WO2011023841A1 - Instrumento oftálmico de medida de la refracción ocular y simulación visual, y métodos asociados de medida de la refracción ocular, de simulación de elementos oftálmicos, de simulación visual y obtención de parámetros ópticos - Google Patents

Instrumento oftálmico de medida de la refracción ocular y simulación visual, y métodos asociados de medida de la refracción ocular, de simulación de elementos oftálmicos, de simulación visual y obtención de parámetros ópticos Download PDF

Info

Publication number
WO2011023841A1
WO2011023841A1 PCT/ES2010/070467 ES2010070467W WO2011023841A1 WO 2011023841 A1 WO2011023841 A1 WO 2011023841A1 ES 2010070467 W ES2010070467 W ES 2010070467W WO 2011023841 A1 WO2011023841 A1 WO 2011023841A1
Authority
WO
WIPO (PCT)
Prior art keywords
instrument
ophthalmic
refraction
visual
ocular refraction
Prior art date
Application number
PCT/ES2010/070467
Other languages
English (en)
French (fr)
Inventor
Enrique J. FERNÁNDEZ MARTÍNEZ
Pedro Prieto Corrales
Pablo Artal Soriano
Original Assignee
Universidad De Murcia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Murcia filed Critical Universidad De Murcia
Priority to EP10811317.6A priority Critical patent/EP2471440B1/en
Priority to ES10811317T priority patent/ES2774195T3/es
Priority to US13/392,723 priority patent/US8911084B2/en
Publication of WO2011023841A1 publication Critical patent/WO2011023841A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1015Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for wavefront analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/107Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea

Definitions

  • the present invention relates to an instrument for measuring advanced ocular refraction, preferably binocular, and for visual simulation.
  • the device therefore belongs to the family of instruments called phoroptera.
  • phoroptera a finite set of lenses can be exchanged simultaneously to the patient's vision of stimuli or visual tests. It is thus possible to discern which optical corrections (limited to combinations of blurring and astigmatism) provide the best visual perception for each subject.
  • the present invention also relates to a method of measuring ocular refraction of the eyes, a method of simulating ophthalmic elements, methods for obtaining optical parameters and methods of simulating vision.
  • the invention also refers to a method that incorporates what can be referred to as wavefront engineering.
  • the present invention also allows the simulation of the vision through any optical element. Therefore, it is related to the so-called visual simulators.
  • the instrument has the possibility of generating scenes that are perceived by the patient in a three-dimensional manner during the measurement of the refraction or the simulation of ophthalmic elements, all in an electro-optical manner.
  • the invention is related to the subjective measure of the visual quality of the subjects and of the limits to their vision, all in a binocular way. It belongs then to the field of biomedical instruments suitable for the study, diagnosis and characterization of vision. For this, the instrument uses the concept of optical aberrations, as a means of characterizing the effects of the different optical elements that can be simulated.
  • the invention is related to an instrument that allows the study, characterization and integral diagnosis of the quality of vision from a subjective or perceptual point of view through visual stimuli.
  • the invention explicitly describes the practical realization of an ophthalmic instrument of the phoropter type, and its equivalent practical impiementations that produce the same effects and advantages, which implement said methods.
  • the measurement of the refraction, or visual ametropias is the necessary previous step for the correction of the same.
  • the quality of the vision is capital for the well-being of a person, since it is estimated that, in the human being, about 80% of the information of the environment is acquired by the sense of sight.
  • the Hartmann-Shack sensor can be mentioned for its wide acceptance and widespread use.
  • the first reference to its use in the human eye appears in the works of J. Liang, B. Grimm, S. Goelz, and J. F. BiIIe,
  • phase modulators which may be based on the use of liquid crystal, or deformable mirrors, in all its variants and modalities.
  • a pioneering work in this field was published by E. J. Fernández, I. Iglesias, and P. Artal, "Closed-loop adaptive optics in the human eye", Opt. Lett., 26, 746-748 (2001). This technique has been the most immediate antecedent of the so-called visual simulators. These are instruments that allow the objective measurement of the optical quality of!
  • ophthalmic elements such as lenses, contact lenses, intraocular lenses that are surgically implanted in the patient's eye, or refractive surgery of the cornea, where various profiles can be sculpted on the cornea of the subject for refractive correction.
  • the formation of images in the retina constitutes only the first stage of a very complex process that involves the transduction of light into physical-chemical signals that are sent to the brain, and a subsequent psychological interpretation of them that finally produces the sensation or visual perception.
  • the measurement of refraction has a strong subjective component, which forces the patient's contest, who must finally decide which correction produces the best visual perception.
  • the group of phoroptera that fit in front of the subject's eyes can be established as the first classification, in the manner of glasses.
  • These incorporate a series of purely mechanical controls that allow the rotation of astigmatic lenses for correct positioning, as well as the exchange of spherical lenses for the correction of pure blur, and are currently the type of phoroptera most used in clinical practice of all the world.
  • Other alternatives essentially variants on the same concept, allow the introduction of color filters, polarizing filters, etc. In all of them, visual tests or stimuli are projected in front of the subject, on a screen or similar, independently of the phoropter itself.
  • JP 8 182 649 A two-channel phoropter rotating by means of a mount adapted to that specific use.
  • the invention set forth in US 4 861 156 introduces a control unit for visual stimuli that are presented to the subject during the use of the phoropter. This fundamentally allows the visual tests to be controlled from the phoropter itself, preventing the examiner from changing position during the process, increasing his comfort.
  • the first electronically controlled phoropterans appear through special lenses, whose power depends on the electrical signal sent.
  • the concept here is different from that of the family of phoroptera presented above, where the test lenses are mechanically exchanged during the refraction process. This is done either replacing the lenses by rotation, or by translation.
  • electro-active phoroptera with practical implementations described in documents US 7 264 354 B2 and US 7 533 993 B2, the examiner can vary the correction applied to each patient during the process in a digital way, and therefore much more precise than with the previous methods.
  • the minimum step or the resolution with which refraction can be obtained now depends on the minimum signal! electrical that can be sent to control the power of the lens. In these instruments the measure of! Astigmatism is not achieved through variable power lenses, so that for this ametropia, the previous paradigm of exchange and mechanical rotation of the lenses must continue to be used.
  • US 4 943 162 describes an invention that facilitates the use of lenses with astigmatism in the context of a phoropter.
  • a method and instrument is proposed that implements it for the rotation of two series of astigmatic lenses in a systematic way to search for the refraction of the subject.
  • the object of the invention is, therefore, to provide an ophthalmic instrument for measuring ocular refraction and visual simulation that overcomes the disadvantages and limitations of the prior art.
  • the invention provides an ophthalmic instrument for measuring ocular refraction and visual simulation, which allows the simultaneous presentation of visual stimuli and their perception through different phase profiles or aberrations, which includes:
  • phase modulator optically conjugated with the two input pupils and the two output pupils of the instrument, in which the phase modulator is capable of producing any phase profile and the refractive measurement operations , and simulation of ophthalmic elements or visual conditions are performed binocularly.
  • the present invention describes a method for the measurement of ocular refraction in a binocular form, based on the use of an instrument that incorporates a phase modulating device that produces the best optical correction for the compensation of the ametropia, and of a presentation subsystem of visual stimuli.
  • the instrument that allows the method object of the invention operates as an electro-optical phoropter in which the search for the best correction is done in a computerized way.
  • the invention describes a method for the simulation of vision through any optical element that is used in conjunction with the eyes. This last feature allows the instrument to provide the best Custom correction for each subject that looks through it. Likewise, it favors the design of new ophthalmic elements adapted to the optics of each particular eye, and for each vision situation: nocturnal, close, etc.
  • a method for the evaluation of the quality of vision, the search for the best refraction, by means of an instrument of the phoropter type that operates without moving parts and that is capable of producing any phase profile, solving the technical limitations presented by the phoropters of the generations prior to this invention, all controlled digitally.
  • the instrument therefore, allows the simulation of any ophthalmic element, without any limitation for the phase that it introduces.
  • visual tests or stimuli can be presented stereoscopically, producing the three-dimensional perception of the scene used for the search and measurement of ocular refraction.
  • the instrument that implements the present invention favors a compact practical embodiment with a relatively small number of elements.
  • the use of aligned lenses in different optical axes allows the formation of two telescopic systems that optically combine three separate planes by using only three lenses, or equivalently, spherical mirrors.
  • the instrument allows the modification of the aberrations through which the subject perceives a series of visual stimuli by means of a single aberration generator or phase modulator. This is digitally controlled from a computer. Therefore, the different corrections for the compensation of myopia, farsightedness, astigmatism and presbyopia or tired eyesight are generated without the need to incorporate new elements into the system, and without the competition of moving parts.
  • the phase modulator allows to obtain corrections to the different ametropias not only based on the modification of the blur or astigmatism, but any phase profile of higher order aberrations can be incorporated, and the vision through it simulated.
  • the instrument can incorporate as a modulating element of the phase a device based on the use of the liquid crystal, either ferroelectric or Nematic, with its different versions of implementation such as liquid crystal on Silicon.
  • the system can incorporate two phase modulators instead of one with the same effect, although more complexity and cost.
  • the sight lines of each of the eyes are adjusted without the need for moving parts in the system. This is done by means of the phase modulator, which prints to the light beams directed to each of the pupils the appropriate inclination for the correct viewing of the stimulus.
  • the phase modulator which prints to the light beams directed to each of the pupils the appropriate inclination for the correct viewing of the stimulus.
  • an auxiliary positioning subsystem can be used, which is essentially formed by a camera that forms images of the two pupils of the subject simultaneously.
  • the instrument that implements the present invention incorporates a screen controlled through a computer by which visual stimuli are shown.
  • An obvious advantage of the instrument is the possibility of showing the stimuli in a binocular manner.
  • These can be classic stimuli in the optometric practice, such as networks of different frequency, normalized letters or characters, or real scenes such as landscapes, faces, etc.
  • visual stimuli can be presented stereoscopically.
  • the subject perceives the scene shown by the screen or screens in a three-dimensional way, which provides absolute realism to the visual test, making it impossible for the eye to perceive the difference between the three-dimensional real scene or the one generated in the phoropter.
  • various equivalent practical implementations are developed to generate stereoscopic images in the instrument.
  • one of the telescopic systems is suppressed, leaving only as the conjugated planes in the phoropter that of the entrance pupils and the plane of the exit pupils.
  • the instrument object of the present invention can operate in a monocular manner, just as classical phoropters do without obstructing one of the eyes. This does not require the use of additional elements in the system or moving parts, but the phase modulating device can generate this effect.
  • the operation of the occlusion is obtained by means of a matrix of micro-mirrors located in front of the stimulus presentation subsystem.
  • the invention also describes a method for visual simulation of any optical elements.
  • the instrument also allows the simulation of vision after hypothetical surgery that affects or alters the refractive state of the eye, as occurs in cataract surgery, intraocular lens implants, or refractive surgery in general. Therefore, it has an important application as a test station and visual tests prior to eye surgery.
  • Figure 1 shows in schematic the fundamental parts of the ophthalmic instrument of the invention for the implementation of the method of measurement of binocular refraction and the simulation of elements ophthalmic according to the present invention, which includes a device for the generation of phase profiles and a monitor for the presentation of visual stimuli.
  • the scheme also incorporates an additional route! for the monitoring of the pupils of the subject.
  • Figure 2 shows in schematic the main components for the implementation of the method of measurement of binocular refraction and simulation of ophthalmic elements according to the present invention, in its simplified mode of operation with a phase generating device that allows its operation in transmission
  • Figure 3 shows in schematic the main components for the implementation of the method of measurement of the binocular refraction measurement and simulation of ophthalmic elements according to the present invention, in its simplified operation mode with a phase generating device that operates in refining. , and has a beam splitter placed in front of it to guide the light coming from the stimulus presentation path.
  • Figure 4 shows, by way of practical examples to illustrate the method set forth in the present invention, various phase profiles programmed for the patient to achieve the fusion of images through the phoropter described in the invention, creating a binocular perception of the stimuli visuals during its operation.
  • Figure 5 shows, by way of example to illustrate the method set forth in the present invention, two combinations of phase profiles created by overlapping blurring and lateral displacement, which generate the net occlusion effect of one of the patient's eyes during The vision of stimuli.
  • Figure 6 shows in schematic the main components of the route of presentation of stimuli for the implementation of the method of measurement of the binocular refraction and simulation of ophthalmic elements according to the present invention, in its operation mode with a reflector device formed by micro-mirrors that can be operated in a controlled and independent way, to allow the generation, occlusion, control of the size and position of the effective exit pupils of the phoropter system during its operation.
  • Figure 7a shows in schematic the main components of the route of presentation of three-dimensional stimuli for the implementation of the method of measurement of the binocular refraction and simulation of ophthalmic elements according to the present invention, in its mode of operation with a single screen and double image.
  • Figure 7b shows in schematic the main components of the route of presentation of three-dimensional stimuli for the implementation of the method of measurement of binocular refraction and simulation of ophthalmic elements according to the present invention, in its operation mode with two screens running simultaneously.
  • Figure 8 shows, by way of practical examples to illustrate the method set forth in the present invention, various phase profiles programmed for the correction of the patient's ametropha, the simulation of ophthalmic elements and different visual conditions, through the phoropter described in The invention
  • Beam splitter for controlling the position of the pupils.
  • Coiimadora lens for the control of the position of the pupils.
  • the invention presented consists of a method that allows obtaining the refraction of the subject in binocular form, and the electro-optical instrument that imposes it in the form of a phoropter.
  • the method also allows the simulation of the most appropriate correction for the previously detected ametropia, as well as that of any ophthalmic element or visual condition in general.
  • the fundamental parts for the practical implementation of the instrument or phoropter that allows the method object of this invention, are shown schematically in Figure 1.
  • the system of Figure 1 incorporates a visual stimulus presentation subsystem (1).
  • This subsystem (1) consists first of a screen or micro-screen (2) where the scenes or images (25) to be presented to the subject are shown (an example of image (25) can be seen in Figure 6),
  • the screen (2) is controlled by a computer, from where the images (25) are generated and programmed.
  • the stimulus presentation subsystem (1) also incorporates an objective (5) that collimates the light coming from the screen (2), forming an image of it in the infinite.
  • the objective (5) can be a dioptric system formed by several surfaces and lenses, or in its most simplified version by a single lens.
  • the use of a more sophisticated objective that incorporates various surfaces allows the correction of aberrations more efficiently, at the cost of increasing the complexity of the element (5).
  • the pupils (6) effective entry of the system which limit the amount of light coming from a point located on the screen (2) and on the optical axis of the collimating lens or objective (5), are placed immediately after said element (5) in the sense of the emerging light of the stimulus screen (2).
  • the direction of light is shown in Figure 1 by arrows.
  • the input pupils (6) of the instrument distribute the light that the optical system directs to both eyes of the subject being measured by the method and phoropter described in the present invention.
  • a mask can be used in which two symmetrical holes are made with respect to the optical axis of the objective (5) and of the same size.
  • the path of light has been indicated with arrows, by means of a main beam, which reaches the left eye (4), and without arrows the one corresponding to the right eye (3).
  • the entrance pupils of the subject's eyes are placed on the exit pupils (14, 15) of the instrument. The latter are the images of the two input pupils (6) through all the optics that follow them in the apparatus.
  • exit pupils 14, 15
  • the light of the stimulus presentation subsystem (1) is redirected to the rest of the instrument by means of a positive lens (7).
  • the distance between the aforementioned lens (7) and the input pupils (6) of the phoropter ⁇ is exactly the focal length of this, in the practical implementation of the instrument ia lens (7) can be replaced with the same effect by a spherical mirror , or parabolic, of simi ⁇ ar focal length, which can be aligned on or off its axis of revolution.
  • a flat mirror (8) the corresponding beams are sent to each of the pupils (14,15) to the next lens (10).
  • the purpose of this mirror (8) is to make the instrument more compact, although its implementation is not essential for e! operation thereof.
  • the first two lenses of the phoropter (7, 10) are arranged afocally, that is, forming a telescope. To do this, the focal image of
  • the first lens (7) is placed exactly on the focal object of the second lens (10). With this it is possible to optically combine the focal plane object of the first lens (7) on the image focal plane of the second lens (10). It is precisely in this focal plane image of the second lens (10), where the phase modulator device (9) is placed. AND! phase modulator or generator
  • (9) or aberration generator is a device that preferably uses the liquid crystal for the manipulation of the wavefront phase.
  • the arrangement of the first two lenses (7,10) allows the entrance pupils
  • the system is conjugated, or projected, on the surface of the phase modulator (9); precisely, on the surface corresponding to each of the images of the input pupils (6) in the phase modulator (9) on which they are generated, and in general the phases that affect are controlled in a controlled manner from a computer to the stimulus images from Panta ⁇ ia (2), and finally perceives the subject looking through the phoropter.
  • the phase modulator (9) based on the use of the liquid crystal can be replaced by a deformable mirror, whose operation is based on the mechanical modification of the mirrored surface, in a controlled manner, for the manipulated from the incident radiation phase.
  • the system can impregnate with the same result two devices or phase modulators (9), simultaneously, dedicated to each of the images of the input pupils (6) of the instrument, located in the same focal plane image of the second lens (10).
  • This can be replaced in the apparatus by a spherical or parabolic mirror with similar focal length, with the same effect on the system.
  • the beams meet again in their path the second lens (10) and the last and third lens (11) of the phoropter
  • This pair of lenses (10,11) are in an afocal arrangement, forming a telescopic system, in a manner similar to that described for the pair formed by the first (7) and second (10) lens of the system.
  • the focal image of the second lens (10) coincides with the focal object of the third lens (11). With this it is possible to form an image, or optically conjugate, the projection of the input pupils (6) on the phase modulator (9) in the plane of the exit pupils (14, 15) of the instrument.
  • the net effect on the entire phoropter is to optically conjugate the pupils (6) located in the stimulus sub-system (1), on the saüda pupils (14,15); or equivalently, on the pupils of the subject who looks through the instrument.
  • the third lens (11) can be replaced with the same effect by a spherical or parabolic mirror of equal focal length.
  • the system can also operate, with the same effect, with two lenses facing the phase modulator (9), a for the light coming from the stimulus presentation subsystem (1), and another for the light reflected by the modulator of phase (9).
  • This arrangement increases the number of optical elements necessary, and increases the size and weight of the entire system.
  • the beams that cross the third lens (11) corresponding to each of the entrance pupils (6) of the system emerge at a fixed distance, which depends on the magnification ratio defined by the ratio between the focal points of the different lenses that make up the system, once established the separation between the entrance pupils (6) of the phoropter.
  • prisms (12, 13) can be used that operate in total reflection, as shown in Figure 1.
  • the separation between these prisms (12, 13) must be variable so that the instrument operator adjusts the final separation of the you make the interpupillary distance of each subject that looks through the phoropter.
  • the prisms (12, 13) can be replaced with identical effect by pairs of flat mirrors, or combinations of prisms and mirrors.
  • an auxiliary positioning subsystem (20) can be used for the correct centering of the pupils of the subject on the exit pupils (14, 15) of the phoropter.
  • This auxiliary positioning subsystem (20) is essentially composed of a lens (19) and a lens coupled to a camera (21).
  • the camera (21) simultaneously records the two pupils of the subject's eyes. Their positioning can be done automatically and systematically, until they are taken to the reference positions defined by the location of the exit pupils (14, 15) of the instrument.
  • a beam splitter (18) located in the vicinity or on the focus object of the third lens (11) of the phoropter is used.
  • the auxiliary positioning subsystem (20) can be replaced by a wavefront sensor, which allows the objective measurement of the optical quality of the subject's eyes in a binocular manner.
  • the phase modulator (9) of liquid crystal can also eventually operate as a phase modulator in transmission (9 bis).
  • the experimental system can be greatly simplified, operating with the same effect. without the need for the competition of the first two lenses (5,10) for the conjugation of the entrance pupils of the system (6) on the surface of the phase modulator in transmission (9 bis).
  • the input pupils (6) are placed immediately before the transmission phase modulator (9 bis) in the direction of the light emitted by the stimulus display (2).
  • the rest of the subsystem (1) for the presentation of stimuli remains as described previously in Figure 1.
  • a great advantage of this instrument modality, with the phase modulator operating in transmission (9 bis) is the greater simplicity of the experimental assembly and the possibility of a more efficient grouping of optical elements that favors a smaller size and weight of the phoropter.
  • a beam splitter (22) is placed between the lens (10) and the phase modulator (9) to redirect part of the light from the display (2) of stimulus presentation to the surface of the phase modulator ( 9).
  • the entrance pupils (6) are placed in the system.
  • the beam splitter (22) can be replaced by two smaller ones that cover in any case, each of the beams directed to each of the subject's pupils.
  • the top-left mask has a pupil with a constant phase, or that has no effect on the vision for the right eye, along with a slight inclination of the beam towards the temporary side! in the eye of the left.
  • This profile could possibly correspond to a person with an exophoria in his left eye.
  • phase profiles are shown in the pupils that cause a similar and temporary inclination of the beams in both eyes. This profile may correspond to a person with a binocular exophoria.
  • a similar displacement is shown in both eyes temporarily and ascendingly as an example of a combination of several directions.
  • the method allows to move the beams in any direction of space and without restriction in the amplitude of the angle, independently for each eye.
  • the panel from the bottom to the right shows an ascending angle for the right eye and a lateral angle in the temporal direction for the left eye.
  • FIG. 5 shows, by way of example, phase profiles that result from the combination of an angular displacement of the beam towards the temporary elevation and a blur of 5 diopters.
  • the top panel shows a profile for occlusion of the right eye, and the bottom panel corresponds to the left eye.
  • the net effect of this profile is to provide a retinal image of the scene shown by the screen (2) very out of focus and very eccentric with respect to the fovea or central vision zone. This guarantees the lack of perception of that image.
  • the occlusion process can be carried out with a frequency only limited by the refresh rate of the phase modulating device (9).
  • the phoropter can be implemented without the entrance pupils (6) described above. Instead, a matrix of micro-mirrors (24) can be incorporated, whose front view is represented as (23), formed by a large number of mirrored facets, typically above 100, whose movement can be independently controlled digitally by Middle of a computer. The use of this device is described graphically in Figure 6.
  • the emerging light of the objective (5) that is in the stimulus sub-system enters the rest of the phoropter by means of the micro-mirror system (23), located before the first lens (7) of the instrument.
  • the micro-mirror matrix (23) can produce an effect similar to!
  • the inclination of the micro-mirrors inscribed in each of the positions chosen as entrance pupils, as shown in Figure 6, left panel (reference (23)), must be similar, and allow the incident light Enter the system effectively.
  • the rest of the micro-mirrors must have inclinations such as to prevent the entry of the incident light into elios.
  • This achieves a net effect of the entrance pupil with certain advantages over the fixed implementation of a mask with two holes.
  • the main one is the possibility of changing e! size and position of the entrance pupils during the operation of the instrument. This allows the subject's pupils to be monitored, for example, which ensures the entry of the light from the stimulus whatever its position.
  • it also provides an alternative method for the occlusion of one of the eyes, by means of the action on the angle of the micro-mirrors.
  • the operating speed of the device is usually in the range of küo-hertz.
  • the phoropter also includes the possibility of displaying visual stimuli in three dimensions.
  • various alternative embodiments can be used with the instrument detailed below.
  • AND! effect can be simulated in the phoropter object of the present invention by means of the alternative occlusion of the eyes, synchronized with the appearance of disparate images (25) in the stimulus presentation screen (2).
  • occlusions When occlusions are made at frequencies above 30 Hz, the visual system is not able to perceive them. The image appears as a continuum for the vision. This well known fact can be used to generate the sensation of three-dimensionality. Alternative occlusions can be made, always accompanied by the presentation of disparate stimuli (25) in the sense of binocularity, by means of the micro-mirror matrix (24), the phase modulator (9), or in combination of both elements.
  • the sensation of depth or stereopsis can be achieved in the phoropter object of the present invention in other alternative ways to the one previously described, graphically described in Figures 7a and 7b.
  • One possibility is the use of two objectives (28, 29) in front of the stimulus presentation screen (2). Each of them is dedicated to the light that is sent to each of the two pupils of the subject. By means of an opaque screen (26) it is avoided that the light of the screen (2) that generates the stimulus for the right eye (3) enters through the objective dedicated to the left eye, and vice versa.
  • the screen (2) shows the stimulus with disparity in two distinct fields (27), as presented in Figure 7a.
  • Another practical implementation of the invention makes use of two screens (30,31) for the presentation of the disparity stimuli; This alternative is shown graphically in Figure 7b.
  • the advantage of the latter lies in the greater resolution with which the stimuli can be presented, although it incorporates a greater cost and complexity due to the double number of screens (30,31).
  • the use of the instrument to obtain the refraction and simulation of ophthalmic elements, and in general any optical condition or situation can be carried out by means of the following procedure.
  • the subject is placed so that the pupils of his eyes coincide with the exit pupils (14, 15) of the phoropter.
  • the operator who may eventually be the subject himself who looks through the phoropter, the distance between the prisms (12,13) operating in reflection can be varied manually or mechanically.
  • an auxiliary subsystem (20) for positioning the pupils is optionally used.
  • the inclination of the beam of each of the eyes is performed, as detailed in The description of Figure 4.
  • the protocol is executed until the binocular perception is achieved by varying the inclination progressively of each of the beams directed to each eye.
  • the fact that the control of the vergence or inclination of the beams is controlled by means of the phase modulator (9) in a digital way allows the subject to act by itself through a possible computer program or application adapted to the situation. Otherwise an external operator can direct and control the process.
  • the ocular refraction can be obtained for any distance by simply programming the corresponding blur on the projected pupils on the phase modulator (9).
  • the long distance refraction does not require any starting phase, while for a distance of 33 cm, the phase must add 3 diopters on each pupil.
  • a scene (25) is shown on the screen (2). This can be selected from a battery of images depending on the requirements of the subject.
  • the images may be the typical letters used in the usual clinical practice for the measurement of visual acuity.
  • Landscapes can also be used, especially for obtaining refraction over long distances, both natural and urban. The night scenes can be used with great benefit for those subjects who wish to obtain refraction in low luminance conditions.
  • the scenes can be adapted to real situations that the subjects are in everyday life.
  • the visual stimuli can also be presented monocuiarly by means of the occlusion of one of the eyes according to the methods set forth above in relation to Figures 5 and 6 of this document.
  • the stimuli can also be shown with stereopsis or volume sensation, following the implementation described in reference to Figures 6 and 7.
  • the possibility of refracting a subject through any scene that suits their needs and in a three-dimensional way provides a unique advantage. to the phoropter object of this invention.
  • Figure 8 shows, by way of practical example, in the column on the left several situations corresponding to, from top to bottom: pure myopic blur of 1 diopter (A); regular astigmatism of 1 diopter at 45 and 90 degrees (B) and a combination of blur and astigmatism for the right eye and pure blur for the left eye of 0.5 diopters each (C).
  • A pure myopic blur of 1 diopter
  • B regular astigmatism of 1 diopter at 45 and 90 degrees
  • C a combination of blur and astigmatism for the right eye and pure blur for the left eye of 0.5 diopters each
  • a feature that distinguishes the instrument is the possibility of programming phase profiles corresponding to unusual visual corrections, other than the standard ophthalmic lenses that are mounted on glasses.
  • a practical example is progressive glasses, whose effect on vision can be simulated as a previous step to acquiring them.
  • profiles corresponding to infraocular lenses of any type, such as progressive, diffractive, etc. can also be generated by the phase modulator (9), prior to subjecting the patient to surgical intervention. You can test customized solutions to each case, and study the benefit in a personalized way for each subject.
  • FIG. 8 An example of lenses incorporating spherical aberration of different signs is shown in panel D of the right column of Figure 8. It can also be used as a test station for possible visual problems or tolerance of the subject to offsets in their optical corrections, including those that arise in the context of refractive surgery.
  • Ophthalmic corrections other than blurring and astigmatism, of the highest order can be obtained simply in the instrument, simulating its effect on the subject's vision through the optical phase they produce.
  • the phoropter allows, thanks to the electro-optical technology, to be operated by the subject itself that looks through it.
  • the instrument incorporates a specific software that allows searching the best ophthalmic correction simultaneously to the stimulus vision.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

