WO2011024814A1 - Gas jet device - Google Patents
Gas jet device Download PDFInfo
- Publication number
- WO2011024814A1 WO2011024814A1 PCT/JP2010/064301 JP2010064301W WO2011024814A1 WO 2011024814 A1 WO2011024814 A1 WO 2011024814A1 JP 2010064301 W JP2010064301 W JP 2010064301W WO 2011024814 A1 WO2011024814 A1 WO 2011024814A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel gas
- gas supply
- laval nozzle
- injection device
- gas
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details, e.g. noise reduction means
- F23D14/62—Mixing devices; Mixing tubes
- F23D14/64—Mixing devices; Mixing tubes with injectors
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/001—Injecting additional fuel or reducing agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/16—Tuyéres
- C21B7/163—Blowpipe assembly
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/30—Regulating or controlling the blowing
- C21C5/32—Blowing from above
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
- C21C5/4606—Lances or injectors
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/5211—Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
- C21C5/5217—Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace equipped with burners or devices for injecting gas, i.e. oxygen, or pulverulent materials into the furnace
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details, e.g. noise reduction means
- F23D14/48—Nozzles
- F23D14/56—Nozzles for spreading the flame over an area, e.g. for desurfacing of solid material, for surface hardening, or for heating workpieces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details, e.g. noise reduction means
- F23D14/48—Nozzles
- F23D14/58—Nozzles characterised by the shape or arrangement of the outlet or outlets from the nozzle, e.g. of annular configuration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details, e.g. noise reduction means
- F23D14/72—Safety devices, e.g. operative in case of failure of gas supply
- F23D14/78—Cooling burner parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/16—Introducing a fluid jet or current into the charge
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D7/00—Forming, maintaining, or circulating atmospheres in heating chambers
- F27D7/02—Supplying steam, vapour, gases, or liquids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a gas injection device that injects a mixed gas containing fuel gas and oxygen gas.
- a method using iron ore as a raw material includes a blast furnace-converter method, and a method using scrap iron such as scrap as a raw material.
- a blast furnace-converter method includes a blast furnace-converter method, and a method using scrap iron such as scrap as a raw material.
- scrap iron such as scrap as a raw material.
- Patent Documents 1 to 3 There were an electric furnace method and a cold iron source melting method.
- iron oxides such as iron ore are used as raw materials, and this is reduced by coke, which is a reducing agent, to obtain molten iron (hot metal) in a carbon saturated state.
- coke which is a reducing agent
- the coke is also used as thermal energy by burning with high-temperature air. Since the molten iron obtained by this blast furnace method contains carbon and is brittle, the carbon in the molten iron is removed by blowing a high-concentration oxygen gas into the molten iron using a converter. In the converter process, the high-concentration oxygen gas blown into the molten iron also has a role of heating the molten iron temperature to a desired temperature by burning carbon in the molten iron.
- scrap iron is put into the furnace body and the energized graphite electrode is lowered toward the scrap iron.
- the graphite electrode forms an arc plasma with the furnace bottom electrode installed at the bottom of the furnace body, and when the graphite electrode descends, a boring hole is formed while melting scrap iron by the arc plasma. And if a graphite electrode descend
- scrap iron which is an iron source
- pulverized coal is supplied from the bottom of the furnace body, and oxygen is blown from above, thereby burning the pulverized coal and melting the scrap iron.
- each of the steel making methods described above has the following problems.
- iron dust is generated when carbon in molten iron is burned with high-purity oxygen gas. This not only causes loss of thermal efficiency and iron yield, but also recovers and recovers dust.
- processing costs were incurred for use.
- the electric furnace method is problematic in that expensive electric power is used as thermal energy, the expensive graphite electrode is consumed, the steel material from which a large amount of nitrogen in the atmosphere can be dissolved in the molten steel is hardened, and the production rate is high. There were problems such as being slower than the blast furnace method.
- each problem can be solved by injecting a mixed gas.
- iron dust is generated by decarburization using iron oxide such as iron ore instead of high-purity oxygen gas and supplying heat with a mixed gas of fuel gas and oxygen gas. It has been found that decarburization can be achieved while suppressing carbon dioxide.
- an electric furnace after forming a bored hole with a graphite electrode, the graphite electrode is extracted, a metal tube burner lance is inserted into the bored hole, and a mixed gas is injected from the burner lance to heat scrap iron, etc. It has been found that the above-mentioned problems can be solved.
- a step of injecting a mixed gas can be incorporated in various iron making methods.
- an object of this invention is to provide the gas injection apparatus which can inject a more uniform mixed gas.
- the gas injection device is a gas injection device for injecting a mixed gas containing fuel gas and oxygen gas, wherein the oxygen gas flows inside and a fuel gas supply part is formed on an inner peripheral surface, and the fuel A Laval nozzle that supplies fuel gas from a gas supply unit to the inside, and a fuel gas supply pipe that extends in the axial direction inside the Laval nozzle and supplies the fuel gas into the Laval nozzle.
- the fuel gas is supplied from the inside of the oxygen gas flowing in the Laval nozzle through the fuel gas supply pipe, and the oxygen gas flowing in the Laval nozzle is formed on the inner peripheral surface of the Laval nozzle.
- the fuel gas is supplied by the fuel gas supply unit.
- the fuel gas since the fuel gas is supplied from both the inside and the outside of the oxygen gas flowing in the Laval nozzle, it is possible to obtain a mixed gas in which the fuel gas and the oxygen gas are sufficiently mixed.
- the fuel gas include liquefied petroleum gas (LPG), liquefied natural gas (LNG), butane gas, hydrogen gas, and CO gas.
- the gas injection device can take various configurations.
- the fuel gas supply part is preferably an annular slit formed along the circumferential direction of the inner peripheral surface of the Laval nozzle.
- the fuel gas supply unit includes a first fuel gas supply hole row formed of a plurality of fuel gas supply holes formed so as to be arranged at intervals in the circumferential direction of the inner peripheral surface of the Laval nozzle, A second fuel gas supply hole row formed of a plurality of fuel gas supply holes formed on the downstream side of the first fuel gas supply hole row so as to be arranged at intervals in the circumferential direction of the inner peripheral surface of the Laval nozzle;
- the fuel gas supply holes constituting the second fuel gas supply hole array are formed with fuel gas supply holes between the fuel gas supply holes constituting the first fuel gas supply hole array. It is preferable to adopt a configuration in which it is formed at a position corresponding to a position that is not.
- the fuel gas supply unit is configured to supply the fuel gas so as to seamlessly cover the oxygen gas flowing in the Laval nozzle from the outside, so that in the outer peripheral region of the mixed gas injected from the gas injection device
- the ratio of the fuel gas can be made larger than the ratio of the fuel gas in the complete combustion ratio.
- the fuel gas supply pipe is preferably configured to supply fuel gas in the radial direction of the Laval nozzle. According to this, the fuel gas can be introduced into the oxygen gas in a direction substantially orthogonal to the flow direction of the oxygen gas, and the fuel gas and the oxygen gas can be mixed more uniformly.
- the fuel gas supply pipe can supply fuel gas in the vicinity of the throat portion of the Laval nozzle, or can supply fuel gas downstream or upstream of the throat portion.
- the fuel gas supply pipe is configured to have a fuel gas supply pipe main body extending in the Laval nozzle and a plurality of branch pipes extending radially from the fuel gas supply pipe main body, and the fuel gas is passed through each branch pipe. Can be supplied into the Laval nozzle.
- first original pressure control means for controlling the original pressure of the oxygen gas
- second original pressure control means for controlling the original pressure of the fuel gas.
- FIG. 1 is a side sectional view of the gas injection device according to the present embodiment.
- FIG. 2 is a schematic view of the converter according to the present embodiment.
- FIG. 3 is a side sectional view of a gas injection device according to another embodiment.
- FIG. 4 is a side sectional view of a gas injection device showing still another embodiment.
- FIG. 5 is a side cross-sectional view of a gas injection device showing still another embodiment.
- FIG. 6 is a view of the fuel gas supply pipe of FIG. 5 as viewed from the downstream side, and the description of the Laval nozzle is simplified.
- FIGS. 1 and 4 the left side of FIGS. 1 and 4 is referred to as upstream and the right side is referred to as downstream, and the horizontal direction of FIG. 1 is referred to as the axial direction of the Laval nozzle.
- the mixed gas injection device 1 includes a Laval nozzle 2 that accelerates the fluid flowing inside to a supersonic speed, and a fuel gas supply pipe 3 that extends in the Laval nozzle 2 in the axial direction.
- the Laval nozzle 2 is formed in a substantially cylindrical shape having a central axis C, and an inner peripheral surface thereof is formed such that the inner diameter is reduced from the upstream toward the downstream and the diameter is increased in the middle.
- the throat portion 21 is the place where the inner diameter of the boundary portion where the diameter decreases from the reduced diameter is the smallest.
- the diameter-expanded portion 22 on the downstream side of the throat portion 21 is the diameter-expanded portion 22, and the portion on the upstream side of the throat portion 21 is the diameter-reduced portion 26.
- a cooling water passage 23 for flowing cooling water is formed inside the peripheral wall of the Laval nozzle 2, a cooling water passage 23 for flowing cooling water is formed inside the peripheral wall of the Laval nozzle 2, a cooling water passage 23 for flowing cooling water is formed inside the peripheral wall of the Laval nozzle 2, a cooling water passage 23 for flowing cooling water is formed inside the peripheral wall of the Laval nozzle 2, a cooling water passage 23 for flowing cooling water is formed inside the peripheral wall of the Laval nozzle
- the cooling water passage 23 is provided with a cylindrical partition wall 231 so that the cooling water flows from the upstream to the downstream inside the peripheral wall and then flows from the downstream to the upstream outside the peripheral wall. Yes.
- the material of the Laval nozzle 2 is preferably copper or a copper alloy from the viewpoint of preventing the occurrence of sparks.
- the upstream end of the Laval nozzle 2 is connected to an oxygen gas supply source (not shown) so that oxygen gas flows into the Laval nozzle 2 from upstream to downstream.
