WO2011025007A1 - Sorghum purple leaf spot-related gene and use of same - Google Patents

Sorghum purple leaf spot-related gene and use of same Download PDF

Info

Publication number
WO2011025007A1
WO2011025007A1 PCT/JP2010/064733 JP2010064733W WO2011025007A1 WO 2011025007 A1 WO2011025007 A1 WO 2011025007A1 JP 2010064733 W JP2010064733 W JP 2010064733W WO 2011025007 A1 WO2011025007 A1 WO 2011025007A1
Authority
WO
WIPO (PCT)
Prior art keywords
sorghum
dna
purpura
gene
resistance
Prior art date
Application number
PCT/JP2010/064733
Other languages
French (fr)
Japanese (ja)
Inventor
広幸 川東
隆 松本
健忠 呉
隆志 佐塚
重光 春日
Original Assignee
独立行政法人農業生物資源研究所
国立大学法人名古屋大学
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人農業生物資源研究所, 国立大学法人名古屋大学, 国立大学法人信州大学 filed Critical 独立行政法人農業生物資源研究所
Priority to JP2011528895A priority Critical patent/JP5783463B2/en
Publication of WO2011025007A1 publication Critical patent/WO2011025007A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance

Definitions

  • the present invention relates to a susceptibility gene and resistance gene for sorghum purpura, a method for determining susceptibility and resistance to sorghum purpura, and a method for producing sorghum with purpura resistance.
  • Purple leaf spot is a spotted disease caused by filamentous fungi, and is a disease that occurs in warm regions south of Kanto.
  • sorghum sorghum plant
  • 80% are susceptible to purpura, and in recent years its incidence has been increasing.
  • Individuals infected with purpura generally have reddish-brown spots on the leaves.
  • yellowish brown, orange, red to reddish brown spots may occur. These spots spread to form spindle-shaped lesions with a length of 0.5-2 cm and a width of 0.3-1 cm.
  • sorghum has been mainly cultivated as a livestock feed in Japan, but in recent years, it has been attracting attention as a raw material for biofuel (ethanol). Therefore, preventing the decrease in sorghum sales due to the disease of purple spot disease is an important issue not only in agricultural policy but also in energy policy.
  • Non-patent Document 1 Non-patent Document 1
  • the present invention has been made in view of such circumstances, and its purpose is to identify genes responsible for the susceptibility and resistance of sorghum purpura and elucidate the mechanism of onset of sorghum purpura. There is to do.
  • Another object of the present invention is to provide a method for easily determining the susceptibility and resistance of sorghum purpura based on the elucidated mechanism of sorghum purpura.
  • a further object of the present invention is to provide a method for efficiently producing sorghum with enhanced resistance to purpura based on the elucidated mechanism of the development of sorghum purpura.
  • the present inventors have established a sorghum SSR marker and insertion / deletion in a large cross population (F3 to F5) of a sorghum resistant variety SLIL-05 and a diseased product type bmr-6.
  • the marker was used to map the purpura disease susceptibility gene (FIGS. 1 and 2).
  • mapping using an SSR marker was performed on F3 individuals (175 individuals) to elucidate that the purpura disease susceptibility gene is located on chromosome 5.
  • F4 individuals 640 individuals
  • individuals with recombination between SSR markers SB3056 to SB3178 (229 individuals) were selected and purpura disease was investigated in the field, and the presence of purpura disease susceptibility genes The region was narrowed down to a region of about 246 kbp.
  • mapping was performed using insertion / deletion markers found based on the nucleotide sequence information of sorghum variety BTx623, and the region of purpura disease susceptibility gene was narrowed down to about 96 kbp.
  • F5 individuals (4235 individuals) were screened using the insertion / deletion marker and SSR marker present in the candidate region of about 96 kbp, and the region where the purpura disease susceptibility gene exists was finally reduced to about 26 kbp. Narrow down to.
  • the present inventors investigated the expression of genes in the narrowed region by RT-PCR.
  • ds1 gene only the expression pattern of a specific candidate gene (hereinafter referred to as “ds1 gene”) It was found that it was consistent with the distinction between susceptibility and resistance to purpura (FIG. 3).
  • the tissue-specific gene expression in the resistant variety SLIL-05 and the diseased product species bmr-6 was examined, the diseased variety bmr-6 expressed a large amount of ds1 gene in the foliage.
  • the cultivar SIL-05 almost no expression in the foliage was observed (FIG. 4).
  • mRNA expression was observed in susceptible varieties, but mRNA expression was low in resistant varieties (FIG. 4).
  • the resistant cultivar SIL-05 was completely consistent with the susceptible cultivar BTx623 (FIG. 5). However, SIL-05 partially lacked the upstream promoter region of the gene (FIGS. 6 and 7). For this reason, it was speculated that the ds1 gene promoter region deficiency was responsible for the decrease in mRNA expression in SIL-05. A substitution of one amino acid was observed in the susceptible variety BTx623 and the susceptible variety bmr-6.
  • the present inventors can determine the susceptibility and resistance of purpura disease by targeting the identified ds1 gene, and further determine the expression and function of the susceptible ds1 gene. As a result of the suppression, it was found that resistance to purpura can be imparted to sorghum, and the present invention has been completed.
  • the present invention provides the following. ⁇ 1> The DNA according to any one of the following (a) to (d), which encodes a protein having an activity of imparting purpura disease susceptibility to sorghum.
  • B DNA comprising the coding region of the base sequence described in SEQ ID NO: 1, 2, 4 or 5
  • C DNA encoding a protein comprising an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the amino acid sequence of SEQ ID NO: 3 or 6
  • D DNA that hybridizes under stringent conditions with the DNA comprising the nucleotide sequence set forth in SEQ ID NO: 1, 2, 4 or 5 ⁇ 2>
  • A DNA encoding a protein comprising the amino acid sequence set forth in SEQ ID NO: 9 or 12
  • B DNA containing the coding region of the base sequence described in SEQ ID NO: 7, 8, 10 or 11
  • C DNA encoding a protein comprising an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the amino acid sequence of SEQ ID NO: 3, 6, 9 or 12
  • D DNA that hybridizes under stringent conditions with the DNA comprising the nucleotide sequence of SEQ ID NO: 1, 2, 4, 5, 7, 8, 10, or 11 ⁇ 3>
  • the DNA according to any one of the following (a) to (c), which encodes a protein having an activity of imparting purpura resistance to sorghum.
  • A DNA encoding a double-stranded RNA complementary to the transcription product of DNA according to ⁇ 1>
  • B DNA encoding an antisense RNA complementary to the transcription product of DNA according to ⁇ 1>
  • C DNA encoding RNA having ribozyme activity that specifically cleaves the transcription product of DNA according to ⁇ 1>
  • a vector comprising the DNA according to any one of ⁇ 1> to ⁇ 3>.
  • ⁇ 5> A sorghum cell into which the DNA according to any one of ⁇ 1> to ⁇ 3> has been introduced.
  • ⁇ 6> A sorghum plant comprising the cell according to ⁇ 5>.
  • ⁇ 7> A sorghum plant which is a descendant or clone of the plant according to ⁇ 6>.
  • ⁇ 8> A propagation material for a sorghum plant according to ⁇ 6> or ⁇ 7>.
  • ⁇ 9> A method for producing sorghum imparted with resistance to purpura disease, characterized by suppressing the expression or function of the DNA according to ⁇ 1> in sorghum.
  • ⁇ 10> A method for producing sorghum in which purpura disease resistance is imparted to sorghum, comprising the step of introducing the DNA according to ⁇ 2> or ⁇ 3> into sorghum.
  • ⁇ 11> A drug for imparting purpura resistance to sorghum comprising the DNA according to ⁇ 2> or ⁇ 3> or a vector into which the DNA is inserted.
  • ⁇ 12> A method for determining the susceptibility or resistance to purpura in sorghum, comprising analyzing the base sequence of the DNA or expression control region thereof according to ⁇ 1> or ⁇ 2> in a test sorghum A method comprising comparing the nucleotide sequence of ⁇ 13> A method for determining the susceptibility or resistance of purpura in sorghum, characterized by detecting the expression of DNA or the molecular weight of the expression product in ⁇ 1> or ⁇ 2> in sorghum Method.
  • ⁇ 14> A method for determining the susceptibility or resistance of purpura in sorghum, comprising analyzing the nucleotide sequence of a molecular marker linked to the DNA according to ⁇ 1> or ⁇ 2> in a test sorghum; A method comprising comparing with a base sequence of a control.
  • ⁇ 15> A method for breeding purple spot disease resistant sorghum, (A) mating a purple scab-resistant sorghum variety with any sorghum variety, (B) determining the susceptibility or resistance to purpura in the individual obtained by the mating in step (a) by the method according to any one of ⁇ 12> to ⁇ 14>, and (c) purpura Selecting a variety determined to have resistance to point disease.
  • purpura spot disease in the present invention, in sorghum, pathogens "Bipolaris sorghicola (Lefebvre & Sherwin) Alcorn , classification: Incomplete Kinmon, incomplete thread Kintsuna” means a spot of diseases caused by.
  • purpura disease susceptibility means the property that sorghum infects purpura.
  • purpura disease resistance means the resistance of sorghum to purpura infection. This resistance suppresses the onset of purpura or the degree of purpura that has occurred in sorghum (for example, recognized as the number or spread of lesions).
  • the purpura disease susceptibility gene ds1 was identified, and the location and structure of the gene on the chromosome and the mechanism of purpura disease onset were elucidated. This makes it possible to easily determine the susceptibility and resistance of sorghum purpura using the ds1 gene and nearby markers. In addition, by suppressing the expression and function of the susceptible ds1 gene, it has become possible to efficiently produce sorghum varieties resistant to purpura. The present invention greatly contributes to prevention of a decrease in sorghum yield due to the disease of purpura.
  • ⁇ 1 '' is a diseased F4 individual ⁇ # 2-74 A72 '' whose ds1 region is heterozygous of SIL-05 type and bmr-6 type
  • ⁇ 2 '' is ds1 region is SIL-05 type
  • the resistant F4 individuals “# 2-74 C5” and “3” indicate the resistant variety “SIL-05”
  • “4” indicates the susceptible variety “bmr-6”.
  • “R” indicates a root
  • L indicates a leaf
  • S indicates a stem
  • F indicates a flower.
  • FIG. 5 is a continuation diagram of FIG. 5-1. It is a figure which shows the comparison between the varieties of the structure of ds1 gene and its peripheral region.
  • FIG. 7 is a continuation diagram of FIG. FIG. 7B is a continuation of FIG. 7-2.
  • FIG. 4 is a continuation diagram of FIG. FIG. 4 is a continuation of FIG. 7-4.
  • FIG. 6 is a continuation of FIG. 7-5.
  • FIG. 7 is a continuation of FIG. 7-6.
  • FIG. 8 is a continuation of FIG. 7-7.
  • FIG. 9 is a continuation of FIG. 7-8.
  • FIG. 10 is a continuation of FIG. 7-9.
  • FIG. 11 is a continuation of FIG. 7-10.
  • FIG. 11 is a continuation of FIG. 7-11. It is a figure which shows the target sequence of the primer used for the present Example.
  • FIG. 8 is a continuation of FIG. 8-1.
  • FIG. 8 is a continuation of FIG. 8-2. It is a continuation figure of FIG. 8-3.
  • FIG. 4 is a continuation of FIG. 8-4.
  • FIG. 6 is a continuation of FIG. 8-5.
  • FIG. 7 is a continuation of FIG. 8-6.
  • FIG. 8 is a continuation of FIG. 8-7.
  • FIG. 9 is a continuation of FIG. 8-8.
  • FIG. 10 is a continuation of FIG. 8-9.
  • FIG. 11 is a continuation of FIG. 8-10.
  • FIG. 11 is a continuation of FIG. 8-11.
  • FIG. 13 is a continuation of FIG. 8-12.
  • FIG. 14 is a continuation of FIG. 8-13.
  • FIG. 15 is a continuation of FIG. 8-14.
  • FIG. 16 is a continuation of FIG. 8-15.
  • FIG. 17 is a continuation of FIG. 8-16.
  • FIG. 18 is a continuation of FIG. 8-17.
  • FIG. 19 is a continuation of FIG. 8-18.
  • FIG. 20 is a continuation of FIG. 8-19.
  • FIG. 21 is a continuation of FIG. 8-20.
  • FIG. 22 is a diagram continued from FIG. 8-21.
  • FIG. 23 is a continuation of FIG. 8-22.
  • FIG. 24 is a continuation of FIG. 8-23.
  • FIG. 25 is a continuation of FIG. 8-24.
  • FIG. 26 is a continuation of FIG. 8-25.
  • FIG. 27 is a continuation of FIG. 8-26.
  • FIG. 28 is a continuation of FIG. 8-27.
  • FIG. 29 is a continuation of FIG. 8-28.
  • FIG. 30 is a continuation of FIG. 8-29.
  • FIG. 31 is a continuation of FIG. 8-30.
  • FIG. 32 is a continuation of FIG. 8-31.
  • FIG. 33 is a continuation of FIG. 8-32.
  • FIG. 34 is a continuation of FIG. 8-33.
  • A shows the arrangement of primer sets used for detecting polymorphisms in ds1 candidate genes of sorghum varieties derived from various regions of the world.
  • B is an electrophoresis photograph showing the results of PCR using the primer set shown in A.
  • lane 1 is Gooseneck (R4 type)
  • lane 2 is Moraba74 (S3 type)
  • lane 3 is BTx623 (S2 type)
  • lane 4 is Greenleaf (R3 type)
  • lane 5 is Nakei MS3B (R2 type)
  • Lane 6 used bmr-6 (S1 type)
  • lane 7 used SIL-05 (R1 type). It is a photograph which shows the result (typical example) which performed the test of purpura disease about the sorghum variety derived from each area of the world.
  • the present invention provides DNA encoding a protein having an activity conferring purpura disease susceptibility to sorghum (hereinafter referred to as “susceptible DNA”).
  • susceptible DNA a protein having an activity conferring purpura disease susceptibility to sorghum
  • the nucleotide sequence sequence of ds1 cDNA derived from susceptible cultivar BTx623 ID NO: 1 SEQ ID NO: 1
  • SEQ ID NO: The nucleotide sequence of ds1 genomic DNA: 2
  • the base sequence of the ds1 cDNA derived from the susceptible cultivar bmr-6 is SEQ ID NO: 4
  • the base sequence of the ds1 genomic DNA is SEQ ID NO: 5
  • the amino acid sequence of the protein encoded by these DNAs is SEQ ID NO: 6.
  • One embodiment of the susceptible DNA of the present invention is a DNA encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 3 (typically, the coding region of the base sequence set forth in SEQ ID NO: 1 or 2).
  • Another embodiment is a DNA encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 6 (typically, the coding region of the base sequence set forth in SEQ ID NO: 4 or 5). Containing DNA).
  • ds1 cDNA nucleotide sequence from BTx623 (SEQ ID NO: 1) and bmr-6 ds1 cDNA nucleotide sequence from (SEQ ID NO: 4) are compared, and the three locations base And one of them leads to amino acid differences (H and Q at position 851), both of which are susceptible DNA.
  • the base sequence information of the susceptible DNA in a specific susceptible sorghum variety for example, BTx623, bmr-6
  • the base sequence is modified, Although the encoded amino acid sequence is different, it is also possible to obtain DNA that is also susceptible.
  • the amino acid sequence of the encoded protein is mutated due to the mutation of the base sequence.
  • the present invention is, BTx623 and bmr-6 in ds1 protein amino acid sequences: consists of one or more amino acid substitutions in (SEQ ID NO: 3 or 6), deletions, additions, and / or inserted amino acid sequence, It also includes a DNA encoding a protein having an activity of imparting purpura disease susceptibility to sorghum.
  • ⁇ plurality '' is the number of amino acid modifications within the range in which the modified ds1 protein maintains the activity of imparting purpura disease susceptibility to sorghum, usually within 50 amino acids, preferably within 30 amino acids, More preferably, it is within 10 amino acids (for example, within 5 amino acids, within 3 amino acids, 2 amino acids).
  • the nucleotide sequence information of the susceptible DNA can be used to obtain DNAs encoding homologous genes that are also susceptible from other sorghum varieties.
  • the present invention is, BTx623 and bmr-6 in ds1 DNA (SEQ ID NO: 1, 2, 4 or 5) and a hybridizing DNA under stringent conditions, granted sorghum, purpura spot disease susceptibility It also includes DNA that encodes a protein having the following activity.
  • mutant DNA or homologous DNA thus obtained encodes a protein having the activity of conferring purpura disease susceptibility to sorghum is determined by, for example, purpura disease resistant varieties introduced with these DNAs. It can be determined by spraying or inoculating the pathogen of the disease and then examining whether or not to develop purpura or the degree of purpura that has developed (for the test of purpura onset) See Example 1).
  • the present invention also provides a DNA encoding a protein having an activity of conferring purpura resistance to sorghum (hereinafter referred to as “resistant DNA”).
  • resistant varieties ⁇ MS3B sequence the base sequence of ds1 cDNA derived NO: 7, SEQ ID NO:
  • the nucleotide sequence of ds1 genomic DNA: 8 amino acids of a protein to which they DNA encodes The sequence is shown in SEQ ID NO: 9.
  • the base sequence of ds1 cDNA derived from the resistant variety Greenleaf is shown in SEQ ID NO: 10
  • the base sequence of ds1 genomic DNA is shown in SEQ ID NO: 11
  • amino acid sequence of the protein encoded by these DNAs is shown in SEQ ID NO: 12.
  • One embodiment of the resistance-type DNA of the present invention comprises a DNA encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 9 (typically comprising a coding region of the base sequence set forth in SEQ ID NO: 10 or 11). And another embodiment includes DNA encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 12 (typically, the coding region of the base sequence set forth in SEQ ID NO: 10 or 11) DNA).
  • the present invention is, BTx623, bmr-6, ⁇ MS3B or ds1 protein amino acid sequence of the Greenleaf (SEQ ID NO: 3, 6, 9 or 12) one or more amino acids in the substitution, deletion, addition, and It consists of a protein comprising an inserted amino acid sequence, and also contains a DNA encoding a protein having an activity of conferring purpura resistance to sorghum.
  • the term “plurality” refers to the number of amino acid modifications within a range in which the modified ds1 protein has an activity of imparting purpura disease resistance to sorghum.
  • the ds1 protein in sorghum does not exhibit its original function, it will be resistant to purpura, so the number of amino acid modifications is essentially not limited. Modification is within 500 amino acids, within 400 amino acids, within 300 amino acids, within 200 amino acids, or within 100 amino acids (within 50 amino acids, within 30 amino acids, within 10 amino acids, within 5 amino acids, within 3 amino acids, within 2 amino acids). is there.
  • the modification can be, for example, a deletion on the C-terminal side of the ds1 protein. Indeed, ds1 protein in Greenleaf, as compared to BTx623 or bmr-6 derived ds1 protein, 460 amino acids are deleted.
  • ds1 DNA is obtained from a specific sorghum variety, those skilled in the art are resistant to other sorghum varieties using the DNA sequence information.
  • DNA encoding a homologous gene can be obtained.
  • the present invention is, BTx623, bmr-6, ds1 DNA in ⁇ MS3B or Greenleaf (SEQ ID NO: 1,2,4,5,7,8,10 or 11) a DNA hybridizing under stringent conditions
  • DNA encoding a protein having an activity of conferring purpura resistance to sorghum is included.
  • mutant DNA or homologous DNA thus obtained encodes a protein having an activity of conferring purpura disease resistance to sorghum is determined by, for example, assembling the ds1 gene of the purpura disease-affected product species with the DNA. Instead, create a sorghum that retains the DNA in a homologous manner, spray or inoculate purpura, and then determine whether purpura develops or the extent of purpura (See Example 1 for a test for the development of purpura disease).
  • the susceptible DNA of the present invention is an agent for imparting purpura disease susceptibility to sorghum in the sense that introduction thereof can impart purpura susceptibility to sorghum
  • the resistance-type DNA of the present invention is a drug for imparting purpura resistance to sorghum in the sense that introduction thereof can impart purpura resistance to sorghum.
  • artificial mutations introduced into DNA to produce the above-mentioned mutant DNA are, for example, site-directed mutagenesis (Kramer, W. & Fritz, HJ., Methods Enzymol). , 154: 350-367, 1987).
  • hybridization technology Southern, E. M., Journal of Molecular Biology, 98: 503, 1975
  • PCR polymerase chain reaction
  • Saiki polymerase chain reaction
  • stringent hybridization conditions include 6M urea, 0.4% SDS, 0.5xSSC conditions, or equivalent stringency hybridization conditions.
  • Isolation of DNA with higher homology can be expected by using conditions with higher stringency, for example, 6M urea, 0.4% SDS, and 0.1xSSC.
  • the isolated DNA is at least 50% or more, more preferably 70% or more, more preferably 90% or more (for example, 95%, 96%, 97%, 98%, 99%) at the nucleic acid level or amino acid sequence level. And the like).
  • Sequence homology can be determined using BLASTN (nucleic acid level) and BLASTX (amino acid level) programs (Altschul et al. J. Mol. Biol., 215: 403-410, 1990). The program is based on the algorithm BLAST (Proc. Natl. Acad. Sci.
  • the form of the DNA encoding the ds1 protein of the present invention is not particularly limited, and includes cDNA, genomic DNA, and chemically synthesized DNA. Preparation of genomic DNA and cDNA can be performed by those skilled in the art using conventional means.
  • genomic DNA for example, genomic DNA is extracted from sorghum to create a genomic library (as vectors, plasmids, phages, cosmids, BACs, PACs, etc. can be used), expanded, and ds1 gene (for example, By conducting colony hybridization or plaque hybridization using a probe prepared based on the nucleotide sequence of SEQ ID NO: 1, 2, 4, 5, 7, 8, 10 or 11). It is possible to prepare.
  • a primer specific to the ds1 gene it is also possible to prepare a primer specific to the ds1 gene and perform PCR using this primer.
  • cDNA is synthesized based on mRNA extracted from sorghum, inserted into a vector such as ⁇ ZAP to create a cDNA library, developed, and colony hybridization as described above.
  • it can be prepared by performing plaque hybridization or by performing PCR.
  • ⁇ DNA used to suppress expression of sorghum susceptibility ds1 gene The present invention also provides DNA used to suppress the expression of the sorghum susceptibility ds1 gene. By introducing these DNAs, purpura resistance can be imparted to sorghum.
  • DNA used to suppress the expression of the sorghum susceptibility-type ds1 gene is a drug for conferring purpura resistance to sorghum.
  • suppression of ds1 gene expression includes both suppression of gene transcription and suppression of protein translation. Further, “suppression of expression” includes not only complete cessation of expression but also decrease of expression.
  • RNAi RNA interference
  • Dicer RNaseIII-like nuclease
  • siRNA short interference RNA
  • a specific protein binds to this siRNA to form a nuclease complex (RISC: RNA-induced silencing complex).
  • RISC RNA-induced silencing complex
  • This complex recognizes and binds to the same sequence as siRNA, and cleaves the transcript (mRNA) of the target gene at the center of the siRNA by RNaseIII-like enzyme activity.
  • the antisense strand of siRNA binds to mRNA and acts as a primer for RNA-dependent RNA polymerase (RsRP) to synthesize dsRNA.
  • RsRP RNA-dependent RNA polymerase
  • the DNA encoding the dsRNA of the present invention includes an antisense DNA encoding an antisense RNA for any region of a target gene transcription product (mRNA), and a sense DNA encoding a sense RNA for any region of the mRNA
  • antisense RNA and sense RNA can be expressed from the antisense DNA and the sense DNA, respectively.
  • dsRNA can be produced from these antisense RNA and sense RNA.
  • the dsRNA expression system of the present invention is held in a vector or the like, there are a case where antisense RNA and sense RNA are expressed from the same vector, and a case where antisense RNA and sense RNA are expressed from different vectors, respectively. is there.
  • the antisense RNA and sense RNA are expressed from the same vector.
  • an antisense RNA expression cassette in which a promoter capable of expressing a short RNA such as polIII is linked upstream of the antisense DNA and the sense DNA.
  • sense RNA expression cassettes are constructed, and these cassettes are inserted into the vector in the same direction or in the opposite direction.
  • an expression system in which antisense DNA and sense DNA are arranged in opposite directions so as to face each other on different strands.
  • one double-stranded DNA in which an antisense RNA coding strand and a sense RNA coding strand are paired is provided, and antisense RNA and sense RNA are separated from each strand on both sides.
  • a promoter is provided oppositely so that it can be expressed.
  • a terminator is added to the 3 'end of each strand (antisense RNA coding strand, sense RNA coding strand). It is preferable to provide.
  • this terminator a sequence in which four or more A (adenine) bases are continued can be used.
  • the two promoter types are preferably different.
  • antisense RNA expression in which a promoter capable of expressing a short RNA such as polIII is linked upstream of antisense DNA and sense DNA, respectively.
  • a cassette and a sense RNA expression cassette are constructed, and these cassettes are held in different vectors.
  • the dsRNA used in the present invention is preferably siRNA.
  • siRNA means a double-stranded RNA consisting of short strands in a range that is not toxic in cells.
  • the length of the target ds1 gene is not particularly limited as long as it can suppress the expression of the target ds1 gene and does not exhibit toxicity.
  • the dsRNA chain length is, for example, 15 to 49 base pairs, preferably 15 to 35 base pairs, and more preferably 21 to 30 base pairs.
  • an appropriate sequence preferably an intron sequence
  • a double-stranded RNA having a hairpin structure preferably an intron sequence
  • hpRNA self-complementary 'hairpin' RNA
  • the DNA encoding the dsRNA of the present invention is not necessarily completely identical to the base sequence of the target ds1 gene, but is at least 70% or more, preferably 80% or more, more preferably 90% or more (for example, 95%, 96%, 97%, 98%, 99% or more). Sequence identity can be determined by the technique described above (BLAST program).
  • the part of the double-stranded RNA in which the RNAs in dsRNA are paired is not limited to a perfect pair, but mismatch (corresponding base is not complementary), bulge (no base corresponding to one strand) ) Or the like may include an unpaired portion.
