with electric power.
 このように、操舵力の2階時間微分を用いた補正電流指示値を含む出力指示値に基づいて、モータへ電力が供給されるため、操舵力が短時間に増大したときに、操舵力の2階時間微分が増大することに応じて、モータへ供給される電力が増加して補助トルクが増加する。このため、例えば、舵角が保持された状態において運転者がステアリングホイールを操舵する操舵開始時のように、ステアリングホイールに連結されたモータが停止状態であり、この停止状態のモータを回転させるために高い操舵力が必要とされるときに、操舵力の2階時間微分が増大することに応じて増加した電力によってモータが駆動して補助トルクが増加する。従って、停止状態のモータを回転させるために必要な操舵力を低減させることができ、操舵フィーリングを向上させることができる。特に、車両の直進走行中において中立位置のステアリングホイールに運転者が進路補正のための微小操舵を行う場合の操舵開始時において、補助トルクを適確に増加させることができるため、良好な操舵フィーリングを得ることができる。 Thus, since electric power is supplied to the motor based on the output instruction value including the corrected current instruction value using the second-order time derivative of the steering force, when the steering force increases in a short time, As the second-order time derivative increases, the power supplied to the motor increases and the auxiliary torque increases. For this reason, for example, the motor connected to the steering wheel is in a stopped state, such as when the driver starts steering the steering wheel while the rudder angle is maintained, and the motor in the stopped state is rotated. When a high steering force is required, the motor is driven by the increased electric power according to the increase of the second-order time derivative of the steering force, and the auxiliary torque is increased. Therefore, it is possible to reduce the steering force necessary to rotate the motor in the stopped state, and to improve the steering feeling. In particular, the assist torque can be increased appropriately at the start of steering when the driver performs minute steering for the course correction on the steering wheel at the neutral position while the vehicle is traveling straight ahead, so that a good steering fee can be obtained. You can get a ring.
 また、電動パワーステアリング装置は、ステアリングホイールが操舵された回転位置から中立位置に戻るハンドル戻り状態であるか否かを検知するハンドル状態検知手段を備え、出力指示値設定手段は、ハンドル状態検知手段がハンドル戻り状態であると検知したとき、アシスト指示値設定手段が設定したアシスト電流指示値を出力指示値として設定してもよい。 In addition, the electric power steering apparatus includes a handle state detection unit that detects whether or not the steering wheel returns to the neutral position from the rotational position at which the steering wheel is steered, and the output instruction value setting unit includes the handle state detection unit. When it is detected that the steering wheel is in the steering wheel return state, the assist current instruction value set by the assist instruction value setting means may be set as the output instruction value.
 ハンドル戻り状態は、例えば、ステアリングホイールの回転方向と操舵トルクの方向とに基づいて検知してもよい。 The steering wheel return state may be detected based on, for example, the rotation direction of the steering wheel and the direction of the steering torque.
 出力指示値設定手段は、ハンドル戻り状態であると検知された場合に、例えば、アシスト電流指示値と補正電流指示値とを加算せずに、アシスト電流指示値のみを出力指示値として設定してもよく、ゼロに設定された補正電流指示値とアシスト電流指示値とを加算した加算値を出力指示値として設定してもよい。 The output instruction value setting means sets only the assist current instruction value as the output instruction value, for example, without adding the assist current instruction value and the correction current instruction value when it is detected that the steering wheel is returned. Alternatively, an addition value obtained by adding the correction current instruction value set to zero and the assist current instruction value may be set as the output instruction value.
 上記構成では、ハンドル戻り状態では、セルフアライニングトルクによって舵角が小さくなりステアリングホイールが回転位置から中立位置へ戻るとともにモータが駆動中であるため、高い操舵力を必要とせず、アシスト電流指示値に基づく補助トルクによって適切な操舵フィーリングを得ることができる。従って、補正電流指示値をアシスト電流指示値に加算した加算値を出力指示値として設定すると操舵を軽くし過ぎて操舵フィーリングを悪化させるおそれがあるため、補正電流指示値をアシスト電流指示値に加算せず、アシスト電流指示値を出力指示値として設定する。 In the above configuration, in the steering wheel return state, the steering angle is reduced by the self-aligning torque, the steering wheel returns from the rotational position to the neutral position, and the motor is being driven. An appropriate steering feeling can be obtained by the auxiliary torque based on the above. Therefore, if the addition value obtained by adding the correction current instruction value to the assist current instruction value is set as the output instruction value, the steering may be lightened and the steering feeling may be deteriorated. Therefore, the correction current instruction value is changed to the assist current instruction value. The assist current instruction value is set as the output instruction value without adding.
 また、演算手段は、操舵力検知手段が検知した操舵力の1階時間微分を演算してもよく、補正指示値設定手段は、演算手段が算出した操舵力の1階時間微分をさらに用いて補正電流指示値を設定してもよい。 The calculating means may calculate a first-order time derivative of the steering force detected by the steering force detecting means, and the correction instruction value setting means further uses the first-order time derivative of the steering force calculated by the calculating means. A corrected current instruction value may be set.
 上記構成では、操舵力に基づくアシスト電流指示値が設定されるとともに、操舵力の1階時間微分を用いた補正電流指示値が設定され、この補正電流指示値とアシスト電流指示値との加算値である出力指示値に基づいてモータに電力が供給されることにより、補助トルクが増加する。従って、例えば、操舵力に基づいてアシスト電流指示値を設定し、このアシスト電流指示値を含む出力指示値に基づいて、モータに電力を供給する一連の処理において、操舵力に対する補助トルクの応答が遅れてしまう特性がある電動パワーステアリング装置において、操舵力に対する補助トルクの不足量を低減させることができる。 In the above configuration, the assist current instruction value based on the steering force is set, and the correction current instruction value using the first-order time derivative of the steering force is set. The added value of the correction current instruction value and the assist current instruction value The auxiliary torque is increased by supplying electric power to the motor based on the output instruction value. Accordingly, for example, in a series of processes for setting the assist current instruction value based on the steering force and supplying electric power to the motor based on the output instruction value including the assist current instruction value, the response of the assist torque to the steering force is In the electric power steering apparatus having the characteristic of being delayed, it is possible to reduce the shortage of the auxiliary torque with respect to the steering force.
 また、電動パワーステアリング装置は、操舵速度を検知する操作速度検知手段と、操舵速度検知手段が検知した操舵速度に応じた操舵速度処理値を設定する操舵速度処理値設定手段とを備えてもよく、補正指示値設定部は、操舵速度処理値設定手段が設定した操舵速度処理値をさらに用いて補正電流指示値を設定してもよい。 The electric power steering apparatus may further include an operation speed detection unit that detects a steering speed and a steering speed processing value setting unit that sets a steering speed processing value according to the steering speed detected by the steering speed detection unit. The correction instruction value setting unit may set the correction current instruction value by further using the steering speed processing value set by the steering speed processing value setting means.
 上記構成では、ステアリングホイールへの操舵により操舵速度が増加すると、補助トルクが増加する。従って、例えば、ステアリングホイールを切り増すときのように、ステアリングホイールに連結されたモータの機械的な抵抗が存るときに、操舵速度の増加に応じて補助トルクが増加するため、モータの機械的な抵抗に抗してステアリングホイールを操舵するために必要な操舵力を低減させることができ、操舵フィーリングを向上させることができる。 In the above configuration, when the steering speed is increased by steering the steering wheel, the auxiliary torque increases. Therefore, for example, when there is a mechanical resistance of the motor connected to the steering wheel, such as when the steering wheel is increased, the auxiliary torque increases with an increase in the steering speed. The steering force required to steer the steering wheel against such resistance can be reduced, and the steering feeling can be improved.
 本発明によれば、操舵フィーリングを向上させることができる。 According to the present invention, the steering feeling can be improved.
本実施形態に係る電動パワーステアリング装置のブロック構成図である。It is a block block diagram of the electric power steering device which concerns on this embodiment. 図1の電動パワーステアリング装置の出力指示値設定処理を示すフローチャートである。It is a flowchart which shows the output instruction | indication value setting process of the electric power steering apparatus of FIG. 図2の出力指示値設定処理のアシスト電流指示値設定処理を示すフローチャートである。It is a flowchart which shows the assist electric current instruction value setting process of the output instruction value setting process of FIG. 図2の出力指示値設定処理の補正電流指示値設定処理を示すフローチャートである。It is a flowchart which shows the correction electric current instruction value setting process of the output instruction value setting process of FIG. 補助トルクが発生しない電動パワーステアリング装置において、操舵した場合の操舵トルクを示す実験結果のグラフである。It is a graph of the experimental result which shows the steering torque at the time of steering in the electric power steering apparatus which does not generate | occur | produce auxiliary torque. アシスト電流指示値に基づく補助トルクが発生する電動パワーステアリング装置において、操舵した場合の操舵トルクを示す実験結果のグラフである。6 is a graph of experimental results showing steering torque when steering is performed in an electric power steering apparatus in which auxiliary torque based on an assist current instruction value is generated. 図1の電動パワーステアリング装置を操舵した場合の操舵トルクを示す実験結果のグラフである。It is a graph of the experimental result which shows the steering torque at the time of steering the electric power steering apparatus of FIG.
 以下、本発明の実施形態を図1~図7に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.