- the Laval nozzle 2 has a fuel gas supply part 24 for supplying fuel gas into the Laval nozzle 2 on the inner peripheral surface thereof.
- the fuel gas supply unit 24 is an annular slit formed without a cut along the circumferential direction of the inner peripheral surface of the Laval nozzle 2.
- the position where the fuel gas supply unit 24 is formed is not particularly limited, and can be formed, for example, in the vicinity of the throat unit 21 or on the downstream side of the throat unit 21.
- Each fuel gas supply section 24 is connected to a fuel gas supply path 25 extending through the cooling water flow path 23.
- the fuel gas supply path 25 is connected to a fuel gas supply source (not shown).
- the gas pressure of the fuel gas supplied from the fuel gas supply source is preferably higher than the gas pressure of the oxygen gas supplied from the oxygen gas supply source described above.
- the fuel gas supply pipe 3 is formed in a cylindrical shape whose end face on the downstream side is sealed, and is installed so as to extend in the axial direction within the Laval nozzle 2 with its central axis substantially coincident with the central axis C of the Laval nozzle 2.
- the upstream end of the fuel gas supply pipe 3 is directly or indirectly connected to a fuel gas supply source (not shown).
- the fuel gas supply source may be the same as that connected to the fuel gas supply path 25 or may be different.
- the downstream end is located in the vicinity of the throat portion 21, and a plurality of fuel gas discharge holes 31 for discharging the fuel gas flowing through the fuel gas supply pipe 3 into the Laval nozzle 2 are formed.
- the discharge direction of the fuel gas discharged from the fuel gas discharge hole 31 into the Laval nozzle 2 is substantially perpendicular to the radial direction of the Laval nozzle 2, that is, the traveling direction of the oxygen gas.
- the plurality of fuel gas discharge holes 31 includes an annular upstream fuel gas discharge hole array 310a formed on the outer peripheral surface of the fuel gas supply pipe 3 so as to be arranged at predetermined intervals along the circumferential direction, and the upstream side A downstream fuel gas discharge hole row 310b formed in the same manner on the downstream side of the fuel gas discharge hole row 310a is configured.
- Each of the fuel gas discharge hole arrays 310a and 310b has the fuel gas discharge hole 31 of the downstream fuel gas discharge hole array 310b at a position corresponding to the space between the adjacent fuel gas discharge holes 31 of the upstream fuel gas discharge hole array 310a. In order to be formed, the positions are shifted in the circumferential direction.
- the fuel gas can be evenly supplied from the inside of the oxygen gas flowing through.
- the fuel gas discharge hole row 310 is not particularly limited to two rows, and may be three or more rows. Further, the shape of each fuel gas discharge hole 31 is not limited to a circle, and can be various shapes such as an ellipse and a slit.
- the material of the fuel gas supply pipe 3 is preferably stainless steel, copper, copper alloy or the like.
- the gas injection apparatus configured as described above can be used in various iron making methods such as a blast furnace-converter method, a gas reduction method, a direct smelting reduction method, an electric furnace method, and a cold iron source melting method.
- a blast furnace-converter method a gas reduction method
- a direct smelting reduction method an electric furnace method
- a cold iron source melting method a method where a gas-injection apparatus is used for a converter method as the example is demonstrated.
- the converter 5 includes a furnace body 4 for containing molten iron and a gas injection device 1 installed above the furnace body 4.
- the furnace body 4 is formed in a barrel shape, a pear shape, or the like, and is configured to be freely rotatable back and forth.
- the outer wall of the furnace body 4 is made of steel, and the inner wall is lined with refractory bricks to withstand high heat and impact.
- the furnace body 4 configured in this manner is tilted by rotating back and forth, and hot metal containing carbon is injected into the tilted furnace body 4.
- the carbon content of the molten iron is not particularly limited, but can be 1 to 5% by weight in molten iron, and preferably 3 to 5% by weight.
- scrap iron can be supplied to the furnace body 4 together with the hot metal.
- the supply amount of the hot metal and scrap iron is not particularly limited, and may be determined as appropriate depending on the capacity of the converter to be used. For example, it is preferable that scrap iron is 30 parts by weight or less with respect to 100 parts by weight of hot metal containing carbon.
- the amount of scrap iron used may be selected in consideration of the overall economics of the steel manufacturing process and the scrap iron market.
- iron oxide as an oxygen source for the decarburization reaction is continuously charged into the furnace body 4 until the carbon content in the molten iron reaches a desired value.
- the supply rate of this iron oxide is not particularly limited, but since the converter refining time is generally about 10 to 30 minutes, it is preferably about 0.1 to 10 tons / minute, and preferably 2 to 7 tons. / Min is more preferable.
- the supply time is appropriately determined depending on the supply amount of iron oxide determined by the amount of hot metal and the above-described supply rate. For example, the supply time is 1 to 30 minutes (preferably 10 to 30 minutes, more preferably (10-20 minutes) It is preferable to continuously add iron oxide into the converter. Examples of the iron oxide include iron ore, fine ore pellets, sintered ore, iron dust pellets, and iron dust briquettes.
- the gas injection device 1 injects a mixed gas composed of fuel gas and oxygen gas onto the hot metal. More specifically, the oxygen gas flows into the Laval nozzle 2 of the gas injection device 1 and the fuel gas flows into the fuel gas supply pipe 3 so that the fuel gas is discharged from the fuel gas discharge holes 31 into the Laval nozzle 2. Fuel gas is mixed from the inside of the oxygen gas flowing in the Laval nozzle 2. Still further, the fuel gas is supplied from the fuel gas supply unit 24 into the Laval nozzle 2 by flowing the fuel gas through the fuel gas supply path 25, and the fuel gas is mixed from the outside of the oxygen gas flowing through the Laval nozzle 2.
- a sufficiently mixed gas mixture is injected from the gas injection device 1.
- a mixing ratio of fuel gas and oxygen gas a mixing ratio for complete combustion can be exemplified.
- the total amount of fuel gas supplied from each fuel gas supply unit 24 into the Laval nozzle 2 is smaller than the total amount of fuel gas discharged from each discharge hole 31 of the fuel gas supply pipe 3 into the Laval nozzle.
- the present invention is not limited to this, and the total amount of fuel gas from each fuel gas supply unit 24 is increased or the total amount of fuel gas from the fuel gas supply pipe 3 is It is also possible to do the same.
- the hot metal is heated by this heat of combustion reaction.
- the heating temperature of the molten iron is not particularly limited, but is usually about 1600 to 1700 ° C. and about 1620 to 1680 ° C.
- the injection speed of the mixed gas at this time is equal to or higher than the speed of sound,
- the Mach number is preferably about 1 to 3, and the hot metal can be sufficiently stirred by setting the injection speed to such a value.
- the hot metal can be agitated by exhaust gas (CO2 gas or H2O gas) generated by high-frequency combustion reaction heat.
- the iron ore charged into the furnace body 4 is mixed with the mixed gas in the molten iron. After being rolled up, it floats and floats on the top surface of the molten iron.
- the carbon is extremely active, so it immediately combines with oxygen held in the iron ore to generate CO gas, and the iron content in the iron ore is reduced. It becomes iron.
- This reduction reaction occurs on the iron ore surface.
- the temperature of the CO gas bubbles tends to decrease as the reaction proceeds. Therefore, the behavior of the CO gas bubbles in the decarburization reaction with pure oxygen gas in which the bubbles grow with rapid volume expansion. Will be significantly different.
- the downstream end of the fuel gas supply pipe 3 can be conical.
- the flow of the mixed gas injected from the Laval nozzle 2 can be made smooth, and it can suppress that the injection speed of mixed gas falls.
- tube 3 is a shape symmetrical with the internal peripheral surface of the opposite Laval nozzle 2 from a viewpoint of making the flow of mixed gas smoother.
- the fuel gas supply unit 24 may be replaced with two rows of fuel gas supply hole rows 241a and 241b constituted by a plurality of fuel gas supply holes 241 instead of slits.
- the first fuel gas supply hole row 241a formed on the upstream side is constituted by a plurality of fuel gas supply holes 241 formed so as to be arranged at intervals in the circumferential direction of the inner peripheral surface of the Laval nozzle 2.
- the second fuel gas supply hole row 241b is similarly configured on the downstream side of the first fuel gas supply hole row 241a.
- the positions corresponding to the positions corresponding to the positions between the fuel gas supply holes 241 constituting the first fuel gas supply hole array 241a, that is, the fuel gas supply holes 241 of the first fuel gas supply hole array 241a are formed.
- a fuel gas supply hole 241 that constitutes the second fuel gas supply hole row 241b is formed at a position corresponding to the non-existing position.
- downstream edge part of the gas supply pipe 3 was located in the throat part 21 vicinity, it is not limited to this in particular,
- the downstream edge part of the gas supply pipe 3 Can be positioned upstream of the diameter-reduced portion 26, thereby generating turbulent flow and more uniformly mixing the fuel gas and the oxygen gas.
- the gas supply pipe 3 having the same configuration as that of the above-described embodiment may be simply moved to the upstream side, and various other configurations may be employed. As an example, for example, as shown in FIGS.
- the fuel gas supply pipe 3 includes a fuel gas supply pipe main body 32 extending in the axial direction in the Laval nozzle 2, and a radial direction from the outer peripheral surface of the fuel gas supply pipe main body 32. And a plurality of branch pipes 33 extending radially toward.
- the plurality of branch pipes 33 communicate with the fuel gas supply pipe main body 32, and a slit 321 facing the downstream side is formed so as to supply the fuel gas flowing through the fuel gas supply pipe main body 32 into the Laval nozzle 2. Yes.
- the structure of the branch pipes 33 is not particularly limited as long as the fuel gas in the fuel gas supply pipe main body 32 can be supplied into the Laval nozzle 2.
- the slit 321 faces the upstream side. It may be formed or may be formed by a plurality of holes instead of the slits 321.
- the plurality of branch pipes 33 described above are preferably configured in a plurality of stages in the axial direction of the Laval nozzle 2 as a group of branch pipes 33.