  • both bulges and mismatches may be included in the double-stranded RNA region where RNAs in dsRNA pair with each other.
  • Another embodiment of the DNA used to suppress the expression of the susceptible ds1 gene of sorghum is as follows: a DNA encoding an antisense RNA complementary to the above-described transcript of the susceptible DNA of the present invention (antisense DNA) It is.
  • Antisense DNA suppresses target gene expression by inhibiting transcription initiation by triplex formation, suppressing transcription by hybridization with a site where an open loop structure is locally created by RNA polymerase, Inhibition of transcription by hybridization with certain RNA, suppression of splicing by hybridization at the junction of intron and exon, suppression of splicing by hybridization with spliceosome formation site, suppression of transition from nucleus to cytoplasm by hybridization with mRNA , Splicing suppression by hybridization with capping site and poly (A) addition site, translation initiation suppression by hybridization with translation initiation factor binding site, translation suppression by hybridization with ribosome binding site near initiation codon, translation of mRNA Area or poly Outgrowth inhibitory peptide chains by the formation of a hybrid with over arm binding sites, and the like gene silencing and the like by hybridization with interaction site between a nucleic acid and protein.
  • the antisense DNA used in the present invention may suppress the expression of the target ds1 gene by any of the actions described above.
  • an antisense sequence complementary to the untranslated region near the 5 ′ end of the mRNA of the target gene is designed, it will be effective for inhibiting translation of the gene.
  • sequences complementary to the coding region or the 3 ′ untranslated region can also be used.
  • a DNA containing an antisense sequence of a non-translated region as well as a translated region of a gene is also included in the antisense DNA used in the present invention.
  • the antisense DNA to be used is linked downstream of a suitable promoter, and preferably a sequence containing a transcription termination signal is linked on the 3 ′ side.
  • Antisense DNA is a phosphorothioate method (Stein, Nucleic Acids Res., 16) based on the sequence information of the disease-susceptible DNA of the present invention (for example, the DNA comprising the nucleotide sequence of SEQ ID NO: 1 or 4). : 3209-3221, 1988).
  • the prepared DNA can be introduced into sorghum by a known method described later.
  • the sequence of the antisense DNA is preferably complementary to the endogenous susceptible ds1 gene transcript of sorghum, but may not be completely complementary as long as it can effectively inhibit gene expression. Good.
  • the transcribed RNA preferably has a complementarity of 90% or more (eg, 95%, 96%, 97%, 98%, 99% or more) to the transcript of the target gene.
  • the length of the antisense DNA is at least 15 bases or more, preferably 100 bases or more, more preferably 500 bases or more.
  • the length of the antisense DNA used is shorter than 5 kb, preferably shorter than 2.5 kb.
  • Another embodiment of the DNA used for suppressing the expression of the sorghum susceptibility type ds1 gene is a DNA encoding an RNA having a ribozyme activity that specifically cleaves the transcript of the susceptibility type DNA of the present invention.
  • Some ribozymes have a group I intron type or a size of 400 nucleotides or more like M1RNA contained in RNaseP, but some have an active domain of about 40 nucleotides called hammerhead type or hairpin type ( Makoto Koizumi and Eiko Otsuka, Protein Nucleic Acid Enzymes, 35: 2191, 1990).
  • the self-cleaving domain of hammerhead ribozyme cleaves 3 ′ of C15 of G13U14C15, but it is important for U14 to form a base pair with A at position 9, and the base at position 15 is In addition to C, it is shown that it can also be cut by A or U (Koizumi et. Al., FEBS Lett. 228: 225, 1988).
  • the ribozyme substrate binding site is designed to be complementary to the RNA sequence near the target site, it is possible to create a restriction enzyme-like RNA-cleaving ribozyme that recognizes the UC, UU, or UA sequence in the target RNA.
  • Hairpin ribozymes are also useful for the purposes of the present invention. Hairpin ribozymes are found, for example, in the minus strand of satellite RNA of tobacco ring spot virus (Buzayan, Nature 323: 349, 1986). It has been shown that this ribozyme can also be designed to cause target-specific RNA cleavage (Kikuchi and Sasaki, Nucleic Acids Res. 19: 6751, 1992, Hiroshi Kikuchi, Chemistry and Biology 30: 112, 1992). A ribozyme designed to cleave the target is linked to a promoter, such as the cauliflower mosaic virus 35S promoter, and a transcription termination sequence so that it is transcribed in sorghum cells.
  • a promoter such as the cauliflower mosaic virus 35S promoter
  • Such structural units can be arranged in tandem so that multiple sites in the target gene can be cleaved to further increase the effect (Yuyama et al., Biochem. Biophys. Res. Commun. 186: 1271, 1992 ).
  • the transcription product of the target ds1 gene can be specifically cleaved to suppress the expression of the gene.
  • the present invention also introduces a vector containing the DNA of the present invention (susceptible DNA, resistant DNA, DNA for suppressing the expression of the ds1 gene), the DNA of the present invention or a vector containing the same.
  • a sorghum cell, a sorghum plant containing the cell, a sorghum plant that is a descendant or clone of the plant, and a propagation material of the sorghum plant are provided.
  • an autonomously replicable vector or a vector capable of homologous recombination in a chromosome can be used.
  • the vector of the present invention usually contains an appropriate expression promoter so that the DNA of the present invention is expressed after introduction into sorghum cells.
  • promoters used in the present invention include cauliflower mosaic virus-derived 35S promoter and corn-derived ubiquitin promoter.
  • the vector can appropriately include a selection marker, a replication origin, a terminator, a polylinker, an enhancer, a ribosome binding site, and the like.
  • the DNA of the present invention is located downstream of the promoter, and a terminator is located downstream of the DNA. Examples of the terminator include a terminator derived from a cauliflower mosaic virus and a terminator derived from a nopaline synthase gene.
  • the form of the sorghum cell into which the vector is introduced is not particularly limited, and examples thereof include immature embryos, callus, pollen and the like.
  • a method for introducing the vector into a sorghum cell and regenerating a sorghum plant a conventional method in this technical field can be used.
  • a method of regenerating a plant body by introducing a gene into an immature embryo or a callus by an Agrobacterium method or a particle gun method, or a method of pollination using pollen that has been gene-transferred by ultrasonic waves is preferable.
  • the above DNA of the present invention can be introduced into sorghum as exogenous DNA, but can also be introduced into sorghum by crossing with varieties having the DNA of the present invention.
  • “Introduction” in the present invention includes both forms.
  • progeny can be obtained from the plant by sexual reproduction or asexual reproduction. It is also possible to obtain a propagation material (for example, callus, protoplast, pollen, seed, cut ear, etc.) from the sorghum plant, its progeny or clone, and mass-produce the plant based on them.
  • the present invention includes a plant cell into which the DNA of the present invention is introduced, a plant containing the cell, a progeny and clone of the plant, and a propagation material for the plant, its progeny and clone.
  • the sorghum plant into which the susceptible DNA of the present invention has been introduced is used for, for example, development (screening) of a drug for imparting purpura resistance to sorghum and for elucidating the mechanism of purpura disease onset. It can be used as a plant.
  • the sorghum plant into which the resistance type DNA of the present invention or the DNA for suppressing the expression of the ds1 gene of the present invention is introduced is compared with a susceptible sorghum plant into which these DNAs are not introduced, The yield can be expected to increase, and it can be used as a more useful crop or biomass.
  • the present invention also provides a method for producing a sorghum imparted with resistance to purpura disease, characterized by suppressing the expression or function of the susceptibility type DNA (susceptible type ds1 gene) of the present invention in sorghum. provide.
  • “giving” purpura disease resistance to sorghum is not only to impart purpura resistance to a variety that does not have purpura disease resistance at all, but also to a certain purpura disease. It also includes further increasing the resistance to purpura in varieties having resistance.
  • One embodiment for suppressing the expression or function of the susceptible DNA of the present invention in sorghum is to introduce the above-described resistant DNA of the present invention into sorghum. Because purpura resistance in sorghum is controlled by a single recessive gene, in order to confer a purpura resistance trait to sorghum, both ds1 alleles in individuals are usually made resistant DNA There is a need. As a result, only resistant DNA is expressed in the individual, and purple spot disease resistance can be imparted to sorghum. Introduction of the resistant DNA of the present invention into the sorghum chromosome can be performed by, for example, mating or homologous recombination. Instead of introducing resistant DNA, a specific DNA sequence may be introduced into the susceptible DNA on the sorghum chromosome to destroy its function.
  • Another embodiment for suppressing the expression or function of the susceptible DNA of the present invention in sorghum is to introduce DNA for suppressing the expression of the ds1 gene of the present invention into the sorghum.
  • inventions for suppressing the expression or function of the susceptible DNA of the present invention in sorghum include, for example, binding to a drug that suppresses the expression of the susceptible DNA or a translation product of the susceptible type and The use of a suppressive drug is also considered.
  • Method for determining susceptibility or resistance to purpura in sorghum The present invention also provides a method of determining susceptibility or resistance to purpura in sorghum.
  • One embodiment of the determination method of the present invention is a method characterized by analyzing the base sequence of the ds1 gene or its expression control region in sorghum and comparing it with the control base sequence.
  • the expression control region of BTx623 is SEQ ID NO: 13
  • the expression control region of bmr-6 is SEQ ID NO: 14
  • the expression control region of nasty MS3B is SEQ ID NO: 15
  • the expression control region of SIL-05 is SEQ ID NO: : 16 shows the expression control region of Greenleaf in SEQ ID NO: 17.
  • an amplification product obtained by amplifying the ds1 gene or its expression control region DNA by PCR can be used.
  • primers used are not limited as long as it can specifically amplify the ds1 gene or its expression control region, ds1 gene or sequence information of the expression control region (e.g., SEQ ID NO: 1,2,4,5,7,8,10,11,13,14,15,16 or 17). Suitable primers include those listed in Tables 3-7. A specific base sequence of the ds1 gene or its expression control region can be amplified by appropriately combining these primers.
  • the primers described in Table 3 and Table 4 are primers for amplifying the base sequences including the SSR regions described in Table 1 and Table 2.
  • the primers listed in Table 5 and Table 6 are primers for amplifying a base sequence containing insertion / deletion markers (difference in base sequence between varieties due to base insertion / deletion) (# 21 in Table 5). (See FIG. 8 for the nucleotide sequences targeted by the primers shown in Table 6).
  • the primers listed in Table 7 are primers for amplifying the coding region and upstream region of the ds1 gene.
  • control base sequence to be compared with the base sequence of the ds1 gene in the test sorghum is typically the base sequence of the ds1 gene in the susceptible or resistant variety.
  • the determined base sequence of the ds1 gene and the base sequence in the susceptible strain eg, SEQ ID NOs: 1, 2, 4, 5) or the base sequence in the resistant strain (eg, SEQ ID NOs: 7, 8, 10, 11) ), It is possible to evaluate whether the ds1 gene in the test sorghum is resistant or susceptible.
  • the ds1 gene in the test sorghum is determined to have a high probability of being resistant.
  • the expression control region of the ds1 gene in the test sorghum is determined to be highly resistant.
  • Whether the base sequence of the ds1 gene in the test sorghum or its expression control region is different from the base sequence of the control should be analyzed indirectly by various methods other than the determination of the direct base sequence described above. Can do. Examples of such methods include PCR-SSCP (single-strand conformation polymorphism) method, RFLP method using restriction fragment length polymorphism (RFLP), Examples include PCR-RFLP, denaturant gradient gel electrophoresis (DGGE), allele specific oligonucleotide (ASO) hybridization, and ribonuclease A mismatch cleavage.
  • PCR-SSCP single-strand conformation polymorphism
  • RFLP restriction fragment length polymorphism
  • DGGE denaturant gradient gel electrophoresis
  • ASO allele specific oligonucleotide
  • DNA can be prepared from the test sorghum using a conventional method, for example, CTAB method.
  • sorghum for preparing DNA not only a plant body in which sorghum has grown, but also sorghum seeds and seedlings can be used.
  • the base sequence can be determined by a conventional method such as the dideoxy method or the Maxam-Gilbert method. In determining the base sequence, a commercially available sequence kit and sequencer can be used.
  • Whether a mutation in the base sequence of the expression control region affects the expression of the ds1 gene is determined by constructing a vector in which a reporter gene is linked downstream of the expression control region having the mutation so that the vector can be expressed. It can be determined by introducing into sorghum cells and detecting the reporter activity.
  • Another embodiment of the determination method of the present invention is a method characterized by detecting the expression of the ds1 gene in sorghum or the molecular weight of the expression product.
  • detection of gene expression includes both detection at the transcription level and detection at the translation level.
  • detection of expression is intended to include not only detection of the presence or absence of expression but also detection of the degree of expression.
  • Detection at the transcription level can be carried out by a conventional method such as RT-PCR (Reverse transcribed-Polymerase chain reaction) or Northern blotting.
  • Primers used in the case of carrying out the PCR is not limited as long as it can specifically amplify the ds1 gene, ds1 gene sequence information (e.g., SEQ ID NO: 1,2,4,5,7,8 , 10 or 11).
  • a suitable example of the primer is a combination of # 21F and # 21R described in Table 7 above.
  • detection at the translation level can be performed by a conventional method, for example, Western blotting.
  • the antibody used for Western blotting may be a polyclonal antibody or a monoclonal antibody, and methods for preparing these antibodies are well known to those skilled in the art.
  • ds1 gene e.g., BTx623, bmr-6
  • a subject variety expression level of ds1 gene e.g., BTx623, bmr-6
  • morbidity is the molecular weight of the expression products of ds1 gene If the molecular weight is significantly different from that in a sex variety (for example, BTx623, bmr-6), it is determined that the test sorghum has a high probability of being purpura-resistant.
  • Another embodiment of the determination method of the present invention is a method characterized by analyzing the base sequence of a molecular marker linked to the ds1 gene in a test sorghum and comparing it with a base sequence of a control.
  • the “molecular marker” refers to a DNA region that is genetically linked to the ds1 gene and is distinguishable from other DNA regions. The closer the molecular marker is located to the ds1 gene, the easier it is to be inherited simultaneously with the ds1 gene. Therefore , the molecular marker is highly useful in the determination method of the present invention.
  • Molecular markers of the present invention having a high utility is usually one that is present within 50kbp from both end bases of the coding region of ds1 gene, more preferably within 20 kbp, more preferably those present within 10 kbp.
  • Preferred embodiments of the molecular marker of the present invention are insertion / deletion markers, SSR (simple repetitive sequence) markers, and SNP (single nucleotide polymorphism) markers.
  • An insertion / deletion marker is a DNA polymorphism caused by insertion and / or deletion of a base.
  • the SSR marker is a unit of 2 or 3 bases (for example, “CA”, “CG”, “TA”, “TC”, “AGG”, “CTT”, “CGC”, “GAG”, etc.) several times It is a repeating sequence that repeats several hundred times. Since the number of repetitions varies depending on the individual or strain, this difference in the number of repetitions can be used as a DNA polymorphism.
  • the SNP marker is a DNA polymorphism caused by substitution of one base in the DNA base sequence.
  • a person skilled in the art can appropriately extract a base sequence serving as a molecular marker based on, for example, comparison of base sequences of ds1 gene between varieties (FIGS. 7 and 8).
  • the nucleotide sequence of the insertion / deletion marker is subjected to PCR using a primer containing the nucleotide sequence containing the marker region, and the obtained amplification product is electrophoresed.
  • the method can be carried out by detecting the difference in the position of the DNA band on the gel.
  • the analysis of the base sequence in the SSR marker is not limited to the method of directly determining the base sequence and detecting it as a difference in the repeat sequence, but also using PCR using a primer capable of amplifying the base sequence containing the repeat portion.
  • the amplification product thus obtained can be electrophoresed and detected as a difference in the position of the DNA band on the gel.
  • the analysis of the nucleotide sequence in the SNP marker is performed, for example, by performing PCR using a primer that can amplify the nucleotide sequence including the single nucleotide polymorphism part, and the nucleotide sequence incorporated into the single nucleotide polymorphism part in the obtained amplification product.
  • the method can be carried out by specifying the type with a polarization fluorescence analyzer.
  • control base sequence a base sequence of a known molecular marker linked to the ds1 gene can be used.
  • a base sequence containing the insertion / deletion marker described in Tables 5 and 6 is amplified with the primers described in Tables 5 and 6, the base sequence containing the insertion / deletion marker described in Tables 5 and 6 is susceptible to the disease depending on the sequence or chain length of the amplified DNA fragment Or resistance type (see FIG. 8).
  • the primer set of FIG. 9A can be used suitably for such discrimination (Tables 8 and 9).
  • SSR markers listed in Tables 1 and 2 ds1 gene linkage such susceptible type BTx623.
  • the nucleotide sequence containing the marker is amplified with the primers described in Tables 3 and 4, it is possible to determine whether it is a susceptible type or a resistant type based on the sequence or chain length of the amplified DNA fragment. it can.
  • the comparison between the base sequence of the molecular marker in the test sorghum and the base sequence of the control is not limited to the direct base sequence comparison, but other indicators that can evaluate the difference in the base sequence (for example, the PCR described above) By comparison of the molecular weight etc. of the amplification products by
  • the present invention also provides a method for breeding purpura-resistant sorghum.
  • the breeding method of the present invention comprises (a) a step of crossing a purple spot disease resistant sorghum variety with any sorghum variety, (b) a susceptibility or resistance to purpura disease in an individual obtained by the crossing, A step of determining by the determination method of the present invention, and (c) a step of selecting a variety which has been determined to be resistant to purpura.
  • Examples of “arbitrary sorghum varieties” to be bred with purple spot resistant sorghum varieties include, but are not limited to, susceptible varieties and individuals obtained by crossing susceptible varieties and resistant varieties. .
  • By utilizing the breeding method of the present invention it becomes possible to select purple spot disease-resistant sorghum at the seed or seedling stage, and it is possible to grow varieties having purpura-resistant traits. This can be done in a short period of time.
  • ds1 gene F3 from F5 population obtained by crossing a narrowing resistant variety SLIL-05 in existing areas and susceptible product species bmr-6 of, utilizing a polymorphic marker information Sorghum
  • the purpura disease susceptibility gene ( ds1 ) was mapped (FIGS. 1 and 2). See Tables 1 to 6 for information on polymorphic markers and primers used for mapping. Some of the SSR markers are described in the literature (Yonemaru J, et al., DNA Res 16: 187-193, 2009).
  • F3 population (175 individuals) performs mapping using SSR markers (SB3067, SB3146), purpura spot disease susceptibility gene ds1 was found to be in Zajo to chromosome 5.
  • PCR for amplifying a base sequence containing a polymorphic marker
  • 5 ⁇ l of PCR reagent GoTaq (R) Green Master Mix
  • 4.4 ⁇ l of distilled water 0.1 ⁇ l of DNA (20 ng / ⁇ l
  • primers A total of 10 ⁇ l of reaction solution containing 0.5 ⁇ l of 10p
  • the purpura disease test was carried out by spraying pathogenic bacteria (Bipolaris sorghicola (Lefebvre & Sherwin) Alcorn) on sorghum or by inoculating them by culturing in barley medium.
  • pathogenic bacteria Bopolaris sorghicola (Lefebvre & Sherwin) Alcorn
  • pathogenic bacteria distilled water (0.01% tween20) containing purpura disease bacteria at a concentration of 10 4 to 10 5 cells / ml is sprayed on the leaves of sorghum to such an extent that it gets wet. For 16 hours in a plastic bag.
  • the cells were transferred to a greenhouse at 25 ° C. under bright conditions, and after 7 to 10 days, the disease severity (sickness area / total area) was tested.
  • Example 3 creates a Bac library of tissue specificity and the varietal differences resistant varieties SLIL-05 morbidity product species bmr-6 of ds1 gene expression (Ashikawa I. et al, Genetics 180 : 2267- 2276, 2008), Bac clones containing candidate gene regions were screened and their nucleotide sequences were determined. As a result, it was found that bmr-6 has no salt-inducible protein gene. As a result, the salt-inducible protein gene was excluded from the candidate gene candidates, and the receptor kinase gene was designated as a purpura disease susceptibility gene.
  • the receptor kinase gene was highly expressed in the foliage in the diseased bmr-6.
  • SIL-05 almost no expression was observed in the foliage (upper figure 4).
  • expression was observed in susceptible varieties, but the expression level was low in resistant varieties (bottom of FIG. 4). From this, it is considered that sorghum exhibits purpura resistance if there is no gene expression of the receptor kinase gene.
  • Example 4 to determine the comparative receptor kinase gene near nucleotide sequence of the sequence of ds1 genes between varieties, BTx623 (susceptible), SIL-05 (resistant), and bmr-6 between (susceptible) Compared.
  • the amino acid sequence of the coding region of this gene is completely identical between SIL-05 and BTx623, and bmr-6 has three base substitutions compared to BTx623, and one of these mutations has an amino acid sequence. It was accompanied by mutation (851H ⁇ Q) (FIG. 5).
  • SIL-05 a part of the upstream promoter region of the gene was deleted, and it was speculated that the expression level of mRNA was small (FIGS. 6 and 7).
  • the sorghum cultivar, Nasatsu MS3B is also resistant to purpura, but when the nucleotide sequence of the receptor kinase gene of this cultivar was analyzed, a stop codon was present in the gene coding region (FIGS. 6 and 7). As a result, it was thought that normal proteins were not synthesized.
  • Example 5 Relationship between polymorphisms in ds1 candidate genes of sorghum varieties from various regions of the world and susceptibility and resistance to purpura disease DNA extraction from sorghum plant leaves used the C-TAB method ( MURRAY, MG, and WF THOMPSON, Nucleic Acid Reserach 8: 4321-4325, 1980). PCR was performed using the extracted DNA. The PCR conditions were the same as in Example 1.
  • primer sets listed in Table 7 were 520F and 141R (primer set # 1), 1141F and 1823R (primer set # 2), # 21GLF and # 21GLR (primer). Set # 3), # 21F and # 21R (primer set # 4) were used (FIG. 9A).
  • primer set # 4 restriction enzyme treatment was performed after PCR and before electrophoresis. Specifically, after PCR, 5 ul of the PCR sample was separated, and the restriction enzyme MlyI was added to make a total amount of 20 ul. A sample treated with this reaction system at 37 ° C. for 1 hour was electrophoresed.
  • Tests for purpura of each variety listed in Table 8 and Table 9 were conducted in the same manner as in Example 1.
  • the result (representative example) is shown in FIG.
  • the resistance type for purpura disease susceptibility could be classified into R1 to R4 (Table 8, Table 9).
  • the classification by genotype determined using DNA was consistent with the results of the actual inoculation test, and it was found that the susceptibility and resistance of purpura disease can be tested by PCR test.
  • the susceptibility gene ds1 of sorghum purpura has been identified, and the mechanism of onset of sorghum purpura has been clarified.
  • To determine the susceptibility and resistance of purpura it has been necessary to conduct infection tests with pathogenic bacteria.However, if the ds1 gene is used as a marker, sorghum is not exposed to the pathogenic bacteria, and seed or Even at the plant stage, it is possible to make a simple determination, and it is possible to efficiently breed purple spot disease resistant varieties. Breeding purpura-resistant sorghum contributes to the reduction of purpura disease damage, and is expected to improve biomass production and produce high-quality feed.