 図1は本実施形態に係る電動パワーステアリング装置のブロック構成図であり、図2は図1の電動パワーステアリング装置の出力指示値設定処理を示すフローチャートであり、図3は図2の出力指示値設定処理のアシスト電流指示値設定処理を示すフローチャートであり、図4は図2の出力指示値設定処理の補正電流指示値設定処理を示すフローチャートであり、図5は補助トルクが発生しない電動パワーステアリング装置において、ステアリングホイールを中立位置から操舵した場合の操舵トルクを示す実験結果のグラフであり、図6はアシスト電流指示値に基づく補助トルクが発生する電動パワーステアリング装置において、ステアリングホイールを中立位置から操舵した場合の操舵トルクを示す実験結果のグラフであり、図7は図1の電動パワーステアリング装置のステアリングホイールを中立位置から操舵した場合の操舵トルクを示す実験結果のグラフである。 1 is a block diagram of the electric power steering apparatus according to the present embodiment, FIG. 2 is a flowchart showing an output instruction value setting process of the electric power steering apparatus of FIG. 1, and FIG. 3 is an output instruction value of FIG. 4 is a flowchart showing an assist current instruction value setting process of the setting process, FIG. 4 is a flowchart showing a correction current instruction value setting process of the output instruction value setting process of FIG. 2, and FIG. 5 is an electric power steering in which no assist torque is generated. FIG. 6 is a graph of experimental results showing the steering torque when the steering wheel is steered from the neutral position in the apparatus. FIG. 6 is a graph showing the steering torque from the neutral position in the electric power steering apparatus that generates the assist torque based on the assist current instruction value. FIG. 7 is a graph of experimental results showing the steering torque when steered. Is a graph of experimental results showing the steering torque when the steering the steering wheel of the electric power steering device from the neutral position.
 図1に示すように、本実施形態の電動パワーステアリング装置1は、モータ2を備え、車両に設けられる。モータ2は、減速機構に連結され、減速機構を駆動する。減速機構は、複数のギアの組み合わせによって構成され、ピニオン軸に連結される。ピニオン軸は、出力軸に固定される。出力軸は、トーションバーの一端に固定される。トーションバーの他端はステアリングシャフトの他端に固定される。ステアリングシャフトは、一端がステアリングホイールに固定される。ステアリングホイールは、車両の運転室内に設けられ、運転者が操舵を入力する。また、ピニオン軸の動作に応じて、ラック軸が車幅方向に沿って左右へ移動する。ラック軸の車幅方向両端に連結されたタイロッドは、車輪に対して連結される。これらの機構により、ステアリングシャフトの回転と連動してラック軸が車幅方向に移動し、ラック軸は、運転者の操舵によるステアリングシャフトの回転と、モータ2の回転とによって、車幅方向に沿って長手方向に変位する。すなわち、モータ2は、その回転駆動によりラック軸を車幅方向に沿って変位させる補助トルクを発生し、車輪を転舵させる際の運転者の操舵をアシストする。 As shown in FIG. 1, the electric power steering apparatus 1 of this embodiment includes a motor 2 and is provided in a vehicle. The motor 2 is connected to the speed reduction mechanism and drives the speed reduction mechanism. The speed reduction mechanism is configured by a combination of a plurality of gears and is coupled to the pinion shaft. The pinion shaft is fixed to the output shaft. The output shaft is fixed to one end of the torsion bar. The other end of the torsion bar is fixed to the other end of the steering shaft. One end of the steering shaft is fixed to the steering wheel. The steering wheel is provided in the cab of the vehicle, and the driver inputs steering. Further, the rack shaft moves left and right along the vehicle width direction in accordance with the operation of the pinion shaft. The tie rods connected to both ends of the rack shaft in the vehicle width direction are connected to the wheels. By these mechanisms, the rack shaft moves in the vehicle width direction in conjunction with the rotation of the steering shaft, and the rack shaft moves along the vehicle width direction by the rotation of the steering shaft by the driver's steering and the rotation of the motor 2. Is displaced in the longitudinal direction. That is, the motor 2 generates an auxiliary torque that displaces the rack shaft along the vehicle width direction by its rotational drive, and assists the driver's steering when turning the wheels.
 また、図1に示すように、本実施形態のパワーステアリング装置1は、操舵力センサ3を備える。操舵力センサ3は、トーションバーの一端側と他端側との捻れ角を検知する。また、車両には、操舵角センサ4とモータ駆動電流センサ5とを備える。操舵角センサ4は、ステアリングシャフトの回転角を検知する。モータ駆動電流センサ5は、モータ2と後述するインバータ6との間に配置され、インバータ6からモータ2へ流れる電流を検知する。 Further, as shown in FIG. 1, the power steering apparatus 1 of the present embodiment includes a steering force sensor 3. The steering force sensor 3 detects a twist angle between one end side and the other end side of the torsion bar. The vehicle also includes a steering angle sensor 4 and a motor drive current sensor 5. The steering angle sensor 4 detects the rotation angle of the steering shaft. The motor drive current sensor 5 is disposed between the motor 2 and an inverter 6 described later, and detects a current flowing from the inverter 6 to the motor 2.
 また、図1に示すように、本実施形態のパワーステアリング装置1は、操舵力演算部11とアシスト指示値設定部20と補正指示値設定部30と出力指示値設定部50とを備えるコントローラ10を有する。また、コントローラ10は、操舵速度演算部12とハンドル状態検知部13とを備える。コントローラ10は、操舵力センサ3と操舵角センサ4とモータ駆動電流センサ5とから信号が入力し、入力した信号に基づいて、内部に記憶されたプログラムに基づいて処理を実行する。 As shown in FIG. 1, the power steering apparatus 1 of the present embodiment includes a controller 10 that includes a steering force calculation unit 11, an assist instruction value setting unit 20, a correction instruction value setting unit 30, and an output instruction value setting unit 50. Have The controller 10 includes a steering speed calculation unit 12 and a steering wheel state detection unit 13. The controller 10 receives signals from the steering force sensor 3, the steering angle sensor 4, and the motor drive current sensor 5, and executes processing based on the program stored therein based on the input signals.
 操舵力センサ3及び操舵力演算部11は操舵力検知手段を構成し、アシスト指示値設定部20はアシスト指示値設定手段を構成し、補正指示値設定部30は補正指示値設定手段と演算部と操舵速度処理値設定手段とを構成し、出力指示値設定部50は出力指示値設定手段を構成し、インバータ6及びバッテリ7は電力供給手段を構成する。また、ハンドル状態検知部13はハンドル状態検知手段を構成する。 The steering force sensor 3 and the steering force calculation unit 11 constitute a steering force detection unit, the assist instruction value setting unit 20 constitutes an assist instruction value setting unit, and the correction instruction value setting unit 30 includes a correction instruction value setting unit and a calculation unit. And steering speed processing value setting means, the output instruction value setting unit 50 constitutes output instruction value setting means, and the inverter 6 and the battery 7 constitute power supply means. The handle state detection unit 13 constitutes a handle state detection unit.
 操舵力演算部11は、操舵力を演算する。具体的には、操舵力演算部11は、操舵力センサ3が検知したトーションバーの一端側と他端側との捻れ角に基づいて、ステアリングホイールに入力された操舵力を演算する。操舵速度演算部12は、操舵速度を演算する。具体的には、操舵速度演算部12は、操舵角センサ3が検知したステアリングシャフトの回転角を1回時間微分することによって、ステアリングホイールの操舵速度を演算する。 Steering force calculation unit 11 calculates a steering force. Specifically, the steering force calculation unit 11 calculates the steering force input to the steering wheel based on the twist angle between the one end side and the other end side of the torsion bar detected by the steering force sensor 3. The steering speed calculation unit 12 calculates a steering speed. Specifically, the steering speed calculation unit 12 calculates the steering speed of the steering wheel by differentiating the rotation angle of the steering shaft detected by the steering angle sensor 3 once with respect to time.
 アシスト指示値設定部20は、操舵力センサ3が検知した操舵力に基づいて、アシスト電流指示値を設定する。図1に示すように、アシスト指示値設定部20は、本実施形態では、アシストマップ記憶部21と目標電流設定部22と電流偏差演算部23と比例ゲイン演算部24と積分ゲイン演算部25とアシスト指示値加算部26とを有する。 The assist instruction value setting unit 20 sets an assist current instruction value based on the steering force detected by the steering force sensor 3. As shown in FIG. 1, in this embodiment, the assist instruction value setting unit 20 includes an assist map storage unit 21, a target current setting unit 22, a current deviation calculation unit 23, a proportional gain calculation unit 24, and an integral gain calculation unit 25. An assist instruction value adding unit 26.