- the three branch pipes 3 are arranged on the most downstream side.
- the three branch pipes 33a constitute a first-stage branch pipe group
- the subsequent three branch pipes 33b constitute a second-stage branch pipe group
- a third-stage branch pipe group is configured by the pipe 33c.
- the branch pipes 33 constituting each branch pipe group are arranged at equal intervals
- the branch pipes 33 viewed from the axial direction of the Laval nozzle 2 are arranged at equal intervals so as not to overlap each other. preferable.
- each branch pipe 33 is connected to the adjacent branch pipe 33 and the central axis C.
- An angle of 120 degrees is formed at the center.
- the second-stage branch pipe group is rotated around the central axis C by 30 degrees
- the third-stage branch pipe group is rotated around the central axis C.
- the state is rotated 60 degrees.
- all the branch pipes 33 viewed from the axial direction of the Laval nozzle 2 are all arranged at equal intervals.
- the fuel gas can be uniformly supplied to the entire region of the oxygen gas flowing in the Laval nozzle 2. it can.
- the number of branches and the number of branches are not limited to those described above.
- a first source pressure control device can be installed in order to control the source pressure of the oxygen gas.
- a fuel gas supply source is connected to the fuel gas supply pipe 3 and the fuel gas supply path 25.
- a second original pressure control device is used in order to control the original pressure of the fuel gas supply source. Can also be installed.
- the mixed gas is burned on the side near the nozzle by lowering the original pressure of the mixed gas, and then the mixed gas combustion position, i.e., the original pressure of the mixed gas is increased.
- the mixed gas combustion position i.e., the original pressure of the mixed gas is increased.
- the jet speed of mixed gas shall be more than a flame propagation speed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Pre-Mixing And Non-Premixing Gas Burner (AREA)
- Furnace Charging Or Discharging (AREA)
Abstract
Disclosed is a gas jet device (1) that jets a mixed gas containing fuel gas and oxygen gas, and that is provided with: a Laval nozzle (2), within which oxygen gas flows and a fuel gas supply part (24) is formed on the inner peripheral surface, and wherein fuel gas is supplied from the fuel gas supply part (24) to the interior; and a fuel gas supply tube (3) that extends in the axial direction within the Laval nozzle (2), and that supplies fuel gas within the Laval nozzle (2).
Description
本発明は、燃料ガス及び酸素ガスを含む混合ガスを噴射するガス噴射装置に関するものである。
The present invention relates to a gas injection device that injects a mixed gas containing fuel gas and oxygen gas.
従来より、製鉄方法として種々のものが提案されており、例えば、鉄鉱石を原料とする方式としては、高炉-転炉法などがあり、またスクラップなどの屑鉄類を原料とする方式としては、電気炉法や、冷鉄源溶解法などがあった(例えば特許文献1~3など)。
Conventionally, various methods for iron making have been proposed. For example, a method using iron ore as a raw material includes a blast furnace-converter method, and a method using scrap iron such as scrap as a raw material. There were an electric furnace method and a cold iron source melting method (for example, Patent Documents 1 to 3).
高炉-転炉法では、鉄鉱石などの酸化鉄類を原料とし、これを還元剤であるコークスによって還元することで炭素飽和状態の溶鉄(溶銑)を得ている。なお、上記コークスは、高温空気で燃焼させることで熱エネルギーとしても使用している。この高炉法で得られた溶鉄は、炭素を含んでおり脆いという問題があるため、転炉を使用して溶鉄中に高濃度酸素ガスを吹き込むことによって溶鉄中の炭素を除いている。また転炉プロセスにおいては、溶銑中に吹き込まれる高濃度酸素ガスは、溶鉄中の炭素を燃焼させることで溶鉄温度を所望の温度まで加熱する役割も有している。
In the blast furnace-converter method, iron oxides such as iron ore are used as raw materials, and this is reduced by coke, which is a reducing agent, to obtain molten iron (hot metal) in a carbon saturated state. The coke is also used as thermal energy by burning with high-temperature air. Since the molten iron obtained by this blast furnace method contains carbon and is brittle, the carbon in the molten iron is removed by blowing a high-concentration oxygen gas into the molten iron using a converter. In the converter process, the high-concentration oxygen gas blown into the molten iron also has a role of heating the molten iron temperature to a desired temperature by burning carbon in the molten iron.
また、電気炉法では、炉本体内に屑鉄類を投入し、通電した黒鉛電極をその屑鉄に向かって下降させる。黒鉛電極は炉本体の底部に設置された炉底電極との間でアークプラズマを形成しており、この黒鉛電極が下降することでアークプラズマにより屑鉄を溶解しながらボーリング孔を形成する。そして、黒鉛電極は、炉本体の底部近傍まで下降するとその位置で停止し、アークプラズマを発し続けることで周囲の屑鉄を溶解する。
Also, in the electric furnace method, scrap iron is put into the furnace body and the energized graphite electrode is lowered toward the scrap iron. The graphite electrode forms an arc plasma with the furnace bottom electrode installed at the bottom of the furnace body, and when the graphite electrode descends, a boring hole is formed while melting scrap iron by the arc plasma. And if a graphite electrode descend | falls to the bottom part vicinity of a furnace main body, it will stop in that position, and melt | dissolves surrounding scrap iron by continuing to emit arc plasma.
また、冷鉄源溶解法では、炉本体に鉄源である屑鉄を収容し、その炉本体の底部から微粉炭を供給するとともに上方から酸素を吹き込むことで、微粉炭を燃焼させて屑鉄を溶解する。
In the cold iron source melting method, scrap iron, which is an iron source, is housed in the furnace body, pulverized coal is supplied from the bottom of the furnace body, and oxygen is blown from above, thereby burning the pulverized coal and melting the scrap iron. To do.
しかしながら、上述した各製鉄方法は、以下のような問題があった。まず、高炉-転炉法においては、溶鉄中の炭素を高純度酸素ガスで燃焼させる際に鉄ダストを発生させるため、熱効率低下や鉄分歩留り低下という損失が発生するだけでなく、ダスト回収と再利用のための処理費用が生じるという問題があった。また、電気炉法は、高価な電力を熱エネルギーとして使用するという問題や、高価な黒鉛電極が消耗する、溶鋼中に雰囲気中の窒素が多量に溶解し得られる鋼材が硬くなる、生産速度が高炉法に比較して遅い、などといった問題があった。また冷鉄源溶解法では、溶鉄中で発生したCOガス気泡が雰囲気中へ離散して溶鉄表面で破裂することで微細な溶鉄粒が雰囲気中に飛散しいわゆるバブルバーストダストというダストが発生するという問題があった。
However, each of the steel making methods described above has the following problems. First, in the blast furnace-converter method, iron dust is generated when carbon in molten iron is burned with high-purity oxygen gas. This not only causes loss of thermal efficiency and iron yield, but also recovers and recovers dust. There was a problem that processing costs were incurred for use. In addition, the electric furnace method is problematic in that expensive electric power is used as thermal energy, the expensive graphite electrode is consumed, the steel material from which a large amount of nitrogen in the atmosphere can be dissolved in the molten steel is hardened, and the production rate is high. There were problems such as being slower than the blast furnace method. Also, in the cold iron source melting method, CO gas bubbles generated in molten iron are dispersed in the atmosphere and burst on the surface of the molten iron, so that fine molten iron particles are scattered in the atmosphere and so-called bubble burst dust is generated. There was a problem.
以上の各方法の問題に対して、本発明者は、混合ガスを噴射することでそれぞれの問題を解決できることを見出した。例えば、高炉-転炉法では、高純度酸素ガスの代わりに鉄鉱石などの酸化鉄を使用して脱炭し、燃料ガスと酸素ガスとの混合ガスで熱供給することによって、鉄ダストの発生を抑制しつつ脱炭できることを見出した。また、電気炉においては、黒鉛電極でボーリング孔を形成した後に黒鉛電極を抜き取り、そのボーリング孔に金属管製バーナーランスを挿入してこのバーナーランスから混合ガスを噴射して屑鉄等を加熱することで上述した問題を解消することを見出した。また、冷鉄源溶解法においては、酸素ガスを上方から吹き込む代わりに混合ガスを上方から吹き込めば、その混合ガスの燃焼熱によって屑鉄を溶解することができるため、炭素を燃焼させる必要がなくなり、その結果、バブルバーストダストの発生を防止することができる。また、これらの他にも種々の製鉄方法において混合ガスを噴射する工程を組み入れることができる。
In response to the above problems of the respective methods, the present inventors have found that each problem can be solved by injecting a mixed gas. For example, in the blast furnace-converter method, iron dust is generated by decarburization using iron oxide such as iron ore instead of high-purity oxygen gas and supplying heat with a mixed gas of fuel gas and oxygen gas. It has been found that decarburization can be achieved while suppressing carbon dioxide. In addition, in an electric furnace, after forming a bored hole with a graphite electrode, the graphite electrode is extracted, a metal tube burner lance is inserted into the bored hole, and a mixed gas is injected from the burner lance to heat scrap iron, etc. It has been found that the above-mentioned problems can be solved. Also, in the cold iron source melting method, if the mixed gas is blown from above instead of blowing oxygen gas from above, scrap iron can be dissolved by the combustion heat of the mixed gas, so there is no need to burn carbon, As a result, generation of bubble burst dust can be prevented. In addition to these, a step of injecting a mixed gas can be incorporated in various iron making methods.
以上のように種々の製鉄方法において、混合ガスを噴射する工程を組み入れることが有効であることを見出したが、この混合ガスは均一に混合された状態にて噴射されることが好ましい。そこで、本発明は、より均一な混合ガスを噴射することのできるガス噴射装置を提供することを目的とする。
As described above, it has been found that it is effective to incorporate a step of injecting a mixed gas in various iron making methods. However, it is preferable that the mixed gas is injected in a uniformly mixed state. Then, an object of this invention is to provide the gas injection apparatus which can inject a more uniform mixed gas.