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

As the results of a mapping of a purple leaf spot disease gene ds1 in populations F3 to F5 obtained by mating a purple leaf spot-resistant variety with a disease variety, the gene was successfully identified. Further, it was discovered that resistance to purple leaf spot can be imparted to sorghum by inhibiting the expression of the ds1 gene or mutating the same.

Description

ソルガム紫斑点病関連遺伝子およびその用途Sorghum purpura-related genes and uses thereof
 本発明は、ソルガム紫斑点病の罹病性遺伝子および抵抗性遺伝子、ソルガム紫斑点病の罹病性および抵抗性の判定方法、ならびに紫斑点抵抗性のソルガムの作出方法に関する。 The present invention relates to a susceptibility gene and resistance gene for sorghum purpura, a method for determining susceptibility and resistance to sorghum purpura, and a method for producing sorghum with purpura resistance.
 紫斑点病(Purple leaf spot)は、糸状菌によって引き起こされる斑点性病害で、関東以南の温暖地で発生する病害である。日本国内で栽培されているソルガム(モロコシ属植物)品種は、その8割が紫斑点病に罹病性であり、近年、その発生が拡大傾向にある。紫斑点病に感染した個体では、一般的には葉に赤紫褐色の斑点が生じる。品種によっては黄褐色、橙色、赤から赤褐色の斑点を生じる場合もある。この斑点が広がって、長さ0.5~2cmで幅0.3~1cmの紡錘形病斑となる。 Purple leaf spot is a spotted disease caused by filamentous fungi, and is a disease that occurs in warm regions south of Kanto. Of the sorghum (sorghum plant) varieties cultivated in Japan, 80% are susceptible to purpura, and in recent years its incidence has been increasing. Individuals infected with purpura generally have reddish-brown spots on the leaves. Depending on the variety, yellowish brown, orange, red to reddish brown spots may occur. These spots spread to form spindle-shaped lesions with a length of 0.5-2 cm and a width of 0.3-1 cm.
 ソルガムは、これまで、日本国においては、主に家畜飼料として栽培されていたが、近年になり、バイオ燃料(エタノール)の原料としても注目されるようになってきた。このため紫斑点病の病害によるソルガムの減収を防ぐことは、農業政策のみならず、エネルギー政策の上でも重要な課題である。 So far, sorghum has been mainly cultivated as a livestock feed in Japan, but in recent years, it has been attracting attention as a raw material for biofuel (ethanol). Therefore, preventing the decrease in sorghum sales due to the disease of purple spot disease is an important issue not only in agricultural policy but also in energy policy.
 これまでソルガムにおいては、その主たる用途が家畜飼料であったことなどから、紫斑点病に対する防除は、ほとんど行われてこなかったのが現状である。 So far, sorghum has been rarely controlled against purpura because its main use was livestock feed.
 その一方、ソルガムの品種間で、紫斑点病に対する抵抗性に差異があることが知られていた。このため抵抗性品種の育種を目的に、この抵抗性の遺伝様式を解明するための試みがなされてきた。その結果、ソルガム紫斑点病に対する抵抗性が、単一劣性遺伝子支配であることが解明されるに至った(非特許文献1)。 On the other hand, it was known that there was a difference in resistance to purpura between sorghum varieties. For this reason, attempts have been made to elucidate the mode of inheritance of resistance for the purpose of breeding resistant varieties. As a result, it has been clarified that the resistance to sorghum purpura disease is controlled by a single recessive gene (Non-patent Document 1).
 しかしながら、いまだに、ソルガム紫斑点病の罹病性および抵抗性の原因となる遺伝子は同定されておらず、その染色体上の存在位置および実体は不明のままである。 However, the gene responsible for the susceptibility and resistance of sorghum purpura has not been identified yet, and its location and substance on the chromosome remain unknown.
 本発明は、このような状況に鑑みてなされたものであり、その目的は、ソルガム紫斑点病の罹病性および抵抗性の原因となる遺伝子を同定し、ソルガム紫斑点病の発症の機構を解明することにある。また、本発明は、解明されたソルガム紫斑点病の発症の機構に基づき、ソルガム紫斑点病の罹病性および抵抗性を簡便に判定する方法を提供することを目的とする。さらなる本発明の目的は、解明されたソルガム紫斑点病の発症の機構に基づき、紫斑点病に対する抵抗性が高められたソルガムを効率的に作出する方法を提供することにある。 The present invention has been made in view of such circumstances, and its purpose is to identify genes responsible for the susceptibility and resistance of sorghum purpura and elucidate the mechanism of onset of sorghum purpura. There is to do. Another object of the present invention is to provide a method for easily determining the susceptibility and resistance of sorghum purpura based on the elucidated mechanism of sorghum purpura. A further object of the present invention is to provide a method for efficiently producing sorghum with enhanced resistance to purpura based on the elucidated mechanism of the development of sorghum purpura.
 本発明者らは、上記課題を解決すべく、ソルガムの抵抗性品種SLIL-05と罹病製品種bmr-6の大規模な交配集団(F3からF5)において、ソルガムのSSRマーカーおよび挿入・欠失マーカーを利用して、紫斑点病罹病性遺伝子のマッピングを行った(図1、図2)。 In order to solve the above-mentioned problems, the present inventors have established a sorghum SSR marker and insertion / deletion in a large cross population (F3 to F5) of a sorghum resistant variety SLIL-05 and a diseased product type bmr-6. The marker was used to map the purpura disease susceptibility gene (FIGS. 1 and 2).
 具体的には、まず、F3個体(175個体)について、SSRマーカーを用いたラフマッピングを行い、紫斑点病罹病性遺伝子が染色体5番に座乗していることを解明した。次いで、F4個体(640個体)について、SSRマーカーSB3056からSB3178の間で組換えのある個体(229個体)を選抜し、圃場にて紫斑点病の調査を行い、紫斑点病罹病性遺伝子の存在領域を、約246kbpの領域に絞り込んだ。さらに、ソルガム品種BTx623の塩基配列情報に基づいて見出した挿入・欠失マーカーを用いたマッピングを行い、紫斑点病罹病性遺伝子の存在領域を約96kbpの領域に絞り込んだ。次いで、F5個体(4235個体)について、この約96kbpの候補領域に存在する挿入・欠失マーカーおよびSSRマーカーを用いたスクリーニングを行い、紫斑点病罹病性遺伝子の存在領域を最終的に約26kbpにまで絞り込んだ。 Specifically, first, rough mapping using an SSR marker was performed on F3 individuals (175 individuals) to elucidate that the purpura disease susceptibility gene is located on chromosome 5. Next, for F4 individuals (640 individuals), individuals with recombination between SSR markers SB3056 to SB3178 (229 individuals) were selected and purpura disease was investigated in the field, and the presence of purpura disease susceptibility genes The region was narrowed down to a region of about 246 kbp. Furthermore, mapping was performed using insertion / deletion markers found based on the nucleotide sequence information of sorghum variety BTx623, and the region of purpura disease susceptibility gene was narrowed down to about 96 kbp. Next, F5 individuals (4235 individuals) were screened using the insertion / deletion marker and SSR marker present in the candidate region of about 96 kbp, and the region where the purpura disease susceptibility gene exists was finally reduced to about 26 kbp. Narrow down to.
 本発明者らは、絞り込んだ領域における遺伝子の発現をRT-PCRにて調査したところ、複数の候補遺伝子のうち、特定の候補遺伝子(以下、「ds1遺伝子」と称する)の発現パターンのみが、紫斑点病の罹病性、抵抗性の区別と一致することを見出した(図3)。また、抵抗性品種SLIL-05と罹病製品種bmr-6での組織特異的遺伝子発現を調べたところ、罹病性品種bmr-6では、ds1遺伝子が茎葉部で多く発現していたが、抵抗性品種SIL-05では茎葉部での発現は、ほとんどなく見られなかった(図4)。また、罹病性品種ではmRNAの発現が見られたが、抵抗性品種ではmRNAの発現量は少なかった(図4)。ds1遺伝子周辺の塩基配列を決定し、そのコードするアミノ酸配列を品種間で比較したところ、抵抗性品種のSIL-05は、罹病性品種のBTx623と完全に一致していた(図5)。しかしながら、SIL-05では遺伝子の上流プロモーター領域が一部欠損していた(図6、図7)。このため、ds1遺伝子のプロモーター領域における欠損が、SIL-05におけるmRNAの発現の低下の原因であると推測された。罹病性品種のBTx623と罹病性品種bmr-6とでは、1アミノ酸の置換が認められた。一方、抵抗性品種の那系MS3BおよびGreenleafにおけるds1遺伝子では、コード領域に停止コドンが存在しており、正常な蛋白質が合成されないと推測された(図5、図6)。これら事実から、ds1遺伝子が紫斑点病の罹病性遺伝子であり、その発現抑制や変異によって、本来の機能が発揮されないことにより、個体に紫斑点病抵抗性が付与されることが判明した。 The present inventors investigated the expression of genes in the narrowed region by RT-PCR. Among the plurality of candidate genes, only the expression pattern of a specific candidate gene (hereinafter referred to as “ ds1 gene”) It was found that it was consistent with the distinction between susceptibility and resistance to purpura (FIG. 3). In addition, when the tissue-specific gene expression in the resistant variety SLIL-05 and the diseased product species bmr-6 was examined, the diseased variety bmr-6 expressed a large amount of ds1 gene in the foliage. In the cultivar SIL-05, almost no expression in the foliage was observed (FIG. 4). In addition, mRNA expression was observed in susceptible varieties, but mRNA expression was low in resistant varieties (FIG. 4). When the nucleotide sequence around the ds1 gene was determined and the amino acid sequences encoded by the varieties were compared among the cultivars, the resistant cultivar SIL-05 was completely consistent with the susceptible cultivar BTx623 (FIG. 5). However, SIL-05 partially lacked the upstream promoter region of the gene (FIGS. 6 and 7). For this reason, it was speculated that the ds1 gene promoter region deficiency was responsible for the decrease in mRNA expression in SIL-05. A substitution of one amino acid was observed in the susceptible variety BTx623 and the susceptible variety bmr-6. On the other hand, in the ds1 gene in那系MS3B and Greenleaf resistant varieties, there are stop codons in the coding region was estimated to have not combined the normal protein (Figure 5, Figure 6). From these facts, it was found that the ds1 gene is a susceptibility gene for purpura disease, and by suppressing its expression or mutation, the original function is not exerted, thereby imparting purpura disease resistance to an individual.
 さらに、ds1遺伝子のコード領域および上流域を増幅するための特定のプライマーを調製し、これらを用いて、ソルガムの各品種の遺伝子増幅を行った結果、遺伝子の増幅産物のサイズ(遺伝子型)とソルガムの罹病性、抵抗性との間に相関関係が見出された(表8、9)。 Furthermore, specific primers for amplifying the coding region and upstream region of the ds1 gene were prepared, and using these, gene amplification of each sorghum variety resulted in the size (genotype) of the amplified product of the gene and Correlations were found between sorghum susceptibility and resistance (Tables 8 and 9).
 以上の知見に基づいて、本発明者らは、同定されたds1遺伝子を標的として紫斑点病の罹病性および抵抗性の判定が可能であり、さらに、罹病性型のds1遺伝子の発現や機能を抑制することにより、ソルガムに紫斑点病に対する抵抗性を付与することが可能であることを見出し、本発明を完成するに至った。 Based on the above findings, the present inventors can determine the susceptibility and resistance of purpura disease by targeting the identified ds1 gene, and further determine the expression and function of the susceptible ds1 gene. As a result of the suppression, it was found that resistance to purpura can be imparted to sorghum, and the present invention has been completed.
 本発明は、より詳しくは、下記を提供するものである。
<1> ソルガムに紫斑点病罹病性を付与する活性を有するタンパク質をコードする、下記(a)~(d)のいずれかに記載のDNA。
(a)配列番号:3または6に記載のアミノ酸配列からなるタンパク質をコードするDNA
(b)配列番号:1、2、4または5に記載の塩基配列のコード領域を含むDNA
(c)配列番号:3または6に記載のアミノ酸配列において1もしくは複数のアミノ酸が置換、欠失、付加、および/または挿入されたアミノ酸配列からなるタンパク質をコードするDNA
(d)配列番号:1、2、4または5に記載の塩基配列からなるDNAとストリンジェントな条件でハイブリダイズするDNA
<2> ソルガムに紫斑点病抵抗性を付与する活性を有するタンパク質をコードする、下記(a)~(d)のいずれかに記載のDNA。
(a)配列番号:9または12に記載のアミノ酸配列からなるタンパク質をコードするDNA
(b)配列番号:7、8、10または11に記載の塩基配列のコード領域を含むDNA
(c)配列番号:3、6、9または12に記載のアミノ酸配列において1もしくは複数のアミノ酸が置換、欠失、付加、および/または挿入されたアミノ酸配列からなるタンパク質をコードするDNA
(d)配列番号:1、2、4、5、7、8、10、または11に記載の塩基配列からなるDNAとストリンジェントな条件でハイブリダイズするDNA
<3> ソルガムに紫斑点病抵抗性を付与する活性を有するタンパク質をコードする、下記(a)~(c)のいずれかに記載のDNA。
(a)<1>に記載のDNAの転写産物と相補的な二重鎖RNAをコードするDNA
(b)<1>に記載のDNAの転写産物と相補的なアンチセンスRNAをコードするDNA
(c)<1>に記載のDNAの転写産物を特異的に開裂するリボザイム活性を有するRNAをコードするDNA
<4> <1>~<3>のいずれかに記載のDNAを含むベクター。
<5> <1>~<3>のいずれかに記載のDNAが導入されたソルガム細胞。
<6> <5>に記載の細胞を含むソルガム植物体。
<7> <6>に記載の植物体の子孫またはクローンである、ソルガム植物体。
<8> <6>または<7>に記載のソルガム植物体の繁殖材料。
<9> ソルガムにおける<1>に記載のDNAの発現または機能を抑制することを特徴とする、紫斑点病抵抗性が付与されたソルガムの作出方法。
<10> ソルガムに<2>または<3>に記載のDNAを導入する工程を含む、ソルガムに紫斑点病抵抗性が付与されたソルガムの作出方法。
<11> <2>もしくは<3>に記載のDNA、または該DNAが挿入されたベクターを含む、ソルガムに紫斑点病抵抗性を付与するための薬剤。
<12> ソルガムにおける紫斑点病の罹病性または抵抗性を判定する方法であって、被検ソルガムにおける<1>もしくは<2>に記載のDNAまたはその発現制御領域の塩基配列を解析し、対照の塩基配列と比較することを特徴とする方法。
<13> ソルガムにおける紫斑点病の罹病性または抵抗性を判定する方法であって、ソルガムにおける<1>もしくは<2>に記載のDNAの発現または発現産物の分子量を検出することを特徴とする方法。
<14> ソルガムにおける紫斑点病の罹病性または抵抗性を判定する方法であって、被検ソルガムにおける、<1>もしくは<2>に記載のDNAと連鎖する分子マーカーの塩基配列を解析し、対照の塩基配列と比較することを特徴とする方法。
<15> 紫斑点病抵抗性のソルガムを育種する方法であって、
(a)紫斑点病抵抗性のソルガム品種と任意のソルガム品種とを交配させる工程、
(b)工程(a)における交配により得られた個体における紫斑点病の罹病性または抵抗性を、<12>から<14>のいずれかに記載の方法により判定する工程、および
(c)紫斑点病の抵抗性を有すると判定された品種を選抜する工程、を含む方法。
More specifically, the present invention provides the following.
<1> The DNA according to any one of the following (a) to (d), which encodes a protein having an activity of imparting purpura disease susceptibility to sorghum.
(A) DNA encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 3 or 6
(B) DNA comprising the coding region of the base sequence described in SEQ ID NO: 1, 2, 4 or 5
(C) DNA encoding a protein comprising an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the amino acid sequence of SEQ ID NO: 3 or 6
(D) DNA that hybridizes under stringent conditions with the DNA comprising the nucleotide sequence set forth in SEQ ID NO: 1, 2, 4 or 5
<2> The DNA according to any one of the following (a) to (d), which encodes a protein having an activity of imparting purpura resistance to sorghum.
(A) DNA encoding a protein comprising the amino acid sequence set forth in SEQ ID NO: 9 or 12
(B) DNA containing the coding region of the base sequence described in SEQ ID NO: 7, 8, 10 or 11
(C) DNA encoding a protein comprising an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the amino acid sequence of SEQ ID NO: 3, 6, 9 or 12
(D) DNA that hybridizes under stringent conditions with the DNA comprising the nucleotide sequence of SEQ ID NO: 1, 2, 4, 5, 7, 8, 10, or 11
<3> The DNA according to any one of the following (a) to (c), which encodes a protein having an activity of imparting purpura resistance to sorghum.
(A) DNA encoding a double-stranded RNA complementary to the transcription product of DNA according to <1>
(B) DNA encoding an antisense RNA complementary to the transcription product of DNA according to <1>
(C) DNA encoding RNA having ribozyme activity that specifically cleaves the transcription product of DNA according to <1>
<4> A vector comprising the DNA according to any one of <1> to <3>.
<5> A sorghum cell into which the DNA according to any one of <1> to <3> has been introduced.
<6> A sorghum plant comprising the cell according to <5>.
<7> A sorghum plant which is a descendant or clone of the plant according to <6>.
<8> A propagation material for a sorghum plant according to <6> or <7>.
<9> A method for producing sorghum imparted with resistance to purpura disease, characterized by suppressing the expression or function of the DNA according to <1> in sorghum.
<10> A method for producing sorghum in which purpura disease resistance is imparted to sorghum, comprising the step of introducing the DNA according to <2> or <3> into sorghum.
<11> A drug for imparting purpura resistance to sorghum comprising the DNA according to <2> or <3> or a vector into which the DNA is inserted.
<12> A method for determining the susceptibility or resistance to purpura in sorghum, comprising analyzing the base sequence of the DNA or expression control region thereof according to <1> or <2> in a test sorghum A method comprising comparing the nucleotide sequence of
<13> A method for determining the susceptibility or resistance of purpura in sorghum, characterized by detecting the expression of DNA or the molecular weight of the expression product in <1> or <2> in sorghum Method.
<14> A method for determining the susceptibility or resistance of purpura in sorghum, comprising analyzing the nucleotide sequence of a molecular marker linked to the DNA according to <1> or <2> in a test sorghum; A method comprising comparing with a base sequence of a control.
<15> A method for breeding purple spot disease resistant sorghum,
(A) mating a purple scab-resistant sorghum variety with any sorghum variety,
(B) determining the susceptibility or resistance to purpura in the individual obtained by the mating in step (a) by the method according to any one of <12> to <14>, and (c) purpura Selecting a variety determined to have resistance to point disease.
 なお、本発明において「紫斑点病」とは、ソルガムにおいて、病原菌「Bipolaris sorghicola (Lefebvre & Sherwin) Alcorn、分類:不完全菌門,不完全糸状菌綱」により引き起こされる斑点性病害を意味する。また、本発明において「紫斑点病罹病性」とは、ソルガムが紫斑点病に感染する性質を意味する。また、本発明において「紫斑点病抵抗性」とは、紫斑点病感染に対するソルガムの抵抗性を意味する。この抵抗性により、ソルガムにおいて紫斑点病の発症、あるいは、発生した紫斑点病の程度(例えば、病斑の数や広がりとして認識される)が抑制される。 Note that "purpura spot disease" in the present invention, in sorghum, pathogens "Bipolaris sorghicola (Lefebvre & Sherwin) Alcorn , classification: Incomplete Kinmon, incomplete thread Kintsuna" means a spot of diseases caused by. In the present invention, “purpura disease susceptibility” means the property that sorghum infects purpura. In the present invention, “purpura disease resistance” means the resistance of sorghum to purpura infection. This resistance suppresses the onset of purpura or the degree of purpura that has occurred in sorghum (for example, recognized as the number or spread of lesions).
 本発明によって、紫斑点病罹病性遺伝子ds1が同定され、該遺伝子の染色体上の位置および構造、ならびに紫斑点病発症の機構が解明された。これにより、ds1遺伝子やその近傍のマーカーを利用して、ソルガム紫斑点病の罹病性および抵抗性を簡便に判定することが可能となった。また、罹病性型のds1遺伝子の発現や機能を抑制することにより、紫斑点病抵抗性のソルガム品種を効率的に作出することが可能となった。本発明は、紫斑点病の病害によるソルガムの収量低下の防止に大きく貢献するものである。 According to the present invention, the purpura disease susceptibility gene ds1 was identified, and the location and structure of the gene on the chromosome and the mechanism of purpura disease onset were elucidated. This makes it possible to easily determine the susceptibility and resistance of sorghum purpura using the ds1 gene and nearby markers. In addition, by suppressing the expression and function of the susceptible ds1 gene, it has become possible to efficiently produce sorghum varieties resistant to purpura. The present invention greatly contributes to prevention of a decrease in sorghum yield due to the disease of purpura.