Instrumento oftálmico de medida de Ia refracción ocular y simulación visual, y método de medida, para la obtención de la refracción ocular de forma binocular, que incorpora un modulador de fase (9) controlado digitalmente para la generación de la mejor corrección oftálmica en cada sujeto. El instrumento permite medir la refracción, no solo la asociada al desenfoque y el astigmatismo, sino a cualquier aberración óptica de cualquier orden. Entre las capacidades del foróptero se incluye la de simular Ia visión a través de cualquier perfil de fase, incluyendo aquellos del tipo difractivo o discontinuos. El instrumento también incorpora un subsistema de presentación de estímulos (1), que produce visión estereoscópica de los mismos, permitiendo al sujeto disfrutar de una percepción tridimensional durante el proceso, y dos pupilas de salida (14, 15). El instrumento, gracias a sus características electro-ópticas, permite la simulación de la visión tal y como queda modificada tras someter al ojo a diversas técnicas quirúrgicas, como cirugía refractiva o implantes de lentes intraoculares.

Description

INSTRUMENTO OFTÁLMICO DE MEDIDA DE LA REFRACCIÓN OCULAR Y
SIMULACIÓN VISUAL, Y MÉTODOS ASOCIADOS DE MEDIDA DE LA REFRACCIÓN OCULAR, DE SIMULACIÓN DE ELEMENTOS OFTÁLMICOS, DE SIMULACIÓN VISUAL Y DE OBTENCIÓN DE PARÁMETROS ÓPTICOS.
CAMPO DE LA INVENCIÓN
La presente invención está referida a un instrumento para Ia medida de Ia refracción ocular avanzada, de forma preferentemente binocular, y para simulación visual. El aparato pertenece por tanto a ía familia de instrumentos denominados forópteros. En estos, un conjunto finito de lentes pueden ser intercambiadas de forma simultánea a Sa visión por parte del paciente de estímulos o tests visuales. Se consigue de este modo discernir qué correcciones ópticas (limitadas a combinaciones de desenfoque y astigmatismo) proporcionan Ia mejor percepción visual para cada sujeto.
La presente invención también se refiere a un método de medida de Ia refracción ocular de los ojos, a un método de simulación de elementos oftálmicos, a métodos de obtención de parámetros ópticos y a métodos de simulación de Ia visión.
En el objeto de Ia presente invención no se emplean partes móviles asociadas al cambio de lentes, sino que pertenece a aquellos sistemas en los que eí efecto de las distintas correcciones se produce por medió de un modulador espacia! de fase o de cualquier otro elemento electro-óptico. Es por ello un foróptero electro-óptico con una tecnología basada en el control digital de Ia fase. Por tanto, Ia invención también se refiere a un método que incorpora Io que puede denominarse como ingeniería del frente de onda.
La presente invención permite también Ia simulación de Ia visión a través de cualquier elemento óptico. Por elio, está relacionada con los llamados simuladores visuales. En particular, el instrumento tiene Ia posibilidad de generar escenas que son percibidas por el paciente de manera tridimensional durante Ia medida de Ia refracción o Ia simulación de elementos oftálmicos, todo ello de manera electro-óptica. La invención está relacionada con ía medida subjetiva de Ia calidad visual de ¡os sujetos y de los límites a su visión, todo eí!o de forma binocular. Pertenece entonces ai campo de de los instrumentos biomédicos aptos para el estudio, diagnóstico y caracterización de Ia visión. Para ello el instrumento emplea el concepto de aberraciones ópticas, como medio de caracterizar los efectos de los distintos elementos ópticos que pueden simularse.
La invención está referida a un instrumento que permite de forma controlada digitaímente el estudio, caracterización y diagnóstico integral de Ia calidad de Ia visión desde un punto de vista subjetivo o perceptivo a través de estímulos visuales.
La invención describe explícitamente Ia realización práctica de un instrumento oftálmico del tipo foróptero, y sus impiementaciones prácticas equivalentes que producen los mismos efectos y ventajas, que implementan dichos métodos.
ANTECEDENTES DE LA INVENCIÓN
La medida de Ia refracción, o ametropías visuales (desenfoque y/o astigmatismo en el ojo), es el paso previo necesario para Ia corrección de las mismas. La calidad de Ia visión es capital para el bienestar de una persona, ya que se estima que, en el ser humano, alrededor de un 80 % de Ia información del entorno se adquiere por el sentido de Ia vista.
Un gran tanto por ciento de Ia población presenta alguna ametropía, variando notablemente en algunos casos Ia incidencia dependiendo de Ia zona geográfica. Así es conocido que Ia miopía alcanza hasta a un 85 % de incidencia en Ia población asiática de ciertas regiones de ese continente. Se da además Ia circunstancia de que el ojo experimenta una serie de cambios asociados a Ia evolución de Ia edad, que hacen que este pierda su capacidad de acomodar correctamente objetos situados a distintas distancias. Es Io que se conoce como presbicia o vista cansada, y afecta a 100 % de ios sujetos por encima de los 50 años. Por todo Io expuesto, se puede concluir que Ia medida de los defectos visuales causados por las ametropías refractivas constituye un campo de interés mundial, con un mercado potencial que abarca al 100 % de Ia población.
Un asunto necesariamente ligado a Ia medida de Ia refracción ocular son las correcciones visuales disponibles. Las características de estas determinan Ia calidad y precisión requeridas para Ia medida de ¡a calidad visual.
Un breve repaso histórico de las correcciones visuales pasa por las primeras lentes oftálmicas, que corregían el desenfoque, y que comenzaron a usarse a partir ei S. XIII de manera más extendida, sobre todo para compensar Ia presbicia o falta de acomodación que aparece en el ojo humano alrededor de los 50 años y en adelante. Ei astigmatismo no fue adecuadamente medido y corregido con lentes cilindricas hasta el S. XIX, según todos los indicios de manera pionera por el reconocido científico Thomas Young. Desde entonces, los avances incorporados en las lentes oftálmicas han sido modestos. Hoy en día ía mayor parte de los sujetos que usan gafas o lentes de contacto, aparecidas en Ia mitad del S. XX, corrigen exclusiva mente su desenfoque y/o astigmatismo.
No es hasta bien avanzado ei S. XX cuando aparecen los primeros métodos de medida subjetiva de Ia calidad óptica del ojo humano, poniendo de manifiesto Ia existencia de otros defectos o aberraciones ópticas que comprometen Ia calidad de Ia visión, además del desenfoque y astigmatismo ya conocidos.
Entre los numerosos métodos y técnicas existentes puede mencionarse, por su gran aceptación y Io extendido que actualmente se encuentra su uso, el sensor de Hartmann-Shack. La primera referencia a su empleo en el ojo humano aparece en los trabajos de J. Liang, B. Grimm, S. Goelz, y J. F. BiIIe,
"Objective measurement of WA's of the human eye with the use of a
Hartmann-Shack wave-front sensor," J. Opi Soc. Am. A 11 , 1949-1957 (1994); J. Liang y D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997); así como P. M.
Prieto, F. Vargas-Martín, S. Goelz, P. Arta!, "Analysis of the performance of the Hartmann-Shack sensor in the human eye", J. Opt Soc. Am. A, 17, 1388-1398 (2000). Hoy en día existen versiones comerciales que impiementan este método, con gran éxito para ciertas aplicaciones.
La posibilidad de medir objetivamente las aberraciones favoreció ia aparición de Ia óptica adaptativa aplicada en el ojo humano en los principios del S. XXi. Mediante esta técnica, las aberraciones ópticas pueden ser corregidas de manera precisa y en tiempo real, tras su medida. Esto se consigue mediante el uso de moduladores de fase, que pueden estar basados en el empleo de cristal líquido, o espejos deformabtes, en todas sus variantes y modalidades. Un trabajo pionero en este campo fue publicado por E. J. Fernández, I. Iglesias, y P. Artal, "Closed-loop adaptive optics in the human eye", Opt. Lett., 26, 746- 748 (2001). Esta técnica ha sido el antecedente más inmediato de los llamados simuiadores visuales. Estos son instrumentos que permiten Ia medida objetiva de Ia calidad óptica de! ojo, y su manipulación por medio de dispositivos generadores de aberraciones. Hasta Ia fecha su uso ha estado restringido al ámbito de Ia investigación científica, y preferentemente ai caso monocular. Un trabajo seminal en este campo fue descrito en E. J. Fernández, S. Manzanera, P. Piers, P. Artal, "Adaptive optics visual simulator", J. Refrac. Surgery, 18, 634- 638 (2002).
La medida de las aberraciones ópticas de alto orden, por encima del desenfoque y astigmatismo, ha abierto Ia puerta a su posible corrección por medio de elementos oftálmicos, como lentes, lentes de contacto, lentes intraoculares que se implantan quirúrgicamente en el ojo del paciente, o cirugía refractiva de la córnea, donde se pueden esculpir diversos perfiles sobre ia cornea del sujeto para su corrección refractiva.
Sin embargo, hoy es conocido que Ia medida objetiva de Ia calidad óptica del ojo no proporciona Ia refracción de manera absoluta. Si bien Ia calidad óptica está fuertemente ligada a Ia calidad de Ia visión, no existe un método que pueda estimar Ia agudeza o sensibilidad al contraste de un sujeto a partir de los valores de los distintos parámetros ópticos que caracterizan a los ojos. Recientes trabajos han puesto de manifiesto esta limitación, como se muestra en e¡ artículo de P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, D, R. Williams, "Neural compensation for the eye's óptica! aberrations ", J. Vis., 4, 281-287 (2004). Ello es fácilmente entendibíe cuando se aborda el fenómeno de Ia visión de forma integral. Así, Ia formación de imágenes en Ia retina constituye tan solo Ia primera etapa de un proceso muy complejo que involucra Ia transducción de ía luz en señales físico-químicas que son enviadas al cerebro, y una posterior interpretación psicológica de las mismas que produce finalmente Ia sensación o percepción visual. De este modo, se acepta que Ia medida de Ia refracción tiene un fuerte componente subjetivo, que fuerza ai concurso del paciente, quien debe finalmente decidir qué corrección Ie produce Ia mejor percepción visual.
En este contexto encontramos que, a pesar de los enormes avances de los últimos años en Ia medida de Ia calidad óptica dei ojo, los forópteros tradicionales, aquellos basados esencialmente en realizar tests visuales sencillos a través de lentes con distinta graduación hasta que el sujeto percibe Ia mejor imagen, siguen siendo los más empleados en todo el mundo.
Se puede establecer como primera clasificación al grupo de forópteros que se acoplan delante de ios ojos del sujeto, a Ia manera de unas gafas. Estos incorporan una serie de controles puramente mecánicos que permiten el girado de las lentes astigmáticas para su correcto posicionado, así como el intercambio de lentes esféricas para Ia corrección de desenfoque puro, y son en Ia actualidad el tipo de forópteros más usados en la práctica clínica de todo el mundo. Otras alternativas, esencialmente variantes sobre el mismo concepto, permiten Ia introducción de filtros de color, filtros polarizantes, etc. En todos elios los tests o estímulos visuales se proyectan frente al sujeto, sobre una pantalla o similar, de forma independiente al foróptero en sí.
Dentro de esta familia de instrumentos para Ia medida de Ia refracción ocular encontramos numerosos documentos de patente, como el documento
US 2 003 009 063 A1 , donde se introducen mejoras para un correcto control de las variables que pueden ajustarse en el foróptero en condiciones de muy baja iluminación por parte del examinador.
En el documento US 7 156 517 B2 se muestran diversas mejoras que afectan sobre todo a Ia ergonomía de! examinador, permitiéndole una mayor comodidad en el control de las lentes que se van introduciendo en el foróptero para ia medida de Ia refracción ocular. Esto se consigue mediante nuevos sistemas de iluminación. En todo caso es esta una invención que no presenta mejoras directas para el paciente o sujeto que está siendo refraccionado.
En el documento US 5 812 241 A se propone un foróptero más compacto en el que las lentes esféricas y astigmáticas están eficientemente incorporadas en una suerte de ruletas intercambiables, dispuesta de una manera que reduce ei tamaño del instrumento. De nuevo, al igual que en el documento anterior, es esta una invención con un beneficio modesto para el sujeto que está siendo refraccionado. En cualquier caso, el instrumento propuesto sigue la línea de esta familia de forópteros.
En Ia misma idea de mejorar el sistema de intercambio de lentes oftálmicas por medio de una rueda que las contiene, y en particular presentando un método que hace más eficiente su control, se describe en el documento JP 8 182 649 A un foróptero de dos canales giratorios por medio de una montura adaptada a ese uso específico.
La invención expuesta en el documento US 4 861 156 introduce una unidad de control para los estímulos visuales que se presentan al sujeto durante el empleo del foróptero. Esto permite fundamentalmente controlar ios tests visuales desde el propio foróptero, evitándole al examinador cambiar de posición durante el proceso, aumentado su comodidad.
El foróptero descrito en el documento US 5 223 864 introduce algunos testigos en ¡as propias lentes, que permiten conocer su situación, por ejemplo el ángulo que está siendo empleado en una lente astigmática, dentro del esquema de foróptero clásico descrito en todos los documentos anteriores de este tipo. Es esta, por tanto, una invención que favorece el manejo del instrumento por parte del examinador.