本発明に係るガス噴射装置は、燃料ガス及び酸素ガスを含む混合ガスを噴射するガス噴射装置であって、内部に酸素ガスが流れるとともに、内周面に燃料ガス供給部が形成され、前記燃料ガス供給部から内部に燃料ガスが供給されるラバルノズルと、前記ラバルノズル内を軸方向に延び、前記ラバルノズル内に燃料ガスを供給する燃料ガス供給管と、を備えている。
The gas injection device according to the present invention is a gas injection device for injecting a mixed gas containing fuel gas and oxygen gas, wherein the oxygen gas flows inside and a fuel gas supply part is formed on an inner peripheral surface, and the fuel A Laval nozzle that supplies fuel gas from a gas supply unit to the inside, and a fuel gas supply pipe that extends in the axial direction inside the Laval nozzle and supplies the fuel gas into the Laval nozzle.
上記構成のガス噴射装置によれば、ラバルノズル内を流れる酸素ガスの内側からは燃料ガス供給管によって燃料ガスが供給されるとともに、ラバルノズル内を流れる酸素ガスの外側からは、ラバルノズル内周面に形成された燃料ガス供給部によって燃料ガスが供給される。このようにラバルノズル内を流れる酸素ガスの内側と外側の両方から燃料ガスが供給されるため、燃料ガスと酸素ガスとを十分に混合させた混合ガスとすることができる。なお、上記燃料ガスとしては、例えば、液化石油ガス(LPG)や液化天然ガス(LNG)、ブタンガス、水素ガス、COガス、などを挙げることができる。
According to the gas injection device configured as described above, the fuel gas is supplied from the inside of the oxygen gas flowing in the Laval nozzle through the fuel gas supply pipe, and the oxygen gas flowing in the Laval nozzle is formed on the inner peripheral surface of the Laval nozzle. The fuel gas is supplied by the fuel gas supply unit. As described above, since the fuel gas is supplied from both the inside and the outside of the oxygen gas flowing in the Laval nozzle, it is possible to obtain a mixed gas in which the fuel gas and the oxygen gas are sufficiently mixed. Examples of the fuel gas include liquefied petroleum gas (LPG), liquefied natural gas (LNG), butane gas, hydrogen gas, and CO gas.
上記ガス噴射装置は種々の構成をとることができる。例えば、燃料ガス供給部は、ラバルノズル内周面の円周方向に沿って形成された環状のスリットであることが好ましい。また、その他にも、燃料ガス供給部は、ラバルノズル内周面の円周方向に間隔をあけて並ぶよう形成された複数の燃料ガス供給孔から構成された第1の燃料ガス供給孔列と、第1の燃料ガス供給孔列の下流側において、ラバルノズル内周面の円周方向に間隔をあけて並ぶよう形成された複数の燃料ガス供給孔から構成された第2の燃料ガス供給孔列と、を有しており、第2の燃料ガス供給孔列を構成する各燃料ガス供給孔は、第1の燃料ガス供給孔列を構成する各燃料ガス供給孔間の燃料ガス供給孔が形成されていない位置と対応する位置に形成されているような構成とすることが好ましい。
The gas injection device can take various configurations. For example, the fuel gas supply part is preferably an annular slit formed along the circumferential direction of the inner peripheral surface of the Laval nozzle. In addition, the fuel gas supply unit includes a first fuel gas supply hole row formed of a plurality of fuel gas supply holes formed so as to be arranged at intervals in the circumferential direction of the inner peripheral surface of the Laval nozzle, A second fuel gas supply hole row formed of a plurality of fuel gas supply holes formed on the downstream side of the first fuel gas supply hole row so as to be arranged at intervals in the circumferential direction of the inner peripheral surface of the Laval nozzle; The fuel gas supply holes constituting the second fuel gas supply hole array are formed with fuel gas supply holes between the fuel gas supply holes constituting the first fuel gas supply hole array. It is preferable to adopt a configuration in which it is formed at a position corresponding to a position that is not.
以上のように、燃料ガス供給部を、ラバルノズル内を流れる酸素ガスを外側から切れ目無く覆うように燃料ガスを供給する構成とすることによって、このガス噴射装置から噴射される混合ガスの外周領域における燃料ガスの割合が、完全燃焼比率における燃料ガスの割合よりも多くすることが可能となる。このような混合ガスが溶鉄と衝突した際には、混合ガス中の酸素ガスが溶鉄側の鉄分や炭素と反応するよりも先に混合ガス中の燃料ガスと反応するため、酸化鉄を形成したり、酸素ガスによる脱炭反応が起こったりすることをより確実に防止することができる。
As described above, the fuel gas supply unit is configured to supply the fuel gas so as to seamlessly cover the oxygen gas flowing in the Laval nozzle from the outside, so that in the outer peripheral region of the mixed gas injected from the gas injection device The ratio of the fuel gas can be made larger than the ratio of the fuel gas in the complete combustion ratio. When such a mixed gas collides with the molten iron, the oxygen gas in the mixed gas reacts with the fuel gas in the mixed gas before it reacts with the iron and carbon on the molten iron side, so iron oxide is formed. Or the decarburization reaction by oxygen gas can be prevented more reliably.
また、燃料ガス供給管は、ラバルノズルの径方向に燃料ガスを供給するように構成されていることが好ましい。これによれば、酸素ガスの流れ方向とほぼ直交するような向きで燃料ガスを酸素ガス内に投入することができ、より均一に燃料ガスと酸素ガスとを混合させることができる。
The fuel gas supply pipe is preferably configured to supply fuel gas in the radial direction of the Laval nozzle. According to this, the fuel gas can be introduced into the oxygen gas in a direction substantially orthogonal to the flow direction of the oxygen gas, and the fuel gas and the oxygen gas can be mixed more uniformly.
また、上記燃料ガス供給管は、ラバルノズルのスロート部近傍において燃料ガスを供給したり、スロート部の下流側や上流側において燃料ガスを供給したりすることができる。特に、ラバルノズルの縮径部よりも上流側において燃料ガスを供給することで、乱流を発生させて酸素ガスと燃料ガスとをより均一に混合させることができる。この場合、燃料ガス供給管を、ラバルノズル内を延びる燃料ガス供給管本体と、燃料ガス供給管本体から径方向に放射状に延びる複数の枝管とを有する構成とし、各枝管を介して燃料ガスをラバルノズル内に供給するような構成とすることができる。
Further, the fuel gas supply pipe can supply fuel gas in the vicinity of the throat portion of the Laval nozzle, or can supply fuel gas downstream or upstream of the throat portion. In particular, by supplying the fuel gas on the upstream side of the diameter-reduced portion of the Laval nozzle, it is possible to generate turbulent flow and mix oxygen gas and fuel gas more uniformly. In this case, the fuel gas supply pipe is configured to have a fuel gas supply pipe main body extending in the Laval nozzle and a plurality of branch pipes extending radially from the fuel gas supply pipe main body, and the fuel gas is passed through each branch pipe. Can be supplied into the Laval nozzle.
また、酸素ガスの元圧を制御する第1の元圧制御手段と、燃料ガスの元圧を制御する第2の元圧制御手段と、をさらに備えていることが好ましい。このように各元圧制御手段を備えることで、燃料ガス及び酸素ガスからなる混合ガスの噴出速度を制御することができ、ひいては混合ガスの燃焼位置を制御することが可能となる。
Further, it is preferable to further include a first original pressure control means for controlling the original pressure of the oxygen gas and a second original pressure control means for controlling the original pressure of the fuel gas. Thus, by providing each original pressure control means, it is possible to control the ejection speed of the mixed gas composed of the fuel gas and the oxygen gas, and thus to control the combustion position of the mixed gas.
本発明によれば、より均一な混合ガスを超音速で噴射することのできるガス噴射装置を提供することができる。
According to the present invention, it is possible to provide a gas injection device capable of injecting a more uniform mixed gas at supersonic speed.
以下、本発明に係る混合ガス噴射装置の実施形態について図面を参照しつつ説明する。なお、以下では図1及び図4の左側を上流、右側を下流と称し、また、図1の水平方向をラバルノズルの軸方向と称して説明をする。
Hereinafter, embodiments of a mixed gas injection device according to the present invention will be described with reference to the drawings. In the following description, the left side of FIGS. 1 and 4 is referred to as upstream and the right side is referred to as downstream, and the horizontal direction of FIG. 1 is referred to as the axial direction of the Laval nozzle.
図1に示すように、混合ガス噴射装置1は、内部を流れる流体を超音速まで加速するラバルノズル2と、このラバルノズル2内を軸方向に延びる燃料ガス供給管3と、を備えている。
As shown in FIG. 1, the mixed gas injection device 1 includes a Laval nozzle 2 that accelerates the fluid flowing inside to a supersonic speed, and a fuel gas supply pipe 3 that extends in the Laval nozzle 2 in the axial direction.
ラバルノズル2は、中心軸Cを有する略円筒状に形成されており、その内周面は上流から下流に向かって内径が縮径し途中で拡径するように形成されている。この縮径から拡径に転ずる境界部分の一番内径が小さいところがスロート部21である。また、スロート部21よりも下流側の拡径する部分が拡径部22であり、スロート部21よりも上流側の縮径する部分が縮径部26である。ラバルノズル2の周壁内部には、冷却水を流すための冷却水流路23が形成されている。この冷却水流路23は、周壁内部の内側で冷却水が上流から下流まで流れた後、周壁内部の外側で冷却水が下流から上流側へと流れるように、円筒状の隔壁231が設置されている。なお、このラバルノズル2の材質は、火花発生防止などの観点から銅又は銅合金とすることが好ましい。なお、このラバルノズル2内に酸素ガスが上流から下流へと流れるように、ラバルノズル2の上流側端部は酸素ガス供給源(図示省略)に接続されている。
The Laval nozzle 2 is formed in a substantially cylindrical shape having a central axis C, and an inner peripheral surface thereof is formed such that the inner diameter is reduced from the upstream toward the downstream and the diameter is increased in the middle. The throat portion 21 is the place where the inner diameter of the boundary portion where the diameter decreases from the reduced diameter is the smallest. Further, the diameter-expanded portion 22 on the downstream side of the throat portion 21 is the diameter-expanded portion 22, and the portion on the upstream side of the throat portion 21 is the diameter-reduced portion 26. Inside the peripheral wall of the Laval nozzle 2, a cooling water passage 23 for flowing cooling water is formed. The cooling water passage 23 is provided with a cylindrical partition wall 231 so that the cooling water flows from the upstream to the downstream inside the peripheral wall and then flows from the downstream to the upstream outside the peripheral wall. Yes. The material of the Laval nozzle 2 is preferably copper or a copper alloy from the viewpoint of preventing the occurrence of sparks. The upstream end of the Laval nozzle 2 is connected to an oxygen gas supply source (not shown) so that oxygen gas flows into the Laval nozzle 2 from upstream to downstream.