F4集団を用いたds1候補領域のマッピングの結果を示す図である。図中、「A」はbmr-6型、「B」はSIL-05型、「H」はヘテロを示す。It is a figure which shows the result of mapping of ds1 candidate area | region using F4 population. In the figure, “A” indicates bmr-6 type, “B” indicates SIL-05 type, and “H” indicates hetero. F5集団を用いたds1候補領域のマッピングの結果を示す図である。It is a figure which shows the result of mapping of ds1 candidate area | region using F5 population. RT-PCRにより、ds1候補遺伝子の発現を検出した結果を示す電気泳動写真である。図中、「1」はds1領域がSIL-05型とbmr-6型のヘテロになっている罹病性のF4個体「#2-74 A72」、「2」はds1領域がSIL-05型となっている抵抗性のF4個体「#2-74 C5」、「3」は抵抗性品種「SIL-05」、「4」は罹病性品種「bmr-6」を示す。It is an electrophoresis photograph showing the result of detecting the expression of a ds1 candidate gene by RT-PCR. In the figure, `` 1 '' is a diseased F4 individual `` # 2-74 A72 '' whose ds1 region is heterozygous of SIL-05 type and bmr-6 type, `` 2 '' is ds1 region is SIL-05 type The resistant F4 individuals “# 2-74 C5” and “3” indicate the resistant variety “SIL-05”, and “4” indicates the susceptible variety “bmr-6”. RT-PCRにより、ds1遺伝子の組織特異性と品種間差を検出した結果を示す電気泳動写真である。上図中、「R」は根、「L」は葉、「S」は茎、「F」は花を示す。また、下図中の「1」はBTx623、「2」はGreenleaf、「3」はBTx624、「4」は那系MS3B、「5」はbmr-6、「6」はSIL-05、「7」はJN43、「8」は千斤白、「9」はJN358、「10」はJN290EEを示す。奇数番号は罹病性品種であり、偶数番号は抵抗性品種である。It is an electrophoretic photograph showing the results of detecting the tissue specificity of the ds1 gene and differences between cultivars by RT-PCR. In the above figure, “R” indicates a root, “L” indicates a leaf, “S” indicates a stem, and “F” indicates a flower. In the figure below, “1” is BTx623, “2” is Greenleaf, “3” is BTx624, “4” is Na MS MS3B, “5” is bmr-6, “6” is SIL-05, “7” Indicates JN43, “8” indicates Senpaku white, “9” indicates JN358, and “10” indicates JN290EE. Odd numbers are susceptible varieties and even numbers are resistant varieties. ds1遺伝子がコードするタンパク質のアミノ酸配列の品種間比較を示す図である。It is a figure which shows the comparison between the varieties of the amino acid sequence of the protein which ds1 gene codes. 図5-1の続きの図である。FIG. 5 is a continuation diagram of FIG. 5-1. ds1遺伝子およびその周辺領域の構造の品種間比較を示す図である。It is a figure which shows the comparison between the varieties of the structure of ds1 gene and its peripheral region. ds1遺伝子およびその発現制御領域の塩基配列の品種間比較を示す図である。It is a figure which shows the inter-variety comparison of the base sequence of ds1 gene and its expression control region. 図7-1の続きの図である。FIG. 7 is a continuation diagram of FIG. 図7-2の続きの図である。FIG. 7B is a continuation of FIG. 7-2. 図7-3の続きの図である。FIG. 4 is a continuation diagram of FIG. 図7-4の続きの図である。FIG. 4 is a continuation of FIG. 7-4. 図7-5の続きの図である。FIG. 6 is a continuation of FIG. 7-5. 図7-6の続きの図である。FIG. 7 is a continuation of FIG. 7-6. 図7-7の続きの図である。FIG. 8 is a continuation of FIG. 7-7. 図7-8の続きの図である。FIG. 9 is a continuation of FIG. 7-8. 図7-9の続きの図である。FIG. 10 is a continuation of FIG. 7-9. 図7-10の続きの図である。FIG. 11 is a continuation of FIG. 7-10. 図7-11の続きの図である。FIG. 11 is a continuation of FIG. 7-11. 本実施例に使用したプライマーの標的配列を示す図である。It is a figure which shows the target sequence of the primer used for the present Example. 図8-1の続きの図である。FIG. 8 is a continuation of FIG. 8-1. 図8-2の続きの図である。FIG. 8 is a continuation of FIG. 8-2. 図8-3の続きの図である。It is a continuation figure of FIG. 8-3. 図8-4の続きの図である。FIG. 4 is a continuation of FIG. 8-4. 図8-5の続きの図である。FIG. 6 is a continuation of FIG. 8-5. 図8-6の続きの図である。FIG. 7 is a continuation of FIG. 8-6. 図8-7の続きの図である。FIG. 8 is a continuation of FIG. 8-7. 図8-8の続きの図である。FIG. 9 is a continuation of FIG. 8-8. 図8-9の続きの図である。FIG. 10 is a continuation of FIG. 8-9. 図8-10の続きの図である。FIG. 11 is a continuation of FIG. 8-10. 図8-11の続きの図である。FIG. 11 is a continuation of FIG. 8-11. 図8-12の続きの図である。FIG. 13 is a continuation of FIG. 8-12. 図8-13の続きの図である。FIG. 14 is a continuation of FIG. 8-13. 図8-14の続きの図である。FIG. 15 is a continuation of FIG. 8-14. 図8-15の続きの図である。FIG. 16 is a continuation of FIG. 8-15. 図8-16の続きの図である。FIG. 17 is a continuation of FIG. 8-16. 図8-17の続きの図である。FIG. 18 is a continuation of FIG. 8-17. 図8-18の続きの図である。FIG. 19 is a continuation of FIG. 8-18. 図8-19の続きの図である。FIG. 20 is a continuation of FIG. 8-19. 図8-20の続きの図である。FIG. 21 is a continuation of FIG. 8-20. 図8-21の続きの図である。FIG. 22 is a diagram continued from FIG. 8-21. 図8-22の続きの図である。FIG. 23 is a continuation of FIG. 8-22. 図8-23の続きの図である。FIG. 24 is a continuation of FIG. 8-23. 図8-24の続きの図である。FIG. 25 is a continuation of FIG. 8-24. 図8-25の続きの図である。FIG. 26 is a continuation of FIG. 8-25. 図8-26の続きの図である。FIG. 27 is a continuation of FIG. 8-26. 図8-27の続きの図である。FIG. 28 is a continuation of FIG. 8-27. 図8-28の続きの図である。FIG. 29 is a continuation of FIG. 8-28. 図8-29の続きの図である。FIG. 30 is a continuation of FIG. 8-29. 図8-30の続きの図である。FIG. 31 is a continuation of FIG. 8-30. 図8-31の続きの図である。FIG. 32 is a continuation of FIG. 8-31. 図8-32の続きの図である。FIG. 33 is a continuation of FIG. 8-32. 図8-33の続きの図である。FIG. 34 is a continuation of FIG. 8-33. Aは、世界の各地域由来のソルガム品種のds1候補遺伝子における多型の検出に用いたプライマーセットの配置を示す。Bは、Aに示したプライマーセットを用いてPCRを実施した結果を示す電気泳動写真である。ソルガム品種として、レーン1はGooseneck(R4型)、レーン2はMoraba74(S3型)、レーン3はBTx623(S2型)、レーン4はGreenleaf(R3型)、レーン5は那系MS3B(R2型)、レーン6はbmr-6(S1型)、レーン7はSIL-05(R1型)を、それぞれ用いた。A shows the arrangement of primer sets used for detecting polymorphisms in ds1 candidate genes of sorghum varieties derived from various regions of the world. B is an electrophoresis photograph showing the results of PCR using the primer set shown in A. FIG. As sorghum varieties, lane 1 is Gooseneck (R4 type), lane 2 is Moraba74 (S3 type), lane 3 is BTx623 (S2 type), lane 4 is Greenleaf (R3 type), and lane 5 is Nakei MS3B (R2 type) Lane 6 used bmr-6 (S1 type), and lane 7 used SIL-05 (R1 type). 世界の各地域由来のソルガム品種について、紫斑点病の検定を行った結果(代表例)を示す写真である。It is a photograph which shows the result (typical example) which performed the test of purpura disease about the sorghum variety derived from each area of the world.
<罹病性型DNA、抵抗性型DNA>
 本発明は、ソルガムに、紫斑点病罹病性を付与する活性を有するタンパク質をコードするDNA(以下、「罹病性型DNA」と称する)を提供する。本発明者らにより同定された、罹病性品種BTx623由来のds1cDNAの塩基配列を配列番号:1に、ds1ゲノムDNAの塩基配列を配列番号:2に、これらDNAがコードするタンパク質のアミノ酸配列を配列番号:3に示す。また、罹病性品種bmr-6由来のds1cDNAの塩基配列を配列番号:4に、ds1ゲノムDNAの塩基配列を配列番号:5に、これらDNAがコードするタンパク質のアミノ酸配列を配列番号:6に示す。本発明の罹病性型DNAの1つの態様は、配列番号:3に記載のアミノ酸配列からなるタンパク質をコードするDNA(典型的には、配列番号:1または2に記載の塩基配列のコード領域を含むDNA)であり、他の1つの態様は、配列番号:6に記載のアミノ酸配列からなるタンパク質をコードするDNA(典型的には、配列番号:4または5に記載の塩基配列のコード領域を含むDNA)である。
<Susceptible DNA, Resistant DNA>
The present invention provides DNA encoding a protein having an activity conferring purpura disease susceptibility to sorghum (hereinafter referred to as “susceptible DNA”). Identified by the present inventors, the nucleotide sequence sequence of ds1 cDNA derived from susceptible cultivar BTx623 ID NO: 1, SEQ ID NO: The nucleotide sequence of ds1 genomic DNA: 2, the amino acid sequence of the protein they DNA encodes Shown in SEQ ID NO: 3. In addition, the base sequence of the ds1 cDNA derived from the susceptible cultivar bmr-6 is SEQ ID NO: 4, the base sequence of the ds1 genomic DNA is SEQ ID NO: 5, and the amino acid sequence of the protein encoded by these DNAs is SEQ ID NO: 6. Show. One embodiment of the susceptible DNA of the present invention is a DNA encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 3 (typically, the coding region of the base sequence set forth in SEQ ID NO: 1 or 2). Another embodiment is a DNA encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 6 (typically, the coding region of the base sequence set forth in SEQ ID NO: 4 or 5). Containing DNA).
 本実施例において示されたように、BTx623由来のds1cDNAの塩基配列(配列番号:1)とbmr-6由来のds1cDNAの塩基配列(配列番号:4)とを比較すると、3カ所の塩基が異なり、うち1か所がアミノ酸の相違(851位におけるHとQ)を導いているが、ともに罹病性型DNAである。現在の技術水準においては、当業者であれば、特定の罹病性ソルガム品種(例えば、BTx623、bmr-6)における罹病性型DNAの塩基配列情報が得られた場合、その塩基配列を改変し、そのコードするアミノ酸配列は異なるが、同じく罹病性型であるDNAを取得することが可能である。また、自然界においても、塩基配列の変異によりコードするタンパク質のアミノ酸配列が変異することは起こり得ることである。従って、本発明は、BTx623およびbmr-6におけるds1タンパク質のアミノ酸配列(配列番号:3または6)において1もしくは複数のアミノ酸が置換、欠失、付加、および/または挿入されたアミノ酸配列からなり、ソルガムに紫斑点病罹病性を付与する活性を有するタンパク質をコードするDNAをも含むものである。ここで「複数」とは、改変後のds1タンパク質がソルガムに紫斑点病罹病性を付与する活性を維持する範囲における、アミノ酸の改変数であり、通常、50アミノ酸以内、好ましくは30アミノ酸以内、さらに好ましくは10アミノ酸以内(例えば、5アミノ酸以内、3アミノ酸以内、2アミノ酸)である。 As shown in this example, ds1 cDNA nucleotide sequence from BTx623 (SEQ ID NO: 1) and bmr-6 ds1 cDNA nucleotide sequence from (SEQ ID NO: 4) are compared, and the three locations base And one of them leads to amino acid differences (H and Q at position 851), both of which are susceptible DNA. In the current state of the art, if a person skilled in the art obtains the base sequence information of the susceptible DNA in a specific susceptible sorghum variety (for example, BTx623, bmr-6), the base sequence is modified, Although the encoded amino acid sequence is different, it is also possible to obtain DNA that is also susceptible. Also in nature, it is possible that the amino acid sequence of the encoded protein is mutated due to the mutation of the base sequence. Accordingly, the present invention is, BTx623 and bmr-6 in ds1 protein amino acid sequences: consists of one or more amino acid substitutions in (SEQ ID NO: 3 or 6), deletions, additions, and / or inserted amino acid sequence, It also includes a DNA encoding a protein having an activity of imparting purpura disease susceptibility to sorghum. Here, `` plurality '' is the number of amino acid modifications within the range in which the modified ds1 protein maintains the activity of imparting purpura disease susceptibility to sorghum, usually within 50 amino acids, preferably within 30 amino acids, More preferably, it is within 10 amino acids (for example, within 5 amino acids, within 3 amino acids, 2 amino acids).
 さらに、現在の技術水準においては、当業者であれば、特定の罹病性ソルガム品種(例えば、BTx623、bmr-6)から罹病性型DNAが得られた場合、その罹病性型DNAの塩基配列情報を利用して、他のソルガム品種から、同じく罹病性型である相同遺伝子をコードするDNAを取得することが可能である。従って、本発明は、BTx623およびbmr-6におけるds1DNA(配列番号:1,2,4または5)とストリンジェントな条件でハイブリダイズするDNAであって、ソルガムに、紫斑点病罹病性を付与する活性を有するタンパク質をコードするDNAをも含むものである。 Further, in the current state of the art, if a person skilled in the art obtains susceptible DNA from a specific susceptible sorghum variety (for example, BTx623, bmr-6), the nucleotide sequence information of the susceptible DNA Can be used to obtain DNAs encoding homologous genes that are also susceptible from other sorghum varieties. Accordingly, the present invention is, BTx623 and bmr-6 in ds1 DNA (SEQ ID NO: 1, 2, 4 or 5) and a hybridizing DNA under stringent conditions, granted sorghum, purpura spot disease susceptibility It also includes DNA that encodes a protein having the following activity.
 こうして得られた変異DNAや相同DNAが、ソルガムに紫斑点病罹病性を付与する活性を有するタンパク質をコードするか否かは、例えば、これらDNAを導入した紫斑点病抵抗性品種に、紫斑点病の病原菌を噴霧もしくは接種し、その後、紫斑点病を発症するか否か、あるいは発症した紫斑点病の程度を検定することにより、判定することができる(紫斑点病発症の検定試験については、実施例1を参照のこと)。 Whether the mutant DNA or homologous DNA thus obtained encodes a protein having the activity of conferring purpura disease susceptibility to sorghum is determined by, for example, purpura disease resistant varieties introduced with these DNAs. It can be determined by spraying or inoculating the pathogen of the disease and then examining whether or not to develop purpura or the degree of purpura that has developed (for the test of purpura onset) See Example 1).
 本発明は、また、ソルガムに紫斑点病抵抗性を付与する活性を有するタンパク質をコードするDNA(以下、「抵抗性型DNA」と称する)を提供する。本発明者らにより同定された、抵抗性品種那系MS3B由来のds1cDNAの塩基配列を配列番号:7に、ds1ゲノムDNAの塩基配列を配列番号:8に、これらDNAがコードするタンパク質のアミノ酸配列を配列番号:9に示す。また、抵抗性品種Greenleaf由来のds1cDNAの塩基配列を配列番号:10に、ds1ゲノムDNAの塩基配列を配列番号:11に、これらDNAがコードするタンパク質のアミノ酸配列を配列番号:12に示す。本発明の抵抗型DNAの1つの態様は、配列番号:9に記載のアミノ酸配列からなるタンパク質をコードするDNA(典型的には、配列番号:10または11に記載の塩基配列のコード領域を含むDNA)であり、他の1つの態様は、配列番号:12に記載のアミノ酸配列からなるタンパク質をコードするDNA(典型的には、配列番号:10または11に記載の塩基配列のコード領域を含むDNA)である。 The present invention also provides a DNA encoding a protein having an activity of conferring purpura resistance to sorghum (hereinafter referred to as “resistant DNA”). Identified by the present inventors, resistant varieties那系MS3B sequence the base sequence of ds1 cDNA derived NO: 7, SEQ ID NO: The nucleotide sequence of ds1 genomic DNA: 8, amino acids of a protein to which they DNA encodes The sequence is shown in SEQ ID NO: 9. The base sequence of ds1 cDNA derived from the resistant variety Greenleaf is shown in SEQ ID NO: 10, the base sequence of ds1 genomic DNA is shown in SEQ ID NO: 11, and the amino acid sequence of the protein encoded by these DNAs is shown in SEQ ID NO: 12. One embodiment of the resistance-type DNA of the present invention comprises a DNA encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 9 (typically comprising a coding region of the base sequence set forth in SEQ ID NO: 10 or 11). And another embodiment includes DNA encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 12 (typically, the coding region of the base sequence set forth in SEQ ID NO: 10 or 11) DNA).
 本実施例において示されたように、那系MS3B由来のds1cDNAの塩基配列(配列番号:7)およびGreenleaf由来のds1cDNAの塩基配列(配列番号:10)は、罹病性品種BTx623由来のds1cDNAの塩基配列(配列番号:1)と比較すると、塩基の変異により、終止コドンが生じている。このため、那系MS3B由来のds1タンパク質およびGreenleaf由来のds1タンパク質は、罹病性品種BTx623由来のds1タンパク質(配列番号:3)と比較すると、タンパク質のC末端領域が欠損しており、本来のds1タンパク質の機能が抑制されている。この機能の抑制が個体に紫斑点病抵抗性を付与していると考えられる。現在の技術水準においては、当業者であれば、特定の罹病性ソルガム品種(例えば、BTx623、bmr-6)のds1DNAの塩基配列において、そのコードするタンパク質の紫斑点病罹病性に関する機能が抑制されるような改変を行うことが可能である。また、特定の抵抗性ソルガム品種(例えば、那系MS3B、Greenleaf)のds1DNAの塩基配列において、そのコードするタンパク質の紫斑点病抵抗性が維持されるような改変を行うことが可能である。また、自然界においても、塩基配列の変異によりコードするタンパク質のアミノ酸配列が変異することは起こり得ることである。従って、本発明は、BTx623、bmr-6、那系MS3BあるいはGreenleafにおけるds1タンパク質のアミノ酸配列(配列番号:3,6,9または12)において1もしくは複数のアミノ酸が置換、欠失、付加、および/または挿入されたアミノ酸配列からなるタンパク質からなり、ソルガムに紫斑点病抵抗性を付与する活性を有するタンパク質をコードするDNAをも含むものである。ここで「複数」とは、改変後のds1タンパク質がソルガムに紫斑点病抵抗性を付与する活性を有する範囲における、アミノ酸の改変数である。ソルガムにおけるds1タンパク質が本来の機能を発揮しなければ、紫斑点病抵抗性になると考えられるため、当該アミノ酸改変数は、本質的に制限はない。改変は、例えば、500アミノ酸以内、400アミノ酸以内、300アミノ酸以内、200アミノ酸以内、あるいは100アミノ酸以内(50アミノ酸以内、30アミノ酸以内、10アミノ酸以内、5アミノ酸以内、3アミノ酸以内、2アミノ酸)である。改変は、例えば、ds1タンパク質のC末端側の欠失でありうる。実際、Greenleafにおけるds1タンパク質は、BTx623あるいはbmr-6由来のds1タンパク質と比較して、460アミノ酸が欠失している。 As shown in this embodiment,那系MS3b ds1 cDNA nucleotide sequence from (SEQ ID NO: 7) and Greenleaf ds1 cDNA nucleotide sequence from (SEQ ID NO: 10), derived from the susceptible variety BTx623 ds1 Compared with the base sequence of cDNA (SEQ ID NO: 1), a stop codon is generated due to a base mutation. Therefore,那系MS3b ds1 protein and Greenleaf derived ds1 protein from the susceptible variety BTx623 derived ds1 protein (SEQ ID NO: 3) and when compared, C-terminal, regions of the protein are is deficient, the original ds1 Protein function is suppressed. It is considered that suppression of this function imparts purpura resistance to the individual. In the present state of the art, one skilled in the art, certain susceptible sorghum varieties (e.g., BTx623, bmr-6) in the base sequence of ds1 DNA of functional suppression relates purpura spot disease susceptibility protein its encoding It is possible to make such modifications. Further, specific resistance sorghum varieties (e.g.,那系MS3b, Greenleaf) in ds1 DNA nucleotide sequence of, it is possible to perform such modifications as purpura spot disease resistance proteins that code is maintained. Also in nature, it is possible that the amino acid sequence of the encoded protein is mutated due to the mutation of the base sequence. Accordingly, the present invention is, BTx623, bmr-6,那系MS3B or ds1 protein amino acid sequence of the Greenleaf (SEQ ID NO: 3, 6, 9 or 12) one or more amino acids in the substitution, deletion, addition, and It consists of a protein comprising an inserted amino acid sequence, and also contains a DNA encoding a protein having an activity of conferring purpura resistance to sorghum. Here, the term “plurality” refers to the number of amino acid modifications within a range in which the modified ds1 protein has an activity of imparting purpura disease resistance to sorghum. If the ds1 protein in sorghum does not exhibit its original function, it will be resistant to purpura, so the number of amino acid modifications is essentially not limited. Modification is within 500 amino acids, within 400 amino acids, within 300 amino acids, within 200 amino acids, or within 100 amino acids (within 50 amino acids, within 30 amino acids, within 10 amino acids, within 5 amino acids, within 3 amino acids, within 2 amino acids). is there. The modification can be, for example, a deletion on the C-terminal side of the ds1 protein. Indeed, ds1 protein in Greenleaf, as compared to BTx623 or bmr-6 derived ds1 protein, 460 amino acids are deleted.
 さらに、現在の技術水準においては、当業者であれば、特定のソルガム品種からds1DNAが得られた場合、そのDNAの塩基配列情報を利用して、他のソルガム品種から、抵抗性型である相同遺伝子をコードするDNAを取得することができる。従って、本発明は、BTx623、bmr-6、那系MS3BあるいはGreenleafにおけるds1DNA(配列番号:1,2,4,5,7,8,10または11)とストリンジェントな条件でハイブリダイズするDNAであって、ソルガムに紫斑点病抵抗性を付与する活性を有するタンパク質をコードするDNAが含まれる。 Furthermore, in the current state of the art, if ds1 DNA is obtained from a specific sorghum variety, those skilled in the art are resistant to other sorghum varieties using the DNA sequence information. DNA encoding a homologous gene can be obtained. Accordingly, the present invention is, BTx623, bmr-6, ds1 DNA in那系MS3B or Greenleaf (SEQ ID NO: 1,2,4,5,7,8,10 or 11) a DNA hybridizing under stringent conditions Thus, DNA encoding a protein having an activity of conferring purpura resistance to sorghum is included.
 こうして得られた変異DNAや相同DNAが、ソルガムに紫斑点病抵抗性を付与する活性を有するタンパク質をコードするか否かは、例えば、当該DNAで、紫斑点病罹病製品種のds1遺伝子を組換え、当該DNAをホモで保持するソルガムを作出し、紫斑点病菌を噴霧もしくは接種し、その後、紫斑点病を発症するか否か、あるいは発症した紫斑点病の程度を検定することにより、判定することができる(紫斑点病発症の検定試験については、実施例1を参照のこと)。 Whether the mutant DNA or homologous DNA thus obtained encodes a protein having an activity of conferring purpura disease resistance to sorghum is determined by, for example, assembling the ds1 gene of the purpura disease-affected product species with the DNA. Instead, create a sorghum that retains the DNA in a homologous manner, spray or inoculate purpura, and then determine whether purpura develops or the extent of purpura (See Example 1 for a test for the development of purpura disease).
 本発明の罹病性型DNAは、その導入により、ソルガムに紫斑点病罹病性を付与することが可能であるという意味において、ソルガムに紫斑点病罹病性を付与するための薬剤であり、一方、本発明の抵抗性型DNAは、その導入により、ソルガムに紫斑点病抵抗性を付与することが可能であるという意味において、ソルガムに紫斑点抵抗性を付与するための薬剤である。 The susceptible DNA of the present invention is an agent for imparting purpura disease susceptibility to sorghum in the sense that introduction thereof can impart purpura susceptibility to sorghum, The resistance-type DNA of the present invention is a drug for imparting purpura resistance to sorghum in the sense that introduction thereof can impart purpura resistance to sorghum.
 なお、上記した変異DNAを作製するための、DNAへの人為的な変異の導入は、例えば、部位特異的変異誘発(site-directed mutagenesis)法(Kramer, W. & Fritz, HJ., Methods Enzymol, 154:350-367, 1987)により行うことができる。 In addition, artificial mutations introduced into DNA to produce the above-mentioned mutant DNA are, for example, site-directed mutagenesis (Kramer, W. & Fritz, HJ., Methods Enzymol). , 154: 350-367, 1987).
 また、上記した相同遺伝子を単離するための方法としては、例えば、ハイブリダイゼーション技術(Southern, E. M., Journal of Molecular Biology, 98:503, 1975)やポリメラーゼ連鎖反応(PCR)技術(Saiki, R. K., et al. Science, 230:1350-1354, 1985、Saiki, R. K. et al. Science, 239:487-491, 1988)が挙げられる。相同遺伝子をコードするDNAを単離するためには、通常ストリンジェントな条件下でハイブリダイゼーション反応を行なう。ストリンジェントなハイブリダイゼーション条件としては、6M尿素、0.4%SDS、0.5xSSCの条件またはこれと同等のストリンジェンシーのハイブリダイゼーション条件を例示できる。よりストリンジェンシーの高い条件、例えば、6M尿素、0.4%SDS、0.1xSSCの条件を用いれば、より相同性の高いDNAの単離を期待することができる。単離されたDNAは、核酸レベルあるいはアミノ酸配列レベルにおいて、少なくとも50%以上、さらに好ましくは70%以上、さらに好ましくは90%以上(例えば、95%、96%、97%、98%、99%以上)の配列の同一性を有する。配列の相同性は、BLASTN(核酸レベル)やBLASTX(アミノ酸レベル)のプログラム(Altschul et al. J. Mol. Biol., 215:403-410, 1990)を利用して決定することができる。該プログラムは、KarlinおよびAltschulによるアルゴリズムBLAST(Proc. Natl. Acad. Sci. USA, 87:2264-2268, 1990、Proc. Natl. Acad. Sci. USA, 90:5873-5877, 1993)に基づいている。BLASTNによって塩基配列を解析する場合には、パラメーターは例えばscore=100、wordlength=12とする。また、BLASTXによってアミノ酸配列を解析する場合には、パラメーターは例えばscore=50、wordlength=3とする。また、Gapped BLASTプログラムを用いて、アミノ酸配列を解析する場合は、Altschulら(Nucleic Acids Res. 25:3389-3402, 1997)に記載されているように行うことができる。BLASTとGapped BLASTプログラムを用いる場合には、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法は公知である。 In addition, as a method for isolating the homologous genes described above, for example, hybridization technology (Southern, E. M., Journal of Molecular Biology, 98: 503, 1975) or polymerase chain reaction (PCR) technology (Saiki) , R. K., et al. Science, 230: 1350-1354, 1985, Saiki, R. K. et al. Science, 239: 487-491, 1988). In order to isolate DNA encoding a homologous gene, a hybridization reaction is usually carried out under stringent conditions. Examples of stringent hybridization conditions include 6M urea, 0.4% SDS, 0.5xSSC conditions, or equivalent stringency hybridization conditions. Isolation of DNA with higher homology can be expected by using conditions with higher stringency, for example, 6M urea, 0.4% SDS, and 0.1xSSC. The isolated DNA is at least 50% or more, more preferably 70% or more, more preferably 90% or more (for example, 95%, 96%, 97%, 98%, 99%) at the nucleic acid level or amino acid sequence level. And the like). Sequence homology can be determined using BLASTN (nucleic acid level) and BLASTX (amino acid level) programs (Altschul et al. J. Mol. Biol., 215: 403-410, 1990). The program is based on the algorithm BLAST (Proc. Natl. Acad. Sci. USA, 87: 2264-2268, 1990, Proc. Natl. Acad. Sci. USA, 90: 5873-5877, 1993) by Karlin and Altschul. Yes. When analyzing a base sequence by BLASTN, parameters are set to score = 100 and wordlength = 12, for example. When analyzing an amino acid sequence by BLASTX, parameters are set to, for example, score = 50 and wordlength = 3. Moreover, when analyzing an amino acid sequence using the Gapped BLAST program, it can be performed as described in Altschul et al. (Nucleic Acids Res. 25: 3389-3402, 1997). When using BLAST and Gapped BLAST programs, use the default parameters of each program. Specific methods of these analysis methods are known.
 本発明のds1タンパク質をコードするDNAとしては、その形態に特に制限はなく、cDNAの他、ゲノムDNA、および化学合成DNAが含まれる。ゲノムDNAおよびcDNAの調製は、当業者にとって常套手段を利用して行うことが可能である。ゲノムDNAは、例えば、ソルガムからゲノムDNAを抽出し、ゲノミックライブラリー(ベクターとしては、プラスミド、ファージ、コスミド、BAC、PACなどが利用できる)を作成し、これを展開して、ds1遺伝子(例えば、配列番号:1,2,4,5,7,8,10または11のいずれかに記載のDNA)の塩基配列を基に調製したプローブを用いてコロニーハイブリダイゼーションあるいはプラークハイブリダイゼーションを行うことにより調製することが可能である。また、ds1遺伝子に特異的なプライマーを作成し、これを利用したPCRを行うことによって調製することも可能である。また、cDNAは、例えば、ソルガムから抽出したmRNAを基にcDNAを合成し、これをλZAP等のベクターに挿入してcDNAライブラリーを作成し、これを展開して、上記と同様にコロニーハイブリダイゼーションあるいはプラークハイブリダイゼーションを行うことにより、また、PCRを行うことにより調製することが可能である。
 