Más recientemente aparecen los primeros forópteros controlados electrónicamente por medio de lentes especiales, cuya potencia dependen de Ia señal eléctrica enviada. El concepto aquí es distinto al de Ia familia de forópteros presentada anteriormente, donde las lentes de prueba son intercambiadas mecánicamente durante el proceso de refracción. Esto se hace bien sustituyendo las lentes por rotación, bien por translación. Con ios forópteros electro-activos, con ϊmplementaciones prácticas descritas en los documentos US 7 264 354 B2 y US 7 533 993 B2, el examinador puede variar ía corrección aplicada a cada paciente durante el proceso de una manera digital, y por tanto mucho más precisa que con los métodos anteriores. Además, el paso mínimo o Ia resolución con que puede obtenerse la refracción depende ahora de Ia mínima seña! eléctrica que pueda ser enviada para ei control de Ia potencia de Ia lente. En estos instrumentos Ia medida de! astigmatismo no está conseguida a través de las lentes de potencia variable, por Io que para esta ametropía hay que seguir recurriendo ai anterior paradigma de intercambio y rotación mecánica de las lentes.
El documento US 4 943 162 describe una invención que facilita el uso de lentes con astigmatismo en ei contexto de un foróptero. En Ia invención se propone un método e instrumento que Io implementa para el rotado de dos series de lentes astigmáticas de modo sistemático para la búsqueda de Ia refracción del sujeto.
En el estado actual de Ia técnica queda de manifiesto Ia enorme brecha existente entre los modernos medios de corrección de las ametropías refractivas, y de las aberraciones ópticas en general, con Ia medida de Ia refracción o de Ia calidad de Ia visión subjetiva. Así, hoy en día existe Ia tecnología adecuada para la fabricación de lentes oftálmicas y lentes de contacto con perfiles de fase más alia del desenfoque y del astigmatismo. Las lentes intraoculares son ya fabricadas en masa con perfiles asféricos, incluso del tipo difractivo para su implante quirúrgico. Todavía en el mismo sentido, las modernas técnicas quirúrgicas en cirugía refractiva, por medio de láseres de úitima generación con sofisticados sistemas de guiado, permiten tallar Ia córnea de los pacientes con una gran precisión, abriendo Ia puerta Ia corrección de aberraciones ópticas de alto orden.
Sin embargo, tal y como se ha puesto de manifiesto previamente, Ia capacidad y el funcionamiento de los forópteros actuales distan mucho de presentar las características necesarias para evaluar Ia visión de los pacientes, por un lado de forma totalmente digital, y por otro incorporando Ia posibilidad de ver a través de perfiles de fase, o correcciones, más allá de¡ desenfoque y del astigmatismo, Io que puede limitar de manera muy notable el desarrollo de nuevos sistemas de corrección.
SUMARIO DE LA INVENCIÓN
El objeto de Ia invención es, por tanto, proporcionar un instrumento oftámico de medida de Ia refracción ocular y simulación visual que supere ios inconvenientes y limitaciones de la técnica anterior.
La invención proporciona un Instrumento oftálmico de medida de Ia refracción ocular y simulación visual, que permite Ia presentación simultánea de estímulos visuales y su percepción a través de distintos perfiles de fase o aberraciones, el cuaí comprende:
- un sistema de presentación de estímulos que a su vez comprende dos pupilas de entrada,
- dos pupilas de salida, y
- al menos un modulador de fase, este último conjugado ópticamente con las dos pupilas de entrada y las dos pupilas de salida del instrumento, en el que el modulador de fase es capaz de producir cualquier perfil de fase y las operaciones de medida de Ia refracción, y simulación de elementos oftálmicos o condiciones visuales se realizan de forma binocular.
La presente invención describe un método para Ia medida de Ia refracción ocular de forma binocular, basado en el uso de un instrumento que incorpora un dispositivo modulador de fase que produce Ia mejor corrección óptica para Ia compensación de Ia ametropía, y de un subsistema de presentación de estímulos visuales. El instrumento que permite ei método objeto de Ia invención opera como un foróptero electro-óptico en ei que la búsqueda de Ia mejor corrección se hace de forma computerizada.
Además, Ia invención describe un método para Ia simulación de Ia visión a través de cualquier elemento óptico que sea utilizado en conjunción con ios ojos. Esta úitima característica permite ai instrumento proporcionar Ia mejor corrección personalizada para cada sujeto que mire a través de él. Asimismo, favorece el diseño de nuevos elementos oftálmicos adaptados a ía óptica de cada ojo en particular, y para cada situación de visión: nocturna, cercana, etc.
En Ia presente invención se describe un método para Ia evaluación de ía calidad de Ia visión, Ia búsqueda de Ia mejor refracción, por medio de un instrumento del tipo foróptero que opera sin partes móviles y que es capaz de producir cualquier perfil de fase, solucionando las limitaciones técnicas que presentan los forópteros de las generaciones anteriores a esta invención, todo ello controlado de forma digital. El instrumento, por tanto, permite Ia simuiación de cualquier elemento oftálmico, sin limitación alguna para Ia fase que este introduzca. Además, los tests o estímulos visuales pueden presentarse de forma estereoscópica, produciendo Ia percepción tridimensional de Ia escena empleada para Ia búsqueda y medida de Ia refracción ocular.
El instrumento que implementa Ia presente invención favorece una realización práctica compacta con un número relativamente pequeño de elementos. Ei uso de lentes alineadas en distintos ejes ópticos permite Ia formación de dos sistemas telescópicos que conjugan ópticamente tres planos separados mediante el empleo de únicamente tres lentes, o equivalentemente, espejos esféricos.
El instrumento permite Ia modificación de las aberraciones a través de las cuales el sujeto percibe una serie de estímulos visuales mediante un único generador de aberraciones o modulador de fase. Este es controlado digitalmente desde un ordenador. Por ello, las diferentes correcciones para Ia compensación de ia miopía, hipermetropía, astigmatismo y presbicia o vista cansada se generan sin necesidad de incorporar nuevos elementos al sistema, y sin el concurso de partes móviles. El modulador de fase permite obtener correcciones a las distintas ametropías no sólo basadas en Ia modificación del desenfoque o del astigmatismo, sino que cualquier perfil de fase de aberraciones de más alto orden puede ser incorporado, y Ia visión a través de él simulada.
El instrumento puede incorporar como elemento modulador de Ia fase a un dispositivo basado en el uso del cristal líquido, ya sea ferroeléctrico o nemático, con sus distintas versiones de implementación como Ia de cristal líquido sobre Silicio.
Es también posible Ia realización del instrumento con un espejo deformable, en todas sus variables y diferentes tecnologías como los electrostáticos, los bimórficos, los magnéticos y los segmentados compuestos por varios micro-espejos de movimiento independiente.
El sistema puede incorporar con idéntico efecto, aunque más complejidad y coste, dos elementos moduladores de fase en lugar de uno.
Una vez que el sujeto ha sido colocado frente al instrumento, y Ia distancia de las pupilas de salida adaptadas a Ia distancia ¡nterpupilar, las líneas de mirada de cada uno de los ojos son ajustadas sin necesidad de partes móviles en el sistema. Ello se realiza por medio del modulador de fase, que imprime a los haces de luz dirigidos a cada una de ias pupilas Ia inclinación adecuada para el correcto visionado del estímulo. Para el correcto centrado de las pupilas del sujeto en el instrumento puede emplearse un subsistema auxiliar de posicionado, que está formado esencialmente por una cámara que forma imágenes de las dos pupilas del sujeto de forma simultanea.
EI instrumento que ímplementa Ia presente invención incorpora una pantalla controlada a través de un ordenador por Ia que se muestran los estímulos visuales. Una evidente ventaja del instrumento es la posibilidad de mostrar los estímulos de manera binocular. Estos pueden ser estímulos clásicos en Ia práctica optométrica, como redes de distinta frecuencia, letras o caracteres normalizados, o bien escenas reales como paisajes, caras, etc.
En una realización del instrumento los estímulos visuales pueden ser presentados de forma estereoscópica. En esta modalidad el sujeto percibe Ia escena mostrada por Ia o las pantallas de forma tridimensional, Io que proporciona un realismo absoluto al test visual, siendo para el ojo imposible percibir Ia diferencia entre Ia escena real tridimensional o Ia generada en el foróptero. En Ia descripción detallada de Ia invención se desarrollan diversas implementaciones prácticas equivalentes para generar imágenes estereoscópicas en el instrumento. En una realización alternativa del instrumento, se suprime uno de los sistemas telescópicos, quedando únicamente como planos conjugados en el foróptero el de las pupilas de entrada y el plano de ¡as pupilas de salida. Con esto se obtiene un instrumento notablemente más compacto sin pérdida de prestaciones, para Io que es necesario el uso de un modulador de fase que opere en transmisión, o bien de un divisor de haz colocado inmediatamente frente al modulador de fase en reflexión para el correcto guiado de Ia luz proveniente del subsistema de presentación de estímulos visuales hacia el sujeto.
Ei instrumento objeto de la presente invención puede operar de modo monocular, tal y como Io hacen los forópteros clásicos sin más que ocluir uno de los ojos. Para ello no es necesario el uso de elementos adicionales en el sistema ni partes móviles, sino que el dispositivo modulador de fase puede generar este efecto. En una realización alternativa del instrumento, Ia operación de Ia oclusión se obtiene por medio de una matriz de micro-espejos situada frente al subsistema de presentación de estímulos.
La invención también describe un método para la simulación visual de cualesquiera elementos ópticos. El instrumento permite asimismo Ia simulación de Ia visión tras una hipotética cirugía que afecte o altere el estado refractivo del ojo, tal y como ocurre en cirugía de cataratas, implantes de lentes intraoculares, o cirugía refractiva en general. Por ello presenta una aplicación importante como estación de testeo y pruebas visuales previas a Ia cirugía del ojo.
Otras características y ventajas de Ia presente invención se desprenderán de Ia descripción detallada que sigue de una realización ilustrativa de su objeto en relación con las figuras que se acompañan.
DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra en esquema las partes fundamentales del instrumento oftálmico de Ia invención para Ia puesta en práctica del método de medida de Ia refracción de forma binocular y Ia simuiación de elementos oftálmicos según Ia presente invención, que incluye un dispositivo para Ia generación de perfiles de fase y un monitor para Ia presentación de estímulos visuales. El esquema incorpora también una vía adiciona! para Ia monitorización de las pupilas deí sujeto.
La Figura 2 muestra en esquema los componentes principales para Ia puesta en práctica del método de medida de Ia refracción de forma binocular y simulación de elementos oftálmicos según Ia presente invención, en su modalidad de operación simplificada con un dispositivo generador de fase que permite su funcionamiento en transmisión.
La Figura 3 muestra en esquema los componentes principales para Ia puesta en práctica del método de medida de Ia refracción de forma binocular y simulación de elementos oftálmicos según Ia presente invención, en su modalidad de operación simplificada con un dispositivo generador de fase que funciona en refíexión, y posee un divisor de haz colocado frente al mismo para el guiado de Ia íuz proveniente de Ia vía de presentación de estímulos.
La Figura 4 muestra, a modo de ejemplos prácticos para ilustrar el método expuesto en ía presente invención, diversos perfiles de fase programados para que el paciente consiga Ia fusión de imágenes a través del foróptero descrito en ía invención, creando una percepción binocular de los estímulos visuales durante Ia operación del mismo.
La Figura 5 muestra, a modo de ejemplo para ilustrar el método expuesto en Ia presente invención, dos combinaciones de perfiles de fase creados mediante la superposición de desenfoque y desplazamiento lateral, que generan el efecto neto de oclusión de uno de los ojos del paciente durante Ia visión de estímuíos.
La Figura 6 muestra en esquema los componentes principales de Ia vía de presentación de estímulos para la puesta en práctica del método de medida de Ia refracción de forma binocular y simulación de elementos oftálmicos según Ia presente invención, en su modalidad de operación con un dispositivo reflector formado por micro-espejos que pueden accionarse de forma controlada e independiente, para permitir Ia generación, oclusión, control del tamaño y posición de las pupilas efectivas de salida del sistema foróptero durante Ia operación del mismo.
La Figura 7a muestra en esquema los componentes principales de Ia vía de presentación de estímulos tridimensionales para Ia puesta en práctica del método de medida de Ia refracción de forma binocular y simuiación de elementos oftálmicos según Ia presente invención, en su modalidad de operación con una sola pantalla y dobíe imagen.