また、ラバルノズル2は、その内周面において、燃料ガスをラバルノズル2内に供給するための燃料ガス供給部24が形成されている。この燃料ガス供給部24は、ラバルノズル2の内周面の円周方向に沿って切れ目無く形成された環状スリットとなっている。また、この燃料ガス供給部24が形成される位置は、特に限定されるものではなく、例えばスロート部21の近傍や、スロート部21の下流側に形成することができる。そして、この各燃料ガス供給部24には、冷却水流路23内を延びる燃料ガス供給路25が接続されている。なお、この燃料ガス供給路25は、燃料ガス供給源(図示省略)に接続されている。この燃料ガス供給源から供給される燃料ガスのガス圧は、上述した酸素ガス供給源から供給される酸素ガスのガス圧よりも高いことが好ましい。
Further, the Laval nozzle 2 has a fuel gas supply part 24 for supplying fuel gas into the Laval nozzle 2 on the inner peripheral surface thereof. The fuel gas supply unit 24 is an annular slit formed without a cut along the circumferential direction of the inner peripheral surface of the Laval nozzle 2. Further, the position where the fuel gas supply unit 24 is formed is not particularly limited, and can be formed, for example, in the vicinity of the throat unit 21 or on the downstream side of the throat unit 21. Each fuel gas supply section 24 is connected to a fuel gas supply path 25 extending through the cooling water flow path 23. The fuel gas supply path 25 is connected to a fuel gas supply source (not shown). The gas pressure of the fuel gas supplied from the fuel gas supply source is preferably higher than the gas pressure of the oxygen gas supplied from the oxygen gas supply source described above.
燃料ガス供給管3は、下流側端面が封鎖された円筒状に形成されており、その中心軸をラバルノズル2の中心軸Cと略一致させた状態でラバルノズル2内を軸方向に延びるように設置されている。この燃料ガス供給管3は、上流側の端部が燃料ガス供給源に直接又は間接的に接続されている(図示省略)。なお、この燃料ガス供給源は、燃料ガス供給路25に接続されたものと同一のものであってもよいし、別のものであってもよい。また、下流側の端部は、スロート部21近傍に位置しており、燃料ガス供給管3内部を流れる燃料ガスをラバルノズル2内に排出するための燃料ガス排出孔31が複数形成されている。この燃料ガス排出孔31からラバルノズル2内に排出される燃料ガスの排出方向は、ラバルノズル2の径方向、すなわち、酸素ガスの進行方向とほぼ直行する向きとなっている。
The fuel gas supply pipe 3 is formed in a cylindrical shape whose end face on the downstream side is sealed, and is installed so as to extend in the axial direction within the Laval nozzle 2 with its central axis substantially coincident with the central axis C of the Laval nozzle 2. Has been. The upstream end of the fuel gas supply pipe 3 is directly or indirectly connected to a fuel gas supply source (not shown). The fuel gas supply source may be the same as that connected to the fuel gas supply path 25 or may be different. Further, the downstream end is located in the vicinity of the throat portion 21, and a plurality of fuel gas discharge holes 31 for discharging the fuel gas flowing through the fuel gas supply pipe 3 into the Laval nozzle 2 are formed. The discharge direction of the fuel gas discharged from the fuel gas discharge hole 31 into the Laval nozzle 2 is substantially perpendicular to the radial direction of the Laval nozzle 2, that is, the traveling direction of the oxygen gas.
この複数の燃料ガス排出孔31は、燃料ガス供給管3の外周面に円周方向に沿って所定間隔をあけて並ぶよう形成された環状の上流側燃料ガス排出孔列310aと、この上流側燃料ガス排出孔列310aの下流側に同様に形成された下流側燃料ガス排出孔列310bとを構成している。そして、各燃料ガス排出孔列310a、310bは、上流側燃料ガス排出孔列310aの隣接する燃料ガス排出孔31間に相当する位置に下流側燃料ガス排出孔列310bの燃料ガス排出孔31が形成されるよう、円周方向に位置をずらして形成されている。このように、上流側燃料ガス排出孔列310aの各燃料ガス排出孔31と、下流側燃料ガス排出孔列310bの各燃料ガス排出孔31とを互い違いの位置に形成することによって、ラバルノズル2内を流れる酸素ガスの内側から燃料ガスを均等に切れ目無く供給することができる。なお、この燃料ガス排出孔列310は特に2列に限定されるものではなく、3列以上にすることもできる。また、各燃料ガス排出孔31の形状も円形に限定されるものではなく、楕円形やスリット状など種々の形状にすることができる。また、燃料ガス供給管3の材質は、ステンレス、銅、銅合金などとすることが好ましい。
The plurality of fuel gas discharge holes 31 includes an annular upstream fuel gas discharge hole array 310a formed on the outer peripheral surface of the fuel gas supply pipe 3 so as to be arranged at predetermined intervals along the circumferential direction, and the upstream side A downstream fuel gas discharge hole row 310b formed in the same manner on the downstream side of the fuel gas discharge hole row 310a is configured. Each of the fuel gas discharge hole arrays 310a and 310b has the fuel gas discharge hole 31 of the downstream fuel gas discharge hole array 310b at a position corresponding to the space between the adjacent fuel gas discharge holes 31 of the upstream fuel gas discharge hole array 310a. In order to be formed, the positions are shifted in the circumferential direction. In this way, by forming the fuel gas discharge holes 31 of the upstream fuel gas discharge hole array 310a and the fuel gas discharge holes 31 of the downstream fuel gas discharge hole array 310b at alternate positions, the inside of the Laval nozzle 2 The fuel gas can be evenly supplied from the inside of the oxygen gas flowing through. The fuel gas discharge hole row 310 is not particularly limited to two rows, and may be three or more rows. Further, the shape of each fuel gas discharge hole 31 is not limited to a circle, and can be various shapes such as an ellipse and a slit. The material of the fuel gas supply pipe 3 is preferably stainless steel, copper, copper alloy or the like.
以上のように構成されたガス噴射装置は、高炉-転炉法や、ガス還元法、直接溶融還元法、電気炉法、冷鉄源溶解法など種々の製鉄方法に使用することができる。以下では、その一例としてガス噴射装置を転炉法に使用した場合について説明する。
The gas injection apparatus configured as described above can be used in various iron making methods such as a blast furnace-converter method, a gas reduction method, a direct smelting reduction method, an electric furnace method, and a cold iron source melting method. Below, the case where a gas-injection apparatus is used for a converter method as the example is demonstrated.
図2に示すように、転炉5は、溶銑を収容するための炉本体4と、この炉本体4上方に設置されたガス噴射装置1とを備えている。この炉本体4は、樽型や西洋ナシ型などに形成されており、前後に自由に回転できるように構成されている。また、炉本体4の外壁は鋼鉄から構成されるとともに、その内壁は高熱や衝撃に耐えるよう耐火煉瓦が内張されている。
As shown in FIG. 2, the converter 5 includes a furnace body 4 for containing molten iron and a gas injection device 1 installed above the furnace body 4. The furnace body 4 is formed in a barrel shape, a pear shape, or the like, and is configured to be freely rotatable back and forth. The outer wall of the furnace body 4 is made of steel, and the inner wall is lined with refractory bricks to withstand high heat and impact.
このように構成された炉本体4を前後に回転させることで傾け、傾いた状態の炉本体4内に炭素を含有する溶銑を注入する。この溶銑の炭素含有量は、特に限定されるものではないが、溶鉄中1~5重量%であることが可能であり、3~5重量%であることが好ましい。なお、このとき、溶銑とともに屑鉄を炉本体4に供給することもできる。これら溶銑や屑鉄の供給量は、特に限定されるものではなく、用いる転炉の容量などによって適宜決定すればよい。例えば、炭素を含有する溶銑100重量部に対して、屑鉄を30重量部以下であることが好ましい。屑鉄がこの範囲を超えると、必要な熱量補給が増大するために、精錬時間が延長されて、全体の工程の時間的なバランスを崩してしまう傾向がある。従って、鉄鋼製造工程全体の経済性や屑鉄の市況などを総合的に勘案して屑鉄の使用量を選択すれば良い。
The furnace body 4 configured in this manner is tilted by rotating back and forth, and hot metal containing carbon is injected into the tilted furnace body 4. The carbon content of the molten iron is not particularly limited, but can be 1 to 5% by weight in molten iron, and preferably 3 to 5% by weight. At this time, scrap iron can be supplied to the furnace body 4 together with the hot metal. The supply amount of the hot metal and scrap iron is not particularly limited, and may be determined as appropriate depending on the capacity of the converter to be used. For example, it is preferable that scrap iron is 30 parts by weight or less with respect to 100 parts by weight of hot metal containing carbon. When scrap iron exceeds this range, the necessary amount of heat supply increases, so the refining time is extended and the time balance of the entire process tends to be lost. Accordingly, the amount of scrap iron used may be selected in consideration of the overall economics of the steel manufacturing process and the scrap iron market.