<ソルガムの罹病性型ds1遺伝子の発現を抑制するために用いるDNA>
 また、本発明は、ソルガムの罹病性型ds1遺伝子の発現を抑制するために用いるDNAを提供する。これらのDNAの導入により、ソルガムに紫斑点病抵抗性を付与することが可能である。この意味において、ソルガムの罹病性型ds1遺伝子の発現を抑制するために用いるDNAは、ソルガムに紫斑点病抵抗性を付与するための薬剤である。ここで「ds1遺伝子の発現の抑制」には、遺伝子の転写の抑制およびタンパク質への翻訳の抑制の双方が含まれる。また、「発現の抑制」には、発現の完全な停止のみならず発現の減少も含まれる。
The form of the DNA encoding the ds1 protein of the present invention is not particularly limited, and includes cDNA, genomic DNA, and chemically synthesized DNA. Preparation of genomic DNA and cDNA can be performed by those skilled in the art using conventional means. For genomic DNA, for example, genomic DNA is extracted from sorghum to create a genomic library (as vectors, plasmids, phages, cosmids, BACs, PACs, etc. can be used), expanded, and ds1 gene (for example, By conducting colony hybridization or plaque hybridization using a probe prepared based on the nucleotide sequence of SEQ ID NO: 1, 2, 4, 5, 7, 8, 10 or 11). It is possible to prepare. It is also possible to prepare a primer specific to the ds1 gene and perform PCR using this primer. In addition, for example, cDNA is synthesized based on mRNA extracted from sorghum, inserted into a vector such as λZAP to create a cDNA library, developed, and colony hybridization as described above. Alternatively, it can be prepared by performing plaque hybridization or by performing PCR.

<DNA used to suppress expression of sorghum susceptibility ds1 gene>
The present invention also provides DNA used to suppress the expression of the sorghum susceptibility ds1 gene. By introducing these DNAs, purpura resistance can be imparted to sorghum. In this sense, DNA used to suppress the expression of the sorghum susceptibility-type ds1 gene is a drug for conferring purpura resistance to sorghum. Here, “suppression of ds1 gene expression” includes both suppression of gene transcription and suppression of protein translation. Further, “suppression of expression” includes not only complete cessation of expression but also decrease of expression.
 ソルガムの罹病性型ds1遺伝子の発現を抑制するために用いるDNAの一つの態様は、上記した本発明の罹病性型DNAの転写産物と相補的なdsRNA(二重鎖RNA)をコードするDNAである。標的遺伝子配列と同一もしくは類似した配列を有するdsRNAを細胞内に導入することにより、導入した外来遺伝子および標的内因性遺伝子の発現がいずれも抑制される、RNAi(RNA干渉、RNA interference)と呼ばれる現象を引き起こすことができる。細胞に約40~数百塩基対のdsRNAが導入されると、ヘリカーゼドメインを持つダイサー(Dicer)と呼ばれるRNaseIII様のヌクレアーゼが、ATP存在下で、dsRNAを3'末端から約21~23塩基対ずつ切り出し、siRNA(short interference RNA)が生じる。このsiRNAに、特異的なタンパク質が結合して、ヌクレアーゼ複合体(RISC:RNA-induced silencing complex)が形成される。この複合体はsiRNAと同じ配列を認識して結合し、RNaseIII様の酵素活性によってsiRNAの中央部で標的遺伝子の転写産物(mRNA)を切断する。また、この経路とは別にsiRNAのアンチセンス鎖がmRNAに結合してRNA依存性RNAポリメラーゼ(RsRP)のプライマーとして作用し、dsRNAが合成される。このdsRNAが再びダイサーの基質となって、新たなsiRNAを生じて作用を増幅する経路も考えられている。 One embodiment of the DNA used to suppress the expression of the susceptible ds1 gene of sorghum is a DNA encoding a dsRNA (double-stranded RNA) complementary to the above-described transcript of the susceptible DNA of the present invention. is there. A phenomenon called RNAi (RNA interference), in which the expression of the introduced foreign gene and target endogenous gene is both suppressed by introducing dsRNA having the same or similar sequence to the target gene into the cell. Can cause. When dsRNA of about 40 to several hundred base pairs is introduced into a cell, an RNaseIII-like nuclease called Dicer having a helicase domain is converted to about 21 to 23 base pairs from the 3 ′ end in the presence of ATP. Each one is cut out to generate siRNA (short interference RNA). A specific protein binds to this siRNA to form a nuclease complex (RISC: RNA-induced silencing complex). This complex recognizes and binds to the same sequence as siRNA, and cleaves the transcript (mRNA) of the target gene at the center of the siRNA by RNaseIII-like enzyme activity. In addition to this pathway, the antisense strand of siRNA binds to mRNA and acts as a primer for RNA-dependent RNA polymerase (RsRP) to synthesize dsRNA. There is also a possibility that this dsRNA becomes Dicer's substrate again to generate new siRNA and amplify the action.
 本発明のdsRNAをコードするDNAは、標的遺伝子の転写産物(mRNA)のいずれかの領域に対するアンチセンスRNAをコードしたアンチセンスDNAと、該mRNAのいずれかの領域のセンスRNAをコードしたセンスDNAを含み、該アンチセンスDNAおよび該センスDNAより、それぞれアンチセンスRNAおよびセンスRNAを発現させることができる。また、これらのアンチセンスRNAおよびセンスRNAよりdsRNAを作成することができる。 The DNA encoding the dsRNA of the present invention includes an antisense DNA encoding an antisense RNA for any region of a target gene transcription product (mRNA), and a sense DNA encoding a sense RNA for any region of the mRNA And antisense RNA and sense RNA can be expressed from the antisense DNA and the sense DNA, respectively. Moreover, dsRNA can be produced from these antisense RNA and sense RNA.
 本発明のdsRNAの発現システムをベクター等に保持させる場合の構成としては、同一のベクターからアンチセンスRNAおよびセンスRNAを発現させる場合と、異なるベクターからそれぞれアンチセンスRNAとセンスRNAを発現させる場合がある。同一のベクターからアンチセンスRNAおよびセンスRNAを発現させる構成としては、例えば、アンチセンスDNAおよびセンスDNAの上流にそれぞれpolIII系のような短いRNAを発現し得るプロモーターを連結させたアンチセンスRNA発現カセットとセンスRNA発現カセットをそれぞれ構築し、これらカセットを同方向にあるいは逆方向にベクターに挿入する構成である。 In the case where the dsRNA expression system of the present invention is held in a vector or the like, there are a case where antisense RNA and sense RNA are expressed from the same vector, and a case where antisense RNA and sense RNA are expressed from different vectors, respectively. is there. The antisense RNA and sense RNA are expressed from the same vector. For example, an antisense RNA expression cassette in which a promoter capable of expressing a short RNA such as polIII is linked upstream of the antisense DNA and the sense DNA. And sense RNA expression cassettes are constructed, and these cassettes are inserted into the vector in the same direction or in the opposite direction.
 また、異なる鎖上に対向するように、アンチセンスDNAとセンスDNAとを逆向きに配置した発現システムを構成することもできる。この構成では、アンチセンスRNAコード鎖とセンスRNAコード鎖とが対となった一つの二本鎖DNA(siRNAコードDNA)が備えられ、その両側にそれぞれの鎖からアンチセンスRNAとセンスRNAとを発現し得るようにプロモーターを対向して備える。この場合には、センスRNAとアンチセンスRNAの下流に余分な配列が付加されることを避けるために、それぞれの鎖(アンチセンスRNAコード鎖、センスRNAコード鎖)の3'末端にターミネーターをそれぞれ備えることが好ましい。このターミネーターは、A(アデニン)塩基を4つ以上連続させた配列などを用いることができる。また、このパリンドロームスタイルの発現システムでは、二つのプロモーターの種類は異なっていることが好ましい。 It is also possible to construct an expression system in which antisense DNA and sense DNA are arranged in opposite directions so as to face each other on different strands. In this configuration, one double-stranded DNA (siRNA-encoding DNA) in which an antisense RNA coding strand and a sense RNA coding strand are paired is provided, and antisense RNA and sense RNA are separated from each strand on both sides. A promoter is provided oppositely so that it can be expressed. In this case, in order to avoid adding extra sequences downstream of the sense RNA and antisense RNA, a terminator is added to the 3 'end of each strand (antisense RNA coding strand, sense RNA coding strand). It is preferable to provide. As this terminator, a sequence in which four or more A (adenine) bases are continued can be used. Further, in this palindromic style expression system, the two promoter types are preferably different.
 また、異なるベクターからアンチセンスRNAおよびセンスRNAを発現させる構成としては、例えば、アンチセンスDNAおよびセンスDNAの上流にそれぞれpolIII系のような短いRNAを発現し得るプロモーターを連結させたアンチセンスRNA発現カセットとセンスRNA発現カセットとをそれぞれ構築し、これらカセットを異なるベクターに保持させる構成である。 In addition, as a configuration for expressing antisense RNA and sense RNA from different vectors, for example, antisense RNA expression in which a promoter capable of expressing a short RNA such as polIII is linked upstream of antisense DNA and sense DNA, respectively. A cassette and a sense RNA expression cassette are constructed, and these cassettes are held in different vectors.
 本発明に用いるdsRNAとしては、siRNAが好ましい。「siRNA」は、細胞内で毒性を示さない範囲の短鎖からなる二重鎖RNAを意味する。標的ds1遺伝子の発現を抑制することができ、かつ、毒性を示さなければ、その鎖長に特に制限はない。dsRNAの鎖長は、例えば、15~49塩基対であり、好適には15~35塩基対でり、さらに好適には21~30塩基対である。 The dsRNA used in the present invention is preferably siRNA. “SiRNA” means a double-stranded RNA consisting of short strands in a range that is not toxic in cells. The length of the target ds1 gene is not particularly limited as long as it can suppress the expression of the target ds1 gene and does not exhibit toxicity. The dsRNA chain length is, for example, 15 to 49 base pairs, preferably 15 to 35 base pairs, and more preferably 21 to 30 base pairs.
 本発明のdsRNAをコードするDNAとしては、標的配列のインバーテッドリピートの間に適当な配列(イントロン配列が望ましい)を挿入し、ヘアピン構造を持つダブルストランドRNA(self-complementary 'hairpin' RNA(hpRNA))を作るようなコンストラクト(Smith, N.A., et al. Nature, 407:319, 2000、Wesley, S. V. et al. Plant J. 27:581, 2001、Piccin, A. et al. Nucleic Acids Res. 29:E55, 2001)を用いることもできる。 As the DNA encoding the dsRNA of the present invention, an appropriate sequence (preferably an intron sequence) is inserted between inverted repeats of the target sequence, and a double-stranded RNA having a hairpin structure (self-complementary 'hairpin' RNA (hpRNA )) Construct (Smith, NA, et al. Nature, 407: 319, 2000, Wesley, S. V. et al. Plant J. 27: 581, 2001, Piccin, A. et al. Nucleic Acids Res. 29: E55, 2001) can also be used.
 本発明のdsRNAをコードするDNAは、標的ds1遺伝子の塩基配列と完全に同一である必要はないが、少なくとも70%以上、好ましくは80%以上、さらに好ましくは90%以上(例えば、95%、96%、97%、98%、99%以上)の配列の同一性を有する。配列の同一性は上述した手法(BLASTプログラム)により決定できる。 The DNA encoding the dsRNA of the present invention is not necessarily completely identical to the base sequence of the target ds1 gene, but is at least 70% or more, preferably 80% or more, more preferably 90% or more (for example, 95%, 96%, 97%, 98%, 99% or more). Sequence identity can be determined by the technique described above (BLAST program).
 dsRNAにおけるRNA同士が対合した二重鎖RNAの部分は、完全に対合しているものに限らず、ミスマッチ(対応する塩基が相補的でない)、バルジ(一方の鎖に対応する塩基がない)などにより不対合部分が含まれていてもよい。本発明においては、dsRNAにおけるRNA同士が対合する二重鎖RNA領域中に、バルジおよびミスマッチの両方が含まれていてもよい。 The part of the double-stranded RNA in which the RNAs in dsRNA are paired is not limited to a perfect pair, but mismatch (corresponding base is not complementary), bulge (no base corresponding to one strand) ) Or the like may include an unpaired portion. In the present invention, both bulges and mismatches may be included in the double-stranded RNA region where RNAs in dsRNA pair with each other.
 ソルガムの罹病性型ds1遺伝子の発現を抑制するために用いるDNAの他の態様は、上記した本発明の罹病性型DNAの転写産物と相補的なアンチセンスRNAをコードするDNA(アンチセンスDNA)である。アンチセンスDNAが標的遺伝子の発現を抑制する作用としては、三重鎖形成による転写開始阻害、RNAポリメラーゼによって局部的に開状ループ構造がつくられた部位とのハイブリッド形成による転写抑制、合成の進みつつあるRNAとのハイブリッド形成による転写阻害、イントロンとエキソンとの接合点でのハイブリッド形成によるスプライシング抑制、スプライソソーム形成部位とのハイブリッド形成によるスプライシング抑制、mRNAとのハイブリッド形成による核から細胞質への移行抑制、キャッピング部位やポリ(A)付加部位とのハイブリッド形成によるスプライシング抑制、翻訳開始因子結合部位とのハイブリッド形成による翻訳開始抑制、開始コドン近傍のリボソーム結合部位とのハイブリッド形成による翻訳抑制、mRNAの翻訳領域やポリソーム結合部位とのハイブリッド形成によるペプチド鎖の伸長阻止、および核酸とタンパク質との相互作用部位とのハイブリッド形成による遺伝子発現抑制などが挙げられる。これらは、転写、スプライシング、または翻訳の過程を阻害して、標的遺伝子の発現を抑制する(平島および井上「新生化学実験講座2 核酸IV 遺伝子の複製と発現」,日本生化学会編,東京化学同人, pp.319-347, 1993)。本発明で用いられるアンチセンスDNAは、上記のいずれの作用で標的ds1遺伝子の発現を抑制してもよい。一つの態様としては、標的遺伝子のmRNAの5'端近傍の非翻訳領域に相補的なアンチセンス配列を設計すれば、遺伝子の翻訳阻害に効果的であろう。しかし、コード領域もしくは3'側の非翻訳領域に相補的な配列も使用し得る。このように、遺伝子の翻訳領域だけでなく非翻訳領域の配列のアンチセンス配列を含むDNAも、本発明で利用されるアンチセンスDNAに含まれる。使用されるアンチセンスDNAは、適当なプロモーターの下流に連結され、好ましくは3'側に転写終結シグナルを含む配列が連結される。 Another embodiment of the DNA used to suppress the expression of the susceptible ds1 gene of sorghum is as follows: a DNA encoding an antisense RNA complementary to the above-described transcript of the susceptible DNA of the present invention (antisense DNA) It is. Antisense DNA suppresses target gene expression by inhibiting transcription initiation by triplex formation, suppressing transcription by hybridization with a site where an open loop structure is locally created by RNA polymerase, Inhibition of transcription by hybridization with certain RNA, suppression of splicing by hybridization at the junction of intron and exon, suppression of splicing by hybridization with spliceosome formation site, suppression of transition from nucleus to cytoplasm by hybridization with mRNA , Splicing suppression by hybridization with capping site and poly (A) addition site, translation initiation suppression by hybridization with translation initiation factor binding site, translation suppression by hybridization with ribosome binding site near initiation codon, translation of mRNA Area or poly Outgrowth inhibitory peptide chains by the formation of a hybrid with over arm binding sites, and the like gene silencing and the like by hybridization with interaction site between a nucleic acid and protein. They inhibit transcription, splicing, or translation processes and suppress target gene expression (Hirashima and Inoue, "Neurochemistry Experiment Course 2, Nucleic Acid IV Gene Replication and Expression", edited by the Japanese Biochemical Society, Tokyo Kagaku Dojin , pp.319-347, 1993). The antisense DNA used in the present invention may suppress the expression of the target ds1 gene by any of the actions described above. In one embodiment, if an antisense sequence complementary to the untranslated region near the 5 ′ end of the mRNA of the target gene is designed, it will be effective for inhibiting translation of the gene. However, sequences complementary to the coding region or the 3 ′ untranslated region can also be used. As described above, a DNA containing an antisense sequence of a non-translated region as well as a translated region of a gene is also included in the antisense DNA used in the present invention. The antisense DNA to be used is linked downstream of a suitable promoter, and preferably a sequence containing a transcription termination signal is linked on the 3 ′ side.
 アンチセンスDNAは、本発明の罹病性型DNA(例えば、配列番号:1または4に記載の塩基配列からなるDNA)の配列情報を基にホスホロチオネート法(Stein, Nucleic Acids Res., 16:3209-3221, 1988)などにより調製することが可能である。調製されたDNAは、後述する公知の方法で、ソルガムへ導入できる。アンチセンスDNAの配列は、ソルガムが持つ内因性の罹病性ds1遺伝子の転写産物と相補的な配列であることが好ましいが、遺伝子の発現を有効に阻害できる限り、完全に相補的でなくてもよい。転写されたRNAは、標的とする遺伝子の転写産物に対して好ましくは90%以上(例えば、95%、96%、97%、98%、99%以上)の相補性を有する。効果的に標的遺伝子の発現を阻害するには、アンチセンスDNAの長さは、少なくとも15塩基以上であり、好ましくは100塩基以上であり、さらに好ましくは500塩基以上である。通常、用いられるアンチセンスDNAの長さは5kbよりも短く、好ましくは2.5kbよりも短い。 Antisense DNA is a phosphorothioate method (Stein, Nucleic Acids Res., 16) based on the sequence information of the disease-susceptible DNA of the present invention (for example, the DNA comprising the nucleotide sequence of SEQ ID NO: 1 or 4). : 3209-3221, 1988). The prepared DNA can be introduced into sorghum by a known method described later. The sequence of the antisense DNA is preferably complementary to the endogenous susceptible ds1 gene transcript of sorghum, but may not be completely complementary as long as it can effectively inhibit gene expression. Good. The transcribed RNA preferably has a complementarity of 90% or more (eg, 95%, 96%, 97%, 98%, 99% or more) to the transcript of the target gene. In order to effectively inhibit the expression of the target gene, the length of the antisense DNA is at least 15 bases or more, preferably 100 bases or more, more preferably 500 bases or more. Usually, the length of the antisense DNA used is shorter than 5 kb, preferably shorter than 2.5 kb.
 ソルガムの罹病性型ds1遺伝子の発現を抑制するために用いるDNAの他の態様は、本発明の罹病性型DNAの転写産物を特異的に開裂するリボザイム活性を有するRNAをコードするDNAである。リボザイムには、グループIイントロン型や、RNasePに含まれるM1RNAのように400ヌクレオチド以上の大きさのものもあるが、ハンマーヘッド型やヘアピン型と呼ばれる40ヌクレオチド程度の活性ドメインを有するものもある(小泉誠および大塚栄子、蛋白質核酸酵素, 35:2191, 1990)。 Another embodiment of the DNA used for suppressing the expression of the sorghum susceptibility type ds1 gene is a DNA encoding an RNA having a ribozyme activity that specifically cleaves the transcript of the susceptibility type DNA of the present invention. Some ribozymes have a group I intron type or a size of 400 nucleotides or more like M1RNA contained in RNaseP, but some have an active domain of about 40 nucleotides called hammerhead type or hairpin type ( Makoto Koizumi and Eiko Otsuka, Protein Nucleic Acid Enzymes, 35: 2191, 1990).
 例えば、ハンマーヘッド型リボザイムの自己切断ドメインは、G13U14C15のC15の3'側を切断するが、活性にはU14が9位のAと塩基対を形成することが重要とされ、15位の塩基はCの他にAまたはUでも切断されることが示されている(Koizumi et. al., FEBS Lett. 228:225, 1988)。リボザイムの基質結合部を標的部位近傍のRNA配列と相補的になるように設計すれば、標的RNA中のUC、UUまたはUAという配列を認識する制限酵素的なRNA切断リボザイムを作出することが可能である(Koizumi et. al., FEBS Lett. 239:285, 1988、小泉誠および大塚栄子,蛋白質核酸酵素,35:2191, 1990、Koizumi et. al., Nucleic. Acids. Res. 17:7059, 1989)。 For example, the self-cleaving domain of hammerhead ribozyme cleaves 3 ′ of C15 of G13U14C15, but it is important for U14 to form a base pair with A at position 9, and the base at position 15 is In addition to C, it is shown that it can also be cut by A or U (Koizumi et. Al., FEBS Lett. 228: 225, 1988). If the ribozyme substrate binding site is designed to be complementary to the RNA sequence near the target site, it is possible to create a restriction enzyme-like RNA-cleaving ribozyme that recognizes the UC, UU, or UA sequence in the target RNA. (Koizumi et.al., FEBS Lett. 239: 285, 1988, Makoto Koizumi and Eiko Otsuka, Protein Nucleic Acid Enzyme, 35: 2191, 1990, Koizumi et. Al., Nucleic. Acids. Res. 17: 7059, 1989).
 また、ヘアピン型リボザイムも、本発明の目的のために有用である。ヘアピン型リボザイムは、例えばタバコリングスポットウイルスのサテライトRNAのマイナス鎖に見出される(Buzayan, Nature 323:349, 1986)。このリボザイムも、標的特異的なRNA切断を起こすように設計できることが示されている(Kikuchi and Sasaki, Nucleic Acids Res. 19:6751, 1992、菊池洋,化学と生物 30:112, 1992)。標的を切断できるよう設計されたリボザイムは、ソルガム細胞中で転写されるようにカリフラワーモザイクウイルスの35Sプロモーターなどのプロモーターおよび転写終結配列に連結される。このような構成単位をタンデムに並べ、標的遺伝子内の複数の部位を切断できるようにして、より効果を高めることもできる(Yuyama et al., Biochem. Biophys. Res. Commun. 186:1271, 1992)。このようなリボザイムを用いて標的となるds1遺伝子の転写産物を特異的に切断し、該遺伝子の発現を抑制することができる。
 