 アシストマップ記憶部21は、操舵力と操舵力に応じた補助トルクを出力するための目標電流との関係を予め記憶する。目標電流設定部22は、アシストマップ記憶部21が記憶する操舵力と目標電流との関係に基づいて、操舵力演算部11が算出した操舵力に対応する目標電流を読み出す。なお、本実施形態では操舵力と目標電流との関係を予めマップとして記憶するが、これに限らず、例えば操舵力に対する目標電流を算出する計算式を記憶してもよく、目標電流設定部22は、係る計算式と操舵力演算部11が算出した操舵力とに基づいて目標電流を演算してもよい。電流偏差演算部23は、目標電流設定部22が設定した目標電流と、モータ駆動電流センサ5が検知した電流との偏差を演算する。比例ゲイン演算部24は、電流偏差演算部23が算出した偏差に比例した値を偏差比例値として演算する。積分ゲイン演算部25は、電流偏差演算部23が算出した偏差の積分に比例する値を偏差積分比例値として演算する。アシスト指示値加算部26は、比例ゲイン演算部24が算出した偏差比例値と、積分ゲイン演算部25が算出した偏差積分比例値とを加算した加算値をアシスト電流指示値として設定する。アシスト指示値設定部20では、右方向へ転舵する操舵と左方向へ転舵する操舵とのいずれの場合も絶対値によって偏差比例値と偏差積分比例値とアシスト電流指示値とを演算するとともに、右方向へ転舵する操舵であるか左方向へ転舵する操舵であるかを判定する。 The assist map storage unit 21 stores in advance the relationship between the steering force and the target current for outputting the assist torque corresponding to the steering force. The target current setting unit 22 reads a target current corresponding to the steering force calculated by the steering force calculation unit 11 based on the relationship between the steering force and the target current stored in the assist map storage unit 21. In the present embodiment, the relationship between the steering force and the target current is stored in advance as a map. However, the present invention is not limited to this, and for example, a calculation formula for calculating the target current with respect to the steering force may be stored. May calculate the target current based on the calculation formula and the steering force calculated by the steering force calculation unit 11. The current deviation calculation unit 23 calculates a deviation between the target current set by the target current setting unit 22 and the current detected by the motor drive current sensor 5. The proportional gain calculation unit 24 calculates a value proportional to the deviation calculated by the current deviation calculation unit 23 as a deviation proportional value. The integral gain calculating unit 25 calculates a value proportional to the integral of the deviation calculated by the current deviation calculating unit 23 as a deviation integral proportional value. The assist instruction value adding unit 26 sets an addition value obtained by adding the deviation proportional value calculated by the proportional gain calculating unit 24 and the deviation integral proportional value calculated by the integral gain calculating unit 25 as an assist current instruction value. The assist instruction value setting unit 20 calculates a deviation proportional value, a deviation integral proportional value, and an assist current instruction value based on absolute values in both cases of steering to the right and steering to the left. Then, it is determined whether the steering is to turn rightward or to the left.
 補正指示値設定部30は、アシスト電流指示値を補正する補正電流指示値を設定する。図1に示すように、補正指示値設定部30は、本実施形態では、1階時間微分処理値設定部31と2階時間微分処理値設定部34と操舵速度処理値設定部37と補正指示値加算部40とを有し、操舵力の1階時間微分に比例する値と、操舵力の2階時間微分に比例する値と、操舵速度に比例する値が所定の上限値内に制限された操舵速度処理値とが加算された補正電流指示値を設定する。 The correction instruction value setting unit 30 sets a correction current instruction value for correcting the assist current instruction value. As shown in FIG. 1, in this embodiment, the correction instruction value setting unit 30 includes a first-order time differentiation process value setting unit 31, a second-order time differentiation process value setting unit 34, a steering speed process value setting unit 37, and a correction instruction. A value adding unit 40, and a value proportional to the first-order time derivative of the steering force, a value proportional to the second-order time derivative of the steering force, and a value proportional to the steering speed are limited within a predetermined upper limit value. A corrected current instruction value obtained by adding the steering speed processing value is set.
 1階時間微分処理値設定部31は、演算手段を構成し、1階時間微分演算部32とゲイン乗算部33とを有する。1階時間微分演算部32は、操舵力演算部22が算出した操舵力に基づいて、操舵力の1階時間微分を演算する。ゲイン乗算部33は、1階時間微分演算部32が算出した操舵力の1階時間微分にゲインを乗じて、操舵力の1階時間微分に比例する値を操舵力1階時間微分比例値として演算する。 The first-order time differentiation processing value setting unit 31 constitutes a calculation means, and includes a first-order time differentiation calculation unit 32 and a gain multiplication unit 33. The first-order time derivative calculating unit 32 calculates the first-order time derivative of the steering force based on the steering force calculated by the steering force calculating unit 22. The gain multiplication unit 33 multiplies the first-order time derivative of the steering force calculated by the first-order time derivative calculation unit 32 by a gain, and sets a value proportional to the first-order time derivative of the steering force as a steering force first-order time derivative proportional value. Calculate.
 2階時間微分処理値設定部34は、演算手段を構成し、2階時間微分演算部35とゲイン乗算部と36を有する。2階時間微分演算部35は、本実施形態では、1階時間微分演算部32が算出した操舵力の1階時間微分を、さらに1階時間微分することにより、操舵力演算部22が算出した操舵力の2階時間微分を演算する。ゲイン乗算部36は、2階時間微分演算部35が算出した操舵力の2階時間微分にゲインを乗じて、操舵力の2階時間微分に比例する値を操舵力2階時間微分比例値として演算する。なお、2階時間微分演算部35は、1階時間微分演算部32が算出した操舵力の1階時間微分を使用せずに直接、操舵力演算部22が算出した操舵力に基づいて操舵力の2階時間微分を演算する構成であってもよい。 The second-order time differentiation processing value setting unit 34 constitutes a calculation means, and includes a second-order time differentiation calculation unit 35, a gain multiplication unit, and 36. In the present embodiment, the second-order time differentiation calculation unit 35 calculates the steering force calculation unit 22 by further differentiating the first-order time differentiation of the steering force calculated by the first-order time differentiation calculation unit 32. The second-order time derivative of the steering force is calculated. The gain multiplication unit 36 multiplies the second-order time derivative of the steering force calculated by the second-order time derivative calculation unit 35 by a gain, and sets a value proportional to the second-order time derivative of the steering force as a steering force second-order time derivative proportional value. Calculate. Note that the second-order time differentiation calculation unit 35 directly uses the steering force based on the steering force calculated by the steering force calculation unit 22 without using the first-order time differentiation of the steering force calculated by the first-order time differentiation calculation unit 32. The second-order time derivative may be calculated.
 操舵速度処理値設定部37は、操舵速度処理値設定手段を構成し、本実施形態では、ゲイン部38とリミッタ部39とを有する。ゲイン部38は、操舵速度演算部12が算出した操舵速度に基づいて、操舵速度に比例する値を演算する。リミッタ部39は、ゲイン部38が算出した操舵速度に基づいて、操舵速度に比例する値を所定の上限値内に制限した操舵速度処理値を演算する。 The steering speed process value setting unit 37 constitutes a steering speed process value setting unit, and in this embodiment, includes a gain unit 38 and a limiter unit 39. The gain unit 38 calculates a value proportional to the steering speed based on the steering speed calculated by the steering speed calculation unit 12. The limiter unit 39 calculates a steering speed processing value in which a value proportional to the steering speed is limited to a predetermined upper limit value based on the steering speed calculated by the gain unit 38.
 補正指示値加算部40は、1階時間微分処理値設定部31が算出した操舵力1階時間微分比例値と、2階時間微分処理値設定部34が算出した操舵力2階時間微分比例値と、操舵速度処理値設定部37が算出した操舵速度処理値とを加算して、補正電流指示値を設定する。補正指示値設定部30では、右方向へ転舵する操舵と左方向へ転舵する操舵とのいずれの場合も絶対値によって操舵力1階時間微分比例値と操舵力2階時間微分比例値と操舵速度処理値と補正電流指示値とを演算する。 The correction instruction value adding unit 40 is a steering force first-order time differential proportional value calculated by the first-order time differential process value setting unit 31 and a steering force second-order time differential proportional value calculated by the second-order time differential process value setting unit 34. And the steering speed processing value calculated by the steering speed processing value setting unit 37 is added to set the corrected current instruction value. In the correction instruction value setting unit 30, the steering force first-order time differential proportional value and the steering force second-order time differential proportional value are determined by absolute values in both cases of steering to the right and steering to the left. A steering speed processing value and a corrected current instruction value are calculated.
 なお、本実施形態では、補正指示値設定部40は、操舵力1階時間微分比例値と操舵力2階時間微分比例値と操舵速度処理値とを用いて補正電流指示値を設定するが、係る構成に限らず、操舵力1階時間微分比例値のみを用いて補正電流指示値として設定してもよく、操舵力1階時間微分比例値と操舵力2階時間微分比例値とを用いて補正電流指示値を設定してもよく、操舵力1階時間微分比例値と操舵速度処理値とを用いて補正電流指示値を設定してもよく、操舵力1階時間微分比例値や操舵力2階時間微分比例値や操舵速度処理値とともに他の値を用いて補正電流指示値を設定してもよい。 In the present embodiment, the correction instruction value setting unit 40 sets the correction current instruction value using the steering force first-order time differential proportional value, the steering force second-order time differential proportional value, and the steering speed processing value. Not limited to such a configuration, the correction current instruction value may be set using only the steering force first-order time differential proportional value, and the steering force first-order time differential proportional value and the steering force second-order time differential proportional value are used. The corrected current instruction value may be set, or the corrected current instruction value may be set using the steering force first-order time differential proportional value and the steering speed processing value. The corrected current instruction value may be set using other values together with the second-order time differential proportional value and the steering speed processing value.
 ハンドル状態検知部13は、ステアリングホイールが操舵された回転位置から中立位置に戻るハンドル戻り状態であるか否かを検知する。ハンドル状態検知部13は、本実施形態では、ステアリングホイールの回転方向と操舵トルクの方向とに基づいて、ハンドル戻り状態であるか否かを判定する。ここで、ステアリングホイールの状態は、ステアリングホイールが切り増される回転位置へ動いているハンドル往き状態と、ステアリングホイールが回転位置から中立位置に戻る方向に動いているハンドル戻り状態と、ステアリングホイールが動いていないハンドル停止状態とに分かれる。 The steering wheel state detection unit 13 detects whether or not the steering wheel is in a steering wheel return state in which the steering wheel returns to the neutral position from the steering position. In the present embodiment, the steering wheel state detection unit 13 determines whether or not the steering wheel is in the steering wheel return state based on the rotation direction of the steering wheel and the direction of the steering torque. Here, the steering wheel is in a state where the steering wheel moves to a rotational position where the steering wheel is increased, a steering wheel return state where the steering wheel moves in a direction returning from the rotational position to the neutral position, It is divided into the handle stop state that is not moving.
 ハンドル状態判定部13は、操舵角センサ4が検知したステアリングシャフトの回転角に基づいて、ステアリングホイールの回転方向を判定する。具体的には、前回の処理時に入力した回転角に対する今回の処理時に入力した回転角の差分を演算し、ステアリングホイールの角度が変化しているか否かを判定し、ステアリングホイールの回転方向が変化している場合は、ステアリングホイールの回転方向が右方向であるか左方向であるかを判定する。また、処理開始時は、前回の処理時に入力した回転角に代えて、初期設定値として中立位置の値を使用する。 The steering wheel state determination unit 13 determines the rotation direction of the steering wheel based on the rotation angle of the steering shaft detected by the steering angle sensor 4. Specifically, the difference between the rotation angle input during the current process and the rotation angle input during the previous process is calculated to determine whether the steering wheel angle has changed and the rotation direction of the steering wheel changes. If it is, it is determined whether the rotation direction of the steering wheel is the right direction or the left direction. At the start of processing, the neutral position value is used as an initial setting value instead of the rotation angle input during the previous processing.
 また、ハンドル状態判定部13は、操舵力センサ3が検知したトーションバーの一端側と他端側との捻れ角に基づいて、操舵トルクの方向を判定する。具体的には、前回の処理時に入力した捻れ角に対する今回の処理時に入力した捻れ角の差分を演算し、操舵トルクの方向が変化しているか否かを判定し、操舵トルクの方向が変化している場合は、操舵トルクの方向が右方向であるか左方向であるかを判定する。また、処理開始時は、前回の処理時に入力した捻れ角に代えて、初期設定値として操舵未入力(中立位置)の値を使用する。 Further, the handle state determination unit 13 determines the direction of the steering torque based on the twist angle between the one end side and the other end side of the torsion bar detected by the steering force sensor 3. Specifically, the difference between the twist angle input during the current process with respect to the twist angle input during the previous process is calculated to determine whether or not the steering torque direction has changed, and the steering torque direction changes. If it is, it is determined whether the direction of the steering torque is the right direction or the left direction. At the start of processing, the value of steering non-input (neutral position) is used as an initial setting value instead of the twist angle input at the previous processing.
 また、ハンドル状態判定部13は、ステアリングホイールの回転方向が右方向であって操舵トルクの方向が左方向であるとき、及び、ステアリングホイールの回転方向が左方向であって操舵トルクの方向が右方向であるときにハンドル戻り状態であると判定する。なお、ステアリングホイールの回転方向と操舵トルクの方向とが一致する場合は、ハンドル往き状態であり、ステアリングホイールの回転方向や操舵トルクの方向に変化がないときにはハンドル停止状態である。 Further, the steering wheel state determination unit 13 is configured such that when the steering wheel rotation direction is the right direction and the steering torque direction is the left direction, and the steering wheel rotation direction is the left direction and the steering torque direction is the right direction. When the direction is the direction, it is determined that the handle is in the return state. When the direction of rotation of the steering wheel coincides with the direction of the steering torque, the steering wheel is in the forward direction, and when there is no change in the direction of rotation of the steering wheel or the direction of the steering torque, the steering wheel is in the stopped state.
 なお、ハンドル状態判定部13は、本実施形態では、ハンドル戻り状態をステアリングホイールの回転方向と操舵トルクの方向とに基づいて判定するが、他の情報に基づいてハンドル戻り状態を判定してもよい。例えば、ハンドル状態判定部13は、操舵トルクの方向とモータの回転方向とに基づいて、操舵トルクの方向とモータの回転方向とが不一致であるときにハンドル戻り状態であると判定する構成であってもよい。 In the present embodiment, the steering wheel state determination unit 13 determines the steering wheel return state based on the rotation direction of the steering wheel and the direction of the steering torque. However, even if the steering wheel return state is determined based on other information, Good. For example, the steering wheel state determination unit 13 is configured to determine that the steering wheel return state is established when the steering torque direction and the motor rotation direction do not match based on the steering torque direction and the motor rotation direction. May be.
 出力指示値設定部50は、ハンドル状態判定部13がハンドル戻り状態でないと判定した場合、アシスト指示値設定部20が設定したアシスト電流指示値と補正指示値設定部30が設定した補正電流指示値とを加算した加算値を出力指示値として設定し、ハンドル状態判定部13がハンドル戻り状態であると判定した場合、アシスト指示値設定部20が設定したアシスト電流指示値を出力指示値として設定する。出力指示値設定部50は、絶対値のアシスト電流指示値と、絶対値の補助電流指示値と、アシスト指示値設定部20が判定した右方向へ転舵する操舵であるか左方向へ転舵する操舵であるかの情報と、に基づいてモータ2の回転方向を指示する情報を含む絶対値の出力指示値を演算して、インバータ6へ出力する。係る処理により補助電流指示値がアシスト電流指示値に加算されたときには出力指示値が増加する。 The output instruction value setting unit 50 determines the assist current instruction value set by the assist instruction value setting unit 20 and the correction current instruction value set by the correction instruction value setting unit 30 when it is determined that the handle state determination unit 13 is not in the steering wheel return state. Is set as an output instruction value, and when the steering wheel state determination unit 13 determines that it is in the steering wheel return state, the assist current instruction value set by the assist instruction value setting unit 20 is set as the output instruction value. . The output instruction value setting unit 50 performs steering to the right or the left to determine the absolute assist current instruction value, the absolute auxiliary current instruction value, and the assist instruction value setting unit 20. And an absolute output instruction value including information indicating the rotation direction of the motor 2 based on the information indicating whether or not the steering operation is performed, and outputting the calculated value to the inverter 6. When the auxiliary current instruction value is added to the assist current instruction value by such processing, the output instruction value increases.
 なお、出力指示値設定部50は、本実施形態では、ハンドル戻り状態である場合、補正電流指示値を加算しないことによって、アシスト電流指示値を出力電流指示値に設定するが、これに限らず、処理実行中には常時、補正電流指示値を加算し、ハンドル戻り状態である場合、ゼロを乗じた補正電流指示値とアシスト電流指示値とを加算することによって、実質的にアシスト電流指示値を出力指示値として設定する構成などであってもよい。また、出力指示値設定部50は、本実施形態では、ハンドル戻り状態である場合、補正電流指示値を演算しないが、これに限らず、処理実行中には常時、補正電流指示値を演算する構成であってもよい。 In the present embodiment, the output instruction value setting unit 50 sets the assist current instruction value to the output current instruction value by not adding the correction current instruction value when in the handle return state. However, the present invention is not limited to this. The correction current instruction value is always added during the execution of the process. When the steering wheel is in the return state, the assist current instruction value is substantially increased by adding the correction current instruction value multiplied by zero and the assist current instruction value. May be set as the output instruction value. Further, in this embodiment, the output instruction value setting unit 50 does not calculate the correction current instruction value when in the handle return state, but is not limited thereto, and always calculates the correction current instruction value during the execution of the process. It may be a configuration.
 図1に示すように、インバータ6は、出力指示値設定部50が設定した出力指示値に基づいて、バッテリ7からモータ2へ電力を供給する。具体的には、インバータ6は、出力指示値設定部50が設定した出力指示値に基づいて、バッテリ7の直流電流を、出力指示値に基づいた三相交流電流に設定してモータ2へ出力する。インバータ6は、出力指示値に含まれたモータ2の回転方向を指示する情報に基づいて、運転者が操舵する左右の方向と同じ方向にモータ2を回転させる。 As shown in FIG. 1, the inverter 6 supplies power from the battery 7 to the motor 2 based on the output instruction value set by the output instruction value setting unit 50. Specifically, the inverter 6 sets the DC current of the battery 7 to a three-phase AC current based on the output instruction value based on the output instruction value set by the output instruction value setting unit 50 and outputs it to the motor 2. To do. The inverter 6 rotates the motor 2 in the same direction as the left and right directions steered by the driver based on the information indicating the rotation direction of the motor 2 included in the output instruction value.