続いて、脱炭反応の酸素源として酸化鉄を、溶銑中の炭素含有量が所望の値に到達するまで炉本体4に連続的に投入する。この酸化鉄の供給速度は、特に限定されないが、一般的に転炉精錬時間が10~30分程度であることから、0.1~10トン/分程度であることが好ましく、2~7トン/分程度がより好ましい。また、供給時間は、溶銑の量によって決定される酸化鉄の供給量及び前述の供給速度によって適宜決定されるものであるが、例えば、1~30分(好ましくは10~30分、より好ましくは10~20分)継続的に転炉内に酸化鉄を添加することが好ましい。なお、酸化鉄としては、例えば、鉄鉱石、粉鉱石ペレット、焼結鉱、鉄ダストペレット、鉄ダストブリケット等を挙げることができる。
Subsequently, iron oxide as an oxygen source for the decarburization reaction is continuously charged into the furnace body 4 until the carbon content in the molten iron reaches a desired value. The supply rate of this iron oxide is not particularly limited, but since the converter refining time is generally about 10 to 30 minutes, it is preferably about 0.1 to 10 tons / minute, and preferably 2 to 7 tons. / Min is more preferable. The supply time is appropriately determined depending on the supply amount of iron oxide determined by the amount of hot metal and the above-described supply rate. For example, the supply time is 1 to 30 minutes (preferably 10 to 30 minutes, more preferably (10-20 minutes) It is preferable to continuously add iron oxide into the converter. Examples of the iron oxide include iron ore, fine ore pellets, sintered ore, iron dust pellets, and iron dust briquettes.
そして、酸化鉄の投入と並行して、ガス噴射装置1によって、燃料ガス及び酸素ガスからなる混合ガスを溶銑に対して噴射する。より詳細には、ガス噴射装置1のラバルノズル2内に酸素ガスを流すとともに、燃料ガス供給管3内に燃料ガスを流すことで各燃料ガス排出孔31から燃料ガスがラバルノズル2内に排出され、ラバルノズル2内を流れる酸素ガスの内側から燃料ガスが混合される。またさらには、燃料ガス供給路25に燃料ガスを流すことで燃料ガス供給部24からラバルノズル2内に燃料ガスを供給し、ラバルノズル2内を流れる酸素ガスの外側から燃料ガスを混合させる。このように、ラバルノズル2内を流れる酸素ガスの内側及び外側の両方から燃料ガスを混合させるため、ガス噴射装置1からは十分に混合された混合ガスが噴射される。なお、燃料ガスと酸素ガスの混合比としては、完全燃焼する混合比を挙げることができる。この完全燃焼混合比は、用いるガスの種類によって変動し、例えば燃料ガスとしてLNGを使用した場合は、燃料ガス:酸素ガス
=1:2.30であり、また燃料ガスとしてLPGを使用した場合は、燃料ガス:酸素ガス
=1:5.12とすることが好ましい。また、各燃料ガス供給部24からラバルノズル2内に供給される燃料ガスの総量の方が、燃料ガス供給管3の各排出孔31からラバルノズル内に排出される燃料ガスの総量よりも少なくなるように調整することが好ましいが、特にこれに限定されるものではなく、各燃料ガス供給部24からの燃料ガスの総量の方を多くしたり、若しくは燃料ガス供給管3からの燃料ガスの総量と同じとしたりすることも可能である。 In parallel with the introduction of iron oxide, thegas injection device 1 injects a mixed gas composed of fuel gas and oxygen gas onto the hot metal. More specifically, the oxygen gas flows into the Laval nozzle 2 of the gas injection device 1 and the fuel gas flows into the fuel gas supply pipe 3 so that the fuel gas is discharged from the fuel gas discharge holes 31 into the Laval nozzle 2. Fuel gas is mixed from the inside of the oxygen gas flowing in the Laval nozzle 2. Still further, the fuel gas is supplied from the fuel gas supply unit 24 into the Laval nozzle 2 by flowing the fuel gas through the fuel gas supply path 25, and the fuel gas is mixed from the outside of the oxygen gas flowing through the Laval nozzle 2. Thus, in order to mix fuel gas from both the inside and the outside of the oxygen gas flowing in the Laval nozzle 2, a sufficiently mixed gas mixture is injected from the gas injection device 1. In addition, as a mixing ratio of fuel gas and oxygen gas, a mixing ratio for complete combustion can be exemplified. The complete combustion mixture ratio varies depending on the type of gas used. For example, when LNG is used as the fuel gas, fuel gas: oxygen gas = 1.2.30, and when LPG is used as the fuel gas. Fuel gas: oxygen gas = 1: 5.12 is preferable. Further, the total amount of fuel gas supplied from each fuel gas supply unit 24 into the Laval nozzle 2 is smaller than the total amount of fuel gas discharged from each discharge hole 31 of the fuel gas supply pipe 3 into the Laval nozzle. However, the present invention is not limited to this, and the total amount of fuel gas from each fuel gas supply unit 24 is increased or the total amount of fuel gas from the fuel gas supply pipe 3 is It is also possible to do the same.
=1:2.30であり、また燃料ガスとしてLPGを使用した場合は、燃料ガス:酸素ガス
=1:5.12とすることが好ましい。また、各燃料ガス供給部24からラバルノズル2内に供給される燃料ガスの総量の方が、燃料ガス供給管3の各排出孔31からラバルノズル内に排出される燃料ガスの総量よりも少なくなるように調整することが好ましいが、特にこれに限定されるものではなく、各燃料ガス供給部24からの燃料ガスの総量の方を多くしたり、若しくは燃料ガス供給管3からの燃料ガスの総量と同じとしたりすることも可能である。 In parallel with the introduction of iron oxide, the
以上のようにガス噴射装置1から溶銑に対して混合ガスを超音速で噴射することで、燃焼反応を起こさせ、この燃焼反応熱によって溶銑を加熱する。この溶鉄の加熱温度は、特に限定されるものではないが、通常は1600~1700℃程度であり、1620~1680℃程度である、また、このときの混合ガスの噴射速度は音速以上であり、マッハ数1~3程度とすることがこのましく、このような噴射速度とすることによって溶銑を十分に攪拌することができる。また、高音の燃焼反応熱によって発生する排ガス(CO2ガスやH2Oガス)によっても溶銑を攪拌することができる。
As described above, by injecting the mixed gas from the gas injection device 1 to the hot metal at supersonic speed, a combustion reaction is caused, and the hot metal is heated by this heat of combustion reaction. The heating temperature of the molten iron is not particularly limited, but is usually about 1600 to 1700 ° C. and about 1620 to 1680 ° C. The injection speed of the mixed gas at this time is equal to or higher than the speed of sound, The Mach number is preferably about 1 to 3, and the hot metal can be sufficiently stirred by setting the injection speed to such a value. Also, the hot metal can be agitated by exhaust gas (CO2 gas or H2O gas) generated by high-frequency combustion reaction heat.
以上のようにガス噴射装置1を用いて混合ガスを溶銑に噴射することで、例えば酸化鉄として鉄鉱石を投入した場合は、炉本体4内に投入された鉄鉱石が、混合ガスとともに溶鉄中へ巻き込まれた後に浮上して溶鉄上面に浮かぶ。この鉄鉱石と溶鉄中に溶解している炭素が接触すると、炭素は極めて活性度が高いために直ちに鉄鉱石の保有する酸素と結合してCOガスを発生し、鉄鉱石の保有する鉄分は還元されて鉄となる。この還元反応は鉄鉱石表面で起こる。また、この反応は吸熱反応なので、反応が進むほどCOガス気泡の温度は低下する傾向にあり、従って急激な体積膨張をしながら気泡が成長する純酸素ガスによる脱炭反応におけるCOガス気泡の挙動とは著しく異なることになる。
By injecting the mixed gas into the molten iron using the gas injection device 1 as described above, for example, when iron ore is charged as iron oxide, the iron ore charged into the furnace body 4 is mixed with the mixed gas in the molten iron. After being rolled up, it floats and floats on the top surface of the molten iron. When this iron ore and carbon dissolved in molten iron come into contact with each other, the carbon is extremely active, so it immediately combines with oxygen held in the iron ore to generate CO gas, and the iron content in the iron ore is reduced. It becomes iron. This reduction reaction occurs on the iron ore surface. In addition, since this reaction is endothermic, the temperature of the CO gas bubbles tends to decrease as the reaction proceeds. Therefore, the behavior of the CO gas bubbles in the decarburization reaction with pure oxygen gas in which the bubbles grow with rapid volume expansion. Will be significantly different.
比重が溶鉄よりも小さい鉄鉱石は、一時的に溶鉄中に巻き込まれる事があっても、常に溶鉄上面近傍に浮上するため、鉄鉱石表面において起こる還元反応により発生するCOガス気泡は、常に該溶鉄上面近傍から雰囲気中へ離脱することになり、純酸素ガスによる脱炭反応で発生するCOガス気泡によるバブルバースト現象は起こらない。また、鉄鉱石と溶銑の接触面は、常温の鉄鉱石により冷却される事に加えて、脱炭反応が吸熱反応であるので、火点と呼ばれる高温度の領域(鉄の沸点である2750℃を超える領域)を形成することはない。したがって、鉄が蒸発するヒュームダストの発生も防止できる。
Even if iron ore having a specific gravity smaller than that of molten iron may be temporarily caught in molten iron, it always floats near the upper surface of the molten iron, so that CO gas bubbles generated by the reduction reaction occurring on the surface of the iron ore are always The bubble burst phenomenon caused by CO gas bubbles generated in the decarburization reaction with pure oxygen gas does not occur from the vicinity of the upper surface of the molten iron into the atmosphere. In addition, the contact surface between the iron ore and the hot metal is cooled by room temperature iron ore, and since the decarburization reaction is an endothermic reaction, a high temperature region called a fire point (2750 ° C., which is the boiling point of iron). (Region exceeding the upper limit) is not formed. Therefore, generation | occurrence | production of the fume dust which iron evaporates can also be prevented.
以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible unless it deviates from the meaning of this invention.