<ベクター、形質転換ソルガム細胞、形質転換ソルガム植物体>
 本発明は、また、上記本発明のDNA(罹病性型DNA、抵抗性型DNA、ds1遺伝子の発現を抑制するためのDNA)を含むベクター、上記本発明のDNAまたはそれを含むベクターが導入されたソルガム細胞、該細胞を含むソルガム植物体、該植物体の子孫またはクローンであるソルガム植物体、および、これらソルガム植物体の繁殖材料を提供する。
Hairpin ribozymes are also useful for the purposes of the present invention. Hairpin ribozymes are found, for example, in the minus strand of satellite RNA of tobacco ring spot virus (Buzayan, Nature 323: 349, 1986). It has been shown that this ribozyme can also be designed to cause target-specific RNA cleavage (Kikuchi and Sasaki, Nucleic Acids Res. 19: 6751, 1992, Hiroshi Kikuchi, Chemistry and Biology 30: 112, 1992). A ribozyme designed to cleave the target is linked to a promoter, such as the cauliflower mosaic virus 35S promoter, and a transcription termination sequence so that it is transcribed in sorghum cells. Such structural units can be arranged in tandem so that multiple sites in the target gene can be cleaved to further increase the effect (Yuyama et al., Biochem. Biophys. Res. Commun. 186: 1271, 1992 ). Using such a ribozyme, the transcription product of the target ds1 gene can be specifically cleaved to suppress the expression of the gene.

<Vector, transformed sorghum cell, transformed sorghum plant>
The present invention also introduces a vector containing the DNA of the present invention (susceptible DNA, resistant DNA, DNA for suppressing the expression of the ds1 gene), the DNA of the present invention or a vector containing the same. A sorghum cell, a sorghum plant containing the cell, a sorghum plant that is a descendant or clone of the plant, and a propagation material of the sorghum plant are provided.
 本発明のベクターとしては、例えば、自律複製可能なベクターまたは染色体中に相同組換え可能なベクターを使用することができる。本発明のベクターは、ソルガム細胞に導入した後、本発明のDNAが発現するように、通常、適当な発現プロモーターを含む。本発明に用いるプロモーターとして、例えば、カリフラワーモザイクウイルス由来の35Sプロモーター、トウモロコシ由来のユビキチンプロモーターを挙げることができる。ベクターは、選択マーカー、複製開始点、ターミネーター、ポリリンカー、エンハンサー、リボゾーム結合部位などを適宜含むことができる。一般に、該プロモーターの下流に、本発明のDNAが位置し、さらに該DNAの下流にはターミネーターが位置する。ターミネーターとしては、例えば、カリフラワーモザイクウイルス由来のターミネーターやノパリン合成酵素遺伝子由来のターミネーターを挙げることができる。 As the vector of the present invention, for example, an autonomously replicable vector or a vector capable of homologous recombination in a chromosome can be used. The vector of the present invention usually contains an appropriate expression promoter so that the DNA of the present invention is expressed after introduction into sorghum cells. Examples of promoters used in the present invention include cauliflower mosaic virus-derived 35S promoter and corn-derived ubiquitin promoter. The vector can appropriately include a selection marker, a replication origin, a terminator, a polylinker, an enhancer, a ribosome binding site, and the like. In general, the DNA of the present invention is located downstream of the promoter, and a terminator is located downstream of the DNA. Examples of the terminator include a terminator derived from a cauliflower mosaic virus and a terminator derived from a nopaline synthase gene.
 上記ベクターを導入するソルガム細胞の形態としては、特に制限はなく、未熟胚、カルス、花粉などを例示することができる。上記ベクターをソルガム細胞中に導入し、ソルガム植物体を再生させる方法としては、当該技術分野における常法を用いることができる。このような方法としては、例えば、アグロバクテリウム法やパーティクルガン法により、未熟胚やカルスに遺伝子導入して植物体を再生させる方法、超音波によって遺伝子導入した花粉を用いて受粉する方法が好適に用いられる(J. A. Able et al., In Vitro Cell. Dev. Biol. 37:341-348, 2001、A. M. Casas et al., Proc. Natl. Acad. Sci. USA 90:11212-11216, 1993、V. Girijashankar et al., Plant Cell Rep 24:513-522, 2005、J. M. JEOUNG et al., Hereditas 137:20-28, 2002、V Girijashankar et al., Plant Cell Rep 24(9):513-522, 2005、Zuo-yu Zhao et al., Plant Molecular Biology 44:789-798, 2000、S. Gurel et al., Plant Cell Rep 28(3):429-444, 2009、ZY Zhao, Methods Mol Biol, 343:233-244, 2006、AK Shrawat and H Lorz, Plant Biotechnol J, 4(6):575-603, 2006、D Syamala and P Devi Indian J Exp Biol, 41(12):1482-1486, 2003、Z Gao et al., Plant Biotechnol J, 3(6):591-599, 2005)。 The form of the sorghum cell into which the vector is introduced is not particularly limited, and examples thereof include immature embryos, callus, pollen and the like. As a method for introducing the vector into a sorghum cell and regenerating a sorghum plant, a conventional method in this technical field can be used. As such a method, for example, a method of regenerating a plant body by introducing a gene into an immature embryo or a callus by an Agrobacterium method or a particle gun method, or a method of pollination using pollen that has been gene-transferred by ultrasonic waves is preferable. (J. A. Able et al., In Vitro Cell. Dev. Biol. 37: 341-348, 2001, A. M. Casas et al., Proc. Natl. Acad. Sci. USA 90: 11212 -11216, 1993, V. Girijashankar et al., Plant Cell Rep 24: 513-522, 2005, J. M. JEOUNG et al., Hereditas 137: 20-28, 2002, V Girijashankar et al., Plant Cell Rep 24 (9): 513-522, 2005, Zuo-yu Zhao et al., Plant Molecular Biology 44: 789-798, 2000, S. Guler et al., Plant Cell Rep 28 (3): 429-444, 2009 , ZY Zhao, Methods Mol Biol, 343: 233-244, 2006, AK Shrawat and H Lorz, Plant Biotechnol J, 4 (6): 575-603, 2006, D Syam ala and P Devi Indian J Exp Biol, 41 (12): 1482-1486, 2003, Z Gao et al., Plant Biotechnol J, 3 (6): 591-599, 2005).
 上記本発明のDNAは、外因性のDNAとしてソルガムに導入することができるが、本発明のDNAを有する品種との交配によってソルガムに導入することもできる。本発明における「導入」には、これら双方の形態が含まれる。 The above DNA of the present invention can be introduced into sorghum as exogenous DNA, but can also be introduced into sorghum by crossing with varieties having the DNA of the present invention. “Introduction” in the present invention includes both forms.
 一旦、染色体内に上記本発明のDNAが導入されたソルガム植物体が得られれば、該植物体から有性生殖または無性生殖により子孫を得ることが可能である。また、該ソルガム植物体やその子孫あるいはクローンから繁殖材料(例えば、カルス、プロトプラスト、花粉、種子、切穂等)を得て、それらを基に該植物体を量産することも可能である。本発明には、上記本発明のDNAが導入された植物細胞、該細胞を含む植物体、該植物体の子孫およびクローン、ならびに該植物体、その子孫およびクローンの繁殖材料が含まれる。 Once a sorghum plant having the above-described DNA of the present invention introduced therein is obtained, progeny can be obtained from the plant by sexual reproduction or asexual reproduction. It is also possible to obtain a propagation material (for example, callus, protoplast, pollen, seed, cut ear, etc.) from the sorghum plant, its progeny or clone, and mass-produce the plant based on them. The present invention includes a plant cell into which the DNA of the present invention is introduced, a plant containing the cell, a progeny and clone of the plant, and a propagation material for the plant, its progeny and clone.
 本発明の罹病性型DNAが導入されたソルガム植物体は、例えば、ソルガムに紫斑点病抵抗性を付与するための薬剤の開発(スクリーニング)や紫斑点病発症の機構の解明のための実験用植物として利用することができる。一方、本発明の抵抗性型DNAまたは本発明のds1遺伝子の発現を抑制するためのDNAが導入されたソルガム植物体は、これらDNAが導入されていない罹病性のソルガム植物体と比較して、その収量の増大が期待でき、より有用性の高い農作物あるいはバイオマスとして利用することができる。
 
<紫斑点病抵抗性が付与されたソルガムの作出方法>
 本発明は、また、ソルガムにおいて、本発明の罹病性型DNA(罹病性型ds1遺伝子)の発現または機能を抑制することを特徴とする、紫斑点病抵抗性が付与されたソルガムの作出方法を提供する。本発明において、ソルガムに紫斑点病抵抗性を「付与する」とは、紫斑点病抵抗性を全く有しない品種に紫斑点病抵抗性を持たせることのみならず、既に、一定の紫斑点病抵抗性を有している品種における、紫斑点病抵抗性を、さらに増大させることをも含む意である。
The sorghum plant into which the susceptible DNA of the present invention has been introduced is used for, for example, development (screening) of a drug for imparting purpura resistance to sorghum and for elucidating the mechanism of purpura disease onset. It can be used as a plant. On the other hand, the sorghum plant into which the resistance type DNA of the present invention or the DNA for suppressing the expression of the ds1 gene of the present invention is introduced is compared with a susceptible sorghum plant into which these DNAs are not introduced, The yield can be expected to increase, and it can be used as a more useful crop or biomass.

<Method for producing sorghum with resistance to purpura disease>
The present invention also provides a method for producing a sorghum imparted with resistance to purpura disease, characterized by suppressing the expression or function of the susceptibility type DNA (susceptible type ds1 gene) of the present invention in sorghum. provide. In the present invention, “giving” purpura disease resistance to sorghum is not only to impart purpura resistance to a variety that does not have purpura disease resistance at all, but also to a certain purpura disease. It also includes further increasing the resistance to purpura in varieties having resistance.
 ソルガムにおける本発明の罹病性型DNAの発現または機能を抑制するための一つの態様は、ソルガムに、上記本発明の抵抗性型DNAを導入することである。ソルガムにおける紫斑点病抵抗性は、単一劣性遺伝子支配であるため、ソルガムに紫斑点病抵抗性の形質を付与するためには、通常、個体におけるds1対立遺伝子の双方を抵抗性型DNAにする必要がある。これにより個体中で抵抗性型DNAのみが発現し、ソルガムに紫斑点病抵抗性を付与することができる。ソルガム染色体への本発明の抵抗性型DNAの導入は、例えば、交配や相同組換えにより行うことができる。抵抗性型DNAを導入することに代えて、ソルガム染色体上の罹病性型DNAに、特定のDNA配列を導入し、その機能を破壊してもよい。 One embodiment for suppressing the expression or function of the susceptible DNA of the present invention in sorghum is to introduce the above-described resistant DNA of the present invention into sorghum. Because purpura resistance in sorghum is controlled by a single recessive gene, in order to confer a purpura resistance trait to sorghum, both ds1 alleles in individuals are usually made resistant DNA There is a need. As a result, only resistant DNA is expressed in the individual, and purple spot disease resistance can be imparted to sorghum. Introduction of the resistant DNA of the present invention into the sorghum chromosome can be performed by, for example, mating or homologous recombination. Instead of introducing resistant DNA, a specific DNA sequence may be introduced into the susceptible DNA on the sorghum chromosome to destroy its function.
 ソルガムにおける本発明の罹病性型DNAの発現または機能を抑制するための他の一つの態様は、ソルガムに上記本発明のds1遺伝子の発現を抑制するためのDNAを導入することである。これにより個体中の罹病性型DNAから、罹病性型の翻訳産物が生産されなくなるため、ソルガムに紫斑点病抵抗性を付与することができる。 Another embodiment for suppressing the expression or function of the susceptible DNA of the present invention in sorghum is to introduce DNA for suppressing the expression of the ds1 gene of the present invention into the sorghum. As a result, since a disease-sustainable translation product is not produced from the disease-susceptible DNA in the individual, purple spot disease resistance can be imparted to sorghum.
 ソルガムにおける本発明の罹病性型DNAの発現または機能を抑制するための他の態様としては、例えば、罹病性型DNAの発現を抑制する薬剤や罹病性型の翻訳産物に結合し、その機能を抑制する薬剤の利用も考えられる。
 
<ソルガムにおける紫斑点病の罹病性または抵抗性を判定する方法>
 本発明は、また、ソルガムにおける紫斑点病の罹病性または抵抗性を判定する方法を提供する。本発明の判定方法の一つの態様は、ソルガムにおけるds1遺伝子またはその発現制御領域の塩基配列を解析し、対照の塩基配列と比較することを特徴とする方法である。BTx623の発現制御領域を配列番号:13に、bmr-6の発現制御領域を配列番号:14に、那系MS3Bの発現制御領域を配列番号:15に、SIL-05の発現制御領域を配列番号:16に、Greenleafの発現制御領域を配列番号:17に示す。
Other embodiments for suppressing the expression or function of the susceptible DNA of the present invention in sorghum include, for example, binding to a drug that suppresses the expression of the susceptible DNA or a translation product of the susceptible type and The use of a suppressive drug is also considered.