 以下、本実施形態の電動パワーステアリング装置1のコントローラ10が実行する出力指示値設定処理を、図2~図4のフローチャートに沿って説明する。本処理は、エンジンの始動により開始し、所定時間(例えば10msec)毎に実行する。 Hereinafter, output instruction value setting processing executed by the controller 10 of the electric power steering apparatus 1 of the present embodiment will be described with reference to the flowcharts of FIGS. This process is started by starting the engine and is executed every predetermined time (for example, 10 msec).
 まず、図2のフローチャートに沿って説明する。ステップS1では、コントローラ10は、操舵力センサ3が検知したトーションバーの一端側と他端側との捻れ角と、操舵角センサ4が検知したステアリングシャフトの回転角と、モータ駆動電流センサ5が検知したインバータ6からモータ2へ流れる電流の値とを取得する。次に、ステップS2では、操舵力演算部11は、ステップS1において操舵力センサ3から取得されたトーションバーの一端側と他端側との捻れ角に基づいてステアリングホイールに入力された操舵力を演算する。次に、ステップS3では、アシスト指示値設定部20は、アシスト電流指示値設定処理を実行する。 First, a description will be given along the flowchart of FIG. In step S1, the controller 10 determines that the torsion angle between one end and the other end of the torsion bar detected by the steering force sensor 3, the rotation angle of the steering shaft detected by the steering angle sensor 4, and the motor drive current sensor 5 The detected value of the current flowing from the inverter 6 to the motor 2 is acquired. Next, in step S2, the steering force calculation unit 11 calculates the steering force input to the steering wheel based on the twist angles between the one end side and the other end side of the torsion bar acquired from the steering force sensor 3 in step S1. Calculate. Next, in step S3, the assist instruction value setting unit 20 executes an assist current instruction value setting process.
 アシスト電流指示値設定処理を図3のフローチャートに沿って説明する。まず、ステップS21では、目標電流設定部22は、アシストマップ記憶部21が記憶する操舵力と目標電流との関係に基づいて、ステップS2で算出された操舵力に対応する目標電流を設定する。次に、ステップS22では、電流偏差演算部23は、ステップS1においてモータ駆動電流センサ5から取得したモータ2へ入力する電流の値と、ステップS21で設定された目標電流の値との偏差を演算する。次に、ステップS23では、比例ゲイン演算部24は、ステップS22で算出された偏差に基づいて、偏差に比例した値を偏差比例値として演算する。次に、ステップS24では、積分ゲイン演算部25は、ステップS22で算出された偏差に基づいて、偏差の積分に比例する値を偏差積分比例値として演算する。次に、ステップS25では、アシスト指示値加算部26は、ステップS23で算出された偏差比例値とステップS24で算出された偏差積分比例値とを加算した加算値をアシスト電流指示値として設定し、図2に示す処理に戻る。 The assist current instruction value setting process will be described with reference to the flowchart of FIG. First, in step S21, the target current setting unit 22 sets a target current corresponding to the steering force calculated in step S2, based on the relationship between the steering force and the target current stored in the assist map storage unit 21. Next, in step S22, the current deviation calculation unit 23 calculates a deviation between the value of the current input to the motor 2 acquired from the motor drive current sensor 5 in step S1 and the value of the target current set in step S21. To do. Next, in step S23, the proportional gain calculation unit 24 calculates a value proportional to the deviation as a deviation proportional value based on the deviation calculated in step S22. Next, in step S24, the integral gain calculator 25 calculates a value proportional to the integral of the deviation as a deviation integral proportional value based on the deviation calculated in step S22. Next, in step S25, the assist instruction value adding unit 26 sets an addition value obtained by adding the deviation proportional value calculated in step S23 and the deviation integral proportional value calculated in step S24 as an assist current instruction value. Returning to the processing shown in FIG.
 次に、ステップS4では、ハンドル状態検知部13は、ステップS1で検知されたステアリングシャフトの回転角に基づいて、前回の処理時に入力した回転角(又は初期設定値の中立位置の値)に対する今回の処理時に入力した回転角の差分を演算し、ステアリングホイールの角度が変化しているか否かを判定する。ステップS4においてステアリングホイールの角度が変化していると判定した場合は、ステップS5へ移行し、ハンドル状態検知部13は、操舵力センサ3が検知したトーションバーの一端側と他端側との捻れ角に基づいて、前回の処理時に入力した捻れ角(又は初期設定値の操舵未入力の値)に対する今回の処理時に入力した捻れ角の差分を演算し、操舵トルクの方向が変化しているか否かを判定する。ステップS5において操舵トルクの方向が変化していると判定した場合は、ステップS6へ移行し、ハンドル状態検知部13は、操舵トルクの変化している方向が右方向であるか否かを判定する。ステップS6において操舵トルクの方向が右方向であると判定した場合は、ステップS7へ移行し、ハンドル状態検知部13は、ステップS4において変化していると判定したステアリングホイールの回転方向が左方向であるか否かを判定する。また、ステップS6において、操舵トルクの変化している方向が右方向でない(左方向である)と判定した場合は、ステップS8へ移行し、ハンドル状態検知部13は、ステップS4において変化していると判定したステアリングホイールの回転方向が右方向であるか否かを判定する。 Next, in step S4, the steering wheel state detection unit 13 performs the current time with respect to the rotation angle (or the neutral position value of the initial setting value) input during the previous processing based on the rotation angle of the steering shaft detected in step S1. The difference of the rotation angle input at the time of the process is calculated, and it is determined whether or not the steering wheel angle has changed. If it is determined in step S4 that the angle of the steering wheel has changed, the process proceeds to step S5, and the handle state detection unit 13 twists the one end side and the other end side of the torsion bar detected by the steering force sensor 3. Based on the angle, the difference between the twist angle input during the current process with respect to the twist angle input during the previous process (or the value of the initial setting value without steering input) is calculated, and whether the steering torque direction has changed Determine whether. If it is determined in step S5 that the direction of the steering torque is changing, the process proceeds to step S6, and the handle state detection unit 13 determines whether the direction in which the steering torque is changing is the right direction. . If it is determined in step S6 that the steering torque direction is the right direction, the process proceeds to step S7, and the steering wheel state detector 13 determines that the steering wheel rotation direction determined to have changed in step S4 is the left direction. It is determined whether or not there is. If it is determined in step S6 that the direction in which the steering torque is changing is not the right direction (the left direction), the process proceeds to step S8, and the handle state detection unit 13 is changed in step S4. It is determined whether the rotation direction of the steering wheel determined to be rightward.
 ステップS7においてステアリングホイールの回転方向が左方向であると判定された場合と、ステップS8においてステアリングホイールの回転方向が右方向であると判定された場合には、ハンドル状態検知部13は、ハンドル戻り状態でないと判定し、ステップS9へ移行し、補正電流指示値設定処理を実行する。 If it is determined in step S7 that the rotation direction of the steering wheel is the left direction, and if it is determined in step S8 that the rotation direction of the steering wheel is the right direction, the steering wheel state detection unit 13 returns the steering wheel. It determines with it not being in a state, it transfers to step S9, and correction | amendment electric current instruction value setting processing is performed.
 補正電流指示値設定処理を図4のフローチャートに沿って説明する。まず、ステップS31では、1階時間微分演算部32は、ステップS2において操舵力演算部11が演算した操舵力に基づいて、操舵力の1階時間微分を演算する。次に、ステップS32では、ゲイン乗算部33は、ステップS31において1階時間微分演算部32が算出した操舵力の1階時間微分にゲインを乗じて、操舵力の1階時間微分に比例する値を操舵力1階時間微分比例値として演算する。次に、ステップS33では、2階時間微分演算部35は、ステップS31において1階時間微分演算部32が算出した操舵力の1階時間微分をさらに1階時間微分することにより、操舵力の2階時間微分を演算する。次に、ステップS34では、ゲイン乗算部36は、ステップS33において2階時間微分演算部35が算出した操舵力の2階時間微分にゲインを乗じて、操舵力の2階時間微分に比例する値を操舵力2階時間微分比例値として演算する。次に、ステップS35では、操舵速度演算部12は、ステップS1において操舵角センサ4から取得したステアリングシャフトの回転角に基づいて、回転角の1階時間微分することにより操舵速度を演算する。次に、ステップS36では、操舵速度処理値設定部37のゲイン部38は、ステップS35において操舵速度演算部12が算出した操舵速度に基づいて、操舵速度に比例する値を演算する。次に、ステップS37では、操舵速度処理値設定部37のリミッタ部39は、ステップS36においてゲイン部38が算出した操舵速度に比例する値に基づいて、操舵速度に比例する値を所定の上限値内に制限した操舵速度処理値を演算する。次に、ステップS38では、補正指示値加算部40は、ステップS32において算出された操舵力1階時間微分比例値と、ステップS34において算出された操舵力2階時間微分比例値と、ステップS37において算出された操舵速度処理値とを加算した加算値を補正電流指示値として設定し、図2に示す処理に戻る。 The correction current instruction value setting process will be described with reference to the flowchart of FIG. First, in step S31, the first-order time derivative calculating unit 32 calculates the first-order time derivative of the steering force based on the steering force calculated by the steering force calculating unit 11 in step S2. Next, in step S32, the gain multiplication unit 33 multiplies the first-order time derivative of the steering force calculated by the first-order time derivative calculation unit 32 in step S31 by a gain, and is a value proportional to the first-order time derivative of the steering force. Is calculated as a steering force first-order time differential proportional value. Next, in step S33, the second-order time differentiation calculation unit 35 further differentiates the first-order time derivative of the steering force calculated by the first-order time differentiation calculation unit 32 in step S31, thereby obtaining 2 of the steering force. Calculate the floor time derivative. Next, in step S34, the gain multiplication unit 36 multiplies the second-order time derivative of the steering force calculated by the second-order time derivative calculation unit 35 in step S33 by a gain, and is a value proportional to the second-order time derivative of the steering force. Is calculated as a steering force second-order time differential proportional value. Next, in step S35, the steering speed calculation unit 12 calculates the steering speed by differentiating the first rotation time of the rotation angle based on the rotation angle of the steering shaft acquired from the steering angle sensor 4 in step S1. Next, in step S36, the gain unit 38 of the steering speed processing value setting unit 37 calculates a value proportional to the steering speed based on the steering speed calculated by the steering speed calculation unit 12 in step S35. Next, in step S37, the limiter unit 39 of the steering speed processing value setting unit 37 sets a value proportional to the steering speed to a predetermined upper limit value based on the value proportional to the steering speed calculated by the gain unit 38 in step S36. The steering speed processing value restricted within is calculated. Next, in step S38, the correction instruction value adding unit 40 calculates the steering force first-order time differential proportional value calculated in step S32, the steering force second-order time differential proportional value calculated in step S34, and in step S37. An addition value obtained by adding the calculated steering speed processing value is set as a correction current instruction value, and the processing returns to the processing shown in FIG.
 次に、ステップS10では、出力指示値設定部50は、ステップS25で設定されたアシスト電流指示値と、ステップS38で設定された補正電流指示値とを加算した加算値を出力指示値として設定する。 Next, in step S10, the output instruction value setting unit 50 sets an addition value obtained by adding the assist current instruction value set in step S25 and the correction current instruction value set in step S38 as an output instruction value. .
 また、ステップS4においてステアリングホイールの角度が変化していないと判定した場合と、ステップS5において操舵トルクの方向が変化していないと判定した場合と、ステップS7においてステアリングホイールの回転方向が左方向でないと判定した場合と、ステップS8においてステアリングホイールの回転方向が右方向でないと判定した場合は、ハンドル状態検知部13は、ハンドル戻り状態でないと判定し、ステップS11へ移行する。ステップS11では、出力指示値設定部50は、ステップS25で設定されたアシスト電流指示値を出力指示値として設定する。 Further, when it is determined in step S4 that the angle of the steering wheel has not changed, when it is determined in step S5 that the direction of the steering torque has not changed, and in step S7, the rotation direction of the steering wheel is not leftward. If it is determined that the steering wheel rotation direction is not rightward in step S8, the steering wheel state detection unit 13 determines that the steering wheel is not returned, and the process proceeds to step S11. In step S11, the output instruction value setting unit 50 sets the assist current instruction value set in step S25 as the output instruction value.
 次にステップS12では、出力指示値設定部50は、出力指示値をインバータ6へ出力し、本処理を終了する。 Next, in step S12, the output instruction value setting unit 50 outputs the output instruction value to the inverter 6 and ends this process.
 図5~図7に電動パワーステアリング装置の無負荷状態での作動実験の結果を示す。縦軸は、ピニオン軸に入力する操舵トルク(Nm)であり、横軸は時間である。図7が本実施形態の電動パワーステアリング装置1の実験結果であり、図5及び図6は本実施形態に対する比較のためのパワーステアリング装置の実験結果である。 Fig. 5 to Fig. 7 show the results of an operation experiment of the electric power steering device in a no-load state. The vertical axis represents the steering torque (Nm) input to the pinion shaft, and the horizontal axis represents time. FIG. 7 shows the experimental results of the electric power steering apparatus 1 of the present embodiment, and FIGS. 5 and 6 show the experimental results of the power steering apparatus for comparison with the present embodiment.
 図5には、出力指示値を全く設定せずに補助トルクが発生しない状態で、ステアリングホイールを中立位置から操舵した場合の操舵トルクを示す。図5に示すように、操舵開始時(左端部)に山状に操舵トルクが突出し、操舵に対して大きな抵抗となることが判る。この山状の形状は、舵角が保持された状態において運転者がステアリングホイールを操舵する操舵開始時のように、ステアリングホイールに連結されたモータや減速機構などが停止状態であるときに、停止状態のモータや減速機構などを動かすために必要な操舵トルクによって発生する。特に、中立状態のステアリングホイールに対する操舵開始時に比較的大きな操舵トルクが必要となる。また、操舵開始時の山状の操舵トルクの後(右側)は、時間軸に沿って操舵トルクが頻繁に変化していることが判る。この操舵トルクが頻繁に変化する形状は、ステアリングホイールに連結されたモータや減速機構の機械的な抵抗に対して操舵するために必要な操舵トルクによって発生する。 FIG. 5 shows the steering torque when the steering wheel is steered from the neutral position with no output instruction value set and no auxiliary torque generated. As shown in FIG. 5, it can be seen that the steering torque protrudes in a mountain shape at the start of steering (left end portion), resulting in a large resistance to steering. This mountain shape is stopped when the motor or the speed reduction mechanism connected to the steering wheel is in a stopped state, such as when the driver starts steering the steering wheel while the steering angle is maintained. It is generated by the steering torque necessary to move the motor and the speed reduction mechanism in the state. In particular, a relatively large steering torque is required at the start of steering for a neutral steering wheel. It can also be seen that after the mountain-shaped steering torque at the start of steering (right side), the steering torque frequently changes along the time axis. The shape in which the steering torque frequently changes is generated by a steering torque necessary for steering with respect to a mechanical resistance of a motor or a speed reduction mechanism connected to the steering wheel.
 図6には、アシスト電流指示値を出力指示値として設定し、アシスト電流指示値に基づく補助トルクが発生する状態で、ステアリングホイールを中立位置から操舵した場合の操舵トルクを示す。図6に示すように、図5の操舵トルクと比較して全体として必要な操舵トルクが小さくなったことが判るが、図5と同様に操舵開始時に山状に突出した操舵トルクが在る。このため、補助トルクが発生してしても操舵開始時に張り付いているような抵抗感を運転者に与える。また、操舵開始時の後には、図5と同様に、時間軸に沿って操舵トルクが頻繁に変化している形状が在る。このため、アシスト電流指示値を出力指示値として設定する電動パワーステアリング装置1では、操舵フィーリングが良好でない。 FIG. 6 shows the steering torque when the assist wheel instruction value is set as the output instruction value and the steering wheel is steered from the neutral position in the state where the assist torque is generated based on the assist current instruction value. As shown in FIG. 6, it can be seen that the steering torque required as a whole is smaller than the steering torque of FIG. 5, but there is a steering torque protruding in a mountain shape at the start of steering as in FIG. 5. For this reason, even if the auxiliary torque is generated, the driver is given a sense of resistance that is stuck at the start of steering. Further, after the start of steering, there is a shape in which the steering torque frequently changes along the time axis, as in FIG. For this reason, in the electric power steering apparatus 1 that sets the assist current instruction value as the output instruction value, the steering feeling is not good.
 図7には、本実施形態の電動パワーステアリング装置1であり、アシスト電流指示値に補正電流指示値を加算した加算値を出力指示値として設定し、アシスト電流指示値及び補正電流指示値に基づく補助トルクが発生する状態で、ステアリングホイールを中立位置から操舵した場合の操舵トルクを示す。図7の電動パワーステアリング装置1の作動実験では、操舵力1階時間微分比例値と操舵力2階時間微分比例値と操舵速度処理値とを加算した加算値を補正電流指示値として設定する。図7に示すように、操舵開示時から略一定の操舵トルクによって操舵されたことが判る。すなわち、図5や図6に示すような操舵開始時の山状の操舵トルクの突出部分が無くなるとともに、操舵開始時の後に存在していた時間軸に沿って頻繁に変化する操舵トルクの変化幅が減少した。これによって、良好な操舵フィーリングを得ることができた。具体的には、図6に示す作動実験において操舵開始時に存在していた山状の操舵トルクが、図7の作動実験では、操舵力2階時間微分比例値を用いた補正電流指示値を設定することにより、略一定の操舵トルクとなった。また、図6に示す作動実験において操舵開始時の後に存在していた時間軸に沿って頻繁に変化する操舵トルクの変化幅が、図7の作動実験では、操舵速度処理値を用いた補正電流指示値を設定することによって減少した。また、アシスト電流指示値に基づく出力指示値が設定され、この出力指示値に基づいてモータに電力を供給する一連の処理において、操舵力に対する補助トルクの応答が遅れてしまう特性が存在する電動パワーステアリング装置1において、操舵力1階時間微分比例値を用いた補正電流指示値を設定することにより、操舵力に対する補助トルクの不足量が低減した。 FIG. 7 shows the electric power steering apparatus 1 of the present embodiment, where an addition value obtained by adding the correction current instruction value to the assist current instruction value is set as an output instruction value, and is based on the assist current instruction value and the correction current instruction value. The steering torque when the steering wheel is steered from the neutral position in a state where the auxiliary torque is generated is shown. In the operation experiment of the electric power steering apparatus 1 in FIG. 7, an addition value obtained by adding the steering force first-order time differential proportional value, the steering force second-order time differential proportional value, and the steering speed processing value is set as the correction current instruction value. As shown in FIG. 7, it can be seen that the vehicle is steered with a substantially constant steering torque from the time of steering disclosure. That is, as shown in FIG. 5 and FIG. 6, there is no protruding portion of the mountain-like steering torque at the start of steering, and the change width of the steering torque that frequently changes along the time axis that existed after the start of steering. Decreased. As a result, a good steering feeling could be obtained. Specifically, the mountain-shaped steering torque that existed at the start of steering in the operation experiment shown in FIG. 6 is set to the corrected current instruction value using the steering force second-order time differential proportional value in the operation experiment in FIG. As a result, the steering torque became substantially constant. In addition, the change width of the steering torque that frequently changes along the time axis existing after the start of steering in the operation experiment shown in FIG. 6 is the correction current using the steering speed processing value in the operation experiment of FIG. Decrease by setting the indicated value. In addition, in the series of processes in which an output instruction value based on the assist current instruction value is set and power is supplied to the motor based on the output instruction value, there is a characteristic that the response of the auxiliary torque to the steering force is delayed. In the steering device 1, the shortage amount of the auxiliary torque with respect to the steering force is reduced by setting the correction current instruction value using the steering force first-order time differential proportional value.
 以上説明したように、本実施形態では、運転者がステアリングホイールを操舵すると、操舵によって発生した操舵力と操舵速度とが検知される。次に、検知された操舵力に基づいてアシスト電流指示値が設定される。また、ステアリングホイールの回転方向と操舵トルクの方向とに基づいて、ステアリングホイールが操舵された回転位置から中立位置に戻るハンドル戻り状態であるか否かが判定され、ハンドル戻り状態と判定されると、補正電流指示値が演算される。補正電流指示値は、操舵力の1階時間微分に比例する値である操舵力1階時間微分比例値と、操舵力の2階時間微分に比例する値である操舵力2階時間微分とが加算された加算値が設定される。次に、アシスト電流指示値と補正電流指示値とが加算され、この加算値が出力指示値として設定される。次に、出力指示値に基づいてモータ2に電力が供給される。電力が供給されたモータ2の駆動によって、ステアリングホイールの操舵が補助される。 As described above, in this embodiment, when the driver steers the steering wheel, the steering force and the steering speed generated by the steering are detected. Next, an assist current instruction value is set based on the detected steering force. Further, based on the rotation direction of the steering wheel and the direction of the steering torque, it is determined whether or not the steering wheel is in the steering wheel return state in which the steering wheel returns to the neutral position from the steering rotational position. The corrected current instruction value is calculated. The corrected current instruction value includes a steering force first-order time derivative proportional value that is proportional to the first-order time derivative of the steering force and a steering force second-order time derivative that is proportional to the second-order time derivative of the steering force. The added value is set. Next, the assist current instruction value and the correction current instruction value are added, and this addition value is set as the output instruction value. Next, electric power is supplied to the motor 2 based on the output instruction value. Steering of the steering wheel is assisted by driving of the motor 2 supplied with electric power.
 補助電流指示値は、操舵力の2階時間微分の増加に応じて増加する。アシスト電流指示値や補助電流指示値の増加により出力指示値が増加すると、運転者によるステアリングホイールへの操舵を補助する補助トルクが増加する。 The auxiliary current instruction value increases as the second-order time derivative of the steering force increases. When the output instruction value increases due to an increase in the assist current instruction value or the auxiliary current instruction value, the auxiliary torque for assisting the driver to steer the steering wheel increases.
 このように、操舵力の2階時間微分を用いた補正電流指示値を含む出力指示値に基づいて、モータ2へ電力が供給されるため、操舵力が短時間に増大したときに、操舵力の2階時間微分が増大することに応じて、モータ2へ供給される電流が増加して補助トルクが増加する。このため、例えば、舵角が保持された状態において運転者がステアリングホイールを操舵する操舵開始時のように、ステアリングホイールに連結されたモータ2や減速機構などが停止状態であり、この停止状態のモータ2や減速機構などを動かすために高い操舵力が必要とされるときに、操舵力の2階時間微分が増大することに応じて増加した電力によってモータ2が駆動して補助トルクが増加する。従って、停止状態のモータ2を回転させるために必要な操舵力を低減させることができ、操舵フィーリングを向上させることができる。特に、車両の直進走行中において中立位置のステアリングホイールに運転者が進路補正のための微小操舵を行う場合の操舵開始時において、補助トルクを適確に増加させることができるため、良好な操舵フィーリングを得ることができる。 Thus, since electric power is supplied to the motor 2 based on the output instruction value including the corrected current instruction value using the second-order time derivative of the steering force, the steering force is increased when the steering force increases in a short time. As the second-order time derivative increases, the current supplied to the motor 2 increases and the auxiliary torque increases. Therefore, for example, the motor 2 and the speed reduction mechanism connected to the steering wheel are in a stopped state, such as when the driver starts steering the steering wheel while the steering angle is maintained. When a high steering force is required to move the motor 2, the speed reduction mechanism, etc., the motor 2 is driven by the increased electric power as the second-order time derivative of the steering force increases, and the auxiliary torque increases. . Therefore, the steering force required to rotate the motor 2 in a stopped state can be reduced, and the steering feeling can be improved. In particular, the assist torque can be increased appropriately at the start of steering when the driver performs minute steering for the course correction on the steering wheel at the neutral position while the vehicle is traveling straight ahead, so that a good steering fee can be obtained. You can get a ring.
 また、ハンドル戻り状態では、セルフアライニングトルクによって舵角を小さくする方向に力が発生するとともにモータ2が駆動中であるため、高い操舵力を必要とせず、アシスト電流指示値に基づく補助トルクによって適切な操舵フィーリングを得ることができる。従って、補正電流指示値をアシスト電流指示値に加算した加算値を出力指示値として設定すると操舵を軽くし過ぎて操舵フィーリングを悪化させるおそれがあるため、補正電流指示値をアシスト電流指示値に加算せず、アシスト電流指示値を出力指示値として設定する。 Further, in the steering wheel return state, the self-aligning torque generates a force in the direction of decreasing the steering angle and the motor 2 is being driven, so that a high steering force is not required and the assist torque based on the assist current instruction value is used. An appropriate steering feeling can be obtained. Therefore, if the addition value obtained by adding the correction current instruction value to the assist current instruction value is set as the output instruction value, the steering may be lightened and the steering feeling may be deteriorated. Therefore, the correction current instruction value is changed to the assist current instruction value. The assist current instruction value is set as the output instruction value without adding.
 また、操舵力に基づくアシスト電流指示値が設定されるとともに、操舵力の1階時間微分を用いた補正電流指示値が設定され、この補正電流指示値とアシスト電流指示値との加算値である出力指示値に基づいてモータ2に電力が供給されることにより、補助トルクが増加する。従って、例えば、操舵力に基づいてアシスト電流指示値を設定し、このアシスト電流指示値を含む出力指示値に基づいて、モータ2に電力を供給する一連の処理において、操舵力に対する補助トルクの応答が遅れてしまう特性がある電動パワーステアリング装置1において、操舵力に対する補助トルクの不足量を低減させることができる。 In addition, an assist current instruction value based on the steering force is set, and a correction current instruction value using a first-order time derivative of the steering force is set, which is an addition value of the correction current instruction value and the assist current instruction value. The auxiliary torque is increased by supplying electric power to the motor 2 based on the output instruction value. Therefore, for example, in the series of processes for setting the assist current instruction value based on the steering force and supplying power to the motor 2 based on the output instruction value including the assist current instruction value, the response of the auxiliary torque to the steering force In the electric power steering apparatus 1 having the characteristic that the delay is delayed, the shortage of the auxiliary torque with respect to the steering force can be reduced.
 また、ステアリングホイールへの操舵により操舵速度が増加すると、補助トルクが増加する。従って、例えば、ステアリングホイールを切り増すときのように、ステアリングホイールに連結されたモータ2や減速機構などの機械的な抵抗が存るときに、操舵速度の増加に応じて補助トルクが増加するため、モータ2や減速機構などの機械的な抵抗に抗してステアリングホイールを操舵するために必要な操舵力を低減させることができ、操舵フィーリングを向上させることができる。 Also, as the steering speed increases due to steering to the steering wheel, the auxiliary torque increases. Therefore, for example, when there is a mechanical resistance such as the motor 2 or the speed reduction mechanism connected to the steering wheel, such as when the steering wheel is increased, the auxiliary torque increases as the steering speed increases. The steering force required to steer the steering wheel against mechanical resistance such as the motor 2 and the speed reduction mechanism can be reduced, and the steering feeling can be improved.
 以上、本発明者によってなされた発明を適用した実施形態について説明したが、この実施形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、この実施形態に基づいて当業者等によりなされる他の実施形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。 As mentioned above, although the embodiment to which the invention made by the present inventor is applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.
 本発明は、様々な車両の電動パワーステアリング装置として利用可能である。 The present invention can be used as an electric power steering device for various vehicles.
1:電動パワーステアリング装置
2:モータ
3:操舵力センサ(操舵力検知手段)
4:操舵角センサ(操舵速度検知手段)
6:インバータ(電力供給手段)
7:バッテリ(電力供給手段)
11:操舵力演算部(操舵力検知手段)
12:操舵速度演算部(操舵速度検知手段)
13:ハンドル状態検知部(ハンドル状態検知手段)
20:アシスト指示値設定部(アシスト指示値設定手段)
32:1階時間微分演算部(演算手段)
35:2階時間微分演算部(演算手段)
37:操舵速度処理値設定部(操舵速度処理値設定手段)
40:補正指示値加算部(補正指示値設定手段)
50:出力指示値設定部(出力指示値設定手段)
1: Electric power steering device 2: Motor 3: Steering force sensor (steering force detection means)
4: Steering angle sensor (steering speed detection means)
6: Inverter (power supply means)
7: Battery (power supply means)
11: Steering force calculation unit (steering force detection means)
12: Steering speed calculation unit (steering speed detection means)
13: Handle state detection unit (handle state detection means)
20: Assist instruction value setting unit (assist instruction value setting means)
32: 1st-order time differential calculation unit (calculation means)
35: Second-order time differential calculation section (calculation means)
37: Steering speed processing value setting unit (steering speed processing value setting means)
40: Correction instruction value addition unit (correction instruction value setting means)
50: Output instruction value setting unit (output instruction value setting means)

Claims (4)

  1.  ステアリングホイールに入力された操舵力を検知する操舵力検知手段と、
     前記操舵力検知手段が検知した操舵力に基づいて、アシスト電流指示値を設定するアシスト指示値設定手段と、
     前記操舵力検知手段が検知した操舵力の2階時間微分を演算する演算手段と、
     前記演算手段が算出した操舵力の2階時間微分を用いて補正電流指示値を設定する補正指示値設定手段と、
     アシスト指示値設定手段が設定したアシスト電流指示値と前記補正指示値設定手段が設定した補正電流指示値とを加算し、当該加算値を出力指示値として設定する出力指示値設定手段と、
     前記ステアリングホイールに連結されたモータと、
     前記出力指示値設定手段が設定した出力指示値に基づいて、前記モータに電力を供給する電力供給手段と、を備えた
     ことを特徴とする電動パワーステアリング装置。
    Steering force detection means for detecting the steering force input to the steering wheel;
    An assist instruction value setting means for setting an assist current instruction value based on the steering force detected by the steering force detection means;
    A calculation means for calculating a second-order time derivative of the steering force detected by the steering force detection means;
    Correction instruction value setting means for setting a correction current instruction value using the second-order time derivative of the steering force calculated by the arithmetic means;
    Output instruction value setting means for adding the assist current instruction value set by the assist instruction value setting means and the correction current instruction value set by the correction instruction value setting means, and setting the added value as an output instruction value;
    A motor coupled to the steering wheel;
    An electric power steering apparatus comprising: power supply means for supplying electric power to the motor based on the output instruction value set by the output instruction value setting means.
  2.  請求項1に記載の電動パワーステアリング装置であって、
     前記ステアリングホイールが操舵された回転位置から中立位置に戻るハンドル戻り状態であるか否かを検知するハンドル状態検知手段を備え、
     前記出力指示値設定手段は、前記ハンドル状態検知手段が前記ハンドル戻り状態であると検知したとき、前記アシスト指示値設定手段が設定したアシスト電流指示値を出力指示値として設定する
     ことを特徴とする電動パワーステアリング装置。
    The electric power steering apparatus according to claim 1,
    A steering wheel state detection means for detecting whether or not the steering wheel is in a steering wheel return state in which the steering wheel returns from a steering rotational position to a neutral position;
    The output instruction value setting means sets the assist current instruction value set by the assist instruction value setting means as an output instruction value when the handle state detection means detects that the steering wheel return state is present. Electric power steering device.
  3.  請求項1又は請求項2に記載の電動パワーステアリング装置であって、
     前記演算手段は、前記操舵力検知手段が検知した操舵力の1階時間微分を演算し、
     前記補正指示値設定手段は、前記演算手段が算出した操舵力の1階時間微分をさらに用いて補正電流指示値を設定する
     ことを特徴とする電動パワーステアリング装置。
    The electric power steering apparatus according to claim 1 or 2,
    The calculation means calculates a first-order time derivative of the steering force detected by the steering force detection means,
    The electric power steering apparatus, wherein the correction instruction value setting means sets the correction current instruction value by further using the first-order time derivative of the steering force calculated by the calculation means.
  4.  請求項1~請求項3に記載の電動パワーステアリング装置であって、
     操舵速度を検知する操作速度検知手段と、
     前記操舵速度検知手段が検知した操舵速度に応じた操舵速度処理値を設定する操舵速度処理値設定手段と、を備え、
     前記補正指示値設定部は、前記操舵速度処理値設定手段が設定した操舵速度処理値をさらに用いて補正電流指示値を設定する
     ことを特徴とする電動パワーステアリング装置。
    The electric power steering device according to claim 1, wherein
    Operation speed detection means for detecting the steering speed;
    Steering speed processing value setting means for setting a steering speed processing value according to the steering speed detected by the steering speed detection means,
    The electric power steering apparatus, wherein the correction instruction value setting unit further sets a correction current instruction value by further using the steering speed processing value set by the steering speed processing value setting means.
PCT/JP2010/064743 2009-08-31 2010-08-30 Electric power steering device WO2011025010A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009199697A JP5440916B2 (en) 2009-08-31 2009-08-31 Electric power steering device
JP2009-199697 2009-08-31

Publications (1)

Publication Number Publication Date
WO2011025010A1 true WO2011025010A1 (en) 2011-03-03

Family

ID=43628100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064743 WO2011025010A1 (en) 2009-08-31 2010-08-30 Electric power steering device

Country Status (2)

Country Link
JP (1) JP5440916B2 (en)
WO (1) WO2011025010A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5316599B2 (en) 2011-07-05 2013-10-16 トヨタ自動車株式会社 Steering device and steering control device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10329745A (en) * 1997-06-04 1998-12-15 Kayaba Ind Co Ltd Electric power steering control device
JP2002187562A (en) * 2000-12-22 2002-07-02 Honda Motor Co Ltd Electric power steering
JP2004203366A (en) * 2002-10-31 2004-07-22 Koyo Seiko Co Ltd Electric power steering device
JP2004291664A (en) * 2003-03-25 2004-10-21 Koyo Seiko Co Ltd Electric power steering device
JP2005014721A (en) * 2003-06-25 2005-01-20 Toyota Motor Corp Electric power steering device for vehicle
JP2005225403A (en) * 2004-02-13 2005-08-25 Favess Co Ltd Electric power steering device
JP2006131191A (en) * 2004-11-09 2006-05-25 Favess Co Ltd Electric power steering device
JP2008296801A (en) * 2007-06-01 2008-12-11 Jtekt Corp Electric power steering device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10329745A (en) * 1997-06-04 1998-12-15 Kayaba Ind Co Ltd Electric power steering control device
JP2002187562A (en) * 2000-12-22 2002-07-02 Honda Motor Co Ltd Electric power steering
JP2004203366A (en) * 2002-10-31 2004-07-22 Koyo Seiko Co Ltd Electric power steering device
JP2004291664A (en) * 2003-03-25 2004-10-21 Koyo Seiko Co Ltd Electric power steering device
JP2005014721A (en) * 2003-06-25 2005-01-20 Toyota Motor Corp Electric power steering device for vehicle
JP2005225403A (en) * 2004-02-13 2005-08-25 Favess Co Ltd Electric power steering device
JP2006131191A (en) * 2004-11-09 2006-05-25 Favess Co Ltd Electric power steering device
JP2008296801A (en) * 2007-06-01 2008-12-11 Jtekt Corp Electric power steering device

Also Published As

Publication number Publication date
JP5440916B2 (en) 2014-03-12
JP2011051380A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP4329792B2 (en) Electric power steering device
JP4419997B2 (en) Electric power steering device
US8229627B2 (en) Vehicle steering apparatus
JP5003228B2 (en) Electric power steering device
JP6961934B2 (en) Steering device
CN110027609B (en) Electric power steering apparatus
JP2002104210A (en) Controller for electric power steering device
JP2004338562A (en) Electric power steering controller
EP3812243B1 (en) Steering control device
JP5018166B2 (en) Steering device
JP5011785B2 (en) Electric power steering device
JP5244031B2 (en) Vehicle steering system
JP6326171B1 (en) Steering control device, electric power steering device
JP5440916B2 (en) Electric power steering device
JP2019137370A (en) Steering control device
JP2010241167A (en) Vehicular steering device
JP2008006919A (en) Electric power steering device
JP5560754B2 (en) Electric power steering device
JP2005306204A (en) Power steering device
JP2009184370A (en) Electric power steering device
JP2002104218A (en) Control device of motor-driven power steering device
JP2020069863A (en) Steering control device
JP2012240440A (en) Electric power steering device
JP2007182186A (en) Electric power steering device
JP2009286350A (en) Control device for electric power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10812056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10812056

Country of ref document: EP

Kind code of ref document: A1