例えば、図3に示すように、燃料ガス供給管3の下流側端部を円錐状とすることができる。このような形状とすることで、ラバルノズル2から噴射される混合ガスの流れをスムーズにし、混合ガスの噴射速度が低下することを抑制することができる。なお、この燃料ガス供給管3の円錐状部分における形状は、混合ガスの流れをよりスムーズにする観点から、相対するラバルノズル2の内周面と対称の形状となっていることが好ましい。
For example, as shown in FIG. 3, the downstream end of the fuel gas supply pipe 3 can be conical. By setting it as such a shape, the flow of the mixed gas injected from the Laval nozzle 2 can be made smooth, and it can suppress that the injection speed of mixed gas falls. In addition, it is preferable that the shape in the conical part of this fuel gas supply pipe | tube 3 is a shape symmetrical with the internal peripheral surface of the opposite Laval nozzle 2 from a viewpoint of making the flow of mixed gas smoother.
また、図4に示すように、燃料ガス供給部24をスリットではなく、複数の燃料ガス供給孔241から構成される2列の燃料ガス供給孔列241a、241bとすることもできる。より詳細には、上流側に形成された第1の燃料ガス供給孔列241aは、ラバルノズル2内周面の円周方向に間隔をあけて並ぶよう形成された複数の燃料ガス供給孔241によって構成されており、第2の燃料ガス供給孔列241bは、第1の燃料ガス供給孔列241aの下流側に同様に構成されている。そして、第1の燃料ガス供給孔列241aを構成する燃料ガス供給孔241間に対応する位置と対応する位置、すなわち、第1の燃料ガス供給孔列241aの燃料ガス供給孔241が形成されていない位置と対応する位置に、第2の燃料ガス供給孔列241bを構成する燃料ガス供給孔241が形成されている。このように互い違いに各燃料ガス供給孔241を形成することで、ラバルノズル2内を流れる酸素ガスの外側を囲むように燃料ガスを均等に供給することができる。なお、この燃料ガス供給孔列は2列に限られるものではなく、3列以上とすることもできる。
Further, as shown in FIG. 4, the fuel gas supply unit 24 may be replaced with two rows of fuel gas supply hole rows 241a and 241b constituted by a plurality of fuel gas supply holes 241 instead of slits. More specifically, the first fuel gas supply hole row 241a formed on the upstream side is constituted by a plurality of fuel gas supply holes 241 formed so as to be arranged at intervals in the circumferential direction of the inner peripheral surface of the Laval nozzle 2. The second fuel gas supply hole row 241b is similarly configured on the downstream side of the first fuel gas supply hole row 241a. The positions corresponding to the positions corresponding to the positions between the fuel gas supply holes 241 constituting the first fuel gas supply hole array 241a, that is, the fuel gas supply holes 241 of the first fuel gas supply hole array 241a are formed. A fuel gas supply hole 241 that constitutes the second fuel gas supply hole row 241b is formed at a position corresponding to the non-existing position. By forming the fuel gas supply holes 241 alternately in this way, the fuel gas can be evenly supplied so as to surround the outside of the oxygen gas flowing in the Laval nozzle 2. In addition, this fuel gas supply hole row | line | column is not restricted to 2 rows, It can also be made into 3 or more rows.
また、上記実施形態において、ガス供給管3の下流側の端部はスロート部21近傍に位置していたが、特にこれに限定されるものではなく、例えばガス供給管3の下流側の端部を縮径部26よりも上流側に位置することができ、これにより乱流を発生させて燃料ガスと酸素ガスとをより均一に混合させることができる。この場合、上記実施形態と同様の構成のガス供給管3を単に上流側に移動させてもよいし、その他にも種々の構成とすることができる。例えばその一例として、図5及び図6に示すように、燃料ガス供給管3を、ラバルノズル2内を軸方向に延びる燃料ガス供給管本体32と、燃料ガス供給管本体32の外周面から径方向に向かって放射状に延びる複数の枝管33とから構成することができる。複数の枝管33は、燃料ガス供給管本体32と連通しており、燃料ガス供給管本体32内を流れる燃料ガスをラバルノズル2内に供給するよう、下流側を向いたスリット321が形成されている。なお、この各枝管33は、燃料ガス供給管本体32内の燃料ガスをラバルノズル2内に供給することができれば特にその構成は限定されるものではなく、例えばスリット321が上流側を向くように形成されていてもよいし、スリット321ではなく、複数の孔によって形成することもできる。
Moreover, in the said embodiment, although the downstream edge part of the gas supply pipe 3 was located in the throat part 21 vicinity, it is not limited to this in particular, For example, the downstream edge part of the gas supply pipe 3 Can be positioned upstream of the diameter-reduced portion 26, thereby generating turbulent flow and more uniformly mixing the fuel gas and the oxygen gas. In this case, the gas supply pipe 3 having the same configuration as that of the above-described embodiment may be simply moved to the upstream side, and various other configurations may be employed. As an example, for example, as shown in FIGS. 5 and 6, the fuel gas supply pipe 3 includes a fuel gas supply pipe main body 32 extending in the axial direction in the Laval nozzle 2, and a radial direction from the outer peripheral surface of the fuel gas supply pipe main body 32. And a plurality of branch pipes 33 extending radially toward. The plurality of branch pipes 33 communicate with the fuel gas supply pipe main body 32, and a slit 321 facing the downstream side is formed so as to supply the fuel gas flowing through the fuel gas supply pipe main body 32 into the Laval nozzle 2. Yes. The structure of the branch pipes 33 is not particularly limited as long as the fuel gas in the fuel gas supply pipe main body 32 can be supplied into the Laval nozzle 2. For example, the slit 321 faces the upstream side. It may be formed or may be formed by a plurality of holes instead of the slits 321.
また、上述した複数の枝管33は、枝管33の群となってラバルノズル2の軸方向に複数段に構成されていることが好ましく、本実施形態では、一番下流側に配置された3本の枝管33aによって第1段目の枝管群を構成し、続く3本の枝管33bによって第2段目の枝管群を構成し、一番上流側に配置された3本の枝管33cによって第3段目の枝管群を構成している。各枝管群を構成する枝管33は等間隔に配置されており、また、ラバルノズル2の軸方向から見た枝管33は、全てが互いに重ならないように等間隔に配置されていることが好ましい。具体的に説明すると、上述したように3本の枝管による枝管群を3段形成した場合は、まず、各枝管群において、各枝管33は隣接する枝管33と中心軸Cを中心に120度の角度を形成している。また、第1段目の枝管群を基準として、第2段目の枝管群を中心軸C周りに30度回転させた状態とし、第3段目の枝管群を中心軸C周りに60度回転させた状態とする。このようにすることでラバルノズル2の軸方向から見た各枝管33は全て等間隔に配置され、この結果、ラバルノズル2内に流れる酸素ガスの全領域に燃料ガスを一様に供給することができる。なお、当然に、上記枝管列の列数や、枝管の数は上述したものに限定されるものではない。
In addition, the plurality of branch pipes 33 described above are preferably configured in a plurality of stages in the axial direction of the Laval nozzle 2 as a group of branch pipes 33. In the present embodiment, the three branch pipes 3 are arranged on the most downstream side. The three branch pipes 33a constitute a first-stage branch pipe group, the subsequent three branch pipes 33b constitute a second-stage branch pipe group, and the three branches arranged on the most upstream side A third-stage branch pipe group is configured by the pipe 33c. The branch pipes 33 constituting each branch pipe group are arranged at equal intervals, and the branch pipes 33 viewed from the axial direction of the Laval nozzle 2 are arranged at equal intervals so as not to overlap each other. preferable. More specifically, in the case where three branch pipe groups are formed by three branch pipes as described above, first, in each branch pipe group, each branch pipe 33 is connected to the adjacent branch pipe 33 and the central axis C. An angle of 120 degrees is formed at the center. Further, with the first-stage branch pipe group as a reference, the second-stage branch pipe group is rotated around the central axis C by 30 degrees, and the third-stage branch pipe group is rotated around the central axis C. The state is rotated 60 degrees. In this way, all the branch pipes 33 viewed from the axial direction of the Laval nozzle 2 are all arranged at equal intervals. As a result, the fuel gas can be uniformly supplied to the entire region of the oxygen gas flowing in the Laval nozzle 2. it can. Of course, the number of branches and the number of branches are not limited to those described above.
また、ラバルノズル2は酸素ガス供給源に接続されているが、この酸素ガスの元圧を制御するために第1の元圧制御装置を設置することもできる。また、同様に、燃料ガス供給管3及び燃料ガス供給路25には燃料ガス供給源が接続されているが、この燃料ガス供給源の元圧を制御するために、第2の元圧制御装置を設置することもできる。このように第1及び第2の元圧制御装置を設置することで、燃料ガス及び酸素ガスからなる混合ガスの噴出速度を制御することができ、ひいては混合ガスの燃焼位置を制御することが可能となる。例えば、電気炉操業の溶解期初期には、混合ガスの元圧を低くすることでノズル近傍側において混合ガスを燃焼させ、その後、混合ガスの元圧を高くして混合ガスの燃焼位置、すなわち火炎の形成場所をノズルから離れる方向に移動させて炉中心近傍で混合ガスを燃焼させ、さらには、溶解が進行すると混合ガスの元圧を低くして混合ガスの燃焼位置を再度ノズル近傍側へと移動させる。このように、溶解時期によって火炎形成場所を制御することで、生産性を向上させることができる。なお、混合ガスの噴出速度は、火炎伝搬速度以上とすることが好ましい。
Further, although the Laval nozzle 2 is connected to an oxygen gas supply source, a first source pressure control device can be installed in order to control the source pressure of the oxygen gas. Similarly, a fuel gas supply source is connected to the fuel gas supply pipe 3 and the fuel gas supply path 25. In order to control the original pressure of the fuel gas supply source, a second original pressure control device is used. Can also be installed. By installing the first and second source pressure control devices in this way, it is possible to control the ejection speed of the mixed gas composed of the fuel gas and the oxygen gas, and thus to control the combustion position of the mixed gas. It becomes. For example, at the beginning of the melting period of electric furnace operation, the mixed gas is burned on the side near the nozzle by lowering the original pressure of the mixed gas, and then the mixed gas combustion position, i.e., the original pressure of the mixed gas is increased. Move the flame formation location away from the nozzle to burn the mixed gas near the center of the furnace, and further lower the original pressure of the mixed gas and lower the mixed gas combustion position toward the nozzle again as melting progresses And move. Thus, productivity can be improved by controlling a flame formation place by melt | dissolution time. In addition, it is preferable that the jet speed of mixed gas shall be more than a flame propagation speed.