<Method for determining susceptibility or resistance to purpura in sorghum>
The present invention also provides a method of determining susceptibility or resistance to purpura in sorghum. One embodiment of the determination method of the present invention is a method characterized by analyzing the base sequence of the ds1 gene or its expression control region in sorghum and comparing it with the control base sequence. The expression control region of BTx623 is SEQ ID NO: 13, the expression control region of bmr-6 is SEQ ID NO: 14, the expression control region of nasty MS3B is SEQ ID NO: 15, and the expression control region of SIL-05 is SEQ ID NO: : 16 shows the expression control region of Greenleaf in SEQ ID NO: 17.
 ds1遺伝子またはその発現制御領域の塩基配列の解析に際しては、ds1遺伝子またはその発現制御領域のDNAをPCRにより増幅した増幅産物を用いることができる。前記PCRを実施する場合において、用いられるプライマーは、ds1遺伝子またはその発現制御領域を特異的に増幅できるものである限り制限はなく、ds1遺伝子またはその発現制御領域の配列情報(例えば、配列番号:1,2,4,5,7,8,10,11,13,14,15,16または17)に基づいて適宜設計することができる。好適なプライマーとしては、表3から7に記載のプライマーが挙げられる。これらプライマーを適宜組み合わせて、ds1遺伝子またはその発現制御領域の特定の塩基配列を増幅することができる。 In analyzing the base sequence of the ds1 gene or its expression control region, an amplification product obtained by amplifying the ds1 gene or its expression control region DNA by PCR can be used. In case of carrying out the PCR, primers used are not limited as long as it can specifically amplify the ds1 gene or its expression control region, ds1 gene or sequence information of the expression control region (e.g., SEQ ID NO: 1,2,4,5,7,8,10,11,13,14,15,16 or 17). Suitable primers include those listed in Tables 3-7. A specific base sequence of the ds1 gene or its expression control region can be amplified by appropriately combining these primers.
 なお、表3および表4に記載のプライマーは、表1および表2に記載のSSR領域を含む塩基配列を増幅するためのプライマーである。表5および表6に記載のプライマーは、挿入・欠失マーカー(塩基の挿入・欠失による品種間の塩基配列の相違)を含む塩基配列を増幅するためのプライマーである(表5の#21および表6に記載のプライマーが標的とする塩基配列は、図8を参照のこと)。表7に記載のプライマーは、ds1遺伝子のコード領域および上流域を増幅するためのプライマーである。 The primers described in Table 3 and Table 4 are primers for amplifying the base sequences including the SSR regions described in Table 1 and Table 2. The primers listed in Table 5 and Table 6 are primers for amplifying a base sequence containing insertion / deletion markers (difference in base sequence between varieties due to base insertion / deletion) (# 21 in Table 5). (See FIG. 8 for the nucleotide sequences targeted by the primers shown in Table 6). The primers listed in Table 7 are primers for amplifying the coding region and upstream region of the ds1 gene.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 被検ソルガムにおけるds1遺伝子の塩基配列と比較する「対照の塩基配列」は、典型的には、罹病性型品種または抵抗性型品種におけるds1遺伝子の塩基配列である。決定したds1遺伝子の塩基配列と罹病性型品種における塩基配列(例えば、配列番号:1、2、4、5)または抵抗性型品種における塩基配列(例えば、配列番号:7、8、10、11)とを比較することにより、被検ソルガムにおけるds1遺伝子が、抵抗性型であるか罹病性型であるかを評価することができる。例えば、罹病性型品種における塩基配列(例えば、配列番号:1、2、4、5)と比較して、塩基配列において大きな相違がある場合(特に、新たな終止コドンの出現やフレームシフトにより、コードするタンパク質の分子量やアミノ酸配列に大きな変化が生じる場合)、被検ソルガムにおけるds1遺伝子は抵抗性型である蓋然性が高いと判定される。また、被検ソルガムにおけるds1遺伝子の発現制御領域の塩基配列に、ds1遺伝子の発現を抑制する変異がある場合(例えば、発現制御領域の一部が大きく欠失している場合:図6、図7を参照のこと)、被検ソルガムにおけるds1遺伝子の発現制御領域は、抵抗性型である蓋然性が高いと判定される。 The “control base sequence” to be compared with the base sequence of the ds1 gene in the test sorghum is typically the base sequence of the ds1 gene in the susceptible or resistant variety. The determined base sequence of the ds1 gene and the base sequence in the susceptible strain (eg, SEQ ID NOs: 1, 2, 4, 5) or the base sequence in the resistant strain (eg, SEQ ID NOs: 7, 8, 10, 11) ), It is possible to evaluate whether the ds1 gene in the test sorghum is resistant or susceptible. For example, when there is a large difference in the nucleotide sequence compared to the nucleotide sequence in the susceptible type varieties (for example, SEQ ID NOs: 1, 2, 4, 5) (particularly due to the appearance of a new stop codon or frame shift, When a large change occurs in the molecular weight or amino acid sequence of the encoded protein), the ds1 gene in the test sorghum is determined to have a high probability of being resistant. Moreover, when there is a mutation that suppresses the expression of the ds1 gene in the base sequence of the expression control region of the ds1 gene in the test sorghum (for example, when a part of the expression control region is largely deleted: FIG. 6, FIG. 7), the expression control region of the ds1 gene in the test sorghum is determined to be highly resistant.
 被検ソルガムにおけるds1遺伝子またはその発現制御領域の塩基配列が、対照の塩基配列と相違するか否かは、上記した直接的な塩基配列の決定以外に、種々の方法により間接的に解析することができる。このような方法としては、例えば、PCR-SSCP(single-strand conformation polymorphism、一本鎖高次構造多型)法、制限酵素断片長多型(Restriction Fragment Length Polymorphism/RFLP)を利用したRFLP法やPCR-RFLP法、変性剤濃度勾配ゲル電気泳動法(denaturant gradient gel electrophoresis:DGGE)、アレル特異的オリゴヌクレオチド(Allele Specific Oligonucleotide/ASO)ハイブリダイゼーション法、リボヌクレアーゼAミスマッチ切断法が挙げられる。 Whether the base sequence of the ds1 gene in the test sorghum or its expression control region is different from the base sequence of the control should be analyzed indirectly by various methods other than the determination of the direct base sequence described above. Can do. Examples of such methods include PCR-SSCP (single-strand conformation polymorphism) method, RFLP method using restriction fragment length polymorphism (RFLP), Examples include PCR-RFLP, denaturant gradient gel electrophoresis (DGGE), allele specific oligonucleotide (ASO) hybridization, and ribonuclease A mismatch cleavage.
 なお、本発明の判定方法における、被検ソルガムからのDNAの調製は、常法、例えば、CTAB法を用いて行うことができる。DNAを調製するためのソルガムとしては、ソルガムの成長した植物体のみならず、ソルガムの種子や幼植物体を用いることもできる。 In the determination method of the present invention, DNA can be prepared from the test sorghum using a conventional method, for example, CTAB method. As sorghum for preparing DNA, not only a plant body in which sorghum has grown, but also sorghum seeds and seedlings can be used.
 また、塩基配列の決定は、常法、例えば、ジデオキシ法やマキサム-ギルバート法などにより行なうことができる。塩基配列の決定においては、市販のシークエンスキットおよびシークエンサーを利用することができる。 The base sequence can be determined by a conventional method such as the dideoxy method or the Maxam-Gilbert method. In determining the base sequence, a commercially available sequence kit and sequencer can be used.
 また、発現制御領域の塩基配列における変異がds1遺伝子の発現に影響を与えるか否かは、当該変異を有する発現制御領域の下流にレポーター遺伝子を発現可能に連結したベクターを構築し、当該ベクターをソルガム細胞に導入し、レポーター活性を検出することにより、判定することができる。 Whether a mutation in the base sequence of the expression control region affects the expression of the ds1 gene is determined by constructing a vector in which a reporter gene is linked downstream of the expression control region having the mutation so that the vector can be expressed. It can be determined by introducing into sorghum cells and detecting the reporter activity.
 本発明の判定方法の他の一つの態様は、ソルガムにおけるds1遺伝子の発現または発現産物の分子量を検出することを特徴とする方法である。ここで「遺伝子の発現の検出」には、転写レベルにおける検出および翻訳レベルにおける検出の双方を含む意である。また、「発現の検出」には、発現の有無の検出のみならず、発現の程度の検出も含む意である。 Another embodiment of the determination method of the present invention is a method characterized by detecting the expression of the ds1 gene in sorghum or the molecular weight of the expression product. Here, “detection of gene expression” includes both detection at the transcription level and detection at the translation level. In addition, “detection of expression” is intended to include not only detection of the presence or absence of expression but also detection of the degree of expression.
 転写レベルにおける検出は、常法、例えば、RT-PCR(Reverse transcribed-Polymerase chain reaction)法やノーザンブロッティング法により実施することができる。前記PCRを実施する場合において用いられるプライマーは、ds1遺伝子を特異的に増幅できるものである限り制限はなく、ds1遺伝子の配列情報(例えば、配列番号:1,2,4,5,7,8,10または11)に基づいて適宜設計することができる。プライマーの好適な例は、上記表7に記載の#21Fと#21Rの組み合わせである。 Detection at the transcription level can be carried out by a conventional method such as RT-PCR (Reverse transcribed-Polymerase chain reaction) or Northern blotting. Primers used in the case of carrying out the PCR is not limited as long as it can specifically amplify the ds1 gene, ds1 gene sequence information (e.g., SEQ ID NO: 1,2,4,5,7,8 , 10 or 11). A suitable example of the primer is a combination of # 21F and # 21R described in Table 7 above.
 一方、翻訳レベルにおける検出は、常法、例えば、ウェスタンブロッティング法により、実施することができる。ウェスタンブロッティングに用いる抗体は、ポリクローナル抗体でもモノクローナル抗体でもよく、これら抗体の調製方法は、当業者に周知である。 On the other hand, detection at the translation level can be performed by a conventional method, for example, Western blotting. The antibody used for Western blotting may be a polyclonal antibody or a monoclonal antibody, and methods for preparing these antibodies are well known to those skilled in the art.
 遺伝子発現の検出の結果、被検体において、ds1遺伝子の発現量が罹病性品種(例えば、BTx623、bmr-6)の発現量よりも有意に低ければ、また、ds1遺伝子の発現産物の分子量が罹病性品種(例えば、BTx623、bmr-6)における分子量と有意に異なれば、被検ソルガムが紫斑点病抵抗性である蓋然性が高いと判定される。実際、罹病性品種(BTx623、bmr-6)と比較して、抵抗性品種SIL-05およびGreenleafにおけるds1遺伝子の発現量は有意に低く、また、抵抗性品種那系MS3BおよびGreenleafにおけるds1タンパク質の分子量は有意に小さい。 Result of the detection of gene expression in a subject, susceptible variety expression level of ds1 gene (e.g., BTx623, bmr-6) if significantly lower than the expression level of, also, morbidity is the molecular weight of the expression products of ds1 gene If the molecular weight is significantly different from that in a sex variety (for example, BTx623, bmr-6), it is determined that the test sorghum has a high probability of being purpura-resistant. In fact, compared to the susceptible variety (BTx623, bmr-6), the expression level of ds1 gene in resistant varieties SIL-05 and Greenleaf significantly lower, also the ds1 proteins in resistant varieties那系MS3B and Greenleaf The molecular weight is significantly small.
 本発明の判定方法の他の一つの態様は、被検ソルガムにおける、ds1遺伝子と連鎖する分子マーカーの塩基配列を解析し、対照の塩基配列と比較することを特徴とする方法である。ここで「分子マーカー」とは、ds1遺伝子と遺伝的に連鎖するDNA領域であって、他のDNA領域と識別可能なDNA領域をいう。分子マーカーは、ds1遺伝子の近傍に位置する程、ds1遺伝子と同時に遺伝しやすいため、本発明の判定方法において有用性が高い。有用性の高い本発明の分子マーカーは、通常、ds1遺伝子のコード領域の両末端塩基から50kbp以内に存在するものであり、より好ましくは20kbp以内、さらに好ましくは10kbp以内に存在するものである。 Another embodiment of the determination method of the present invention is a method characterized by analyzing the base sequence of a molecular marker linked to the ds1 gene in a test sorghum and comparing it with a base sequence of a control. Here, the “molecular marker” refers to a DNA region that is genetically linked to the ds1 gene and is distinguishable from other DNA regions. The closer the molecular marker is located to the ds1 gene, the easier it is to be inherited simultaneously with the ds1 gene. Therefore , the molecular marker is highly useful in the determination method of the present invention. Molecular markers of the present invention having a high utility is usually one that is present within 50kbp from both end bases of the coding region of ds1 gene, more preferably within 20 kbp, more preferably those present within 10 kbp.
 本発明の分子マーカーの好ましい態様は、挿入・欠失マーカー、SSR(単純反復配列)マーカー、およびSNP(一塩基多型)マーカーである。挿入・欠失マーカーは、塩基の挿入および/または欠失によって生じるDNA多型である。SSRマーカーは、2あるいは3塩基の単位(例えば、「CA」、「CG」、「TA」、「TC」、「AGG」、「CTT」、「CGC」、「GAG」など)が、数回から数百回反復する繰り返し配列である。この繰り返しの数が個体または系統によって異なっているため、この繰り返し数の違いはDNA多型として利用することができる。SNPマーカーは、DNAの塩基配列中の塩基1個の置換によって生ずるDNA多型である。分子マーカーとなる塩基配列は、当業者であれば、例えば、品種間におけるds1遺伝子の塩基配列の比較(図7、8)を基に、適宜抽出することが可能である。 Preferred embodiments of the molecular marker of the present invention are insertion / deletion markers, SSR (simple repetitive sequence) markers, and SNP (single nucleotide polymorphism) markers. An insertion / deletion marker is a DNA polymorphism caused by insertion and / or deletion of a base. The SSR marker is a unit of 2 or 3 bases (for example, “CA”, “CG”, “TA”, “TC”, “AGG”, “CTT”, “CGC”, “GAG”, etc.) several times It is a repeating sequence that repeats several hundred times. Since the number of repetitions varies depending on the individual or strain, this difference in the number of repetitions can be used as a DNA polymorphism. The SNP marker is a DNA polymorphism caused by substitution of one base in the DNA base sequence. A person skilled in the art can appropriately extract a base sequence serving as a molecular marker based on, for example, comparison of base sequences of ds1 gene between varieties (FIGS. 7 and 8).
 挿入・欠失マーカーにおける塩基配列の解析は、直接的な塩基配列の決定を行う方法以外に、当該マーカー領域を含む塩基配列をプライマーを利用したPCRを行い、得られた増幅産物を電気泳動し、ゲル上におけるDNAバンドの位置の違いとして検出する方法で実施することができる。また、SSRマーカーにおける塩基配列の解析は、直接的な塩基配列の決定を行って、繰り返し配列の違いとして検出する方法以外に、当該繰り返し部分を含む塩基配列を増幅しうるプライマーを利用したPCRを行い、得られた増幅産物を電気泳動し、ゲル上におけるDNAバンドの位置の違いとして検出する方法で実施することができる。SNPマーカーにおける塩基配列の解析は、例えば、一塩基多型部分を含む塩基配列を増幅しうるプライマーを利用したPCRを行い、得られた増幅産物中の一塩基多型部分に取り込まれた塩基の種類を偏光蛍光分析器で特定する方法で実施することができる。 In addition to the method of directly determining the nucleotide sequence, the nucleotide sequence of the insertion / deletion marker is subjected to PCR using a primer containing the nucleotide sequence containing the marker region, and the obtained amplification product is electrophoresed. The method can be carried out by detecting the difference in the position of the DNA band on the gel. In addition, the analysis of the base sequence in the SSR marker is not limited to the method of directly determining the base sequence and detecting it as a difference in the repeat sequence, but also using PCR using a primer capable of amplifying the base sequence containing the repeat portion. The amplification product thus obtained can be electrophoresed and detected as a difference in the position of the DNA band on the gel. The analysis of the nucleotide sequence in the SNP marker is performed, for example, by performing PCR using a primer that can amplify the nucleotide sequence including the single nucleotide polymorphism part, and the nucleotide sequence incorporated into the single nucleotide polymorphism part in the obtained amplification product. The method can be carried out by specifying the type with a polarization fluorescence analyzer.
 「対照の塩基配列」としては、ds1遺伝子と連鎖する公知の分子マーカーの塩基配列を利用することができる。例えば、表5および6に記載のプライマーで、表5および6に記載の挿入・欠失マーカーを含む塩基配列を増幅した場合、増幅されたDNA断片の配列または鎖長により、罹病性型であるか抵抗性型であるかを判別することができる(図8参照のこと)。また、このような判別には、図9Aのプライマーセットを好適に用いることができる(表8、9)。 As the “control base sequence”, a base sequence of a known molecular marker linked to the ds1 gene can be used. For example, when a base sequence containing the insertion / deletion marker described in Tables 5 and 6 is amplified with the primers described in Tables 5 and 6, the base sequence containing the insertion / deletion marker described in Tables 5 and 6 is susceptible to the disease depending on the sequence or chain length of the amplified DNA fragment Or resistance type (see FIG. 8). Moreover, the primer set of FIG. 9A can be used suitably for such discrimination (Tables 8 and 9).
 表1および2に記載のSSRマーカーは、罹病性型BTx623などのds1遺伝子と連鎖する。表3および4に記載のプライマーで、該マーカーを含む塩基配列を増幅した場合、増幅されたDNA断片の配列または鎖長により、罹病性型であるか抵抗性型であるかを判別することができる。上記した通り、被検ソルガムにおける分子マーカーの塩基配列と対照の塩基配列との比較は、直接的な塩基配列の比較以外に、塩基配列の違いを評価しうる他の指標(例えば、上記したPCRによる増幅産物の分子量など)の比較によって、実施することができる。 SSR markers listed in Tables 1 and 2 ds1 gene linkage such susceptible type BTx623. When the nucleotide sequence containing the marker is amplified with the primers described in Tables 3 and 4, it is possible to determine whether it is a susceptible type or a resistant type based on the sequence or chain length of the amplified DNA fragment. it can. As described above, the comparison between the base sequence of the molecular marker in the test sorghum and the base sequence of the control is not limited to the direct base sequence comparison, but other indicators that can evaluate the difference in the base sequence (for example, the PCR described above) By comparison of the molecular weight etc. of the amplification products by
 比較の結果、被検ソルガムにおける分子マーカーの塩基配列が、罹病性型分子マーカーと同じ型である場合、被検ソルガムは罹病性の蓋然性が高いと判定され、抵抗性型分子マーカーと同じ型である場合、被検ソルガムは抵抗性の蓋然性が高いと判定される。
 
<紫斑点病抵抗性のソルガムを育種する方法>
 本発明は、また、紫斑点病抵抗性のソルガムを育種する方法を提供する。本発明の育種方法は、(a)紫斑点病抵抗性のソルガム品種と任意のソルガム品種とを交配させる工程、(b)交配により得られた個体における紫斑点病の罹病性または抵抗性を、上記本発明の判定方法により判定する工程、および(c)紫斑点病の抵抗性を有すると判定された品種を選抜する工程、を含む。
As a result of comparison, if the nucleotide sequence of the molecular marker in the test sorghum is the same type as the susceptibility type molecular marker, it is determined that the test sorghum has a high probability of susceptibility and the same type as the resistance type molecular marker. In some cases, the test sorghum is determined to have a high probability of resistance.

<Method of breeding purple spot disease resistant sorghum>
The present invention also provides a method for breeding purpura-resistant sorghum. The breeding method of the present invention comprises (a) a step of crossing a purple spot disease resistant sorghum variety with any sorghum variety, (b) a susceptibility or resistance to purpura disease in an individual obtained by the crossing, A step of determining by the determination method of the present invention, and (c) a step of selecting a variety which has been determined to be resistant to purpura.
 紫斑点病抵抗性のソルガム品種と交配させる「任意のソルガム品種」としては、例えば、罹病性品種、罹病性品種と抵抗性品種との交配により得られた個体が挙げられるが、これらに制限されない。本発明の育種方法を利用すれば、紫斑点病抵抗性のソルガムを、種子や幼植物の段階で選抜することが可能となり、紫斑点病抵抗性の形質を有する品種の育成を、従来よりも短期間で行うことが可能となる。 Examples of “arbitrary sorghum varieties” to be bred with purple spot resistant sorghum varieties include, but are not limited to, susceptible varieties and individuals obtained by crossing susceptible varieties and resistant varieties. . By utilizing the breeding method of the present invention, it becomes possible to select purple spot disease-resistant sorghum at the seed or seedling stage, and it is possible to grow varieties having purpura-resistant traits. This can be done in a short period of time.
 以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
 [実施例1] ds1遺伝子の存在領域の絞り込み
 抵抗性品種SLIL-05と罹病製品種bmr-6との交配により得られたF3からF5の集団に対して、ソルガムの多型マーカー情報を利用して紫斑点病罹病性遺伝子(ds1)のマッピングを行った(図1、図2)。なお、マッピングに用いた多型マーカーおよびプライマーに関する情報は、表1から6を参照のこと。SSRマーカーの一部は、文献(Yonemaru J, et al., DNA Res 16:187-193, 2009)に記載されている。
Against Example 1] ds1 gene F3 from F5 population obtained by crossing a narrowing resistant variety SLIL-05 in existing areas and susceptible product species bmr-6 of, utilizing a polymorphic marker information Sorghum The purpura disease susceptibility gene ( ds1 ) was mapped (FIGS. 1 and 2). See Tables 1 to 6 for information on polymorphic markers and primers used for mapping. Some of the SSR markers are described in the literature (Yonemaru J, et al., DNA Res 16: 187-193, 2009).
 (1)F3集団(175個体)について、SSRマーカー(SB3067、SB3146)を用いてマッピングを行い、紫斑点病罹病性遺伝子ds1が、染色体5番に座乗していることが判明した。 For (1) F3 population (175 individuals) performs mapping using SSR markers (SB3067, SB3146), purpura spot disease susceptibility gene ds1 was found to be in Zajo to chromosome 5.
 (2)F4集団(640個体)について、SSRマーカーSB3056からSB3178の間で、マーカースクリーニングを行った後、これらのマーカー間で組換えのある229個体を選抜し、これら個体について、圃場にて紫斑点病の検定を行った。その結果、ds1遺伝子の存在領域が約246kbpにまで絞り込まれた。ソルガムの罹病性品種BTx623の塩基配列情報を基に見出した挿入/欠失マーカー(#12、#20、#17など)を用いて、マッピングを行い、ds1遺伝子の存在領域を約96kbpまで絞り込んだ。 (2) After screening the F4 population (640 individuals) between SSR markers SB3056 to SB3178, 229 individuals with recombination between these markers were selected, and these individuals were purpura in the field. A test for point disease was performed. As a result, the existence region of ds1 gene was narrowed to about 246Kbp. Insert found based on the nucleotide sequence information of the susceptible variety BTx623 of sorghum / deletion markers (# 12, # 20, #, etc. 17) was used to perform mapping, narrowed the existing area of ds1 gene up to about 96kbp .
 (3)F5集団(4235個体)について、挿入/欠失マーカーおよびSSRマーカー(#12、SB22274)を用いて、これらのマーカー間で組換えのある個体をスクリーニングした。さらに、新たに見出した挿入/欠失マーカー(#20、#21、#20karaシリーズ、および#12karaシリーズ)用いて、ds1遺伝子の存在領域を絞り込んだ。その結果、最終的に、ds1遺伝子の存在領域が約26kbpにまで絞り込まれた。 (3) For F5 population (4235 individuals), individuals with recombination between these markers were screened using insertion / deletion markers and SSR markers (# 12, SB22274). Further, newly found insertion / deletion markers (# 20, # 21, # 20kara series, and # 12Kara series) using, it narrowed the existing area of ds1 gene. As a result, finally, the presence region of ds1 gene was narrowed to about 26Kbp.
 罹病性品種BTx623において、絞り込んだ領域に、2つの候補遺伝子配列(レセプターキナーゼと塩誘導蛋白質)を見出した。既知の植物病害抵抗性遺伝子の多くがレセプターであることから、このレセプターキナーゼ遺伝子が紫斑点病抵抗性遺伝子であると推測した。 In the susceptible varieties BTx623, two candidate gene sequences (receptor kinase and salt-inducible protein) were found in the narrowed region. Since many of the known plant disease resistance genes are receptors, it was speculated that this receptor kinase gene was a purpura disease resistance gene.
 なお、多型マーカーを含む塩基配列を増幅するためのPCRにおいては、PCR試薬(GoTaq(R)Green Master Mix)を5μl、蒸留水を4.4μl、DNA(20ng/μl)を0.1μl、プライマー(10p)を0.5μlを含む計10μlの反応液を調製した。1反応当たり、そのうち9.5μlを使用し、94度で2分、「94度で1分→55℃で1分→72度で2分」を35サイクル、72度で10分の条件で反応を行った。 In PCR for amplifying a base sequence containing a polymorphic marker, 5 μl of PCR reagent (GoTaq (R) Green Master Mix), 4.4 μl of distilled water, 0.1 μl of DNA (20 ng / μl), primers ( A total of 10 μl of reaction solution containing 0.5 μl of 10p) was prepared. Use 9.5 μl of each reaction, and react at 94 ° C for 2 minutes, 94 ° C for 1 minute → 55 ° C for 1 minute → 72 ° C for 2 minutes, 35 cycles, 72 ° C for 10 minutes. went.
 また、紫斑点病の検定は、病原菌(Bipolaris sorghicola (Lefebvre & Sherwin) Alcorn)をソルガムに噴霧する方法もしくはオオムギ培地で培養して接種する方法にて行った。病原菌をソルガムに噴霧する方法においては、まず、104~105個/mlの濃度で紫斑点病菌を含む蒸留水(0.01%tween20)を、ソルガムの葉に対し、全体が濡れる程度に噴霧し、16時間ビニール袋中で、暗条件で保持した。次いで、明条件で、25℃の温室に移して育て、7~10日後に、発病度(病班面積/全体の面積)の検定を行った。オオムギ培地で培養して接種する方法においては、まず、皮つきのオオムギを蒸留水中にて、15分間オオトクレーブ処理を行い、冷却後、紫斑点病菌を接種した。次いで、フラスコ内部で、菌糸がオオムギに広がるまで時々攪拌しながら約2週間培養を行った。病原菌が生育した大麦粒を全長50cm程度に生育したソルガムの未展開葉の中に3粒投入し、4~5日後以降に紫斑点病の病班の検定を行った。
 
 [実施例2] ds1候補遺伝子の発現と紫斑点病の罹病性・抵抗性との関係
 候補領域に存在する遺伝子の発現をRT-PCRで調査した。プライマーとしては、表7に記載の#21Fと#21Rを用いた。その結果、レセプターキナーゼ遺伝子のmRNAの発現パターンのみが、病気の罹病性、抵抗性の区別と一致した(図3)。交配集団を用いた葉のRT-PCRでは、ヘテロ個体、bmr-6型個体では多くmRNAの発現があるがSIL-05型では量がかなり少ない(もしくは無い)。このことは、遺伝学的に3:1に分離し劣性ホモで抵抗性という報告(非特許文献1)にも合致する。
The purpura disease test was carried out by spraying pathogenic bacteria (Bipolaris sorghicola (Lefebvre & Sherwin) Alcorn) on sorghum or by inoculating them by culturing in barley medium. In the method of spraying pathogenic bacteria on sorghum, first, distilled water (0.01% tween20) containing purpura disease bacteria at a concentration of 10 4 to 10 5 cells / ml is sprayed on the leaves of sorghum to such an extent that it gets wet. For 16 hours in a plastic bag. Subsequently, the cells were transferred to a greenhouse at 25 ° C. under bright conditions, and after 7 to 10 days, the disease severity (sickness area / total area) was tested. In the method of inoculating by culturing in barley medium, first, barley with skin was autoclaved for 15 minutes in distilled water, cooled, and then inoculated with purpura. Subsequently, the flask was cultured for about 2 weeks with occasional agitation until the mycelium spread in the barley. Three grains of barley grown with pathogenic bacteria were put into undeveloped leaves of sorghum grown to a total length of about 50 cm, and after 4 to 5 days, the lesions for purpura were examined.