La Figura 7b muestra en esquema los componentes principales de Ia vía de presentación de estímulos tridimensionales para la puesta en práctica del método de medida de Ia refracción de forma binocular y simulación de elementos oftálmicos según Ia presente invención, en su modalidad de operación con dos pantallas funcionando simultáneamente.
La Figura 8 muestra, a modo de ejemplos prácticos para ilustrar eí método expuesto en Ia presente invención, diversos perfiles de fase programados para Ia corrección de las ametropfas del paciente, Ia simulación de elementos oftálmicos y distintas condiciones visuales, a través del foróptero descrito en Ia invención.
Las siguientes referencias numéricas se vinculan a distintos elementos físicos que integran Ia invención, según se verá a lo largo de! presente documento:
1. Sistema de presentación de estímulos visuales.
2. Pantalla de presentación de estímulos.
3. Haz de luz dirigido al ojo derecho, junto con 4.
4. Haz de luz dirigido al ojo izquierdo, junto con 3.
5. Objetivo colimador de Ia pantalla de los estímulos visuales.
6. Pupilas de entrada.
7. Lente.
8. Espejo plano.
9. Modulador de fase en reflexión. 9 bis. Modulador de fase en transmisión.
10. Lente.
11. Lente.
12. Prisma de reflexión interna para el ojo derecho, junto con 13.
13. Prisma de reflexión interna para el ojo izquierdo, junto con 12.
14. Pupila de salida para el ojo izquierdo, junto con 15.
15. Pupila de salida para ei ojo derecho, junto con 14.
16. Eje óptico de Ia lente 11.
17. Eje óptico de Ia lente 10.
18. Divisor de haz para el control de Ia posición de las pupilas.
19. Lente coiimadora para el control de Ia posición de las pupilas.
20. Sistema de control de Ia posición de las pupilas.
21. Cámara para control de Ia posición de las pupilas.
22. Divisor de haz.
23. Vista frontal del sistema de micro-espejos.
24. Sistema de micro-espejos.
25. Imagen simple en Ia pantalla.
26. Panel separador.
27. Fuente de luz.
28. Objetivo para los estímulos dirigidos ai ojo derecho, junto con 29.
29. Objetivo para los estímulos dirigidos al ojo izquierdo, junto con 28.
30. imagen simple en Ia pantalla para el ojo derecho, junto con 31.
31. Imagen simple en Ia pantalla para el ojo izquierdo, junto con 30. DESCRIPCIÓN DETALLADA DE UNA FORMA DE REALIZACIÓN PREFERENTE DE LA INVENCIÓN
La invención presentada consiste en un método que permite Ia obtención de Ia refracción del sujeto de forma binocular, y el instrumento electro-óptico que Io impiementa en forma de foróptero. El método permite además Ia simulación de Ia corrección más adecuada para Ia ametropía previamente detectada, así como Ia de cualquier elemento oftálmico o condición visual en general.
Las partes fundamentales para Ia implementación práctica del instrumento o foróptero que permite el método objeto de esta invención, se muestran de forma esquemática en la figura 1. El sistema de Ia figura 1 incorpora un subsistema de presentación de estímulos visuales (1). Este subsistema (1) consta en primer lugar de una pantalla o micro-pantalla (2) por donde se muestran las escenas o imágenes (25) a presentar ai sujeto (un ejemplo de imagen (25) se observa en Ia figura 6), La pantalla (2) se controla a través de un ordenador, desde donde se generan y se programan las imágenes (25). El subsistema de presentación de estímulos (1) incorpora también un objetivo (5) que colima Ia luz proveniente de Ia pantalla (2), formando una imagen de esta en el infinito. El objetivo (5) puede ser un sistema dióptrico formado por varias superficies y lentes, o en su versión más simplificada por una única lente. El uso de un objetivo más sofisticado que incorpora diversas superficies permite Ia corrección de aberraciones de modo más eficiente, a costa de elevar ia complejidad del elemento (5). Las pupilas (6) efectivas de entrada del sistema, que limitan Ia cantidad de luz proveniente de un punto situado sobre ia pantalla (2) y en el eje óptico de Ia lente colimadora u objetivo (5), se colocan inmediatamente después de dicho elemento (5) en el sentido de Ia luz emergente de Ia pantalla de estímulos (2). El sentido de Ia luz se muestra en Ia figura 1 mediante flechas.
Las pupilas de entrada (6) del instrumento distribuyen Ia luz que el sistema óptico dirige a uno y otro ojo del sujeto que está siendo medido mediante ei método y foróptero descritos en la presente invención. Para elio se puede emplear una máscara en Ia que se practican dos orificios simétricos respecto ai eje óptico del objetivo (5) y del mismo tamaño. Así, en Ia figura 1 se ha indicado con flechas el camino de Ia luz, por medio de un rayo principal, que llega al ojo izquierdo (4), y sin flechas el correspondiente al ojo derecho (3). Las pupilas de entrada de los ojos del sujeto se colocan sobre las pupilas de salida (14, 15) del instrumento. Estas últimas son las imágenes de las dos pupilas de entrada (6) a través de toda la óptica que les sigue en el aparato. Existen por tanto dos pupilas de salida (14, 15), una para ei ojo izquierdo y otra para el ojo derecho, respectivamente. La luz del subsistema de presentación de estímulos (1) se redirige al resto del instrumento por medio de una lente positiva (7). La distancia entre Ia lente (7) antes mencionada y las pupilas de entrada (6) del forópterσ es exactamente Ia distancia focal de esta, En Ia ¡mpiementación práctica del instrumento ia lente (7) puede ser reemplazada con idéntico efecto por un espejo esférico, o parabóiico, de simiíar distancia focal, que puede ser alineado en o fuera de su eje de revolución. Por medio de un espejo plano (8) se envían los haces correspondientes a cada una de las pupilas (14,15) a Ia siguiente lente (10). El objeto de este espejo (8) consiste en hacer más compacto el instrumento, aunque su implementación no es fundamental para e! funcionamiento dei mismo.
Las dos primeras lentes del foróptero (7, 10) están dispuestas de manera afocal, es decir, formando un telescopio. Para ello, Ia focal imagen de
Ia primera lente (7) se sitúa exactamente sobre Ia focal objeto de ia segunda lente (10). Con esto se consigue conjugar ópticamente el plano focal objeto de la primera lente (7) sobre el plano focal imagen de Ia segunda lente (10). Es precisamente en este plano focal imagen de fa segunda lente (10), donde se coloca el dispositivo modulador de fase (9). E! modulador o generador de fase
(9) o generador de aberraciones es un dispositivo que emplea preferentemente el cristal líquido para el manipulado de Ia fase del frente de onda. La disposición de las dos primeras lentes (7,10) permite que las pupilas de entrada
(6) al sistema queden conjugadas, o proyectadas, sobre Ia superficie del modulador de fase (9); precisamente, en Ia superficie correspondiente a cada una de las imágenes de las pupilas de entrada (6) en el modulador de fase (9) sobre Ia que se generan, y en general se manipulan de forma controlada desde un ordenador, las fases que afectan a las imágenes estímulo provenientes de ia pantaíia (2), y que finalmente percibe el sujeto que mira a través del foróptero. Sin pérdida de prestaciones y con idéntico efecto, el modulador de fase (9) basado en el uso del cristal líquido puede reemplazarse por un espejo deformabie, cuya operación se basa en Ia modificación mecánica de ¡a superficie espejada, de manera controlada, para el manipulado de ia fase de ia radiación incidente. Del mismo modo, el sistema puede impiernentar con idéntico resultado dos dispositivos o moduladores de fase (9), de forma simultánea, dedicados a cada una de las imágenes de las pupilas de entrada (6) del instrumento, situados en el mismo plano focal imagen de Ia segunda lente (10). Esta puede ser reemplazada en el aparato por un espejo esférico o parabólico con similar distancia focal, con idéntico efecto sobre el sistema.
Tras Ia reflexión en el modulador de fase (9) de ia luz dirigida a cada una de Ia pupilas de salida del instrumento, los haces encuentran de nuevo en su camino Ia segunda lente (10) y Ia última y tercera lente (11) del foróptero. Esta pareja de lentes (10,11) se encuentran en disposición afocal, formando un sistema telescópico, de manera semejante a como se ha descrito para Ia pareja formada por Ia lente primera (7) y segunda (10) del sistema. La focal imagen de ia segunda lente (10) coincide con ia focal objeto de ia tercera lente (11). Con esto se consigue formar imagen, o conjugar ópticamente, Ia proyección de las pupilas de entrada (6) sobre el modulador de fase (9) en el plano de las pupilas de salida (14, 15) del instrumento. El efecto neto sobre todo el foróptero es el de conjugar ópticamente las pupilas (6) situadas en el subsistema de presentación de estímulos (1), sobre las pupilas de saüda (14,15); o equivalentemente, sobre las pupilas del sujeto que mira a través del instrumento. La tercera lente (11) puede sustituirse con idéntico efecto por un espejo esférico o parabólico de igual distancia focal. Con e! fin de emplear Ia misma segunda lente (10) del sistema en los telescopios formados por las lentes primera (7) y tercera (11), con Ia segunda lente (10), se alinea fuera del eje óptico (16) que define Ia lente tercera (11). Así, el eje óptico (17) de Ia lente segunda (10) se encuentra desplazado, tal y como muestra Ia figura 1. El sistema puede operar también, con idéntico efecto, con dos lentes frente al modulador de fase (9), una para Ia luz proveniente del subsistema de presentación de estímulos (1), y otra para Ia luz reflejada por el modulador de fase (9). Esta disposición aumenta el número de elementos ópticos necesarios, e incrementa el tamaño y peso del sistema completo.
Los haces que atraviesan Ia lente tercera (11) correspondientes a cada una de las pupilas (6) de entrada del sistema emergen a una distancia fija, que depende de Ia relación de aumentos definida por Ia razón entre las focales de las distintas lentes que conforman el sistema, una vez establecida ia separación entre las pupilas de entrada (6) del foróptero. Así, para acoplar esta distancia a Ia separación interpupilar de un sujeto que mire a través del foróptero se hace necesario Ia incorporación de elementos adicionales. Para ello pueden emplearse unos prismas (12, 13) que operen en reflexión total, tal y como muestra la figura 1. La separación entre estos prismas (12, 13) debe ser variable para que el operario del instrumento ajuste Ia separación final de los haces a Ia distancia interpupilar de cada sujeto que mire a través dei foróptero. Los prismas (12, 13) pueden reemplazarse con idéntico efecto por parejas de espejos planos, o combinaciones de prismas y espejos.
Para ei correcto centrado de las pupilas del sujeto sobre las pupilas de salida (14, 15) del foróptero puede emplearse un subsistema auxiliar de posicionado (20). Este subsistema auxiliar de posicionado (20) está compuesto esencialmente por una lente (19) y un objetivo acoplado a una cámara (21). De este modo, Ia cámara (21) registra simultáneamente las dos pupilas de los ojos del sujeto. Su posicionado puede realizarse de modo automático y sistemático, hasta llevarlas a las posiciones de referencia definidas por ia localización de las pupilas de salida (14, 15) del instrumento. Para recoger Ia luz de las pupilas del sujeto se emplea un divisor de haz (18) localizado en las proximidades o sobre eí foco objeto de Ia tercera lente (11) del foróptero. Eventualmente, el subsistema auxiliar de posicionado (20) puede reemplazarse por un sensor de frente de onda, que permita Ia medida objetiva de Ia calidad óptica de ios ojos del sujeto de manera binocular.
Tal y como se muestra de forma esquemática en Ia figura 2, el modulador de fase (9) de cristal líquido puede también eventualmente operar como modulador de fase en transmisión (9 bis). En este caso el sistema experimental puede simplificarse notablemente, operando con idéntico efecto sin la necesidad del concurso de las dos primeras lentes (5,10) para Ia conjugación de las pupilas de entrada del sistema (6) sobre Ia superficie del modulador de fase en transmisión (9 bis). En este caso simplificado las pupilas de entrada (6) se colocan inmediatamente antes del modulador de fase en transmisión (9 bis) en el sentido de Ia luz emitida por ia pantalla (2) de presentación de estímulos. El resto del subsistema (1) para la presentación de estímulos queda tal como y se ha descrito previamente en Ia figura 1. Una gran ventaja de esta modalidad de instrumento, con el modulador de fase operando en transmisión (9 bis) es Ia mayor simplicidad del montaje experimental y la posibilidad de un agrupamiento de elementos ópticos más eficiente que favorece un tamaño y peso menor del foróptero.
En Ia figura 3 se presenta otra posibilidad de impiementación práctica del instrumento, que permite prescindir de la primera lente (7) y obtener una versión compacta de Ia invención. En eíia se coloca un divisor de haz (22) entre Ia lente (10) y el modulador de fase (9) para redirigir parte de Ia luz proveniente de Ia pantalla (2) de presentación de estímulos a Ia superficie del modulador de fase (9). Inmediatamente antes de Ia superficie del modulador de fase (9), se colocan las pupilas de entrada (6) ai sistema. Se puede reemplazar el divisor de haz (22) por otros dos de menor tamaño que cubran en todo caso, cada uno de los haces dirigidos a cada una de las pupilas del sujeto.
Para que el sujeto que mira a través del foróptero consiga una percepción binocular del estímulo presentado en Ia pantalla (2) no basta con que sus pupilas estén localizadas sobre las pupilas de salida (14, 15) del instrumento, sino que es necesario que las líneas de visión, o de mirada, de sendos ojos exciten puntos correspondientes en las retinas de los ojos. Esta condición necesaria para Ia percepción binocular se obtiene imprimiéndole a los haces que entran a los ojos provenientes de un único objeto Ia inclinación adecuada, emulando Ia situación real que se da con escenas naturales y visión a ojo desnudo. Esta inclinación puede variar de sujeto a sujeto por diversas causas, como estrabismos o forias, etc. El modulador de fase (9) permite mediante Ia utilización de perfiles de fase adecuados proporcionar Ia inclinación correcta a cada sujeto. En la figura 4 se muestran a modo de ejemplos aigunas fases junto con el efecto de desplazamiento que conllevan. Así, Ia máscara de arriba a ia izquierda presenta una pupila con fase constante, ¡o que no produce efecto alguno en !a visión para ei ojo derecho, junto con una ligera inclinación del haz hacia el lado témpora! en el ojo de Ia izquierda. Este perfil podría corresponder eventuaimente a una persona con una exoforia en su ojo izquierdo. En el panel de abajo a Ia izquierda se muestran unos perfiles de fase en las pupilas que provocan una inclinación de los haces similar y temporal en ambos ojos. Este perfil puede corresponder a una persona con una exoforia binocular. En el panel de arriba a Ia derecha se muestra un desplazamiento similar en los dos ojos de forma temporal y ascendente como ejemplo de combinación de varias direcciones. El método permite desplazar los haces en cualquier dirección del espacio y sin restricción en !a amplitud del ángulo, de forma independiente para cada ojo. El panel de abajo a Ia derecha se muestra un ángulo ascendente para el ojo derecho y uno lateral en el sentido temporal para el ojo izquierdo. Con esta técnica se garantiza que todos los sujetos que miren a través del foróptero alcancen una percepción genuinamente binocular.
Otra característica del sistema que aporta numerosas ventajas y un gran potencial, es Ia posibilidad de realizar oclusiones oculares de modo puramente óptico, en contraposición con los métodos mecánicos anteriores que consisten en tapar físicamente uno de los ojos. Esto se puede realizar programando en el modulador (9) diversos perfiles de fase. En Ia figura 5 se presentan a modo de ejemplo unos perfiles de fase que resultan de Ia combinación de un desplazamiento angular del haz hacia el iado temporal y un desenfoque de 5 dioptrías. El panel de arriba muestra un perfil para Ia oclusión del ojo derecho, y el de abajo corresponde al ojo izquierdo. El efecto neto de este perfil es proporcionar una imagen retiniana de Ia escena mostrada por ia pantalla (2) muy desenfocada y muy excéntrica con respecto a la fóvea o zona de visión central. Con ello se garantiza Ia falta de percepción de esa imagen. El proceso de oclusión puede realizarse con una frecuencia solo limitada por Ia velocidad de refresco del dispositivo modulador de fase (9). El foróptero puede ser implementado sin las pupilas de entrada (6) descritas anteriormente. En su lugar puede incorporarse una matriz de micro- espejos (24), cuya vista frontal se representa como (23), formada por una gran cantidad de facetas espejadas, típicamente por encima de 100, cuyo movimiento puede ser controlado digitaimente de forma independiente por medio de un ordenador. El uso de este dispositivo queda descrito de manera gráfica en Ia figura 6. La luz emergente del objetivo (5) que está en el subsistema de presentación de estímulos entra al resto del foróptero por medio del sistema de micro-espejos (23), localizado antes de Ia primera lente (7) del instrumento. La matriz de micro-espejos (23) puede producir un efecto similar a! de las pupilas de entrada (6) generadas a partir de orificios en una placa opaca. Para ello, Ia inclinación de los micro-espejos inscritos en cada una de las posiciones escogidas como pupilas de entrada, como se muestra en Ia figura 6, panel izquierdo (referencia (23)), debe ser similar, y permitir que Ia luz incidente entre efectivamente al sistema. Por ei contrario, ei resto de micro-espejos debe tener inclinaciones tales que eviten Ia entrada de Ia luz incidente en elíos. Con esto se consigue un efecto neto de pupila de entrada con ciertas ventajas con respecto a ía implementación fija de una máscara con dos orificios. La principal es Ia posibilidad de cambiar e! tamaño y Ia posición de las pupilas de entrada durante Ia operación del instrumento. Esto permite hacer un seguimiento de las pupilas del sujeto, por ejemplo, que asegura Ia entrada de Ia luz proveniente del estímulo cualquier que sea su posición. Por otro lado, proporciona también un método alternativo para Ia oclusión de uno de los ojos, mediante Ia acción sobre el ángulo de los micro-espejos. La velocidad de operación del dispositivo suele esta en el rango de los küo-hertzios.
El foróptero incluye también la posibilidad de mostrar estímulos visuales en tres dimensiones. Para ello pueden emplearse diversas realizaciones alternativas con el instrumento que se detallan a continuación. Para Ia generación de Ia estereopsis, o sensación de profundidad y volumen en las imágenes, es necesario introducir en los ojos imágenes con cierto grado de disparidad, tal y como se reciben desde una escena natural. Ello sucede fundamentalmente por Ia distinta posición existente de los ojos con respecto al objeto, Io que produce imágenes retinianas ligeramente diferentes que producen la percepción de tridimensionaiidad. E! efecto puede simularse en el foróptero objeto de Ia presente invención mediante Ia oclusión alternativa de los ojos, sincronizada con Ia aparición de imágenes dispares (25) en Ia pantalla (2) de presentación de estímulos. Cuando las oclusiones se efectúan a frecuencias por encima de los 30 Hz, el sistema visual no es capaz de percibirlas. La imagen aparece como un continuo para Ia visión. Este hecho bien conocido puede ser aprovechado para generar Ia sensación de tridimensionalidad. Las oclusiones alternativas pueden hacerse, siempre acompasadas con Ia presentación de estímulos dispares (25) en el sentido de Ia binocularidad, por medio de Ia matriz de micro-espejos (24), el modulador de fase (9), o en combinación de ambos elementos.
La sensación de profundidad o estereopsis puede conseguirse en el foróptero objeto de Ia presente invención de otros modos alternativos al anteriormente expuesto, descritos gráficamente en las figuras 7a y 7b. Una posibilidad consiste en el uso de dos objetivos (28, 29) frente a la pantalla (2) de presentación de estímulos. Cada uno de ellos está dedicado a Ia luz que se envía a cada una de las dos pupilas del sujeto. Por medio de una pantalla opaca (26) se evita que Ia luz de Ia pantalla (2) que genera eí estímulo para el ojo derecho (3) entre por el objetivo dedicado al ojo izquierdo, y viceversa. En esta implementación, Ia pantalla (2) muestra el estímulo con disparidad en dos campos bien diferenciados (27), tal y como se presenta en Ia figura 7a. Otra implementación práctica de Ia invención hace uso de dos pantallas (30,31) para Ia presentación de los estímulos con disparidad; esta alternativa se muestra gráficamente en Ia figura 7b. La ventaja de esta última radica en Ia mayor resolución con que pueden presentarse los estímulos, aunque incorpora un mayor coste y complejidad por el doble número de pantallas (30,31).
Ei empleo del instrumento para ía obtención de la refracción y simulación de elementos oftálmicos, y en general de cualquier condición o situación óptica puede llevarse a cabo por medio del siguiente procedimiento. Inicialmente el sujeto es colocado de forma que las pupilas de sus ojos coincidan con las pupilas de salida (14, 15) del foróptero. Para ello, el operador, que eventualmente puede ser el propio sujeto que mira a través del foróptero, puede variar de forma manual o mecanizada Ia distancia entre los prismas (12,13) operando en reflexión. Para elio se emplea de forma opcional un subsistema auxiliar (20) de posicionado de las pupilas. Una vez fijada Ia posición de los ojos del sujeto al foróptero se presenta el estímuio visual en Ia pantalla (2) y se consigue Ia visión binocular del mismo. En caso de existir alguna foria o situación que impida Ia correcta fusión binocular de imágenes, en cuyo caso el sujeto percibe una imagen doble del estímulo, se procede a Ia inclinación del haz de cada uno de los ojos, tal y como se ha detallado en Ia descripción de Ia figura 4. Se ejecuta e¡ protocolo hasta aicanzar Ia percepción binocular variando Ia inclinación progresivamente de cada uno de los haces dirigidos a cada ojo. Ei hecho de que el control de Ia vergencia o inclinación de los haces se controle mediante el modulador de fase (9) de forma digital permite que el sujeto actúe por si mismo mediante un eventual programa o aplicación informática adaptada a Ia situación. De otro modo un operario externo puede dirigir y controlar el proceso.
La refracción ocular puede obtenerse para cualquier distancia sin más que programar en las pupilas proyectadas sobre el modulador de fase (9) el desenfoque correspondiente. A modo de ejemplo práctico, Ia refracción para larga distancia, no requiere de ninguna fase de partida, mientras que para una distancia de 33 cm, Ia fase debe añadir 3 dioptrías sobre cada pupila. Una vez seleccionada Ia distancia a Ia cual se va a obtener Ia refracción, se muestra en Ia pantalla (2) una escena (25). Esta puede ser seleccionada entre una batería de imágenes dependiendo de los requerimientos del sujeto. Las imágenes pueden ser las típicas letras empleadas en la práctica clínica habitual para Ia medida de Ia agudeza visual. También pueden emplearse paisajes, especialmente para Ia obtención de Ia refracción a largas distancias, tanto naturales como urbanos. Las escenas nocturnas pueden ser empleadas con gran beneficio para aquellos sujetos que deseen obtener Ia refracción en condiciones de baja luminancía. Para Ia refracción, o en general medida de Ia calidad visual, a distancias medias y cortas, las escenas pueden adaptarse a situaciones reales que los sujetos se encuentran en Ia vida cotidiana. Los estímulos visuales pueden ser presentados también monocuiarmente mediante Ia oclusión de alguno de los ojos según los métodos antes expuestos a propósito de las figuras 5 y 6 del presente documento. Los estímulos pueden ser mostrados asimismo con estereopsis o sensación de volumen, siguiendo Ia implementación descrita en referencia a las figuras 6 y 7. La posibilidad de refraccionar a un sujeto mediante cualquier escena que se adecué a sus necesidades y de manera tridimensional aporta una ventaja única al foróptero objeto de esta invención. Una vez seleccionada Ia escena y el modo de presentarla (bi o tridimensional) comienza en proceso de búsqueda de Ia refracción o corrección visual más adecuada. Para ello ei operario cambia de manera controlada y siguiendo un protocolo preestablecido, el desenfoque y el astigmatismo de cada una de las pupilas hasta conseguir Ia mejor visión en las condiciones iniciaimente seleccionadas.
La figura 8 muestra, a modo de ejemplo práctico, en Ia columna de Ia izquierda diversas situaciones correspondientes a, de arriba abajo: desenfoque miópico puro de 1 dioptría (A); astigmatismo regular de 1 dioptría a 45 y 90 grados (B) y una combinación de desenfoque y astigmatismo para el ojo derecho y desenfoque puro para el ojo izquierdo de 0.5 dioptrías cada uno (C).
Una característica que singulariza al instrumento es Ia posibilidad de programar perfiles de fase correspondientes a correcciones visuales no usuales, distintas a las lentes oftálmicas estándar que se montan en gafas. Un ejemplo práctico son las gafas progresivas, cuyo efecto en la visión puede simularse como paso previo a Ia adquisición de ¡as mismas. De este manera, pueden ser generados también por el modulador de fase (9) perfiles correspondientes a lentes infraoculares de cualquier tipo, como progresivas, difractivas, etc, con anterioridad a someter al paciente a una intervención quirúrgica. Pueden probarse soluciones personalizadas a cada caso, y estudiar el beneficio de manera personalizada para cada sujeto.
Un ejemplo de lentes que incorporan aberración esférica de distinto signo se muestra en el panel D de la columna derecha de Ia figura 8. También puede emplearse como estación de testeo de posibles problemas visuales o tolerancia del sujeto a descentramientos en sus correcciones ópticas, incluidas aquellas que surgen en el contexto de Ia cirugía refractiva. Un ejemplo de simulación de aberración de coma, vertical para un ojo y horizontal para el otro, se presenta en ei panei E de Ia columna derecha de Ia figura 8. A modo de último ejemplo, se ha presentado en el panel F de Ia columna derecha de Ia figura 8 Ia fase correspondiente a polinomios de Zernike 18 y 25, para ilustrar el potencial dei foróptero para simular las condiciones de visión a través de óptica o perfiles exóticos.
Correcciones oftálmicas diferentes al desenfoque y astigmatismo, de más alto orden, pueden obtenerse de manera sencilla en ei instrumento, simulando su efecto sobre Ia visión del sujeto a través de Ia fase óptica que producen.
El foróptero permite gracias a Ia tecnología eíectro-óptica, ser operado por el propio sujeto que mira a través de éi. Para ello, el instrumento incorpora un software específico que permite ir buscando Ia mejor corrección oftálmica de manera simultánea a Ia visión de estímulos.
Aunque se han descrito y representado unas realizaciones de Ia invención, es evidente que pueden introducirse en ellas modificaciones comprendidas dentro de su alcance, no debiendo considerarse limitado éste a dichas realizaciones, sino únicamente al contenido de las reivindicaciones siguientes.

Claims

REIVINDICACIONES
1. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual, que permite Ia presentación simultánea de estímulos visuales y su percepción a través de distintos perfiles de fase o aberraciones, que comprende:
- un sistema de presentación de estímulos (1) que a su vez comprende dos pupilas de entrada (6),
- dos pupilas de salida (14, 15), y
- al menos un modulador de fase (9), este último conjugado ópticamente con las dos pupilas de entrada (6) y las dos pupilas de salida (14, 15) del instrumento,
caracterizado por que e! modulador de fase (9) es capaz de producir cualquier perfil de fase y las operaciones de medida de Ia refracción, y simulación de elementos oftálmicos o condiciones visuales se realizan de forma binocular.
2. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según Ia reivindicación 1 , caracterizado por que el control deí modulador de fase (9) se realiza de manera digital.
3. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según cualquiera de las reivindicaciones anteriores, caracterizado por que Ia presentación de estímulos se realiza por medio de una pantalla (2) en Ia que se muestran escenas.
4. instrumento oftálmico de medida de Ia refracción ocular y simulación visual según Ia reivindicación 3, caracterizado por que el sistema de presentación de estímulos (1) comprende adicionalmente un objetivo (5) que colima ia luz proveniente de Ia pantalla (2).
5. Instrumento oftálmico de medida de la refracción ocular y simulación visual según cualquiera de las reivindicaciones anteriores, caracterizado por que los estímulos visuales provenientes de la pantalla (2) que son proyectados en las retinas del sujeto, de forma binocular, están afectados por Ia fase o aberraciones introducidas por el dispositivo modulador de fase (9).
6. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según cualquiera de las reivindicaciones 1 a 5, caracterizado por que el modulador de fase (9) es un dispositivo basado en el empleo del cristal líquido en reflexión.
7. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según cualquiera de las reivindicaciones 1 a 5, caracterizado por que el modulador de fase (9) es un dispositivo basado en el empleo del cristal líquido en transmisión.
8. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según cualquiera de las reivindicaciones 1 a 5, caracterizado por que el modulador de fase (9) es un espejo deformable.
9. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según Ia reivindicación 8, caracterizado por que el espejo deformable es del tipo electrostático.
10. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según Ia reivindicación 8, caracterizado por que ei espejo deformable es segmentado, formado por una matriz de micro-espejos de control independiente.
11. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según Ia reivindicación 8, caracterizado por que el espejo deformable es magnético.
12. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según Ia reivindicación 8, caracterizado por que el espejo deformable es bimórfico.
13. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según cualquiera de las reivindicaciones anteriores, caracterizado por que Ia percepción de estímulos visuales es estereoscópica o tridimensional.
14. instrumento oftálmico de medida de Ia refracción ocular y simulación visual según Ia reivindicación 13, caracterizado por que Ia percepción tridimensional de estímulos visuales (estereopsis) se consigue por medio de Ia oclusión aiternativa de ios ojos, sincronizada con Ia presentación de imágenes estereoscópicas en una única pantalla (2) de presentación de estímuios,
15. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según Ia reivindicación 14, caracterizado por que ía oclusión se realiza mediante perfiles de fase programados en el modulador (9).
16. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según Ia reivindicación 14, caracterizado por que Ia oclusión se realiza mediante Ia acción controlada de una matriz de micro-espejos (24) que actúan como pupilas de entrada del instrumento.
17. Instrumento oftálmico de medida de Ia refracción ocular y simulación visuai según Ia reivindicación 13, caracterizado por que Ia percepción tridimensional de estímulos visuales (estereopsis) se consigue por medio de dos objetivos (28,29) dedicados a una y otra pupila del sujeto, que recogen Ia luz proveniente de dos escenas estereoscópicas mostradas en una única pantalla (27).
18. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según la reivindicación 13, caracterizado por que la percepción tridimensional de estímulos visuales (estereopsis) se consigue por medio de dos objetivos (28,29) dedicados a una y otra pupila del sujeto, que recogen Ia luz proveniente de dos escenas estereoscópicas mostradas en dos pantallas diferentes (30,31).
19. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según cualquiera de las reivindicaciones anteriores, caracterizado por que el control de Ia distancia interpupilar se ¡leva a cabo mediante dos prismas en reflexión (12,13).
20. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según cualquiera de las reivindicaciones 1 a 18, caracterizado por que el control de Ia distancia interpupilar se lleva a cabo mediante parejas de espejos planos.
21. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según cualquiera de las reivindicaciones 1 a 18, caracterizado por que el control de Ia distancia interpupilar se lleva a cabo mediante una combinación de prismas (12,13) y espejos.
22. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según cualquiera de las reivindicaciones anteriores, caracterizado por que el control de Ia inclinación de los haces de luz incidentes en Ia pupilas del sujeto que se hacen coincidir con las líneas de mirada se realiza mediante el dispositivo modulador de fase (9).
23. Instrumento oftálmico de medida de Ia refracción ocular y simulación visuaí según cualquiera de las reivindicaciones anteriores, caracterizado por que comprende adicionalmente un subsistema auxiliar de posicionado (20) para el centrado de las pupiias del sujeto sobre las pupilas de salida (14, 15) del instrumento, comprendiendo dicho subsistema auxiliar de posicionado (20) una lente (19) y un objetivo acoplado a una cámara (21), de modo que Ia cámara (21) es susceptible de registrar simultáneamente las dos pupilas de los ojos del sujeto.
24. Instrumento oftálmico de medida de Ia refracción ocular y simulación visual según cualquiera de las reivindicaciones 1 a 22, caracterizado por que comprende adicionalmente un sensor de frente de onda para Ia medida objetiva de Ia calidad óptica de los ojos del sujeto de manera binocular.
25. Método de medida de Ia refracción ocular de los ojos, caracterizado por que emplea el instrumento oftálmico de cualquiera de las reivindicaciones 1 a 24.
26. Método de simulación de elementos oftálmicos, como lentes oftálmicas y lentes infraoculares, caracterizado por que emplea el instrumento de cualquiera de las reivindicaciones 1 a 24.
27. Método de simulación de la visión a través de cualquier elemento óptico, caracterizado por que emplea el instrumento de cualquiera de las reivindicaciones 1 a 24.
28. Método de obtención de los parámetros ópticos adecuados para incorporar en lentes intraoculares a partir de Ia medida de Ia refracción personalizada, caracterizado por que emplea el instrumento de cualquiera de las reivindicaciones 1 a 24.
29. Método de obtención de ios parámetros ópticos adecuados para incorporar en lentes oftálmicas a partir de Ia medida de Ia refracción personalizada, caracterizado por que emplea el instrumento de cualquiera de las reivindicaciones 1 a 24.
30. Método de obtención de ios parámetros ópticos, y geométricos adecuados para incorporar en ias correcciones refractivas realizadas mediante cirugía de Ia córnea a partir de ia medida de Ia refracción personalizada, caracterizado por que emplea el instrumento de cualquiera de las reivindicaciones 1 a 24.
31. Método de simulación de Ia visión tras una intervención quirúrgica en el ojo, caracterizado por que emplea el instrumento de cualquiera de ias reivindicaciones 1 a 24.
32. Método de simulación de Ia visión tras una operación de cirugía refractiva, caracterizado por que emplea el instrumento de cualquiera de las reivindicaciones 1 a 24.
PCT/ES2010/070467 2009-08-28 2010-07-07 Instrumento oftálmico de medida de la refracción ocular y simulación visual, y métodos asociados de medida de la refracción ocular, de simulación de elementos oftálmicos, de simulación visual y obtención de parámetros ópticos WO2011023841A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10811317.6A EP2471440B1 (en) 2009-08-28 2010-07-07 Ophthalmic instrument for measuring ocular refraction and for visual simulation and associated methods for measuring ocular refraction, for simulating ophthalmic elements, for visual simulation and for obtaining optical parameters
ES10811317T ES2774195T3 (es) 2009-08-28 2010-07-07 Instrumento oftálmico de medida de la refracción ocular y simulación visual, y métodos asociados de medida de la refracción ocular, de simulación de elementos oftálmicos, de simulación visual y de obtención de parámetros ópticos
US13/392,723 US8911084B2 (en) 2009-08-28 2010-07-07 Ophthalmic instrument for the measurement of ocular refraction and visual simulation, and associated methods of measurement of ocular refraction, simulation of ophthalmic elements, visual simulation and for obtaining optical parameters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200901809A ES2373134B2 (es) 2009-08-28 2009-08-28 Instrumento oftalmico de medida de la refraccion ocular y simulacion visual, y metodos asociados de medida de la refraccion ocular, de simulacion de elementos oftalmicos de simulacion visual y de obtencion de parametros opticos.
ESP200901809 2009-08-28

Publications (1)

Publication Number Publication Date
WO2011023841A1 true WO2011023841A1 (es) 2011-03-03

Family

ID=43627305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070467 WO2011023841A1 (es) 2009-08-28 2010-07-07 Instrumento oftálmico de medida de la refracción ocular y simulación visual, y métodos asociados de medida de la refracción ocular, de simulación de elementos oftálmicos, de simulación visual y obtención de parámetros ópticos

Country Status (4)

Country Link
US (1) US8911084B2 (es)
EP (1) EP2471440B1 (es)
ES (2) ES2373134B2 (es)
WO (1) WO2011023841A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012052585A1 (es) * 2010-10-20 2012-04-26 Sergio Oscar Luque Método y sistema para la simulación-emulación de visión a través de lentes o dispositivos intraoculares prévia a la cirurgia
CN103356159A (zh) * 2013-07-14 2013-10-23 中国人民解放军海军总医院 一种立体视觉检测图板及其制作方法
EP2802253A1 (en) * 2012-01-10 2014-11-19 Digital Vision LLC Intra-ocular lens optimizer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2346392B1 (es) * 2009-03-04 2011-10-03 Voptica, S.L. Metodo de medida y control binocular de las aberraciones de los ojos,presentacion simultanea de estimulos visuales, e instrumento oftalmico que implementa dicho metodo.
DE102015116110A1 (de) 2015-09-23 2017-03-23 Carl Zeiss Vision International Gmbh Verfahren und System zur Bestimmung der subjektiven Refraktionseigenschaften eines Auges
ES2610789B1 (es) * 2015-09-30 2018-02-07 Consejo Superior De Investigaciones Cientificas (Csic) Instrumento miniaturizado simulador de visión simultánea por generación de máscaras
ES2659087B1 (es) * 2016-08-12 2019-01-15 Univ Murcia Instrumento binocular optoelectrónico para la corrección de la presbicia
WO2019234052A1 (de) 2018-06-06 2019-12-12 Deutsche Augenoptik AG Einrichtung zur präzisierung einer sehschärfenmessung und/oder refraktionsbestimmung und deren verwendung
DE102018113507A1 (de) * 2018-06-06 2019-12-12 Deutsche Augenoptik AG Einrichtung zur Präzisierung einer Sehschärfenmessung und/oder Refraktionsbestimmung und deren Verwendung
JP7467830B2 (ja) * 2019-05-08 2024-04-16 株式会社ニデック 視覚シミュレーション方法、および、視覚シミュレーションプログラム
JP7238121B2 (ja) * 2019-06-11 2023-03-13 富士フイルム株式会社 撮像装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861156A (en) 1984-10-31 1989-08-29 Terry Clifford M Visual acuity testing system
US4943162A (en) 1984-11-09 1990-07-24 Sims Clinton N Astigmatic self-refractor and method of use
US5223864A (en) 1989-09-06 1993-06-29 J. D. Moller Optische Werke Gmbh Phoropter
JPH08182649A (ja) 1994-07-19 1996-07-16 Block Medizintechnik Gmbh フオロプター
US5812241A (en) 1993-08-19 1998-09-22 Block Medizintechnik Gmbh Compact refractor for subjective examination of human eyes
US20030009063A1 (en) 2001-06-21 2003-01-09 Sumitomo Chemical Company, Limited Process for producing isobutylene and methanol
US7156517B2 (en) 2004-11-30 2007-01-02 Nidek Co., Ltd. Optometric apparatus
US7264354B2 (en) 1999-07-02 2007-09-04 E-Vision, Llc Method and apparatus for correcting vision using an electro-active phoropter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572230B2 (en) * 2001-06-05 2003-06-03 Metrologic Instruments, Inc. Ophthalmic instrument having an integral wavefront sensor and display device that displays a graphical representation of high order aberrations of the human eye measured by the wavefront sensor
JP4330400B2 (ja) * 2003-08-04 2009-09-16 株式会社ニデック 眼科装置
US8016420B2 (en) * 2007-05-17 2011-09-13 Amo Development Llc. System and method for illumination and fixation with ophthalmic diagnostic instruments
US8425496B2 (en) * 2009-04-09 2013-04-23 Wavelight Ag Optical imaging system, particularly in a laser surgical ophthalmic apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861156A (en) 1984-10-31 1989-08-29 Terry Clifford M Visual acuity testing system
US4943162A (en) 1984-11-09 1990-07-24 Sims Clinton N Astigmatic self-refractor and method of use
US5223864A (en) 1989-09-06 1993-06-29 J. D. Moller Optische Werke Gmbh Phoropter
US5812241A (en) 1993-08-19 1998-09-22 Block Medizintechnik Gmbh Compact refractor for subjective examination of human eyes
JPH08182649A (ja) 1994-07-19 1996-07-16 Block Medizintechnik Gmbh フオロプター
US7264354B2 (en) 1999-07-02 2007-09-04 E-Vision, Llc Method and apparatus for correcting vision using an electro-active phoropter
US7533993B2 (en) 1999-07-02 2009-05-19 E-Vision, Llc Method and apparatus for correcting vision using an electro-active phoropter
US20030009063A1 (en) 2001-06-21 2003-01-09 Sumitomo Chemical Company, Limited Process for producing isobutylene and methanol
US7156517B2 (en) 2004-11-30 2007-01-02 Nidek Co., Ltd. Optometric apparatus

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
ARTAL P ET AL.: "ARVO Annual Meeting Absatract Search and Program Planner, 2002", article "Adaptive-Optics System to predict the impact of Aberrations in the quality of vision" *
CÁNOVAS C ET AL.: "Hybrid adaptive optics visual simulator", OPTICS LETTERS, 15 January 2010 (2010-01-15) *
DATABASE BIOSIS [online] XP008152003, Database accession no. PREV200300154434 *
DATABASE MEDLINE [online] XP008151998, Database accession no. NLM19724513 *
DATABASE MEDLINE [online] XP008152000, Database accession no. NLM20081966 *
DATABASE MEDLINE [online] XP008152002, Database accession no. NLM19550905 *
DATABASE MEDLINE [online] XP008152004, Database accession no. NLM12361172 *
DATABASE MEDLINE [online] XP008152010, Database accession no. NLM18041253 *
E. J. FERNÁNDEZ; IGLESIAS; P. ARTAL: "Closed-loop adaptive optics in the human eye", OPT. LETT, vol. 26, 2001, pages 746 - 748
E. J. FERNÁNDEZ; S. MANZANERA; P. PIERS; P. ARTAL: "Adaptive optics visual simulator", J. REFRAC. SURGERY, vol. 18, 2002, pages 634 - 638
FERNANDEZ E J ET AL.: "Adaptive optics visual simulator", JOURNAL OF REFRACTIVE SURGERY, October 2002 (2002-10-01) *
FERNANDEZ E J ET AL.: "Binocular adaptive optics visual simulator", OPTICS LETTERS, 1 September 2009 (2009-09-01) *
FERNANDEZ E J ET AL.: "Binocular Adaptive Optics Visual Simulator: Understanding the impact of aberrations on actual vision", PROCEEDINGS OF THE SPIE, SPIE, vol. 7550, 2010, USA, pages 755014 1 - 4, XP008151510 *
J. LIANG; D. R. WILLIAMS: "Aberrations and retinal image quality of the normal human eye", J. OPT. SOC. AM. A, vol. 14, 1997, pages 2873 - 2883, XP000885262
KRUEGER R R ET AL.: "Novthe applications of an adaptive optics visual simulator in the clinical setting", PROCEEDINGS OF THE SPIE,SPIE, vol. 7550, 2010, USA, pages 755013 1 - 15, XP008151506 *
LIANG; B. GRIMM; S. GOELZ; J. F. BILLE: "Objective measurement of WAs of the human eye with the use of a Hartmann-Shack wave-front sensor", J. OPT. AM. A, vol. 11, 1994, pages 1949 - 1957
MANZANERA ET AL.: "Liquid cristal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements", OPTICS EXPRESS, 26 November 2007 (2007-11-26) *
P. ARTAL; L. CHEN; E. J. FERNÁNDEZ; B. SINGER; S. MANZANERA; D. R. WILLIAMS: "Neural compensation for the eye's optical aberrations", J. VIS., vol. 4, 2004, pages 281 - 287, XP008082207, DOI: doi:10.1167/4.4.4
P. M. PRIETO; F. VARGAS-MARTIN; S. GOELZ; P. ARTAL: "Analysis of the performance of the Hartmann-Shack sensor in the human eye", J. OPT. SOC. AM. A, vol. 17, 2000, pages 1388 - 1398, XP001041251
ROCHA K M ET AL.: "Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology", JOURNAL OF REFRACTIVE SURGERY, November 2007 (2007-11-01) *
ROCHA K M ET AL.: "Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator", JOURNAL OF REFRACTIVE SURGERY, vol. 26, no. L, January 2010 (2010-01-01), USA, pages 52 - 56, XP008151512 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012052585A1 (es) * 2010-10-20 2012-04-26 Sergio Oscar Luque Método y sistema para la simulación-emulación de visión a través de lentes o dispositivos intraoculares prévia a la cirurgia
EP2802253A1 (en) * 2012-01-10 2014-11-19 Digital Vision LLC Intra-ocular lens optimizer
EP2802253A4 (en) * 2012-01-10 2015-04-22 Digital Vision Llc INTERNAL CONTACT LENS OPTIMIZER
CN103356159A (zh) * 2013-07-14 2013-10-23 中国人民解放军海军总医院 一种立体视觉检测图板及其制作方法

Also Published As

Publication number Publication date
EP2471440A4 (en) 2017-07-12
EP2471440A1 (en) 2012-07-04
US8911084B2 (en) 2014-12-16
EP2471440B1 (en) 2019-12-18
US20120154742A1 (en) 2012-06-21
ES2373134B2 (es) 2012-10-26
ES2774195T3 (es) 2020-07-17
ES2373134A1 (es) 2012-01-31

Similar Documents

Publication Publication Date Title
ES2774195T3 (es) Instrumento oftálmico de medida de la refracción ocular y simulación visual, y métodos asociados de medida de la refracción ocular, de simulación de elementos oftálmicos, de simulación visual y de obtención de parámetros ópticos
KR102634148B1 (ko) 건강 질환 진단과 치료를 위한 방법 및 시스템
US9895058B2 (en) Heads-up vision analyzer
US20210165207A1 (en) Fluidic Glasses For Correcting Refractive Errors Of A Human Or Animal
CA2803916C (en) Compact binocular adaptive optics phoropter
ES2856188T3 (es) Instrumento miniaturizado simulador de visión simultánea
KR102100810B1 (ko) 양안 다중화 방법과 장치
CN109688898B (zh) 辅助建立用于矫正斜视或隐斜视的矫正的设备和相关方法
US11372230B2 (en) System for preventing motion sickness resulting from virtual reality or augmented reality
KR102053389B1 (ko) 복수의 시선 방향에 따른 피검자의 적어도 하나의 객관적인 시각굴절 매개변수를 결정하기 위한 장치와 방법
ES2712496T3 (es) Instrumento oftálmico para la medida y control binocular y simultáneo de aberraciones de los dos ojos con presentación simultánea de estímulos visuales
US20130250245A1 (en) Method and System for Simulating/Emulating Vision Via Intraocular Devices or Lenses prior to Surgery
WO2019234670A1 (es) Instrumento de realidad virtual para medir la refracción y aberraciones del ojo de manera automática
Peña Polychromatic Adaptive Optics to evaluate the impact of manipulated optics on vision
US20230359016A1 (en) Tunable Prism For Vision Correction Of A Patient And Other Applications
El Aissati Aissati Simulation and characterization of optical corrections: impact of design, monochromatic and polychromatic aberrations
Vicente Optical Instruments and Machines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811317

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13392723

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010811317

Country of ref document: EP