1 ガス噴射装置
2 ラバルノズル
21 スロート部
24 燃料ガス供給部
241 燃料ガス供給孔
241a 第1の燃料ガス供給孔列
241b 第2の燃料ガス供給孔列
3 燃料ガス供給管
32 燃料ガス供給管本体
33 枝管 DESCRIPTION OFSYMBOLS 1 Gas injection apparatus 2 Laval nozzle 21 Throat part 24 Fuel gas supply part 241 Fuel gas supply hole 241a 1st fuel gas supply hole row 241b 2nd fuel gas supply hole row 3 Fuel gas supply pipe 32 Fuel gas supply pipe main body 33 Branch tube
2 ラバルノズル
21 スロート部
24 燃料ガス供給部
241 燃料ガス供給孔
241a 第1の燃料ガス供給孔列
241b 第2の燃料ガス供給孔列
3 燃料ガス供給管
32 燃料ガス供給管本体
33 枝管 DESCRIPTION OF
Claims (8)
- 燃料ガス及び酸素ガスを含む混合ガスを噴射するガス噴射装置であって、
内部に酸素ガスが流れるとともに、内周面に燃料ガス供給部が形成され、前記燃料ガス供給部から内部に燃料ガスが供給されるラバルノズルと、
前記ラバルノズル内を軸方向に延び、前記ラバルノズル内に燃料ガスを供給する燃料ガス供給管と、
を備えた、ガス噴射装置。 A gas injection device for injecting a mixed gas containing fuel gas and oxygen gas,
A laval nozzle in which oxygen gas flows inside, a fuel gas supply part is formed on the inner peripheral surface, and fuel gas is supplied to the inside from the fuel gas supply part;
A fuel gas supply pipe extending in the axial direction in the Laval nozzle and supplying fuel gas into the Laval nozzle;
A gas injection device comprising: - 前記燃料ガス供給部は、前記ラバルノズル内周面の円周方向に沿って形成された環状のスリットである、請求項1に記載のガス噴射装置。 The gas injection device according to claim 1, wherein the fuel gas supply unit is an annular slit formed along a circumferential direction of the inner peripheral surface of the Laval nozzle.
- 前記燃料ガス供給部は、
前記ラバルノズル内周面の円周方向に間隔をあけて並ぶよう形成された複数の燃料ガス供給孔から構成された第1の燃料ガス供給孔列と、
前記第1の燃料ガス供給孔列の下流側において、前記ラバルノズル内周面の円周方向に間隔をあけて並ぶよう形成された複数の燃料ガス供給孔から構成された第2の燃料ガス供給孔列と、を有しており、
前記第2の燃料ガス供給孔列を構成する各燃料ガス供給孔は、前記第1の燃料ガス供給孔列を構成する各燃料ガス供給孔間の燃料ガス供給孔が形成されていない位置と対応する位置に形成されている、請求項1に記載のガス噴射装置。 The fuel gas supply unit
A first fuel gas supply hole array composed of a plurality of fuel gas supply holes formed so as to be arranged at intervals in the circumferential direction of the inner peripheral surface of the Laval nozzle;
A second fuel gas supply hole comprising a plurality of fuel gas supply holes formed on the downstream side of the first fuel gas supply hole row so as to be arranged at intervals in the circumferential direction of the inner peripheral surface of the Laval nozzle. A column, and
Each fuel gas supply hole constituting the second fuel gas supply hole row corresponds to a position where no fuel gas supply hole is formed between the fuel gas supply holes constituting the first fuel gas supply hole row. The gas injection device according to claim 1, wherein the gas injection device is formed at a position where the gas injection is performed. - 前記燃料ガス供給管は、前記ラバルノズルの径方向に燃料ガスを供給する、請求項1に記載のガス噴射装置。 The gas injection device according to claim 1, wherein the fuel gas supply pipe supplies fuel gas in a radial direction of the Laval nozzle.
- 前記燃料ガス供給管は、前記ラバルノズルのスロート部近傍において燃料ガスを供給する、請求項1に記載のガス噴射装置。 The gas injection device according to claim 1, wherein the fuel gas supply pipe supplies fuel gas in the vicinity of a throat portion of the Laval nozzle.
- 前記燃料ガス供給管は、前記ラバルノズルの縮径部よりも上流側において燃料ガスを供給する、請求項1に記載のガス噴射装置。 2. The gas injection device according to claim 1, wherein the fuel gas supply pipe supplies fuel gas upstream of a reduced diameter portion of the Laval nozzle.
- 前記燃料ガス供給管は、前記ラバルノズル内を延びる燃料ガス供給管本体と、前記燃料ガス供給管本体から径方向に放射状に延びる複数の枝管とを有しており、前記各枝管を介して燃料ガスを前記ラバルノズル内に供給する、請求項6に記載のガス噴射装置。 The fuel gas supply pipe has a fuel gas supply pipe main body extending in the Laval nozzle, and a plurality of branch pipes extending radially from the fuel gas supply pipe main body, through the branch pipes. The gas injection device according to claim 6, wherein fuel gas is supplied into the Laval nozzle.
- 前記酸素ガスの元圧を制御する第1の元圧制御手段と、
前記燃料ガスの元圧を制御する第2の元圧制御手段と、
をさらに備えた、請求項1に記載のガス噴射装置。 First source pressure control means for controlling the source pressure of the oxygen gas;
Second source pressure control means for controlling the source pressure of the fuel gas;
The gas injection device according to claim 1, further comprising:
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009198455 | 2009-08-28 | ||
JP2009-198455 | 2009-08-28 | ||
JP2010-092351 | 2010-04-13 | ||
JP2010092351 | 2010-04-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011024814A1 true WO2011024814A1 (en) | 2011-03-03 |
Family
ID=43627915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/064301 WO2011024814A1 (en) | 2009-08-28 | 2010-08-24 | Gas jet device |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201114918A (en) |
WO (1) | WO2011024814A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021056200A1 (en) * | 2019-09-24 | 2021-04-01 | 西门子(中国)有限公司 | Oxygen delivery apparatus and manufacturing method therefor, and de laval nozzle and manufacturing method therefor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS528533A (en) * | 1975-07-04 | 1977-01-22 | Penzensukii Konpuretsusorunui | Gas burner |
JPS6288131U (en) * | 1985-11-21 | 1987-06-05 | ||
JPH066920U (en) * | 1992-06-29 | 1994-01-28 | 日本スピング株式会社 | High pressure high speed cutting crater |
JP2001526320A (en) * | 1997-12-04 | 2001-12-18 | エスエムエス・デマーク・アクチエンゲゼルシャフト | Method and blowing lance for blowing gas into metallurgical vessel |
JP2007192485A (en) * | 2006-01-20 | 2007-08-02 | Takuma Co Ltd | Gas burner |
-
2010
- 2010-08-24 WO PCT/JP2010/064301 patent/WO2011024814A1/en active Application Filing
- 2010-08-26 TW TW099128627A patent/TW201114918A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS528533A (en) * | 1975-07-04 | 1977-01-22 | Penzensukii Konpuretsusorunui | Gas burner |
JPS6288131U (en) * | 1985-11-21 | 1987-06-05 | ||
JPH066920U (en) * | 1992-06-29 | 1994-01-28 | 日本スピング株式会社 | High pressure high speed cutting crater |
JP2001526320A (en) * | 1997-12-04 | 2001-12-18 | エスエムエス・デマーク・アクチエンゲゼルシャフト | Method and blowing lance for blowing gas into metallurgical vessel |
JP2007192485A (en) * | 2006-01-20 | 2007-08-02 | Takuma Co Ltd | Gas burner |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021056200A1 (en) * | 2019-09-24 | 2021-04-01 | 西门子(中国)有限公司 | Oxygen delivery apparatus and manufacturing method therefor, and de laval nozzle and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
TW201114918A (en) | 2011-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1521852B1 (en) | Injector for metal melting furnaces | |
JP5336090B2 (en) | Multifunctional injector and associated combustion process for metallurgical processing in arc furnaces | |
ES2371200T3 (en) | OXYGEN INJECTION METHOD. | |
CN102812136A (en) | Copper anode refining system and method | |
CN112239798B (en) | Tuyere for basic oxygen converter | |
JP2008179876A (en) | Powder heating burner lance and smelting reduction method using it | |
JP2005514523A (en) | Method for thermometallurgical treatment of metal, metal melt and / or slag, and injector device | |
JP2006312757A (en) | Injection lance for gaseous reducing material, blast furnace and blast furnace operation method | |
WO2011024814A1 (en) | Gas jet device | |
JPH07167569A (en) | Tuyere to introduce oxygen and fuel gas, and its introduction method | |
ES2533572T3 (en) | Method for the pyrometallurgical treatment of metals, molten metal baths and / or slags | |
JP4747662B2 (en) | Lance for blowing gas reducing material, blast furnace and blast furnace operating method | |
RU2627091C2 (en) | Managed injection of solid particles | |
TW202332780A (en) | Method of blowing gaseous reducing material and tuyere for blast furnace | |
JP2006283065A (en) | Gas-blowing tuyere | |
JP7200649B2 (en) | Lance device for refining, electric furnace and steelmaking method | |
JP6515284B2 (en) | Reduction and dissolution method of iron oxide-containing iron raw material and oxygen blown lance | |
JPH10251715A (en) | Method for blowing pulverized fine coal into blast furnace | |
JP2023031404A (en) | Blast furnace tuyere burner | |
BR102020014409B1 (en) | TUCLER FOR BASIC OXYGEN OVEN | |
WO2010131740A1 (en) | Method for manufacturing molten iron | |
JPS61264119A (en) | Constituting structure of tuyere for converter bottom | |
JPH10237514A (en) | Burner for injecting pulverized fine coal into blast furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10811864 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10811864 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |