WO2011022920A1 - Timing method and apparatus for hybrid automatic repeat request - Google Patents

Timing method and apparatus for hybrid automatic repeat request Download PDF

Info

Publication number
WO2011022920A1
WO2011022920A1 PCT/CN2009/076282 CN2009076282W WO2011022920A1 WO 2011022920 A1 WO2011022920 A1 WO 2011022920A1 CN 2009076282 W CN2009076282 W CN 2009076282W WO 2011022920 A1 WO2011022920 A1 WO 2011022920A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
data
tproc
frame
base station
Prior art date
Application number
PCT/CN2009/076282
Other languages
French (fr)
Chinese (zh)
Inventor
宁丁
关艳峰
刘向宇
刘颖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011022920A1 publication Critical patent/WO2011022920A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • H04L1/1851Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]

Definitions

  • the present invention relates to automatic retransmission techniques, and more particularly to a timing method and apparatus for hybrid automatic repeat request. Background technique
  • Hybrid Automatic Repeat Request (HARQ) technology is an improvement on the traditional automatic repeat request (ARQ) technology.
  • ARQ technology combines ARQ technology with Forward Error Correction (FEC) technology to reduce the impact of time-varying fading channels on the bit error rate of received data, enabling wireless communication systems to provide higher and more stable data throughput.
  • FEC Forward Error Correction
  • HARQ is one of the key technologies of the current mainstream 4G systems, such as the Long Term Evolution (LTE), Long-Term Evolution (LTE) system and the IEEE 802.16m system.
  • the uplink/downlink can simultaneously transmit data or signals.
  • one radio frame is usually further divided into a plurality of subframes with smaller time granularity.
  • the number of subframes (that is, the length of time) occupied by one data packet is the transmission time interval (TTI, Transmission Time Interval) of the data packet.
  • TTI Transmission Time Interval
  • 1 is a schematic diagram of a radio frame structure of the related art. In the radio frame structure shown in FIG. 1, a radio frame is divided into 8 sub-frames, and all radio frames are sequentially numbered according to the principle of sequential increment. No. 8 sub-frames are denoted as SF0 ⁇ SF7, respectively, where the uplink and the downlink have the same frame structure.
  • one or more subframes on the downlink are allocated to the HARQ process for carrying a data channel, and accordingly, one or more subframes on the uplink are also assigned to the HARQ process. Used to carry a feedback channel.
  • one or more subframes on the uplink are allocated to the HARQ process for carrying a data channel, and accordingly, one or more subframes on the downlink are also allocated to the HARQ process for carrying feedback channel.
  • one or more uplink subframes on the uplink are used to carry a data channel, and correspondingly, one or more downlink subframes on the downlink are used to carry feedback corresponding to the data channel. channel.
  • the receiving end After receiving the data carried by the data channel, the receiving end needs a certain processing time to determine the feedback signal corresponding to the data (the feedback signal is carried on the feedback channel), wherein the processing time is called the receiving processing delay, and the feedback channel is passed.
  • the predetermined mapping relationship is carried on the corresponding subframe.
  • the radio resource mapping is mainly based on the frame structure and resource structure of the wireless communication system, and the frame structure is used to describe the radio resources in time.
  • the control structure on the domain the resource structure is used to describe the control structure of the radio resources in the frequency domain.
  • the frame structure divides the radio resources into different levels of units in the time domain, such as a superframe, a frame, a subframe, and a symbol, by setting different control channels, for example, a broadcast channel. , unicast and multicast channels, etc. to achieve scheduling control.
  • each super frame includes 4 frames
  • each frame includes 8 subframes
  • a sub-frame The frame consists of six basic OFDMA symbols.
  • the number of OFDMA symbols included in each level unit in the frame structure is determined according to factors such as the bandwidth to be supported and/or the cyclic prefix length of the OFDMA symbol.
  • Each of the frames may include a plurality of downlink subframes and uplink subframes, and the data packets sent in the downlink subframe are sent by the base station to the terminal, and the terminal performs HARQ feedback through the uplink subframe. Similarly, the data sent in the uplink subframe. The packet is sent by the terminal to the base station, and the base station performs HARQ feedback through the downlink subframe.
  • the system can set a broadcast channel in the first downlink subframe in the superframe (because it is located in the superframe header, the broadcast channel is also called a superframe header (SFH)) and send System information such as resource mapping; and the system may also set scheduling control information such as unicast and/or multicast-type control channel transmission resource allocation.
  • the system may also have an Advanced MAP channel (A-MAP, Advanced MAP) channel, and the A-MAP channel is located in the downlink subframe, and transmits service control information, and may include at least a user-specific A-MAP and a HARQ feedback A-MAP. , one or any combination of control information such as Power control A-MAP, Assignment A-MAP.
  • the broadcast channel (superframe header) and the A-MAP (Advanced MAP) channel may also be referred to as a control channel.
  • the formula for calculating HARQ timing can be applied to various situations and does not require a large amount of space storage, but the current formula is not perfect for processing in some cases, for example, in frequency division duplex (FDD) , Frequency Division Duplex )
  • FDD frequency division duplex
  • Frequency Division Duplex In the downlink mode, feedback often needs to wait for a long time, making the processing time of the entire HARQ longer.
  • operations such as transmitting a data packet, transmitting an A-MAP, and transmitting a feedback occur at a specific time, and a certain time in the present specification refers to a specific subframe of a certain frame.
  • FIG. 3 is a schematic diagram of a related art FDD mode HARQ downlink feedback.
  • the system has 8 subframes.
  • the terminal has a fixed feedback subframe number of 5. If the terminal has not finished processing the data packet when transmitting the subframe with the sequence number of 5, the terminal needs to delay the subframe with the sequence number 5 of the next frame to send the HARQ feedback.
  • the terminal may need to wait for a certain time after completing the processing of the data packet and can send the feedback information, and sometimes the waiting time can be close to one frame time.
  • a primary object of the present invention is to provide a timing method and apparatus for hybrid automatic repeat request that can improve the speed of HARQ feedback.
  • a hybrid automatic weight is provided.
  • the timing method for transmitting requests including:
  • the predetermined parameter includes at least one or a combination of the following: a time at which the terminal processes data
  • TprocMs the time at which the base station processes data TprocBs, transmission time interval TTI, and guard time P.
  • the present invention further provides a timing device for a hybrid automatic repeat request, comprising: a calculating module, configured to determine a feedback moment according to a predetermined parameter, wherein the predetermined parameter comprises at least one or a combination of the following: Time, the time at which the base station processes data, the transmission time interval, the number of subframes included in one frame, and the guard time;
  • a sending module configured to send a feedback message of the hybrid automatic repeat request at the determined feedback moment.
  • the present invention further provides a timing method for hybrid automatic repeat request, which includes: determining a feedback moment according to a predetermined parameter, and transmitting a feedback message of the hybrid automatic retransmission request at the determined feedback moment;
  • the predetermined parameter includes at least one or a combination of: a time for processing data Tproc, a transmission time interval TTI, and a guard time P;
  • the method further includes:
  • the time Tproc to process the data is determined according to the number of subframes included in one frame in the system.
  • the method of the present invention determines a feedback moment according to a predetermined parameter, so as to send a feedback message of the hybrid automatic repeat request at the feedback moment, where the predetermined parameter includes at least one of the following: a time Tproc MS for processing the data by the terminal, a time Tproc BS for processing the data by the base station, Transmission time interval TTI and protection time P.
  • ⁇ ⁇ is the processing time Tpr0C Ms_ required for the terminal to transmit data.
  • T P roc Ms is the time when the terminal receives the data and sends the feedback ACK/NACK ⁇ - ;
  • is sent to the base station.
  • the processing time required for the data is when the base station receives the data, ⁇ is the time Tproc BS RE1 for transmitting the feedback ACK/NACK after the base station receives the data, or when the base station receives the data, the time when the base station processes the data is ⁇ 4 for the base station to receive
  • the time after sending the data ACK/NACK and control message (such as A-MAP IE) ⁇ ⁇ -.
  • the terminal can be sent as long as the processing of the data packet is completed, without waiting for a fixed frame number to appear, which ensures that the terminal or the base station completes the HARQ feedback in the fastest time, and avoids the waiting time of the feedback being too long. Increased the speed of HARQ feedback.
  • FIG. 1 is a schematic diagram of a radio frame structure of a related art
  • FIG. 2 is a schematic diagram of a frame structure of a related art wireless communication system
  • FIG. 3 is a schematic diagram of HARQ downlink feedback in a FDD mode of a related art
  • FIG. 4 is a flow chart of an embodiment of a HARQ timing method of the present invention.
  • FIG. 5 is a schematic diagram of an embodiment of HARQ downlink feedback in the FDD mode of the present invention.
  • FIG. 6 is a schematic diagram of an embodiment of the HARQ timing apparatus of the present invention. detailed description
  • the HARQ timing method refers to a method of determining the HARQ feedback timing.
  • 4 is a flow chart of an embodiment of a HARQ timing method of the present invention. As shown in FIG. 4, the method includes: Step 400: Determine a feedback moment according to a predetermined parameter, to send a feedback message of the hybrid automatic repeat request at the feedback moment.
  • the predetermined parameter includes at least one of the following: a time Tproc MS for processing the data by the terminal, a time Tproc BS for processing the data by the base station, a transmission time interval, or a guard time.
  • the time Tproc MS of the terminal processing data, and/or the time TprocBs at which the base station processes the data may be referred to as the time Tproc of processing the data.
  • the transmission time interval of the data packet is also considered to be the number of subframes that the data packet spans.
  • the size of the TTI is represented by N TTI , where N TT ⁇ is the transmission time interval TTI of the data packet. The number of subframes.
  • the time TprocMs of the above-mentioned terminal processing data or the time TprocMs of the base station processing data may be fixed or may be changed according to the conditions of the terminal and the base station.
  • Step 401 Send a feedback message of the hybrid automatic repeat request at the feedback moment.
  • the feedback time may be determined according to at least one of the time at which the terminal processes the data, the time at which the base station processes the data, the transmission time interval, and the protection time, so that the terminal or the base station only needs to complete the data packet.
  • the processing can be sent without waiting for a fixed frame number to appear, thereby shortening the HARQ feedback time and increasing the speed of HARQ feedback.
  • a fixed feedback subframe number is not set for data transmitted in a certain subframe, and the time, TTI, and sub-frame of each frame are processed according to the terminal. At least one of the number of frames and the guard time is used to determine the timing of the feedback. In this way, the terminal can transmit as long as the processing of the data packet is completed, without waiting for a fixed frame number to appear, thereby shortening the feedback time of the HARQ and improving the speed of the HARQ feedback.
  • a fixed feedback subframe number is not set for data transmitted in a certain subframe, and according to terminal processing time, TTI, number of subframes per frame,
  • the feedback timing is determined by at least one of the uplink and downlink subframe ratio and the guard time of each frame.
  • the time when the first embodiment is applied to the terminal processing time (TprocMs, MS Processing Time) and/or the time when the base station processes the data (Tproc BS , BS Processing Time) is a fixed value and is a scenario of the FDD mode.
  • ⁇ f ⁇ is the processing time required for the terminal to transmit data
  • ⁇ - ⁇ is the time when the terminal receives the data and sends the feedback ACK/NACK ⁇ - ;
  • the processing time required for the base station to transmit data when the base station receives the data
  • is the time when the base station receives the data and then sends the feedback ACK/NACK, or when the base station receives the data
  • the base station processes the data.
  • Time ⁇ sends feedback after the base station receives the data.
  • the time of ACK/NACK and control messages (such as A-MAP IE) ⁇ ⁇ 2.
  • the terminal only needs to wait for a specific time Delay to perform feedback without waiting for a fixed one.
  • the sub-frame number appears.
  • the period indicating the A-MAP channel is generally equal to 1, and may be any integer greater than 1 to less than or equal to the number of downlink subframes. If N A _MAP is greater than 1, then Z is used to indicate that the HARQ sub-packet and the A-MAP information may be located in the same subframe, or that the HARQ sub-packet may be located in the subframe where the A-MAP information is located. After the first sub-frame.
  • / for a packet with a TTI greater than 1 it refers to the location where the packet starts, not the location where the AM AP information element (IE, Information Element) appears, and the value is always equal to 0, the corresponding A- of the packet
  • the MAP IE appears between the second downlink subframe of the previous frame and the first subframe of the current frame.
  • the delay time Delay can be calculated by the formula (3) according to at least one of the terminal processing time, the TTI, and the guard time:
  • Delay V m + Tproc MS + P (3)
  • N TT ⁇ is the number of subframes corresponding to the TTI of the packet
  • P is the guard time, which is used to reserve a certain redundancy time
  • P can default to 0.
  • the calculation of the Delay by the formula (3) is only an example, and the embodiment of the present invention is not limited thereto.
  • the Delay may also be equal to the value of N TTI , TprocMS or P, or may be equal to the sum of the two combinations thereof.
  • the time Tproces of the base station processing data and the time TprocMS of the terminal processing data may be determined according to the number of subframes of one frame in the system, where when the terminal transmits data, ⁇ s processing time required for data transmission to the terminal when the terminal 7 receives the data, T P roc after the terminal receives the data transmission ACK / NACK feedback time TPWC MS-RE
  • the base station transmits data ⁇ the processing time required for the base station to transmit data T P r0C B S —
  • the Tpr0CBS is the time when the base station receives the data and sends the feedback ACK/NACK when the Tproc BS RE " or Time when the base station processes data when receiving data
  • T P roc s sends feedback ACK/NACK and control messages (such as A-MAP) after the base station receives the data.
  • Tproc BS and T rocMs can be calculated by the following formula (4) and formula (5):
  • Tproc MS floor((x - ) / 2) + 2,0 ⁇ 8 ( 4 )
  • Tproc BS floor((x - ) / 2) + 2,0 ⁇ j ⁇ 8 (5)
  • y ⁇ o) represents the largest integer less than or equal to X, where x is the number of subframes in a frame. It can be seen that, in the case where i and j take different values, it is determined according to the number of subframes in one frame.
  • Tproces is different from rocMs.
  • Tproc BS and Tproc MS are equal to 2; when there are 8 subframes in a frame, Tproc BS and Tproc MS Equal to 3.
  • the embodiment is applied to FDD mode embodiment of the present scene, for the case of TDD mode, as long as there is a corresponding Tproc BS or Tproc MS or Tproc BS can be determined using the same method Tproc MS.
  • FIG. 5 is a schematic diagram of an embodiment of HARQ downlink feedback in an FDD mode according to the present invention.
  • Tproc MS 4
  • 1
  • the second embodiment is applied to the time TprocMs at which the terminal processes data and/or the time Tproc BS at which the base station processes the data is a variable value, and is a scenario of the FDD mode.
  • the second embodiment 2 differs from the first embodiment in that: Tproc MS and/or Tproc BS are variable values, and in turn, the size of both needs to be indicated by indication signaling.
  • the base station may send the first indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or an A-MAP channel,
  • the control message includes a capability negotiation message or a registration message
  • the terminal may send the second indication signaling in the capability negotiation message or the registration message of the communication system, where the first indication signaling or the second indication signaling is used to indicate the Tproc MS . Value.
  • the base station may send the third indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or an A-MAP channel,
  • the control message includes a capability negotiation message or a registration message.
  • the third indication signaling is used to indicate the value of the Tproc BS .
  • Tproc BS and Tproc MS can be represented by 1-bit indication signaling TBS and TMS, respectively.
  • Tables 2 and 3 illustrate the representation of Tproc BS and Tproc M s.
  • TDD mode in the case, as long as there is a corresponding Tproc BS or Tproc MS can also be determined by the same method Tproc BS or TprocMs-
  • the delay time Delay can be calculated by the above formula (3).
  • Delay can also be equal to N TTI , TprocMS or P , or it can be equal to the sum of their two combinations.
  • the frame number and the subframe number at the time of transmitting the feedback can be calculated by the formula (1) and the formula (2). Third embodiment.
  • the third embodiment is applied to the time when the terminal processes data TprocMs and the time when the base station processes the data TprocBS is a fixed value or a non-fixed value, and is a scenario of the FDD mode.
  • the base station transmits a data packet on the mth downlink subframe of the i-th frame, and the terminal sends feedback information in the nth uplink subframe of the j-th frame.
  • the frame number and subframe number when downlink HARQ transmission feedback is calculated by Table 4 and Equation 5: (downlink transmission)
  • N TT ⁇ is the number of subframes corresponding to the transmission time interval TTI of the data packet
  • Tproc refers to the time TprocMs of the terminal processing data.
  • the third embodiment only cites an example, this parameter The value can also take other values.
  • ⁇ ( x ) represents the largest integer less than or equal to X
  • C / (X) represents the smallest integer greater than or equal to X.
  • the time TprocMs of the TprocMs and the terminal processing data wherein, when the terminal transmits data, the processing time required for the TpWCMS to transmit data for the terminal is ⁇ - 7 ⁇ , and when the terminal receives the data, the TpWC Ms sends a feedback ACK for the terminal to receive the data.
  • /NACK time TpWC Ms_RE When the base station transmits data, ⁇ is the processing time required for the base station to transmit data ⁇ ⁇ , when the base station receives the data, the Tpr0CBS is the time when the base station receives the data and sends the feedback ACK/NACK. ' t BS REI or, when the base station receives data, the time when the base station processes the data is the time when the base station receives the data and sends the feedback ACK/NACK and the control message (such as A-MAP IE).
  • Tproc BS and Tproc MS can be calculated by the above formula (3) and formula (4).
  • Tproc 2 ;
  • the third embodiment is an example in the FDD mode.
  • the Tproc BS or the Tproc MS can be determined in the same manner as long as there is a corresponding Tproc BS or Tproc MS .
  • the base station may send the first indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or an A-MAP channel, where the time TprocMS of the terminal processing data is not a fixed value,
  • the control message includes a capability negotiation message or a registration message, or the terminal may send the second indication signaling in the capability negotiation message or the registration message of the communication system, where the first indication signaling or the second indication signaling is used to instruct the terminal to process the data.
  • the value of the time Tproc MS .
  • the base station may send the third indication signaling in the control channel or the control message of the communication system, where the control channel includes a super frame header or an A-MAP channel, where the time when the data is processed by the base station is not fixed.
  • the control message includes a capability negotiation message or a registration message.
  • the third indication signaling is used to indicate the value of the time TprocBS at which the base station processes data.
  • TBASE BS and Tproc MS can be represented by 1-bit indication signaling TBS and TMS, respectively.
  • the third embodiment is an example in FDD mode, TDD mode corresponding to, as long as there is a corresponding Tproc BS or Tproc MS or Tproc BS can be determined using the same method Tproc MS.
  • the feedback time of the terminal is determined according to the terminal processing time and the transmission time interval, thereby ensuring that the terminal completes the HARQ feedback in the fastest time, avoiding the waiting time of the feedback being too long, and improving.
  • the speed of HARQ feedback is determined according to the terminal processing time and the transmission time interval, thereby ensuring that the terminal completes the HARQ feedback in the fastest time, avoiding the waiting time of the feedback being too long, and improving.
  • the fourth embodiment is applied to the time when the terminal processes the data TprocMS and the time when the base station processes the data TprocBS is a fixed value or an indeterminate value, and is a scene of the FDD mode.
  • the base station transmits A-MAP information in the second downlink subframe of the ith frame, and the terminal transmits data in the mth uplink subframe of the jth frame.
  • the packet the base station then sends feedback information in the first downlink subframe of the kth frame, and the terminal transmits the retransmission data packet on the yth uplink subframe of the pth frame.
  • the frame number and subframe number when uplink HARQ transmission and feedback can be calculated by Table 5 and Equation (6) and Equation (7):
  • N TTI represents the number of subframes corresponding to the TTI of the data packet
  • ⁇ ⁇ ⁇ ( ⁇ ) represents the largest integer less than or equal to X
  • c / (x) represents the smallest integer greater than or equal to X.
  • the Tproc in the formula (6) represents the time Tproc MS of the terminal processing data
  • the Tproc in the formula 7 refers to the time Tproc BS in which the base station processes the data, and the two times may be equal or unequal, and the fourth embodiment merely cites an example.
  • the time period the terminal processing data Tproc MS or base station processes data Tproc BS is a fixed value, may be determined base station processes the data according to the number of subframes system one frame time Tproc BS and the terminal processing data time Tproc MS, e.g.
  • the time TprocBS at which the base station processes the data and the time Tproc MS at which the terminal processes the data can be calculated by the above formula (3) and formula (4).
  • the fourth embodiment is an example in the FDD mode.
  • the time Tproc BS for processing data by the corresponding base station or the time Tproc MS for processing data by the terminal can also determine the time Tproc BS for processing data by the base station in the same manner. Or the time at which the terminal processes the data Tproc
  • the base station may send the first indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or an A-MAP channel, where the time TprocMS of the terminal processing data is not a fixed value,
  • the control message includes a capability negotiation message or a registration message, or the terminal may send the second indication signaling in the capability negotiation message or the registration message of the communication system, where the first indication signaling and the second indication signaling are used to indicate that the base station processes the data.
  • the value of the time Tproc BS .
  • the base station may send the third indication signaling in the control channel or the control message of the communication system, where the control channel includes a super frame header or an A-MAP channel, where the time when the data is processed by the base station is not fixed.
  • the control message includes a capability negotiation message or a registration message.
  • the third indication signaling is used to indicate the value of the time TprocBS at which the base station processes data.
  • the 1-bit indication signaling TBS and TMS respectively indicate the time Tproc BS at which the base station processes data and the time Tproc MS at which the terminal processes data.
  • the fourth embodiment is an example in the FDD mode.
  • the Tproc BS or the Tproc MS can be determined in the same manner as long as there is a corresponding Tproc BS or Tproc MS .
  • the feedback time of the base station is determined according to the time and the transmission time interval of the data processing by the base station, thereby ensuring that the base station completes the HARQ feedback in the fastest time, and avoids the waiting time of the feedback being too long. Increases the speed of HARQ feedback.
  • the fifth embodiment is applied to the time when the terminal processes the data Tproc MS and the time when the base station processes the data TprocBS is a fixed value or an indeterminate value, and is a scenario of the FDD mode.
  • the base station transmits a data packet on the mth downlink subframe of the i-th frame, and the terminal sends feedback information in the nth uplink subframe of the j-th frame.
  • the frame number and sub frame number at the time of sending feedback can be calculated by the following formula (8) and formula (9):
  • TTI represents the largest integer less than or equal to x
  • c / (x) represents the smallest integer greater than or equal to X
  • Tproc represents the time TprocMS for the terminal to process data.
  • the fifth embodiment is just an example. The value of this parameter can also take other values.
  • Tproc MS or base station processes data Tproc BS When the time period the terminal processing data Tproc MS or base station processes data Tproc BS is a fixed value, may be determined base station processes the data according to the number of subframes system one frame time Tproc BS and the terminal processing data time Tproc MS, e.g. , Tproc BS and Tproc MS can be calculated by Equation 3 and Equation (4) above.
  • Tproc BS and Tproc MS can be calculated by Equation 3 and Equation (4) above.
  • the fifth embodiment is an example in the FDD mode.
  • the time Tproc BS for processing data by the corresponding base station or the time Tproc MS for processing data by the terminal can also determine the time Tproc BS for processing data by the base station in the same manner.
  • the base station may send the first indication signaling in the control channel or control message of the communication system, where the control channel includes a super frame header Or the A-MAP channel, the control message includes a capability negotiation message or a registration message, or the terminal may send the second indication signaling in the capability negotiation message or the registration message of the communication system, where the first indication signaling and the second indication are The signaling is used to indicate the value of the time Tproc MS at which the terminal processes the data.
  • the base station may send the third indication signaling in the control channel or the control message of the communication system, where the control channel includes a super frame header or an A-MAP channel, where the time when the data is processed by the base station is not fixed.
  • the control message includes a capability negotiation message or a registration message.
  • the third indication signaling is used to indicate the value of the time TprocBS at which the base station processes data.
  • the 1-bit indication signaling TBS and TMS respectively indicate the time Tproc BS at which the base station processes data and the time Tproc MS at which the terminal processes data.
  • the fifth embodiment is an example in the FDD mode.
  • the time Tproc BS for processing data by the corresponding base station or the time Tproc MS for processing data by the terminal can also determine the time Tproc BS for processing data by the base station in the same manner. Or the time at which the terminal processes the data
  • the sixth embodiment is applied to the time when the terminal processes the data Tproc MS and the time when the base station processes the data TprocBS is a fixed value or a non-fixed value, and is a scene of the TDD mode.
  • D is the number of downlink subframes in a frame
  • U is the number of uplink subframes in one frame
  • ⁇ ( ⁇ indicates less than or equal to
  • the largest integer of X, c / (x) represents the smallest integer greater than or equal to X.
  • K is defined as follows:
  • Tproc refers to the time Tproc MS of the terminal processing data. This embodiment only cites an example, and the value of this parameter may take other values.
  • the base station when the N TTI is greater than 1 and m is not equal to 0, in the TDD downlink mode, the base station sends a data packet in the 0th downlink subframe of the i+1th frame, and the terminal is in the nth uplink of the jth frame.
  • the terminal processing data Tproc MS or base station processes data Tproc BS is a fixed value, may be determined base station processes the data according to the number of subframes system one frame time Tproc BS and the terminal processing data time Tproc MS, e.g. , Tproc BS and Tproc MS can be calculated by the above formula (3) and formula (4).
  • Tproc BS and Tproc MS can be calculated by the above formula (3) and formula (4).
  • the fifth embodiment is an example in the TDD mode.
  • the Tproc BS or the Tproc MS can be determined in the same manner as long as there is a corresponding Tproc BS or Tproc MS .
  • the base station may send the first indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or an A-MAP channel,
  • the control message includes a capability negotiation message or a registration message
  • the terminal may send the second indication signaling in the capability negotiation message or the registration message of the communication system, where the first indication signaling and the second indication signaling are used to instruct the terminal to process the data.
  • the value of the time Tproc MS is not a fixed value.
  • the base station may send the third indication signaling in the control channel or the control message of the communication system, where the control channel includes a super frame header or an A-MAP channel, where the time when the data is processed by the base station is not fixed.
  • the control message includes a capability negotiation message or a registration message.
  • the third indication signaling is used to indicate the value of the time TprocBS at which the base station processes data.
  • the time Tproc BS for processing data by the base station and the time Tproc MS for processing data by the terminal may be indicated by 1-bit indication signaling TBS and TMS, respectively.
  • the fifth embodiment is an example in TDD mode, corresponding to the FDD mode, as long as there is a corresponding Tproc BS or Tproc MS or Tproc BS can be determined using the same method Tproc MS.
  • the terminal processing time and the transmission time interval are used to determine the feedback time of the terminal, thereby ensuring that the terminal completes the HARQ feedback in the fastest time, avoiding the waiting time of the feedback being too long, and improving the HARQ.
  • the speed of feedback is used to determine the feedback time of the terminal, thereby ensuring that the terminal completes the HARQ feedback in the fastest time, avoiding the waiting time of the feedback being too long, and improving the HARQ.
  • the seventh embodiment 7 is applied to the time when the terminal processes the data TprocMS and the time when the base station processes the data TprocBS is a fixed value or an indeterminate value, and is a scene of the TDD mode.
  • the processing time required when the terminal transmits data ⁇ ⁇ s data is transmitted to the terminal when the terminal 7 receives the data, ⁇ ⁇ s terminal transmits ACK / NACK feedback time when data is received
  • T P roc B S — TR when the base station receives data, ⁇ is the time when the base station receives the data and then sends the feedback ACK/NACK, or when the base station receives the data, the time when the base station processes the data Tpr0CBS is sent by the base station after receiving the data.
  • Feedback ACK/NACK and control messages are the time when the base station receives the data and then sends the feedback ACK/NACK, or when the base station receives the data, the time when the base station processes the data Tpr0CBS is sent by the base station after receiving the data.
  • the base station transmits A-MAP information in the second downlink subframe of the ith frame, and the terminal transmits data in the mth uplink subframe of the jth frame.
  • the packet the base station then sends feedback information in the first downlink subframe of the kth frame, and the terminal transmits the retransmission data packet on the yth uplink subframe of the pth frame.
  • the frame number and subframe number at the time of uplink HARQ transmission and feedback can be calculated by the definitions of Table 7, Equation (11), Equation (12), and parameter K:
  • m l K is l K + N A — MAP i, 0 ⁇ / ⁇ / n
  • D is the number of downlink subframes in a frame
  • U is the number of uplink subframes in one frame
  • c / (x) represents the smallest integer greater than or equal to X
  • K is defined as follows:
  • Tproc in Equation 11 refers to the time at which the terminal processes the data
  • Tproc in Equation 12 refers to the base station.
  • the two times can be equal or unequal. This embodiment is just an example.
  • the values of the two parameters can also take other values.
  • Tproc MS or base station processes data Tproc BS When the time period the terminal processing data Tproc MS or base station processes data Tproc BS is a fixed value, may be determined base station processes the data according to the number of subframes system one frame time Tproc BS and the terminal processing data time Tproc MS, e.g. , Tproc BS and Tproc MS can be calculated by the above formula (3) and formula (4).
  • the present example is an example in the TDD mode, for the FDD mode, as long as the BS or corresponding Tproc Tproc the MS or the BS may determine Tproc same way Tproc
  • the base station may send the first indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or A
  • the control message includes a capability negotiation message or a registration message
  • the terminal may send the second indication signaling, the first indication signaling and the second indication signaling, in the capability negotiation message or the registration message of the communication system.
  • the base station may send the third indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or an A-MAP channel,
  • the control message includes a capability negotiation message or a registration message.
  • the third indication signaling is used to indicate the value of the time TprocMs of the base station processing data.
  • the time Tproc BS for processing data by the base station and the time Tproc MS for processing data by the terminal may be indicated by 1-bit indication signaling TBS and TMS, respectively.
  • Another Bu Xi the present example is an example in the TDD mode, for the FDD mode, as long as there is a corresponding TprocMs or Tproc MS Tproc BS or can be determined by the same method Tproc MS.
  • the time when the data is processed by the base station may be used.
  • the inter- and transmission time interval is used to determine the feedback time of the base station, thereby ensuring that the base station completes the HARQ feedback in the fastest time, avoiding the waiting time of the feedback being too long, and improving the speed of the HARQ feedback.
  • the feedback moment is determined according to at least one of the time when the terminal processes the data, the time when the base station processes the data, the transmission time interval, and the protection time, thereby ensuring that the terminal or the base station is in the fastest time.
  • the HARQ feedback is completed, the waiting time of the feedback is avoided, and the speed of the HARQ feedback is improved.
  • a timing device for HARQ is also provided.
  • FIG. 6 is a schematic illustration of an embodiment of a HARQ timing device of the present invention. As shown in FIG. 6, the calculation module 602 and the sending module 604 are included, where
  • the calculating module 602 is configured to determine a feedback moment according to the predetermined parameter, where the predetermined parameter includes at least one of: a time when the terminal processes the data, a time when the base station processes the data, a transmission time interval, and a protection time;
  • the sending module 604 is configured to send a feedback message of the hybrid automatic repeat request at the determined feedback moment.
  • a fixed feedback subframe number is not set for the data sent by a certain subframe, and the feedback time is determined according to at least one of the terminal processing time, the TTI, and the guard time, so that the terminal only needs to complete the data packet. Processing can be sent without waiting for a fixed frame number to appear, thereby shortening the HARQ feedback time and improving the speed of HARQ feedback.
  • the Tproc MS indicates the time at which the terminal processes the data.
  • the time for processing the data by the terminal may be fixed according to different situations, or may be changed according to the situation of the terminal and the base station.
  • the terminal only needs to wait for a specific time Delay to perform feedback, instead of Need to wait for a fixed subframe number to appear.
  • the calculation module 602 can calculate the frame number j and the subframe number n when the feedback is performed by using formulas (1) and (2). :
  • the Delay can be calculated by the formula (3).
  • the time TprocBs of the base station processing data and the time TprocMS of the terminal processing data may be determined according to the number of subframes of one frame in the system, for example, determining TprocBs according to the number of subframes in one frame.
  • the time TprocMS at which the terminal processes the data as shown in equations (4) and (5).
  • Tproc BS or Tproc MS can be determined in the same way as long as there is a corresponding Tproc BS or Tproc MS .
  • the base station may send the first indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or an A-MAP channel.
  • the control message includes a capability negotiation message or a registration message, or the terminal may send the second indication signaling in the capability negotiation message or the registration message of the communication system, where the first indication signaling and the second indication signaling are used to indicate the terminal processing.
  • the value of the data Tproc MS .
  • the base station may send the third indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or an A-MAP channel.
  • the control message includes a capability negotiation message or a registration message.
  • the third indication signaling is used to indicate the value of the time Tproc BS that the base station processes the data.
  • Tproc BS or Tproc MS can be determined in the same way as long as there is a corresponding Tproc BS or Tproc MS .
  • the feedback time of the terminal is determined according to at least one of the terminal processing time, the transmission time interval, and the protection time, thereby ensuring that the terminal completes the HARQ feedback in the fastest time and avoids the feedback.
  • the waiting time is too long, which improves the speed of HARQ feedback.
  • the invention may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A timing method and apparatus for Hybrid Automatic Repeat Request (HARQ) are provided by the present invention. The method includes: determining the feedback time according to predetermined parameters (400), transmitting the feedback message of HARQ at the feedback time (401). The predetermined parameters include one of the following or the combinations of: time for processing data by the terminal TprocMS, time for processing data by the base station TprocBS, transmission time interval (TTI), number of sub-frames in one frame F and protecting time P. By the method of the present invention, once the terminal completes the process for the data packet, it can perform transmission without waiting for the appearance of a fixed frame number. So it is guaranteed that the terminal or the base station can complete HARQ feedback within the shortest time. Too long waiting time for feedback is avoided and the speed for HARQ feedback is improved.

Description

混合自动重传请求的定时方法及装置 技术领域  Timing method and device for hybrid automatic repeat request
本发明涉及自动重传技术, 尤其涉及一种混合自动重传请求的定时方 法和装置。 背景技术  The present invention relates to automatic retransmission techniques, and more particularly to a timing method and apparatus for hybrid automatic repeat request. Background technique
混合自动重传请求 ( HARQ, Hybrid Automatic Repeat Request )技术是 对传统自动重传请求 ( ARQ , Automatic Repeat Request )技术的改进。 HARQ 技术结合了 ARQ技术和前向纠错(FEC )技术, 进而减小了时变衰落信道 对接收数据误码率的影响, 使无线通信系统能够提供更高更稳定的数据吞 吐。 HARQ 是目前主流的 4G 系统, 例如长期演进 ( LTE , Long-Term Evolution ) 系统和 IEEE 802.16m系统的关键技术之一。  Hybrid Automatic Repeat Request ( HARQ) technology is an improvement on the traditional automatic repeat request (ARQ) technology. HARQ technology combines ARQ technology with Forward Error Correction (FEC) technology to reduce the impact of time-varying fading channels on the bit error rate of received data, enabling wireless communication systems to provide higher and more stable data throughput. HARQ is one of the key technologies of the current mainstream 4G systems, such as the Long Term Evolution (LTE), Long-Term Evolution (LTE) system and the IEEE 802.16m system.
在频分双工 ( FDD, Frequency Division Duplex ) 系统中, 上行链路 /下 行链路可以同时传输数据或信号。 为了减少由于系统链路结构造成的系统 延时, 以及灵活分配上行链路 /下行链路上的数据载荷, 通常将一个无线帧 进一步划分为多个时间粒度更小的子帧。 其中, 一个数据包所占的子帧数 (即时间长度 )为数据包的传输时间间隔( TTI , Transmission Time Interval )。 图 1是相关技术的无线帧结构的示意图, 如图 1所示的无线帧结构中, 一 个无线帧被划分为 8个子帧, 按照顺序递增的原则, 对所有无线帧进行顺 序编号, 筒称帧号, 8个子帧分别表示为 SF0~SF7, 其中, 上行链路与下行 链路具有相同的帧结构。  In a Frequency Division Duplex (FDD) system, the uplink/downlink can simultaneously transmit data or signals. In order to reduce the system delay caused by the system link structure and to flexibly allocate the data payload on the uplink/downlink, one radio frame is usually further divided into a plurality of subframes with smaller time granularity. The number of subframes (that is, the length of time) occupied by one data packet is the transmission time interval (TTI, Transmission Time Interval) of the data packet. 1 is a schematic diagram of a radio frame structure of the related art. In the radio frame structure shown in FIG. 1, a radio frame is divided into 8 sub-frames, and all radio frames are sequentially numbered according to the principle of sequential increment. No. 8 sub-frames are denoted as SF0~SF7, respectively, where the uplink and the downlink have the same frame structure.
对于一个下行 HARQ过程, 下行链路上的一个或多个子帧被分配给该 HARQ 过程, 用于承载数据信道, 相应地, 上行链路上的一个或多个子帧 也被分配给该 HARQ过程,用于承载反馈信道。同样,对于一个上行 HARQ 过程, 上行链路上的一个或多个子帧被分配给该 HARQ过程, 用于承载数 据信道,相应地, 下行链路上的一个或多个子帧也被分配给该 HARQ过程, 用于承载反馈信道。 例如, 对于一个上行 HARQ过程, 上行链路上的一个 或多个上行子帧用于承载数据信道, 相应地, 下行链路上的一个或多个下 行子帧用于承载与数据信道对应的反馈信道。 For a downlink HARQ process, one or more subframes on the downlink are allocated to the HARQ process for carrying a data channel, and accordingly, one or more subframes on the uplink are also assigned to the HARQ process. Used to carry a feedback channel. Again, for an upstream HARQ Procedure, one or more subframes on the uplink are allocated to the HARQ process for carrying a data channel, and accordingly, one or more subframes on the downlink are also allocated to the HARQ process for carrying feedback channel. For example, for an uplink HARQ process, one or more uplink subframes on the uplink are used to carry a data channel, and correspondingly, one or more downlink subframes on the downlink are used to carry feedback corresponding to the data channel. channel.
接收端在接收到数据信道携带的数据后, 需要一定的处理时间才能确 定与数据对应的反馈信号(该反馈信号携带在反馈信道上), 其中, 处理时 间称为接收处理时延, 反馈信道通过预定的映射关系承载在对应的子帧上。  After receiving the data carried by the data channel, the receiving end needs a certain processing time to determine the feedback signal corresponding to the data (the feedback signal is carried on the feedback channel), wherein the processing time is called the receiving processing delay, and the feedback channel is passed. The predetermined mapping relationship is carried on the corresponding subframe.
在时分双工 (TDD, Time Division Duplex ) 系统中, 对于基于 OFDM 或 OFDMA的无线通信系统, 其无线资源映射主要依据该无线通信系统的 帧结构和资源结构, 帧结构用于描述无线资源在时域上的控制结构, 资源 结构用于描述无线资源在频域上的控制结构。 帧结构将无线资源在时域上 划分为不同等级的单位,如超帧( Superframe )、帧( Frame )、子帧( Subframe ) 和符号(Symbol ), 通过设置不同的控制信道, 例如, 广播信道、 单播和多 播信道等来实现调度控制。  In a Time Division Duplex (TDD) system, for a wireless communication system based on OFDM or OFDMA, the radio resource mapping is mainly based on the frame structure and resource structure of the wireless communication system, and the frame structure is used to describe the radio resources in time. The control structure on the domain, the resource structure is used to describe the control structure of the radio resources in the frequency domain. The frame structure divides the radio resources into different levels of units in the time domain, such as a superframe, a frame, a subframe, and a symbol, by setting different control channels, for example, a broadcast channel. , unicast and multicast channels, etc. to achieve scheduling control.
图 2是相关技术的无线通信系统的帧结构的示意图, 如图 2所示, 无 线资源在时域上划分为超帧, 每个超帧包含 4个帧, 每个帧包含 8个子帧, 子帧由 6个基本的 OFDMA符号组成。 在实际系统中, 根据需要支持的带 宽和 /或 OFDMA符号的循环前缀长度等因素, 确定帧结构中各个等级单位 中具体包含多少个 OFDMA符号。 其中每个帧中可以包含若干个下行子帧 和上行子帧, 在下行子帧发送的数据包由基站发送给终端, 终端再通过上 行子帧进行 HARQ反馈; 同样, 在上行子帧发送的数据包由终端发送给基 站, 基站再通过下行子帧进行 HARQ反馈。  2 is a schematic diagram of a frame structure of a related art wireless communication system. As shown in FIG. 2, a radio resource is divided into super frames in a time domain, each super frame includes 4 frames, and each frame includes 8 subframes, and a sub-frame The frame consists of six basic OFDMA symbols. In an actual system, the number of OFDMA symbols included in each level unit in the frame structure is determined according to factors such as the bandwidth to be supported and/or the cyclic prefix length of the OFDMA symbol. Each of the frames may include a plurality of downlink subframes and uplink subframes, and the data packets sent in the downlink subframe are sent by the base station to the terminal, and the terminal performs HARQ feedback through the uplink subframe. Similarly, the data sent in the uplink subframe. The packet is sent by the terminal to the base station, and the base station performs HARQ feedback through the downlink subframe.
此外, 系统可以在超帧中的第一个下行子帧内设置广播信道(由于位 于超帧头部, 广播信道也称为超帧头 (SFH, Superframe Header ) )并发送 资源映射等系统信息; 且系统还可以设置单播和 /多播性质的控制信道发送 资源分配等调度控制信息。 同时, 系统还可以有高级 MAP信道(A-MAP, Advanced MAP )信道, A-MAP信道位于下行子帧上, 传送服务控制信息, 至少可以包括 Non user-specific A-MAP , HARQ feedback A-MAP , Power control A-MAP, Assignment A-MAP等控制信息之一或任意组合。 广播信道 (超帧头)和 A-MAP ( Advanced MAP )信道又可以称为控制信道。 In addition, the system can set a broadcast channel in the first downlink subframe in the superframe (because it is located in the superframe header, the broadcast channel is also called a superframe header (SFH)) and send System information such as resource mapping; and the system may also set scheduling control information such as unicast and/or multicast-type control channel transmission resource allocation. At the same time, the system may also have an Advanced MAP channel (A-MAP, Advanced MAP) channel, and the A-MAP channel is located in the downlink subframe, and transmits service control information, and may include at least a user-specific A-MAP and a HARQ feedback A-MAP. , one or any combination of control information such as Power control A-MAP, Assignment A-MAP. The broadcast channel (superframe header) and the A-MAP (Advanced MAP) channel may also be referred to as a control channel.
在目前的相关技术中, 计算 HARQ定时的公式虽然可以适用于各种情 况, 且不需要大量空间存储, 但是目前的公式对某些情况下的处理不够完 善, 例如, 在频分双工 ( FDD , Frequency Division Duplex ) 下行模式下, 反馈往往需要等待较长时间, 使得整个 HARQ的处理时间变得较长。 在通 信系统中, 发送数据包、发送 A-MAP和发送反馈等操作都发生在某一特定 的时刻, 在本说明书中某一时刻指的是某个帧的某一具体子帧。  In the current related art, the formula for calculating HARQ timing can be applied to various situations and does not require a large amount of space storage, but the current formula is not perfect for processing in some cases, for example, in frequency division duplex (FDD) , Frequency Division Duplex ) In the downlink mode, feedback often needs to wait for a long time, making the processing time of the entire HARQ longer. In a communication system, operations such as transmitting a data packet, transmitting an A-MAP, and transmitting a feedback occur at a specific time, and a certain time in the present specification refers to a specific subframe of a certain frame.
图 3是相关技术的 FDD模式 HARQ下行反馈的示意图。 如图 3所示, 系统存在 8个子帧, 假设终端处理数据的时间 TprocMS = 4, 序号为 1的 子帧携带分配的下行数据包, 这样, 终端固定的反馈子帧号为 5。 如果终端 在发送序号为 5 的子帧时尚未结束对数据包的处理, 则终端需要延迟到下 一帧的序号为 5的子帧来发送该 HARQ反馈。可以看出,在 FDD下行模式 下, 终端在完成对数据包处理并可以发送反馈信息后可能需要等待一定时 间, 有时候等待时间可以接近一个帧的时间。 FIG. 3 is a schematic diagram of a related art FDD mode HARQ downlink feedback. As shown in FIG. 3, the system has 8 subframes. Assume that the terminal processes data at the time Tproc MS = 4, and the subframe numbered 1 carries the allocated downlink data packet. Thus, the terminal has a fixed feedback subframe number of 5. If the terminal has not finished processing the data packet when transmitting the subframe with the sequence number of 5, the terminal needs to delay the subframe with the sequence number 5 of the next frame to send the HARQ feedback. It can be seen that in the FDD downlink mode, the terminal may need to wait for a certain time after completing the processing of the data packet and can send the feedback information, and sometimes the waiting time can be close to one frame time.
针对相关技术中 HARQ定时方法存在延时较大的问题, 目前尚未提出 有效的解决方案。 发明内容  Aiming at the problem that the HARQ timing method has a large delay in the related art, an effective solution has not been proposed yet. Summary of the invention
本发明的主要目的在于提供一种混合自动重传请求的定时方法和装 置, 能够提高 HARQ反馈的速度。  SUMMARY OF THE INVENTION A primary object of the present invention is to provide a timing method and apparatus for hybrid automatic repeat request that can improve the speed of HARQ feedback.
为了实现上述目的, 根据本发明的一个方面, 提供了一种混合自动重 传请求的定时方法, 包括: In order to achieve the above object, according to an aspect of the present invention, a hybrid automatic weight is provided The timing method for transmitting requests, including:
根据预定参数确定反馈时刻, 在确定的反馈时刻发送混合自动重传请 求的反馈消息;  Determining a feedback moment according to a predetermined parameter, and transmitting a feedback message of the hybrid automatic retransmission request at the determined feedback moment;
所述预定参数包括以下至少之一或组合: 终端处理数据的时间 The predetermined parameter includes at least one or a combination of the following: a time at which the terminal processes data
TprocMs、 基站处理数据的时间 TprocBs、 传输时间间隔 TTI和保护时间 P。 TprocMs, the time at which the base station processes data TprocBs, transmission time interval TTI, and guard time P.
本发明还提供一种混合自动重传请求的定时装置, 其特征在于, 包括: 计算模块, 用于根据预定参数确定反馈时刻, 其中, 所述预定参数包 括以下至少之一或组合: 终端处理数据的时间、 基站处理数据的时间、 传 输时间间隔、 一个帧所包括的子帧数目和保护时间;  The present invention further provides a timing device for a hybrid automatic repeat request, comprising: a calculating module, configured to determine a feedback moment according to a predetermined parameter, wherein the predetermined parameter comprises at least one or a combination of the following: Time, the time at which the base station processes data, the transmission time interval, the number of subframes included in one frame, and the guard time;
发送模块, 用于在确定出的反馈时刻发送混合自动重传请求的反馈消 息。  And a sending module, configured to send a feedback message of the hybrid automatic repeat request at the determined feedback moment.
本发明还提供一种混合自动重传请求的定时方法, 其特征在于, 包括: 根据预定参数确定反馈时刻, 在确定的反馈时刻发送混合自动重传请 求的反馈消息;  The present invention further provides a timing method for hybrid automatic repeat request, which includes: determining a feedback moment according to a predetermined parameter, and transmitting a feedback message of the hybrid automatic retransmission request at the determined feedback moment;
所述预定参数包括以下至少之一或组合: 处理数据的时间 Tproc、 传输 时间间隔 TTI和保护时间 P;  The predetermined parameter includes at least one or a combination of: a time for processing data Tproc, a transmission time interval TTI, and a guard time P;
当所述处理数据的时间 Tproc为固定值时, 该方法还包括:  When the time Tproc of processing the data is a fixed value, the method further includes:
根据系统中一个帧所包括的子帧数目确定处理数据的时间 Tproc。  The time Tproc to process the data is determined according to the number of subframes included in one frame in the system.
本发明方法根据预定参数确定反馈时刻, 以便在反馈时刻发送混合自 动重传请求的反馈消息, 其中, 预定参数包括以下至少之一: 终端处理数 据的时间 TprocMS、 基站处理数据的时间 TprocBS、 传输时间间隔 TTI和保 护时间 P。 其中, 在终端发送数据时, ^ ^ 为终端发送数据所需的处理 时间 Tpr0CMs— , 在终端接收数据时, TProcMs为终端接收数据后发送反馈 ACK/NACK 的时间 ^^^ - ; 在基站发送数据时, ^为基站发送 数据所需的处理时间 在基站接收数据时, ^为基站接收 数据后发送反馈 ACK/NACK的时间 TprocBS REl ,或者,在基站接收数据时, 所述基站处理数据的时间 ^ ^5为基站接收数据后发送反馈 ACK/NACK 及控制消息(如 A-MAP IE )的时间 ^ ^- 。 通过本发明方法, 终端只 要完成对数据包的处理就可以发送, 而不需要等待固定的帧号出现, 保证 了终端或基站在最快时间内完成 HARQ反馈,避免了反馈的等待时间过长, 提高了 HARQ反馈的速度。 附图说明 The method of the present invention determines a feedback moment according to a predetermined parameter, so as to send a feedback message of the hybrid automatic repeat request at the feedback moment, where the predetermined parameter includes at least one of the following: a time Tproc MS for processing the data by the terminal, a time Tproc BS for processing the data by the base station, Transmission time interval TTI and protection time P. When the terminal transmits data, ^ ^ is the processing time Tpr0C Ms_ required for the terminal to transmit data. When the terminal receives the data, T P roc Ms is the time when the terminal receives the data and sends the feedback ACK/NACK ^^^ - ; When the base station transmits data, ^ is sent to the base station. The processing time required for the data is when the base station receives the data, ^ is the time Tproc BS RE1 for transmitting the feedback ACK/NACK after the base station receives the data, or when the base station receives the data, the time when the base station processes the data is ^ 4 for the base station to receive The time after sending the data ACK/NACK and control message (such as A-MAP IE) ^ ^-. With the method of the present invention, the terminal can be sent as long as the processing of the data packet is completed, without waiting for a fixed frame number to appear, which ensures that the terminal or the base station completes the HARQ feedback in the fastest time, and avoids the waiting time of the feedback being too long. Increased the speed of HARQ feedback. DRAWINGS
图 1是相关技术的无线帧结构的示意图;  1 is a schematic diagram of a radio frame structure of a related art;
图 2是相关技术的无线通信系统的帧结构的示意图;  2 is a schematic diagram of a frame structure of a related art wireless communication system;
图 3是相关技术的 FDD模式下 HARQ下行反馈的示意图;  3 is a schematic diagram of HARQ downlink feedback in a FDD mode of a related art;
图 4是本发明 HARQ定时方法的实施例的流程图;  4 is a flow chart of an embodiment of a HARQ timing method of the present invention;
图 5是本发明 FDD模式下 HARQ下行反馈的实施例的示意图; 图 6是本发明 HARQ定时装置的实施例的示意图。 具体实施方式  5 is a schematic diagram of an embodiment of HARQ downlink feedback in the FDD mode of the present invention; and FIG. 6 is a schematic diagram of an embodiment of the HARQ timing apparatus of the present invention. detailed description
在本发明中, HARQ定时方法指的是确定 HARQ反馈时刻的方法。 图 4是本发明 HARQ定时方法的实施例的流程图。如图 4所示, 包括: 步骤 400: 根据预定参数确定反馈时刻, 以在反馈时刻发送混合自动重 传请求的反馈消息。 其中, 预定参数包括以下至少之一: 终端处理数据的 时间 TprocMS、 基站处理数据的时间 TprocBS、 传输时间间隔、 或保护时间。 这里, 终端处理数据的时间 TprocMS、 和 /或基站处理数据的时间 TprocBs可 以称为处理数据的时间 Tproc。 数据包的传输时间间隔, 也可认为是数据包跨越的子帧数目, 在本发 明实施例中用 NTTI来表示 TTI的大小, 其中, NTT^ 的是数据包的传输时 间间隔 TTI对应的子帧数目。 In the present invention, the HARQ timing method refers to a method of determining the HARQ feedback timing. 4 is a flow chart of an embodiment of a HARQ timing method of the present invention. As shown in FIG. 4, the method includes: Step 400: Determine a feedback moment according to a predetermined parameter, to send a feedback message of the hybrid automatic repeat request at the feedback moment. The predetermined parameter includes at least one of the following: a time Tproc MS for processing the data by the terminal, a time Tproc BS for processing the data by the base station, a transmission time interval, or a guard time. Here, the time Tproc MS of the terminal processing data, and/or the time TprocBs at which the base station processes the data may be referred to as the time Tproc of processing the data. The transmission time interval of the data packet is also considered to be the number of subframes that the data packet spans. In the embodiment of the present invention, the size of the TTI is represented by N TTI , where N TT ^ is the transmission time interval TTI of the data packet. The number of subframes.
根据不同的情况, 上述的终端处理数据的时间 TprocMs或基站处理 数据的时间 TprocMs可以固定不变,也可以根据终端和基站的情况而改变。  Depending on the situation, the time TprocMs of the above-mentioned terminal processing data or the time TprocMs of the base station processing data may be fixed or may be changed according to the conditions of the terminal and the base station.
步骤 401 : 在反馈时刻发送混合自动重传请求的反馈消息。  Step 401: Send a feedback message of the hybrid automatic repeat request at the feedback moment.
根据本发明实施例的 HARQ的定时方法, 可以根据终端处理数据的时 间、 基站处理数据的时间、 传输时间间隔和保护时间中的至少一个来确定 反馈时间, 这样, 终端或基站只要完成对数据包的处理就可以发送, 而不 需要等待固定的帧号出现, 从而缩短了 HARQ的反馈时间, 提高了 HARQ 反馈的速度。  According to the timing method of the HARQ according to the embodiment of the present invention, the feedback time may be determined according to at least one of the time at which the terminal processes the data, the time at which the base station processes the data, the transmission time interval, and the protection time, so that the terminal or the base station only needs to complete the data packet. The processing can be sent without waiting for a fixed frame number to appear, thereby shortening the HARQ feedback time and increasing the speed of HARQ feedback.
在本发明 HARQ的定时方法的实施例中,在 FDD下行模式下, 不对某 一子帧发送的数据设定固定的反馈子帧号, 而根据终端处理数据的时间、 TTI、 每个帧的子帧数目和保护时间中的至少一个来确定反馈时刻。 这样, 终端只要完成对数据包的处理就可以发送, 而不需要等待固定的帧号出现, 从而缩短了 HARQ的反馈时间, 提高了 HARQ反馈的速度。  In the embodiment of the HARQ timing method of the present invention, in the FDD downlink mode, a fixed feedback subframe number is not set for data transmitted in a certain subframe, and the time, TTI, and sub-frame of each frame are processed according to the terminal. At least one of the number of frames and the guard time is used to determine the timing of the feedback. In this way, the terminal can transmit as long as the processing of the data packet is completed, without waiting for a fixed frame number to appear, thereby shortening the feedback time of the HARQ and improving the speed of the HARQ feedback.
在本发明 HARQ的定时方法的实施例中,在 TDD下行模式下不对某一 子帧发送的数据设定固定的反馈子帧号, 而根据终端处理时间、 TTI、 每个 帧的子帧数目、 每个帧的上下行子帧比例和保护时间中的至少一个来确定 反馈时刻。 这样, 终端只要完成对数据包的处理就可以发送, 而不需要等 待固定的帧号出现, 从而缩短了 HARQ的反馈时间, 提高了 HARQ反馈的 速度。  In the embodiment of the HARQ timing method of the present invention, in the TDD downlink mode, a fixed feedback subframe number is not set for data transmitted in a certain subframe, and according to terminal processing time, TTI, number of subframes per frame, The feedback timing is determined by at least one of the uplink and downlink subframe ratio and the guard time of each frame. In this way, the terminal can transmit as long as the processing of the data packet is completed, and does not need to wait for the fixed frame number to appear, thereby shortening the feedback time of the HARQ and improving the speed of the HARQ feedback.
下面将结合实例对本发明实施例的实现过程进行详细描述。  The implementation process of the embodiment of the present invention will be described in detail below with reference to examples.
第一实施例。 第一实施例应用于终端处理的时间 ( TprocMs, MS Processing Time )和 /或基站处理数据的时间( TprocBS , BS Processing Time )是固定值,且为 FDD 模式的场景。 其中, 在终端发送数据时, ^f^^为终端发送数据所需的处 理时间, 在终端接收数据时, ^ ^^-^为终端接收数据后发送反馈 ACK/NACK 的时间 ^^^ - ; 在基站发送数据时, ^为基站发送 数据所需的处理时间 在基站接收数据时, ^为基站接收 数据后发送反馈 ACK/NACK的时间 , 或者, 在基站接收数据 时, 所述基站处理数据的时间 ^为基站接收数据后发送反馈 First embodiment. The time when the first embodiment is applied to the terminal processing time (TprocMs, MS Processing Time) and/or the time when the base station processes the data (Tproc BS , BS Processing Time) is a fixed value and is a scenario of the FDD mode. Wherein, when the terminal transmits data, ^f^^ is the processing time required for the terminal to transmit data, and when the terminal receives the data, ^^^-^ is the time when the terminal receives the data and sends the feedback ACK/NACK ^^^ - ; When the base station transmits data, ^ the processing time required for the base station to transmit data when the base station receives the data, ^ is the time when the base station receives the data and then sends the feedback ACK/NACK, or when the base station receives the data, the base station processes the data. Time ^ sends feedback after the base station receives the data.
ACK/NACK及控制消息 (如 A-MAP IE ) 的时间 ^ ^ 2。 The time of ACK/NACK and control messages (such as A-MAP IE) ^ ^ 2.
假设系统的一个帧上有 F个子帧, 基站在第 i帧的第 m个下行子帧上 发送了数据包,那么终端只需要等待一个特定时间 Delay即可进行反馈, 而 不需要等待某一个固定的子帧号出现。 根据本发明方法, 假设终端在第 j 帧的第 n个上行子帧发送反馈信息, 则可以通过公式 ( 1)和公式 (2)来计算反 馈时的帧号 j以及子帧号 n, 以便在第 j帧的第 n子帧上发送反馈信息: j = i + floor((Delay + m) l F) (丄 ) n = {Delay + m) mod F (2) 其中,
Figure imgf000009_0001
表示小于等于 x的最大整数; Delay由终端处理时间、 TTI和保护时间的至少一个来确定; Mod表示取模运算。
Assuming that there are F subframes in one frame of the system, and the base station sends a data packet on the mth downlink subframe of the ith frame, the terminal only needs to wait for a specific time Delay to perform feedback without waiting for a fixed one. The sub-frame number appears. According to the method of the present invention, if the terminal transmits feedback information in the nth uplink subframe of the jth frame, the frame number j and the subframe number n at the time of feedback can be calculated by using formula (1) and formula (2), so as to Send feedback information on the nth subframe of the jth frame: j = i + floor((Delay + m) l F) (丄) n = {Delay + m) mod F (2) where
Figure imgf000009_0001
Represents the largest integer less than or equal to x; Delay is determined by at least one of terminal processing time, TTI, and guard time; Mod represents a modulo operation.
此外,
Figure imgf000009_0002
表示 A-MAP信道的周期, 一般情况下等于 1 , 也可以是 大于 1至小于等于下行子帧数的任意整数。 如果 NA_MAP大于 1 , 则 = Z , 用于表示 HARQ 子包和 A-MAP 信息可以位于同一子帧上, 或者, 用于表示 HARQ子包可以位于 A-MAP信息所在子帧之 后的第 个子帧上。其中 /对于 TTI大于 1的数据包而言指的是数据 包开始的位置, 而不是 A-M AP信息元素 ( IE , Information Element ) 出现 的位置, 且取值总是等于 0, 数据包相应的 A-MAP IE出现在上一帧的第二 个下行子帧到本帧的第一子帧之间。 /对于 TTI等于 1的数据包而言指的是 数据包开始的位置和 A-MAP IE出现的位置。 具体关系如表 1所示。
In addition,
Figure imgf000009_0002
The period indicating the A-MAP channel is generally equal to 1, and may be any integer greater than 1 to less than or equal to the number of downlink subframes. If N A _MAP is greater than 1, then Z is used to indicate that the HARQ sub-packet and the A-MAP information may be located in the same subframe, or that the HARQ sub-packet may be located in the subframe where the A-MAP information is located. After the first sub-frame. Where / for a packet with a TTI greater than 1, it refers to the location where the packet starts, not the location where the AM AP information element (IE, Information Element) appears, and the value is always equal to 0, the corresponding A- of the packet The MAP IE appears between the second downlink subframe of the previous frame and the first subframe of the current frame. / For a packet with a TTI equal to 1, it refers to the location where the packet starts and the location where the A-MAP IE appears. The specific relationship is shown in Table 1.
Figure imgf000010_0001
Figure imgf000010_0001
表 1  Table 1
在 FDD下行模式下, 根据终端处理时间、 TTI和保护时间中的至少一 个, 可以通过公式 (3)来计算延迟时间 Delay:  In the FDD downlink mode, the delay time Delay can be calculated by the formula (3) according to at least one of the terminal processing time, the TTI, and the guard time:
Delay = Vm + TprocMS + P (3) 其中, NTT^ 的是数据包的 TTI对应的子帧数目, P为保护时间, 用于 预留一定的冗余时间, P可以默认为 0。 这里, 通过公式 (3)来计算 Delay只 是一个示例, 本发明实施例不仅限于此, 例如, Delay还可以等于 NTTI、 TprocMS或 P的值, 也可以等于它们两两组合之和。 Delay = V m + Tproc MS + P (3) where N TT ^ is the number of subframes corresponding to the TTI of the packet, P is the guard time, which is used to reserve a certain redundancy time, and P can default to 0. Here, the calculation of the Delay by the formula (3) is only an example, and the embodiment of the present invention is not limited thereto. For example, the Delay may also be equal to the value of N TTI , TprocMS or P, or may be equal to the sum of the two combinations thereof.
此外, 当终端处理数据的时间 TprocMS和 /或基站处理数据的时间 Tproces为固定值时, 可以根据系统中一个帧的子帧数目来确定基站处理数 据的时间 Tproces和终端处理数据的时间 TprocMS , 其中, 在终端发送数据 时, ^^^s为终端发送数据所需的处理时间7 在终端接收数据 时, TProc 为终端接收数据后发送反馈 ACK/NACK的时间 TPWCMS—RE 在基站发送数据时, ^为基站发送数据所需的处理时间 TPr0CBS— , 在基站接收数据时, Tpr0CBS为基站接收数据后发送反馈 ACK/NACK的时 TprocBS RE" 或者, 在基站接收数据时, 所述基站处理数据的时间 In addition, when the time TprocMS of the data processing by the terminal and/or the time Tproces of the data processing by the base station is a fixed value, the time Tproces of the base station processing data and the time TprocMS of the terminal processing data may be determined according to the number of subframes of one frame in the system, where when the terminal transmits data, ^^^ s processing time required for data transmission to the terminal when the terminal 7 receives the data, T P roc after the terminal receives the data transmission ACK / NACK feedback time TPWC MS-RE When the base station transmits data, ^ the processing time required for the base station to transmit data T P r0C B S — , when the base station receives the data, the Tpr0CBS is the time when the base station receives the data and sends the feedback ACK/NACK when the Tproc BS RE " or Time when the base station processes data when receiving data
TProc s为基站接收数据后发送反馈 ACK/NACK及控制消息(如 A-MAP T P roc s sends feedback ACK/NACK and control messages (such as A-MAP) after the base station receives the data.
IE ) 的时间 K£2。 例如, 可以通过下列公式 (4)和公式 (5)来计算 TprocBS和 T rocMs: IE) time is K£2 . For example, Tproc BS and T rocMs can be calculated by the following formula (4) and formula (5):
TprocMS = floor((x - ) / 2) + 2,0 < < 8 (4) TprocBS = floor((x - ) / 2) + 2,0 < j < 8 (5) 其中, y^^o)表示小于等于 X的最大整数,x为一个帧中的子帧数目。 可以看出, 在 i和 j取不同值的情况下, 根据一个帧中的子帧数目确定出的Tproc MS = floor((x - ) / 2) + 2,0 << 8 ( 4 ) Tproc BS = floor((x - ) / 2) + 2,0 < j < 8 (5) where y^^ o) represents the largest integer less than or equal to X, where x is the number of subframes in a frame. It can be seen that, in the case where i and j take different values, it is determined according to the number of subframes in one frame.
Tproces和 rocMs不同。 Tproces is different from rocMs.
例如, 在 i=6以及 j=6的情况下, 当一个帧上有 6或 7个子帧时, 则 TprocBS和 TprocMS等于 2; 当一个帧上有 8个子帧时, TprocBS和 TprocMS 等于 3。 For example, in the case of i=6 and j=6, when there are 6 or 7 subframes in a frame, then Tproc BS and Tproc MS are equal to 2; when there are 8 subframes in a frame, Tproc BS and Tproc MS Equal to 3.
另外, 本实施例应用于 FDD模式的场景, 对于 TDD模式的情况, 只 要有相应的 TprocBS或 TprocMS也可以用同样的方法确定 TprocBS或 TprocMSFurther, the embodiment is applied to FDD mode embodiment of the present scene, for the case of TDD mode, as long as there is a corresponding Tproc BS or Tproc MS or Tproc BS can be determined using the same method Tproc MS.
具体来讲:  Specifically:
TprocMS TR = floor{{x -β1)/2) + 2,0 < ol < 8; 和 /或, TprocMS m = floor{{x -«2)/2) + 2,0 < β2 < 8; 和 /或, TprocBS TR = floordx -M)/2) + 2,0≤ < 8; 和 /或, TprocBS REl = floor((x -½)/2) + 2,0 < /?2 < 8; 和 /或 , TprocBS RE2 = floor{{x -½)/2) + 2,0 < ½ < 8; 其中, X 为所述系统中一个帧所包括的子帧数目; 。^(X)表示小于等 于 X的最大整数。 Tproc MS TR = floor{{x -β1)/2) + 2,0 < ol <8; and / or, Tproc MS m = floor{{x -«2)/2) + 2,0 < β2 <8; and / or, Tproc BS TR = floordx -M)/2) + 2,0≤ <8; and / or, Tproc BS REl = floor((x -1⁄2 )/2) + 2,0 < /?2 <8; and / or, Tproc BS RE2 = floor{{x -1⁄2)/2) + 2,0 < 1⁄2 <8; Where X is the number of subframes included in one frame in the system; ^( X ) represents the largest integer less than or equal to X.
图 5是本发明 FDD模式下 HARQ下行反馈的实施例的示意图。如图 5 所示, 假设系统存在 8 个子帧, TprocMS = 4, Νχτι = 1 , Ρ=0, 基站在第 i 帧中的第 1子帧上下发所分配的下行数据包, 且 Delay=TprocMS+ NTTI + P, 从而可以根据公式 (1)和 (2)计算出: j = l , n = 6 , 也就是, 终端在第 i帧的 第 6个上行子帧上发送反馈信息。 FIG. 5 is a schematic diagram of an embodiment of HARQ downlink feedback in an FDD mode according to the present invention. As shown in Figure 5, assuming that there are 8 subframes in the system, Tproc MS = 4, Νχτι = 1 , Ρ=0, the base station sends the assigned downlink data packet in the first subframe in the i-th frame, and Delay=Tproc MS + N TTI + P, which can be calculated according to formulas (1) and (2): j = l , n = 6 , that is, the terminal transmits feedback information on the sixth uplink subframe of the i-th frame.
第二实施例。  Second embodiment.
第二实施例应用于终端处理数据的时间 TprocMs和 /或基站处理数据的 时间 TprocBS是可变值, 且为 FDD模式的场景。 第二实施例 2与第一实施 例的区别在于: TprocMS和 /或 TprocBS为可变值, 依次, 需要通过指示信令 来指示两者的大小。 The second embodiment is applied to the time TprocMs at which the terminal processes data and/or the time Tproc BS at which the base station processes the data is a variable value, and is a scenario of the FDD mode. The second embodiment 2 differs from the first embodiment in that: Tproc MS and/or Tproc BS are variable values, and in turn, the size of both needs to be indicated by indication signaling.
当终端处理数据的时间 TprocMs为不固定值时,基站可以在通信系统的 控制信道或控制消息中发送第一指示信令, 其中, 所述控制信道包括超帧 头或 A-MAP信道, 所述控制消息包括能力协商消息或注册消息, 或者, 终 端可以在通信系统的能力协商消息或注册消息中发送第二指示信令, 上述 第一指示信令或第二指示信令用于指示 TprocMS的取值。 When the time TprocMs of the data processing by the terminal is not a fixed value, the base station may send the first indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or an A-MAP channel, The control message includes a capability negotiation message or a registration message, or the terminal may send the second indication signaling in the capability negotiation message or the registration message of the communication system, where the first indication signaling or the second indication signaling is used to indicate the Tproc MS . Value.
当基站处理数据的时间 TprocMs为不固定值时,基站可以在通信系统的 控制信道或控制消息中发送第三指示信令, 其中, 所述控制信道包括超帧 头或 A-MAP信道, 所述控制消息包括能力协商消息或注册消息。 上述第三 指示信令用于指示 TprocBS的取值。 When the time TprocMs of the data processing by the base station is not a fixed value, the base station may send the third indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or an A-MAP channel, The control message includes a capability negotiation message or a registration message. The third indication signaling is used to indicate the value of the Tproc BS .
例如, 可以分别用 1比特的指示信令 TBS和 TMS分别表示 TprocBS和 TprocMS。 表 2和表 3分另' J说明 TprocBS和 TprocMs的表示方法。
Figure imgf000013_0001
For example, Tproc BS and Tproc MS can be represented by 1-bit indication signaling TBS and TMS, respectively. Tables 2 and 3 illustrate the representation of Tproc BS and Tproc M s.
Figure imgf000013_0001
表 2  Table 2
如表 2所示, 当指示信令 TBS = 0时, TprocBS的取值为 2; 当指示信 令 TBS = 1时 TprocBS的取值为 3。
Figure imgf000013_0003
As shown in Table 2, when the indication signaling TBS = 0, the value of the Tproc BS is 2; when the indication signaling TBS = 1, the value of the Tproc BS is 3.
Figure imgf000013_0003
Figure imgf000013_0002
Figure imgf000013_0002
如表 3所示, 当指示信令 TBS = 0时, TprocMS的取值为 2; 当指示信 令 TBS = 1时 TprocMs的取值为 3。 As shown in Table 3, when the indication signaling TBS = 0, the value of Tproc MS is 2; when the indication signaling TBS = 1, the value of TprocMs is 3.
另外, 第二实施例应用于 FDD模式的场景, 对于 TDD模式的情况, 只要有相应的 TprocBS或 TprocMS也可以用同样的方法确定 TprocBS或 TprocMs- 同样, 在 FDD下行模式下, 可以根据终端处理时间、 TTI和保护时间 中的至少一个, 可以通过上述的公式 (3)计算延迟时间 Delay。 此外, Delay 还可以等于 NTTI、 TprocMS或 P , 也可以等于它们两两组合之和。 Further, the scenario of a second embodiment applied to the FDD mode, TDD mode in the case, as long as there is a corresponding Tproc BS or Tproc MS can also be determined by the same method Tproc BS or TprocMs- Similarly, downlink in the FDD mode, according to At least one of the terminal processing time, the TTI, and the guard time, the delay time Delay can be calculated by the above formula (3). In addition, Delay can also be equal to N TTI , TprocMS or P , or it can be equal to the sum of their two combinations.
然后, 可以通过公式 ( 1 )和公式 (2)计算出发送反馈时的帧号和子帧号。 第三实施例。  Then, the frame number and the subframe number at the time of transmitting the feedback can be calculated by the formula (1) and the formula (2). Third embodiment.
第三实施例应用于终端处理数据的时间 TprocMs和基站处理数据的时 间 TprocBS是固定值或不固定值, 且为 FDD模式的场景。  The third embodiment is applied to the time when the terminal processes data TprocMs and the time when the base station processes the data TprocBS is a fixed value or a non-fixed value, and is a scenario of the FDD mode.
在下行 HARQ定时中, 系统的一个帧上有 F个子帧, 基站在第 i帧的 第 m个下行子帧上发送了数据包, 终端在第 j帧的第 n个上行子帧发送反 馈信息。 可以通过表 4和公式 5来计算下行 HARQ发送反馈时的帧号和子 帧号:
Figure imgf000013_0004
(下行链路传输)
In the downlink HARQ timing, there are F subframes in one frame of the system, the base station transmits a data packet on the mth downlink subframe of the i-th frame, and the terminal sends feedback information in the nth uplink subframe of the j-th frame. The frame number and subframe number when downlink HARQ transmission feedback is calculated by Table 4 and Equation 5:
Figure imgf000013_0004
(downlink transmission)
HARQ子包 m = l, 或者  HARQ sub-package m = l, or
i  i
(下行链路传输) m = l + NAMAP - l (downlink transmission) m = l + N AMAP - l
HARQ反馈 . 「. fl 「ceil(m + 72) ) Α Λ n = ceil(m+F/2) mod F j = i + floor—— \ + z mod4HARQ feedback. ". fl "ceil(m + 72) ) Α Λ n = ceil(m+F/2) mod F j = i + floor—— \ + z mod4
(上行链路传输) 表 4 (uplink transmission) Table 4
表 4中, Z _
Figure imgf000014_0001
(5) 公式 (5)中, NTT^ 的是数据包的传输时间间隔 TTI对应的子帧数目, Tproc指的是终端处理数据的时间 TprocMs,第三实施例只是举出一个例子, 这个参数的值也可以取其他值。 其中, ^^^(x)表示小于等于 X 的最大整 数, C /(X)表示大于等于 X的最小整数。 当终端处理数据的时间 TprocMS或基站处理数据的时间 TprocBS为固定 值时, 可以根据系统中一个帧的子帧数目来确定基站处理数据的时间
In Table 4, Z _
Figure imgf000014_0001
(5) In formula (5), N TT ^ is the number of subframes corresponding to the transmission time interval TTI of the data packet, and Tproc refers to the time TprocMs of the terminal processing data. The third embodiment only cites an example, this parameter The value can also take other values. Where ^^^( x ) represents the largest integer less than or equal to X, and C / (X) represents the smallest integer greater than or equal to X. When the time Tproc MS of the data processing by the terminal or the time Tproc BS of the data processing by the base station is a fixed value, the time at which the base station processes the data may be determined according to the number of subframes of one frame in the system.
TprocMs和终端处理数据的时间 TprocMs,其中,在终端发送数据时, TpWCMS 为终端发送数据所需的处理时间 ^^^ -7^ , 在终端接收数据时, TpWCMs 为终端接收数据后发送反馈 ACK/NACK的时间 TpWCMs—RE .在基站发送数 据时, ^为基站发送数据所需的处理时间 ^ ^^^, 在基站接收数 据时, Tpr0CBS为基站接收数据后发送反馈 ACK/NACK的时间 Tproc ' tBS REI 或者, 在基站接收数据时, 所述基站处理数据的时间 ^为基站接收数 据后发送反馈 ACK/NACK 及控制消息 (如 A-MAP IE ) 的时间 The time TprocMs of the TprocMs and the terminal processing data, wherein, when the terminal transmits data, the processing time required for the TpWCMS to transmit data for the terminal is ^^^ - 7 ^ , and when the terminal receives the data, the TpWC Ms sends a feedback ACK for the terminal to receive the data. /NACK time TpWC Ms_RE . When the base station transmits data, ^ is the processing time required for the base station to transmit data ^ ^^^, when the base station receives the data, the Tpr0CBS is the time when the base station receives the data and sends the feedback ACK/NACK. ' t BS REI or, when the base station receives data, the time when the base station processes the data is the time when the base station receives the data and sends the feedback ACK/NACK and the control message (such as A-MAP IE).
TProcBs_RE2 o 例如, 可以通过上述的公式 (3)和公式 (4)计算 TprocBS和 TprocMS。 当每个帧所包括的子帧数为 6或 7个时, 通过公式 (3)和公式 (4) 计算出 Tproc=2; 当每个帧所包括的子帧数为 8个时,通过公式 (3)和公式 (4) 计算出 Tproc=3。 T P roc Bs_RE2 o For example, Tproc BS and Tproc MS can be calculated by the above formula (3) and formula (4). When each frame includes 6 or 7 sub-frames, by formula (3) and formula (4) Calculate Tproc= 2 ; When each frame contains 8 sub-frames, Tproc=3 is calculated by formula (3) and formula ( 4 ).
另外, 第三实施例是 FDD模式下的例子, 对于 TDD模式, 只要有相 应的 TprocBS或 TprocMS也可以用同样的方法确定 TprocBS或 TprocMSIn addition, the third embodiment is an example in the FDD mode. For the TDD mode, the Tproc BS or the Tproc MS can be determined in the same manner as long as there is a corresponding Tproc BS or Tproc MS .
当终端处理数据的时间 TprocMS为不固定值时,基站可以在通信系统的 控制信道或控制消息中发送第一指示信令, 其中, 所述控制信道包括超帧 头或 A-MAP信道, 所述控制消息包括能力协商消息或注册消息, 或者, 终 端可以在通信系统的能力协商消息或注册消息中发送第二指示信令, 上述 第一指示信令或第二指示信令用于指示终端处理数据的时间 TprocMS的取 值。 The base station may send the first indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or an A-MAP channel, where the time TprocMS of the terminal processing data is not a fixed value, The control message includes a capability negotiation message or a registration message, or the terminal may send the second indication signaling in the capability negotiation message or the registration message of the communication system, where the first indication signaling or the second indication signaling is used to instruct the terminal to process the data. The value of the time Tproc MS .
当基站处理数据的时间 TprocBS为不固定值时,基站可以在通信系统的 控制信道或控制消息中发送第三指示信令, 其中, 所述控制信道包括超帧 头或 A-MAP信道, 所述控制消息包括能力协商消息或注册消息。 上述第三 指示信令用于指示基站处理数据的时间 TprocBS的取值。  The base station may send the third indication signaling in the control channel or the control message of the communication system, where the control channel includes a super frame header or an A-MAP channel, where the time when the data is processed by the base station is not fixed. The control message includes a capability negotiation message or a registration message. The third indication signaling is used to indicate the value of the time TprocBS at which the base station processes data.
例如, 如上述的表 2和表 3所示, 可以分别用 1比特指示信令 TBS和 TMS来表示 TprocBS和 TprocMSFor example, as shown in Tables 2 and 3 above, TBASE BS and Tproc MS can be represented by 1-bit indication signaling TBS and TMS, respectively.
另外, 第三实施例是 FDD模式下的例子, 对应 TDD模式, 只要有相 应的 TprocBS或 TprocMS也可以用同样的方法确定 TprocBS或 TprocMSFurther, the third embodiment is an example in FDD mode, TDD mode corresponding to, as long as there is a corresponding Tproc BS or Tproc MS or Tproc BS can be determined using the same method Tproc MS.
根据本发明实施例, 对于 FDD下行模式, 按照终端处理时间和传输时 间间隔来确定终端的反馈时间, 从而保证了终端在最快时间内完成 HARQ 反馈, 避免了反馈的等待时间过长, 提高了 HARQ反馈的速度。  According to the embodiment of the present invention, for the FDD downlink mode, the feedback time of the terminal is determined according to the terminal processing time and the transmission time interval, thereby ensuring that the terminal completes the HARQ feedback in the fastest time, avoiding the waiting time of the feedback being too long, and improving. The speed of HARQ feedback.
第四实施例。  Fourth embodiment.
第四实施例应用于终端处理数据的时间 TprocMS和基站处理数据的时 间 TprocBS是固定值或不确定值, 且为 FDD模式的场景。 在上行 HARQ定时中, 系统的一个帧上有 F个子帧, 基站在第 i帧的 第^个下行子帧发送 A-MAP信息, 终端在第 j帧的第 m个上行子帧上发送 了数据包,基站接着在第 k帧的第 个下行子帧发发送反馈信息,终端在第 p帧的第 y个上行子帧上发送重传数据包。可以通过表 5和公式 (6)、公式 (7) 计算上行 HARQ发送和反馈时的帧号和子帧号: The fourth embodiment is applied to the time when the terminal processes the data TprocMS and the time when the base station processes the data TprocBS is a fixed value or an indeterminate value, and is a scene of the FDD mode. In the uplink HARQ timing, there are F subframes in one frame of the system, the base station transmits A-MAP information in the second downlink subframe of the ith frame, and the terminal transmits data in the mth uplink subframe of the jth frame. The packet, the base station then sends feedback information in the first downlink subframe of the kth frame, and the terminal transmits the retransmission data packet on the yth uplink subframe of the pth frame. The frame number and subframe number when uplink HARQ transmission and feedback can be calculated by Table 5 and Equation (6) and Equation (7):
0, ceil( /2)-l>rroc 0, ceil( /2)-l>r roc
1, 其他 1, other
Figure imgf000016_0001
Figure imgf000016_0001
0, floor(F /2)-ΝΊΤΙ≥Τ 0, floor(F /2)-Ν ΊΤΙ ≥Τ
1, 其他 1, other
Figure imgf000016_0002
Figure imgf000016_0002
Figure imgf000016_0003
Figure imgf000016_0003
表 5 其中, NTTI表示数据包的 TTI对应的子帧数目, ^σ^(Χ)表示小于等 于 X的最大整数, c /(x)表示大于等于 X的最小整数。 公式 (6)中的 Tproc 表示终端处理数据的时间 TprocMS, 公式 7中的 Tproc指的是基站处理数据 的时间 TprocBS,两个时间可以相等或不等,第四实施例只是举出一个例子, 当终端处理数据的时间 TprocMS或基站处理数据的时间 TprocBS为固定 值时, 可以根据系统中一个帧的子帧数目来确定基站处理数据的时间 TprocBS和终端处理数据的时间 TprocMS, 例如, 可以通过上述的公式 (3)和 公式 (4)计算基站处理数据的时间 TprocBS和终端处理数据的时间 TprocMS。 当每个帧所包括的子帧数为 6 或 7 个时, 通过公式 (3)和公式 (4)计算出 Tproc=2; 当每个帧所包括的子帧数为 8个时,通过公式 (3)和公式 (4)计算出 Tproc=3。 Table 5 where N TTI represents the number of subframes corresponding to the TTI of the data packet, ^ σ ^( Χ ) represents the largest integer less than or equal to X, and c / (x) represents the smallest integer greater than or equal to X. The Tproc in the formula (6) represents the time Tproc MS of the terminal processing data, and the Tproc in the formula 7 refers to the time Tproc BS in which the base station processes the data, and the two times may be equal or unequal, and the fourth embodiment merely cites an example. , When the time period the terminal processing data Tproc MS or base station processes data Tproc BS is a fixed value, may be determined base station processes the data according to the number of subframes system one frame time Tproc BS and the terminal processing data time Tproc MS, e.g. The time TprocBS at which the base station processes the data and the time Tproc MS at which the terminal processes the data can be calculated by the above formula (3) and formula (4). When each frame includes 6 or 7 sub-frames, Tproc=2 is calculated by formula (3) and formula (4); when each frame includes 8 sub-frames, the formula is passed. (3) and formula (4) calculate Tproc=3.
另外, 第四实施例是 FDD模式下的例子, 对于 TDD模式, 只要有相 应的基站处理数据的时间 TprocBS或终端处理数据的时间 TprocMS也可以用 同样的方法确定基站处理数据的时间 TprocBS或终端处理数据的时间 Tproc In addition, the fourth embodiment is an example in the FDD mode. For the TDD mode, the time Tproc BS for processing data by the corresponding base station or the time Tproc MS for processing data by the terminal can also determine the time Tproc BS for processing data by the base station in the same manner. Or the time at which the terminal processes the data Tproc
当终端处理数据的时间 TprocMS为不固定值时,基站可以在通信系统的 控制信道或控制消息中发送第一指示信令, 其中, 所述控制信道包括超帧 头或 A-MAP信道, 所述控制消息包括能力协商消息或注册消息, 或者, 终 端可以在通信系统的能力协商消息或注册消息中发送第二指示信令, 上述 第一指示信令和第二指示信令用于指示基站处理数据的时间 TprocBS的取 值。 The base station may send the first indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or an A-MAP channel, where the time TprocMS of the terminal processing data is not a fixed value, The control message includes a capability negotiation message or a registration message, or the terminal may send the second indication signaling in the capability negotiation message or the registration message of the communication system, where the first indication signaling and the second indication signaling are used to indicate that the base station processes the data. The value of the time Tproc BS .
当基站处理数据的时间 TprocBS为不固定值时,基站可以在通信系统的 控制信道或控制消息中发送第三指示信令, 其中, 所述控制信道包括超帧 头或 A-MAP信道, 所述控制消息包括能力协商消息或注册消息。 上述第三 指示信令用于指示基站处理数据的时间 TprocBS的取值。  The base station may send the third indication signaling in the control channel or the control message of the communication system, where the control channel includes a super frame header or an A-MAP channel, where the time when the data is processed by the base station is not fixed. The control message includes a capability negotiation message or a registration message. The third indication signaling is used to indicate the value of the time TprocBS at which the base station processes data.
如,如上述的表 2和表 3所示,可以分别用 1比特指示信令 TBS和 TMS 表示基站处理数据的时间 TprocBS和终端处理数据的时间 TprocMS。 另外, 第四实施例是 FDD模式下的例子, 对于 TDD模式, 只要有相 应的 TprocBS或 TprocMS也可以用同样的方法确定 TprocBS或 TprocMSFor example, as shown in Tables 2 and 3 above, the 1-bit indication signaling TBS and TMS respectively indicate the time Tproc BS at which the base station processes data and the time Tproc MS at which the terminal processes data. In addition, the fourth embodiment is an example in the FDD mode. For the TDD mode, the Tproc BS or the Tproc MS can be determined in the same manner as long as there is a corresponding Tproc BS or Tproc MS .
根据本发明实施例, 对于 FDD上行模式, 通过按照基站处理数据的时 间和传输时间间隔来确定基站的反馈时间, 从而保证了基站在最快时间内 完成 HARQ反馈,避免了反馈的等待时间过长,提高了 HARQ反馈的速度。  According to the embodiment of the present invention, for the FDD uplink mode, the feedback time of the base station is determined according to the time and the transmission time interval of the data processing by the base station, thereby ensuring that the base station completes the HARQ feedback in the fastest time, and avoids the waiting time of the feedback being too long. Increases the speed of HARQ feedback.
第五实施例。  Fifth embodiment.
第五实施例应用于终端处理数据的时间 TprocMS和基站处理数据的时 间 TprocBS是固定值或不确定值, 且为 FDD模式的场景。 The fifth embodiment is applied to the time when the terminal processes the data Tproc MS and the time when the base station processes the data TprocBS is a fixed value or an indeterminate value, and is a scenario of the FDD mode.
在 FDD下行模式中, 系统的一个帧上有 F个子帧, 基站在第 i帧的第 m个下行子帧上发送了数据包,终端在第 j帧的第 n个上行子帧发送反馈信 息。 可以通过下列公式 (8)和公式 (9)计算发送反馈时的帧号和子帧号:  In the FDD downlink mode, there are F subframes in one frame of the system, the base station transmits a data packet on the mth downlink subframe of the i-th frame, and the terminal sends feedback information in the nth uplink subframe of the j-th frame. The frame number and sub frame number at the time of sending feedback can be calculated by the following formula (8) and formula (9):
j = i + floor {ceil {F / 2 + m) / F) + z (8) n = ceil(F / 2 + m) mod F (9) z = / 2) - NITI≥Tproc j = i + floor {ceil {F / 2 + m) / F) + z ( 8 ) n = ceil(F / 2 + m) mod F ( 9 ) z = / 2) - N ITI ≥T proc
其中, Z
Figure imgf000018_0001
, 为 TTI的值, 表 示小于等于 x的最大整数, c /(x)表示大于等于 X的最小整数。 Tproc表 示终端处理数据的时间 TprocMS , 第五实施例只是举出一个例子, 这个参数 的值也可以取其他值。
Where Z is
Figure imgf000018_0001
, is the value of TTI, represents the largest integer less than or equal to x, and c / (x) represents the smallest integer greater than or equal to X. Tproc represents the time TprocMS for the terminal to process data. The fifth embodiment is just an example. The value of this parameter can also take other values.
当终端处理数据的时间 TprocMS或基站处理数据的时间 TprocBS为固定 值时, 可以根据系统中一个帧的子帧数目来确定基站处理数据的时间 TprocBS和终端处理数据的时间 TprocMS , 例如, 可以通过上述的公式 3和 公式 (4)计算 TprocBS和 TprocMS。 当每个帧所包括的子帧数为 6或 7个时, 通过公式 (3)和公式 (4)计算出 Tproc=2; 当每个帧所包括的子帧数为 8个时, 通过公式 (3)和公式 (4)计算出 Tproc=3。 另外, 第五实施例是 FDD模式下的例子, 对于 TDD模式, 只要有相 应的基站处理数据的时间 TprocBS或终端处理数据的时间 TprocMS也可以用 同样的方法确定基站处理数据的时间 TprocBS或终端处理数据的时间 TprocMS- 当终端处理数据的时间 TprocMS为不固定值时,基站可以在通信系统的 控制信道或控制消息中发送第一指示信令, 其中, 所述控制信道包括超帧 头或 A-MAP信道, 所述控制消息包括能力协商消息或注册消息, 或者, 终 端可以在通信系统的能力协商消息或注册消息中发送第二指示信令, 上述 第一指示信令和第二指示信令用于指示终端处理数据的时间 TprocMS的取 值。 When the time period the terminal processing data Tproc MS or base station processes data Tproc BS is a fixed value, may be determined base station processes the data according to the number of subframes system one frame time Tproc BS and the terminal processing data time Tproc MS, e.g. , Tproc BS and Tproc MS can be calculated by Equation 3 and Equation (4) above. When the number of sub-frames included in each frame is 6 or 7, Tproc=2 is calculated by formula (3) and formula (4); when the number of sub-frames included in each frame is 8, (3) and formula (4) calculate Tproc=3. In addition, the fifth embodiment is an example in the FDD mode. For the TDD mode, the time Tproc BS for processing data by the corresponding base station or the time Tproc MS for processing data by the terminal can also determine the time Tproc BS for processing data by the base station in the same manner. Or the time at which the terminal processes the data TprocMS - when the terminal processes the data TprocMS is a non-fixed value, the base station may send the first indication signaling in the control channel or control message of the communication system, where the control channel includes a super frame header Or the A-MAP channel, the control message includes a capability negotiation message or a registration message, or the terminal may send the second indication signaling in the capability negotiation message or the registration message of the communication system, where the first indication signaling and the second indication are The signaling is used to indicate the value of the time Tproc MS at which the terminal processes the data.
当基站处理数据的时间 TprocBS为不固定值时,基站可以在通信系统的 控制信道或控制消息中发送第三指示信令, 其中, 所述控制信道包括超帧 头或 A-MAP信道, 所述控制消息包括能力协商消息或注册消息。 上述第三 指示信令用于指示基站处理数据的时间 TprocBS的取值。  The base station may send the third indication signaling in the control channel or the control message of the communication system, where the control channel includes a super frame header or an A-MAP channel, where the time when the data is processed by the base station is not fixed. The control message includes a capability negotiation message or a registration message. The third indication signaling is used to indicate the value of the time TprocBS at which the base station processes data.
例如, 如上述的表 2和表 3所示, 可以分别用 1比特指示信令 TBS和 TMS表示基站处理数据的时间 TprocBS和终端处理数据的时间 TprocMSFor example, as shown in Tables 2 and 3 above, the 1-bit indication signaling TBS and TMS respectively indicate the time Tproc BS at which the base station processes data and the time Tproc MS at which the terminal processes data.
另外, 第五实施例是 FDD模式下的例子, 对于 TDD模式, 只要有相 应的基站处理数据的时间 TprocBS或终端处理数据的时间 TprocMS也可以用 同样的方法确定基站处理数据的时间 TprocBS或终端处理数据的时间In addition, the fifth embodiment is an example in the FDD mode. For the TDD mode, the time Tproc BS for processing data by the corresponding base station or the time Tproc MS for processing data by the terminal can also determine the time Tproc BS for processing data by the base station in the same manner. Or the time at which the terminal processes the data
TprocMS- 第六实施例。 TprocMS - sixth embodiment.
第六实施例应用于终端处理数据的时间 TprocMS和基站处理数据的时 间 TprocBS是固定值或不固定值, 且为 TDD模式的场景。 The sixth embodiment is applied to the time when the terminal processes the data Tproc MS and the time when the base station processes the data TprocBS is a fixed value or a non-fixed value, and is a scene of the TDD mode.
在下行 HARQ定时中, 系统的一个帧上有 F个子帧, 基站在第 i帧的 第 m个下行子帧上发送了数据包, 终端在第 j帧的第 n个上行子帧发送反 馈信息。 其中 z对于 TTI大于 1的数据包而言指的是数据包开始的位置, 而 不是 A-MAP IE出现的位置, 且取值总是等于 0, 数据包相应的 A-MAP IE 出现在上一帧的第二个下行子帧到本帧的第一子帧之间。 Z对于 ΓΓΙ等于 1 的数据包而言指的是数据包开始的位置和 A-MAP IE出现的位置。可以通过 表 6和公式 (10)以及参数 K来计算下行 HARQ发送反馈时的帧号和子帧号:
Figure imgf000020_0001
In downlink HARQ timing, there are F subframes in one frame of the system, and the base station transmits a data packet on the mth downlink subframe of the i-th frame, and the terminal transmits the inverse in the n-th uplink subframe of the j-th frame. Feed information. Where z is the location where the packet starts when the packet with TTI greater than 1 is located, not the location where the A-MAP IE appears, and the value is always equal to 0. The corresponding A-MAP IE of the packet appears in the previous one. The second downlink subframe of the frame is between the first subframe of the current frame. Z refers to the location where the packet starts and the location where the A-MAP IE appears for packets with ΓΓΙ equal to 1. The frame number and subframe number of the downlink HARQ transmission feedback can be calculated by Table 6 and Equation (10) and the parameter K:
Figure imgf000020_0001
Figure imgf000020_0003
Figure imgf000020_0003
表 6  Table 6
其中, D是一个帧中的下行子帧数, 而 U是一个帧中的上行子帧数, F 为一个帧的子帧数, 即, F=D+U, ^^^(^表示小于等于 X的最大整数, c /(x)表示大于等于 X的最小整数。; K的定义如下:  Where D is the number of downlink subframes in a frame, and U is the number of uplink subframes in one frame, and F is the number of subframes in one frame, that is, F=D+U, ^^^(^ indicates less than or equal to The largest integer of X, c / (x) represents the smallest integer greater than or equal to X.; K is defined as follows:
如果 D + U为奇数并且 D小于 U/ΝΑ-ΜΑΡ, 则当 D大于等于 U时: Κ = ceil((D-U)/2), 否则, 当 D小于 U时: K = -ceil((U-D)/2);  If D + U is odd and D is less than U/ΝΑ-ΜΑΡ, then when D is greater than or equal to U: Κ = ceil((DU)/2), otherwise, when D is less than U: K = -ceil((UD) /2);
如果不满足条件 D + U为奇数并且 D小于
Figure imgf000020_0002
则当 D大于等于 U时: Κ = -floor((D-U)/2) , 否则, 当 D小于 U时: K = -floor ((U-D)/2); 其中, m为 TTI的值, Tproc指的是终端处理数据的时间 TprocMS, 本实施例只是举出一个例子, 这个参数的值也可以取其他值。
If the condition D + U is not satisfied, the number is odd and D is less than
Figure imgf000020_0002
Then when D is greater than or equal to U: Κ = -floor((DU)/2), otherwise, when D is less than U: K = -floor ((UD)/2); Where m is the value of TTI, and Tproc refers to the time Tproc MS of the terminal processing data. This embodiment only cites an example, and the value of this parameter may take other values.
另外, 当所述 NTTI大于 1且 m不等于 0时, 在 TDD下行模式下, 基 站在第 i+1帧的第 0个下行子帧发送数据包,终端在第 j帧的第 n个上行子 帧发送反馈信息; 其中, j=(i+z+l)mod4, Mod表示取模运算。 In addition, when the N TTI is greater than 1 and m is not equal to 0, in the TDD downlink mode, the base station sends a data packet in the 0th downlink subframe of the i+1th frame, and the terminal is in the nth uplink of the jth frame. The subframe transmits feedback information; where j=(i+z+l) mod4, Mod represents a modulo operation.
当终端处理数据的时间 TprocMS或基站处理数据的时间 TprocBS为固定 值时, 可以根据系统中一个帧的子帧数目来确定基站处理数据的时间 TprocBS和终端处理数据的时间 TprocMS, 例如, 可以通过上述的公式 (3)和 公式 (4)计算 TprocBS和 TprocMS。 当每个帧所包括的子帧数为 6或 7个时, 通过公式 (3)和公式 (4)计算出 Tproc=2; 当每个帧所包括的子帧数为 8个时, 通过公式 (3)和公式 (4)计算出 Tproc=3。 另外, 第五实施例是 TDD模式下的 例子,对于 FDD模式, 只要有相应的 TprocBS或 TprocMS也可以用同样的方 法确定 TprocBS或 TprocMSWhen the time period the terminal processing data Tproc MS or base station processes data Tproc BS is a fixed value, may be determined base station processes the data according to the number of subframes system one frame time Tproc BS and the terminal processing data time Tproc MS, e.g. , Tproc BS and Tproc MS can be calculated by the above formula (3) and formula (4). When the number of sub-frames included in each frame is 6 or 7, Tproc=2 is calculated by formula (3) and formula (4); when the number of sub-frames included in each frame is 8, (3) and formula (4) calculate Tproc=3. In addition, the fifth embodiment is an example in the TDD mode. For the FDD mode, the Tproc BS or the Tproc MS can be determined in the same manner as long as there is a corresponding Tproc BS or Tproc MS .
当终端处理数据的时间 Tproc为不固定值时,基站可以在通信系统的 控制信道或控制消息中发送第一指示信令, 其中, 所述控制信道包括超帧 头或 A-MAP信道, 所述控制消息包括能力协商消息或注册消息, 或者, 终 端可以在通信系统的能力协商消息或注册消息中发送第二指示信令, 上述 第一指示信令和第二指示信令用于指示终端处理数据的时间 TprocMS的取 值。 When the time Tproc of the terminal processing data is not a fixed value, the base station may send the first indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or an A-MAP channel, The control message includes a capability negotiation message or a registration message, or the terminal may send the second indication signaling in the capability negotiation message or the registration message of the communication system, where the first indication signaling and the second indication signaling are used to instruct the terminal to process the data. The value of the time Tproc MS .
当基站处理数据的时间 TprocBS为不固定值时,基站可以在通信系统的 控制信道或控制消息中发送第三指示信令, 其中, 所述控制信道包括超帧 头或 A-MAP信道, 所述控制消息包括能力协商消息或注册消息。 上述第三 指示信令用于指示基站处理数据的时间 TprocBS的取值。  The base station may send the third indication signaling in the control channel or the control message of the communication system, where the control channel includes a super frame header or an A-MAP channel, where the time when the data is processed by the base station is not fixed. The control message includes a capability negotiation message or a registration message. The third indication signaling is used to indicate the value of the time TprocBS at which the base station processes data.
例如, 如上述的表 2和表 3所示, 可以分别用 1比特指示信令 TBS和 TMS来表示基站处理数据的时间 TprocBS和终端处理数据的时间 TprocMS。 另外, 第五实施例是 TDD模式下的例子, 对应 FDD模式, 只要有相应的 TprocBS或 TprocMS也可以用同样的方法确定 TprocBS或 TprocMSFor example, as shown in Tables 2 and 3 above, the time Tproc BS for processing data by the base station and the time Tproc MS for processing data by the terminal may be indicated by 1-bit indication signaling TBS and TMS, respectively. Further, the fifth embodiment is an example in TDD mode, corresponding to the FDD mode, as long as there is a corresponding Tproc BS or Tproc MS or Tproc BS can be determined using the same method Tproc MS.
根据本发明实施例, 对于 TDD下行模式, 通过终端处理时间和传输时 间间隔来确定终端的反馈时间,保证了终端在最快时间内完成 HARQ反馈, 避免了反馈的等待时间过长, 提高了 HARQ反馈的速度。  According to the embodiment of the present invention, for the TDD downlink mode, the terminal processing time and the transmission time interval are used to determine the feedback time of the terminal, thereby ensuring that the terminal completes the HARQ feedback in the fastest time, avoiding the waiting time of the feedback being too long, and improving the HARQ. The speed of feedback.
第七实施例。  Seventh embodiment.
第七实施例 7应用于终端处理数据的时间 TprocMS和基站处理数据的时 间 TprocBS是固定值或不确定值, 且为 TDD模式的场景。 其中, 在终端发 送数据时, ^ ^s为终端发送数据所需的处理时间7 在终端接 收数据时, ^ ^s为终端接收数据后发送反馈 ACK/NACK 的时间 The seventh embodiment 7 is applied to the time when the terminal processes the data TprocMS and the time when the base station processes the data TprocBS is a fixed value or an indeterminate value, and is a scene of the TDD mode. Wherein the processing time required when the terminal transmits data, ^ ^ s data is transmitted to the terminal when the terminal 7 receives the data, ^ ^ s terminal transmits ACK / NACK feedback time when data is received
Tpr0CMS_RE . 在基站发送数据时, ^为基站发送数据所需的处理时间 Tpr0C MS_RE . When the base station transmits data, ^ the processing time required for the base station to send data
TProcBSTR , 在基站接收数据时, ^为基站接收数据后发送反馈 ACK/NACK 的时间 , 或者, 在基站接收数据时, 所述基站处 理数据的时间 Tpr0CBS为基站接收数据后发送反馈 ACK/NACK及控制消息 T P roc B STR , when the base station receives data, ^ is the time when the base station receives the data and then sends the feedback ACK/NACK, or when the base station receives the data, the time when the base station processes the data Tpr0CBS is sent by the base station after receiving the data. Feedback ACK/NACK and control messages
(如 A-MAP IE ) 的时间 Tpr0CBs—RE2 。 (such as A-MAP IE) time Tpr0C Bs-RE2.
在上行 HARQ定时中, 系统的一个帧上有 F个子帧, 基站在第 i帧的 第^个下行子帧发送 A-MAP信息, 终端在第 j帧的第 m个上行子帧上发送 了数据包,基站接着在第 k帧的第 个下行子帧发发送反馈信息,终端在第 p帧的第 y个上行子帧上发送重传数据包。 可以通过表 7、 公式 (11)、 公式 (12)和对参数 K的定义来计算上行 HARQ发送和反馈时的帧号和子帧号:  In the uplink HARQ timing, there are F subframes in one frame of the system, the base station transmits A-MAP information in the second downlink subframe of the ith frame, and the terminal transmits data in the mth uplink subframe of the jth frame. The packet, the base station then sends feedback information in the first downlink subframe of the kth frame, and the terminal transmits the retransmission data packet on the yth uplink subframe of the pth frame. The frame number and subframe number at the time of uplink HARQ transmission and feedback can be calculated by the definitions of Table 7, Equation (11), Equation (12), and parameter K:
Figure imgf000022_0001
(上行链路传输) 0≤1<K
Figure imgf000022_0001
(uplink transmission) 0≤1<K
m = K≤l<U + K  m = K≤l<U + K
U + K≤l<D  U + K ≤ l < D
对于 1 <ceil(D/NA-MAP)<U, For 1 <ceil(D/N A-MAP )<U,
0, ··· U-l, s ^-l-K + NA_MAP-\, 1 = 0 0, ··· Ul, s ^-lK + N A _ MAP -\, 1 = 0
m = l K 者 l K + NAMAP i, 0 < / < /n m = l K is l K + N AMAP i, 0 < / < / n
ι—κ,ι—κ+ι, ··· U-l, 1 = 1  Ι—κ,ι—κ+ι, ··· U-l, 1 = 1
/max = NA-MAP- (ceil(D/NA-MAp) /max = NA-MAP- (ceil(D/N A -MAp)
对于 ceil(D/ NA-MAP) = 1  For ceil(D/ NA-MAP) = 1
m = 0, 1, ... ,U-1 当 / = 0  m = 0, 1, ... , U-1 when / = 0
HARQ反馈  HARQ feedback
q = l k = (j+l+w) mod 4 q = l k = (j+l+w) mod 4
(下行链路传输) (downlink transmission)
HARQ 子包重传  HARQ sub-packet retransmission
y=m p = (k+v) mod 4 y=m p = (k+v) mod 4
(上行链路传输) (uplink transmission)
表 7  Table 7
0, c \(F/2)-l≥Tproc 0, c \(F/2)-l≥T proc
1, 其他  1, other
(11) (11)
0, floor( /2)-Nm≥Tf 0, floor( /2)-N m ≥T f
w :  w :
其他  Other
(12) 其中, D是一个帧中的下行子帧数, 而 U是一个帧中的上行子帧数, F 为一个帧的子帧数, 即, F=D+U, ^^^(^表示小于等于 X的最大整数, c /(x)表示大于等于 X的最小整数; K的定义如下:  (12) where D is the number of downlink subframes in a frame, and U is the number of uplink subframes in one frame, and F is the number of subframes in one frame, that is, F=D+U, ^^^(^ Represents the largest integer less than or equal to X, c / (x) represents the smallest integer greater than or equal to X; K is defined as follows:
如果 D + U为奇数并且 D小于 U/ΝΑ-ΜΑΡ, 则当 D大于等于 U时: Κ = ceil((D-U)/2), 否则, 当 D小于 U时: K = -ceil((U-D)/2);  If D + U is odd and D is less than U/ΝΑ-ΜΑΡ, then when D is greater than or equal to U: Κ = ceil((DU)/2), otherwise, when D is less than U: K = -ceil((UD) /2);
如果不满足条件 D + U为奇数并且 D小于 U/ΝΑ-ΜΑΡ, 则当 D大于等 于 U时: Κ = -floor((D-U)/2), 否则, 当 D小于 U时: K = -floor ((U-D)/2)。  If the condition D + U is not satisfied and D is less than U/ΝΑ-ΜΑΡ, then when D is greater than or equal to U: Κ = -floor((DU)/2), otherwise, when D is less than U: K = -floor ((UD)/2).
其中, NTT^ 的是数据包的传输时间间隔 TTI对应的子帧数目, 公式 11中的 Tproc指的是终端处理数据的时间, 公式 12中的 Tproc指的是基站 处理数据的时间, 两个时间可以相等或不等, 本实施例只是举出一个例子, 两个参数的值也可以取其他值。 Where N TT ^ is the number of subframes corresponding to the transmission time interval TTI of the data packet, Tproc in Equation 11 refers to the time at which the terminal processes the data, and Tproc in Equation 12 refers to the base station. When the data is processed, the two times can be equal or unequal. This embodiment is just an example. The values of the two parameters can also take other values.
当终端处理数据的时间 TprocMS或基站处理数据的时间 TprocBS为固定 值时, 可以根据系统中一个帧的子帧数目来确定基站处理数据的时间 TprocBS和终端处理数据的时间 TprocMS, 例如, 可以通过上述的公式 (3)和 公式 (4)计算 TprocBS和 TprocMS。 当每个帧所包括的子帧数为 6或 7个时, 通过公式 (3)和公式 (4)计算出 Tproc=2; 当每个帧所包括的子帧数为 8个时, 通过公式 (3)和公式 (4)计算出 Tproc=3。 另外, 本例举的是 TDD模式下的例 子,对于 FDD模式, 只要有相应的 TprocBS或 TprocMS也可以用同样的方法 确定 TprocBS或 Tproc When the time period the terminal processing data Tproc MS or base station processes data Tproc BS is a fixed value, may be determined base station processes the data according to the number of subframes system one frame time Tproc BS and the terminal processing data time Tproc MS, e.g. , Tproc BS and Tproc MS can be calculated by the above formula (3) and formula (4). When the number of sub-frames included in each frame is 6 or 7, Tproc=2 is calculated by formula (3) and formula (4); when the number of sub-frames included in each frame is 8, (3) and formula (4) calculate Tproc=3. Further, the present example is an example in the TDD mode, for the FDD mode, as long as the BS or corresponding Tproc Tproc the MS or the BS may determine Tproc same way Tproc
当终端处理数据的时间丁 1"0(¾18为不固定值时,基站可以在通信系统的 控制信道或控制消息中发送第一指示信令, 其中, 所述控制信道包括超帧 头或 A-MAP信道, 所述控制消息包括能力协商消息或注册消息, 或者, 终 端可以在通信系统的能力协商消息或注册消息中发送第二指示信令, 上述 第一指示信令和第二指示信令用于指示终端处理数据的时间 TprocMs的取 值。 When the time at which the terminal processes the data is 1 "0" (3⁄4 18 is a non-fixed value, the base station may send the first indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or A The MAP channel, the control message includes a capability negotiation message or a registration message, or the terminal may send the second indication signaling, the first indication signaling and the second indication signaling, in the capability negotiation message or the registration message of the communication system. The value of the time Tproc Ms used to indicate the data processing by the terminal.
当基站处理数据的时间 TprocMs为不固定值时,基站可以在通信系统的 控制信道或控制消息中发送第三指示信令, 其中, 所述控制信道包括超帧 头或 A-MAP信道, 所述控制消息包括能力协商消息或注册消息。 上述第三 指示信令用于指示基站处理数据的时间 TprocMs的取值。  When the time TprocMs of the data processing by the base station is not a fixed value, the base station may send the third indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or an A-MAP channel, The control message includes a capability negotiation message or a registration message. The third indication signaling is used to indicate the value of the time TprocMs of the base station processing data.
例如, 如上述的表 2和表 3所示, 可以分别用 1比特指示信令 TBS和 TMS来表示基站处理数据的时间 TprocBS和终端处理数据的时间 TprocMS。 另夕卜,本例举的是 TDD模式下的例子,对于 FDD模式,只要有相应的 TprocMs 或 TprocMS也可以用同样的方法确定 TprocBS或 TprocMSFor example, as shown in Tables 2 and 3 above, the time Tproc BS for processing data by the base station and the time Tproc MS for processing data by the terminal may be indicated by 1-bit indication signaling TBS and TMS, respectively. Another Bu Xi, the present example is an example in the TDD mode, for the FDD mode, as long as there is a corresponding TprocMs or Tproc MS Tproc BS or can be determined by the same method Tproc MS.
根据本发明实施例, 对于 TDD上行模式, 可以按照基站处理数据的时 间和传输时间间隔来确定基站的反馈时间, 从而保证了基站在最快时间内 完成 HARQ反馈,避免了反馈的等待时间过长,提高了 HARQ反馈的速度。 According to the embodiment of the present invention, for the TDD uplink mode, the time when the data is processed by the base station may be used. The inter- and transmission time interval is used to determine the feedback time of the base station, thereby ensuring that the base station completes the HARQ feedback in the fastest time, avoiding the waiting time of the feedback being too long, and improving the speed of the HARQ feedback.
综上所述, 根据本发明实施例, 通过按照终端处理数据的时间、 基站 处理数据的时间、 传输时间间隔和保护时间中的至少一个来确定反馈时刻, 保证了终端或基站在最快时间内完成 HARQ反馈, 避免了反馈的等待时间 过长, 提高了 HARQ反馈的速度。  In summary, according to the embodiment of the present invention, the feedback moment is determined according to at least one of the time when the terminal processes the data, the time when the base station processes the data, the transmission time interval, and the protection time, thereby ensuring that the terminal or the base station is in the fastest time. The HARQ feedback is completed, the waiting time of the feedback is avoided, and the speed of the HARQ feedback is improved.
根据本发明的实施例, 还提供一种 HARQ的定时装置。  According to an embodiment of the present invention, a timing device for HARQ is also provided.
图 6是本发明 HARQ定时装置的实施例的示意图。 如图 6所示, 包括 计算模块 602和发送模块 604, 其中,  Figure 6 is a schematic illustration of an embodiment of a HARQ timing device of the present invention. As shown in FIG. 6, the calculation module 602 and the sending module 604 are included, where
计算模块 602 , 用于根据预定参数确定反馈时刻, 其中, 预定参数包括 以下至少之一: 终端处理数据的时间、 基站处理数据的时间、 传输时间间 隔和保护时间;  The calculating module 602 is configured to determine a feedback moment according to the predetermined parameter, where the predetermined parameter includes at least one of: a time when the terminal processes the data, a time when the base station processes the data, a transmission time interval, and a protection time;
发送模块 604,用于在确定出的反馈时刻发送混合自动重传请求的反馈 消息。  The sending module 604 is configured to send a feedback message of the hybrid automatic repeat request at the determined feedback moment.
在 FDD下行模式下不对某一子帧发送的数据设定固定的反馈子帧号, 而根据终端处理时间、 TTI和保护时间中的至少一个来确定反馈时间 ,这样, 终端只要完成对数据包的处理就可以发送, 而不需要等待固定的帧号出现, 从而缩短了 HARQ的反馈时间, 提高了 HARQ反馈的速度。  In the FDD downlink mode, a fixed feedback subframe number is not set for the data sent by a certain subframe, and the feedback time is determined according to at least one of the terminal processing time, the TTI, and the guard time, so that the terminal only needs to complete the data packet. Processing can be sent without waiting for a fixed frame number to appear, thereby shortening the HARQ feedback time and improving the speed of HARQ feedback.
假设 TprocMS表示终端处理数据的时间,根据不同的情况, 终端处理数 据的时间可以固定不变, 也可以根据终端和基站的情况而改变。 在这个基 础上, 如果系统的一个帧上有 F个子帧, 基站在第 i帧的第 m个下行子帧 上发送了数据包, 那么终端只需要等待一个特定时间 Delay即可进行反馈, 而不需要等待某一个固定的子帧号出现。 根据本发明实施例, 假设终端在 第 j帧的第 n个上行子帧发送反馈信息, 则计算模块 602可以通过公式 (1)、 公式 (2)计算反馈时的帧号 j以及子帧号 n: 优选的, 可以通过公式 (3)计算 Delay。 It is assumed that the Tproc MS indicates the time at which the terminal processes the data. The time for processing the data by the terminal may be fixed according to different situations, or may be changed according to the situation of the terminal and the base station. On this basis, if there are F subframes in one frame of the system and the base station sends a data packet on the mth downlink subframe of the ith frame, the terminal only needs to wait for a specific time Delay to perform feedback, instead of Need to wait for a fixed subframe number to appear. According to the embodiment of the present invention, if the terminal sends feedback information in the nth uplink subframe of the jth frame, the calculation module 602 can calculate the frame number j and the subframe number n when the feedback is performed by using formulas (1) and (2). : Preferably, the Delay can be calculated by the formula (3).
在 TprocMS或 TprocBs为固定值时, 可以根据系统中一个帧的子帧数目 来确定基站处理数据的时间 TprocBs和终端处理数据的时间 TprocMS,例如, 根据一个帧中的子帧数目来确定 TprocBs和终端处理数据的时间 TprocMS , 如公式 (4)和公式 (5)所示。 When the Tproc MS or the TprocBs is a fixed value, the time TprocBs of the base station processing data and the time TprocMS of the terminal processing data may be determined according to the number of subframes of one frame in the system, for example, determining TprocBs according to the number of subframes in one frame. The time TprocMS at which the terminal processes the data, as shown in equations (4) and (5).
另外, 本例举的是 FDD模式下的例子, 对于 TDD模式, 只要有相应 的 TprocBS或 TprocMS也可以用同样的方法确定 TprocBS或 TprocMSIn addition, this example is an example in FDD mode. For TDD mode, Tproc BS or Tproc MS can be determined in the same way as long as there is a corresponding Tproc BS or Tproc MS .
当终端处理数据的时间 TprocMS为不固定值时, 基站可以在通信系统 的控制信道或控制消息中发送第一指示信令, 其中, 所述控制信道包括超 帧头或 A-MAP信道, 所述控制消息包括能力协商消息或注册消息, 或者, 终端可以在通信系统的能力协商消息或注册消息中发送第二指示信令, 上 述第一指示信令和第二指示信令用于指示终端处理数据的时间 TprocMS的 取值。 When the time Tproc MS of the terminal processing data is not a fixed value, the base station may send the first indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or an A-MAP channel. The control message includes a capability negotiation message or a registration message, or the terminal may send the second indication signaling in the capability negotiation message or the registration message of the communication system, where the first indication signaling and the second indication signaling are used to indicate the terminal processing. The value of the data Tproc MS .
当基站处理数据的时间 TprocBS为不固定值时, 基站可以在通信系统 的控制信道或控制消息中发送第三指示信令, 其中, 所述控制信道包括超 帧头或 A-MAP信道, 所述控制消息包括能力协商消息或注册消息。 上述第 三指示信令用于指示基站处理数据的时间 TprocBS的取值。 When the time Tproc BS of the data processing by the base station is a non-fixed value, the base station may send the third indication signaling in a control channel or a control message of the communication system, where the control channel includes a super frame header or an A-MAP channel. The control message includes a capability negotiation message or a registration message. The third indication signaling is used to indicate the value of the time Tproc BS that the base station processes the data.
另外, 本例举的是 FDD模式下的例子, 对于 TDD模式, 只要有相应 的 TprocBS或 TprocMS也可以用同样的方法确定 TprocBS或 TprocMSIn addition, this example is an example in FDD mode. For TDD mode, Tproc BS or Tproc MS can be determined in the same way as long as there is a corresponding Tproc BS or Tproc MS .
根据本发明实施例, 对于 FDD下行模式, 按照终端处理时间、 传输时 间间隔和保护时间中的至少之一来确定终端的反馈时间, 从而保证了终端 在最快时间内完成 HARQ反馈,避免了反馈的等待时间过长,提高了 HARQ 反馈的速度。  According to the embodiment of the present invention, for the FDD downlink mode, the feedback time of the terminal is determined according to at least one of the terminal processing time, the transmission time interval, and the protection time, thereby ensuring that the terminal completes the HARQ feedback in the fastest time and avoids the feedback. The waiting time is too long, which improves the speed of HARQ feedback.
需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可 执行指令的计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤 可以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者 分布在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执 行的程序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来 执行, 或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模 块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任何特 定的硬件和软件结合。 It should be noted that the steps shown in the flowchart of the accompanying drawings may be executed in a computer system such as a set of computer executable instructions, and, although the logical order is shown in the flowchart, However, in some cases, the steps shown or described may be performed in an order different than that described herein. Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于 本领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精 神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明 的保护范围之内。  The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. within the spirit and scope of the invention are intended to be included within the scope of the invention.

Claims

权利要求书 Claim
1、 一种混合自动重传请求的定时方法, 其特征在于, 包括: A timing method for hybrid automatic repeat request, which is characterized by comprising:
根据预定参数确定反馈时刻, 在确定的反馈时刻发送混合自动重传请 求的反馈消息;  Determining a feedback moment according to a predetermined parameter, and transmitting a feedback message of the hybrid automatic retransmission request at the determined feedback moment;
所述预定参数包括以下至少之一或组合: 终端处理数据的时间 The predetermined parameter includes at least one or a combination of the following: a time at which the terminal processes data
TprocMS、基站处理数据的时间 TprocBS、传输时间间隔 TTI和保护时间 P。 Tproc MS , time at which the base station processes data Tproc BS , transmission time interval TTI, and guard time P.
2、 根据权利要求 1所述的定时方法, 其特征在于, 所述根据预定参数 确定反馈时刻包括:  The timing method according to claim 1, wherein the determining the feedback moment according to the predetermined parameter comprises:
计算反馈时刻的帧号 j以及子帧号 n: j = i + floor ((Delay + m) / ); n = (Delay + m) mod F; 其中, 。 表示小于等于 χ的最大整数; Delay等于终端处理数据 的时间 TprocMS、 传输时间间隔 TTI和保护时间 P中的任意一个的值、 或 者任意两个值之和, 或者三者之和; 其中, P为保护时间, 用于预留一定的 冗余时间; Calculate the frame number j of the feedback moment and the subframe number n: j = i + floor ((Delay + m) / ); n = (Delay + m) mod F; where, . Indicates the largest integer less than or equal to χ; Delay is equal to the value of any one of the time Tproc MS , the transmission time interval TTI, and the guard time P of the terminal processing data, or the sum of any two values, or the sum of the three; To protect the time, it is used to reserve a certain redundancy time;
F是一个帧所包括的子帧个数;  F is the number of subframes included in one frame;
在频分双工 FDD模式下, 基站在第 i帧的第 m个下行子帧上发送数据 包;  In the frequency division duplex FDD mode, the base station sends a data packet on the mth downlink subframe of the i-th frame;
在 FDD模式下, 终端在第 j帧的第 n个上行子帧发送所述反馈消息。 In the FDD mode, the terminal transmits the feedback message in the nth uplink subframe of the jth frame.
3、 根据权利要求 1所述的定时方法, 其特征在于, 所述根据所述预定 参数确定反馈时刻包括: The timing method according to claim 1, wherein the determining the feedback moment according to the predetermined parameter comprises:
计算反馈时刻的帧号 j以及子帧号 n: ceiliin + F / 2)  Calculate the frame number j of the feedback moment and the subframe number n: ceiliin + F / 2)
j = (ί + floor(—— -) + z) mod 4  j = (ί + floor(—— -) + z) mod 4
F ; n = ceil{m + / 2) mod F . ceil( 12) - NTTI > Tproc F ; n = ceil{m + / 2) mod F . ceil( 12) - N TTI > Tproc
其中,
Figure imgf000029_0001
其他 , oor(x)表示小于等于 χ的 最大整数, 7(x)表示大于等于 X的最小整数; 等于所述 TTI对应的子 帧个数, 用于表示所述 TTI的值; Mod表示取模运算;
among them,
Figure imgf000029_0001
Other, oor ( x ) represents the largest integer less than or equal to χ, 7 (x) represents the smallest integer greater than or equal to X; equal to the number of subframes corresponding to the TTI, used to represent the value of the TTI; Mod represents modulo Operation
F是一个帧所包括的子帧个数;  F is the number of subframes included in one frame;
在 FDD模式下, 基站在第 i帧的第 m个下行子帧上发送数据包; 在 FDD模式下, 终端在第 j帧的第 n个上行子帧发送所述反馈信息。 In the FDD mode, the base station transmits a data packet on the mth downlink subframe of the i-th frame; in the FDD mode, the terminal sends the feedback information in the nth uplink subframe of the j-th frame.
4、 根据权利要求 1所述的定时方法, 其特征在于, 所述根据所述预定 参数确定反馈时刻包括: k =The timing method according to claim 1, wherein the determining the feedback moment according to the predetermined parameter comprises: k =
Figure imgf000029_0002
Figure imgf000029_0002
q— l . floor{F 1 2) - Nm≥ Tproc MS Q— l . floor{F 1 2) - N m ≥ Tproc MS
其中,
Figure imgf000029_0003
其他 , Χχ)表示小于等于 x的最 大整数; ^777等于所述 ΤΤΙ对应的子帧个数,用于表示所述 ΤΤΙ的值; Mod 表示取模运算;
among them,
Figure imgf000029_0003
Other, Χ χ ) represents the largest integer less than or equal to x; ^ 777 is equal to the number of subframes corresponding to the ΤΤΙ, used to represent the value of the ΤΤΙ; Mod represents the modulo operation;
F是一个帧所包括的子帧个数;  F is the number of subframes included in one frame;
终端在第 j帧的第 m个上行子帧上发送数据包;  The terminal sends a data packet on the mth uplink subframe of the jth frame;
在 FDD模式下,基站在第 k帧的第 个下行子帧发发送所述反馈信息; 在 FDD模式下,所述基站在第 i帧的第 Z个下行子帧发送 A-MAP信息。 In the FDD mode, the base station sends the feedback information in the first downlink subframe of the kth frame; in the FDD mode, the base station sends the A-MAP information in the Zth downlink subframe of the i-th frame.
5、 根据权利要求 4所述的定时方法, 其特征在于, 所述根据所述预定 参数确定反馈时刻还包括: cei\(l + F/2) The timing method according to claim 4, wherein the determining the feedback moment according to the predetermined parameter further comprises: Cei\(l + F/2)
P k + floor + v mod 4  P k + floor + v mod 4
F y = m
Figure imgf000030_0001
表示小于等于 χ的最 r , 7(x)表示大于等于 x的最小整数;
F y = m
Figure imgf000030_0001
Represents the most r equal to or less than χ, and 7(x) represents the smallest integer greater than or equal to x;
在 FDD模式下, 所述终端在第 p帧的第 y个上行子帧上发送重传数据  In the FDD mode, the terminal sends retransmission data on the yth uplink subframe of the pth frame.
ι+ floor] —— \ + v mod 4 ι+ floor] —— \ + v mod 4
{ F  { F
6、 根据权利要求 1所述的定时方法, 其特征在于, 所述根据所述预定 参数确定反馈时刻包括: The timing method according to claim 1, wherein the determining the feedback moment according to the predetermined parameter comprises:
j = i + floor(ceil(F /2 + m)/F) + z. n = ceil(F /2 + m) mod F .  j = i + floor(ceil(F /2 + m)/F) + z. n = ceil(F /2 + m) mod F .
0, ceil( 12) - Nm > Tproc ^ MS 0, ceil( 12) - N m > Tproc ^ MS
。rW表示小于等于 χ 的最
Figure imgf000030_0002
大整数, 7(x)表示大于等于 X的最小整数; 为所述 ΤΉ对应的子 帧个数, 用于表示所述 TTI的值; Mod表示取模运算;
. rW means the most
Figure imgf000030_0002
a large integer, 7(x) represents a minimum integer greater than or equal to X; a number of subframes corresponding to the ΤΉ, used to represent the value of the TTI; Mod represents a modulo operation;
F是一个帧所包括的子帧个数;  F is the number of subframes included in one frame;
在 FDD模式下, 基站在第 i帧的第 m个下行子帧上发送数据包; 在 FDD模式下, 终端在第 j帧的第 n个上行子帧发送所述反馈信息。  In the FDD mode, the base station transmits a data packet on the mth downlink subframe of the i-th frame; in the FDD mode, the terminal sends the feedback information in the nth uplink subframe of the j-th frame.
7、 根据权利要求 1所述的定时方法, 其特征在于, 所述根据所述预定 参数确定反馈时刻包括: j = (i + z) mod 4 ·
Figure imgf000031_0001
The timing method according to claim 1, wherein the determining the feedback moment according to the predetermined parameter comprises: j = (i + z) mod 4 ·
Figure imgf000031_0001
或者, n = m— k , 当 0≤11;  Or, n = m - k , when 0 ≤ 11;
0, ceil( 12) - Nm≥ Tproc MS0, ceil( 12) - N m ≥ Tproc MS
Figure imgf000031_0002
1? 其他 , 等于所述 TTi对应的 子帧个数, 用于表示所述 TTI的值; Mod表示取模运算, 表示小于 等于 X的最大整数, 7(x)表示大于等于 X的最小整数;
Figure imgf000031_0002
1? Others, the number of subframes corresponding to the TTi, used to represent the value of the TTI; Mod represents a modulo operation, representing a maximum integer less than or equal to X, and 7(x) represents a minimum integer greater than or equal to X;
其中, D是一个帧中所包括的下行子帧个数, U是一个帧中所包括的 上行子帧个数, F为一个帧所包括的子帧个数, F=D+U;  Where D is the number of downlink subframes included in one frame, U is the number of uplink subframes included in one frame, and F is the number of subframes included in one frame, F=D+U;
如果 (D +U)为奇数并且 D小于 U/NA_MAP, 在 D大于等于 U时: K = ceil((D-U)/2), 在 D小于 U时: K = -ceil((U-D)/2); 否则, 在 D大于等于 U 时: K=-floor((D-U)/2), 在 D小于 U时: K= -floor ((U-D)/2); If (D + U) is odd and D is less than U/N A _ MAP , when D is greater than or equal to U: K = ceil((DU)/2), when D is less than U: K = -ceil((UD) /2); Otherwise, when D is greater than or equal to U: K=-floor((DU)/2), when D is less than U: K= -floor ((UD)/2);
在 TDD模式下,基站在第 i帧的第 m个下行子帧上发送数据包,其中, m二 I, 或者 m =〖 + NAMAP-l, Z指的是 A-MAP IE出现的位置, 取值范围是 0至 D- 1; In the TDD mode, the base station transmits a data packet on the mth downlink subframe of the i-th frame, where m II I, or m = [ + N A - MAP -l, Z refers to the occurrence of the A-MAP IE Position, the value range is 0 to D-1;
在 TDD模式下, 终端在第 j帧的第 n个上行子帧发送反馈信息。  In the TDD mode, the terminal transmits feedback information in the nth uplink subframe of the jth frame.
8、 根据权利要求 1所述的定时方法, 其特征在于, 所述根据所述预定 参数确定反馈时刻包括:  The timing method according to claim 1, wherein the determining the feedback moment according to the predetermined parameter comprises:
j = ( + z) mod 4 ·
Figure imgf000031_0003
j = ( + z) mod 4 ·
Figure imgf000031_0003
或者, n = m— k , 当 0≤11; 0, ceil( 12) - Nm≥ Tproc MS
Figure imgf000032_0001
1? 其他 , 等于所述 TTi对应的 子帧个数, 用于表示所述 TTI的值; Mod表示取模运算, 表示小于 等于 X的最大整数, 7(x)表示大于等于 X的最小整数;
Or, n = m - k , when 0 ≤ 11; 0, ceil( 12) - N m ≥ Tproc MS
Figure imgf000032_0001
1? Others, the number of subframes corresponding to the TTi, used to represent the value of the TTI; Mod represents a modulo operation, representing a maximum integer less than or equal to X, and 7(x) represents a minimum integer greater than or equal to X;
其中, D是一个帧中所包括的下行子帧个数, U是一个帧中所包括的 上行子帧个数, F为一个帧所包括的子帧个数, F=D+U;  Where D is the number of downlink subframes included in one frame, U is the number of uplink subframes included in one frame, and F is the number of subframes included in one frame, F=D+U;
当 D小于 U时: K = -ceil((U-D)/2), 否则, 当 D大于等于 U时: K = floor((D-U)/2);  When D is less than U: K = -ceil((U-D)/2), otherwise, when D is greater than or equal to U: K = floor((D-U)/2);
在 TDD模式下,基站在第 i帧的第 m个下行子帧上发送数据包,其中, m二 I, 或者 m = l + N,_MAP -1 , Z指的是 A-MAPIE出现的位置; In the TDD mode, the base station transmits a data packet on the mth downlink subframe of the i-th frame, where m II I, or m = l + N, _ MAP -1 , Z refers to the location where the A-MAPIE appears. ;
在 TDD模式下, 终端在第 j帧的第 n个上行子帧发送反馈信息。  In the TDD mode, the terminal transmits feedback information in the nth uplink subframe of the jth frame.
9、 根据权利要求 7或 8所述的定时方法, 其特征在于, 当所述 NTTI 大于 1且/不等于 0时, 在 TDD下行模式下, 基站在第 i+1帧的第 0个下 行子帧发送数据包, 终端在第 j帧的第 n个上行子帧发送反馈信息; The timing method according to claim 7 or 8, wherein when the NTTI is greater than 1 and/or not equal to 0, in the TDD downlink mode, the base station is in the 0th downlink of the (i+1)th frame. The subframe transmits the data packet, and the terminal sends the feedback information in the nth uplink subframe of the jth frame;
其中, j=(i+z+l)mod4, Mod表示取模运算。  Where j = (i + z + l) mod4, Mod represents the modulo operation.
10、 根据权利要求 1 所述的定时方法, 其特征在于, 所述根据所述预 定参数确定反馈时刻包括:  The timing method according to claim 1, wherein the determining the feedback moment according to the predetermined parameter comprises:
j = (i+v) mod 4;
Figure imgf000032_0002
当 ceil(D/NA-MAP)>U;
j = (i+v) mod 4;
Figure imgf000032_0002
When ceil(D/N A-MA P)>U;
[θ,■■■ U-l, ^-l-K + NA_MAP-l, 1 = 0 [θ,■■■ Ul, ^-lK + N A _ MAP -l, 1 = 0
m = l K 者 l K + NAMAP i, 0 < / < /n m = l K is l K + N AMAP i, 0 < / < / n
ι-κ,ι-κ+ι, - U-l, 1 = 1  Ι-κ,ι-κ+ι, - U-l, 1 = 1
或者, , 当 1 <ceil(D/NA-MAP)<U, 且 /max = NA-MAp-(ceil(D/NA-MAp) -1); Or, when 1 <ceil(D/N A-MAP )<U, and /max = N A- MAp-(ceil(D/N A- MAp) -1);
或者, m = 0, 1,…,U-1, 当 ceil(D/ NA-MAP) = 1 , 且/ = 0; 其中, D是一个帧中的下行子帧数, 而 U是一个帧中的上行子帧数, F 为一个帧的子帧数, 即, F=D+U, ^^f(x)表示小于等于 X的最大整数, c /(x)表示大于等于 X的最小整数; Z指的是 A-MAP IE出现的位置; Or, m = 0, 1,..., U-1, when ceil(D/NA-MAP) = 1 and / = 0; Where D is the number of downlink subframes in a frame, and U is the number of uplink subframes in one frame, and F is the number of subframes in one frame, that is, F=D+U, ^^ f ( x ) indicates less than The largest integer equal to X, c / ( x ) represents the smallest integer greater than or equal to X; Z refers to the position where the A-MAP IE appears;
如果 (D + U)为奇数并且 D小于 U/NAJ IAP, 在 D大于等于 U时: K = ceil((D-U)/2) , 在 D小于 U时: K = -ceil((U-D)/2); 否则, 在 D大于等于 U 时: K = -floor((D-U)/2) , 在 D小于 U时: K = -floor ((U-D)/2); If (D + U) is odd and D is less than U/N AJ IAP , when D is greater than or equal to U: K = ceil((DU)/2) , when D is less than U: K = -ceil((UD)/ 2); Otherwise, when D is greater than or equal to U: K = -floor((DU)/2), when D is less than U: K = -floor ((UD)/2);
k = (j+l+w) mod 4;  k = (j+l+w) mod 4;
q = l .  q = l .
0, floor{F 1 2) - Nm > Tproc MS0, floor{F 1 2) - N m > Tproc MS
Figure imgf000033_0001
!' 其他 , 等于所述 TTi对应的 子帧个数, 用于表示所述 ΤΉ的值; Mod表示取模运算;
Figure imgf000033_0001
! 'Others, equal to the number of subframes corresponding to the TTi, used to represent the value of the ΤΉ; Mod represents a modulo operation;
p = (k+v) mod 4;  p = (k+v) mod 4;
y=m;  y=m;
v ≥Tproc v ≥T proc
其中, V
Figure imgf000033_0002
Where V
Figure imgf000033_0002
;
F是一个帧所包括的子帧个数, 表示小于等于 X的最大整数; 在 TDD模式下, 终端在第 j帧的第 m个上行子帧上发送数据包; 在 TDD模式下,基站在第 k帧的第 个下行子帧发发送所述反馈信息; 在 TDD模式下, 基站在第 p帧的第 y个上行子帧发发送重传信息; 在 TDD模式下,所述基站在第 i帧的第 Z个下行子帧发送 A-MAP信息。  F is the number of subframes included in one frame, representing the largest integer less than or equal to X; in TDD mode, the terminal transmits a data packet on the mth uplink subframe of the jth frame; in the TDD mode, the base station is in the The first downlink subframe of the k frame sends the feedback information; in the TDD mode, the base station sends retransmission information in the yth uplink subframe of the pth frame; in the TDD mode, the base station is in the ith frame The Zth downlink subframe transmits A-MAP information.
11、 根据权利要求 1 所述的定时方法, 其特征在于, 所述根据所述预 定参数确定反馈时刻包括:  The timing method according to claim 1, wherein the determining the feedback moment according to the predetermined parameter comprises:
j = (i+v) mod 4; 0, 0≤1<K j = (i+v) mod 4; 0, 0≤1<K
m l-K, K≤l<U + K  m l-K, K≤l<U + K
U-\, U + K≤l<D 当 ceil(D/NA-MAP)≥U; U-\, U + K≤l<D when ceil(D/N A-MAP )≥U;
0, ··· U-l, 者 l K + NAMAP i, 1 = 0 0, ··· Ul, l K + N AMAP i, 1 = 0
m = ί-Κ 者卜 K + NAMAP-l, 0</</max m = ί-Κ 者 K + N AMAP -l, 0</</ max
或者, 当 1 <ceil(D/NA-MAP)<U, 且 /max = NA-MAp-(ceil(D/NA-MAp) -1); Or, when 1 <ceil(D/N A-MAP )<U, and /max = N A- MAp-(ceil(D/N A- MAp) -1);
或者, m = 0, 1, U-1, 当 ceil(D/ NA-MAP) = 1 , 且/ = 0;  Or, m = 0, 1, U-1, when ceil(D/NA-MAP) = 1 and / = 0;
其中, D是一个帧中的下行子帧数, 而 U是一个帧中的上行子帧数, F 为一个帧的子帧数, 即, F=D+U, ^^^(χ)表示小于等于 X的最大整数, c /(x)表示大于等于 X的最小整数; Z指的是 A-MAPIE出现的位置; Where D is the number of downlink subframes in a frame, and U is the number of uplink subframes in one frame, and F is the number of subframes in one frame, that is, F=D+U, ^^^( χ ) indicates less than The largest integer equal to X, c / ( x ) represents the smallest integer greater than or equal to X; Z refers to the position where A-MAPIE appears;
当 D小于 U时: K = -ceil((U-D)/2), 否则, 当 D大于等于 U时: K = floor((D-U)/2);  When D is less than U: K = -ceil((U-D)/2), otherwise, when D is greater than or equal to U: K = floor((D-U)/2);
k = (j+l+w) mod 4;  k = (j+l+w) mod 4;
q = l .  q = l .
0, floor(F 12) - Nm > Tproc MS
Figure imgf000034_0001
!' 其他 , 等于所述 TTI对应的 子帧个数, 用于表示所述 ΤΉ的值; Mod表示取模运算;
0, floor(F 12) - N m > Tproc MS
Figure imgf000034_0001
! 'Others, equal to the number of subframes corresponding to the TTI, used to represent the value of the ΤΉ; Mod represents a modulo operation;
p = (k+v) mod 4;  p = (k+v) mod 4;
y=m; 其中, V
Figure imgf000034_0002
其他 ;
y=m; where, V
Figure imgf000034_0002
other;
F是一个帧所包括的子帧个数, ^。。r(x)表示小于等于 X的最大整数; 在 TDD模式下, 终端在第 j帧的第 m个上行子帧上发送数据包; 在 TDD模式下,基站在第 k帧的第 个下行子帧发发送所述反馈信息; 在 TDD模式下, 基站在第 p帧的第 y个上行子帧发发送重传信息; 在 TDD模式下,所述基站在第 i帧的第 Ζ个下行子帧发送 Α-ΜΑΡ信息。F is the number of sub-frames included in a frame, ^. . r ( x ) represents a maximum integer less than or equal to X; in the TDD mode, the terminal transmits a data packet on the mth uplink subframe of the jth frame; in the TDD mode, the base station is in the first downlink subframe of the kth frame Sending the feedback information; in the TDD mode, the base station sends retransmission information in the yth uplink subframe of the pth frame; In the TDD mode, the base station transmits Α-ΜΑΡ information in the second downlink subframe of the ith frame.
12、 根据权利要求 2至 11中任一项所述的定时方法, 其特征在于, 当 所述终端处理数据的时间 TprocMS和 /或基站处理数据的时间 TprocBS为固定 值时, 该方法还包括: The timing method according to any one of claims 2 to 11, wherein when the time Tproc MS of the terminal processing data and/or the time Tproc BS of the base station processing data is a fixed value, the method further include:
根据系统中一个帧所包括的子帧数目确定终端处理数据的时间 TprocMS和 /或基站处理数据的时间 TprocBSThe time TprocMS at which the terminal processes the data and/or the time Tproc BS at which the base station processes the data is determined according to the number of subframes included in one frame in the system.
13、 根据权利要求 12所述的定时方法, 其特征在于, 所述根据系统中 一个帧所包括的子帧数目确定终端处理数据的时间 TprocMS和 /或基站处理 数据的时间 TprocBS包括: The timing method according to claim 12, wherein the determining the time Tproc MS for processing data by the terminal and/or the time Tproc BS for processing data by the base station according to the number of subframes included in one frame in the system includes:
TprocMS = floor((x -α) / 2) + 2, 0 < α < 8 . Tproc MS = floor((x -α) / 2) + 2, 0 < α < 8 .
TprocBS = floor χ -b)/ 2) + 2, 0≤b≤^, . 其中, χ 为所述系统中一个帧所包括的子帧数目; 表示小于等 于 X的最大整数。 Tproc BS = floor χ -b) / 2) + 2, 0 ≤ b ≤ ^, where χ is the number of subframes included in one frame in the system; represents the largest integer less than or equal to X.
14、 根据权利要求 2至 11中任一项所述的定时方法, 其特征在于, 当 所述终端处理数据的时间 TprocMS为不固定值时, 该方法还包括: The timing method according to any one of claims 2 to 11, wherein when the time Tproc MS of the terminal processing data is an unfixed value, the method further includes:
根据指示信令指示终端处理数据的时间 TprocMS的大小, 其中, 所述 指示信令为一个或多个比特。 And indicating, according to the indication signaling, a size of a time Tproc MS that the terminal processes data, where the indication signaling is one or more bits.
15、 根据权利要求 14所述的定时方法, 其特征在于, 基站在通信系统 的控制信道或控制消息中发送所述指示信令;  The timing method according to claim 14, wherein the base station sends the indication signaling in a control channel or a control message of the communication system;
所述控制信道包括超帧头或 A-MAP信道,所述控制消息包括能力协商 消息或注册消息。  The control channel includes a superframe header or an A-MAP channel, and the control message includes a capability negotiation message or a registration message.
16、 根据权利要求 14所述的定时方法, 其特征在于, 终端在通信系统 的能力协商消息或注册消息中发送所述指示信令。  The timing method according to claim 14, wherein the terminal transmits the indication signaling in a capability negotiation message or a registration message of the communication system.
17、 根据权利要求 2至 11中任一项所述的定时方法, 其特征在于, 当 所述基站处理数据的时间 TprocBS为不固定值时, 该方法还包括: 根据指示信令来指示基站处理数据的时间 TprocBS的大小, 其中, 所 述指示信令为一个或多个比特。 The timing method according to any one of claims 2 to 11, wherein when the time Tproc BS of the data processing by the base station is an unfixed value, the method further includes: And indicating, according to the indication signaling, a size of a time Tproc BS that the base station processes the data, where the indication signaling is one or more bits.
18、 根据权利要求 17所述的定时方法, 其特征在于, 基站在通信系统 的控制信道或控制消息中发送所述指示信令;  The timing method according to claim 17, wherein the base station sends the indication signaling in a control channel or a control message of the communication system;
所述控制信道包括超帧头或 A-MAP信道,所述控制消息包括能力协商 消息或注册消息。  The control channel includes a superframe header or an A-MAP channel, and the control message includes a capability negotiation message or a registration message.
19、 根据权利要求 1至 11任一项所述的定时方法, 其特征在于, 在终 端发送数据时,所述终端处理数据的时间 TpWCMS为终端发送数据所需的处 理时间 ^ ^^^, 在终端接收数据时, 所述终端处理数据的时间 ^^^s 为终端接收数据后发送反馈 ACK/NACK的时间 TpwcMs—RE。 The timing method according to any one of claims 1 to 11, wherein when the terminal transmits data, the time TpWCMS of the terminal processing data is a processing time required for the terminal to transmit data ^^^^ , When the terminal receives data, the time at which the terminal processes the data is the time Tpwc Ms_RE at which the terminal sends the feedback ACK/NACK after receiving the data.
20、 根据权利要求 1~11、 或 19任一项所述的定时方法, 其特征在于, 在基站发送数据时, 所述基站处理数据的时间 ^为基站发送数据 所需的处理时间7^ 在基站接收数据时, 所述基站处理数据的时间 20, 19 a timing method according to any one of the claims 1 to 11, or, wherein, when the base station transmits data, the base station ^ time processing data processing time required to transmit data at the base station ^ 7 Time when the base station processes data when the base station receives data
TprocBs为基站接收数据后发送反馈 ACK/NACK的时间 TpwcBS REl Tproc Bs is the time Tpwc BS REl at which the base station receives the feedback ACK/NACK after receiving the data.
21、 根据权利要求 20所述的定时方法, 其特征在于, 在基站接收数据 时, 所述基站处理数据的时间 ^为基站接收数据后发送反馈 ACK/NACK及控制消息的时间 TprocBS RE2The timing method according to claim 20, wherein when the base station receives the data, the time at which the base station processes the data is the time Tproc BS RE2 at which the base station receives the data and sends the feedback ACK/NACK and the control message.
22、 根据权利要求 21所述的定时方法, 其特征在于, 所述根据系统中 一个帧所包括的子帧数目确定所述终端处理数据的时间 TprocMS和 /或所述 基站处理数据的时间 TprocBS包括: The timing method according to claim 21, wherein the determining, according to the number of subframes included in one frame in the system, the time Tproc MS of the terminal processing data and/or the time Tproc of the base station processing data The BS includes:
TProcMS_TR = fl or((x -α1)/2) + 2,0 < α1 < 8 . 和,或, T P roc M S _TR = fl or((x -α1)/2) + 2,0 < α1 < 8 . and, or,
TprocMS m = floor((x -a2)/2) + 2,0 < «2 < 8; 和 /或, TprocBS TR =^r((x- )/2) + 2,0< <8. 和,或, Tproc MS m = floor((x -a2)/2) + 2,0 < «2 <8; and/or, Tproc BS TR =^r((x- )/2) + 2,0<<8. and, or,
TprocBS REl = floor((x-b2) /2) + 2,0<½<8; 和 /或, TprocBS RE2 = floor((x -W)/2) + 2,0<½ <8; 其中, x 为所述系统中一个帧所包括的子帧数目; 表示小于等 于 X的最大整数。 Tproc BS REl = floor((x-b2) /2) + 2,0<1⁄2<8; and/or, Tproc BS RE2 = floor((x -W)/2) + 2,0<1⁄2 <8; Where x is the number of subframes included in one frame in the system; represents the largest integer less than or equal to X.
23、 一种混合自动重传请求的定时装置, 其特征在于, 包括: 计算模块, 用于根据预定参数确定反馈时刻, 其中, 所述预定参数包 括以下至少之一或组合: 终端处理数据的时间、 基站处理数据的时间、 传 输时间间隔、 一个帧所包括的子帧数目和保护时间;  A timing device for a hybrid automatic repeat request, comprising: a calculating module, configured to determine a feedback moment according to a predetermined parameter, wherein the predetermined parameter comprises at least one or a combination of: a time at which the terminal processes data The time at which the base station processes data, the transmission time interval, the number of subframes included in one frame, and the guard time;
发送模块, 用于在确定出的反馈时刻发送混合自动重传请求的反馈消  a sending module, configured to send a feedback of the hybrid automatic repeat request at the determined feedback moment
24、 根据权利要求 23所述的定时装置, 其特征在于, 所述计算模块通 过公下列公式计算反馈时的帧号 j以及子帧号 n: The timing device according to claim 23, wherein the calculation module calculates the frame number j and the subframe number n when the feedback is performed by the following formula:
j = i + floor((Delay + m) / F);  j = i + floor((Delay + m) / F);
n = (Delay + m) mod F;  n = (Delay + m) mod F;
其中, 。 表示小于等于 χ的最大整数,
Figure imgf000037_0001
表示大于等于 X的 最小整数; Delay等于终端处理数据的时间 TprocMS、 传输时间间隔 ΤΉ和 保护时间 P 中的任意一个的值、 或者任意两个值之和, 或者三者之和; 其 中, P为保护时间, 用于预留一定的冗余时间;
among them, . Represents the largest integer less than or equal to χ,
Figure imgf000037_0001
Indicates the smallest integer greater than or equal to X; Delay is equal to the value of any one of the time Tproc MS , the transmission time interval ΤΉ, and the guard time P of the terminal processing data, or the sum of any two values, or the sum of the three; To protect the time, it is used to reserve a certain redundancy time;
F是一个帧所包括的子帧个数;  F is the number of subframes included in one frame;
在频分双工 FDD模式下, 基站在第 i帧的第 m个下行子帧上发送数据 包;  In the frequency division duplex FDD mode, the base station sends a data packet on the mth downlink subframe of the i-th frame;
在 FDD模式下, 终端在第 j帧的第 n个上行子帧发送所述反馈消息。 In the FDD mode, the terminal transmits the feedback message in the nth uplink subframe of the jth frame.
25、 一种混合自动重传请求的定时方法, 其特征在于, 包括: 根据预定参数确定反馈时刻 , 在确定的反馈时刻发送混合自动重传请 求的反馈消息; 25. A timing method for hybrid automatic repeat request, which is characterized by: Determining a feedback moment according to the predetermined parameter, and sending a feedback message of the hybrid automatic repeat request at the determined feedback moment;
所述预定参数包括以下至少之一或组合: 处理数据的时间 Tproc、 传输 时间间隔 ΤΉ和保护时间 P;  The predetermined parameter includes at least one or a combination of: a time for processing data Tproc, a transmission time interval ΤΉ, and a protection time P;
当所述处理数据的时间 Tproc为固定值时, 该方法还包括:  When the time Tproc of processing the data is a fixed value, the method further includes:
根据系统中一个帧所包括的子帧数目确定处理数据的时间 Tproc。 The time Tproc to process the data is determined according to the number of subframes included in one frame in the system.
26、 根据权利要求 25所述的定时方法, 其特征在于, 所述处理数据的 时间 Tproc 包括终端处理数据的时间 TprocMS、 和 /或基站处理数据的时间 Tproc The timing method according to claim 25, wherein the time Tproc of processing data includes a time Tproc MS for processing data by the terminal, and/or a time Tproc for processing data by the base station.
27、 根据权利要求 26所述的定时方法, 其特征在于, 在终端发送数据 时, 所述终端处理数据的时间 Tpr0CMS为终端发送数据所需的处理时间 The timing method according to claim 26, wherein when the terminal transmits data, the time Tpr0CMS of the terminal processing data is a processing time required for the terminal to transmit data.
TPWCMS_TR ? 在终端接收数据时, 所述终端处理数据的时间 ^^^^为终端 接收数据后发送反馈 ACK/NACK的时间 TpwcMs—RE。 TPWC MS_TR? Data is received at the terminal, the terminal transmits the time processing data ^^^^ ACK / NACK feedback time Tpwc Ms-RE to the terminal after receiving the data.
28、 根据权利要求 26所述的定时方法, 其特征在于, 在基站发送数据时, 所述基站处理数据的时间 ^为基站发送数据 所需的处理时间7^ 在基站接收数据时, 所述基站处理数据的时间 The timing method according to claim 26, wherein when the base station transmits data, the time when the base station processes the data is the processing time required for the base station to transmit data. 7 ^ When the base station receives data, the base station Time to process data
TprocBs为基站接收数据后发送反馈 ACK/NACK的时间 TpwcBS REl Tproc Bs is the time Tpwc BS REl at which the base station receives the feedback ACK/NACK after receiving the data.
29、 根据权利要求 28所述的定时方法, 其特征在于, 在基站接收数据 时, 所述基站处理数据的时间 ^为基站接收数据后发送反馈 ACK/NACK及控制消息的时间 Tproc BS RE2The timing method according to claim 28, wherein when the base station receives the data, the time at which the base station processes the data is the time Tproc BS RE2 at which the base station receives the data and sends the feedback ACK/NACK and the control message.
30、 根据权利要求 29所述的定时方法, 其特征在于, 所述根据系统中 一个帧所包括的子帧数目确定所述处理数据的时间 Tproc。  The timing method according to claim 29, wherein the determining the time Tproc of the processing data according to the number of subframes included in one frame in the system.
31、 根据权利要求 30所述的定时方法, 其特征在于, 所述处理数据的 时间 Tproc 包括终端处理数据的时间 TprocMS和 /或所述基站处理数据的时 间 TprocBS, 所述根据系统中一个帧所包括的子帧数目确定所述处理数据的 时间包括: The timing method according to claim 30, wherein the processing data The time Tproc includes a time Tproc MS at which the terminal processes the data and/or a time Tproc BS at which the base station processes the data, and the time for determining the processed data according to the number of subframes included in one frame in the system includes:
TProcMS_TR = fl or x -α1)/2) + 2,0<α1<8. 和,或, Tproc MS m = floor((x -a2)/2) + 2,0 < «2 < 8; 和 /或, T P roc M S _TR = fl or x -α1)/2) + 2,0<α1<8. and, or, Tproc MS m = floor((x -a2)/2) + 2,0 < «2 <8; and / or,
Tproc BS TR =^r((x- )/2) + 2,0< <8. 和,或, Tproc BS TR =^r((x- )/2) + 2,0<<8. and, or,
Tproc BS REl = floor((x-b2) /2) + 2,0<½<8; 和 /或, Tproc BS REl = floor((x-b2) /2) + 2,0<1⁄2<8; and/or,
Tproc BS RE2 = floor((x -W)/2) + 2,0<½ <8; 其中, x 为所述系统中一个帧所包括的子帧数目; 表示小于等 Tproc BS RE2 = floor((x -W)/2) + 2,0<1⁄2 <8; where x is the number of subframes included in one frame in the system;
PCT/CN2009/076282 2009-08-28 2009-12-30 Timing method and apparatus for hybrid automatic repeat request WO2011022920A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910166856.5 2009-08-28
CN200910166856.5A CN101997663B (en) 2009-08-28 2009-08-28 Timing method and device of hybrid automatic repeat request (HARQ)

Publications (1)

Publication Number Publication Date
WO2011022920A1 true WO2011022920A1 (en) 2011-03-03

Family

ID=43627174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076282 WO2011022920A1 (en) 2009-08-28 2009-12-30 Timing method and apparatus for hybrid automatic repeat request

Country Status (2)

Country Link
CN (1) CN101997663B (en)
WO (1) WO2011022920A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105933100A (en) * 2016-06-27 2016-09-07 珠海市魅族科技有限公司 HARQ feedback method, HARQ feedback device, base station and terminal
CN106125154A (en) * 2016-08-31 2016-11-16 苏州华芯微电子股份有限公司 A kind of timing method for pyroelectric infrared human body induction apparatus and device thereof
CN107231217A (en) * 2016-03-25 2017-10-03 电信科学技术研究院 The transmission method and device of a kind of feedback information
CN108574595A (en) * 2017-03-14 2018-09-25 北京京东尚科信息技术有限公司 A kind of method and apparatus improving service reliability and user experience
RU2758794C1 (en) * 2018-04-26 2021-11-01 Бейджин Сяоми Мобайл Софтвеа Ко., Лтд. Method and apparatus for hybrid automatic repeat request feedback

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594533B (en) * 2012-02-02 2014-09-10 电信科学技术研究院 Method, system and device for transmitting and receiving feedback information
US10404443B2 (en) 2014-05-09 2019-09-03 Qualcomm Incorporated HD-FDD HARQ operation
US10469213B2 (en) * 2015-01-21 2019-11-05 Telefonaktiebolaget Lm Ericsson (Publ) Network node, a wireless device and methods therein for handling automatic repeat requests (ARQ) feedback information
WO2017161971A1 (en) * 2016-03-25 2017-09-28 电信科学技术研究院 Method and device for transmitting feedback information
CN107231218B (en) 2016-03-25 2021-07-30 大唐移动通信设备有限公司 ACK/NACK feedback method and related equipment
US10341061B2 (en) * 2016-03-30 2019-07-02 Qualcomm Incorporated Hybrid automatic repeat request timing for reduced transmission time intervals
CN109075893B (en) * 2016-05-12 2021-09-07 松下电器(美国)知识产权公司 Base station, user equipment and wireless communication method
US10548118B2 (en) * 2016-05-13 2020-01-28 Qualcomm Incorporated Multiple transmission time interval coordination with time division duplexing
EP3300550B1 (en) * 2016-07-25 2019-09-11 Telefonaktiebolaget LM Ericsson (PUBL) Determination of feedback timing
US10348472B2 (en) 2016-07-25 2019-07-09 Telefonaktiebolaget Lm Ericsson (Publ) Determination of feedback timing
CN106301700A (en) * 2016-08-11 2017-01-04 宇龙计算机通信科技(深圳)有限公司 The information feedback method of a kind of upstream data and relevant device
US10484144B2 (en) * 2016-11-11 2019-11-19 Qualcomm Incorporated Hybrid automatic repeat request management for low latency communications
CN108306716B (en) * 2017-01-13 2020-04-14 中国移动通信有限公司研究院 Data transmission method and data transmission device
CN117098232A (en) * 2017-06-20 2023-11-21 中兴通讯股份有限公司 Method, device and storage medium for configuring initial symbol position of uplink data channel
CN109121204B (en) * 2017-06-22 2021-06-04 中国移动通信有限公司研究院 Information transmission method and equipment of wireless communication system
CN109802770B (en) 2017-11-17 2023-09-05 中兴通讯股份有限公司 HARQ feedback and signal processing method, communication node, and readable storage medium
CN111565098B (en) * 2019-02-13 2022-02-11 华为技术有限公司 Method, device and system for determining HARQ feedback resources

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111447A1 (en) * 2006-03-24 2007-10-04 Samsung Electronics Co., Ltd. Apparatus and method for asynchronous and adaptive hybrid arq scheme in a wireless network
CN101179361A (en) * 2006-11-08 2008-05-14 中兴通讯股份有限公司 Method of distributing enhanced mixture automatic retransmission request indicating channel
CN101483509A (en) * 2008-01-11 2009-07-15 中兴通讯股份有限公司 Method for forwarding feedback information by relay in HARQ scene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111447A1 (en) * 2006-03-24 2007-10-04 Samsung Electronics Co., Ltd. Apparatus and method for asynchronous and adaptive hybrid arq scheme in a wireless network
CN101179361A (en) * 2006-11-08 2008-05-14 中兴通讯股份有限公司 Method of distributing enhanced mixture automatic retransmission request indicating channel
CN101483509A (en) * 2008-01-11 2009-07-15 中兴通讯股份有限公司 Method for forwarding feedback information by relay in HARQ scene

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107231217A (en) * 2016-03-25 2017-10-03 电信科学技术研究院 The transmission method and device of a kind of feedback information
CN107231217B (en) * 2016-03-25 2020-08-07 电信科学技术研究院 Transmission method and device of feedback information
CN105933100A (en) * 2016-06-27 2016-09-07 珠海市魅族科技有限公司 HARQ feedback method, HARQ feedback device, base station and terminal
CN105933100B (en) * 2016-06-27 2019-09-17 珠海市魅族科技有限公司 HARQ feedback method and device, base station and terminal
CN106125154A (en) * 2016-08-31 2016-11-16 苏州华芯微电子股份有限公司 A kind of timing method for pyroelectric infrared human body induction apparatus and device thereof
CN108574595A (en) * 2017-03-14 2018-09-25 北京京东尚科信息技术有限公司 A kind of method and apparatus improving service reliability and user experience
CN108574595B (en) * 2017-03-14 2021-10-01 北京京东尚科信息技术有限公司 Method and device for improving service reliability and user experience
RU2758794C1 (en) * 2018-04-26 2021-11-01 Бейджин Сяоми Мобайл Софтвеа Ко., Лтд. Method and apparatus for hybrid automatic repeat request feedback
US11456824B2 (en) 2018-04-26 2022-09-27 Beijing Xiaomi Mobile Software Co., Ltd. HARQ feedback method and apparatus
US11909534B2 (en) 2018-04-26 2024-02-20 Beijing Xiaomi Mobile Software Co., Ltd. HARQ feedback method and apparatus

Also Published As

Publication number Publication date
CN101997663B (en) 2014-07-02
CN101997663A (en) 2011-03-30

Similar Documents

Publication Publication Date Title
WO2011022920A1 (en) Timing method and apparatus for hybrid automatic repeat request
CN107277923B (en) Method and user equipment for improving transmission using configured resources in wireless communication system
US11985639B2 (en) Special subframe configuration for latency reduction
US10680763B2 (en) Dynamic scheduling for hybrid automatic repeat request transmission time interval bundling in a communication system
JP5937467B2 (en) Method and system for supporting multiple hybrid automatic repeat request processes per transmission time interval
CN109845157B (en) Communication method and device
CN112154621B (en) Hybrid automatic repeat request (HARQ) for non-terrestrial networks
WO2010075706A1 (en) Method and device for implementing hybrid automatic retransmission request (harq) based on time division duplex (tdd) system
JPWO2018003913A1 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
WO2017016351A1 (en) Uplink data transmission method and device
KR20180108710A (en) Feedback information transmission method and apparatus
JP6668482B2 (en) Downlink transmission method, base station and terminal
WO2015154310A1 (en) Method and device for controlling channel resource allocation
WO2013120430A1 (en) Method and device for uplink data transmission
CN113645660B (en) User equipment and method using uplink spatial multiplexing and uplink skipping
KR20090008324A (en) Wireless communicating method and wireless communicating device
KR20110048462A (en) Retransmission method and device
WO2020163882A2 (en) Methods and apparatus for reliable acknowledgements in sidelink communications systems
WO2011143895A1 (en) Data retransmission method, base station, terminal, and wireless communication system
US20190132106A1 (en) Uplink transmission method and apparatus
WO2018027949A1 (en) Communication method, network device, and terminal
KR101232599B1 (en) Method for reassembling medium access control protocal data unit and receiver performing the same
US20240260015A1 (en) Special subframe configuration for latency reduction
KR20100058392A (en) Method of transmitting data using error detection code
JP2020162176A (en) Device, method, and integrated circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848652

Country of ref document: EP

Kind code of ref document: A1