[Example 2] Relationship between expression of ds1 candidate gene and susceptibility / resistance of purpura disease Expression of a gene present in the candidate region was investigated by RT-PCR. As primers, # 21F and # 21R described in Table 7 were used. As a result, only the mRNA expression pattern of the receptor kinase gene was consistent with the distinction between disease susceptibility and resistance (FIG. 3). In leaf RT-PCR using the cross population, heterozygous individuals and bmr-6 type individuals have a large amount of mRNA expression, but SIL-05 type has a very small amount (or none). This is consistent with the report of non-patent homology and resistance (3).
 なお、RT-PCRの手法については、文献(Kikuchi R. et al, Plant Physiol 149:1341-1353, 2009、Shimada S. et al, Plant J. 58:668-681, 2009)を参考にした。
 
 [実施例3] ds1遺伝子の発現の組織特異性および品種間差
 抵抗性品種SLIL-05と罹病製品種bmr-6のBacライブラリーを作成し(Ashikawa I. et al., Genetics 180:2267-2276,2008)、候補遺伝子領域を含むBacクローンをスクリーニングし、その塩基配列を決定した。その結果、bmr-6には塩誘導蛋白質遺伝子が存在しないことが判明した。これにより、塩誘導蛋白質遺伝子は候補遺伝子の対象から除外され、レセプターキナーゼ遺伝子を紫斑点病罹病性遺伝子とした。
In addition, about the technique of RT-PCR, literature (Kikuchi R. et al, Plant Physiol 149: 1341-1353, 2009, Shimada S. et al, Plant J. 58: 668-681, 2009) was referred.

. [Example 3] creates a Bac library of tissue specificity and the varietal differences resistant varieties SLIL-05 morbidity product species bmr-6 of ds1 gene expression (Ashikawa I. et al, Genetics 180 : 2267- 2276, 2008), Bac clones containing candidate gene regions were screened and their nucleotide sequences were determined. As a result, it was found that bmr-6 has no salt-inducible protein gene. As a result, the salt-inducible protein gene was excluded from the candidate gene candidates, and the receptor kinase gene was designated as a purpura disease susceptibility gene.
 さらに、抵抗性品種SIL-05と罹病製品種bmr-6における組織特異的遺伝子発現を調査したところ、罹病性のbmr-6では、レセプターキナーゼ遺伝子が茎葉部で多く発現していたが、抵抗性のSIL-05では茎葉部では発現がほとんどなく見られなかった(図4上)。また、罹病性品種では発現が見られたが、抵抗性品種では発現量は少なかった(図4下)。このことから、当該レセプターキナーゼ遺伝子の遺伝子発現がなければ、ソルガムは紫斑点病抵抗性を示すと考えられた。
 
 [実施例4] 品種間のds1遺伝子の配列の比較
 レセプターキナーゼ遺伝子周辺の塩基配列を決定し、BTx623(罹病性)、SIL-05(抵抗性)、およびbmr-6(罹病性)の間で比較した。その結果、この遺伝子のコード領域のアミノ酸配列は、SIL-05とBTx623とで完全に一致しており、bmr-6ではBTx623と比較して3カ所の塩基置換があり、うち一つの変異でアミノ酸変異を伴っていた(851H→Q)(図5)。
Furthermore, when the tissue-specific gene expression in the resistant cultivar SIL-05 and the diseased product species bmr-6 was investigated, the receptor kinase gene was highly expressed in the foliage in the diseased bmr-6. In SIL-05, almost no expression was observed in the foliage (upper figure 4). In addition, expression was observed in susceptible varieties, but the expression level was low in resistant varieties (bottom of FIG. 4). From this, it is considered that sorghum exhibits purpura resistance if there is no gene expression of the receptor kinase gene.

[Example 4] to determine the comparative receptor kinase gene near nucleotide sequence of the sequence of ds1 genes between varieties, BTx623 (susceptible), SIL-05 (resistant), and bmr-6 between (susceptible) Compared. As a result, the amino acid sequence of the coding region of this gene is completely identical between SIL-05 and BTx623, and bmr-6 has three base substitutions compared to BTx623, and one of these mutations has an amino acid sequence. It was accompanied by mutation (851H → Q) (FIG. 5).
 SIL-05では遺伝子の上流プロモーター領域が一部欠損しており、このため、mRNAの発現量が少ないと推測された(図6、7)。一方、ソルガム品種、那系MS3Bも紫斑点病に抵抗性を示すが、この品種のレセプターキナーゼ遺伝子の塩基配列を解析したところ、遺伝子コード領域に停止コドンが存在した(図6、7)。これにより正常な蛋白質が合成されないと考えられた。 In SIL-05, a part of the upstream promoter region of the gene was deleted, and it was speculated that the expression level of mRNA was small (FIGS. 6 and 7). On the other hand, the sorghum cultivar, Nasatsu MS3B, is also resistant to purpura, but when the nucleotide sequence of the receptor kinase gene of this cultivar was analyzed, a stop codon was present in the gene coding region (FIGS. 6 and 7). As a result, it was thought that normal proteins were not synthesized.
 なお、品種間における塩基配列の比較には、CrastalW(http://clustalw.ddbj.nig.ac.jp/top-j.html)を用いた。
 
 [実施例5] 世界の各地域由来のソルガム品種のds1候補遺伝子における多型と紫斑点病の罹病性、抵抗性との関係
 ソルガムの植物葉からのDNA抽出はC-TAB法を用いた(MURRAY, M. G., and W. F. THOMPSON, Nucleic Acid Reserach 8:4321-4325,1980)。抽出したDNAを用いてPCRを行った。PCRの条件は、実施例1と同様とし、プライマーセットとしては、表7に記載の、520Fと141R(プライマーセット#1)、1141Fと1823R(プライマーセット#2)、#21GLFと#21GLR(プライマーセット#3)、#21Fと#21R(プライマーセット#4)を用いた(図9A)。プライマーセット#4を用いた場合には、PCRの後、電気泳動前に、制限酵素処理を行った。具体的には、PCRの後、PCRサンプル5ulをわけとり、制限酵素MlyIを加え、全量20ulとした。この反応系で37度で1時間処理したサンプルを電気泳動した。
For comparison of base sequences between varieties, CrastalW (http://clustalw.ddbj.nig.ac.jp/top-j.html) was used.

[Example 5] Relationship between polymorphisms in ds1 candidate genes of sorghum varieties from various regions of the world and susceptibility and resistance to purpura disease DNA extraction from sorghum plant leaves used the C-TAB method ( MURRAY, MG, and WF THOMPSON, Nucleic Acid Reserach 8: 4321-4325, 1980). PCR was performed using the extracted DNA. The PCR conditions were the same as in Example 1. The primer sets listed in Table 7 were 520F and 141R (primer set # 1), 1141F and 1823R (primer set # 2), # 21GLF and # 21GLR (primer). Set # 3), # 21F and # 21R (primer set # 4) were used (FIG. 9A). When primer set # 4 was used, restriction enzyme treatment was performed after PCR and before electrophoresis. Specifically, after PCR, 5 ul of the PCR sample was separated, and the restriction enzyme MlyI was added to make a total amount of 20 ul. A sample treated with this reaction system at 37 ° C. for 1 hour was electrophoresed.
 世界の各地域由来のソルガム品種の紫斑点病抵抗性遺伝子ds1の遺伝子型を検定した結果、各プライマーセットを用いたPCRにおいて、サイズの異なる増幅産物が検出された。増幅産物は、そのサイズに応じて分類した(図9B)。 As a result of testing the genotype of the purple spot disease resistance gene ds1 of sorghum varieties from various regions of the world, amplification products of different sizes were detected by PCR using each primer set. Amplification products were classified according to their size (FIG. 9B).
 表8、表9に記載の各品種の紫斑点病の試験を、実施例1と同様の方法で実施した。その結果(代表例)を図10に示す。各プライマーセットを用いたPCRにより得られた増幅産物のサイズと紫斑点病の罹病性、抵抗性との関係を分析した結果、紫斑点病感受性型については、S1~S3に、抵抗性型については、R1~R4に分類することができた(表8、表9)。DNAを用いて決定した遺伝子型による分類と実際の接種試験の結果とが一致しており、PCR試験によって紫斑点病の罹病性、抵抗性を検定することが可能であることが判明した。 Tests for purpura of each variety listed in Table 8 and Table 9 were conducted in the same manner as in Example 1. The result (representative example) is shown in FIG. As a result of analyzing the relationship between the size of the amplification product obtained by PCR using each primer set and the susceptibility and resistance to purpura disease, the resistance type for purpura disease susceptibility Could be classified into R1 to R4 (Table 8, Table 9). The classification by genotype determined using DNA was consistent with the results of the actual inoculation test, and it was found that the susceptibility and resistance of purpura disease can be tested by PCR test.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 本発明により、ソルガム紫斑点病の罹病性遺伝子ds1が同定され、ソルガム紫斑点病の発症の機構が明らかとなった。紫斑点病の罹病性および抵抗性を判定する場合、従来は、病原菌の感染試験を行う必要があったが、ds1遺伝子をマーカーとして用いれば、ソルガムを病原菌にさらすことなく、また、種子あるいは幼植物の段階においても、簡易に判定が可能であり、ひいては紫斑点病抵抗性品種を効率的に育種することが可能である。育種される紫斑点病抵抗性のソルガムは、紫斑点病の被害軽減に貢献する他、バイオマスの生産量の向上や高品質の飼料作成が期待される。 According to the present invention, the susceptibility gene ds1 of sorghum purpura has been identified, and the mechanism of onset of sorghum purpura has been clarified. To determine the susceptibility and resistance of purpura, it has been necessary to conduct infection tests with pathogenic bacteria.However, if the ds1 gene is used as a marker, sorghum is not exposed to the pathogenic bacteria, and seed or Even at the plant stage, it is possible to make a simple determination, and it is possible to efficiently breed purple spot disease resistant varieties. Breeding purpura-resistant sorghum contributes to the reduction of purpura disease damage, and is expected to improve biomass production and produce high-quality feed.

Claims (15)

  1.  ソルガムに紫斑点病罹病性を付与する活性を有するタンパク質をコードする、下記(a)~(d)のいずれかに記載のDNA。
    (a)配列番号:3または6に記載のアミノ酸配列からなるタンパク質をコードするDNA
    (b)配列番号:1、2、4または5に記載の塩基配列のコード領域を含むDNA
    (c)配列番号:3または6に記載のアミノ酸配列において1もしくは複数のアミノ酸が置換、欠失、付加、および/または挿入されたアミノ酸配列からなるタンパク質をコードするDNA
    (d)配列番号:1、2、4または5に記載の塩基配列からなるDNAとストリンジェントな条件でハイブリダイズするDNA
    The DNA according to any one of the following (a) to (d), which encodes a protein having an activity of imparting purpura disease susceptibility to sorghum.
    (A) DNA encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 3 or 6
    (B) DNA comprising the coding region of the base sequence described in SEQ ID NO: 1, 2, 4 or 5
    (C) DNA encoding a protein comprising an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the amino acid sequence of SEQ ID NO: 3 or 6
    (D) DNA that hybridizes under stringent conditions with the DNA comprising the nucleotide sequence set forth in SEQ ID NO: 1, 2, 4 or 5
  2.  ソルガムに紫斑点病抵抗性を付与する活性を有するタンパク質をコードする、下記(a)~(d)のいずれかに記載のDNA。
    (a)配列番号:9または12に記載のアミノ酸配列からなるタンパク質をコードするDNA
    (b)配列番号:7、8、10または11に記載の塩基配列のコード領域を含むDNA
    (c)配列番号:3、6、9または12に記載のアミノ酸配列において1もしくは複数のアミノ酸が置換、欠失、付加、および/または挿入されたアミノ酸配列からなるタンパク質をコードするDNA
    (d)配列番号:1、2、4、5、7、8、10、または11に記載の塩基配列からなるDNAとストリンジェントな条件でハイブリダイズするDNA
    The DNA according to any one of the following (a) to (d), which encodes a protein having an activity of imparting purpura resistance to sorghum.
    (A) DNA encoding a protein comprising the amino acid sequence set forth in SEQ ID NO: 9 or 12
    (B) DNA containing the coding region of the base sequence described in SEQ ID NO: 7, 8, 10 or 11
    (C) DNA encoding a protein comprising an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the amino acid sequence of SEQ ID NO: 3, 6, 9 or 12
    (D) DNA that hybridizes under stringent conditions with the DNA comprising the nucleotide sequence of SEQ ID NO: 1, 2, 4, 5, 7, 8, 10, or 11
  3.  ソルガムに紫斑点病抵抗性を付与する活性を有するタンパク質をコードする、下記(a)~(c)のいずれかに記載のDNA。
    (a)請求項1に記載のDNAの転写産物と相補的な二重鎖RNAをコードするDNA
    (b)請求項1に記載のDNAの転写産物と相補的なアンチセンスRNAをコードするDNA
    (c)請求項1に記載のDNAの転写産物を特異的に開裂するリボザイム活性を有するRNAをコードするDNA
    The DNA according to any one of the following (a) to (c), which encodes a protein having an activity of conferring purpura resistance to sorghum.
    (A) DNA encoding a double-stranded RNA complementary to the transcription product of the DNA of claim 1
    (B) DNA encoding an antisense RNA complementary to the transcription product of the DNA of claim 1
    (C) DNA encoding an RNA having a ribozyme activity that specifically cleaves the transcript of the DNA of claim 1
  4.  請求項1~3のいずれかに記載のDNAを含むベクター。 A vector comprising the DNA according to any one of claims 1 to 3.
  5.  請求項1~3のいずれかに記載のDNAが導入されたソルガム細胞。 A sorghum cell into which the DNA according to any one of claims 1 to 3 has been introduced.
  6.  請求項5に記載の細胞を含むソルガム植物体。 A sorghum plant comprising the cell according to claim 5.
  7.  請求項6に記載の植物体の子孫またはクローンである、ソルガム植物体。 A sorghum plant which is a descendant or clone of the plant according to claim 6.
  8.  請求項6または7に記載のソルガム植物体の繁殖材料。 The propagation material of the sorghum plant according to claim 6 or 7.
  9.  ソルガムにおける請求項1に記載のDNAの発現または機能を抑制することを特徴とする、紫斑点病抵抗性が付与されたソルガムの作出方法。 A method for producing sorghum imparted with resistance to purpura disease, which suppresses the expression or function of the DNA according to claim 1 in sorghum.
  10.  ソルガムに請求項2または3に記載のDNAを導入する工程を含む、ソルガムに紫斑点病抵抗性が付与されたソルガムの作出方法。 A method for producing sorghum in which purpura disease resistance is imparted to sorghum, comprising the step of introducing the DNA of claim 2 or 3 into sorghum.
  11.  請求項2もしくは3に記載のDNA、または該DNAが挿入されたベクターを含む、ソルガムに紫斑点病抵抗性を付与するための薬剤。 A drug for conferring purpura resistance to sorghum comprising the DNA according to claim 2 or 3 or a vector into which the DNA is inserted.
  12.  ソルガムにおける紫斑点病の罹病性または抵抗性を判定する方法であって、被検ソルガムにおける請求項1もしくは2に記載のDNAまたはその発現制御領域の塩基配列を解析し、対照の塩基配列と比較することを特徴とする方法。 A method for determining the susceptibility or resistance of purpura in sorghum, comprising analyzing the base sequence of the DNA or expression control region thereof according to claim 1 or 2 in a test sorghum and comparing it with a control base sequence A method characterized by:
  13.  ソルガムにおける紫斑点病の罹病性または抵抗性を判定する方法であって、ソルガムにおける請求項1もしくは2に記載のDNAの発現または発現産物の分子量を検出することを特徴とする方法。 A method for determining the susceptibility or resistance of purpura in sorghum, the method comprising detecting the expression of DNA or the molecular weight of the expression product according to claim 1 or 2 in sorghum.
  14.  ソルガムにおける紫斑点病の罹病性または抵抗性を判定する方法であって、被検ソルガムにおける、請求項1もしくは2に記載のDNAと連鎖する分子マーカーの塩基配列を解析し、対照の塩基配列と比較することを特徴とする方法。 A method for determining the susceptibility or resistance of purpura in sorghum, comprising analyzing a base sequence of a molecular marker linked to DNA according to claim 1 or 2 in a test sorghum, and a control base sequence A method characterized by comparing.
  15.  紫斑点病抵抗性のソルガムを育種する方法であって、
    (a)紫斑点病抵抗性のソルガム品種と任意のソルガム品種とを交配させる工程、
    (b)工程(a)における交配により得られた個体における紫斑点病の罹病性または抵抗性を、請求項12から14のいずれかに記載の方法により判定する工程、および
    (c)紫斑点病の抵抗性を有すると判定された品種を選抜する工程、を含む方法。
    A method of breeding purple spot disease resistant sorghum,
    (A) mating a purple scab-resistant sorghum variety with any sorghum variety,
    (B) determining the susceptibility or resistance of purpura to the individual obtained by the mating in step (a) by the method according to any one of claims 12 to 14, and (c) purpura Selecting a variety that has been determined to have the resistance.
PCT/JP2010/064733 2009-08-31 2010-08-30 Sorghum purple leaf spot-related gene and use of same WO2011025007A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011528895A JP5783463B2 (en) 2009-08-31 2010-08-30 Sorghum purpura-related genes and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-199794 2009-08-31
JP2009199794 2009-08-31

Publications (1)

Publication Number Publication Date
WO2011025007A1 true WO2011025007A1 (en) 2011-03-03

Family

ID=43628098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064733 WO2011025007A1 (en) 2009-08-31 2010-08-30 Sorghum purple leaf spot-related gene and use of same

Country Status (2)

Country Link
JP (1) JP5783463B2 (en)
WO (1) WO2011025007A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000880A1 (en) * 2005-06-28 2007-01-04 National Institute Of Agrobiological Sciences RICE BLAST DISEASE GENE Pi21, RESISTANCE GENE pi21 AND UTILIZATION THEREOF
JP2007054020A (en) * 2005-08-26 2007-03-08 National Institute Of Agrobiological Sciences METHOD FOR IDENTIFYING RICE BLAST RESISTANCE WITH Pb1 GENE-LINKED MOLECULAR MARKER AS INDICATOR

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000880A1 (en) * 2005-06-28 2007-01-04 National Institute Of Agrobiological Sciences RICE BLAST DISEASE GENE Pi21, RESISTANCE GENE pi21 AND UTILIZATION THEREOF
JP2007054020A (en) * 2005-08-26 2007-03-08 National Institute Of Agrobiological Sciences METHOD FOR IDENTIFYING RICE BLAST RESISTANCE WITH Pb1 GENE-LINKED MOLECULAR MARKER AS INDICATOR

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK PATERSON A.H. ET AL: "The Sorghum bicolor genome and the diversification of grasses", Database accession no. XM_002450394.1 *
NATURE, vol. 457, no. 7229, 2009, pages 551 - 556 *
SHIGEMITSU KASUGA ET AL: "Sorghum Shihantenbyo no Ribyo ga Kanju Brix Todo ni Oyobosu Eikyo", JOURNAL OF JAPANESE SOCIETY OF GRASSLAND SCIENCE, vol. 54, 2008, pages 252 - 253 *
TSUKIBOSHI T. ET AL: "Inheritance of resistance to target leaf spot caused by Bipolaris cookei (Saccardo) Shoemaker in sorghum (Sorghum bicolor Moench)", JOURNAL OF JAPANESE SOCIETY OF GRASSLAND SCIENCE, vol. 35, no. 4, 1990, pages 302 - 308 *
YONEMARU J. ET AL: "Development of Genome-wide Simple Sequence Repeat Markers Using Whole-genome Shotgun Sequences of Sorghum (Sorghum bicolor (L.) Moench)", DNA RES, vol. 16, no. 3, 10 April 2009 (2009-04-10), pages 187 - 193 *

Also Published As

Publication number Publication date
JPWO2011025007A1 (en) 2013-01-31
JP5783463B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
Su et al. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat
US11566257B2 (en) Use of YR4DS gene of Aegilops tauschii in stripe rust resistance breeding of triticeae plants
US10485196B2 (en) Rice plants with altered seed phenotype and quality
US11725214B2 (en) Methods for increasing grain productivity
WO2019038417A1 (en) Methods for increasing grain yield
US20200255846A1 (en) Methods for increasing grain yield
CA3175033A1 (en) Autoflowering markers
EP1922407A2 (en) Homologous recombination in plants
JP4756238B2 (en) Rice blast susceptibility gene Pi21 and resistance gene pi21 and use thereof
Fambrini et al. Ligulate inflorescence of Helianthus× multiflorus, cv. Soleil d'Or, correlates with a mis‐regulation of a CYCLOIDEA gene characterised by insertion of a transposable element
JP5769341B2 (en) Genes controlling the flowering / closing properties of plants and their use
JP4877726B2 (en) Barley streak genes and their use
JP6012016B2 (en) Participatory outcome control genes and their use
JP5783463B2 (en) Sorghum purpura-related genes and uses thereof
JP5776958B2 (en) Genes controlling plant seed dormancy and their utilization
EP4138544A1 (en) Solanum lycopersicum plants having improved tobamovirus resistance
JP2011160806A (en) RICE BLAST-SUSCEPTIBLE GENE Pi21 AND RESISTANT GENE pi21, AND UTILIZATION THEREOF
JP5812387B2 (en) Plant tan genes and uses thereof
US20230189732A1 (en) Didymella bryoniae internal fruit rot resistance in cucumis sativus plants
JP6188074B2 (en) Qsd1 gene controlling plant seed dormancy and use thereof
KR20230023711A (en) Capsicum annuum plants with improved thrips resistance
JP2023111899A (en) Rice having anther-shortening trait, and method for producing the same
US20190153456A1 (en) Brassica plants with altered properties in seed production
EA043050B1 (en) WAYS TO INCREASE GRAIN YIELD
水多陽子 et al. Analysis of a pair of genes, DOPPELGANGER 1 (DPL1) and DOPPELGANGER 2 (DPL2) responsible for reproductive isolation between two rice subspecies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10812053

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528895

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10812053

Country of ref document: EP

Kind code of ref document: A1